WO2014208199A1 - 超音波観測システム、超音波観測システムの作動方法 - Google Patents

超音波観測システム、超音波観測システムの作動方法 Download PDF

Info

Publication number
WO2014208199A1
WO2014208199A1 PCT/JP2014/062101 JP2014062101W WO2014208199A1 WO 2014208199 A1 WO2014208199 A1 WO 2014208199A1 JP 2014062101 W JP2014062101 W JP 2014062101W WO 2014208199 A1 WO2014208199 A1 WO 2014208199A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
pressurization
subject
unit
ultrasonic
Prior art date
Application number
PCT/JP2014/062101
Other languages
English (en)
French (fr)
Inventor
三宅 達也
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to EP14818059.9A priority Critical patent/EP2865340A4/en
Priority to JP2014538558A priority patent/JP5639321B1/ja
Priority to CN201480001968.4A priority patent/CN104507395B/zh
Publication of WO2014208199A1 publication Critical patent/WO2014208199A1/ja
Priority to US14/591,103 priority patent/US9345452B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0053Detecting, measuring or recording by applying mechanical forces or stimuli by applying pressure, e.g. compression, indentation, palpation, grasping, gauging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/33Heart-related electrical modalities, e.g. electrocardiography [ECG] specially adapted for cooperation with other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/02Measuring pulse or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5284Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving retrospective matching to a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0051Detecting, measuring or recording by applying mechanical forces or stimuli by applying vibrations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • A61B8/5276Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts due to motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/543Control of the diagnostic device involving acquisition triggered by a physiological signal

