WO2014208759A1 - 太陽電池用保護材 - Google Patents

太陽電池用保護材 Download PDF

Info

Publication number
WO2014208759A1
WO2014208759A1 PCT/JP2014/067286 JP2014067286W WO2014208759A1 WO 2014208759 A1 WO2014208759 A1 WO 2014208759A1 JP 2014067286 W JP2014067286 W JP 2014067286W WO 2014208759 A1 WO2014208759 A1 WO 2014208759A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
solar cell
protective material
moisture
width
Prior art date
Application number
PCT/JP2014/067286
Other languages
English (en)
French (fr)
Inventor
直哉 二宮
由美 満倉
治 赤池
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to JP2015524150A priority Critical patent/JPWO2014208759A1/ja
Publication of WO2014208759A1 publication Critical patent/WO2014208759A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a protective material used for solar cells and the like, and more particularly, to a protective material for solar cells capable of maintaining moisture resistance and preventing the occurrence of delamination.
  • a solar cell is made of an ethylene-vinyl acetate copolymer, polyethylene, polypropylene film or the like between a front protective sheet (hereinafter sometimes referred to as a front sheet) and a back protective sheet (hereinafter sometimes referred to as a back sheet). It is set as the structure which sealed the cell for solar cells with the sealing material.
  • a solar cell is usually manufactured by laminating a front protective film, a sealing material, a power generation element, a sealing material, and a back protective film in this order, and bonding and integrating them by heating and melting.
  • a solar cell protective material that is a front surface protection sheet or a back surface protection sheet for solar cells, it is required to have excellent durability against ultraviolet rays. In order to prevent this, it is extremely important to have excellent moisture resistance. Furthermore, it is desired to develop an excellent protective material that causes little deterioration in moisture resistance under long-term use or high-temperature conditions.
  • a polyester adhesive is used for a moisture-proof film having a water vapor transmission rate of 0.22 g / m 2 / day based on a biaxially stretched polyester film, and a weather-resistant polyester film on the inorganic vapor deposition surface side.
  • a protective material for a solar cell is prepared by laminating a polypropylene film on the back surface, and the moisture resistance after a 1000 hour test is evaluated at 85 ° C. and 85% humidity, and a proposal for prevention of moisture resistance deterioration is made.
  • a polyurethane adhesive layer is provided on both sides of a moisture-proof film having a water vapor transmission rate of 1 to 2 g / m 2 / day based on a biaxially stretched polyester film, and weather resistance is provided on both sides.
  • a protective film for solar cells is manufactured by laminating polyester films, and barrier performance and interlayer strength after a 1000 hour acceleration test at 85 ° C. and 85% humidity are evaluated, and proposals are made to prevent degradation of both characteristics.
  • Patent Document 3 after a PVF film is bonded to a moisture-proof film having a water vapor transmission rate of 0.5 g / m 2 / day based on a biaxially stretched polyester film, using a two-component curable polyurethane adhesive.
  • PCT pressure cooker test
  • each of the techniques disclosed in Patent Documents 1 to 3 relates to a laminate having a moisture-proof film having a water vapor transmission rate of 0.1 g / m 2 / day or more, and requires higher moisture resistance.
  • a solar cell protective material such as a compound-based power generation element solar cell module
  • long-term moisture-proofing properties in harsh environments that are replaced by accelerated durability tests such as the pressure cooker test (PCT) Maintenance and prevention of delamination at the edge of the protective material could not be sufficiently performed.
  • PCT pressure cooker test
  • a protective material for solar cells a material that is excellent in moisture proofing and prevention of delamination and that can maintain the moisture proof and prevention of delamination over a long period of time is desired.
  • a fluorine resin film, an adhesive layer, and an inorganic layer on at least one surface of a substrate have a water vapor transmission rate of 0.1 g / m.
  • the ratio of the maximum width B of the protective material constituting layer other than the fluororesin film to the width A of the fluororesin film in the laminate obtained by laminating the moisture-proof film less than 2 / day as the protective material constituting layer P (B / By making A) smaller than 1, at the time of vacuum lamination, the sealing material on the solar cell wraps around the end face of the adhesive layer or moisture-proof film having a width shorter than the width of the fluororesin film, thereby sealing the end face. Due to the above-described effects, means have been proposed that achieves both prevention of moisture-proof deterioration and prevention of delamination from the end.
  • the invention of Japanese Patent Application No. 2011-290036 has a structure in which a fluororesin film protrudes, and at the time of sealing, the fluororesin film and the sealing material are in close contact with each other.
  • a weather-resistant film such as a fluorine-based resin film is generally inferior in adhesion, and if sealing is performed with insufficient adhesion, delamination may occur over time. For this reason, it is conceivable that a weather-resistant film such as a fluorine-based resin film is subjected to an easy adhesion treatment such as a plasma treatment in advance to improve the adhesion.
  • an easy adhesion treatment such as a plasma treatment
  • the present inventors have studied the change over time in the adhesion between a weather resistant film such as a fluorine resin film after plasma treatment and a sealing material.
  • a weather resistant film such as a fluorine resin film after plasma treatment
  • a sealing material such as a fluorine-based resin film and the sealing material cannot be satisfied.
  • Obtained knowledge As a result of further earnest research, even when a sealing operation is performed after long-term storage on a protective material for a solar cell including a moisture-proof film having a water vapor transmission rate of less than 0.1 g / m 2 / day.
  • the present invention provides the following [1] to [14].
  • [1] A sun formed by laminating at least a weather-resistant film, a resin layer, and a moisture-proof film having an inorganic layer on at least one surface of a substrate and having a water vapor transmission rate of less than 0.1 g / m 2 / day.
  • a protective material for a battery the width W a of the weather resistant film, most weather resistant film side of the width W BU of the width W B of the resin layer, and the width W C of the moisture-proof film, W a ⁇ W satisfy the relationship of BU> W C, protective material for solar cells, [2]
  • [4] which is the ratio (W BU / W A) is 0.75-1.0 of the width W BU and width W A, wherein [1] to [3]
  • Solar cell protective material according to any one of , [5]
  • the solar cell protective material according to any one of the above, [6]
  • a back film having a thickness of 60 ⁇ m or more is further provided on the moisture-proof film side, and the width W D of the back film is smaller than the width W A and larger than the width W C. 1] to [8], a solar cell protective material according to any one of [10]
  • the present invention even when the sealing operation is performed after long-term storage, there is no decrease in moisture-proof property or occurrence of delamination even when used under a high temperature and high humidity for a long period of time. It is possible to provide a highly moisture-proof solar cell protective material that is excellent in moisture-proof property, prevents performance degradation of the solar cell, and is effective in improving the durability of the solar cell.
  • the solar cell protective material of the present invention is excellent in flexibility and moisture resistance, in which moisture resistance and interlaminar strength do not decrease even after heat treatment in a high heat environment, that is, heat lamination conditions.
  • Sectional drawing which shows one Embodiment of the protective material for solar cells of this invention
  • Sectional drawing which shows other embodiment of the protective material for solar cells of this invention
  • Sectional drawing which shows other embodiment of the protective material for solar cells of this invention
  • Sectional drawing which shows one use example of the protective material for solar cells of this invention
  • the figure explaining the evaluation method of bending length The figure explaining the evaluation method of load bearing dent
  • the protective material for solar cells can prevent moisture from entering from the exposed surface of the film by being laminated with a moisture-proof film, but it can be used for a long time as an alternative to accelerated testing in a high-temperature, high-humidity environment.
  • the present inventors have at least a weather resistant film (1), a resin layer (21), and at least one surface of a substrate as a solar cell protective material.
  • a protective material for solar cells (10) comprising an inorganic layer and a moisture-proof film (3) having a water vapor permeability of less than 0.1 g / m 2 / day, wherein the width W of the weather-resistant film is a, most weather resistant film side of the width W BU of the width W B of the resin layer, and the width W C of the moisture-proof film, and configured so as to satisfy the relationship W a ⁇ W BU> W C .
  • the resin layer (21a) and the resin layer (21b) have two resin layers.
  • the adhesive layer (22) and the back sheet are provided on the back surface of the moisture-proof film (3).
  • the sealing material (20) on a solar cell (30) is the width
  • the solar cell protective material of the present invention has hydrolysis resistance and weather resistance, and has a weather resistant film in order to impart long-term durability.
  • the weather resistant film those having hydrolysis resistance and weather resistance can be used without limitation.
  • polytetrafluoroethylene tetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • FEP hexafluoropropylene copolymer
  • ETFE tetrafluoroethylene / ethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • Polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polycarbonates; acrylic resins such as polymethyl methacrylate (PMMA); films of various resins such as polyamides may be used. Kill.
  • the weather resistant film may contain two or more of these resins, or may be a laminated film of two or more films.
  • a fluororesin film is suitable from the viewpoint of weather resistance and transparency.
  • fluororesin films from the viewpoint of long-term durability, tetrafluoroethylene / ethylene copolymer (ETFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and polyvinylidene fluoride (PVDF) are used.
  • ETFE tetrafluoroethylene / ethylene copolymer
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • PVDF polyvinylidene fluoride
  • the weather resistant film preferably has a small characteristic change during vacuum lamination, temperature change, or humidity change. Accordingly, those having a low shrinkage rate by prior heat treatment are preferred.
  • the weather resistant film is preferably subjected to an easy adhesion treatment such as a plasma treatment in order to improve the adhesion with the sealing material.
  • the weather resistant film is preferably a film having a glass transition temperature of ⁇ 50 to 180 ° C.
  • additives can be added to the weather resistant film as necessary.
  • examples of the additive include, but are not limited to, an ultraviolet absorber, a weather resistance stabilizer, an antioxidant, an antistatic agent, and an antiblocking agent.
  • the thickness of the weather-resistant film is generally about 20 to 200 ⁇ m, preferably 20 to 100 ⁇ m, more preferably 20 to 60 ⁇ m from the viewpoint of film handling and cost.
  • the heat shrinkage rate of the weather resistant film is preferably 5.0% or less, preferably at least one of the heat shrinkage rate in the width direction or the length direction of the film from the viewpoint of curling prevention. More preferably, it is more preferably 3.0% or less.
  • the effect is especially remarkable when the thermal contraction rate in the width direction and the length direction of the film is in the above range.
  • the minimum of the heat shrinkage rate of a weather resistant film is about 0.3%.
  • the width W A of the weather resistant film the relationship between the most weather resistant film side of the width W BU of the width W B of the resin layer, when W A ⁇ W BU is thinner the thickness of the sealing material from flowing to the end face Delamination is likely to occur. Therefore, in the present invention, it is necessary to W A ⁇ W BU. If the relationship of W A ⁇ W BU is satisfied, the length of WA to the left and right with respect to W BU is arbitrary, but it is preferable to lengthen W A equally to the left and right.
  • the ratio (W BU / W A ) between the width W BU and the width W A is preferably 0.75 to 1.0.
  • W BU / W A is more preferably 0.90 to 1.0, further preferably 0.90 to 0.99, 0.95 More preferably, it is -0.99.
  • the “film width” means the length in the lateral direction with respect to the length direction of the film unwound from the roll when the protective material is provided in a roll, and is provided in a single sheet. The short side of the four sides.
  • the resin layer as used in the field of this invention is located between a weather resistant film and a moisture-proof film.
  • the resin layer preferably contains 50% by mass or more of the resin component, more preferably 80% by mass or more, and still more preferably 90 to 99.9% by mass.
  • the most weather resistant film side of the width W BU of the width W B of the resin layer is smaller than the width W C of the moisture-proof film, with sealing material is less likely to wraparound the end face, the moisture-proof film side of the weather resistant film Since the area where the surface comes into contact with the sealing material increases, the thickness of the sealing material at the end portion decreases, and the adhesion of the sealing material on the weather resistant film side decreases.
  • the ratio (W C / W BU ) between the width W C and the width W BU is preferably 0.7 to 0.99, more preferably 0.75 to 0.99.
  • the resin layer may be a single layer as shown in FIGS. 1 and 3, or may be two or more layers as shown in FIG.
  • the width of the resin layer on the weather resistant film side is the widest, and the width is gradually narrowed from the resin layer on the weather resistant film side toward the resin layer on the moisture proof film side. More preferably.
  • the widths of the two or more resin layers it is preferable in that the end face can be satisfactorily sealed.
  • the resin layer located on the weather resistant film side is more preferable than the resin layer located on the moisture proof film side as described above. It is preferable to contain many of these various additives.
  • the above-mentioned various additives are contained only in the weather-resistant film side resin layer, and the above-mentioned various additives are not contained in the moisture-proof film side resin layer.
  • the resin layer is preferably a layer that is softened by heating and exhibits adhesiveness.
  • a method using a pressure-sensitive adhesive (pressure-sensitive adhesive) or a two-component curable adhesive is known.
  • the pressure-sensitive adhesive or adhesive is generally a polymer solution obtained by adding a crosslinking agent, and is dried and cured after application to form a pressure-sensitive adhesive layer or an adhesive layer.
  • the reaction rate of the crosslinking agent does not reach 100%, unreactive groups remain in the layer, which may reduce the moisture resistance of the solar cell protective material under high temperature and high humidity conditions.
  • the pressure-sensitive adhesive and adhesive have stickiness (tack), it is necessary to wind up after laminating with another film immediately after being applied to a weather-resistant film or moisture-proof film.
  • the resin layer is softened by heating and exhibits adhesiveness, it is cooled with the resin layer provided on a weather-resistant film or moisture-proof film, and another film is laminated on the resulting laminate. It is possible to wind up as it is. Since the resin layer is cooled, blocking can be prevented in a wound state. Moreover, since adhesiveness is expressed by heating this again, when packaging, the other layer can be easily bonded by thermal lamination.
  • the resin layer preferably contains a thermoplastic resin as a main component, and more preferably does not substantially contain a crosslinking agent, in order to exhibit adhesiveness by heating.
  • the thermoplastic resin is preferably contained in an amount of 50% by mass or more of the resin layer, more preferably 80% by mass or more, and further preferably 90 to 99.9% by mass.
  • content of a crosslinking agent is 0.1 mass% or less of a resin layer, it is more preferable that it is 0.01 mass% or less, and that a crosslinking agent is not included substantially, 0.001 More preferably, it is at most mass%.
  • the resin layer may be formed using an adhesive or a two-component curable adhesive as a main component.
  • the solar cell protective material is manufactured as a single sheet.
  • thermoplastic resin examples include polyester, polyurethane, polyamide, acrylic, polyethylene, polypropylene, polybutadiene, polyisobutylene, ethylene-alkyl (meth) acrylate copolymer, ethylene-vinyl acetate copolymer, vinyl chloride- Examples thereof include vinyl acetate copolymer, styrene-isoprene copolymer, and styrene-butadiene copolymer.
  • thermoplastic resins polyethylene, an ethylene-alkyl (meth) acrylate copolymer, an ethylene-vinyl acetate copolymer can be used because it has a relatively low melting point and can widen the processing temperature selectivity in the vacuum lamination process.
  • An ethylene resin such as a polymer is preferred.
  • polyethylene examples include ethylene homopolymers and ethylene- ⁇ -olefin copolymers such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and high density polyethylene (HDPE).
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • HDPE high density polyethylene
  • the ⁇ -olefin copolymerized with ethylene includes propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene and 1-nonene. 1-decene, 3-methyl-butene-1, 4-methyl-pentene-1, and the like.
  • propylene, 1-butene, 1-hexene, and 1-octene are preferably used from the viewpoints of industrial availability, various characteristics, economy, and the like.
  • ⁇ -olefins may be used alone or in combination of two or more.
  • the ⁇ -olefin is usually 2 mol% or more, preferably 40 mol% or less, more preferably 3 to 30 mol%, still more preferably based on all monomer units in the copolymer with ethylene. 5 to 25 mol%.
  • ⁇ -olefin is copolymerized to reduce the crystallinity of the copolymer, so that transparency is improved and problems such as blocking of raw material pellets hardly occur.
  • an ethylene- ⁇ -olefin random copolymer is preferably used from the viewpoint of transparency and flexibility.
  • the ethylene resin is preferably at least one selected from polyethylene and ethylene-alkyl (meth) acrylate copolymers.
  • polyethylene 1 or more types chosen from a low density polyethylene and a linear low density polyethylene are preferable from a transparency viewpoint, and a low density polyethylene is more preferable.
  • the content of the ethylene resin is preferably 5 to 100% by mass of the resin layer, more preferably 20 to 100% by mass, still more preferably 30 to 100% by mass, More preferably, it is 40 to 100% by mass.
  • an ethylene-alkyl (meth) acrylate copolymer is preferable from the viewpoint of adhesion to a sealing material and transparency.
  • the reason why the above effect can be obtained when the resin layer contains an ethylene-alkyl (meth) acrylate copolymer is considered as follows. Alkyl (meth) acrylate has polarity because it has an ester bond, and since it can be copolymerized with ethylene, it can improve the adhesion between the resin layer and the inorganic layer, and can also impart amorphous properties. High transparency can be obtained.
  • the resin layer contains an acidic functional group
  • moisture resistance after storage under high temperature and high humidity conditions deteriorates particularly when the resin layer and the inorganic layer are in contact with each other.
  • the ethylene-alkyl (meth) acrylate copolymer does not contain an acidic functional group, it is possible to suppress deterioration of moisture resistance after storage under high temperature and high humidity conditions.
  • the content of the monomer unit derived from the alkyl (meth) acrylate in the ethylene-alkyl (meth) acrylate copolymer is preferably 1 mass relative to all the monomer units in the copolymer. % Or more, more preferably 5 to 80% by mass, still more preferably 10 to 60% by mass.
  • the ethylene-alkyl (meth) acrylate copolymer used in the present invention means a polymer obtained by copolymerizing ethylene and one or more alkyl (meth) acrylates. ) It contains substantially no monomer units derived from monomers other than acrylate. “Substantially does not contain” means that monomer units other than ethylene and alkyl (meth) acrylate are less than 0.1 mol% among the monomer units constituting the copolymer.
  • the alkyl (meth) acrylate in the ethylene-alkyl (meth) acrylate copolymer preferably has 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, from the viewpoint of heat resistance and stability. More preferably, it has 1 to 4 carbon atoms.
  • the alkyl group may be a straight chain, may have a branched structure, or may have a cyclic structure.
  • Alkyl (meth) acrylate means alkyl acrylate or alkyl methacrylate, and alkyl acrylate is preferable from the viewpoint of adhesion.
  • Examples of the ethylene-alkyl (meth) acrylate copolymer used in the present invention include an ethylene-methyl (meth) acrylate copolymer, an ethylene-ethyl (meth) acrylate copolymer, and an ethylene-butyl (meth) acrylate copolymer.
  • ethylene-methyl (meth) acrylate copolymers and ethylene-butyl (meth) acrylate copolymers are preferable.
  • Ethylene-methyl acrylate copolymers and ethylene are preferable.
  • One or more selected from -butyl acrylate copolymers is more preferred.
  • the ethylene-alkyl (meth) acrylate copolymer may be a block copolymer or a random copolymer. Since the structural unit derived from ethylene and the structural unit derived from alkyl (meth) acrylate have different polarities, the ethylene-alkyl (meth) acrylate copolymer is expected to have a sea-island structure in the resin layer. It is preferable that the ethylene-alkyl (meth) acrylate copolymer is a random copolymer because the island structure becomes smaller and the adhesiveness becomes uniform.
  • the molecular weight of the ethylene-alkyl (meth) acrylate copolymer is arbitrary, but the weight average molecular weight is preferably 5,000 to 1,000,000. When the weight average molecular weight is 5,000 or more, there is no possibility that the copolymer flows out from the layer when the resin layer containing the ethylene-alkyl (meth) acrylate copolymer is heated. If the weight average molecular weight is 1,000,000 or less, the processability is good and the thickness of the resin layer can be easily controlled. From the viewpoint of the balance between heat resistance and workability, the weight average molecular weight is more preferably from 10,000 to 100,000.
  • the content of the copolymer in the resin layer is preferably 5 to 100% by mass, more preferably 20 to 100% by mass, More preferably, it is 30 to 100% by mass, and still more preferably 40 to 100% by mass. If the content of the ethylene-alkyl (meth) acrylate copolymer in the resin layer is 5% by mass or more, the density of the monomer units derived from the alkyl (meth) acrylate contributing to the adhesiveness is sufficient and uniform. Therefore, it is possible to obtain a solar cell protective material having moisture resistance and adhesion even after storage under high temperature and high humidity conditions.
  • the preferred weight average molecular weight of the thermoplastic resin other than the ethylene-alkyl (meth) acrylate copolymer is also the same as that of the above-mentioned ethylene-alkyl (meth) acrylate copolymer.
  • the thermoplastic resin preferably has a melting point of 60 to 150 ° C., more preferably 60 to 120 ° C., from the viewpoint of wide processing temperature selectivity in the vacuum lamination step.
  • the thermoplastic resin preferably has a glass transition temperature of ⁇ 20 ° C. or lower from the viewpoint of reducing the residual stress of the resin layer in the heating and cooling cycle. When the glass transition temperature is within the above range, deterioration of the barrier property of the protective material for a solar cell particularly in a low temperature region can be suppressed.
  • the resin layer has a tensile storage modulus of 5 ⁇ at 100 ° C., a frequency of 10 Hz, and a strain of 0.1% in order to prevent damage to the inorganic layer by absorbing the stress generated by shrinkage of the opposing film. It is preferably 10 5 Pa or less.
  • the resin layer preferably has a tensile storage modulus of 1 ⁇ 10 7 Pa or more at 20 ° C., a frequency of 10 Hz, and a strain of 0.1% from the viewpoint of maintaining adhesive strength at normal temperature (20 ° C.).
  • the melt flow rate (MFR) of the resin constituting the resin layer is preferably 20 g / 10 min or less at 190 ° C. and a load of 2.16 kg.
  • MFR melt flow rate
  • the MFR of the resin constituting the resin layer is more preferably 18 g / 10 min or less at 190 ° C. and a load of 2.16 kg, and further preferably 15 g / 10 min or less.
  • the MFR of the resin layer can be measured by the method described in Examples.
  • the MFR of the resin constituting the resin layer refers to an MFR of a resin obtained by mixing all the resin components contained in the resin layer.
  • the resin layer includes a thermoplastic resin composition in which components such as a thermoplastic resin, an ultraviolet absorber, and a light stabilizer constituting the resin layer are mixed with a weather resistant film or an inorganic layer of a moisture-proof film. It may be formed by directly coating the coating liquid, or the coating liquid containing the thermoplastic resin composition is applied to the release-treated surface of the release-treated release sheet, and this is a weather resistant film, Alternatively, the release sheet may be peeled off after being bonded to the inorganic layer of the moisture-proof film (coating method).
  • a melt-kneaded film or a thermoplastic resin constituting the resin layer and other additives may be formed by pouring on a weather resistant film and cooling with a cooling roll (extrusion laminating method). Or after melt-kneading the thermoplastic resin which comprises a resin layer, and other additives, you may shape
  • the resin layer is formed on the inorganic layer of the weather-resistant film or moisture-proof film and then the other film is laminated on the resin layer, the weather-resistant film and moisture-proof film are interposed via the resin layer. Although it is in a temporarily bonded state, it can be firmly bonded by vacuum lamination when manufacturing a solar cell module described later.
  • the coating liquid used in the coating method is a solution obtained by dissolving a thermoplastic resin composition in which each component such as a thermoplastic resin, an ultraviolet absorber and a light stabilizer constituting the resin layer is mixed in an organic solvent, or It is preferable to use those dissolved or dispersed in water. What was dissolved in the organic solvent is preferable for uses, such as a solar cell member in which water resistance is asked.
  • the organic solvent include toluene, xylene, methanol, ethanol, isobutanol, n-butanol, acetone, methyl ethyl ketone, ethyl acetate, tetrahydrofuran and the like. These may be used alone or in combination of two or more.
  • the coating liquid is preferably prepared using these organic solvents so that the solid content concentration is in the range of 10 to 50% by mass.
  • Coating of the coating liquid is, for example, conventionally known coating methods such as bar coating, roll coating, knife coating, roll knife coating, die coating, gravure coating, air doctor coating, doctor blade coating, etc. It can be done by a method.
  • a resin layer is formed by drying treatment usually at a temperature of 70 to 110 ° C. for about 1 to 5 minutes.
  • thermoplastic resin in which a thermoplastic resin constituting the resin layer and other additives are melt-kneaded is poured onto a substrate such as a weather-resistant film or a moisture-proof film, and cooled by a cooling roll, thereby being weather-resistant.
  • a laminate of a film and a resin layer or a laminate of a moisture-proof film and a resin layer can be obtained.
  • two resin layers can be stacked by cooling the resin by flowing the resin again by extrusion lamination to the resin layer side of the laminate thus obtained.
  • the same resin may be used in each layer, or different resins may be used. Moreover, you may further overlap with 3 layers and 4 layers.
  • the thickness and structure of the resin layer can be arbitrarily selected.
  • the thickness of the resin layer provided at a time can be controlled by the discharge amount of the resin layer forming composition extruded from the die and the line speed for conveying the film.
  • the thickness of the resin layer provided at a time is preferably selected in consideration of the temperature, spreadability, uniformity of the layer thickness, and productivity, and is usually 3 to 100 ⁇ m, and is 10 in terms of processing stability. ⁇ 80 ⁇ m is preferred.
  • one resin layer is formed on a weather-resistant film, and the other resin layer is formed on a moisture-proof film.
  • the resin temperature to be extruded is usually 150 to 350 ° C. If it is 150 ° C. or lower, the resin flow is poor, and if it is higher than 350 ° C., there is a concern about thermal decomposition of the resin. Furthermore, 200 to 320 ° C. is preferable and 260 to 300 ° C. is more preferable from the viewpoint of processability and prevention of thermal decomposition of the resin.
  • the line speed can be arbitrarily selected according to the apparatus capability, but is usually about 10 to 200 m / min. From the viewpoint of processing stability, 10 to 150 m / min is preferable, and from the viewpoint of productivity, 50 to 150 m / min is preferable.
  • the resin layer When there are a plurality of raw materials for the resin layer, they may be mixed by dry blending, put into an extrusion processing machine, or compounded in advance. It is more preferable to perform compounding in advance in order to improve the uniformity of the resin and improve the workability.
  • the compound In order to prevent thermal decomposition of the resin, the compound is preferably carried out at a temperature lower than the extrusion laminating temperature.
  • films can be bonded to both sides of the resin layer at once. For example, when forming a resin layer on a moisture-proof film, the laminated body which provided the resin layer between two films can be obtained by paying out a weather resistant film from the opposite side to the moisture-proof film of a resin layer.
  • the thickness of the resin layer is preferably 5 to 120 ⁇ m, more preferably 10 to 100 ⁇ m, still more preferably 10 to 80 ⁇ m, and still more preferably 20 to 80 ⁇ m. If the thickness of the resin layer is 5 ⁇ m or more, a sufficient adhesive force can be obtained, and if it is 120 ⁇ m or less, it is possible to prevent the moisture-proof performance from deteriorating due to an increase in stress applied to the surface of the moisture-proof film.
  • the resin layer and the inorganic layer are in contact, and when the thickness of the resin layer is a and the thickness of the inorganic layer is b, the resin layer thickness a and the resin
  • the ratio a / b to the thickness b of the inorganic layer in contact with the layer is preferably in the range of 200 to 10,000, more preferably in the range of 250 to 9000, and still more preferably in the range of 400 to 2000.
  • the shrinkage stress damages the inorganic layer in contact with the resin layer, reducing moisture resistance. It is necessary not to. If a / b is 200 or more, the thickness of the resin layer relative to the thickness of the inorganic layer is not too small, and there is no concern of damaging the inorganic layer due to insufficient impact resistance. On the other hand, if a / b is 10,000 or less, the shrinkage stress applied to the inorganic layer in contact with the resin layer does not become excessive, and a decrease in moisture resistance can be suppressed.
  • the ratio a / c between the thickness a of the resin layer and the thickness c of the substrate is preferably in the range of 0.1 to 8. . If a / c is 0.1 or more, the initial adhesiveness between the weather resistant film and the moisture-proof film is improved. When a / c is 8 or less, deformation of the base material due to shrinkage of the resin layer hardly occurs during thermocompression bonding (vacuum lamination) in the production of the protective material. a / c is more preferably in the range of 0.1 to 3.3, and still more preferably in the range of 0.2 to 2.0.
  • the moisture-proof film has at least an inorganic layer formed on at least one surface of the substrate and the substrate, and the water vapor transmission rate is preferably less than 0.1 g / m 2 / day. . Since the protective material for solar cells of the present invention is desired to maintain high moisture resistance for a long period of time, the initial moisture resistance needs to be a certain level or more. Accordingly, in the present invention, the moisture-proof film is less than the water vapor transmission rate of 0.1g / m 2 / day, preferably not more than 0.05g / m 2 / day, more preferably, 0.03 g / m 2 / Day or less.
  • the moisture-proof film is preferably transparent when the solar cell protective material is used as a front sheet used on the light-receiving surface side.
  • W C / W A is preferably 0.7 to 0.98, and more preferably 0.75 to 0.95 for more stable delamination prevention, and 0.8 to 0.92 is more preferable.
  • the thickness of the moisture-proof film is generally 5 to 300 ⁇ m, and preferably 25 to 250 ⁇ m, more preferably 38 from the viewpoints of curling suppression, voltage resistance, cushioning, productivity, and handleability of the solar cell protective material. It is ⁇ 200 ⁇ m, more preferably 50 to 180 ⁇ m.
  • a resin film is preferable, and any material can be used without particular limitation as long as it is a resin that can be used for an ordinary solar cell material.
  • polyolefins such as homopolymers or copolymers such as ethylene, propylene and butene; amorphous polyolefins such as cyclic polyolefins; polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); nylon 6 , Polyamides such as nylon 66, nylon 12 and copolymer nylon; ethylene-vinyl acetate copolymer partial hydrolyzate (EVOH), polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone, polycarbonate, polyvinyl Examples include butyral, polyarylate, fluororesin, acrylic resin, biodegradable resin, and the like, and among them, a thermoplastic resin is preferable.
  • polyesters, polyamides, and polyolefins are preferable from the viewpoints of film properties and costs
  • polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferable from the viewpoints of surface smoothness, film strength, heat resistance, and the like.
  • the elastic modulus at 23 ° C. of the base material is more preferably 2.0 to 10.0 GPa, still more preferably 2.0 to 8.0 GPa.
  • the elastic modulus refers to the tensile elastic modulus obtained from the slope of the linear portion of the stress-strain curve, and can be obtained by a tensile test method based on JIS K7161: 1994.
  • additives can be added to the base material, the resin layer described above, and the adhesive layer described later, as necessary.
  • the additive include, but are not limited to, an antistatic agent, an ultraviolet absorber, a light stabilizer, a plasticizer, a lubricant, a filler, a colorant, an antiblocking agent, and an antioxidant.
  • ultraviolet absorbers examples include various types such as benzophenone-based, benzotriazole-based, triazine-based, salicylic acid ester-based, and various commercially available products can be applied.
  • benzophenone ultraviolet absorbers examples include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-n.
  • benzotriazole ultraviolet absorber examples include hydroxyphenyl-substituted benzotriazole compounds such as 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-butylphenyl).
  • Benzotriazole 2- (2-hydroxy-3,5-dimethylphenyl) benzotriazole, 2- (2-methyl-4-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3-methyl-5-t- Butylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-amylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, etc. be able to.
  • triazine ultraviolet absorbers examples include 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, 2- ( Examples include 4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol.
  • salicylic acid esters include phenyl salicylate and p-octylphenyl salicylate.
  • the content of the ultraviolet absorber in the base material, the above-described resin layer and the adhesive layer described later is usually about 0.01 to 2.5% by mass, preferably 0.05 to 2.0% by mass.
  • Hindered amine light stabilizers can be used as a weather stabilizer that imparts weather resistance in addition to the above ultraviolet absorbers.
  • a hindered amine light stabilizer does not absorb ultraviolet rays like an ultraviolet absorber, but exhibits a remarkable synergistic effect when used together with an ultraviolet absorber.
  • hindered amine light stabilizers include dimethyl-1- (2-hydroxyethyl) succinate-4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly [ ⁇ 6- (1,1 , 3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2, 2,6,6-tetramethyl-4-piperidyl) imino ⁇ ], N, N′-bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (1,2,2, 6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, 2- (3 , 5-Di-tert-4 Hydroxybenzyl) -2
  • antioxidant various commercial products can be used, and various types such as monophenol type, bisphenol type, polymer type phenol type, sulfur type and phosphite type can be exemplified.
  • monophenols include 2,6-di-tert-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-tert-butyl-4-ethylphenol, and the like.
  • Bisphenols include 2,2′-methylene-bis- (4-methyl-6-tert-butylphenol), 2,2′-methylene-bis- (4-ethyl-6-tert-butylphenol), 4,4 '-Thiobis- (3-methyl-6-tert-butylphenol), 4,4'-butylidene-bis- (3-methyl-6-tert-butylphenol), 3,9-bis [ ⁇ 1,1-dimethyl- 2- ⁇ - (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ ethyl ⁇ 2,4,9,10-tetraoxaspiro] 5,5-undecane.
  • Examples of the high molecular phenolic group include 1,1,3-tris- (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3 , 5-di-tert-butyl-4-bidoxybenzyl) benzene, tetrakis- ⁇ methylene-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate ⁇ methane, bis ⁇ (3,3′-bis-4′-hydroxy-3′-tert-butylphenyl) butyric acid ⁇ glycol ester, 1,3,5-tris (3 ′, 5′-di-tert-butyl-4 Examples include '-hydroxybenzyl) -s-triazine-2,4,6- (1H, 3H, 5H) trione, tocopherol (vitamin E), and the like.
  • sulfur-based compounds include dilauryl thiodipropionate, dim
  • phosphites include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) phosphite, Crick neopentanetetrayl bis (octadecyl phosphite), tris (mono and / or di) phenyl phosphite, diisodecyl pentaerythritol diphosphite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10- Oxide, 10- (3,5-di-tert-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-decyloxy-9,10 pho
  • phenol-based and phosphite-based antioxidants are preferably used in view of the effect of the antioxidant, thermal stability, economy, etc., and it is more preferable to use a combination of both.
  • the addition amount of the antioxidant is usually about 0.1 to 1% by mass, preferably 0.2 to 0.5% by mass in the base material, the above-described resin layer and the adhesive layer described later.
  • the resin film as the substrate is formed by using the above raw materials, but may be unstretched or stretched. Further, it may be either a single layer or a multilayer.
  • a base material can be produced by a conventionally known method. For example, the raw material is melted by an extruder, extruded by an annular die or a T die, and rapidly cooled to be substantially amorphous and not oriented. A stretched film can be produced. Further, by using a multilayer die, it is possible to produce a single layer film made of one kind of resin, a multilayer film made of one kind of resin, a multilayer film made of various kinds of resins, and the like.
  • the unstretched film is subjected to a known method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like.
  • a film stretched in a uniaxial direction or a biaxial direction can be produced by stretching in a direction (horizontal axis) perpendicular thereto.
  • the draw ratio can be arbitrarily set, the 150 ° C. heat shrinkage ratio is preferably 0.01 to 5%, more preferably 0.01 to 2%.
  • biaxially stretched polyethylene terephthalate film biaxially stretched polyethylene naphthalate film
  • coextruded biaxially stretched film of polyethylene terephthalate film and polyethylene naphthalate film polyethylene terephthalate and / or polyethylene naphthalate and other
  • a coextruded biaxially stretched film with a resin is preferred.
  • the thickness of the base material of the moisture-proof film is generally 5 to 300 ⁇ m, and preferably 25 to 250 ⁇ m from the viewpoint of curling suppression, voltage resistance, cushioning, and productivity and handleability of the solar cell protective material. More preferably, it is 38 to 200 ⁇ m, and still more preferably 50 to 180 ⁇ m.
  • the thickness of the base material constituting the moisture-proof film is 25 ⁇ m or more, the solar cell protective material is excellent in curling suppression effect and excellent in voltage resistance, impact resistance, and cushioning properties.
  • the thickness of the said base material exceeds 300 micrometers, it is unpreferable at the point of productivity or handleability.
  • the thickness of the base material of the moisture-proof film is equal to or more than the thickness of the weather-resistant film from the viewpoint of curling suppression.
  • the ratio T A ′ / T C ′ of the thickness T A ′ of the weather resistant film to the thickness T C ′ of the base material of the moisture-proof film is preferably 1.0 or less.
  • T A ′ / T C ′ is more preferably 0.07 to 0.8, and further preferably 0.2 to 0.7.
  • the anchor coat layer includes a solvent-based or water-based polyester resin; an alcoholic hydroxyl group-containing resin such as an isocyanate resin, a urethane resin, an acrylic resin, a modified vinyl resin, or a vinyl alcohol resin; a vinyl butyral resin, a nitrocellulose resin, or an oxazoline group Resins, carbodiimide group-containing resins, melamine group-containing resins, epoxy group-containing resins, modified styrene resins, modified silicone resins and the like can be used alone or in combination of two or more.
  • an alcoholic hydroxyl group-containing resin such as an isocyanate resin, a urethane resin, an acrylic resin, a modified vinyl resin, or a vinyl alcohol resin
  • a vinyl butyral resin a nitrocellulose resin, or an oxazoline group
  • an alkyl titanate, a silane coupling agent, a titanium coupling agent, an ultraviolet absorber, a weathering stabilizer, a lubricant, an anti-blocking agent, an antioxidant and the like can be added to the anchor coat layer as necessary.
  • the ultraviolet absorber, weather stabilizer and antioxidant the same ones as those used for the aforementioned substrate can be used, and the weather stabilizer and / or ultraviolet absorber is copolymerized with the resin described above.
  • the polymer type can also be used.
  • the thickness of the anchor coat layer is preferably 10 to 200 nm, and more preferably 10 to 100 nm, from the viewpoint of improving the adhesion with the inorganic layer.
  • a known coating method is appropriately adopted as the formation method.
  • a reverse roll coater, a gravure coater, a rod coater, an air doctor coater, or a coating method using a spray can be used.
  • the substrate may be immersed in a resin solution.
  • the solvent can be evaporated using a known drying method such as hot air drying at a temperature of about 80 to 200 ° C., heat drying such as hot roll drying, or infrared drying.
  • the crosslinking process by electron beam irradiation can also be performed.
  • the formation of the anchor coat layer may be a method performed in the middle of the substrate production line (inline) or a method performed after the substrate production (offline).
  • inorganic layer examples of the inorganic substance constituting the inorganic layer include silicon, aluminum, magnesium, zinc, tin, nickel, titanium and the like; or their oxides, carbides, nitrides; or a mixture thereof.
  • silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, and diamond-like carbon are preferable because they are transparent.
  • silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, silicon oxycarbonitride, and aluminum oxide are preferable because high gas barrier properties can be stably maintained.
  • any method such as a vapor deposition method and a coating method can be used, but the vapor deposition method is preferable in that a uniform thin film having a high gas barrier property can be obtained.
  • This vapor deposition method includes all methods such as physical vapor deposition (PVD), chemical vapor deposition (CVD), and atomic layer deposition (ALD). Examples of physical vapor deposition include vacuum vapor deposition, ion plating, and sputtering, and chemical vapor deposition includes plasma CVD using plasma and a catalyst that thermally decomposes a material gas using a heated catalyst body. Examples include chemical vapor deposition (Cat-CVD).
  • Atomic layer deposition is performed by repeating the cycle of adsorption of raw material molecules on the surface of each monolayer on a substrate placed in a vacuum vessel, film formation by reaction, and removal of surplus molecules by purging. It is a technique to pile up one by one.
  • the inorganic layer may be a single layer or a multilayer. In the case of multiple layers, the same film formation method may be used, or a different film formation method may be used for each layer. From the viewpoint of sex.
  • the multilayer structure includes an inorganic layer formed by a vacuum deposition method, an inorganic layer formed by a chemical vapor deposition method, and an inorganic layer formed by a vacuum deposition method in this order. Is preferred.
  • each layer may consist of the same inorganic substance, or may consist of a different inorganic substance.
  • the thickness of the inorganic layer is preferably 10 to 1000 nm, more preferably 20 to 800 nm, and still more preferably 20 to 600 nm, from the viewpoint of stable moisture resistance.
  • the solar cell protective material of the present invention may have a back film having a thickness of 60 ⁇ m or more on the moisture-proof film side.
  • Moistureproof film side further provided the back film, further width W D of the back film, and smaller than the width W A of the weather resistant film, to be larger than the width W C of the moisture-proof film, such as a weather resistant film Deformation can be prevented while suppressing deformation against shrinkage of other constituent layers and preventing curling.
  • W C / W D is 0.65 or more and less than 1.0 and W D ⁇ W C is 32 mm from the viewpoint of curling prevention and delamination prevention.
  • W D / W C is preferably 0.75 or more and less than 1.0
  • W D -W C is more preferably 30 mm or less
  • W C / W D is 0.80 or more, 0.99 More preferably, W C -W D is 25 mm or less.
  • the relationship between the width W D and the width W BU is preferably W BU ⁇ W D.
  • the thickness of the back film is preferably 60 to 300 ⁇ m, more preferably 75 to 250 ⁇ m, and further preferably 100 to 200 ⁇ m from the viewpoint of curling prevention, ease of handling of the film, and cost balance. preferable.
  • the shrinkage stress of the weather resistant film can be sufficiently suppressed, and from the viewpoint of handling and cost, the ratio of the thickness of the weather resistant film to the thickness of the back film (the thickness of the weather resistant film / the thickness of the back film) Thickness) is preferably 2.0 or less, more preferably 1.0 or less, further preferably 0.75 or less, and further preferably 0.20 or more and 0.75 or less. preferable.
  • the back film preferably has an elastic modulus at 23 ° C. of 2.0 GPa or more in order to improve the effect of suppressing deformation against shrinkage of other constituent layers.
  • the elastic modulus at 23 ° C. of the back film is more preferably 2.0 to 10.0 GPa, and further preferably 2.0 to 8.0 GPa.
  • the elastic modulus refers to the tensile elastic modulus obtained from the slope of the linear portion of the stress-strain curve, and can be obtained by a tensile test method based on JIS K7161: 1994.
  • the material for the back film examples include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyamides such as nylon 6, nylon 66, nylon 12 and copolymerized nylon; ethylene-vinyl acetate copolymer Combined partial hydrolyzate (EVOH), polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone, polycarbonate, polyvinyl butyral, polyarylate, fluororesin, acrylate resin, biodegradable resin, and An organic or inorganic material such as a filler may be added to the resin to improve the elastic modulus reinforcing effect.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • EVOH ethylene-vinyl acetate copolymer Combined partial hydrolyzate
  • polyimide polyetherimide
  • polysulfone polyethersulfone
  • polyetheretherketone polycarbonate
  • polyester such as polyethylene naphthalate and polyethylene terephthalate, or polypropylene (PP), polylactic acid (PLA), polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), cellulose butyrate (CAB)
  • PVA polyethylene naphthalate and polyethylene terephthalate
  • PP polypropylene
  • PLA polylactic acid
  • PVF polyvinyl fluoride
  • PVDF polyvinylidene fluoride
  • CAB cellulose butyrate
  • 1 type, or 2 or more types of resin chosen from etc. are included, and it is preferable that this resin is contained 50 mass% or more.
  • blended the ultraviolet absorber and the coloring agent with this resin is used preferably, it is not limited to these.
  • the back film and the moisture-proof film are preferably laminated using an adhesive layer.
  • the width of the adhesive layer is preferably substantially the same as the width of the moisture-proof film.
  • the material constituting the adhesive layer includes adhesives such as pressure-sensitive adhesives such as acrylic pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, and polyester-based pressure-sensitive adhesives, thermosetting adhesives, and ionizing radiation curable adhesives. And thermoplastic resins used for the resin layer described above. From the viewpoint of preventing curling of the solar cell protective material, it is preferable that the material constituting the adhesive layer has the same composition as the resin layer, and that the adhesive layer and the resin layer have the same thickness. It is.
  • thermoplastic resin for the adhesive layer
  • the same ones as exemplified for the resin layer can be used.
  • a conventionally well-known thing can be used for an adhesive, a solution type adhesive agent, a thermosetting adhesive agent, and an ionizing radiation curable adhesive agent.
  • the thickness of the adhesive layer is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, still more preferably 18 ⁇ m or more, and most preferably 20 ⁇ m or more from the viewpoint of obtaining sufficient adhesive force. Further, from the viewpoint of production efficiency and cost effectiveness, the thickness is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the width of the back adhesive layer is preferably substantially the same as the width of the moisture-proof film.
  • the solar cell protective material of the present invention preferably has at least the weather-resistant film, the resin layer, and the moisture-proof film in this order, and when used for a front sheet, has a weather-resistant film on the exposed side. It is preferable. Moreover, when laminating a weather-resistant film and a moisture-proof film through a resin layer, the inorganic layer at the time of storage and use of the solar cell protective material is obtained by laminating the surface of the moisture-proof film on the side of the weather-resistant film. It is preferable because it can reduce the damage to the skin.
  • the solar cell protective material of the present invention is intended to further improve physical properties (flexibility, heat resistance, transparency, adhesiveness, etc.), molding processability, economic efficiency, etc.
  • any layer that can be used for the solar cell protective material can be usually used.
  • a sealing material, a light collecting material, a conductive material, Layers such as a heat transfer material and a moisture adsorbing material can be laminated.
  • Various additives can be added to these other layers as necessary. Examples of the additive include, but are not limited to, an antistatic agent, an ultraviolet absorber, a plasticizer, a lubricant, a filler, a colorant, a weathering stabilizer, an antiblocking agent, and an antioxidant.
  • the ultraviolet absorber, the weather resistance stabilizer and the antioxidant the same materials as those used for the above-mentioned substrate can be used.
  • the thickness of the solar cell protective material of the present invention is not particularly limited, but is preferably 60 to 600 ⁇ m, more preferably 75 to 350 ⁇ m, from the viewpoint of curling suppression and voltage resistance.
  • the thickness is preferably 90 to 300 ⁇ m.
  • the solar cell protective material of the present invention uses a moisture-proof film having an inorganic layer as a base material and a moisture permeability of less than 0.1 g / m 2 / day. preferably not more than 0.1g / m 2 / day, more preferably, to not more than 0.05g / m 2 / day.
  • the solar cell protective material of the present invention is excellent in initial moisture resistance, and also excellent in moisture resistance and prevention of delamination even when stored in a high temperature and high humidity environment.
  • the width of each layer by configuring so as to satisfy the relationship W A ⁇ W BU> W C , its moisture resistance is pressure cooker analogous to vacuum lamination and JIS C 60068-2-66
  • the degree of decrease in moisture resistance due to the continuous high-temperature and high-humidity environment is usually 25 or less, preferably 15 or less, more preferably 10 Hereinafter, it can be more preferably 2 or less.
  • the “initial moisture resistance” of the protective material for solar cells in the present invention refers to moisture resistance before the member receives a history of heat, etc.
  • a high temperature and high humidity environment such as vacuum lameet conditions. It means the value before sex degradation occurs. Therefore, it includes changes over time from immediately after manufacture to before high-temperature and high-humidity treatment. For example, it means a moisture resistance value in a high temperature and high humidity environment around 100 ° C., and in a state where heat treatment such as thermal lamination treatment performed at 130 to 180 ° C. for 10 to 40 minutes is not performed. The same applies to the “initial water vapor transmission rate”.
  • Each moisture-proof property in the present invention can be evaluated according to various conditions of JISJZ0222 “moisture-proof packaging container moisture permeability test method” and JIS Z0208 “moisture-proof packaging material moisture permeability test method (cup method)”.
  • the occurrence of curling can be suppressed by setting the substrate of the moisture-proof film to 25 to 250 ⁇ m, or by setting the thickness of the back film to 60 ⁇ m or more and a specific width.
  • the thickness of the protective material for solar cells is 90 ⁇ m or more, the voltage resistance and cushioning properties are also excellent.
  • the withstand voltage can be evaluated, for example, by measuring a partial discharge voltage. Specifically, the withstand voltage can be evaluated by the method described in the examples.
  • the protective material for solar cells of the present invention preferably has a partial discharge voltage measured in accordance with IEC60664-1: 2007 Clause 6.1.3.5 of 400 V or more, more preferably 600 V or more. More preferably, it is 800 V or more.
  • the encapsulant-integrated protective material of the present invention is formed by further laminating an encapsulant layer on the side opposite to the weather resistant film of the above-described solar cell protective material of the present invention.
  • examples of the sealing material constituting the sealing material layer include a silicone resin-based sealing material, an ethylene-vinyl acetate copolymer, and ethylene and ⁇ -olefin.
  • a random copolymer etc. are mentioned.
  • examples of the ⁇ -olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 3-methyl-butene-1, 4-methyl -Those consisting of pentene-1, etc.
  • an ethylene-vinyl acetate copolymer EVA
  • EVA ethylene-vinyl acetate copolymer
  • the width W E of the encapsulating material layer is preferably smaller than the width W A of the weather resistant film and larger than the width W C of the moisture-proof film and the width W D of the back film.
  • the thickness of the laminated sealing material layer is preferably 200 to 750 ⁇ m, more preferably 300 to 600 ⁇ m from the viewpoint of protecting the solar cell element.
  • the method for laminating the sealing material layer on the solar cell protective material of the present invention a known method can be used. For example, what is necessary is just to laminate
  • the adhesive layer used here the same adhesive layer as exemplified above can be used. Among these, those containing a polyurethane adhesive are preferable, and those containing a polyurethane adhesive as a main component are more preferable.