Definitions

  • the present invention relates to an ultrasonic observation system that generates an image based on an ultrasonic signal obtained by transmitting and receiving ultrasonic waves, and an operation method of the ultrasonic observation system.
  • An ultrasonic diagnostic apparatus having an ultrasonic endoscope that has an elastography function for displaying the elasticity of a tissue has been put into practical use.
  • Such an ultrasonic diagnostic apparatus generates an elastic image (elastography mode image) representing the hardness or softness of a living tissue from the amount of strain of the living tissue caused by a compression force.
  • the elastic modulus for generating an elastic image is obtained from the amount of displacement of the living tissue caused by the surgeon pressing the probe against the living body or the amount of displacement of the living tissue caused by pulsation (pulsation).
  • elastic image display with an ultrasonic endoscope may be based on displacement due to pulsation (pulsation), but displacement due to pulsation (pulsation) alone is not enough to provide a stable elastic image. You may not get.
  • a stable elastic image may not be acquired without considering the timing of pulsation (pulsation).
  • Japanese Patent Application Laid-Open No. 2010-82337 describes a technique for compressing a living tissue by putting a fluid into and out of a balloon in an ultrasonic observation apparatus that displays the elasticity of the living tissue.
  • a pressure sensor for measuring the pressure inside the balloon is provided to display the transition of pressure and the degree of expansion and contraction of the balloon on the monitor so that the examiner can visually grasp.
  • the publication discloses that a control adjustment unit that supplements and removes fluid is used in an appropriate manner when the fluid is not properly compressed by the examiner's manual lever operation. An embodiment is described that supports performing a compression operation.
  • Japanese Patent Application Laid-Open No. 2006-230618 discloses an ultrasonic observation apparatus for measuring properties such as elasticity of a tissue in order to enable stable measurement even for a periodically deformed tissue such as a heart. Describes a technique for changing the gain of an ultrasonic signal in synchronization with the heartbeat period measured by an electrocardiograph or the like, and suppressing fluctuations in the reception level due to tissue deformation. . Further, as another example, this publication describes a technique for performing elastic measurement by periodically deforming a stationary organ that is not actively deformed by a vibrating device.
  • International Publication No. WO2011 / 034005 extracts and displays an image of a tissue in an appropriate compression state based on displacement data, elasticity data, an electrocardiogram waveform, etc., in an ultrasonic observation apparatus that displays the elasticity of the tissue.
  • the technology is described.
  • the motion of an object that is actively displaced such as the heart, may be used for elasticity measurement, but it is considered that it may be difficult to obtain a stable elasticity image due to insufficient displacement alone.
  • the active motion of the subject may be superimposed depending on the timing, and it is difficult to obtain a stable elastic image. Cases arise. Therefore, it is required to obtain a more stable elastic image.
  • the present invention has been made in view of the above circumstances, and provides an ultrasonic observation system and an operation method of the ultrasonic observation system that can obtain a more stable elastic image in consideration of the displacement of the subject. It is an object.
  • An ultrasonic observation system transmits an ultrasonic wave to a subject, receives the ultrasonic wave reflected by the subject, and based on an ultrasonic signal obtained from the received ultrasonic wave.
  • An ultrasonic observation system that transmits the ultrasonic wave to the subject, receives the ultrasonic wave reflected by the subject, and generates the ultrasonic signal from the received ultrasonic wave
  • An ultrasonic transducer, a pressurizing unit that applies a pressing force to the subject to generate a pressurizing displacement, and an image for the subject based on the ultrasonic signal to generate an elastic image of the subject.
  • a displacement measuring unit that measures a displacement amount; an elastic modulus calculating unit that calculates an elastic modulus of the subject based on the image displacement amount; and a waveform of a signal based on the displacement of the subject, Signal for analyzing the periodic movement of Based on the shape analysis unit and the analysis result, pressurization is performed on the pressurization unit to reduce the influence of the motion of the subject on the calculation result of the elastic modulus according to the periodic motion of the subject.
  • a pressurization control unit that controls to perform the operation.
  • An operation method of an ultrasonic observation system includes transmitting an ultrasonic wave to a subject, receiving the ultrasonic wave reflected by the subject, and obtaining an ultrasonic signal obtained from the received ultrasonic wave
  • An ultrasonic observation system operating method for generating an image based on an ultrasonic transducer wherein the ultrasonic transducer transmits the ultrasonic wave to the subject, receives the ultrasonic wave reflected by the subject, and receives the ultrasonic wave
  • the ultrasonic signal is generated from the ultrasonic wave
  • the pressurizing unit applies a pressing force to the subject to generate a pressurizing displacement
  • the displacement measuring unit generates an elastic image of the subject.
  • an elastic modulus calculation unit calculating an elastic modulus of the subject based on the image displacement amount
  • a signal waveform analysis unit Analyzing the waveform of the signal based on the displacement of the specimen, Analyzing the periodic movement of the subject, and the pressurization control unit determines the elasticity of the movement of the subject to the pressurization unit according to the periodic movement of the subject based on the analysis result. Control is performed to perform pressurization to reduce the influence on the calculation result.
  • FIG. 1 is a block diagram showing a configuration of an ultrasound observation system in Embodiment 1 of the present invention.
  • the diagram which shows the example of the time change of the displacement amount when automatic pressurization is performed in synchronization with the spontaneous displacement of the subject.
  • the diagram which shows the example of the electrocardiogram signal detected by the electrocardiograph in the said Embodiment 1.
  • FIG. The diagram which shows the example which generates a trigger signal at the timing based on the detected electrocardiogram signal in the said Embodiment 1, and performs automatic pressurization synchronizing with the spontaneous displacement of a subject.
  • FIG. 3 is a diagram showing an example in which a trigger signal is generated at a timing based on a detected PW signal and automatic pressurization is performed in synchronization with the spontaneous displacement of the subject in the first embodiment.
  • 5 is a flowchart showing elasticity image generation processing in the first embodiment. 5 is a flowchart showing a process of automatic pressurization control in the first embodiment.
  • the block diagram which shows the structure of the ultrasonic observation system in Embodiment 2 of this invention.
  • the block diagram which shows the structure of the ultrasonic observation system in Embodiment 3 of this invention.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic observation system 1.
  • FIG. 1 shows a configuration of an ultrasonic observation system 1 to which an electrocardiogram signal from an electrocardiograph 50 is input, for example.
  • the electrocardiograph 50 is not essential, and a pulse wave Doppler signal (hereinafter referred to as a PW signal) from the receiving circuit 25 is used in place of the electrocardiogram signal from the electrocardiograph 50 as described below. Is also possible.
  • the ultrasonic observation system 1 is a system that transmits an ultrasonic wave to a subject, receives an ultrasonic wave reflected by the subject, and generates an image based on an ultrasonic signal obtained from the received ultrasonic wave.
  • the ultrasonic endoscope 10, the ultrasonic observation device 20, and the monitor 40 are provided.
  • the ultrasonic endoscope 10 is a probe including an ultrasonic transducer 11 and a first automatic pressurizing mechanism 12.
  • the intracorporeal ultrasonic endoscope 10 is used, but the ultrasonic observation system 1 may be configured using an extracorporeal ultrasonic probe.
  • the ultrasonic transducer 11 transmits ultrasonic waves to a subject, receives ultrasonic waves reflected by the subject, and generates ultrasonic signals from the received ultrasonic waves.
  • a large number of vibration elements Are arranged as a transducer array.
  • the first automatic pressurizing mechanism 12 is a pressurizing unit that generates a pressurizing displacement by applying a pressing force to the subject at a timing based on a trigger signal from a pressurizing mechanism control circuit 32 described later.
  • the first automatic pressurizing mechanism 12 allows a fluid (preferably a liquid to be considered so as not to attenuate ultrasonic waves transmitted and received by the ultrasonic transducer 11) to enter and exit the balloon, and then subject to the subject.
  • a fluid preferably a liquid to be considered so as not to attenuate ultrasonic waves transmitted and received by the ultrasonic transducer 11
  • a configuration may be adopted in which the balloon surface serving as the pressurizing surface in contact with the subject is vibrated, or a configuration in which the pressurizing surface in contact with the subject is vibrated using a driving source such as a motor may be employed. Also good.
  • the ultrasonic observation apparatus 20 includes a transmission circuit 21, a transmission / reception switching circuit 24, a reception circuit 25, a phasing addition circuit 26, a signal processing circuit 27, an elastic image generation displacement measurement circuit 28, and an elastic modulus calculation circuit. 29, a signal waveform analysis circuit 31, and a pressurization mechanism control circuit 32.
  • the transmission circuit 21 includes a transmission waveform generation circuit 22 and a transmission delay circuit 23.
  • the transmission waveform generation circuit 22 generates and outputs a signal waveform for driving each vibration element constituting the ultrasonic transducer 11.
  • the transmission delay circuit 23 adjusts the drive timing of each vibration element constituting the ultrasonic transducer 11. Thereby, the focus and direction of the ultrasonic beam transmitted from the ultrasonic transducer 11 are controlled, and the ultrasonic wave can be converged to a desired position (depth).
  • the transmission / reception switching circuit 24 includes, for example, a multiplexer that sequentially selects a plurality of vibration elements for performing transmission / reception of ultrasonic waves, and transmits a drive signal from the transmission circuit 21 to the ultrasonic transducer 11 and ultrasonic vibration.
  • An ultrasonic signal (echo signal) from the child 11 is transmitted to the receiving circuit 25.
  • the receiving circuit 25 receives the ultrasonic signal from the transmission / reception switching circuit 24 and performs processing such as amplification and conversion into a digital signal.
  • the phasing and adding circuit 26 adds the ultrasonic signals after delaying the ultrasonic signals to match the phases.
  • the signal processing circuit 27 performs coordinate conversion and interpolation processing on the ultrasonic signal from the phasing addition circuit 26 to create an ultrasonic image as a display image. Further, in the elastic image observation mode, the signal processing circuit 27 creates an elastic image from the elastic modulus calculation circuit 29 as a display image, or creates a display image by superimposing the elastic image on the ultrasonic image. To do.
  • the elastic image generation displacement measurement circuit 28 is a displacement measurement unit that measures the image displacement amount of the subject (the displacement amount for generating the elastic image of the subject) based on the ultrasonic signal.
  • the elastic modulus calculation circuit 29 is an elastic modulus calculation unit that calculates the elastic modulus of the subject based on the image displacement amount measured by the elastic image generation displacement measurement circuit 28. Since the elastic modulus calculation circuit 29 calculates the elastic modulus for each coordinate of the subject, the calculation result is an elastic image in which the elastic modulus is distributed on two-dimensional coordinates.
  • the signal waveform analysis circuit 31 analyzes a signal (for example, an electrocardiogram signal from the electrocardiograph 50 or a PW signal from the reception circuit 25) based on the displacement of the subject to detect a periodic movement of the subject. It is a signal waveform analysis part to analyze. Specifically, the signal waveform analysis circuit 31 may obtain an analysis result including the maximum point of displacement of the subject based on the spontaneous displacement and the displacement period (that is, perform further analysis and acquire other information as the analysis result). ) To get.
  • a signal for example, an electrocardiogram signal from the electrocardiograph 50 or a PW signal from the reception circuit 25
  • the signal waveform analysis circuit 31 may obtain an analysis result including the maximum point of displacement of the subject based on the spontaneous displacement and the displacement period (that is, perform further analysis and acquire other information as the analysis result). ) To get.
  • the pressurization mechanism control circuit 32 causes the first automatic pressurization mechanism 12 to affect the calculation result of the elastic modulus of the movement of the subject according to the periodic movement of the subject based on the analysis result of the signal waveform analysis circuit 31. It is the pressurization control part which controls so that the pressurization for reducing may be performed.
  • the pressurizing mechanism control circuit 32 synchronizes with the acquired displacement period based on the analysis result of the signal waveform analysis circuit 31 (for example, the maximum point of displacement (preferably 1 Control is performed to cause the first automatic pressurizing mechanism 12 to perform pressurization (at the same timing as the maximum point among the maximum points in the cycle).
  • the pressurization mechanism control circuit 32 performs the first automatic pressurization based on the timing at which the displacement amount based on the spontaneous displacement of the subject is equal to or greater than a preset threshold Th (see FIGS. 4 and 5).
  • a trigger signal tr1 (see FIG. 4, FIG. 5, etc.) is generated so that the mechanism 12 performs pressurization at the same timing as the maximum point of displacement, and the generated trigger signal tr1 is output to the first automatic pressurization mechanism 12.
  • the first automatic pressurizing mechanism 12 is pressurized at the same timing as the maximum point of displacement of the subject, but the pressure is applied at a timing slightly deviated from the maximum point. Since a certain degree of effect can be obtained even if it is applied, it is not limited to pressurizing at the same timing.
  • the monitor 40 displays the display image from the signal processing circuit 27.
  • FIG. 2 is a diagram showing an example of a change over time in the amount of displacement when automatic pressurization is performed in synchronization with the spontaneous displacement of the subject.
  • the solid line shows the time change of the displacement amount due to the spontaneous displacement of the subject (for example, the displacement amount due to only the pulsation or pulsation of the subject).
  • the dotted line indicates the displacement amount of the subject when the pressure displacement amount due to the automatic pressurization is added to the spontaneous displacement amount of the subject indicated by the solid line (the displacement amount indicated by the dotted line therefore indicates the spontaneous displacement amount and the pressure displacement amount). (Including both quantity and time). As described above, the pressurization from the first automatic pressurization mechanism 12 is performed at the same timing as the maximum point of the spontaneous displacement of the subject.
  • FIG. 3 is a diagram showing an example of an electrocardiogram signal detected by the electrocardiograph 50.
  • the waveform obtained as an electrocardiographic signal includes a P wave that is considered to be a waveform reflecting electrical excitation of the atrium, a QRS wave that is considered to be a waveform reflecting electrical excitation of the ventricle, and the like.
  • the present invention is not limited to these, and other examples include T waves and U waves.
  • the largest amplitude is the R wave of the Q wave, R wave, and S wave constituting the QRS wave
  • the wave front of the R wave is the maximum point of the spontaneous displacement of the subject. (Especially the maximum point in one cycle). Accordingly, since it is considered reasonable to use the R wave as the displacement for generating the elastic image, in this embodiment, the R wave (however, it is not limited to the R wave).