  • the width of the adhesive layer used for laminating the sealing material layer is preferably substantially the same as the width of the adherend (moisture-proof film or back film).
  • the roll-like material of the present invention is formed by winding the above-described protective material for solar cell or the protective material integrated protective material of the present invention. By making it into a roll-like product, the subsequent processability, transportability, and productivity can be improved, and the appearance can be easily protected.
  • the winding length is preferably 50 m or more, and more preferably 100 m or more.
  • the roll-like product with a cover sheet of the present invention is a roll-shaped product obtained by winding the solar cell protective material or the sealing material-integrated protective material of the present invention described above, of the surfaces of the roll-shaped product. And covering at least a part of the part corresponding to the part from which the weather resistant film protrudes with a cover sheet having a deflection length of 70 mm or less measured under the following conditions and a load dent of 0.1 or less. It will be.
  • the bending length is an index indicating how easily the cover sheet or the like is bent.
  • the temperature condition of a measurement is about 23 degreeC.
  • a plate having a bottom surface of 20 mm ⁇ 20 mm is first placed on the portion of the sample table, and then a 5 kg weight is placed on the plate.
  • the height of the plate is about 5 to 15 mm, and the material is not particularly limited, and examples thereof include a glass plate and an iron plate.
  • [Load dent] (1) Collect a 100 mm square sample. (2) A sample is placed on a glass plate having a thickness of 20 mm, a steel ball having a diameter of 5 mm and a weight of 0.5 g is placed on the center of the sample, and a load of 2 kg is further applied on the steel ball. (3) The dent “d” (unit: ⁇ m) of the sample is measured, and the ratio “d / t” to the thickness “t” (unit: ⁇ m) of the sample is defined as a load-bearing dent.
  • the load bearing dent is an index indicating the difficulty of the dent of the cover sheet or the like.
  • the depth “d” of the sample measures the depth of the deepest recess.
  • the protective material for solar cells or the protective material integrated protective material of the present invention described above has a wide weather-resistant film, as shown in FIGS. 1 and 2, the film protrudes from the other protective material constituting layers. A protrusion 11 is provided. Therefore, the roll-shaped object which wound up the protective material for solar cells of this invention mentioned above or the sealing material integrated protective material also has such a protrusion part. And the roll-shaped thing which has such a protrusion may bend
  • the object of the present invention can be achieved by covering the surface of the roll-shaped object with the cover sheet. Furthermore, in consideration of the load from the left-right direction of the roll-shaped object, the side surface of the roll-shaped object may be covered with a cover sheet.
  • the bending length is preferably 60 mm or less, more preferably 50 mm or less, and further preferably 40 mm or less.
  • the load bearing dent is preferably 0.05 or less, and more preferably 0.03 or less.
  • the bending length is 5 mm or more, and the load dent is 0.01 or more. It is preferable that the bending length is 10 mm or more, and the load bearing dent is more preferably 0.02 or more.
  • Cover sheets include polyolefins such as homopolymers or copolymers of ethylene, propylene, butene, etc .; amorphous polyolefins such as cyclic polyolefin (Cyclo-Olefin-Polymer: COP); polyethylene terephthalate (PET), polyethylene naphthalate Polyester such as (PEN); polyamide such as nylon 6, nylon 66, nylon 12, copolymer nylon; polyimide, triacetyl cellulose (TAC), cellulose diacetate, cellulose acetate butyrate, polyether sulfone, polysulfone, polymethyl Use plastic sheets such as pentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, polymethyl methacrylate, polycarbonate, polyurethane, etc. It can be.
  • the thickness of the cover sheet is preferably 50 ⁇ m to 2 mm, more preferably 100 ⁇ m to 1 mm.
  • the cover sheet may cause blocking with the roll.
  • the cover sheet positioned below the roll-shaped object is likely to cause blocking between the roll-shaped object and the cover sheet due to the weight of the roll-shaped object.
  • the cover sheet preferably has a predetermined surface roughness, and specifically, a cover sheet having an arithmetic average roughness Ra of JIS B 0601 of 50 nm or more is suitable.
  • the cover sheet only needs to be configured to cover the surface of the roll-shaped object, but the cover sheet and the roll-shaped object are used with a tape or an adhesive so that the state does not collapse during transportation. It is preferable to partially stick together. Moreover, when the cover sheet covers the entire surface of the roll-shaped object, it is preferable to fix both end portions in the length direction of the cover sheet with a tape or an adhesive.
  • the cover sheet and the weather resistant film preferably satisfy the following conditions (a ′) and / or (b ′).
  • a ′ [Bend length of cover sheet] / [Bend length of weather-resistant film] is 2 or less
  • b ′ [Load dent of cover sheet] / [Load dent of weather-resistant film] is 2 or less
  • (a ′) [the bending length of the cover sheet] / [the bending length of the weather resistant film] is preferably 1 or less, and more preferably 0.1 to 0.6.
  • (b ′) [Load dent of cover sheet] / [Load dent of weather resistant film] is more preferably 1 or less, further preferably 0.5 or less, and 0.01 to 0 .2 is even more preferable.
  • the solar cell protective material of the present invention can be used as a solar cell surface protective material as it is, or further bonded to a glass plate or the like.
  • a solar cell module can be manufactured by using the solar cell protective material of the present invention in a layer structure of a surface protective material such as a front sheet and a back sheet, and fixing the solar cell element.
  • a solar cell module various types can be exemplified.
  • the solar cell protective material of the present invention is used as a front sheet
  • a solar cell module produced using a sealing material, a solar cell element, and a back sheet can be mentioned.
  • front sheet protection material for solar cell of the present invention
  • sealing material sealing resin layer
  • solar cell element sealing material (sealing resin layer)
  • back sheet A structure in which a sealing material and a front sheet (protective material for solar cell of the present invention) are formed on a solar cell element formed on the inner peripheral surface of the sheet
  • front sheet protection for solar cell of the present invention
  • a solar cell element formed on the inner peripheral surface of the material for example, a structure in which an encapsulant and a back sheet are formed on an amorphous solar cell element formed on a weather resistant film by sputtering or the like Can be mentioned.
  • Examples of solar cell elements include single crystal silicon type, polycrystalline silicon type, amorphous silicon type, gallium-arsenic, copper-indium-selenium, copper-indium-gallium-selenium, cadmium-tellurium, III-V group and II -VI group compound semiconductor type, dye sensitized type, organic thin film type, and the like.
  • a moisture-proof film having a moisture vapor transmission rate of less than about 0.1 g / m 2 / day is used depending on the type of the solar cell power generation element.
  • a film or a highly moisture-proof film of less than about 0.01 g / m 2 / day is appropriately selected and laminated with another member such as a weather-resistant film through the above-described resin layer or adhesive layer.
  • the other members constituting the solar cell module manufactured using the solar cell protective material of the present invention are not particularly limited. Further, the solar cell protective material of the present invention may be used for both the front sheet and the back sheet.
  • a single layer or a multilayer such as a sheet made of an inorganic material such as metal or glass or various thermoplastic resin films is used. These sheets may be used. Examples of the metal include tin, aluminum, and stainless steel, and examples of the thermoplastic resin film include single-layer or multilayer sheets of polyester, fluorine-containing resin, polyolefin, and the like.
  • the surface of the front sheet and / or the back sheet can be subjected to a known surface treatment such as a primer treatment or a corona treatment in order to improve the adhesion with a sealing material or other members.
  • the solar cell module produced using the solar cell protective material of the present invention is a front sheet (solar cell protective material of the present invention) / sealing material / solar cell element / sealing material / back sheet as described above.
  • the configuration will be described as an example.
  • the solar cell protective material, sealing material, solar cell element, sealing material, and back sheet are laminated in order from the solar light receiving side, and a junction box (from the solar cell element) is further formed on the lower surface of the back sheet.
  • a terminal box for connecting wiring for taking out the generated electricity to the outside is bonded.
  • the solar cell elements are connected by wiring in order to conduct the generated current to the outside. The wiring is taken out through a through hole provided in the backsheet and connected to the junction box.
  • a known manufacturing method can be applied, and it is not particularly limited, but in general, the solar cell protective material, sealing material, solar cell element, sealing of the present invention.
  • the step of vacuum suction and thermocompression bonding is, for example, a vacuum laminator, the temperature is preferably 130 to 180 ° C., more preferably 130 to 150 ° C., the degassing time is 2 to 15 minutes, and the press pressure is 0.05 to 0. .1 MPa, pressing time is preferably 8 to 45 minutes, more preferably 10 to 40 minutes.
  • batch type manufacturing equipment, roll-to-roll type manufacturing equipment, and the like can be applied.
  • the solar cell module produced using the solar cell protective material of the present invention is installed on a small solar cell represented by a mobile device, a roof or a roof, regardless of the type and module shape of the applied solar cell. It can be applied to various uses such as large solar cells, both indoors and outdoors. In particular, among electronic devices, it is suitably used as a protective material for solar cells for a flexible solar cell module such as a compound power generation element solar cell module or an amorphous silicon type.
  • the water vapor transmission rate of the moisture-proof film was measured by the following method as the water vapor transmission rate at 40 ° C after one week after the moisture-proof film was produced.
  • the measured value after curing at 40 ° C. for 4 days is the initial water vapor transmission rate, and after the curing, glass, solar cell protective material (weather resistance) The film is exposed side), heat-treated at 150 ° C. for 30 minutes, and after the pressure cooker test under the condition (2) above, the measured value of each solar cell protective material is the pressure cooker test. It was set as the value of the water vapor transmission rate after.
  • JIS Z 0222 moisture-proof packaging container moisture permeability test method
  • JIS Z 0208 moisture-proof packaging material moisture permeability test method (cup method)
  • a bag with about 20 g of anhydrous calcium chloride added as a hygroscopic agent and sealed on all sides was produced, and the bag was heated to 40 ° C relative humidity Place in a 90% thermo-hygrostat and measure the mass until about 200 days at intervals of 72 hours or more. From the slope of the regression line between the elapsed time after the fourth day and the bag weight, the water vapor transmission rate g / m 2 / The day was calculated. The degree of decrease in moisture resistance was calculated by [water vapor permeability after pressure cooker test (PC48) / initial water vapor permeability].
  • ⁇ Structure film> (Weather-resistant film)
  • the following weather resistant films (fluorinated resin films) A-1 to A-5 were prepared. Each fluororesin film was subjected to easy adhesion treatment by plasma discharge treatment.
  • A-1 A ETFE film (made by Asahi Glass Co., Ltd., trade name: Aflex 50 MW1250DCS, thickness 50 ⁇ m) cut to a width of 200 mm.
  • A-2 The ETFE film cut to 230 mm in width.
  • A-3 PVF film manufactured by DuPont, trade name: Teflon (registered trademark), thickness 50 ⁇ m) cut to a width of 200 mm.
  • A-4 A ETFE film cut to a width of 202 mm.
  • A-5 The above ETFE film was cut into a width of 180 mm.
  • Resin layers R-1 to R-7 were formed on a substrate (weather-resistant film, moisture-proof film or back film) by the following method.
  • R-1 ethylene-methyl acrylate copolymer as a thermoplastic resin (manufactured by Nippon Polyethylene Co., Ltd., trade name: Lexpearl EB240H, MFR: 7.0 g / 10 min, mass ratio of ethylene-methyl acrylate copolymer 80/20)
  • a thermoplastic composition obtained by mixing an ultraviolet absorbent (BASF Tinuvin 1600) with 1.5% by mass of the resin and a light stabilizer (BASF Chimassorb2020FDL) with 0.5% by mass of the resin.
  • the melt-kneaded thermoplastic composition was poured onto a substrate and cooled with a cooling roll to form a resin layer having a thickness of 30 ⁇ m and a width of 200 mm.
  • R-4 An ethylene-methyl acrylate copolymer, an ethylene-butyl acrylate copolymer (manufactured by Arkema, LOTRYL 35BA40, ethylene-butyl acrylate copolymer mass ratio 65/35), and an ethylene-butyl acrylate copolymer (Made by Arkema, LOTRYL 30BA02, ethylene-butyl acrylate copolymer mass ratio 70/30) blended at 3: 2 (MFR of mixed resin: 12.1 g / 10 min) R-4 was formed on the substrate in the same manner as the resin layer R-1 except that the thickness was changed to 10 ⁇ m and the width was changed to 180 mm.
  • MFR of mixed resin 12.1 g / 10 min
  • R-5 R-5 was formed on the substrate in the same manner as the resin layer R-4 described above except that the width of the resin layer was changed to 200 mm.
  • R-6 The ethylene-methyl acrylate copolymer was changed to low density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., trade name: Kernel (registered trademark) KC452T, MFR: 6.5 g / 10 min), and the thickness of the resin layer was changed.
  • R-6 was formed on the substrate in the same manner as the resin layer R-1 except that the width was changed to 10 ⁇ m and the width to 180 mm.
  • R-7 R-7 was formed on the substrate in the same manner as the resin layer R-1 except that the width of the resin layer was changed to 180 mm.
  • R-8 R-8 was formed on the substrate in the same manner as the resin layer R-1 except that the width of the resin layer was changed to 190 mm.
  • Coronate L (trade name: manufactured by Nippon Polyurethane Industry Co., Ltd., solid content: 75% by mass) was added as an isocyanate-based crosslinking agent to prepare an adhesive 1.
  • Glass A cover glass TCB09331 (3.2 mm thickness) manufactured by AGC Fabritech Co., Ltd. was used, and the glass was cut into the same size as the weather resistant film used in each of the examples and comparative examples.
  • Example 1 The resin layer R-1 was formed on the weather resistant film A-1, and the surface of the moisture-proof film B-1 on the SiO x side was further laminated thereon. Vacuum lamination was performed at 150 ° C. for 11 minutes under a pressure of 0.1 MPa to produce a solar cell protective material E-1 having a thickness of 92 ⁇ m. In addition, the length of each layer is substantially the same. Moreover, the weather resistant film was installed so that the surface on the plasma processing side would be the resin layer side. Using the solar cell protective material E-1, the end face sealing state was evaluated, and then a pressure cooker test and a delamination test were performed, and a water vapor transmission rate and a delamination generation time were measured.
  • Example 2 A solar cell protective material E-2 having a thickness of 92 ⁇ m was prepared in the same manner as in Example 1 except that A-2 was used as the weather-resistant film and R-2 was used as the resin layer. Thereafter, in the same manner as in Example 1, the end face sealing state, the water vapor transmission rate, and the delamination generation time were evaluated.
  • Example 3 A solar cell protective material E-3 having a thickness of 92 ⁇ m was prepared in the same manner as in Example 1 except that A-3 was used as the weather-resistant film. Thereafter, in the same manner as in Example 1, the end face sealing state, the water vapor transmission rate, and the delamination generation time were evaluated.
  • Example 4 A solar cell protective material E-4 having a thickness of 92 ⁇ m was prepared in the same manner as in Example 1 except that A-4 was used as the weather resistant film. Thereafter, in the same manner as in Example 1, the end face sealing state, the water vapor transmission rate, and the delamination generation time were evaluated.
  • Example 5 A resin layer R-4 was formed on the SiO x surface of the moisture-proof film B-1. Next, a resin layer R-3 was formed on the weather resistant film A-1. A moisture-proof film and a weather-resistant film are laminated so that the resin layer R-3 and the resin layer R-4 face each other, and vacuum lamination is performed under the conditions of 150 ° C. ⁇ 11 minutes and a pressure of 0.1 MPa. A battery protective material E-5 was produced. Thereafter, in the same manner as in Example 1, the end face sealing state, the water vapor transmission rate, and the delamination generation time were evaluated.
  • Example 6 A solar cell protective material E-6 having a thickness of 82 ⁇ m was prepared in the same manner as in Example 5 except that R-5 was used as the resin layer on the weatherproof film side and R-4 was used as the resin layer on the moisture-proof film side. did. Thereafter, in the same manner as in Example 1, the end face sealing state, the water vapor transmission rate, and the delamination generation time were evaluated.
  • Example 7 A solar cell protective material E-7 having a thickness of 82 ⁇ m was prepared in the same manner as in Example 5 except that R-6 was used as the resin layer on the moisture-proof film side. Thereafter, in the same manner as in Example 1, the end face sealing state, the water vapor transmission rate, and the delamination generation time were evaluated.
  • Example 8 A solar cell protective material E-8 having a thickness of 122 ⁇ m was prepared in the same manner as in Example 5 except that R-1 was used as the resin layer on the weatherproof film side and R-7 was used as the resin layer on the moisture-proof film side. did. Thereafter, in the same manner as in Example 1, the end face sealing state, the water vapor transmission rate, and the delamination generation time were evaluated.
  • Example 9 A solar cell protective material E-9 having a thickness of 92 ⁇ m was produced in the same manner as in Example 1 except that R-8 was used as the resin layer. Thereafter, in the same manner as in Example 1, the end face sealing state, the water vapor transmission rate, and the delamination generation time were evaluated.
  • Comparative Example 1 A solar cell protective material E-10 having a thickness of 92 ⁇ m was produced in the same manner as in Example 1 except that the resin layer was changed to R-7. Thereafter, in the same manner as in Example 1, the end face sealing state, the water vapor transmission rate, and the delamination generation time were evaluated.
  • Adhesive 1 was applied to a 38 ⁇ m-thick silicone release PET film (Nakamoto Pax, NS-38 + A, melting point 262 ° C., width 180 mm) to a thickness of 20 ⁇ m and dried to form an adhesive layer.
  • the SiO x surface of the moisture-proof film B-1 is bonded to the formed adhesive surface, then the silicone release PET film is peeled off, and the weather resistant film A-1 is bonded to the other adhesive layer surface for 4 days at 40 ° C.
  • a protective material E-11 for solar cells having a thickness of 82 ⁇ m was prepared. Thereafter, in the same manner as in Example 1, the end face sealing state, the water vapor transmission rate, and the delamination generation time were evaluated.
  • Comparative Example 3 A solar cell protective material E-12 having a thickness of 92 ⁇ m was produced in the same manner as in Comparative Example 1 except that the weather-resistant film was changed to A-5. Thereafter, in the same manner as in Example 1, the end face sealing state, the water vapor transmission rate, and the delamination generation time were evaluated.
  • Comparative Example 4 A solar cell protective material E-13 having a thickness of 82 ⁇ m was prepared in the same manner as in Comparative Example 2 except that the weather-resistant film was changed to A-5. Thereafter, in the same manner as in Example 1, the end face sealing state, the water vapor transmission rate, and the delamination generation time were evaluated.
  • Examples 1 to 9 within the scope of the present invention were all excellent in moisture resistance and prevention of delamination and also had good adhesion strength.
  • Comparative Examples 1 to 4 were inferior in the adhesion strength of the sealing material.
  • the solar cell protective materials of Examples 5 to 8 (protective materials E-5 to E-8) are obtained by laminating two resin layers, but the thickness of the resin layers is uniform, and after vacuum lamination The appearance of was good.
  • Example 10 The pressure-sensitive adhesive 1 was applied to the moisture-proof film side surface of the solar cell protective material E-1 produced in Example 1 so as to have a thickness of 5 ⁇ m, and dried to form an adhesive layer made of the pressure-sensitive adhesive 1.
  • a sealing material D-1 having a width of 190 mm was laminated on the adhesive surface of the formed layer and cured at 40 ° C. for 4 days to produce a sealing material integrated protective material F-1 having a thickness of 597 ⁇ m.
  • the obtained sealing material-integrated protective material F-1 had good adhesion between the solar cell protective material E-1 and the sealing material layer.
  • the sealing material integrated protective material F-1 was evaluated for the PC delamination time and the end face sealing state, it was implemented despite the fact that the workability was simpler than that of Example 1. Evaluation similar to Example 1 was obtained.
  • the moisture-proof film B-2 is the same as the moisture-proof film B-1, except that the base material of the moisture-proof film B-1 is changed to a biaxially stretched polyethylene naphthalate film (Mitsubishi Resin, T100) with a thickness of 125 ⁇ m. Produced. The produced moisture-proof film B-2 had a water vapor transmission rate of 0.01 g / m 2 / day.
  • the moisture-proof film B-3 is the same as the moisture-proof film B-1, except that the base material of the moisture-proof film B-1 is changed to a biaxially stretched polyethylene naphthalate film (manufactured by Mitsubishi Plastics, T100) with a thickness of 100 ⁇ m.
  • the produced moisture-proof film B-3 had a water vapor transmission rate of 0.01 g / m 2 / day.
  • the moisture-proof film B-4 is the same as the moisture-proof film B-1, except that the base material of the moisture-proof film B-1 is changed to a biaxially stretched polyethylene naphthalate film (Mitsubishi Resin, T100) with a thickness of 50 ⁇ m.
  • the produced moisture-proof film B-4 had a water vapor transmission rate of 0.01 g / m 2 / day.
  • the solar cell protective materials E-14 to E-16 were placed flat in an oven maintained at 150 ° C. and allowed to stand for 5 minutes. Then, the height of the four corners of the protective material was measured with a micro caliper, and the average value of the measured values at the four corners was taken as the curl value.
  • the marked line was the surface where the base and the protective material contacted when the protective material was placed on a horizontal base so that the weather-resistant film faced upward.
  • Example 11 A solar cell protective material E-14 having a thickness of 205 ⁇ m was prepared in the same manner as in Example 1 except that B-2 was used as the moisture-proof film.
  • Example 12 A solar cell protective material E-15 having a thickness of 180 ⁇ m was prepared in the same manner as in Example 1 except that B-3 was used as the moisture-proof film.
  • Example 13 A solar cell protective material E-16 having a thickness of 130 ⁇ m was prepared in the same manner as in Example 1 except that B-4 was used as the moisture-proof film.
  • the solar cell protective materials of Examples 11 to 13 were excellent in curl suppression effect and withstand voltage.
  • the end face sealing state, the water vapor transmission rate, the delamination occurrence time, and the adhesion were evaluated, and the same results as in Example 1 were obtained. was gotten.
  • Example 14 On the back film (biaxially stretched polyester film, thickness 125 ⁇ m, width 190 mm, elastic modulus 4.0 GPa), the above R-7 was formed as an adhesive layer. Next, a resin layer R-1 was formed on the weather resistant film A-1. Next, the film was laminated in the order of back film-adhesive layer-moisture-proof film B-1-resin layer-weather-resistant film A-1, and vacuum lamination was performed at 150 ° C. for 11 minutes under a pressure of 0.1 MPa. A protective material E-17 for solar cells of 247 ⁇ m was produced. In addition, the length of each layer which comprises a protective material is substantially the same. Further, moisture-proof film, the surface of the SiO X side is disposed such that the weather resistant film side.
  • Example 15 A solar cell protective material E-18 having a thickness of 197 ⁇ m was produced in the same manner as in Example 14, except that the back film was changed to a biaxially stretched polyester film having a thickness of 75 ⁇ m, a width of 190 mm, and an elastic modulus of 4.0 GPa.
  • Example 16 A solar cell protective material E-19 having a thickness of 172 ⁇ m was prepared in the same manner as in Example 14 except that the back film was changed to a biaxially stretched polyester film having a thickness of 50 ⁇ m, a width of 190 mm, and an elastic modulus of 4.0 GPa.
  • the solar cell protective materials of Examples 14 to 16 were excellent in curling suppression effect.
  • the end face sealing state, the water vapor transmission rate, the delamination occurrence time, and the adhesion were evaluated, and the same results as in Example 1 were obtained. was gotten.
  • K-1 Foamed polyethylene sheet (made by Pollen Chemical Industry Co., Ltd., Polene sheet, thickness 700 ⁇ m, width 250 mm)
  • K-2 Polypropylene film (manufactured by KOKUGO, polypropylene sheet (product code: 07-175-02), thickness 500 ⁇ m, width 250 mm)
  • K-3 Transparent polyester film (Mitsubishi Resin, Diafoil T100, thickness 380 ⁇ m, width 250 mm)
  • K-4 Polyethylene film (manufactured by TGK, product code: 125-18-18-01, thickness 30 ⁇ m, width 250 mm)
  • the cover sheet and the weather resistant film A-1 were cut into strips having a width of 20 mm and a length of 120 mm to produce a measurement sample S of the cover sheet and the weather resistant film. .
  • the sample S is placed on a table 71 having a height of 100 mm or more so that a portion of the sample S having a width of 20 mm and a length of 100 mm protrudes from the table, and the bottom surface of the sample S on the table is 20 mm ⁇ 20 mm.
  • an iron plate having a height of 10 mm was placed thereon, and a weight 72 having a weight of 5 kg was placed thereon.
  • Example 17 The solar cell protective material E-1 produced in Example 1 was wound on a core having an outer diameter of 172.4 mm to obtain a 200-m roll-up product. Next, the entire surface of the roll was covered with the cover sheet K-1, and the end was fixed with one piece of tape (diapertex Piolan tape cut to 50 mm width x 100 mm length), Example 17 A roll-like product with a cover sheet was obtained.
  • Example 18 A roll with a cover sheet of Example 18 was obtained in the same manner as in Example 17 except that K-2 was used as the cover sheet.
  • Example 19 A roll sheet with a cover sheet of Example 19 was obtained in the same manner as Example 17 except that K-3 was used as the cover sheet.
  • Reference example 1 A roll with cover sheet of Reference Example 1 was obtained in the same manner as in Example 17 except that K-4 was used as the cover sheet.
  • the present invention even when the sealing operation is performed after long-term storage, there is no deterioration in moisture resistance and no occurrence of delamination even in use under high temperature and high humidity for a long period of time. It is possible to provide a highly moisture-proof solar cell protective material that is excellent in moisture-proof property, prevents performance degradation of the solar cell, and is effective in improving the durability of the solar cell.
  • the solar cell protective material of the present invention is excellent in flexibility and moisture resistance, in which moisture resistance and interlaminar strength do not decrease even after heat treatment in a high heat environment, that is, heat lamination conditions.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