  • the pressure displacement is applied synchronously.
  • FIG. 4 is a diagram showing an example in which the trigger signal tr1 is generated at a timing based on the detected electrocardiogram signal and automatic pressurization is performed in synchronization with the spontaneous displacement of the subject.
  • the timing t1 at which the P wave preceding the R wave is equal to or greater than a predetermined threshold Th is measured. If the displacement period has already been acquired, the timing t3 at which the R wave is generated can be estimated from the timing t1. Accordingly, the pressurization mechanism control circuit 32 generates the trigger signal tr1 so that the pressurization is performed from the first automatic pressurization mechanism 12 at the estimated timing t3, and the first automatic pressurization mechanism 12 is generated at the timing t2. Apply to.
  • the generation timing of the R wave may be estimated based on the T wave instead of the P wave, and the period of the R wave is stable.
  • the next R-wave generation timing may be estimated based on the previous R-wave generation timing, or other estimation methods may be used.
  • FIG. 5 is a diagram showing an example in which a trigger signal is generated at a timing based on the detected PW signal, and automatic pressurization is performed in synchronization with the spontaneous displacement of the subject.
  • the spontaneous displacement of the subject is not limited to being detected by an electrocardiographic signal from the electrocardiograph 50, and can be detected by, for example, a PW signal from the receiving circuit 25.
  • a PW signal for example, a signal waveform as shown in FIG. 5 is obtained.
  • the timing t1 at which the signal value of the PW signal becomes equal to or greater than the predetermined threshold Th is measured (however, the threshold Th is a value corresponding to the PW signal, Generally, it is different from the value of the threshold Th used in the above).
  • the timing t3 at which the subject's spontaneous displacement next occurs (that is, the timing at which the signal value of the PW signal becomes equal to or greater than the predetermined threshold Th) is estimated from this timing t1.
  • the pressurization mechanism control circuit 32 generates the trigger signal tr1 and generates the first automatic pressurization at the timing t2 so that the pressurization is performed from the first automatic pressurization mechanism 12 at the estimated timing t3.
  • the application to the mechanism 12 is the same as described above.
  • an electrocardiogram signal or a PW signal is used as an example of the “signal based on the displacement of the subject”.
  • the signal is measured by the elastic image generation displacement measurement circuit 28.
  • Automatic triggering may be performed by generating a trigger signal based on the image displacement amount, or based on other signals.
  • FIG. 6 is a flowchart showing the elastic image generation processing.
  • step S1 the automatic pressurization control process shown in FIG. 7 is started (step S1).
  • ultrasonic waves are transmitted / received from the ultrasonic transducer 11 (step S2), and the displacement amount (image displacement amount) of the subject to be diagnosed is measured by the elastic image generation displacement measurement circuit 28 (step S3). .
  • the elastic modulus calculation circuit 29 calculates the elastic modulus of the subject for each coordinate of the subject (step S4).
  • the calculated elastic modulus is transmitted to the signal processing circuit 27 together with the coordinates, and is configured as an elastic image for display (step S5).
  • the elasticity image is further superimposed with the ultrasound image as necessary to create a display image and displayed on the monitor 40.
  • step S6 it is determined whether or not the process is to be ended. If the process is not yet ended, the process goes to step S2 to repeat the above-described process in order to generate an elastic image of the next frame. .
  • step S7 an end signal is transmitted to the automatic pressurization control process shown in FIG. 7 to terminate the process (step S7), and then the elastic image generation process is terminated.
  • FIG. 7 is a flowchart showing processing of automatic pressurization control.
  • step S11 When the automatic pressurization control process is started in step S1 described above, it is first determined whether or not to end the automatic pressurization control process (step S11).
  • the signal waveform analysis circuit 31 acquires, for example, an electrocardiogram signal or a PW signal as a signal based on the displacement of the subject (step S12).
  • the signal waveform analysis circuit 31 analyzes the acquired electrocardiogram signal or PW signal, and acquires the analysis result including the maximum point of displacement and the displacement period (step S13).
  • the signal waveform analysis circuit 31 determines whether or not the electrocardiogram signal or the PW signal is equal to or greater than a predetermined threshold Th (step S14).
  • the signal waveform analysis circuit 31 when it is determined that the predetermined threshold value Th is exceeded, the signal waveform analysis circuit 31 further falls within a range where the timing when the predetermined threshold value Th is exceeded is considered to be appropriate based on the acquired displacement period. It is further determined whether or not it is the timing, i.e., whether it is not a false detection based on noise or the like (step S15).
  • the signal waveform analysis circuit 31 adds that the timing (see timing t1 in FIG. 4 or FIG. 5) that is equal to or greater than the predetermined threshold Th is detected.
  • the pressure mechanism control circuit 32 is notified.
  • the pressurization mechanism control circuit 32 generates a trigger signal tr1 based on the timing t1 detected by the signal waveform analysis circuit 31, and applies it to the first automatic pressurization mechanism 12 at the timing t2 shown in FIG. 4 or FIG. Step S16).
  • the first automatic pressurizing mechanism 12 receives the trigger signal tr1, and automatically pressurizes and displaces the subject at the timing t3 shown in FIG. 4 or FIG. 5 (step S17).
  • step S17 When the process of step S17 is performed in this way, if it is not greater than or equal to the predetermined threshold Th in step S14, or if the timing is not within the range predicted in step S15, the process returns to the above-described process of step S11 as described above. Repeat the process.
  • step S11 when an end signal is received from the process of step S7 described above, the automatic pressurization control process is terminated.
  • the waveform of the signal based on the displacement of the subject is analyzed, the periodic movement of the subject is analyzed, and the periodic movement of the subject is determined based on the analysis result. Since the first automatic pressurizing mechanism 12 is pressurized, the influence of the elastic modulus of the movement of the subject on the calculation result can be reduced, and the displacement is more stable in consideration of the displacement of the subject. An elastic image can be obtained.
  • the timing is matched with the maximum point of displacement.
  • the spontaneous displacement of the subject can be used effectively, and the pressure displacement generated in the automatic pressure can be reduced.
  • FIG. 8 is a block diagram illustrating the configuration of the ultrasonic observation system 1 according to the second embodiment of the present invention.
  • the ultrasonic observation system 1 of the present embodiment adds not only the timing of applying the automatic pressurization by adding the displacement amount feedback circuit 33 to the ultrasonic observation apparatus 20 of the ultrasonic observation system 1 of the first embodiment described above, but also The automatic pressurizing amplitude (pressurizing strength) is also controlled.
  • the ultrasound observation apparatus 20 is provided with a displacement amount feedback circuit 33 that calculates and outputs the displacement amount of the subject based on the ultrasound signal from the phasing addition circuit 26 as a displacement amount feedback unit.
  • This displacement amount feedback circuit 33 measures the displacement amount obtained by adding the spontaneous displacement and the pressurization displacement as shown by the dotted line in FIG. 2 as the displacement amount of the subject, and uses the measured displacement amount as the pressurization mechanism. Feedback is provided to the control circuit 32.
  • the pressurization mechanism control circuit 32 determines the timing for the first automatic pressurization mechanism 12 to pressurize based on the analysis result of the signal waveform analysis circuit 31, and based on the displacement amount fed back from the displacement amount feedback circuit 33.
  • the amount of pressure displacement applied to the subject by the first automatic pressure mechanism 12 is controlled so that the amount of displacement remains constant.
  • examples of control in which the displacement amount by the pressurizing mechanism control circuit 32 maintains a constant value include automatic control in which the displacement amount obtained from the displacement amount feedback circuit 33 approaches the target displacement amount.
  • the target displacement amount may be stored in advance in the pressurizing mechanism control circuit 32 or may be set to a desired value by an input operation from the outside.
  • automatic control may be performed so as to approach the displacement amount obtained from the displacement amount feedback circuit 33 last time.
  • the first automatic pressurizing mechanism 12 performs automatic pressurization by controlling the voltage applied to the circuit and the like so that the displacement amount keeps a constant value.
  • the effects similar to those of the first embodiment described above can be obtained, and the displacement of the subject is controlled to be constant, so that a more stable elastic image can be obtained. Obtainable.
  • FIG. 9 and 10 show Embodiment 3 of the present invention.
  • FIG. 9 is a block diagram showing the configuration of the ultrasonic observation system 1.
  • FIG. 10 shows automatic pressurization in synchronization with the spontaneous displacement of the subject. It is a diagram which shows the example of the time change of a trigger signal and displacement amount when performing automatic pressurization in the period between spontaneous displacements while performing.
  • the ultrasonic observation system 1 of this embodiment adds a second automatic pressurization mechanism 13 to the ultrasonic endoscope 10 of the ultrasonic observation system 1 of Embodiment 2 described above, and synchronizes with the spontaneous displacement of the subject. In addition to automatic pressurization at the timing, automatic pressurization is also performed during a period between spontaneous displacements of the subject.
  • the ultrasonic endoscope 10 includes an ultrasonic transducer 11 and a first automatic pressurizing mechanism 12 that is a first pressurizing unit, and further a second automatic pressurizing mechanism that is a second pressurizing unit. 13 is provided.
  • the second automatic pressurizing mechanism 13 performs automatic pressurization during a period between spontaneous displacements of the subject.
  • the first automatic pressurizing mechanism 12 and the second automatic pressurizing mechanism 13 are described as separate components. However, in an actual configuration, one automatic pressurizing mechanism is the first automatic pressurizing mechanism. Needless to say, the automatic pressurizing mechanism 12 and the second automatic pressurizing mechanism 13 may be combined.
  • the pressurization mechanism control circuit 32 Based on the analysis result of the signal waveform analysis circuit 31, the pressurization mechanism control circuit 32 causes the first automatic pressurization mechanism 12 to pressurize at the same timing as the maximum point of the spontaneous displacement of the subject, for example.
  • FIG. 10 shows a trigger signal tr1 of 1 and a second trigger signal tr2 for causing the second automatic pressurizing mechanism 13 to pressurize at a timing between two continuous maximum points of spontaneous displacement of the subject.
  • the timing at which the second automatic pressurizing mechanism 13 performs automatic pressurization based on the second trigger signal tr2 is the two consecutive displacements of the subject. It is preferable from the viewpoint that an elastic image at equal time intervals can be acquired when the maximum point period is equally divided into two or more.
  • the pressurizing mechanism control circuit 32 is based on the displacement amount fed back from the displacement amount feedback circuit 33, and the pressurizing displacement amount to the subject by the first automatic pressurizing mechanism 12 so as to keep the displacement amount constant.
  • the pressure displacement amount to the subject by the second automatic pressurizing mechanism 13 is controlled.
  • the control by which the displacement amount by the pressurization mechanism control circuit 32 maintains a constant value is, for example, a displacement amount feedback circuit as a result of pressurization by the first automatic pressurization mechanism 12 and the second automatic pressurization mechanism 13.
  • automatic control may be performed so that the displacement amount obtained from 33 approaches the target displacement amount.
  • the target displacement amount may be a predetermined value or an input value from the outside, as in the second embodiment described above.
  • the displacement amount obtained from the displacement amount feedback circuit 33 is reflected in the control of both the first automatic pressure mechanism 12 and the second automatic pressure mechanism 13.
  • the displacement amount obtained from the displacement amount feedback circuit 33 as a result of the pressurization by the first automatic pressurization mechanism 12 is automatically adjusted so that the pressurization displacement amount by the second automatic pressurization mechanism 13 approaches.
  • Control. This control is performed by the automatic pressure displacement by the first automatic pressure mechanism 12 as indicated by the solid line arrow in FIG. 10 when the automatic pressure displacement amount by the second automatic pressure mechanism 13 indicated by the one-dot chain line arrow in FIG.
  • This is a control (control to adjust the former to the latter) so as to approach the displacement obtained by adding the amount and the spontaneous displacement of the subject.
  • the displacement amount obtained from the displacement amount feedback circuit 33 is reflected only in the control of the second automatic pressurizing mechanism 13.
  • the displacement amount obtained from the displacement amount feedback circuit 33 as a result of the previous pressurization by the first automatic pressurization mechanism 12 or the second automatic pressurization mechanism 13 is set to the next second automatic Examples include automatic control in which the displacement amount as a result of pressurization by the pressurization mechanism 13 or the first automatic pressurization mechanism 12 approaches. This control is performed alternately so that the displacement amount approaches either the displacement amount obtained by adding the spontaneous displacement amount and the pressurization displacement amount or the displacement amount caused only by the pressurization displacement. It is control to adjust. Also in this case, the displacement amount obtained from the displacement amount feedback circuit 33 is reflected in the control of both the first automatic pressure mechanism 12 and the second automatic pressure mechanism 13.
  • the first automatic pressurizing mechanism 12 and the second automatic pressurizing mechanism 13 control the voltage applied to the circuit and the like based on the control of the pressurizing mechanism control circuit 32 so that the displacement amount is kept constant. Automatic pressurization is performed.
  • the signal based on the displacement of the subject is not limited to an electrocardiogram signal or a PW signal.
  • an image displacement amount (or another signal) measured by the elastic image generation displacement measurement circuit 28 is used.
  • the timing of the second trigger signal tr2 as well as the first trigger signal tr1 may be determined.
  • the third embodiment it is possible to obtain an elastic image at a timing other than the timing of the spontaneous displacement of the subject, while obtaining substantially the same effects as those of the first and second embodiments described above.
  • An elastic image with smooth movement can be observed.
  • the subject displacement at equal time intervals can be obtained, and a more preferable elastic image can be obtained. It becomes possible.
  • an operation method for operating the ultrasonic observation system as described above may be used, or a processing program for causing a computer to execute the operation method of the ultrasonic observation system. It may be a non-temporary recording medium that can be read by a computer that records the processing program.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various aspects of the invention can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, you may delete some components from all the components shown by embodiment.
  • the constituent elements over different embodiments may be appropriately combined.