 少なくとも、耐候性フィルム1と、樹脂層21と、基材の少なくとも一方の面に無機層を有し水蒸気透過率が0.1g/m2/day未満の防湿フィルム3とを積層してなる太陽電池用保護材10であって、前記耐候性フィルム1の幅WA、前記樹脂層21の幅WBのうち最も耐候性フィルム側の幅WBU、及び前記防湿フィルム3の幅WCが、WA≧WBU>WCの関係を満たす、太陽電池用保護材10。

Description

太陽電池用保護材
 本発明は、太陽電池等に用いられる保護材に関し、特に、防湿性が保持されデラミネーションの発生を防止しうる太陽電池用保護材に関する。
 近年、資源の有効利用や環境汚染の防止等の面から、太陽光を直接電気エネルギーに変換する太陽電池が注目され、開発が進められている。太陽電池は、前面保護シート(以下、フロントシートということがある)と裏面保護シート(以下、バックシートということがある)との間に、エチレン-酢酸ビニル共重合体やポリエチレン、ポリプロピレンフィルム等の封止材により太陽電池用セルを封止した構成とされている。
 このような太陽電池は、通常、前面保護フィルム、封止材 、発電素子、封止材及び裏面保護フィルムをこの順で積層し、加熱溶融させることにより接着一体化することで製造される。太陽電池の前面保護シート又は裏面保護シートである太陽電池用保護材としては、紫外線に対する耐久性に優れることが要求されるが、加えて、湿気等の透過による内部の導線や電極の発錆を防止するために、防湿性に優れることが極めて重要な要件となる。さらには長期使用や高温条件下における防湿性の低下が少ない優れた保護材の開発が望まれている。
 例えば、特許文献1では、二軸延伸ポリエステルフィルムを基材とする水蒸気透過率が0.22g/m2/dayの防湿フィルムにポリエステル系接着剤を用い、無機蒸着面側に耐候性ポリエステルフィルム、背面にポリプロピレンフィルムと貼り合わせることにより太陽電池用保護材を作製し85℃、85%湿度下で、1000時間試験後の防湿性を評価して、防湿性低下防止の提案を行なっている。
 また、特許文献2の実施例では、二軸延伸ポリエステルフィルムを基材とする水蒸気透過率が1~2g/m2/dayの防湿フィルムの両側にポリウレタン系接着層を設け、その両側に耐候性ポリエステルフィルムを積層し太陽電池用保護材を製作し、85℃、85%湿度下で1000時間加速試験後のバリア性能と層間強度を評価し、両特性の低下防止の提案を行なっている。
 特許文献3では、同じく二軸延伸ポリエステルフィルムを基材とする水蒸気透過率が0.5g/m2/dayの防湿フィルムに二液硬化型ポリウレタン系接着剤を用いてPVFフィルムを貼り合わせた後、プレッシャークッカーテスト(PCT)(高温高圧による過酷環境試験、105℃ 92時間)前後の防湿性と層間強度を評価して、特性の低下防止の提案を行なっている。
特開2007-150084号公報 特開2009-188072号公報 特開2009-49252号公報
 しかしながら、上記特許文献1~3の各々に開示される技術は、いずれも水蒸気透過率が0.1g/m2/day以上の防湿フィルムを有する積層体に関するものであり、より高い防湿性が要求される化合物系発電素子太陽電池モジュール等の太陽電池の保護材等に適用した場合、前記プレッシャークッカーテスト(PCT)等の加速耐久試験に代替される過酷な環境下においては、長期の防湿性の維持、保護材端部のデラミネーションの発生防止を十分に行い得るものではなかった。
 太陽電池用保護材としては、防湿性及びデラミネーションの発生防止に優れるものであって、さらに該防湿性やデラミネーションの発生防止が長期に維持されるものが望まれるが、これまで、水蒸気透過率が0.1g/m2/day未満の高い防湿性を有するフィルムを用いた場合、防湿性及びデラミネーションの発生防止を長期に可能とする具体的な提案はなされていないのが実情であった。
 上記問題を解決し得るものとして、特願2011-290036号において、フッ素系樹脂フィルムと、粘着剤層と、基材の少なくとも一方の面に無機層を有し水蒸気透過率が0.1g/m2/day未満の防湿フィルムとを保護材構成層Pとして積層した積層体において、フッ素系樹脂フィルムの幅Aに対する、フッ素系樹脂フィルム以外の保護材構成層が有する最大幅Bの比(B/A)を1より小さくすることにより、真空ラミネーションの際、太陽電池上の封止材がフッ素系樹脂フィルムの幅よりも短い幅を有する接着層や防湿フィルムの端面に回り込み、端面を封止する等の効果により、防湿性の低下防止と端部からのデラミネーションの発生防止の両立を実現する手段が提案されている。
 特願2011-290036号の発明は、フッ素系樹脂フィルムが突出した構成となっており、封止の際には、フッ素系樹脂フィルムと封止材とが密着することになる。フッ素系樹脂フィルム等の耐候性フィルムは一般的に密着性に劣り、密着性が不十分なままで封止作業を行うと、経時的にデラミネーションが発生する可能性がある。このため、予めフッ素系樹脂フィルム等の耐候性フィルムにプラズマ処理等の易接着処理を行い、密着性を良好にする手段が考えられる。しかし、特願2011-290036号の発明では、フッ素系樹脂フィルム等の耐候性フィルムと封止材との密着性の経時変化が不明であった。
 そこで本発明者らは、プラズマ処理後のフッ素系樹脂フィルム等の耐候性フィルムと、封止材との密着性の経時変化について研究を行った。その結果、長期保管の後に封止を行う場合、プラズマ処理等の易接着処理の効果が薄れてしまい、フッ素系樹脂フィルム等の耐候性フィルムと封止材との密着性を満足できない傾向がある知見を得た。
 そして、さらに鋭意研究を重ねた結果、水蒸気透過率が0.1g/m2/day未満の防湿フィルムを含む太陽電池用保護材に関して、長期保管の後に封止作業を行った場合であっても、長期に防湿性が低下せず、デラミネーションの発生を防止し、柔軟性と防湿性に優れた太陽電池用保護材を実現し、太陽電池の性能低下を防止し、かつ太陽電池の耐久性の向上に有効な太陽電池用保護材を完成するに至った。
 すなわち、本発明は、以下の[1]~[14]を提供する。
[1]少なくとも、耐候性フィルムと、樹脂層と、基材の少なくとも一方の面に無機層を有し水蒸気透過率が0.1g/m2/day未満の防湿フィルムとを積層してなる太陽電池用保護材であって、前記耐候性フィルムの幅WA、前記樹脂層の幅WBのうち最も耐候性フィルム側の幅WBU、及び前記防湿フィルムの幅WCが、WA≧WBU>WCの関係を満たす、太陽電池用保護材、
[2]前記樹脂層が熱可塑性樹脂を含有してなる、前記[1]に記載の太陽電池用保護材、
[3]前記熱可塑性樹脂としてエチレン-アルキル(メタ)アクリレート共重合体を含有してなる、前記[2]に記載の太陽電池用保護材、
[4]幅WBUと幅WAとの比(WBU/WA)が0.75~1.0である、前記[1]~[3]のいずれかに記載の太陽電池用保護材、
[5]前記樹脂層が2層以上から形成されてなり、耐候性フィルム側の樹脂層から防湿フィルム側の樹脂層に向かうにつれて樹脂層の幅を狭くする、前記[1]~[4]のいずれかに記載の太陽電池用保護材、
[6]幅WCと幅WAとの比(WC/WA)が、0.7~0.98である、前記[1]~[5]のいずれかに記載の太陽電池用保護材、
[7]前記基材の厚みが25~250μmである、前記[1]~[6]のいずれかに記載の太陽電池用保護材、
[8]前記防湿フィルムを、前記無機層側の面を前記耐候性フィルム側にして積層してなる、前記[1]~[7]のいずれかに記載の太陽電池用保護材、
[9]前記防湿フィルム側にさらに厚みが60μm以上である背面フィルムを有してなり、該背面フィルムの幅WDは、前記幅WAよりも小さく、前記幅WCよりも大きい、前記[1]~[8]のいずれかに記載の太陽電池用保護材、
[10]前記[1]~[9]のいずれかに記載の太陽電池用保護材の前記耐候性フィルムとは反対側に、さらに封止材層が積層されてなる、封止材一体型保護材、
[11]前記[1]~[9]のいずれかに記載の太陽電池用保護材又は前記[10]に記載の封止材一体型保護材が巻き取られてなる、ロール状物。
[12]前記[1]~[9]のいずれかに記載の太陽電池用保護材又は前記[10]に記載の封止材一体型保護材を用いて作製された太陽電池モジュール。
[13]前記[11]に記載のロール状物の表面のうち、耐候性フィルムが突出する箇所に対応する箇所の少なくとも一部を、以下の条件により測定される撓み長さが70mm以下であり、かつ耐荷重凹みが0.1以下であるカバーシートで覆ってなる、カバーシート付きロール状物。
[撓み長さ]
(1)幅20mm、長さ120mmのサンプルを採取する。
(2)サンプルを台上に、サンプルのうち長さ100mmの部分が台から突出するようにして配置し、サンプルの台上の部分に、重さ5kgの重りを乗せてサンプルを固定する。
(3)サンプルの台から突出する部分の端部が、台から垂れ下がる長さ「x」(単位:mm)を測定し、この値を撓み長さとする。
[耐荷重凹み]
(1)100mm四方のサンプルを採取する。
(2)サンプルを厚さ20mmのガラス板上に設置し、サンプルの中央部に直径5mmで重さ0.5gの鋼球を載せ、さらに鋼球上から2kgの荷重をかける。
(3)サンプルの凹み「d」(単位:μm)を測定し、サンプルの厚み「t」(単位:μm)との比「d/t」を耐荷重凹みとする。
[14]以下(a’)及び/又は(b’)の条件を満たす、前記[13]に記載のカバーシート付きロール状物。
(a’)[カバーシートの撓み長さ]/[耐候性フィルムの撓み長さ]が2以下
(b’)[カバーシートの耐荷重凹み]/[耐候性フィルムの耐荷重凹み]が2以下
 本発明によれば、長期保管の後に封止作業を行った場合であっても、長期に渡って、高温高湿下の使用においても防湿性の低下やデラミネーションの発生がなく、柔軟性と防湿性に優れ、太陽電池の性能低下を防止し、かつ太陽電池の耐久性の向上に有効な高防湿太陽電池用保護材を提供することができる。本発明の太陽電池用保護材は、高熱環境、すなわち、熱ラミネート条件での熱処理を経ても、防湿性及び層間強度が低下しない柔軟性と防湿性に優れるものである。
本発明の太陽電池用保護材の一実施形態を示す断面図 本発明の太陽電池用保護材の他の実施形態を示す断面図 本発明の太陽電池用保護材の他の実施形態を示す断面図 本発明の太陽電池用保護材の一使用例を示す断面図 撓み長さの評価方法を説明する図 耐荷重凹みの評価方法を説明する図
 以下、本発明をさらに詳細に説明する。
 太陽電池用保護材は防湿フィルムが積層されていることによりフィルムの暴露面からの水分の浸入を防止することが可能であるが,高温高湿環境下での加速試験に代替される長期の使用においては太陽電池用保護材の端面からの水分の浸入により、各フィルムの積層に使用している接着剤や防湿フィルムの基材が徐々に劣化し、端部からのデラミネーションの発生や防湿性能低下が起こることがある。
 特に、0.1g/m2/day未満程度の高い防湿性をもった防湿フィルムの場合、フィルムの収縮による防湿性の低下や端部からの水分浸入による影響は著しい。これは防湿フィルムの無機層内部及び基材と無機層との界面でのわずかな欠陥や基材の加水分解等による劣化が防湿性に対して重大な影響を与えるからである。
 以上より、本発明者らは、図1~3に例示するように、太陽電池用保護材を、少なくとも、耐候性フィルム(1)と、樹脂層(21)と、基材の少なくとも一方の面に無機層を有し水蒸気透過率が0.1g/m2/day未満の防湿フィルム(3)とを積層してなる太陽電池用保護材(10)であって、前記耐候性フィルムの幅WA、前記樹脂層の幅WBのうち最も耐候性フィルム側の幅WBU、及び前記防湿フィルムの幅WCが、WA≧WBU>WCの関係を満たすように構成した。なお、図2では、樹脂層(21a)及び樹脂層(21b)の2層の樹脂層を有しており、図3では、防湿フィルム(3)の背面に、接着層(22)と背面シート(4)とを有している。
 このように構成することにより、図4に例示するように、真空ラミネーションの際に、太陽電池(30)上の封止材(20)が、耐候性フィルム(1)の幅未満の幅である防湿フィルム(3)の端面に回り込みやすくなり、端面を封止する等の効果により、防湿性の低下防止と端部からのデラミネーションの発生防止の両立を実現することができる。
 さらに、樹脂層の幅WBのうち最も耐候性フィルム側の幅WBUが防湿フィルムの幅WCよりも大きいことから、耐候性フィルムの防湿フィルム側の面が封止材と接する面積が少なくなる。その一方、封止材と樹脂層とが接する面積が増加する。これにより、長期保管後においても、耐候性フィルムの易接着処理の効果の低下による、封止材の密着性の低下を防止することができ、ひいては、防湿性の低下防止と端部からのデラミネーションの発生防止の両立を実現することができる。
<太陽電池用保護材>
[耐候性フィルム]
 本発明の太陽電池用保護材は、耐加水分解性や耐候性を備え、長期の耐久性を付与するために、耐候性フィルムを有する。
 耐候性フィルムは、耐加水分解性や耐候性を有するものが制限なく使用でき、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリビニリデンフルオライド(PVDF)、ポリビニルフルオライド(PVF)等のフッ素系樹脂;ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル;ポリカーボネート;ポリメチルメタアクリレート(PMMA)等のアクリル系樹脂;ポリアミド等の各種樹脂のフィルムを用いることができる。耐候性フィルムは、これらの樹脂の2種以上を含むものであってもよく、また、2枚以上のフィルムの積層フィルムであってもよい。
 上述の耐候性フィルムの中でも、耐候性、透明性の観点から、フッ素系樹脂フィルムが好適である。また、フッ素系樹脂フィルムの中でも、長期耐久性の観点からは、テトラフルオロエチレン・エチレン共重合体(ETFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)及びポリフッ化ビニリデン(PVDF)から選ばれる1種以上がより好ましく用いられる。
 耐候性フィルムとしては、真空ラミネーションの際や、温度変化や湿度変化の際においての特性変化が小さいことが好適である。したがって、事前の熱処理により低収縮率化したものが好適である。また、耐候性フィルムは、封止材との密着性を良好にするため、プラズマ処理等の易接着処理を施すことが好適である。
 本発明の太陽電池用保護材の製造における真空ラミネーション時に生じた耐候性フィルムの残留歪を軽減し、高温高湿時の太陽電池用保護材内の残留応力を低減する効果を得るためには、耐候性フィルムは、ガラス転移温度-50~180℃のフィルムを用いることが好ましい。ガラス転移温度が上記の温度範囲内の耐候性フィルムを用いることで、真空ラミネーション時の温度で、それまでの工程で加えられた力の履歴や熱履歴によって生じたフィルム内の分子、結晶配向を緩和させ、残留歪を低減させることができる。
 耐候性フィルムには、必要に応じて、種々の添加剤を添加することができる。該添加剤としては、例えば、紫外線吸収剤、耐候安定剤、酸化防止剤、帯電防止剤、ブロッキング防止剤等が挙げられるが、これらに限られない。
 耐候性フィルムの厚さは、一般に20~200μm程度であり、フィルムの取り扱いやすさとコストの点から20~100μmが好ましく、20~60μmがより好ましい。
 耐候性フィルムの熱収縮率は、カール防止性の観点から、フィルムの幅方向または長さ方向の少なくともいずれかの熱収縮率が5.0%以下であることが好ましく、4.0%以下であることがより好ましく、3.0%以下であることがさらに好ましい。また、フィルムの幅方向及び長さ方向の熱収縮率が上記範囲の場合、その効果が特に顕著である。なお、耐候性フィルムの熱収縮率の下限は0.3%程度である。耐候性フィルムの熱収縮率は、加熱前のサンプル長をL0、150℃の温度条件下において30分間オーブンで加熱処理した後のサンプル長をL1としたとき、(L0-L1)×100/L0の式から算出できる。
 耐候性フィルムの幅WAと、樹脂層の幅WBのうち最も耐候性フィルム側の幅WBUとの関係が、WA<WBUの時は、端面に回り込む封止材の厚みが薄くデラミネーションを起こしやすくなる。このため、本発明では、WA≧WBUとすることが必要である。WA≧WBUの関係を満たせば、WAをWBUに対して左右にどの程度長くするかは任意であるが、左右均等に長くするのが好ましい。
 また、WAとWBUとの差が大きすぎると、耐候性フィルムの防湿フィルム側の面が封止材と接する面積が多くなり、耐候性フィルムの易接着処理の効果の低減による、封止材との密着性の問題が生じやすくなる。このため、幅WBUと幅WAとの比(WBU/WA)は、0.75~1.0であることが好ましい。また、端面の封止と密着性の観点から、WBU/WAは0.90~1.0であることがより好ましく、0.90~0.99であることがさらに好ましく、0.95~0.99であることがさらに好ましい。
 なお、本発明において、「フィルムの幅」とは、保護材がロールで提供される場合はロールから巻きだしたフィルムの長さ方向に対して横方向の長さをいい、枚葉で提供される場合は4辺のうちの短辺側をいう。
[樹脂層]
 本発明でいう樹脂層は、耐候性フィルムと防湿フィルムとの間に位置するものである。樹脂層は、樹脂成分を好ましくは50質量%以上、より好ましくは80質量%以上、更に好ましくは90~99.9質量%含む。
 樹脂層の幅WBのうち最も耐候性フィルム側の幅WBUが、防湿フィルムの幅WCよりも小さい場合、封止材が端面に回りこみにくくなるとともに、耐候性フィルムの防湿フィルム側の面が封止材と接する面積が多くなることから、端部の封止材の厚みが減少するとともに、耐候性フィルム側の封止材の密着性が低下してしまう。このため、WBU>WCの関係を満たすことが必要である。
 また、WBUとWCとの差が小さすぎると、耐候性フィルムの防湿フィルム側の面が封止材と接する面積が多くなり、耐候性フィルムの易接着処理の効果の低減による、封止材との密着性の問題が生じやすくなる。このため、幅WCと幅WBUとの比(WC/WBU)は、0.7~0.99であることが好ましく、0.75~0.99であることがより好ましい。
 樹脂層は、図1及び3のように単層であってもよいし、図2のように2層以上であってもよい。
 また、樹脂層が2層以上の場合、耐候性フィルム側の樹脂層の幅を最も広くすることが好ましく、耐候性フィルム側の樹脂層から防湿フィルム側の樹脂層に向かうにつれて徐々に幅を狭くすることがさらに好ましい。2層以上の樹脂層の幅をこのような関係にすることにより、端面の封止性を良好にできる点で好適である。
 また、樹脂層を2層以上とする場合、防湿フィルム側に位置する樹脂層よりも、耐候性フィルム側に位置する樹脂層の方が、上述の紫外線吸収剤、耐候安定剤及び酸化防止剤等の種々の添加剤を多く含有することが好ましい。このように構成することにより、耐候性試験や長期間での曝露試験の環境下において添加剤がブリードアウトした場合でも防湿フィルムのバリア劣化の程度を低減することができる。また、耐候性フィルム側の樹脂層のみに上述の種々の添加剤を含有させ、防湿フィルム側の樹脂層には上述の種々の添加剤を含有させないことがより好ましい。
 樹脂層は、加熱によって軟化して接着性を発現する層であることが好ましい。
 太陽電池保護材の構成部材を接着させるためには、粘着剤(感圧接着剤)や二液硬化型の接着剤を使用する方法が知られている。粘着剤や接着剤は一般にポリマー溶液に架橋剤を加えたものであり、塗布後に乾燥、硬化させて粘着剤層又は接着層を形成する。しかしながら架橋剤の反応率は100%にはならないため、層内に未反応性基が残存し、これにより太陽電池保護材の高温高湿条件下での防湿性が低下する懸念がある。また、粘着剤や接着剤はべたつき(タック)を有するため、耐候性フィルムや防湿フィルムに塗布した直後に他のフィルムでラミネートしてから巻き取る必要がある。
 一方、樹脂層を加熱によって軟化して接着性を発現する層とすれば、耐候性フィルムや防湿フィルムに該樹脂層を設けた状態で冷却し、得られた積層体に他のフィルムをラミネートせずにそのまま巻き取ることが可能である。樹脂層は冷却されているため、巻き取られた状態でブロッキングを防止することができる。また、これを再度加熱することで接着性を発現するので、パッケージ化する際に他方の層を熱ラミネートにより容易に貼り合わせることができる。
 樹脂層は、加熱による接着性を発現するために、熱可塑性樹脂を主成分とすることが好ましく、架橋剤を実質的に含まないことがより好ましい。
 熱可塑性樹脂は樹脂層の50質量%以上含まれることが好ましく、80質量%以上含まれることがより好ましく、90~99.9質量%含まれることがさらに好ましい。また、架橋剤を実質的に含まないとは、架橋剤の含有量が樹脂層の0.1質量%以下であることが好ましく、0.01質量%以下であることがより好ましく、0.001質量%以下であることがさらに好ましい。
 なお、樹脂層は、粘着剤や二液硬化型接着剤を主成分として形成してもよい。ただし、ブロッキングを考慮すると、粘着剤や二液硬化型接着剤を主成分として樹脂層を形成する場合、太陽電池保護材は枚葉で製造することが好適である。
 熱可塑性樹脂としては、ポリエステル、ポリウレタン、ポリアミド、アクリル、ポリエチレン、ポリプロピレン、ポリブタジエン、ポリイソブチレン等が挙げられる他、エチレン-アルキル(メタ)アクリレート共重合体、エチレン-酢酸ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、スチレン-イソプレン共重合体、スチレン-ブタジエン共重合体等が挙げられる。
 これら熱可塑性樹脂の中では、比較的融点が低い特徴を有することで真空ラミネーション工程において加工温度の選択性を広くできることから、ポリエチレン、エチレン-アルキル(メタ)アクリレート共重合体、エチレン-酢酸ビニル共重合体等のエチレン系樹脂が好適である。
 ポリエチレンとしては、エチレンの単独重合体、及び、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)等のエチレン-α-オレフィン共重合体等が挙げられる。
 エチレンとα-オレフィンとの共重合体において、エチレンと共重合するα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン、3-メチル-ブテン-1、4-メチル-ペンテン-1等が例示される。工業的な入手し易さや諸特性、経済性等の観点から、上記のうちプロピレン、1-ブテン、1-へキセン、1-オクテンが好適に用いられる。α-オレフィンは、1種のみを単独で又は2種以上を組み合わせて用いてもよい。
 α-オレフィンは、エチレンとの共重合体中の全単量体単位に対して、通常、2モル%以上であり、好ましくは40モル%以下、より好ましくは3~30モル%、更に好ましくは5~25モル%である。該範囲内であれば、α-オレフィンを共重合させることで共重合体の結晶性が低減されるため透明性が向上し、また、原料ペレットのブロッキング等の不具合も起こり難い。エチレン-α-オレフィン共重合体の中でも、透明性や柔軟性等の観点からエチレン-α-オレフィンランダム共重合体が好適に用いられる。
 中でも、エチレン系樹脂としては、ポリエチレン及びエチレン-アルキル(メタ)アクリレート共重合体から選ばれる少なくとも1種が好ましい。ポリエチレンの中では、透明性の観点から、低密度ポリエチレン及び直鎖状低密度ポリエチレンから選ばれる1種以上が好ましく、低密度ポリエチレンがより好ましい。
 熱可塑性樹脂としてエチレン系樹脂を用いる場合、エチレン系樹脂の含有量は、樹脂層の好ましくは5~100質量%であり、より好ましくは20~100質量%、さらに好ましくは30~100質量%、よりさらに好ましくは40~100質量%である。
 また、エチレン系樹脂の中でも、封止材との密着性及び透明性の観点からは、エチレン-アルキル(メタ)アクリレート共重合体が好適である。樹脂層がエチレン-アルキル(メタ)アクリレート共重合体を含むことにより上記効果が得られる理由は、次のように考えられる。
 アルキル(メタ)アクリレートはエステル結合を有するため極性を有しており、エチレンと共重合体させることで樹脂層と無機層との接着性を向上させることができ、また、アモルファス性を付与できるので高透明性を得ることができる。
 また樹脂層が酸性官能基を含むと、特に該樹脂層と無機層とが接する場合に高温高湿条件下で保存した後の防湿性が劣化する。これに対しエチレン-アルキル(メタ)アクリレート共重合体は酸性官能基を含まないため、高温高湿条件下で保存した後の防湿性劣化を抑制することができる。
 上記の観点から、エチレン-アルキル(メタ)アクリレート共重合体におけるアルキル(メタ)アクリレート由来の単量体単位の含有量は、共重合体中の全単量体単位に対して、好ましくは1質量%以上であり、より好ましくは5~80質量%、更に好ましくは10~60質量%である。
 なお本発明において用いられるエチレン-アルキル(メタ)アクリレート共重合体とは、エチレンと1種又は2種以上のアルキル(メタ)アクリレートとを共重合させた重合体を意味し、エチレン及びアルキル(メタ)アクリレート以外の単量体に由来する単量体単位を実質的に含有しないものである。「実質的に含有しない」とは、共重合体を構成する単量体単位のうち、エチレン及びアルキル(メタ)アクリレート以外の単量体単位が0.1モル%未満であることをいう。
 エチレン-アルキル(メタ)アクリレート共重合体におけるアルキル(メタ)アクリレートは、耐熱性及び安定性の点から、アルキル基の炭素数が1~8であることが好ましく、炭素数1~6がより好ましく、炭素数1~4が更に好ましい。また該アルキル基は直鎖でもよく、分岐構造を有していてもよく、環状構造であってもよい。アルキル(メタ)アクリレートとは、アルキルアクリレート又はアルキルメタクリレートを意味し、接着性発現の観点からはアルキルアクリレートが好ましい。
 本発明に用いられるエチレン-アルキル(メタ)アクリレート共重合体としては、エチレン-メチル(メタ)アクリレート共重合体、エチレン-エチル(メタ)アクリレート共重合体、エチレン-ブチル(メタ)アクリレート共重合体、エチレン-メチル(メタ)アクリレート-ブチル(メタ)アクリレート共重合体、エチレン-ヘキシル(メタ)アクリレート共重合体、エチレン-ペンチル(メタ)アクリレート共重合体、エチレン-オクチル(メタ)アクリレート共重合、エチレン-デシル(メタ)アクリレート共重合体、エチレン-ドデシル(メタ)アクリレート共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 中でも、耐熱性及び接着性の観点から、エチレン-メチル(メタ)アクリレート共重合体及びエチレン-ブチル(メタ)アクリレート共重合体から選ばれる1種以上が好ましく、エチレン-メチルアクリレート共重合体及びエチレン-ブチルアクリレート共重合体から選ばれる1種以上がより好ましい。
 エチレン-アルキル(メタ)アクリレート共重合体はブロック共重合体であってもランダム共重合体であってもよい。エチレンに由来する構成単位とアルキル(メタ)アクリレートに由来する構成単位とは極性が異なるため、エチレン-アルキル(メタ)アクリレート共重合体は樹脂層中で海島構造を取ることが予想される。エチレン-アルキル(メタ)アクリレート共重合体がランダム共重合体である方が島構造が小さくなり、接着性が均一となるので好ましい。
 エチレン-アルキル(メタ)アクリレート共重合体の分子量は任意であるが、重量平均分子量が5,000以上100万以下であることが好ましい。重量平均分子量が5,000以上であれば、エチレン-アルキル(メタ)アクリレート共重合体を含む樹脂層の加熱時に、該共重合体が層間から流れ出るおそれがない。また重量平均分子量が100万以下であれば加工性が良好であり、樹脂層の厚みを容易に制御できる。耐熱性と加工性のバランスの観点から、重量平均分子量は1万以上10万以下がより好ましい。
 熱可塑性樹脂としてエチレン-アルキル(メタ)アクリレート共重合体を用いる場合、樹脂層中における該共重合体の含有量は、好ましくは5~100質量%であり、より好ましくは20~100質量%、更に好ましくは30~100質量%、より更に好ましくは40~100質量%である。樹脂層中のエチレン-アルキル(メタ)アクリレート共重合体の含有量が5質量%以上であれば、接着性に寄与するアルキル(メタ)アクリレート由来の単量体単位の密度が十分であり、均一な接着性を得ることができるので、高温高湿条件下での保存後においても防湿性、密着性を有する太陽電池保護材とすることができる。
 エチレン-アルキル(メタ)アクリレート共重合体以外の熱可塑性樹脂の好ましい重量平均分子量も、前述のエチレン-アルキル(メタ)アクリレート共重合体と同じである。
 熱可塑性樹脂は、真空ラミネーション工程において加工温度の選択性が広い観点から、融点が60~150℃であることが好ましく、60~120℃であることがより好ましい。
 また、熱可塑性樹脂は、加熱及び冷却サイクルにおける樹脂層の残留応力を低減する観点から、ガラス転移温度が-20℃以下であることが好ましい。ガラス転移温度が前記範囲にあることで特に低温度領域下での太陽電池用保護材のバリア性の劣化を抑制することができる。
 樹脂層は、対向するフィルムの収縮等により発生する応力を樹脂層で吸収することで無機層へのダメージを防ぐために、100℃、周波数10Hz、歪0.1%における引張貯蔵弾性率が5×105Pa以下であることが好ましい。
 また、樹脂層は、常温(20℃)において接着強度を維持する観点から、20℃、周波数10Hz、歪0.1%における引張貯蔵弾性率が1×107Pa以上であることが好ましい。
 樹脂層を構成する樹脂のメルトフローレート(MFR)は、190℃、荷重2.16kgにおいて20g/10分以下であることが好ましい。本発明の太陽電池用保護材を用いて太陽電池を作製する際、150℃程度で十数分の真空ラミネーション工程を経るため、該保護材が真空ラミネーション工程で性能が低下しないことが必要である。樹脂層を構成する樹脂のMFRが20g/10分以下であれば、真空ラミネーション工程において、樹脂が層間から流れ出るおそれがなく、樹脂層の厚みの均一性を保持できるので、外観が良好になる。樹脂層を構成する樹脂のMFRは、190℃、荷重2.16kgにおいて18g/10分以下であることがより好ましく、15g/10分以下であることが更に好ましい。樹脂層のMFRは、具体的には実施例に記載の方法により測定できる。
 ここで、樹脂層を構成する樹脂のMFRとは、樹脂層に含まれるすべての樹脂成分を混合した樹脂のMFRをいう。
 本発明において、樹脂層は、耐候性フィルム、又は防湿フィルムの無機層に、樹脂層を構成する熱可塑性樹脂、紫外線吸収剤及び光安定剤等の各成分を混合した熱可塑性樹脂組成物を含む塗工液を直接塗工することにより形成してもよいし、熱可塑性樹脂組成物を含む塗工液を、剥離処理された剥離シートの剥離処理面に塗工し、これを耐候性フィルム、又は防湿フィルムの無機層に貼り合わせた後に剥離シートを剥離することにより形成してもよい(コーティング法)。
 また、塗工液を調製せず、樹脂層を構成する熱可塑性樹脂及びその他添加剤を溶融混練した後、樹脂層を構成する熱可塑性樹脂及びその他添加剤を溶融混練したものを、防湿フィルム又は耐候性フィルム上に流し、冷却ロールで冷却して樹脂層を形成してもよい(押し出しラミネート法)。あるいは、樹脂層を構成する熱可塑性樹脂及びその他添加剤を溶融混練した後、キャスト法により、フィルム状に成形してもよい。
 なお、このように、耐候性フィルム又は防湿フィルムの無機層に樹脂層を形成し、その後にさらにもう一方のフィルムを樹脂層に積層した場合、耐候性フィルムと防湿フィルムとは樹脂層を介して仮接着の状態であるが、後述の太陽電池モジュール製造時の真空ラミネーションにより、強固に接着することができる。
 コーティング法で使用される塗工液は、樹脂層を構成する熱可塑性樹脂、紫外線吸収剤及び光安定剤等の各成分を混合した熱可塑性樹脂組成物を、有機溶剤に溶解させたもの、あるいは水に溶解又は分散させたもの等を使用することが好ましい。耐水性が問われる太陽電池部材等の用途には有機溶剤に溶解させたものが好ましい。
 有機溶剤としては、例えば、トルエン、キシレン、メタノール、エタノール、イソブタノール、n-ブタノール、アセトン、メチルエチルケトン、酢酸エチル、テトラヒドロフラン等が挙げられる。これらは1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。塗工液は、塗工の利便さから、これらの有機溶剤を使用して、固形分濃度が10~50質量%の範囲になるように調製するのが好ましい。
 塗工液の塗工は、例えば、バーコート法、ロールコート法、ナイフコート法、ロールナイフコート法、ダイコート法、グラビアコート法、エアドクターコート法、ドクターブレードコート法等、従来公知の塗工方法により行うことができる。
 塗工後、通常70~110℃の温度で1~5分程度乾燥処理することにより、樹脂層が形成される。
 押し出しラミネート法では、樹脂層を構成する熱可塑性樹脂及びその他添加剤を溶融混練した熱可塑性樹脂を、耐候性フィルム又は防湿フィルム等の基材上に流し、冷却ロールで冷却することで、耐候性フィルムと樹脂層との積層体や防湿フィルムと樹脂層との積層体を得ることができる。このようにして得た積層体の樹脂層側に再度押し出しラミネートにより樹脂を流し冷却することにより、図2のように、樹脂層を2層重ねることができる。樹脂層を重ねる際は、各層で同じ樹脂を用いてもよいし、異なった樹脂を用いてもよい。また、3層、4層とさらに重ねてもよい。この方法により樹脂層の厚みと構成を任意に選ぶことができる。一度に設ける樹脂層の厚みは、ダイから押し出す樹脂層形成組成物の吐出量と、フィルムを搬送するライン速度によって制御できる。また、一度に設ける樹脂層の厚みは、樹脂の温度、延展性、層厚みの均一性、生産性を考慮して選択することが好ましく、通常3~100μmであり、加工安定性の点で10~80μmが好ましい。
 なお、押し出しラミネートにより図2のように樹脂層が2層積層された積層体を作製する場合、一方の樹脂層を耐候性フィルム上に形成し、他方の樹脂層を防湿フィルム上に形成し、その後、耐候性フィルム上の樹脂層と、防湿フィルム上の樹脂層とが対向するように積層することが好ましい。樹脂層上にさらに押し出しラミネートにより樹脂層を形成すると、熱を原因として厚みムラが生じ、真空ラミネーション後の外観が悪くなるが、前述のように積層することにより、真空ラミネーション後の外観を良好にすることができる。
 押し出しラミネート加工において押し出す樹脂温度は通常150~350℃である。150℃以下では樹脂の流れが悪く、350℃より高いと樹脂の熱分解が懸念される。さらに加工性と樹脂の熱分解防止の点から200~320℃が好ましく、260~300℃がより好ましい。ライン速度は装置能力に応じて任意に選ぶことができるが通常10~200m/分程度で実施される。加工安定性の観点からは10~150m/分が好ましく、さらに生産性の点からは50~150m/分が好ましい。
 樹脂層の原料が複数の場合、ドライブレンドにて混ぜ合わせ、押し出し加工機に投入してもよく、事前にコンパウンドを実施してもよい。樹脂の均一性を向上させ、加工性を良くするため事前にコンパウンドを実施することがより好ましい。樹脂の熱分解を防止するためコンパウンドは押し出しラミネート加工温度以下で実施することが好ましい。
 押し出しラミネート法では樹脂層の両側に一度にフィルムを貼り合わせることが可能である。たとえば、防湿フィルム上に樹脂層を形成する場合、樹脂層の防湿フィルムとは反対側から耐候性フィルムを繰り出すことにより、2枚のフィルム間に樹脂層を設けた積層体を得ることができる。
 樹脂層の厚みは、5~120μmであるのが好ましく、より好ましくは10~100μm、さらに好ましくは10~80μm、よりさらに好ましくは20~80μmである。樹脂層の厚みが5μm以上であれば、十分な接着力を得ることができ、120μm以下であれば、防湿フィルムの無機層面への応力が増大して防湿性能が劣化するのを防止できる。
 更に、本発明の太陽電池保護材は、樹脂層と無機層とが接しており、樹脂層の厚みをaとし、無機層の厚みをbとした場合に、樹脂層の厚みaと、該樹脂層に接する無機層の厚みbとの比a/bは200~10000の範囲にあることが好ましく、250~9000の範囲になることがより好ましく、400~2000の範囲になることがさらに好ましい。これにより、太陽電池保護材の作製における真空ラミネーション時の防湿性低下を抑制することができる。真空ラミネーション時には無機層の垂直方向に圧力が加えられ、その衝撃に対して防湿性が低下しないことが必要である。また、真空ラミネーション時の加熱・冷却過程において、樹脂層に含まれる熱可塑性樹脂が溶融し冷却により固化する際、その収縮応力によって該樹脂層と接する無機層にダメージが与えられ、防湿性が低下しないことが必要である。a/bが200以上であれば、無機層の厚みに対する樹脂層の厚みが小さすぎず、耐衝撃性が不足することにより無機層にダメージを与える懸念がない。一方、a/bが10000以下であれば、樹脂層と接する無機層にかかる収縮応力が過大にならず、防湿性の低下を抑制できる。
 また、防湿フィルムに用いられる基材の厚みをcとした場合に、樹脂層の厚みaと、該基材の厚みcとの比a/cが0.1~8の範囲にあることが好ましい。a/cが0.1以上であれば、耐候フィルムと防湿フィルムとの初期接着性がより良くなる。a/cが8以下であれば、保護材の作製における加熱圧着時(真空ラミネート時)に、該樹脂層の収縮による該基材の変形が起こり難い。a/cは、0.1~3.3の範囲がより好ましく、0.2~2.0の範囲がさらに好ましい。
[防湿フィルム]
 本発明において、防湿フィルムは、基材及び基材の少なくとも一方の面に形成される無機層を少なくとも有するものであり、その水蒸気透過率は0.1g/m2/day未満であることが好ましい。本発明の太陽電池用保護材は、長期に高い防湿性を保持することが望まれるため、初期の防湿性も一定以上のものである必要がある。したがって、本発明において、上記防湿フィルムは水蒸気透過率が0.1g/m2/day未満であり、好ましくは0.05g/m2/day以下であり、より好ましくは、0.03g/m2/day以下である。また、該防湿フィルムは、太陽電池用保護材が、受光面側に用いられるフロントシートとして使用される場合には、透明であることが好ましい。
 防湿フィルムの幅WCと、耐候性フィルムの幅WAとの差が大きすぎると、封止材が端部まで十分回り込まず、また真空ラミネーション後の積層体の厚みの均一性が保持できなくなることがある。そのため、WC/WAは0.7~0.98であるのが好ましく、より安定したデラミネーション防止を行うためには0.75~0.95であるのがより好ましく、0.8~0.92がさらに好ましい。
 防湿フィルムの厚みは、一般に5~300μmであり、太陽電池用保護材のカール抑制、耐電圧性、クッション性、及び生産性や取り扱い性の点からは、好ましくは25~250μm、より好ましくは38~200μm、さらに好ましくは50~180μmである。
(基材)
 上記防湿フィルムの基材としては、樹脂フィルムが好ましく、その材料としては、通常の太陽電池用材料に使用しうる樹脂であれば特に制限なく用いることができる。
 具体的には、エチレン、プロピレン、ブテン等の単独重合体又は共重合体等のポリオレフィン;環状ポリオレフィン等の非晶質ポリオレフィン;ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル;ナイロン6、ナイロン66、ナイロン12、共重合ナイロン等のポリアミド;エチレン-酢酸ビニル共重合体部分加水分解物(EVOH)、ポリイミド、ポリエーテルイミド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリカーボネート、ポリビニルブチラール、ポリアリレート、フッ素樹脂、アクリル系樹脂、生分解性樹脂等が挙げられ、中でも熱可塑性樹脂が好ましい。さらにフィルム物性、コスト等の点から、ポリエステル、ポリアミド、ポリオレフィンが好まく、表面平滑性、フィルム強度、耐熱性等の点から、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が特に好ましい。
 基材の23℃における弾性率は、2.0~10.0GPaであることがより好ましく、2.0~8.0GPaであることが更に好ましい。上記範囲の弾性率を有することにより、外力の変形に対する変形抵抗を発揮することができ、保護シートおよび保護シートを含む積層品のカールを十分に抑えることが可能となり好ましい。ここで、弾性率とは、応力-歪み曲線の直線部の傾きから求められる引張弾性率を指し、JIS K7161:1994に準拠した引張試験の方法により求めることができる。
 また、上記基材、上述の樹脂層及び後述の接着層は、必要に応じて、種々の添加剤を添加することができる。該添加剤としては、例えば、帯電防止剤、紫外線吸収剤、光安定剤、可塑剤、滑剤、フィラー、着色剤、ブロッキング防止剤、酸化防止剤等が挙げられるが、これらに限られない。
 使用しうる紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸エステル系等各種タイプのものを挙げることができ、種々の市販品が適用できる。
 ベンゾフェノン系紫外線吸収剤としては、例えば、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-n-オクタデシルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2-ヒドロキシ-5-クロロベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン等を挙げることができる。
 ベンゾトリアゾール系紫外線吸収剤としては、ヒドロキシフェニル置換ベンゾトリアゾール化合物であって、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジメチルフェニル)ベンゾトリアゾール、2-(2-メチル-4-ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-メチル-5-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-アミルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール等を挙げることができる。
 またトリアジン系紫外線吸収剤としては、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシルオキシ)フェノール等を挙げることができる。
 サリチル酸エステル系としては、フェニルサリチレート、p-オクチルフェニルサリチレート等を挙げることができる。
 基材、上述の樹脂層及び後述の接着層中の紫外線吸収剤の含有量は、通常0.01~2.5質量%程度であり、好ましくは0.05~2.0質量%である。
 上記の紫外線吸収剤以外に耐候性を付与する耐候安定剤として、ヒンダードアミン系光安定化剤を用いることができる。ヒンダードアミン系光安定化剤は、紫外線吸収剤のようには紫外線を吸収しないが、紫外線吸収剤と併用することによって著しい相乗効果を示す。
 ヒンダードアミン系光安定化剤としては、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、N,N’-ビス(3-アミノプロピル)エチレンジアミン-2,4-ビス[N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ]-6-クロロ-1,3,5-トリアジン縮合物、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、2-(3,5-ジ-tert-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)等を挙げることができる。基材、上述の樹脂層及び後述の接着層中のヒンダードアミン系光安定化剤の含有量は、通常0.01~2.0質量%程度であり、好ましくは0.05~1.0質量%である。
 酸化防止剤としては、種々の市販品が使用でき、モノフェノール系、ビスフェノール系、高分子型フェノール系、硫黄系、ホスファイト系等各種タイプのものを挙げることができる。
 モノフェノール系としては、例えば、2,6-ジ-tert-ブチル-p-クレゾール、ブチル化ヒドロキシアニゾール、2,6-ジ-tert-ブチル-4-エチルフェノール等を挙げることができる。ビスフェノール系としては、2,2’-メチレン-ビス-(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレン-ビス-(4-エチル-6-tert-ブチルフェノール)、4,4’-チオビス-(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデン-ビス-(3-メチル-6-tert-ブチルフェノール)、3,9-ビス〔{1,1-ジメチル-2-{β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル}2,4,9,10-テトラオキサスピロ〕5,5-ウンデカン等を挙げることができる。
 高分子フェノール系としては、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ビドロキシベンジル)ベンゼン、テトラキス-{メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキスフェニル)プロピオネート}メタン、ビス{(3,3’-ビス-4’-ヒドロキシ-3’-tert-ブチルフェニル)ブチリックアシッド}グルコールエステル、1,3,5-トリス(3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)-s-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェロール(ビタミンE)等を挙げることができる。
 硫黄系としては、ジラウリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオプロピオネート等を挙げることができる。
 ホスファイト系としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-tert-ブチルフェニル-ジ-トリデシル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、トリス(モノ及び/又はジ)フェニルホスファイト、ジイソデシルペンタエリスリトールジホスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナスレン-10-オキサイド、10-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン、サイクリックネオペンタンテトライルビス(2,4-ジ-tert-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6-ジ-tert-メチルフェニル)ホスファイト、2,2-メチレンビス(4,6-tert-ブチルフェニル)オクチルホスファイト等を挙げることができる。
 本発明においては、酸化防止剤の効果、熱安定性、経済性等からフェノール系及びホスファイト系の酸化防止剤が好ましく用いられ、両者を組み合わせて用いることがさらに好ましい。該酸化防止剤の添加量は、基材、上述の樹脂層及び後述の接着層中、通常、0.1~1質量%程度であり、0.2~0.5質量%添加することが好ましい
 上記基材としての樹脂フィルムは、上記の原料を用いて成形してなるものであるが、未延伸であってもよいし延伸したものであってもよい。さらに、単層または多層のいずれでもよい。
 かかる基材は、従来公知の方法により製造することができ、例えば、原料を押出機により溶融し、環状ダイやTダイにより押し出して、急冷することにより実質的に無定型で配向していない未延伸フィルムを製造することができる。また、多層ダイを用いることにより、1種の樹脂からなる単層フィルム、1種の樹脂からなる多層フィルム、多種の樹脂からなる多層フィルム等を製造することができる。
 この未延伸フィルムを一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、フィルムの流れ(縦軸)方向又はフィルムの流れ方向とそれに直角な(横軸)方向に延伸することにより、一軸方向又は二軸方向に延伸したフィルムを製造することができる。延伸倍率は任意に設定できるが、150℃熱収縮率が、0.01~5%であることが好ましく、0.01~2%であることがより好ましい。中でもフィルム物性の点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエチレンテレフタレートフィルムとポリエチレンナフタレートフィルムとの共押出二軸延伸フィルム、ポリエチレンテレフタレート及び/又はポリエチレンナフタレートと他の樹脂との共押出二軸延伸フィルムが好ましい。
 上記防湿フィルムの基材の厚みは、一般に5~300μmであり、太陽電池用保護材のカール抑制、耐電圧性、クッション性、及び生産性や取り扱い性の点からは、好ましくは25~250μm、より好ましくは38~200μm、さらに好ましくは50~180μmである。
 防湿フィルムを構成する上記基材の厚みが25μm以上であると、太陽電池用保護材のカール発生の抑制効果に優れ、耐電圧性、耐衝撃性、及びクッション性にも優れる。また、上記基材の厚みが300μmを超えると、生産性や取り扱い性の点で好ましくない。
 また、上記防湿フィルムの基材の厚みは、カール発生抑制の観点から、前記耐候性フィルムの厚みと同じかそれ以上であることが好ましい。具体的には、防湿フィルムの基材の厚みTC'に対する、耐候性フィルムの厚みTA'の比TA'/TC'が1.0以下であることが好ましい。カール発生抑制の観点から、TA'/TC'は、より好ましくは0.07~0.8、さらに好ましくは0.2~0.7である。