Abstract

 被検体へ超音波を送受信して超音波信号を生成する超音波振動子(11)と、被検体に押圧力を加えて加圧変位を発生させる第1自動加圧機構(12)と、超音波信号に基づき被検体の画像用変位量を計測する弾性画像生成用変位計測回路(28)と、画像用変位量に基づき被検体の弾性率を演算する弾性率演算回路(29)と、被検体の変位に基づく信号の波形を解析して変位の極大点および変位周期を取得する信号波形解析回路(31)と、信号波形解析結果に基づき変位周期に同期して変位の極大点と同一のタイミングで第1自動加圧機構(12)に加圧を行わせる加圧機構制御回路(32)と、を備えた超音波観測システム(1)。

Description

超音波観測システム、超音波観測システムの作動方法
 本発明は、超音波を送受信して得られる超音波信号に基づき画像を生成する超音波観測システム、超音波観測システムの作動方法に関する。
 超音波内視鏡を有する超音波診断装置において、組織の弾性を表示するエラストグラフィ機能を備えるものが実用化されている。こうした超音波診断装置は、圧迫力により生じる生体組織の歪み量から、生体組織の硬さあるいは軟らかさを表す弾性画像(エラストグラフィモード画像)を生成するようになっている。
 弾性画像を生成するための弾性率は、術者が探触子を生体に押し当てることにより生じる生体組織の変位量や、拍動(脈動)により生じる生体組織の変位量から求められる。
 しかし、術者が探触子を生体に押し当てる用手的な組織圧迫方法では、押し当てる力加減を一定に維持しようとしても難しく、安定した弾性画像を得ることが困難であった。
 一方、超音波内視鏡での弾性画像表示は、拍動(脈動)による変位を利用することが考えられるが、拍動(脈動)による変位だけでは変位量が十分でなく、安定した弾性画像を得られない場合がある。また、拍動(脈動)による変位とは別に自動加圧を行い変位を発生させる場合でも、拍動(脈動)のタイミングを考慮しないと安定した弾性画像を取得できないことがある。
 例えば、日本国特開2010-82337号公報には、生体組織の弾性を表示する超音波観測装置において、バルーンに流体を出し入れして生体組織を圧迫する技術が記載されている。このとき、バルーン内部の圧力を計測する圧力センサを設けて圧力の推移やバルーンの膨張及び収縮度合をモニタに表示し、検査者が視覚的に把握することができるようにしている。さらに該公報には、検査者の手動のレバー操作による流体の出し入れだけでは、被検体の生体組織に対する圧迫が適正にならない場合に、補助的に流体を出し入れする制御調整部を用いることにより適切な圧迫操作を行うのをサポートする実施例が記載されている。
 また、日本国特開2006-230618号公報には、組織の弾性等の性状を計測する超音波観測装置において、心臓等の周期的に変形する組織であっても安定した計測を可能にするために、心電計等により測定される心臓の拍動周期に同期して超音波の信号の利得を変化させ、受信レベルが組織の変形に伴って変動するのを抑制する技術が記載されている。また、該公報には他の実施例として、能動的には変形しない静止臓器を加振装置により周期的に変形させ、弾性測定を行う技術が記載されている。
 さらに、国際公開公報WO2011/034005号には、組織の弾性を表示する超音波観測装置において、変位データや弾性データ、心電波形等に基づき適切な圧迫状態における組織の画像を抽出して表示する技術が記載されている。
 上述したように、心臓等の能動的に変位する被検体の動きは弾性測定に用いられることがあるが、それだけでは変位が不足して安定した弾性画像を得るのが難しい場合もあると考えられる。また、被検体の能動的な動きとは無関係に被検体を加圧する場合には、タイミングによって被検体の能動的な動きが重畳されてしまうことがあり、やはり安定した弾性画像を得るのが難しい場合が生じる。そこで、より安定した弾性画像を得ることが求められている。
 本発明は上記事情に鑑みてなされたものであり、被検体の変位を考慮した上で、より安定した弾性画像を得ることができる超音波観測システム、超音波観測システムの作動方法を提供することを目的としている。
 本発明のある態様による超音波観測システムは、被検体へ超音波を送信し、前記被検体により反射された前記超音波を受信して、受信した前記超音波から得られる超音波信号に基づき画像を生成する超音波観測システムであって、前記被検体へ前記超音波を送信し、前記被検体により反射された前記超音波を受信して、受信した前記超音波から前記超音波信号を生成する超音波振動子と、前記被検体に押圧力を加えて加圧変位を発生させる加圧部と、前記被検体の弾性画像を生成するために、前記超音波信号に基づき前記被検体の画像用変位量を計測する変位計測部と、前記画像用変位量に基づき前記被検体の弾性率を演算する弾性率演算部と、前記被検体の変位に基づく信号の波形を解析して、前記被検体の周期的な動きを解析する信号波形解析部と、前記解析結果に基づき、前記被検体の周期的な動きに応じて前記加圧部に前記被検体の動きの前記弾性率の演算結果への影響を低減するための加圧を行わせるよう制御する加圧制御部と、を具備する。
 本発明のある態様による超音波観測システムの作動方法は、被検体へ超音波を送信し、前記被検体により反射された前記超音波を受信して、受信した前記超音波から得られる超音波信号に基づき画像を生成する超音波観測システムの作動方法であって、超音波振動子が、前記被検体へ前記超音波を送信し、前記被検体により反射された前記超音波を受信して、受信した前記超音波から前記超音波信号を生成し、加圧部が、前記被検体に押圧力を加えて加圧変位を発生させ、変位計測部が、前記被検体の弾性画像を生成するために、前記超音波信号に基づき前記被検体の画像用変位量を計測し、弾性率演算部が、前記画像用変位量に基づき前記被検体の弾性率を演算し、信号波形解析部が、前記被検体の変位に基づく信号の波形を解析して、前記被検体の周期的な動きを解析し、加圧制御部が、前記解析結果に基づき、前記被検体の周期的な動きに応じて前記加圧部に前記被検体の動きの前記弾性率の演算結果への影響を低減するための加圧を行わせるよう制御する。
本発明の実施形態1における超音波観測システムの構成を示すブロック図。 上記実施形態1において、被検体の自発変位に同期して自動加圧を行ったときの変位量の時間変化の例を示す線図。 上記実施形態1において、心電計により検出される心電信号の例を示す線図。 上記実施形態1において、検出された心電信号に基づくタイミングでトリガー信号を発生させ、被検体の自発変位に同期して自動加圧を行う例を示す線図。 上記実施形態1において、検出されたPW信号に基づくタイミングでトリガー信号を発生させ、被検体の自発変位に同期して自動加圧を行う例を示す線図。 上記実施形態1における弾性画像生成処理を示すフローチャート。 上記実施形態1における自動加圧制御の処理を示すフローチャート。 本発明の実施形態2における超音波観測システムの構成を示すブロック図。 本発明の実施形態3における超音波観測システムの構成を示すブロック図。 上記実施形態3において、被検体の自発変位に同期して自動加圧を行うと共にさらに自発変位の間の期間に自動加圧を行うときのトリガー信号および変位量の時間変化の例を示す線図。
 以下、図面を参照して本発明の実施の形態を説明する。
[実施形態1]
 図1から図7は本発明の実施形態1を示したものであり、図1は超音波観測システム1の構成を示すブロック図である。
 まず、図1には、例えば心電計50からの心電信号が入力される超音波観測システム1の構成が示されている。ただし、心電計50は必須ではなく、下記に説明するように、心電計50からの心電信号に代えて、受信回路25からのパルスウェーブドプラ信号(以下、PW信号という)を用いることも可能となっている。
 この超音波観測システム1は、被検体へ超音波を送信し、被検体により反射された超音波を受信して、受信した超音波から得られる超音波信号に基づき画像を生成するシステムであって、超音波内視鏡10と、超音波観測装置20と、モニタ40と、を備えている。
 超音波内視鏡10は、超音波振動子11と、第1自動加圧機構12と、を備えたプローブである。なお、ここでは体内挿入式の超音波内視鏡10を用いているが、体外式の超音波プローブを用いて超音波観測システム1を構成しても構わない。
 超音波振動子11は、被検体へ超音波を送信し、被検体により反射された超音波を受信して、受信した超音波から超音波信号を生成するものであり、例えば、多数の振動素子を配列した振動子アレイとして構成されている。
 第1自動加圧機構12は、後述する加圧機構制御回路32からのトリガー信号を基準としたタイミングで被検体に押圧力を加えて、加圧変位を発生させる加圧部である。この第1自動加圧機構12は、例えば、バルーンに流体(超音波振動子11により送受信される超音波を減衰させないようにすることを考慮すれば、液体が好ましい)を出入させて、被検体に当接する加圧面となるバルーン表面を振動させる構成でも良いし、モータ等の駆動源を用いて被検体に当接する加圧面を振動させる構成であっても構わないし、その他の構成を採用しても良い。
 超音波観測装置20は、送信回路21と、送受信切替回路24と、受信回路25と、整相加算回路26と、信号処理回路27と、弾性画像生成用変位計測回路28と、弾性率演算回路29と、信号波形解析回路31と、加圧機構制御回路32と、を備えている。
 送信回路21は、送信波形生成回路22と、送信遅延回路23と、を含んでいる。
 送信波形生成回路22は、超音波振動子11を構成する各振動素子を駆動するための信号波形を生成して出力するものである。
 送信遅延回路23は、超音波振動子11を構成する各振動素子の駆動タイミングを調節するものである。これにより、超音波振動子11から送信される超音波ビームの焦点と方向が制御され、超音波を所望の位置(深度)に収束させることができる。
 送受信切替回路24は、例えば、超音波の送受波を行うための複数の振動素子を順次選択するマルチプレクサを含み、送信回路21からの駆動信号を超音波振動子11へ送信すると共に、超音波振動子11からの超音波信号(エコー信号)を受信回路25へ送信する。
 受信回路25は、送受信切替回路24からの超音波信号を受信して、例えば増幅やデジタル信号への変換などの処理を行う。
 整相加算回路26は、超音波信号を遅延させて位相を合わせてから加算する。
 信号処理回路27は、超音波診断モードにおいては、整相加算回路26からの超音波信号に座標変換や補間処理を行って、超音波画像を表示用画像として作成する。さらに、信号処理回路27は、弾性画像観察モードにおいては、弾性率演算回路29からの弾性画像を表示用画像として作成するか、または、弾性画像を超音波画像に重畳して表示用画像を作成する。
 弾性画像生成用変位計測回路28は、超音波信号に基づき被検体の画像用変位量(被検体の弾性画像を生成するための変位量)を計測する変位計測部である。
 弾性率演算回路29は、弾性画像生成用変位計測回路28により計測された画像用変位量に基づき、被検体の弾性率を演算する弾性率演算部である。この弾性率演算回路29は、被検体の各座標毎に弾性率を演算するために、演算結果は2次元座標上に弾性率が分布する弾性画像となる。
 信号波形解析回路31は、被検体の変位に基づく信号(例えば、心電計50からの心電信号、または受信回路25からのPW信号など)を解析して、被検体の周期的な動きを解析する信号波形解析部である。具体的に、信号波形解析回路31は、自発変位に基づく被検体の変位の極大点および変位周期を含む解析結果(すなわち、さらに解析を行ってその他の情報を解析結果として取得しても構わない)を取得する。
 加圧機構制御回路32は、信号波形解析回路31の解析結果に基づき、被検体の周期的な動きに応じて第1自動加圧機構12に被検体の動きの弾性率の演算結果への影響を低減するための加圧を行わせるよう制御する加圧制御部である。加圧機構制御回路32は、信号波形解析回路31の解析結果に基づき、取得された変位周期に同期して、変位の極大点に合わせたタイミングで(例えば、変位の極大点(望ましくは、1周期内における極大点の中の最大点)と同一のタイミングで)第1自動加圧機構12に加圧を行わせるよう制御する。具体的に、加圧機構制御回路32は、被検体の自発変位に基づく変位量が予め設定された閾値Th(図4、図5等参照)以上となるタイミングに基づいて、第1自動加圧機構12が変位の極大点と同一のタイミングで加圧を行うようなトリガー信号tr1(図4、図5等参照)を生成して、生成したトリガー信号tr1を第1自動加圧機構12へ出力する。なお、本実施形態においては、被検体の変位の極大点と同一のタイミングで第1自動加圧機構12に加圧を行わせているが、極大点から幾らかずれたタイミングで加圧を行わせてもある程度の効果を得ることはできるために、同一のタイミングで加圧を行わせるに限定されるものではない。
 モニタ40は、信号処理回路27からの表示用画像を表示する。
 図2は、被検体の自発変位に同期して自動加圧を行ったときの変位量の時間変化の例を示す線図である。
 図2において、実線は被検体の自発変位による変位量(例えば、被検体の拍動や脈動のみによる変位量)の時間変化の様子を示している。
 また、点線は、実線で示す被検体の自発変位量に、自動加圧による加圧変位量を加えたときの被検体の変位量(従って点線で示す変位量は、自発変位量と加圧変位量との両方を含んでいる)の時間変化の様子を示している。上述したように第1自動加圧機構12からの加圧は、被検体の自発変位の極大点と例えば同一のタイミングとなるように行われている。
 図3は、心電計50により検出される心電信号の例を示す線図である。
 心電信号として得られる波形には、心房の電気的興奮を反映する波形と考えられるP波、心室の電気的興奮を反映する波形と考えられるQRS波、などがある。ただし、これらに限らず、他の例としてはT波やU波などもある。これらの各波の内で、最も振幅が大きいのはQRS波を構成するQ波、R波、およびS波の内の、R波であり、R波の波頭が被検体の自発変位の極大点(特に、1周期内の最大点)を与える。従って、弾性画像を生成するための変位として、R波を利用することが合理的であると考えられるために、本実施形態においてはR波(ただし、R波に限定されるものではない)に同期して加圧変位を加えるものとする。
 そして、R波を含むQRS波に時間的に先行して得られる波は、図3に示すようにP波である。そこで例えば、図4に示すようなタイミングでトリガー信号を生成し、自動加圧を行うことが考えられる。ここに、図4は、検出された心電信号に基づくタイミングでトリガー信号tr1を発生させ、被検体の自発変位に同期して自動加圧を行う例を示す線図である。
 すなわち、R波に先行するP波が、所定の閾値Th以上となるタイミングt1を測定する。変位周期が既に取得済みであれば、このタイミングt1から、R波が発生するタイミングt3を推定することができる。従って、推定したタイミングt3に第1自動加圧機構12から加圧が行われるタイミングとなるように、加圧機構制御回路32がトリガー信号tr1を生成してタイミングt2において第1自動加圧機構12へ印加する。
 これにより、タイミングt3で第1自動加圧機構12による自動加圧が行われ、自動加圧による変位がR波による変位に重畳される(図2参照)。
 なお、T波は振幅が比較的大きい(例えば、P波よりも大きい)ために、P波に代えてT波に基づきR波の発生タイミングを推定しても良いし、R波の周期が安定している場合には、前回のR波の発生タイミングに基づき、次のR波の発生タイミングを推定するようにしても構わないし、その他の推定方法を用いても良い。
 一方、図5は、検出されたPW信号に基づくタイミングでトリガー信号を発生させ、被検体の自発変位に同期して自動加圧を行う例を示す線図である。
 被検体の自発変位は、勿論、心電計50からの心電信号により検出されるに限るものではなく、例えば受信回路25からのPW信号により検出することも可能である。このPW信号として、例えば図5に示すような信号波形が得られたものとする。
 この場合においても心電信号の場合と同様に、PW信号の信号値が所定の閾値Th以上となるタイミングt1を測定する(ただし、閾値ThはPW信号に応じた値となり、心電信号の場合に用いる閾値Thの値とは、一般に異なる)。
 変位周期が既に取得済みであれば、このタイミングt1から、次に被検体の自発変位が発生するタイミング(つまり、次にPW信号の信号値が所定の閾値Th以上となるタイミング)t3を推定することができ、推定したタイミングt3に第1自動加圧機構12から加圧が行われるタイミングとなるように、加圧機構制御回路32がトリガー信号tr1を生成してタイミングt2において第1自動加圧機構12へ印加するのは上述と同様である。
 なお、上述では「被検体の変位に基づく信号」として心電信号、またはPW信号を例に挙げているが、これらに限るものではなく、例えば、弾性画像生成用変位計測回路28により計測される画像用変位量に基づいてトリガー信号を生成して自動加圧を行うようにしても構わないし、その他の信号に基づいても良い。
 次に、図6は、弾性画像生成処理を示すフローチャートである。
 超音波観測システム1が弾性画像観察モードに設定されると、図6に示す処理が開始される。
 するとまず、図7に示す自動加圧制御処理を起動する(ステップS1)。
 そして、超音波振動子11から超音波の送受信を行い(ステップS2)、診断対象となる被検体の変位量(画像用変位量)を弾性画像生成用変位計測回路28により計測する(ステップS3)。
 次に、ステップS3で計測された画像用変位量に基づいて、弾性率演算回路29は、被検体の弾性率を、被検体の各座標毎に演算する(ステップS4)。
 演算された弾性率は、座標と共に信号処理回路27へ送信されて、表示用の弾性画像として構成される(ステップS5)。この弾性画像は、必要に応じてさらに超音波画像と重畳されて表示用画像が作成され、モニタ40に表示される。
 その後、処理を終了するか否かを判定し(ステップS6)、まだ終了しない場合には、次のフレームの弾性画像を生成するために、ステップS2へ行って上述したような処理を繰り返して行う。
 一方、処理を終了すると判定された場合には、図7に示す自動加圧制御処理へ終了シグナルを送信して終了させてから(ステップS7)、この弾性画像生成処理を終了する。
 続いて、図7は、自動加圧制御の処理を示すフローチャートである。
 上述したステップS1においてこの自動加圧制御処理が起動されることにより開始されると、まず、この自動加圧制御処理を終了するか否かを判定する(ステップS11)。
 ここでまだ終了しない場合には、信号波形解析回路31は、被検体の変位に基づく信号として、例えば心電信号、またはPW信号等を取得する(ステップS12)。
 次に、信号波形解析回路31は、取得された心電信号またはPW信号の解析を行い、変位の極大点および変位周期を含む解析結果を取得する(ステップS13)。
 そして、信号波形解析回路31は、心電信号またはPW信号が所定の閾値Th以上となったか否かを判定する(ステップS14)。
 ここで所定の閾値Th以上となったと判定した場合には、信号波形解析回路31は、さらに、所定の閾値Th以上となったタイミングが、取得した変位周期に基づき妥当であると考えられる範囲内のタイミングであるか否か、つまり、ノイズ等に基づく誤検出でないか否かをさらに判定する(ステップS15)。
 ここで、予測される範囲内のタイミングである場合には、信号波形解析回路31は、所定の閾値Th以上となったタイミング(図4または図5のタイミングt1参照)が検出された旨を加圧機構制御回路32へ報知する。
 加圧機構制御回路32は、信号波形解析回路31により検出されたタイミングt1に基づき、トリガー信号tr1を生成して図4または図5に示すタイミングt2で第1自動加圧機構12へ印加する(ステップS16)。
 第1自動加圧機構12はトリガー信号tr1を受けて、図4または図5に示すタイミングt3で被検体へ自動加圧を行い変位させる(ステップS17)。
 こうしてステップS17の処理が行われた場合、ステップS14において所定の閾値Th以上でない場合、またはステップS15において予測される範囲内のタイミングでない場合には、上述したステップS11の処理へ戻って上述したような処理を繰り返して行う。