 なお、上記基材には、無機層との密着性向上のため、アンカーコート層を形成することが好ましい。該アンカーコート層には、溶剤性又は水性のポリエステル樹脂;イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、変性ビニル樹脂、ビニルアルコール樹脂等のアルコール性水酸基含有樹脂;ビニルブチラール樹脂、ニトロセルロース樹脂、オキサゾリン基含有樹脂、カルボジイミド基含有樹脂、メラミン基含有樹脂、エポキシ基含有樹脂、変性スチレン樹脂及び変性シリコーン樹脂等を単独、あるいは2種以上組み合わせて使用することができる。また、アンカーコート層には必要に応じ、アルキルチタネート、シラン系カップリング剤、チタン系カップリング剤、紫外線吸収剤、耐候安定剤、滑剤、ブロッキング防止剤、酸化防止剤等を添加することができる。紫外線吸収剤、耐候安定剤及び酸化防止剤としては、前述の基材に用いるものと同様のものを使用することができ、また該耐候安定剤及び/または紫外線吸収剤が前記した樹脂と共重合したポリマータイプのものを使用することもできる。
 アンカーコート層の厚みは無機層との密着性向上の観点から、10~200nmであることが好ましく、10~100nmであることがより好ましい。その形成方法としては、公知のコーティング方法が適宜採択される。例えば、リバースロールコーター、グラビアコーター、ロッドコーター、エアドクターコーター、または、スプレイを用いたコーティング方法等の方法がいずれも使用できる。また、基材を樹脂液に浸漬して行ってもよい。塗布後は、80~200℃程度の温度での熱風乾燥、熱ロール乾燥等の加熱乾燥や、赤外線乾燥等の公知の乾燥方法を用いて溶媒を蒸発させることができる。また、耐水性、耐久性を高めるために、電子線照射による架橋処理を行う事もできる。また、アンカーコート層の形成は、基材の製造ラインの途中で行う方法(インライン)でも、基材製造後に行う方法(オフライン)でも良い。
(無機層)
 無機層を構成する無機物質としては、珪素、アルミニウム、マグネシウム、亜鉛、錫、ニッケル、チタン等;又はこれらの酸化物、炭化物、窒化物;あるいはこれらの混合物が挙げられる。これらの無機物質の中でも、透明であることから酸化珪素、窒化珪素、酸化窒化珪素、酸化アルミニウム、ダイアモンドライクカーボンが好ましい。特に、酸化珪素、窒化珪素、酸化窒化珪素、酸化炭化珪素、酸化炭化窒化珪素、酸化アルミニウムは、高いガスバリア性が安定に維持できるため好ましい。
 無機層の形成方法としては、蒸着法、コーティング法等の方法がいずれも使用できるが、ガスバリア性の高い均一な薄膜が得られるという点で蒸着法が好ましい。この蒸着法には、物理気相蒸着(PVD)、化学気相蒸着(CVD)、原子層蒸着(ALD)等の方法がいずれも含まれる。物理気相蒸着法には、真空蒸着、イオンプレーティング、スパッタリング等が挙げられ、化学気相蒸着法には、プラズマを利用したプラズマCVD、加熱触媒体を用いて材料ガスを接触熱分解する触媒化学気相成長法(Cat-CVD)等が挙げられる。原子層蒸着は、真空容器内に設置した基板上に、原料化合物の分子をモノレイヤーごとに表面へ吸着、反応による成膜、パージによる余剰分子の取り除き、のサイクルを繰返し行うことによって、原子層を一層ずつ積み上げる手法である。
 また、無機層は単層であっても多層であってもよい。多層の場合、同一の成膜法を用いても良いし、各層ごとに異なる成膜法を用いても良いが、何れも減圧下で連続して行うことが、効率的な防湿性向上、生産性の点で好ましい。
 また、特に、真空蒸着法により形成した無機層、化学蒸着法により形成した無機層及び真空蒸着法により形成した無機層をこの順で形成した層構成が、多層構成の中に含まれていることが好ましい。
 なお、無機層が多層の場合、各層は同じ無機物質からなっていても、異なる無機物質からなっていてもよい。
 上記無機層の厚さは、安定した防湿性の発現の点から、10~1000nmであることが好ましく、20~800nmがより好ましく、20~600nmがさらに好ましい。
[背面フィルム]
 本発明の太陽電池用保護材は、図3のように、防湿フィルム側にさらに厚みが60μm以上である背面フィルムを有する構成であってもよい。
 防湿フィルム側にさらに背面フィルムを設け、さらに背面フィルムの幅WDを、耐候性フィルムの幅WAよりも小さくして、防湿フィルムの幅WCよりも大きくすることにより、耐候性フィルム等の他の構成層の収縮に対して変形を抑制し、カールを防止しつつ、デラミネーションの発生を防止できる。
 幅WAと幅WDとの関係は、カール防止及びデラミネーションの発生防止の観点から、WD/WAが0.70以上、1.0未満であり、かつWA-WDが100mm以下であることが好ましい。また、WD/WAが0.80以上、1.0未満であり、かつWA-WDが80mm以下であることがより好ましく、WD/WAが0.85以上、0.95以下であり、かつWA-WDが50mm以下であることがさらに好ましい。
 幅WCと幅WDとの関係は、カール防止及びデラミネーションの発生防止の観点から、WC/WDが0.65以上、1.0未満であり、かつWD-WCが32mm以下であることが好ましい。また、WD/WCが0.75以上、1.0未満であり、かつWD-WCが30mm以下であることがより好ましく、WC/WDが0.80以上、0.99以下であり、かつWC-WDが25mm以下であることがさらに好ましい。
 なお、幅WDと幅WBUとの関係は、WBU≧WDであることが好ましい。
 背面フィルムの厚みは、カール防止性、フィルムの取り扱いやすさ及びコストのバランスの観点から、60~300μmであることが好ましく、75~250μmであることがより好ましく、100~200μmであることがさらに好ましい。
 また、本発明においては、耐候性フィルムの収縮応力を十分に抑制できること、および取り扱いやコストの観点から、背面フィルムの厚みに対する、耐候性フィルムの厚みの比(耐候性フィルムの厚み/背面フィルムの厚み)が、2.0以下であることが好ましく、1.0以下であることがより好ましく、0.75以下であることがさらに好ましく、0.20以上0.75以下であることがよりさらに好ましい。
 背面フィルムは、他の構成層の収縮に対して変形を抑制する効果をより良好にするため、23℃における弾性率が、2.0GPa以上のものが好適である。背面フィルムの23℃における弾性率は、2.0~10.0GPaであることがより好ましく、2.0~8.0GPaであることがさらに好ましい。ここで、弾性率とは、応力-歪み曲線の直線部の傾きから求められる引張弾性率を指し、JIS K7161:1994に準拠した引張試験の方法により求めることができる。
 背面フィルムの材料としては、具体的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル;ナイロン6、ナイロン66、ナイロン12、共重合ナイロン等のポリアミド;エチレン-酢酸ビニル共重合体部分加水分解物(EVOH)、ポリイミド、ポリエーテルイミド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリカーボネート、ポリビニルブチラール、ポリアリレート、フッ素樹脂、アクリレート樹脂、生分解性樹脂が挙げられ、また該樹脂に弾性率の補強効果を向上させるものとしてフィラー等の有機、無機材を添加してもよい。
 また、太陽電池モジュールは発電時の発熱や太陽光の輻射熱等で、その使用温度が85~90℃程度まで昇温するため、背面フィルムの融点が使用温度以下であると、背面フィルムが軟化して動作中に本来の太陽電池素子を保護する機能が失われる可能性がある。従って、背面フィルムとしては、ポリエチレンナフタレート、ポリエチレンテレフタレート等のポリエステル、あるいは、ポリプロピレン(PP)、ポリ乳酸(PLA)、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)、酪酢酸セルロース(CAB)等から選ばれる1種又は2種以上の樹脂を含むことが好ましく、該樹脂を50質量%以上含有するものであることが好ましい。さらに該樹脂に紫外線吸収剤や着色剤を配合した樹脂組成物を成膜したものが好ましく用いられるが、これらに限定されるものではない。
 背面フィルムと防湿フィルムとは、接着層を用いて積層することが好適である。接着層の幅は、防湿フィルムの幅と略同一とすることが好ましい。
 接着層を構成する材料としては、アクリル系粘着剤、ゴム系粘着剤、ポリエステル系粘着剤等の粘着剤(感圧接着剤)、熱硬化型接着剤、電離放射線硬化型接着剤等の接着剤、上述した樹脂層に用いる熱可塑性樹脂等が挙げられる。
 太陽電池保護材のカール防止の観点からは、接着層を構成する材料は樹脂層と同様の組成とすることが好適であり、また、接着層と樹脂層との厚みを同じにすることが好適である。
 接着層に熱可塑性樹脂を用いる場合、樹脂層で例示したものと同様のものを用いることができる。粘着剤、溶液型接着剤、熱硬化型接着剤、電離放射線硬化型接着剤は従来公知のものを用いることができる。
 接着層の厚さは、十分な接着力を得るとの観点から10μm以上とするのが好ましく、より好ましくは15μm以上、さらに好ましくは18μm以上、最も好ましくは20μm以上である。また、製造効率や費用対効果の観点から、上記厚さは100μm以下が好ましく、50μm以下であることがより好ましい。背面接着層の幅は、防湿フィルムの幅と略同一とすることが好ましい。
 本発明の太陽電池用保護材は、少なくとも、前記耐候性フィルム、前記樹脂層、及び前記防湿フィルムをこの順に有するものが好ましく、フロントシートに用いる場合、耐候性フィルムを暴露側に有するものであることが好ましい。また、耐候性フィルムと防湿フィルムとを樹脂層を介して積層する際、防湿フィルムの無機層側の面を耐候性フィルム側にして積層すると、太陽電池保護材の保管時および使用時における無機層へのダメージを低減できるため好ましい。
 本発明の太陽電池用保護材には、本発明の主旨を逸脱しない範囲で、諸物性(柔軟性、耐熱性、透明性、接着性等)や成形加工性あるいは経済性等をさらに向上させる目的で、その他の層を積層させてもよい。
 本発明の太陽電池用保護材において積層しうるその他の層としては、通常、太陽電池用保護材に使用しうるいかなる層も使用可能であるが、例えば封止材、集光材、導電材、伝熱材、水分吸着材等の層を積層することができる。
 これらのその他の層には、必要に応じて、種々の添加剤を添加することができる。該添加剤としては、例えば、帯電防止剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、耐候安定剤、ブロッキング防止剤、酸化防止剤等が挙げられるが、これらに限られない。紫外線吸収剤、耐候安定剤及び酸化防止剤としては、前述の基材に用いるものと同様のものを使用することができる。
 本発明の太陽電池用保護材の厚みは、特に限定されるものではないが、カール発生抑制、耐電圧性の観点から、好ましくは60~600μmであり、より好ましくは75~350μmであり、さらに好ましくは90~300μmである。
(太陽電池用保護材の防湿性)
 本発明の太陽電池用保護材は、上述の通り、基材に無機層を有する水蒸気透過率0.1g/m2/day未満の防湿フィルムを用いることにより、初期防湿性が、水蒸気透過率で好ましくは0.1g/m2/day以下であり、より好ましくは0.05g/m2/day以下であるものとすることができる。
 本発明の太陽電池用保護材は、初期防湿性に優れ、且つ、高温高湿環境下での保存においても防湿性やデラミネーション防止にも優れる。
 また、上述のように、各層の幅を、WA≧WBU>WCの関係を満たすように構成することにより、その防湿性は、真空ラミネーション及びJIS C 60068-2-66に準じるプレッシャークッカーテストによる連続する高温高湿環境による防湿性の低下度、すなわち、(前記の高温高湿環境後の水蒸気透過率/初期水蒸気透過率)を、通常25以下、好ましくは15以下、より好ましくは10以下、さらに好ましくは2以下とすることができる。
 なお、本発明における太陽電池用保護材の「初期防湿性」とは、部材が真空ラミート条件等の高温高湿環境下での熱等の履歴を受ける前の防湿性をいい、熱等による防湿性劣化が起こる前の値を意味する。よって、製造直後から高温高湿処理前までの経時的な変化を含むものである。例えば、100℃前後の高温高湿環境、130~180℃で10分~40分行われる熱ラミネーション処理等の熱処理が行われていない状態での防湿性の値を意味する。「初期水蒸気透過率」も同様である。
 本発明における各防湿性はJIS Z0222「防湿包装容器の透湿度試験方法」、JIS Z0208「防湿包装材量の透湿度試験方法(カップ法)」の諸条件に準じ評価することができる。
 本発明の太陽電池用保護材はまた、前記防湿フィルムの基材の厚みが25~250μmであること、或いは背面フィルムの厚みを60μm以上としてかつ特定の幅とすることにより、カール発生が抑制される。また、太陽電池用保護材の厚みが90μm以上であることにより、耐電圧性及びクッション性にも優れる。耐電圧性については、例えば部分放電圧の測定により評価することができ、具体的には実施例に記載の方法で評価することができる。
 本発明の太陽電池用保護材は、IEC60664-1:2007 Clause6.1.3.5に準拠して測定される部分放電圧が400V以上であることが好ましく、600V以上であることがより好ましく、800V以上であることがさらに好ましい。
<封止材一体型保護材>
 本発明の封止材一体型保護材は、前述した本発明の太陽電池用保護材の耐候性フィルムとは反対側に、さらに封止材層が積層されてなるものである。予め封止材層を積層した封止材一体型の保護材とすることにより、後述する太陽電池モジュール製造において、真空ラミネート工程におけるフロントシート、封止材、発電素子、封止材、バックシートそれぞれを個々に積層する作業を低減でき、太陽電池モジュール製造の効率化を図ることができる。
 本発明の封止材一体型保護材において、封止材層を構成する封止材としては、例えば、シリコーン樹脂系封止材や、エチレン-酢酸ビニル共重合体、エチレンとα-オレフィンとのランダム共重合体等が挙げられる。上記α-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン、3-メチル-ブテン-1、4-メチル-ペンテン-1等からなるものが挙げられる。樹脂層や接着層との密着性の観点からは、エチレン-酢酸ビニル共重合体(EVA)からなるものが好適である。
 封止材一体型保護材において、封止材層の幅WEは、耐候性フィルムの幅WAより小さく、かつ防湿フィルムの幅WCおよび背面フィルムの幅WDよりも大きいことが好ましい。このことにより、真空ラミネート時に、耐候性フィルム以外の太陽電池保護材の端面を封止材により封止し、保護材の防湿性の低下及びデラミネーションを防止することができる。
 積層される封止材層の厚みは、太陽電池素子の保護の観点から、好ましくは200~750μm、より好ましくは300~600μmである。
 本発明の太陽電池用保護材に封止材層を積層する方法としては、公知の方法を用いることができる。例えば、太陽電池用保護材の耐候性フィルムとは反対側の面に、必要に応じて接着層を介して、封止材層を積層すればよい。ここで用いる接着層には、上述の接着層で例示したものと同様のものを用いることができる。これらの中でも、ポリウレタン系接着剤を含むものが好ましく、ポリウレタン系接着剤を主成分とするものがより好ましい。封止材層の積層に用いられる接着層の幅は、被着体(防湿フィルム又は背面フィルム)の幅と略同一とすることが好ましい。
<ロール状物>
 本発明のロール状物は、上述した本発明の太陽電池用保護材又は封止材一体型保護材が巻き取られてなるものである。ロール状物とすることにより、その後の加工性、運搬性、生産性を良好にすることができ、外観の保護を図りやすくできる。
 巻取りの長さは、50m以上とすることが好ましく、100m以上とすることがより好ましい。
<カバーシート付きロール状物>
 本発明のカバーシート付きロール状物は、上述した本発明の太陽電池用保護材又は封止材一体型保護材が巻き取られてなるロール状物であって、前記ロール状物の表面のうち、耐候性フィルムが突出する箇所に対応する箇所の少なくとも一部を、以下の条件により測定される撓み長さが70mm以下であり、かつ耐荷重凹みが0.1以下であるカバーシートで覆ってなるものである。
[撓み長さ]
(1)幅20mm、長さ120mmのサンプルを採取する。
(2)サンプルを台上に、サンプルのうち長さ100mmの部分が台から突出するようにして配置し、サンプルの台上の部分に、重さ5kgの重りを乗せてサンプルを固定する。
(3)サンプルの台から突出する部分の端部が、台から垂れ下がる長さ「x」(単位:mm)を測定し、この値を撓み長さとする。
 撓み長さとは、カバーシート等の撓みやすさを示す指標である。
 なお、撓み長さは、数値が安定した状態で測定することが好ましく、通常、サンプルを固定して5分経過後に測定を行う。また、測定の温度条件は23℃程度であることが好適である。
 また、サンプルの台上の部分には、まず底面が20mm×20mmの板を乗せ、次いで該板の上に5kgの重りを乗せることが好ましい。板の高さは5~15mm程度で、材質は特に問わず、ガラス板、鉄板等が挙げられる。
[耐荷重凹み]
(1)100mm四方のサンプルを採取する。
(2)サンプルを厚さ20mmのガラス板上に設置し、サンプルの中央部に直径5mmで重さ0.5gの鋼球を載せ、さらに鋼球上から2kgの荷重をかける。
(3)サンプルの凹み「d」(単位:μm)を測定し、サンプルの厚み「t」(単位:μm)との比「d/t」を耐荷重凹みとする。
 耐荷重凹みとは、カバーシート等の凹みにくさを示す指標である。
 なお、サンプルの凹み「d」は、一番深い凹み箇所の深さを測定するものとする。
 また、耐荷重凹みは、数値が安定した状態で測定することが好ましく、通常、サンプルに鋼球を載せ、さらに鋼球上から荷重をかけてから23℃で24時間経過後に測定を行う。
 上述した本発明の太陽電池用保護材又は封止材一体型保護材は、耐候性フィルムの幅が広いため、図1及び2に示すように、該フィルムが他の保護材構成層より突出した突出部11を有している。したがって、上述した本発明の太陽電池用保護材又は封止材一体型保護材を巻き取ったロール状物も、このような突出部を有している。そして、このような突出を有するロール状物は、輸送時等に突出部に負荷がかかって折れ曲がったり、シワが生じる場合がある。
 本発明のカバーシート付きロール状物は、ロール状物の表面のうち、耐候性フィルムが突出する箇所に対応する箇所の少なくとも一部をカバーシートで覆うことにより、輸送時等に突出部が折れ曲がったり、シワが生じることを防止したものである。
 カバーシートは、耐候性フィルムが突出する箇所に対応する少なくとも一部を覆えばよいが、該箇所の50%以上覆うことが好ましく、該箇所の全部を覆うことがさらに好ましい。また、よりさらに好ましい態様は、ロール状物の表面の全部を覆うことである。
 カバーシートの幅Wkと耐候性フィルムの幅WAとの比([WK]/[WA])は1以上であることが好ましく、1.05以上であることがより好ましく、1.15以上であることがさらに好ましい。また、ハンドリング性の観点から、[WK]/[WA]は1.5以下であることが好ましく、1.3以下であることがより好ましい。
 なお、突出部の折れ曲がりやシワは、主としてロール状物の上下方向からの負荷であるため、ロール状物の表面をカバーシート覆えば本発明の目的を達成することができる。さらに、ロール状物の左右方向からの負荷を考慮して、ロール状物の側面もカバーシートで覆ってもよい。
 撓み長さは60mm以下であることが好ましく、50mm以下であることがより好ましく、40mm以下であることがさらに好ましい。耐荷重凹みは0.05以下であることが好ましく、0.03以下であることがより好ましい。
 また、カバーシートでロール状物の表面を覆う際のハンドリング性や、カバーシートの長さ方向端部の固定を維持する観点から、撓み長さが5mm以上、耐荷重凹みが0.01以上であることが好ましく、撓み長さが10mm以上、耐荷重凹みが0.02以上であることがより好ましい。
 カバーシートとしては、エチレン、プロピレン、ブテン等の単独重合体又は共重合体等のポリオレフィン;環状ポリオレフィン(Cyclo-Olefin-Polymer:COP)等の非晶質ポリオレフィン;ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル;ナイロン6、ナイロン66、ナイロン12、共重合ナイロン等のポリアミド;ポリイミド、トリアセチルセルロース(TAC)、セルロースジアセテート、セルロースアセテートブチレート、ポリエーテルスルフォン、ポリスルフォン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリメタクリル酸メチル、ポリカーボネート、ポリウレタン等のプラスチックシートを好適に用いることができる。
 カバーシートの厚みは、50μm~2mmが好ましく、100μm~1mmがより好ましい。
 また、カバーシートはロール状物とブロッキングを生じる可能性がある。特に、ロール状物の下方に位置するカバーシートは、ロール状物の重みにより、ロール状物とカバーシートとの間でブロッキングを生じやすい。このため、カバーシートは、所定の表面粗さを有することが好ましく、具体的には、JIS B 0601の算術平均粗さRaが50nm以上のものが好適である。
 また、カバーシートは、所定の強度を有しつつ、クッション性を備えたものであることが好ましい。このため、上記例示したプラスチックシートをベースとした発泡プラスチックフィルムが好適である。
 なお、発泡プラスチックフィルムは、不透明であるため積層体の透明性が高い場合に区別しやすい点、ブロッキング防止性に優れる点、及び軽量であるためハンドリング性にも優れる点でも好適である。
 本発明では、カバーシートがロール状物の表面を覆うように構成されていればよいが、輸送中に当該状態が崩れないように、カバーシートとロール状物とを、テープや接着剤を用いて部分的に貼り合わせることが好ましい。また、カバーシートがロール状物の表面の全部を覆う状態の場合、カバーシートの長さ方向の両端部をテープや接着剤で固定することが好ましい。
 本発明においては、カバーシートと耐候性フィルムとが以下の(a’)及び/又は(b’)の条件を満たすことが好ましい。
(a’)[カバーシートの撓み長さ]/[耐候性フィルムの撓み長さ]が2以下
(b’)[カバーシートの耐荷重凹み]/[耐候性フィルムの耐荷重凹み]が2以下
 上記(a’)又は(b’)の条件を満たすことにより、突出部の折れ曲がりやシワを防止しやすくでき、上記(a’)及び(b’)の条件を満たすことにより突出部の折れ曲がりやシワをさらに防止しやすくできる。
 また、(a’)[カバーシートの撓み長さ]/[耐候性フィルムの撓み長さ]は1以下であることが好ましく、0.1~0.6であることがより好ましい。また、(b’)[カバーシートの耐荷重凹み]/[耐候性フィルムの耐荷重凹み]は1以下であることがより好ましく、0.5以下であることがさらに好ましく、0.01~0.2であることがよりさらに好ましい。
<太陽電池モジュール、太陽電池の製造方法>
 本発明の太陽電池用保護材は、そのまま、あるいはさらにガラス板等と貼り合わせて太陽電池用表面保護材として用いることができる。
 本発明の太陽電池用保護材をフロントシート、バックシート等の表面保護材の層構成に使用し、太陽電池素子を固定することにより太陽電池モジュールを製作することができる。
 このような太陽電池モジュールとしては、種々のタイプのものを例示することができる。好ましくは、本発明の太陽電池用保護材をフロントシートとして使用した場合、封止材と、太陽電池素子と、バックシートとを用いて作製された太陽電池モジュールが挙げられる。具体的には、フロントシート(本発明の太陽電池用保護材)/封止材(封止樹脂層)/太陽電池素子/封止材(封止樹脂層)/バックシートの構成のもの;バックシートの内周面上に形成させた太陽電池素子上に封止材とフロントシート(本発明の太陽電池用保護材)を形成させるような構成のもの;フロントシート(本発明の太陽電池用保護材)の内周面上に形成させた太陽電池素子、例えば耐候性フィルム上にアモルファス太陽電池素子をスパッタリング等で作製したものの上に封止材とバックシートを形成させるような構成のもの等を挙げることができる。
 太陽電池素子としては、例えば、単結晶シリコン型、多結晶シリコン型、アモルファスシリコン型、ガリウム-砒素、銅-インジウム-セレン、銅-インジウム――ガリウムーセレン、カドミウム-テルル等のIII-V族やII-VI族化合物半導体型、色素増感型、有機薄膜型等が挙げられる。
 本発明における太陽電池用保護材を用いて、太陽電池モジュールを形成する場合、前記太陽電池発電素子の種類により、防湿フィルムとして、水蒸気透過率で0.1g/m2/day未満程度の低防湿フィルム又は0.01g/m2/day未満程度の高防湿フィルムを適宜選択し、上述の樹脂層や接着層等を介して耐候性フィルム等の他の部材と積層する。
 本発明の太陽電池用保護材を用いて作製された太陽電池モジュールを構成する他の各部材については、特に限定されるものではない。また、フロントシートとバックシートの両方に本発明の太陽電池用保護材を使用してもよいが、一方に金属やガラス等の無機材料からなるシートや各種熱可塑性樹脂フィルム等の単層もしくは多層のシートを用いてもよい。該金属としては例えば、錫、アルミ、ステンレス等が挙げられ、熱可塑性樹脂フィルムとしては、ポリエステル、フッ素含有樹脂、ポリオレフィン等の単層もしくは多層のシートを挙げることができる。フロントシート及び/又はバックシートの表面には、封止材や他の部材との接着性を向上させるためにプライマー処理やコロナ処理等公知の表面処理を施すことができる。