 その後、ステップS11において、上述したステップS7の処理からの終了シグナルを受信した場合には、この自動加圧制御処理を終了する。
 このような実施形態1によれば、被検体の変位に基づく信号の波形を解析して、被検体の周期的な動きを解析し、解析結果に基づき、被検体の周期的な動きに応じて第1自動加圧機構12に加圧を行わせるようにしたために、被検体の動きの弾性率の演算結果への影響を低減することができ、被検体の変位を考慮した上で、より安定した弾性画像を得ることができる。
 このとき、変位の極大点および変位周期を含む解析結果を取得し、変位周期に同期して、変位の極大点に合わせたタイミングで第1自動加圧機構12に加圧を行わせることで、被検体の自発変位を有効に利用することができ、自動加圧において発生させる加圧変位を小さくすることが可能となる。
 さらにこのとき、変位の極大点と同一のタイミングで自動加圧するようにしたために、被検体の自発変位の有効利用を最適化することができる。
 このとき、被検体の変位に基づく信号として心電信号を用いる場合には、心臓の変位を直接正確に取得することができる。
 また、被検体の変位に基づく信号としてPW信号を用いる場合には、外部の心電計50を超音波観測装置20に接続する必要がなく、事前の準備を簡便化することが可能となる。
[実施形態2]
 図8は本発明の実施形態2を示したものであり、超音波観測システム1の構成を示すブロック図である。
 この実施形態2において、上述の実施形態1と同様である部分については同一の符号を付すなどして説明を適宜省略し、主として異なる点についてのみ説明する。
 本実施形態の超音波観測システム1は、上述した実施形態1の超音波観測システム1の超音波観測装置20に変位量フィードバック回路33を追加して、自動加圧を加えるタイミングだけでなく、さらに自動加圧の振幅(加圧の強さ)も制御するようにしたものとなっている。
 すなわち、超音波観測装置20には、整相加算回路26からの超音波信号に基づき被検体の変位量を算出して出力する変位量フィードバック回路33が変位量フィードバック部として設けられている。この変位量フィードバック回路33は、被検体の変位量として、図2の点線に示したような、自発変位と加圧変位とを加算した変位量を測定して、測定した変位量を加圧機構制御回路32へフィードバックする。
 加圧機構制御回路32は、信号波形解析回路31の解析結果に基づいて第1自動加圧機構12に加圧させるタイミングを決定すると共に、変位量フィードバック回路33からフィードバックされた変位量に基づいて、変位量が一定値を保つように第1自動加圧機構12による被検体への加圧変位量を制御する。
 ここに、加圧機構制御回路32による変位量が一定値を保つような制御としては、例えば、変位量フィードバック回路33から得られる変位量が目標変位量に近付くような自動制御が挙げられる。ここに目標変位量は、加圧機構制御回路32が内部に予め記憶しておいても良いし、あるいは外部からの入力操作により所望の値に設定可能となるようにしても構わない。
 またあるいは、変位量フィードバック回路33から前回得られた変位量に近付くような自動制御を行っても構わない。
 こうして、第1自動加圧機構12は、変位量が一定値を保つように回路への印加電圧等を制御して自動加圧を行う。
 このような実施形態2によれば、上述した実施形態1とほぼ同様の効果を奏するとともに、さらに被検体の変位量が一定となるように制御しているために、より一層安定した弾性画像を得ることができる。
[実施形態3]
 図9および図10は本発明の実施形態3を示したものであり、図9は超音波観測システム1の構成を示すブロック図、図10は被検体の自発変位に同期して自動加圧を行うと共にさらに自発変位の間の期間に自動加圧を行うときのトリガー信号および変位量の時間変化の例を示す線図である。
 この実施形態3において、上述の実施形態1,2と同様である部分については同一の符号を付すなどして説明を適宜省略し、主として異なる点についてのみ説明する。
 本実施形態の超音波観測システム1は、上述した実施形態2の超音波観測システム1の超音波内視鏡10に第2自動加圧機構13を追加して、被検体の自発変位に同期するタイミングで自動加圧を行うだけでなく、さらに被検体の自発変位の間の期間にも自動加圧を行うようにしたものとなっている。
 すなわち、超音波内視鏡10は、超音波振動子11および第1の加圧部である第1自動加圧機構12を備えると共に、さらに第2の加圧部である第2自動加圧機構13を備えている。この第2自動加圧機構13は、被検体の自発変位の間の期間に自動加圧を行うものである。
 なお、図9においては、第1自動加圧機構12と第2自動加圧機構13とを別の構成要素として記載しているが、実際の構成においては、1つの自動加圧機構が第1自動加圧機構12と第2自動加圧機構13とを兼ねるように構成しても勿論構わない。
 加圧機構制御回路32は、信号波形解析回路31の解析結果に基づいて、第1自動加圧機構12に被検体の自発変位の極大点と例えば同一のタイミングで加圧を行わせるための第1のトリガー信号tr1と、第2自動加圧機構13に被検体の連続する2つの自発変位の極大点の間のタイミングで加圧を行わせるための第2のトリガー信号tr2と、を図10に示すように生成する。
 ここに、第2のトリガー信号tr2に基づいて第2自動加圧機構13が自動加圧を行うタイミング(被検体の変位の極大点の間のタイミング)は、被検体の連続する2つの変位の極大点の期間を2以上に等分割するタイミングであることが、等時間間隔の弾性画像を取得することができる観点から好ましい。
 さらに、加圧機構制御回路32は、変位量フィードバック回路33からフィードバックされた変位量に基づいて、変位量が一定値を保つように第1自動加圧機構12による被検体への加圧変位量および第2自動加圧機構13による被検体への加圧変位量を制御する。
 ここに、加圧機構制御回路32による変位量が一定値を保つような制御としては、例えば、第1自動加圧機構12および第2自動加圧機構13による加圧の結果として変位量フィードバック回路33から得られる変位量が、目標変位量に近付くような自動制御が挙げられる。この目標変位量が、所定値であっても外部からの入力値であっても構わないのは上述した実施形態2と同様である。この場合には、変位量フィードバック回路33から得られる変位量は、第1自動加圧機構12および第2自動加圧機構13の両方の制御に反映される。
 また他の制御の例として、第1自動加圧機構12による加圧の結果として変位量フィードバック回路33から得られる変位量に、第2自動加圧機構13による加圧変位量が近付くような自動制御が挙げられる。この制御は、図10の1点鎖線矢印で示す第2自動加圧機構13による自動加圧変位量が、図10の実線矢印で示すような、第1自動加圧機構12による自動加圧変位量および被検体の自発変位量を加算した変位量に近付くようにする制御(前者を後者に合わせ込む制御)となる。この場合には、変位量フィードバック回路33から得られる変位量は、第2自動加圧機構13の制御にのみ反映される。
 さらに他の制御の例として、前回の、第1自動加圧機構12または第2自動加圧機構13による加圧の結果として変位量フィードバック回路33から得られる変位量に、次回の、第2自動加圧機構13または第1自動加圧機構12による加圧の結果の変位量が近付くような自動制御が挙げられる。この制御は、変位量が、自発変位量および加圧変位量を加算した変位量と、加圧変位のみに起因する変位量との何れであっても、前回の変位量に近付くように交互に合わせ込む制御である。この場合にも、変位量フィードバック回路33から得られる変位量は、第1自動加圧機構12および第2自動加圧機構13の両方の制御に反映される。
 こうして、第1自動加圧機構12および第2自動加圧機構13は、加圧機構制御回路32の制御に基づいて、変位量が一定値を保つように回路への印加電圧等を制御して自動加圧を行う。
 なお、被検体の変位に基づく信号として、心電信号やPW信号に限らず、例えば、弾性画像生成用変位計測回路28により計測される画像用変位量(さらにあるいは、その他の信号)を用いて、第1のトリガー信号tr1だけでなく第2のトリガー信号tr2のタイミングを決定するようにしても構わないのは上述した各実施形態と同様である。
 このような実施形態3によれば、上述した実施形態1,2とほぼ同様の効果を奏するとともに、さらに、被検体の自発変位のタイミング以外のタイミングでも弾性画像を取得することが可能となり、より動きの滑らかな弾性画像を観察することができる。
 さらに、被検体の自発変位の周期の等分割時点で第2自動加圧機構13により自動加圧を行う場合には、等時間間隔の被検体変位が得られ、より好ましい弾性画像を得ることが可能となる。
 なお、上述では主として超音波観測システムについて説明したが、超音波観測システムを上述したように作動させる作動方法であっても良いし、コンピュータに超音波観測システムの作動方法を実行させるための処理プログラム、該処理プログラムを記録するコンピュータにより読み取り可能な一時的でない記録媒体、等であっても構わない。
 また、本発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化することができる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明の態様を形成することができる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除しても良い。さらに、異なる実施形態にわたる構成要素を適宜組み合わせても良い。このように、発明の主旨を逸脱しない範囲内において種々の変形や応用が可能であることは勿論である。
 本出願は、2013年6月26日に日本国に出願された特願2013-133888号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (15)

  1.  被検体へ超音波を送信し、前記被検体により反射された前記超音波を受信して、受信した前記超音波から得られる超音波信号に基づき画像を生成する超音波観測システムであって、
     前記被検体へ前記超音波を送信し、前記被検体により反射された前記超音波を受信して、受信した前記超音波から前記超音波信号を生成する超音波振動子と、
     前記被検体に押圧力を加えて加圧変位を発生させる加圧部と、
     前記被検体の弾性画像を生成するために、前記超音波信号に基づき前記被検体の画像用変位量を計測する変位計測部と、
     前記画像用変位量に基づき前記被検体の弾性率を演算する弾性率演算部と、
     前記被検体の変位に基づく信号の波形を解析して、前記被検体の周期的な動きを解析する信号波形解析部と、
     前記解析結果に基づき、前記被検体の周期的な動きに応じて前記加圧部に前記被検体の動きの前記弾性率の演算結果への影響を低減するための加圧を行わせるよう制御する加圧制御部と、
     を具備したことを特徴とする超音波観測システム。
  2.  前記信号波形解析部は、前記被検体の変位に基づく信号の波形を解析して、変位の極大点および変位周期を含む解析結果を取得し、
     前記加圧制御部は、前記解析結果に基づき、前記変位周期に同期して、前記変位の極大点に合わせたタイミングで前記加圧部に加圧を行わせるよう制御する、
     ことを特徴とする請求項1に記載の超音波観測システム。
  3.  前記加圧制御部は、前記変位の極大点と同一のタイミングで前記加圧部に加圧を行わせるよう制御する、
     ことを特徴とする請求項2に記載の超音波観測システム。
  4.  前記超音波信号に基づき前記被検体の変位量を算出して出力する変位量フィードバック部をさらに具備し、
     前記加圧制御部は、前記変位量フィードバック部から得られる前記変位量に基づいて、前記被検体への加圧変位量をさらに制御することを特徴とする請求項3に記載の超音波観測システム。
  5.  前記加圧部は、第1の加圧部と第2の加圧部とを有し、
     前記加圧制御部は、前記解析結果に基づき、前記第1の加圧部に前記変位の極大点と同一のタイミングで加圧を行わせるための第1のトリガー信号と、前記第2の加圧部に連続する2つの前記変位の極大点の間のタイミングで加圧を行わせるための第2のトリガー信号と、を生成することを特徴とする請求項4に記載の超音波観測システム。
  6.  前記加圧制御部は、前記第1の加圧部による加圧の結果として前記変位量フィードバック部から得られる前記変位量に、前記第2の加圧部による加圧変位量が近付くように自動制御することを特徴とする請求項5に記載の超音波観測システム。
  7.  前記加圧制御部は、前回の、前記第1の加圧部または前記第2の加圧部による加圧の結果として前記変位量フィードバック部から得られる前記変位量に、次回の、前記第2の加圧部または前記第1の加圧部による加圧の結果の変位量が近付くように自動制御することを特徴とする請求項5に記載の超音波観測システム。
  8.  前記加圧制御部は、前記第1の加圧部および前記第2の加圧部による加圧の結果として前記変位量フィードバック部から得られる前記変位量が、目標変位量に近付くように自動制御することを特徴とする請求項5に記載の超音波観測システム。
  9.  前記加圧制御部は、前記変位量フィードバック部から得られる前記変位量が目標変位量に近付くように自動制御することを特徴とする請求項4に記載の超音波観測システム。
  10.  前記変位の極大点の間のタイミングは、連続する2つの前記変位の極大点の期間を2以上に等分割するタイミングであることを特徴とする請求項5に記載の超音波観測システム。
  11.  前記第1の加圧部と前記第2の加圧部とは、1つの自動加圧機構を兼用したものであることを特徴とする請求項5に記載の超音波観測システム。
  12.  前記被検体の変位に基づく信号は、心電信号またはパルスウェーブドプラ信号であることを特徴とする請求項3に記載の超音波観測システム。
  13.  被検体へ超音波を送信し、前記被検体により反射された前記超音波を受信して、受信した前記超音波から得られる超音波信号に基づき画像を生成する超音波観測システムの作動方法であって、
     超音波振動子が、前記被検体へ前記超音波を送信し、前記被検体により反射された前記超音波を受信して、受信した前記超音波から前記超音波信号を生成し、
     加圧部が、前記被検体に押圧力を加えて加圧変位を発生させ、
     変位計側部が、前記被検体の弾性画像を生成するために、前記超音波信号に基づき前記被検体の画像用変位量を計測し、
     弾性率演算部が、前記画像用変位量に基づき前記被検体の弾性率を演算し、
     信号波形解析部が、前記被検体の変位に基づく信号の波形を解析して、前記被検体の周期的な動きを解析し、
     加圧制御部が、前記解析結果に基づき、前記被検体の周期的な動きに応じて前記加圧部に前記被検体の動きの前記弾性率の演算結果への影響を低減するための加圧を行わせるよう制御する、
     ことを特徴とする超音波観測システムの作動方法。
  14.  前記信号波形解析部が、前記被検体の変位に基づく信号の波形を解析して、変位の極大点および変位周期を含む解析結果を取得し、
     前記加圧制御部が、前記解析結果に基づき、前記変位周期に同期して、前記変位の極大点に合わせたタイミングで前記加圧部に加圧を行わせるよう制御する、
     ことを特徴とする請求項13に記載の超音波観測システムの作動方法。
  15.  前記加圧制御部が、前記変位の極大点と同一のタイミングで前記加圧部に加圧を行わせるよう制御する、
     ことを特徴とする請求項14に記載の超音波観測システムの作動方法。
PCT/JP2014/062101 2013-06-26 2014-05-01 超音波観測システム、超音波観測システムの作動方法 WO2014208199A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14818059.9A EP2865340A4 (en) 2013-06-26 2014-05-01 ULTRASONIC OBSERVATION SYSTEM AND METHOD FOR OPERATING THE ULTRASONIC OBSERVATION SYSTEM
JP2014538558A JP5639321B1 (ja) 2013-06-26 2014-05-01 超音波観測システム、超音波観測システムの作動方法
CN201480001968.4A CN104507395B (zh) 2013-06-26 2014-05-01 超声波观测系统、超声波观测系统的动作方法
US14/591,103 US9345452B2 (en) 2013-06-26 2015-01-07 Ultrasound observation system and operation method of ultrasound observation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-133888 2013-06-26
JP2013133888 2013-06-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/591,103 Continuation US9345452B2 (en) 2013-06-26 2015-01-07 Ultrasound observation system and operation method of ultrasound observation system