 本発明の太陽電池用保護材を用いて作製された太陽電池モジュールを前述したフロントシート(本発明の太陽電池用保護材)/封止材/太陽電池素子/封止材/バックシートのような構成のものを例として説明する。太陽光受光側から順に、本発明の太陽電池用保護材、封止材、太陽電池素子、封止材、バックシートが積層されてなり、さらに、バックシートの下面にジャンクションボックス(太陽電池素子から発電した電気を外部へ取り出すための配線を接続する端子ボックス)が接着されてなる。太陽電池素子は、発電電流を外部へ電導するために配線により連結されている。配線は、バックシートに設けられた貫通孔を通じて外部へ取り出され、ジャンクションボックスに接続されている。
 太陽電池モジュールの製造方法としては、公知の製造方法が適用でき、特に限定されるものではないが、一般的には、本発明の太陽電池用保護材、封止材、太陽電池素子、封止材、バックシートの順に積層する工程と、それらを真空吸引し加熱圧着する工程を有する。前記真空吸引し加熱圧着する工程は、例えば、真空ラミネーターで、温度が好ましくは130~180℃、より好ましくは130~150℃、脱気時間が2~15分、プレス圧力が0.05~0.1MPa、プレス時間が好ましくは8~45分、より好ましくは10~40分で加熱加圧圧着することよりなる。
 また、バッチ式の製造設備やロール・ツー・ロール式の製造設備等も適用することができる。
 本発明の太陽電池用保護材を用いて作製された太陽電池モジュールは、適用される太陽電池のタイプとモジュール形状によらず、モバイル機器に代表される小型太陽電池、屋根や屋上に設置される大型太陽電池等屋内、屋外に関わらず各種用途に適用することができる。特に、電子デバイスの中でも、化合物系発電素子太陽電池モジュールやアモルファスシリコン系等のフレキシブル太陽電池モジュール用の太陽電池用保護材として好適に用いられる。
 以下に、本発明を実施例によりさらに具体的に説明するが、これらの実施例及び比較例により本発明は制限を受けるものではない。なお、種々の物性の測定および評価は次のようにして行った。また、下記(1)~(5)の測定及び評価は、太陽電池保護材の製造直後に行い、(6)の評価は太陽電池保護材の製造後、6ヶ月保管した後に行った。
(物性測定)
(1)端面封止状態の評価
 ガラス、封止材と、作製後40℃で4日間静置して養生した各太陽電池用保護材E-1~E-13とを、耐候性フィルムが暴露側になるように順に積層し、150℃×11分、圧力0.1MPaの条件で真空ラミネーションを行い、状態を観察し、下記の基準で評価した。
(A)封止材が耐候性フィルム幅端面まで到達し、極端な薄肉化が起きていない。
(B)封止材が耐候性フィルム幅端面まで到達しているが、一部薄肉化が起きている。
(C)封止材が耐候性フィルム幅端面まで回りこんでいない、もしくは到達している封止材の厚みが少なく、端部で薄肉化が起こっている。
(2)プレッシャークッカー(PC)試験
 作製後40℃で4日間静置して養生した太陽電池用保護材(E-1~E-13)を上記の方法で真空ラミネーションを行った後、トミー精工社製プレッシャークッカー試験LSK-500を用い、105℃、湿度100%、48時間の試験(PC48)条件でプレッシャークッカー試験を行った後、水蒸気透過率を測定した。
(3)デラミネーション時間
 作製後40℃で4日間静置して養生した太陽電池用保護材(E-1~E-13)を上記の方法で真空ラミネーションを行った後、トミー精工社製プレッシャークッカー試験LSK-500を用い、105℃、湿度100%の試験条件で、太陽電池用保護材の端面部においてデラミネーションの発生を目視で確認できるまでの試験時間を測定した。90時間にてデラミネーションが発生を確認できないものは90時間超(>90)とした。
(4)水蒸気透過率
 防湿フィルムの水蒸気透過率は、防湿フィルム作製後,一週間40℃養生後の時点における水蒸気透過率として、下記の手法で測定した。
 また、太陽電池用保護材(E-1~E-13)については、40℃で4日間養生後の測定値を初期水蒸気透過率とし、当該養生後に、ガラス、太陽電池用保護材(耐候性フィルムが暴露側)を積層し、150℃で30分の条件での熱処理を行い、上記(2)の条件でプレッシャークッカー試験を行った後の各太陽電池用保護材の測定値をプレッシャークッカー試験後の水蒸気透過率の値とした。
 具体的には、JIS Z 0222「防湿包装容器の透湿度試験方法」、JIS Z 0208「防湿包装材料の透湿度試験方法(カップ法)」の諸条件に順じ、次の手法で評価した。
 透湿面積10.0cm×10.0cm角の各太陽電池用保護材を2枚用い、吸湿剤として無水塩化カルシウム約20gを入れ四辺を封じた袋を作製し、その袋を温度40℃相対湿度90%の恒温恒湿装置に入れ、72時間以上の間隔でおよそ200日目まで質量測定し、4日目以降の経過時間と袋重量との回帰直線の傾きから水蒸気透過率g/m2/dayを算出した。防湿性の低下度は、[プレッシャークッカー試験(PC48)後の水蒸気透過率/初期水蒸気透過率]により算出した。
(5)封止材の密着性(初期)
 厚み3.2mmの15cm角のAGCファブリテック社製太陽電池専用カバーガラス上に、15cm角の封止材(EVA、ブリヂストン社製、厚み450μm)、10cm角の離型用フィルム(テフロン(登録商標)、三井デュポン社製、50μm)、太陽電池保護材をこの順に重ね、150℃、11分、圧力0.1MPaの条件で真空ラミネーションを行ない、サンプルを作成した。太陽電池保護材は、耐候性フィルムと反対側の面が離型用フィルムと接するように設置した。
 真空ラミネーション後、上記サンプルの中央部から幅10mm長さ150mmの短冊状の切り込みを入れ、離型フィルムの箇所をチャックで掴んで、引張り試験機を用いて90mm/min、引張り方向は90°で、太陽電池保護材と封止材との界面の層間強度(N/10mm)を測定した。
(6)封止材の密着性(6ヵ月後)
 太陽電池保護材を6ヶ月常温(20℃±5℃)で保管した後に、上記(5)と同様のサンプルを作製し、密着性を測定した。
(7)MFR
 樹脂層を構成する樹脂のMFRは、JIS K7210に準拠し、温度190℃、荷重2.16kgにて測定した。
<構成フィルム>
(耐候性フィルム)
 以下の耐候性フィルム(フッ素系樹脂フィルム)A-1~A-5を準備した。各フッ素系樹脂フィルムにはプラズマ放電処理による易接着処理を行った。
A-1 ETFEフィルム(旭硝子社製、商品名:アフレックス50 MW1250DCS、厚み50μm)を幅200mmに裁断したもの。
A-2 上記ETFEフィルムを幅230mmに裁断したもの。
A-3 PVFフィルム(デュポン社製、商品名:テフロン(登録商標)、厚み50μm)を幅200mmに裁断したもの。
A-4 上記ETFEフィルムを幅202mmに裁断したもの。
A-5 上記ETFEフィルムを幅180mmに裁断したもの。
(防湿フィルム)
 基材として、厚さ12μmの二軸延伸ポリエチレンナフタレートフィルム(帝人デュポン製、「Q51C12」)を用い、そのコロナ処理面に、下記のコート液を塗布乾燥して厚さ0.1μmのアンカーコート層を形成した。
 次いで、真空蒸着装置を使用して1.33×10-3Pa(1×10-5Torr)の真空下でSiOを加熱蒸発させ、アンカーコート層上に厚さ50nmのSiOx(x=1.5)薄膜を有する防湿フィルムを得て、幅180mmに裁断し使用した。作製した防湿フィルムB-1の水蒸気透過率は0.01g/m2/dayであった。
(コート液)
 日本合成(株)製「ゴーセノール」(ケン化度:97.0~98.8mol%、重合度:2400)のポリビニルアルコール樹脂220gをイオン交換水2810gに加え加温溶解した水溶液に、20℃で攪拌しながら35mol%塩酸645gを加えた。次いで、10℃でブチルアルデヒド3.6gを攪拌しながら添加し、5分後に、アセトアルデヒド143gを攪拌しながら滴下し、樹脂微粒子を析出させた。次いで、60℃で2時間保持した後、液を冷却し、炭酸水素ナトリウムで中和し、水洗、乾燥し、ポリビニルアセトアセタール樹脂粉末(アセタール化度75mol%)を得た。
 また、架橋剤としてイソシアネート樹脂(住友バイエルウレタン(株)製「スミジュールN-3200」)を用い、水酸基に対するイソシアネート基の当量比が1:2になるように混合した。
(樹脂層の形成方法)
 基材(耐候性フィルム、防湿フィルム又は背面フィルム)上に、以下の方法で樹脂層R-1~R-7を形成した。
R-1:熱可塑性樹脂としてエチレン-メチルアクリレート共重合体(日本ポリエチレン社製、商品名:レクスパール EB240H、MFR:7.0g/10分、エチレン-メチルアクリレート共重合の質量比80/20)を用い、紫外線吸収剤(BASF製 Tinuvin1600)を樹脂に対して1.5質量%、光安定剤(BASF製 Chimassorb2020FDL)を樹脂に対して0.5質量%混合してなる熱可塑性組成物を、創研社製のTダイ押し出し成型機を用いて170℃で溶融混練した。溶融混練した熱可塑性組成物を基材上に流し込み、冷却ロールで冷却し、厚み30μm、幅200mmの樹脂層を形成した。
R-2:樹脂層の幅を230mmに変更した以外は、上述の樹脂層R-1と同様にして、基材上にR-2を形成した。
R-3:樹脂層の厚みを10μmに変更した以外は、上述の樹脂層R-1と同様にして、基材上にR-3を形成した。
R-4:エチレン-メチルアクリレート共重合体を、エチレン-ブチルアクリレート共重合体(アルケマ社製、LOTRYL 35BA40、エチレン-ブチルアクリレート共重合の質量比65/35)と、エチレン-ブチルアクリレート共重合体(アルケマ社製、LOTRYL 30BA02、エチレン-ブチルアクリレート共重合の質量比70/30)とを3:2でブレンドしたもの(混合樹脂のMFR:12.1g/10分)に変更し、樹脂層の厚みを10μm、幅を180mmに変更した以外は、上述の樹脂層R-1と同様にして、基材上にR-4を形成した。
R-5:樹脂層の幅を200mmに変更した以外は、上述の樹脂層R-4と同様にして、基材上にR-5を形成した。
R-6:エチレン-メチルアクリレート共重合体を、低密度ポリエチレン(日本ポリエチレン社製、商品名:カーネル(登録商標) KC452T、MFR:6.5g/10分)に変更し、樹脂層の厚みを10μm、幅を180mmに変更した以外は、上述の樹脂層R-1と同様にして、基材上にR-6を形成した。
R-7:樹脂層の幅を180mmに変更した以外は、上述の樹脂層R-1と同様にして、基材上にR-7を形成した。
R-8:樹脂層の幅を190mmに変更した以外は、上述の樹脂層R-1と同様にして、基材上にR-8を形成した。
(感圧接着剤(粘着剤))
 温度計、撹拌機、還流冷却管、窒素ガス導入管を備えた反応装置を用い、アクリル酸ブチル90質量部、アクリル酸10質量部、酢酸エチル75質量部、トルエン75質量部の混合溶液に、アゾビスイソブチロニトリル0.3質量部を加え、窒素ガス雰囲気下、80℃で8時間重合した。反応終了後、トルエンにて固形分30質量%に調製し、質量平均分子量50万である樹脂を得た。得られた樹脂100質量部に対して、イソシアナート系架橋剤としてコロネートL(商品名:日本ポリウレタン工業社製、固形分75質量%)1質量部を添加して、粘着剤1を調製した。
(封止材)
 ブリヂストン社製、封止材 商品名:EVASKY S11(厚み500μm、融点69.6℃)を使用した。
(ガラス)
 AGCファブリテック社製太陽電池専用カバーガラス TCB09331(3.2mm厚)を使用し、実施例、比較例それぞれで使用する耐候性フィルムと同じサイズのガラスに切削加工し使用した。
実施例1
 耐候性フィルムA-1上に樹脂層R-1を形成し、さらにその上に防湿フィルムB-1のSiOX側の面を積層した。150℃×11分、圧力0.1MPaの条件で真空ラミネーションし、厚み92μmの太陽電池用保護材E-1を作製した。なお、各層の長さは略同一である。また、耐候性フィルムは、プラズマ処理側の面が樹脂層側となるように設置した。
 太陽電池用保護材E-1を用い、端面封止状態を評価し、その後プレッシャークッカー試験、デラミネーション試験を実施し、水蒸気透過率とデラミネーション発生時間を測定した。
実施例2
 耐候性フィルムとしてA-2を使用し、樹脂層としてR-2を使用した以外は実施例1と同様に厚み92μmの太陽電池用保護材E-2を作製した。その後、実施例1と同様に、端面封止状態、水蒸気透過率、デラミネーション発生時間を評価した。
実施例3
 耐候性フィルムとしてA-3を使用した以外は、実施例1と同様に厚み92μmの太陽電池用保護材E-3を作製した。その後、実施例1と同様に、端面封止状態、水蒸気透過率、デラミネーション発生時間を評価した。
実施例4
 耐候性フィルムとしてA-4を使用した以外は、実施例1と同様に厚み92μmの太陽電池用保護材E-4を作製した。その後、実施例1と同様に、端面封止状態、水蒸気透過率、デラミネーション発生時間を評価した。
実施例5
 防湿フィルムB-1のSiOX面上に樹脂層R-4を形成した。次いで、耐候性フィルムA-1上に樹脂層R-3を形成した。樹脂層R-3と樹脂層R-4とが対向するようにして、防湿フィルム及び耐候性フィルムを積層し、150℃×11分、圧力0.1MPaの条件で真空ラミネーションし、厚み82μmの太陽電池用保護材E-5を作製した。その後、実施例1と同様に、端面封止状態、水蒸気透過率、デラミネーション発生時間を評価した。
実施例6
 耐候性フィルム側の樹脂層としてR-5を使用し、防湿フィルム側の樹脂層としてR-4を使用した以外は、実施例5と同様に厚み82μmの太陽電池用保護材E-6を作製した。その後、実施例1と同様に、端面封止状態、水蒸気透過率、デラミネーション発生時間を評価した。
実施例7
 防湿フィルム側の樹脂層としてR-6を使用した以外は、実施例5と同様に厚み82μmの太陽電池用保護材E-7を作製した。その後、実施例1と同様に、端面封止状態、水蒸気透過率、デラミネーション発生時間を評価した。
実施例8
 耐候性フィルム側の樹脂層としてR-1を使用し、防湿フィルム側の樹脂層としてR-7を使用した以外は、実施例5と同様に厚み122μmの太陽電池用保護材E-8を作製した。その後、実施例1と同様に、端面封止状態、水蒸気透過率、デラミネーション発生時間を評価した。
実施例9
 樹脂層としてR-8を使用した以外は実施例1と同様に厚み92μmの太陽電池用保護材E-9を作製した。その後、実施例1と同様に、端面封止状態、水蒸気透過率、デラミネーション発生時間を評価した。
比較例1
 樹脂層をR-7に変更した以外は実施例1と同様に厚み92μmの太陽電池用保護材E-10を作製した。その後、実施例1と同様に、端面封止状態、水蒸気透過率、デラミネーション発生時間を評価した。
比較例2
 厚み38μmのシリコーン離型PETフィルム(中本パックス社製、NS-38+A、融点262℃、幅180mm)に粘着剤1を厚み20μmとなるよう塗布し、乾燥して粘着剤層を形成した。形成した粘着面に防湿フィルムB-1のSiOX面を貼り合せ、その後シリコーン離型PETフィルムを剥離し、もう一方の粘着剤層面に耐候性フィルムA-1を貼合し40℃で4日間養生し厚み82μmの太陽電池用保護材E-11を作製した。その後、実施例1と同様に、端面封止状態、水蒸気透過率、デラミネーション発生時間を評価した。
比較例3
 耐候性フィルムをA-5に変更した以外は比較例1と同様に厚み92μmの太陽電池用保護材E-12を作製した。その後、実施例1と同様に、端面封止状態、水蒸気透過率、デラミネーション発生時間を評価した。
比較例4
 耐候性フィルムをA-5に変更した以外は比較例2と同様に厚み82μmの太陽電池用保護材E-13を作製した。その後、実施例1と同様に、端面封止状態、水蒸気透過率、デラミネーション発生時間を評価した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、本発明の範囲内にある実施例1~9はいずれも防湿性及びデラミネーションの発生防止に優れるとともに、密着強度も良好なものであった。その一方、比較例1~4のものは、封止材の密着強度に劣るものであった。なお、実施例5~8の太陽電池保護材(保護材E-5~E-8)は、樹脂層が2層積層されたものであるが、樹脂層の厚みが均一であり、真空ラミネーション後の外観が良好なものであった。
実施例10
 実施例1で作製した太陽電池用保護材E-1の防湿フィルム側の面に、粘着剤1を厚み5μmとなるように塗布し、乾燥して粘着剤1からなる接着層を形成した。形成した層の粘着面に、幅190mmの封止材D-1を積層し、40℃で4日間養生し、厚み597μmの封止材一体型保護材F-1を作製した。
 得られた封止材一体型保護材F-1は、太陽電池用保護材E-1と封止材層との間の接着性が良好であった。また、封止材一体型保護材F-1について、PCデラミネーション時間、端面封止状態の評価を行ったところ、実施例1よりも作業性が簡易的になったのにもかかわらず、実施例1と同様の評価が得られた。
(防湿フィルムB-2~B-4)
 防湿フィルムB-1の基材を、厚さ125μmの二軸延伸ポリエチレンナフタレートフィルム(三菱樹脂社製、T100)に変更した以外は、防湿フィルムB-1と同様に、防湿フィルムB-2を作製した。作製した防湿フィルムB-2の水蒸気透過率は0.01g/m2/dayであった。
 防湿フィルムB-1の基材を、厚さ100μmの二軸延伸ポリエチレンナフタレートフィルム(三菱樹脂社製、T100)に変更した以外は、防湿フィルムB-1と同様に、防湿フィルムB-3を作製した。作製した防湿フィルムB-3の水蒸気透過率は0.01g/m2/dayであった。
 防湿フィルムB-1の基材を、厚さ50μmの二軸延伸ポリエチレンナフタレートフィルム(三菱樹脂社製、T100)に変更した以外は、防湿フィルムB-1と同様に、防湿フィルムB-4を作製した。作製した防湿フィルムB-4の水蒸気透過率は0.01g/m2/dayであった。
(8)カール評価
 太陽電池用保護材E-14~E-16を、150℃に保持したオーブン内に平置きし、5分間静置させた。その後、保護材の四隅の高さをマイクロノギスによって測定し、四隅の測定値の平均値をカール値とした。標線は保護材を耐候性フィルムが上向きになるように水平の台の上に置いた時、台と保護材とが接する面とした。
(9)部分放電圧
 太陽電池用保護材E-1及びE-14~E-16の部分放電圧の測定は、IEC60664-1:2007 Clause6.1.3.5に準拠して実施した。なお、測定は、環境が温度23±5℃、相対湿度40±10%に制御されている測定室にて実施した。
実施例11
 防湿フィルムとしてB-2を使用した以外は実施例1と同様に厚み205μmの太陽電池用保護材E-14を作製した。
実施例12
 防湿フィルムとしてB-3を使用した以外は実施例1と同様に厚み180μmの太陽電池用保護材E-15を作製した。
実施例13
 防湿フィルムとしてB-4を使用した以外は実施例1と同様に厚み130μmの太陽電池用保護材E-16を作製した。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例11~13の太陽電池用保護材は、カール抑制効果及び耐電圧に優れるものであった。なお、実施例11~13の太陽電池用保護材について、実施例1と同様に、端面封止状態、水蒸気透過率、デラミネーション発生時間及び密着性を評価したところ、実施例1と同様の結果が得られた。
実施例14
 背面フィルム(二軸延伸ポリエステルフィルム、厚み125μm、幅190mm、弾性率4.0GPa)上に、接着層として上述のR-7を形成した。次いで、耐候性フィルムA-1上に樹脂層R-1を形成した。次いで、背面フィルム-接着層-防湿フィルムB-1-樹脂層-耐候性フィルムA-1の順となるように積層し、150℃×11分、圧力0.1MPaの条件で真空ラミネーションし、厚み247μmの太陽電池用保護材E-17を作製した。なお、保護材を構成する各層の長さは略同一である。また、防湿フィルムは、SiOX面側の面が耐候性フィルム側を向くように配置した。
実施例15
 背面フィルムを、厚み75μm、幅190mm、弾性率4.0GPaの二軸延伸ポリエステルフィルムに変更した以外は、実施例14と同様に厚み197μmの太陽電池用保護材E-18を作製した。
実施例16
 背面フィルムを、厚み50μm、幅190mm、弾性率4.0GPaの二軸延伸ポリエステルフィルムに変更した以外は、実施例14と同様に厚み172μmの太陽電池用保護材E-19を作製した。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例14~16の太陽電池用保護材は、カール抑制効果に優れるものであった。なお、実施例14~16の太陽電池用保護材について、実施例1と同様に、端面封止状態、水蒸気透過率、デラミネーション発生時間及び密着性を評価したところ、実施例1と同様の結果が得られた。
(カバーシートK-1~K-4)
 カバーシートとして、以下のものを準備した。
 K-1:発泡ポリエチレンシート(ポーレン化学産業社製、ポーレンシート、厚み700μm、幅250mm)
 K-2:ポリプロピレンフィルム(コクゴ社製、ポリプロピレンシート(商品コード:07-175-02)、厚み500μm、幅250mm)
 K-3:透明ポリエステルフィルム(三菱樹脂社製、ダイヤホイル T100、厚み380μm、幅250mm)
 K-4:ポリエチレンフィルム(TGK社製、商品コード:125-18-18-01、厚み30μm、幅250mm)
(10)撓み長さ
 図5に示すように、カバーシート及び耐候性フィルムA-1を、幅20mm、長さ120mmの短冊状にカットし、カバーシート及び耐候性フィルムの測定サンプルSを作製した。次いで、サンプルSを高さ100mm以上の台71に、サンプルSのうち幅20mm×長さ100mmの部分が台から突出するようにして設置し、サンプルSの台上の部分に底面が20mm×20mmで高さ10mmの鉄板を載せ、その上に重量5kgの重り72を乗せた。サンプルSの台から突出する部分の端部が、台71から垂れ下がる長さ「x」(単位:mm)を測定し、この値を撓み長さとした。
 なお、測定はサンプルを固定して5分経過後に行い、測定時の温度条件は23℃とした。結果を表4に示す。
(11)耐荷重凹み
 図6に示すように、カバーシート及び耐候性フィルムA-1を、100mm四方にカットし、カバーシート及び耐候性フィルムの測定サンプルSを作製した。次いで、サンプルSを厚さ20mmのガラス板81上に設置し、サンプルの中央部に直径5mmで重さ0.5gの鋼球82を載せ、さらに鋼球82上から2kgの荷重をかけた。23℃で24時間経過後のサンプルSの凹みのうち、一番深い凹み箇所の深さ「d」(単位:μm)を測定し、サンプルSの厚み「t」(単位:μm)との比「d/t」を耐荷重凹みとした。結果を表4に示す。
(12)突出部の耐折れ曲がり性
 実施例17~19及び参考例1で得られたカバーシート付きロール状物について、カバーシートの上から、突出箇所に対応する箇所に5kgの荷重を24時間かけ、耐候性フィルムの状態を目視で観察し、以下の基準で評価した。結果を表4に示す。
(A):耐候性フィルムの防湿フィルムよりも突出している部分が折れ曲がっていないもの
(C):耐候性フィルムの防湿フィルムよりも突出している部分が折れ曲がっているもの
(13)カバーシートの端部の固定性(ハンドリング性)
 実施例17~19及び参考例1で得られたカバーシート付きロール状物を以下の基準で評価した。結果を表4に示す。
(A):カバーシートのテープでの固定が3日以上維持できたもの
(B):カバーシートのテープでの固定が3日間維持できなかったもの
実施例17
 実施例1で作製した太陽電池用保護材E-1を外径172.4mmの芯に200m巻き取りロール状物を得た。次いで、ロール状物の表面全部をカバーシートK-1で覆い、端部をテープ(ダイヤテックス社製パイオランテープを幅50mm×長さ100mmにカットしたもの)1枚で固定し、実施例17のカバーシート付きロール状物を得た。
実施例18
 カバーシートとしてK-2を使用した以外は実施例17と同様に、実施例18のカバーシート付きロール状物を得た。
実施例19
 カバーシートとしてK-3を使用した以外は実施例17と同様に、実施例19のカバーシート付きロール状物を得た。
参考例1
 カバーシートとしてK-4を使用した以外は実施例17と同様に、参考例1のカバーシート付きロール状物を得た。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例17~19のカバーシート付きロール状物は、耐折れ曲がり及びハンドリング性に優れるものであった。
 本発明によれば、長期保管の後に封止作業を行った場合であっても、長期に渡って、高温高湿下の使用においても防湿性の低下やデラミネーションの発生がなく、柔軟性と防湿性に優れ、太陽電池の性能低下を防止し、かつ太陽電池の耐久性の向上に有効な高防湿太陽電池用保護材を提供することができる。本発明の太陽電池用保護材は、高熱環境、すなわち、熱ラミネート条件での熱処理を経ても、防湿性及び層間強度が低下しない柔軟性と防湿性に優れるものである。
1:耐候性フィルム
21、21a、21b:樹脂層
22:接着層
3:防湿フィルム
4:背面フィルム
10:太陽電池用保護材
11:突出部
20:封止材
30:太陽電池

Claims (14)

  1.  少なくとも、耐候性フィルムと、樹脂層と、基材の少なくとも一方の面に無機層を有し水蒸気透過率が0.1g/m2/day未満の防湿フィルムとを積層してなる太陽電池用保護材であって、前記耐候性フィルムの幅WA、前記樹脂層の幅WBのうち最も耐候性フィルム側の幅WBU、及び前記防湿フィルムの幅WCが、WA≧WBU>WCの関係を満たす、太陽電池用保護材。
  2.  前記樹脂層が熱可塑性樹脂を含有してなる、請求項1に記載の太陽電池用保護材。
  3.  前記熱可塑性樹脂としてエチレン-アルキル(メタ)アクリレート共重合体を含有してなる、請求項2に記載の太陽電池用保護材。
  4.  幅WBUと幅WAとの比(WBU/WA)が0.75~1.0である、請求項1~3のいずれかに記載の太陽電池用保護材。
  5.  前記樹脂層が2層以上から形成されてなり、耐候性フィルム側の樹脂層から防湿フィルム側の樹脂層に向かうにつれて樹脂層の幅を狭くする、請求項1~4のいずれかに記載の太陽電池用保護材。
  6.  幅WCと幅WAとの比(WC/WA)が、0.7~0.98である、請求項1~5のいずれかに記載の太陽電池用保護材。
  7.  前記基材の厚みが25~250μmである、請求項1~6のいずれかに記載の太陽電池用保護材。
  8.  前記防湿フィルムを、前記無機層側の面を前記耐候性フィルム側にして積層してなる、請求項1~7のいずれかに記載の太陽電池用保護材。
  9.  前記防湿フィルム側にさらに厚みが60μm以上である背面フィルムを有してなり、該背面フィルムの幅WDは、前記幅WAよりも小さく、前記幅WCよりも大きい、請求項1~8のいずれかに記載の太陽電池用保護材。
  10.  請求項1~9のいずれかに記載の太陽電池用保護材の前記耐候性フィルムとは反対側に、さらに封止材層が積層されてなる、封止材一体型保護材。
  11.  請求項1~9のいずれかに記載の太陽電池用保護材又は請求項10に記載の封止材一体型保護材が巻き取られてなる、ロール状物。
  12.  請求項1~9のいずれかに記載の太陽電池用保護材又は請求項10に記載の封止材一体型保護材を用いて作製された太陽電池モジュール。
  13.  請求項11に記載のロール状物の表面のうち、耐候性フィルムが突出する箇所に対応する箇所の少なくとも一部を、以下の条件により測定される撓み長さが70mm以下であり、かつ耐荷重凹みが0.1以下であるカバーシートで覆ってなる、カバーシート付きロール状物。
    [撓み長さ]
    (1)幅20mm、長さ120mmのサンプルを採取する。
    (2)サンプルを台上に、サンプルのうち長さ100mmの部分が台から突出するようにして配置し、サンプルの台上の部分に、重さ5kgの重りを乗せてサンプルを固定する。
    (3)サンプルの台から突出する部分の端部が、台から垂れ下がる長さ「x」(単位:mm)を測定し、この値を撓み長さとする。
    [耐荷重凹み]
    (1)100mm四方のサンプルを採取する。
    (2)サンプルを厚さ20mmのガラス板上に設置し、サンプルの中央部に直径5mmで重さ0.5gの鋼球を載せ、さらに鋼球上から2kgの荷重をかける。
    (3)サンプルの凹み「d」(単位:μm)を測定し、サンプルの厚み「t」(単位:μm)との比「d/t」を耐荷重凹みとする。
  14.  以下(a’)及び/又は(b’)の条件を満たす、請求項13に記載のカバーシート付きロール状物。
    (a’)[カバーシートの撓み長さ]/[耐候性フィルムの撓み長さ]が2以下
    (b’)[カバーシートの耐荷重凹み]/[耐候性フィルムの耐荷重凹み]が2以下
PCT/JP2014/067286 2013-06-28 2014-06-27 太陽電池用保護材 WO2014208759A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015524150A JPWO2014208759A1 (ja) 2013-06-28 2014-06-27 太陽電池用保護材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013137576 2013-06-28
JP2013-137576 2013-06-28

Publications (1)

Publication Number Publication Date
WO2014208759A1 true WO2014208759A1 (ja) 2014-12-31

Family

ID=52142081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067286 WO2014208759A1 (ja) 2013-06-28 2014-06-27 太陽電池用保護材

Country Status (2)

Country Link
JP (1) JPWO2014208759A1 (ja)
WO (1) WO2014208759A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155352A (ja) * 2015-02-26 2016-09-01 凸版印刷株式会社 ガスバリア性フィルムの製造方法及びガスバリア性フィルム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080289682A1 (en) * 2007-02-27 2008-11-27 Adriani Paul M Structures for Low Cost, Reliable Solar Modules
JP2011254073A (ja) * 2010-05-06 2011-12-15 Mitsubishi Chemicals Corp ロールスクリーンシステム
JP2012204458A (ja) * 2011-03-24 2012-10-22 Fujifilm Corp 太陽電池モジュールの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080289682A1 (en) * 2007-02-27 2008-11-27 Adriani Paul M Structures for Low Cost, Reliable Solar Modules
JP2011254073A (ja) * 2010-05-06 2011-12-15 Mitsubishi Chemicals Corp ロールスクリーンシステム
JP2012204458A (ja) * 2011-03-24 2012-10-22 Fujifilm Corp 太陽電池モジュールの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155352A (ja) * 2015-02-26 2016-09-01 凸版印刷株式会社 ガスバリア性フィルムの製造方法及びガスバリア性フィルム
EP3263337A4 (en) * 2015-02-26 2018-11-07 Toppan Printing Co., Ltd. Method for producing gas barrier film, and gas barrier film
US10961622B2 (en) 2015-02-26 2021-03-30 Toppan Printing Co., Ltd. Gas barrier film and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2014208759A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
EP2800148B1 (en) Protective sheet
US9525091B2 (en) Protective sheet for solar cell, manufacturing method thereof, and solar cell module
WO2012132922A1 (ja) 太陽電池用保護シートおよびその製造方法、ならびに太陽電池モジュール
WO2013118570A1 (ja) 太陽電池用保護シートおよび太陽電池モジュール
WO2012105512A1 (ja) 太陽電池用表面保護材及びそれを用いて作製された太陽電池モジュール
WO2013100108A1 (ja) 太陽電池用保護材
WO2013121838A1 (ja) 太陽電池用保護シートおよびその製造方法、ならびに太陽電池モジュール
JP2014041900A (ja) 太陽電池用保護材及び太陽電池
WO2014208759A1 (ja) 太陽電池用保護材
WO2014208758A1 (ja) 太陽電池用保護材
JP2011204880A (ja) 太陽電池モジュール用保護シート及び太陽電池モジュール
JP5474171B1 (ja) 太陽電池用保護材
JP6442879B2 (ja) 積層防湿フィルム
JP2012209375A (ja) 太陽電池用封止材・表面保護材積層体
JP2013077818A (ja) 太陽電池用保護材
JP5449312B2 (ja) 太陽電池用保護材
JP5474116B2 (ja) 太陽電池用保護シート
JP2012158154A (ja) 透明積層防湿フィルム
JP2012176608A (ja) 太陽電池用表面保護材及びそれを用いて作製された太陽電池モジュール
JP2013084929A (ja) 太陽電池用保護材
JP2013123036A (ja) 太陽電池用保護材
JP2012160550A (ja) 太陽電池用表面保護材及びそれを用いて作製された太陽電池モジュール
JP2012176609A (ja) 太陽電池用表面保護材及びそれを用いて作製された太陽電池モジュール
JP2012209371A (ja) 太陽電池用表面保護シート
JP2013214555A (ja) 太陽電池用保護材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524150

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818564

Country of ref document: EP

Kind code of ref document: A1