Publications (1)

Publication Number Publication Date
WO2014208199A1 true WO2014208199A1 (ja) 2014-12-31

Family

ID=52141552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062101 WO2014208199A1 (ja) 2013-06-26 2014-05-01 超音波観測システム、超音波観測システムの作動方法

Country Status (5)

Country Link
US (1) US9345452B2 (ja)
EP (1) EP2865340A4 (ja)
JP (1) JP5639321B1 (ja)
CN (1) CN104507395B (ja)
WO (1) WO2014208199A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515736A (ja) * 2016-04-22 2019-06-13 无錫海斯凱尓医学技術有限公司Wuxi Hisky Medical Technologies Co.,Ltd. 超音波プローブ及び該超音波プローブを有する超音波検査装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104321019B (zh) * 2013-01-18 2016-08-17 奥林巴斯株式会社 超声波观测系统
KR102035993B1 (ko) 2015-09-03 2019-10-25 지멘스 메디컬 솔루션즈 유에스에이, 인크. 탄성 영상을 형성하는 초음파 시스템 및 방법
CN108366785B (zh) * 2015-12-17 2020-11-10 奥林巴斯株式会社 超声波观测装置及其工作方法、处理装置及存储介质
US20190175140A1 (en) * 2016-08-11 2019-06-13 Mayo Foundation For Medical Education And Research Loss-Angle-Based Determination of a Medium Viscoelastic Parameter in Sub-Hertz Frequency Range with the Use of Local Creep Response
US10507009B2 (en) 2017-10-05 2019-12-17 EchoNous, Inc. System and method for fusing ultrasound with additional signals
CN113056234A (zh) 2018-10-08 2021-06-29 安科诺思公司 包括超声传感器、听诊传感器和环境噪声传感器的设备
CN110714948B (zh) * 2019-10-17 2021-03-26 广东博智林机器人有限公司 多个液压执行元件同步运行的控制系统、方法及爬架

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230618A (ja) 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd 超音波診断装置
JP2007082725A (ja) * 2005-09-21 2007-04-05 Fujifilm Corp 超音波診断装置
JP2010082337A (ja) 2008-10-01 2010-04-15 Hitachi Medical Corp 超音波診断装置
WO2011034005A1 (ja) 2009-09-16 2011-03-24 株式会社 日立メディコ 超音波診断装置、弾性画像の分類方法、及び弾性画像の分類プログラム
JP2012528614A (ja) * 2009-06-04 2012-11-15 スーパー ソニック イマジン 心収縮性を測定するための方法及び装置
JP2012249776A (ja) * 2011-06-02 2012-12-20 Hitachi Ltd 超音波診断装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0883860B1 (en) * 1996-02-29 2006-08-23 Acuson Corporation Multiple ultrasound image registration system, method and transducer
JP4201396B2 (ja) * 1998-08-20 2008-12-24 株式会社日立メディコ 超音波診断装置
US7374538B2 (en) * 2000-04-05 2008-05-20 Duke University Methods, systems, and computer program products for ultrasound measurements using receive mode parallel processing
US7166075B2 (en) * 2002-03-08 2007-01-23 Wisconsin Alumni Research Foundation Elastographic imaging of in vivo soft tissue
JP2005013283A (ja) * 2003-06-23 2005-01-20 Takeshi Shiina 超音波探触子及び超音波診断装置
WO2005023093A2 (en) * 2003-09-05 2005-03-17 William Marsh Rice University Noninvasive tissue assessment
WO2007100107A1 (ja) * 2006-03-02 2007-09-07 Hitachi Medical Corporation 自動圧迫装置及び同装置を用いた超音波診断装置
WO2008029728A1 (fr) * 2006-09-01 2008-03-13 Hitachi Medical Corporation Échographe
US8118744B2 (en) * 2007-02-09 2012-02-21 Duke University Methods, systems and computer program products for ultrasound shear wave velocity estimation and shear modulus reconstruction
FR2913875B1 (fr) * 2007-03-21 2009-08-07 Echosens Sa Dispositif pour mesurer des proprietes viscoelastiques de tissus biologiques et procede utilisant ce dispositif
US20090216131A1 (en) * 2008-02-27 2009-08-27 James Geoffrey Chase Use of surface motion to identify mechanical properties of biological tissue
WO2009118798A1 (ja) * 2008-03-27 2009-10-01 パナソニック株式会社 超音波診断装置
FR2939512B1 (fr) * 2008-12-04 2012-07-27 Echosens Dispositif et procede d'elastographie
CN201958909U (zh) * 2011-02-25 2011-09-07 郑州人民医院 声触诊组织成像及量化分析的新触发技术及装置
CN103040524B (zh) * 2012-12-24 2014-12-17 深圳先进技术研究院 减少生理活动对医学成像或测量结果干扰的装置及方法
CN104321019B (zh) * 2013-01-18 2016-08-17 奥林巴斯株式会社 超声波观测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230618A (ja) 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd 超音波診断装置
JP2007082725A (ja) * 2005-09-21 2007-04-05 Fujifilm Corp 超音波診断装置
JP2010082337A (ja) 2008-10-01 2010-04-15 Hitachi Medical Corp 超音波診断装置
JP2012528614A (ja) * 2009-06-04 2012-11-15 スーパー ソニック イマジン 心収縮性を測定するための方法及び装置
WO2011034005A1 (ja) 2009-09-16 2011-03-24 株式会社 日立メディコ 超音波診断装置、弾性画像の分類方法、及び弾性画像の分類プログラム
JP2012249776A (ja) * 2011-06-02 2012-12-20 Hitachi Ltd 超音波診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2865340A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019515736A (ja) * 2016-04-22 2019-06-13 无錫海斯凱尓医学技術有限公司Wuxi Hisky Medical Technologies Co.,Ltd. 超音波プローブ及び該超音波プローブを有する超音波検査装置

Also Published As

Publication number Publication date
JP5639321B1 (ja) 2014-12-10
EP2865340A1 (en) 2015-04-29
JPWO2014208199A1 (ja) 2017-02-23
US9345452B2 (en) 2016-05-24
CN104507395B (zh) 2017-04-26
US20150126866A1 (en) 2015-05-07
CN104507395A (zh) 2015-04-08
EP2865340A4 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5639321B1 (ja) 超音波観測システム、超音波観測システムの作動方法
US8727995B2 (en) Reduction of motion artifacts in ultrasound imaging with a flexible ultrasound transducer
WO2006082966A1 (ja) 超音波診断装置
JP6207864B2 (ja) 超音波診断装置、超音波画像処理装置、及び医用画像診断装置
JP5249327B2 (ja) 超音波診断装置
WO2004103185A1 (ja) 超音波診断装置
JP5975027B2 (ja) 超音波診断装置およびそれを用いた超音波計測方法
JP5701439B1 (ja) 皮下診断装置及び血圧測定方法
JP5622985B1 (ja) 超音波観測システム
WO2007080870A1 (ja) 超音波診断装置
JP4655616B2 (ja) 超音波診断装置
JP5826984B2 (ja) 超音波診断装置、心拍同期信号生成装置及び心拍同期信号生成方法
JP2006289067A (ja) 超音波診断装置及びその制御プログラム
JP2008104640A (ja) 超音波診断装置、心拍同期信号生成装置及び心拍同期信号生成方法
JP5430861B2 (ja) 超音波診断装置及び画像表示装置
JPWO2006126485A1 (ja) 超音波診断装置
JP2013244138A (ja) 超音波診断装置および音速表示方法
JP7249855B2 (ja) 超音波診断装置、医用画像処理装置、及び超音波スキャン制御プログラム
JP2006230618A (ja) 超音波診断装置
JP2008212548A (ja) 超音波診断装置
JP2016002105A (ja) 超音波動画再生装置および超音波診断装置
JP2008183118A (ja) 超音波診断装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014538558

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE