WO2014208072A1 - 厚鋼板の脆性破壊伝播停止性能の評価方法 - Google Patents

厚鋼板の脆性破壊伝播停止性能の評価方法 Download PDF

Info

Publication number
WO2014208072A1
WO2014208072A1 PCT/JP2014/003352 JP2014003352W WO2014208072A1 WO 2014208072 A1 WO2014208072 A1 WO 2014208072A1 JP 2014003352 W JP2014003352 W JP 2014003352W WO 2014208072 A1 WO2014208072 A1 WO 2014208072A1
Authority
WO
WIPO (PCT)
Prior art keywords
brittle fracture
fracture propagation
steel plate
performance
press notch
Prior art date
Application number
PCT/JP2014/003352
Other languages
English (en)
French (fr)
Inventor
隆洋 ▲崎▼本
恒久 半田
聡 伊木
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013133849A external-priority patent/JP5682663B2/ja
Priority claimed from JP2013157422A external-priority patent/JP5582233B1/ja
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201480031789.5A priority Critical patent/CN105308431B/zh
Priority to KR1020157034598A priority patent/KR101813351B1/ko
Priority to BR112015032521-1A priority patent/BR112015032521B1/pt
Publication of WO2014208072A1 publication Critical patent/WO2014208072A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0032Generation of the force using mechanical means
    • G01N2203/0039Hammer or pendulum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0098Tests specified by its name, e.g. Charpy, Brinnel, Mullen

Definitions

  • the present invention relates to a method for evaluating brittle fracture propagation stopping performance of thick steel plates used for large structures such as ships, marine structures, low-temperature storage tanks, and construction / civil engineering structures, particularly thick steel plates having a thickness of 50 mm or more.
  • brittle fracture propagation stop performance is usually performed by a large-scale test represented by an ESSO test and a double tensile test. However, since these tests are large, many days and costs are required to perform the tests, and it is difficult to perform them easily.
  • Patent Document 1 discloses a method of producing a test piece with a press notch after applying compressive deformation in the thickness direction of the test piece so that the test proceeds more stably from a brittle fracture surface. Proposed.
  • Non-Patent Document 1 states that the Kca value obtained by the ESSO test is strongly influenced by the low toughness region, indicating brittle fracture propagation stopping performance due to the distribution of toughness depending on the plate thickness position. It is described that the brittle fracture propagation stop performance is evaluated by weighting the toughness value at the thickness position to the value obtained by taking the average of the area of the steel sheet and further the value at the center of the sheet thickness.
  • Patent Document 3 proposes a technique for evaluating brittle fracture propagation stopping performance using a deformed Charpy impact test piece having a special shape.
  • Patent Document 5 discloses a technique for evaluating brittle fracture propagation stop performance of a thick steel plate having a thickness of 50 mm or more using a press notch Charpy impact test piece. There, a Charpy impact test was conducted using Charpy impact test specimens that were sampled from the center of the thickness of the thick steel plate with a thickness of 50 mm or more and from the position 1/4 of the thickness from the surface and introduced a press notch. Describes a method for evaluating brittle fracture propagation stopping performance of a thick steel plate, characterized by evaluating brittle fracture propagation stopping performance based on the fracture surface transition temperature vTrs * obtained in the Charpy impact test for each specimen. ing.
  • Patent Document 6 discloses a method for obtaining a correlation between the arrest performance of the entire thick steel plate having a thickness of 50 mm or more and a test result using a small test piece taken from the thick steel plate with high accuracy. There, multiple small specimens are sampled along the plate thickness direction, and the optimum method is selected according to the sampling position, that is, the steel plate surface layer is subjected to drop weight test, and the inside of the steel plate is measured for brittle fracture surface rate and absorbed energy. It has been proposed to perform a small test by the method, appropriately combine the test results, and estimate the Kca value obtained in the large test from the combined results.
  • Patent Documents 1 to 3 the method for collecting the test pieces in Patent Documents 1 to 3 is not necessarily a simple method because the preparation of the test pieces is complicated, such as the size of the test pieces and the processing again after welding.
  • the technique of Patent Document 4 is poor in versatility because the shape of the test piece is special.
  • there is a certain degree of correlation between the two in the method of estimating a large-scale test result based on the Kca value obtained in consideration of the toughness value at the plate thickness position described in Non-Patent Document 1, there is a certain degree of correlation between the two.
  • the current situation is that they do not match enough to be used instead of large-scale tests.
  • Patent Document 5 and Patent Document 6 require that test pieces are collected from a plurality of positions in the plate thickness direction of the thick steel plate to perform the test. It's hard to say.
  • an object of the present invention is to provide a simple method for evaluating the brittle fracture propagation stopping performance of a thick steel plate by a small test.
  • the present inventors have introduced a brittle fracture propagation stopping performance and a press notch by an ESSO test of a thick material having a thickness of 50 mm or more, using the evaluation method of the brittle fracture propagation stopping performance of the thick steel sheet described in Patent Document 5.
  • the correlation of the Charpy impact test result with the press notch Charpy test piece or the deformed Charpy test piece (hereinafter referred to as the deformed press notch Charpy test piece) was further examined, and the following knowledge was newly obtained.
  • FIG. 4 shows a schematic diagram of a fracture surface of an ESSO test piece of a thick material having a thickness of 50 mm or more used for the study.
  • the brittle crack has different propagation behavior in the cross section in the thickness direction, and the brittle crack length in the central portion of the thickness is shorter than the brittle crack length in the vicinity of the surface portion, and a concave portion in which the central portion of the thickness is recessed is formed.
  • the central portion of the plate thickness is a convex portion, and the upper and lower regions sandwiching the central portion of the plate thickness form a concave portion.
  • the propagation behavior of the brittle crack in the cross section in the plate thickness direction is different (as shown in Fig.
  • the brittle crack in the surface portion propagates longer than the plate thickness central portion
  • the brittle crack in the plate thickness central portion propagates. If stopped, the dynamic stress intensity factor (dynamic stress intensity factor) of the surface portion will decrease mechanically and the propagation will tend to stop, so the brittle crack propagation stopping performance at the center of the plate thickness will be brittle. Represents the ability to stop crack propagation. 2.
  • the temperature at which the absorbed energy is 20 J to 100 J (preferably 25 J to 60 J) is good as the value of the brittle fracture propagation stopping performance of the steel plate. Show correlation.
  • the temperature (° C.) indicating 40J: pT 40J shows a very good correlation with the value of brittle fracture propagation stopping performance of the steel sheet.
  • 3. There is a correlation between press notch Charpy absorbed energy and brittle fracture surface ratio. When the press notch Charpy absorption energy is 20 J to 100 J, the brittle fracture surface ratio is 50% to 90%, and when the press notch Charpy absorption energy is 25 J to 60 J, the brittle fracture surface ratio is 60% to 90%. %. In particular, when 40 J is indicated, the brittle fracture surface ratio is 63%.
  • the temperature (° C.) at which the brittle fracture surface ratio of the press notch Charpy specimen exhibits 50% to 90% shows a good correlation with the value of brittle fracture propagation stop performance as well as the press notch Charpy absorbed energy.
  • the temperature (° C.) at which the brittle fracture surface ratio of the press notch Charpy test piece shows 63%: 63% BATT (Brite area transition temperature) is similar to the press notch Charpy absorbed energy and the value of brittle fracture propagation stopping performance and Shows a good correlation. 4).
  • the temperature at which the absorbed energy is 20 J to 225 J has a good correlation with the brittle fracture propagation stop performance value of the steel plate. Show.
  • the brittle fracture surface ratio is 50% to 90%. 5.
  • Deformation press notch Charpy test in deformation press notch Charpy impact test conducted with a test piece with a cross-sectional area (rectangular cross-sectional area) perpendicular to the longitudinal direction taken from the center of the thickness of the thick steel plate exceeding 100 mm 2
  • the absorption energy is 100 J (referred to as pT 100J )
  • the temperature indicating 68 J (referred to as pT 68J ) is 20 to 225 J energy transition temperature (° C. It shows a good correlation with the brittle fracture propagation stop performance value of the steel sheet. 6).
  • the present invention has been made by further study based on the above-described findings, and the gist thereof is as follows.
  • BATT A method for evaluating brittle fracture propagation stopping performance of a thick steel plate.
  • the temperature at which the brittle fracture propagation stopping performance (Kca value) is a certain value is estimated with Tk calculated according to the following equation (1-1).
  • Tk a ⁇ (pT E or BATT) + b (1-1)
  • pT E 20 to 100 J energy transition temperature (° C.) of press notch Charpy absorbed energy.
  • BATT Fracture surface transition temperature (° C.) of 50 to 90%. a and b are coefficients.
  • Tk calculated according to the equation (1-2) is set to a temperature at which the brittle fracture propagation stop performance (Kca value) is 6000 N / mm 1.5, and the brittle fracture propagation stop performance is The method for evaluating brittle fracture propagation stopping performance of a thick steel plate according to [3], wherein the evaluation is performed.
  • Tk a ⁇ pT 40J + b (1-2)
  • pT 40J temperature at which the press notch Charpy absorbed energy is 40 J. a and b are coefficients.
  • Tk (° C.) calculated according to the equation (3) is set as a stop temperature at which the brittle fracture propagation stop performance (Kca value) becomes a target value.
  • Tk a ⁇ pT E + b (3)
  • pT E 20 to 225 J energy transition temperature (° C.) of the deformed press notch Charpy absorbed energy.
  • a and b are coefficients.
  • a fracture surface transition temperature BATT (° C.) of 50 to 90% indicating a fracture surface transition with a brittle fracture surface ratio of the deformed press notch Charpy impact test piece of 50 to 90% is used.
  • the brittle fracture propagation stopping performance of a thick steel plate having a thickness of 50 mm or more is measured using a test piece having the same size as that of a normal Charpy impact test without performing a large brittle crack propagation test such as an ESSO test.
  • it is extremely useful industrially because it can be easily and accurately evaluated at one place where the plate thickness is collected.
  • FIG. 1 is a view showing a sampling position (an example of 50% of the plate thickness) of a press notch Charpy test piece or a deformed press notch Charpy test piece.
  • FIG. 2A is a view showing a press-notch Charpy test piece
  • FIG. 2B is a view showing a deformed press-notch Charpy test piece.
  • FIG. 3 is a graph showing the relationship between the deformed press notch Charpy absorbed energy (J) and the brittle fracture surface ratio (%) in a deformed press notch Charpy impact test using a deformed press notch Charpy test piece with a rectangular cross-sectional area exceeding 100 mm 2 .
  • FIG. 4 is a schematic diagram of a fracture surface of a thick ESSO test piece having a plate thickness of 50 mm or more.
  • FIG. 5 is a schematic diagram of another fracture surface of an ESSO test piece made of a thick material having a plate thickness of 50 mm or more.
  • FIG. 6 is a diagram showing the relationship between the press notch Charpy absorbed energy and the brittle fracture surface ratio.
  • the present invention is intended for a thick steel plate having a thickness of 50 mm or more and a fracture surface of an ESSO test piece having the shape shown in the schematic diagram of FIG. It is an evaluation method estimated using the Charpy test result.
  • the Charpy test is an impact test performed using a press notch Charpy test piece or a deformed press notch Charpy test piece in which the sampling position is the center of the plate thickness and the press notch is introduced in the propagation direction of the brittle crack.
  • the longitudinal direction perpendicular cross-sectional area (square cross section) if modified spray-notch Charpy test piece 100 mm 2 beyond, and 100mm 2 ⁇ 225mm 2 specimens.
  • the sampling position is the center position of the plate thickness, which means that the center of the test piece width of the press notch Charpy test or the deformed press notch Charpy test piece is sampled at a position of 40% to 60% of the plate thickness of the steel sheet.
  • FIG. 1 is a schematic diagram in the case of sampling according to the position of 50% of the plate thickness.
  • the Charpy test result shows a good correlation with the result of the brittle crack propagation performance test.
  • the press notch As follows. Taking into account the direction of the test piece, the material from which the test piece is to be collected is divided and cut, and further, the cut-out part is cut with a blade shape against the rectangular parallelepiped small steel piece obtained by finishing the outer shape. Press fit.
  • the dimensions of the main body are 55 mm in the longitudinal direction and 10 ⁇ 10 mm in the cross section in the direction perpendicular to the longitudinal direction as shown in FIG. 2A, or the dimensions of the main body as shown in FIG.
  • a press notch Charpy test piece or a deformation that is a 2 mm V notch with a depth of 2 mm and an angle of 45 degrees with a longitudinal direction of 50 to 60 mm and a cross-sectional dimension of (10 to 15) ⁇ (10 to 15) mm. Use a press-notched Charpy specimen.
  • the absorbed energy obtained by press-notch Charpy test is 100J from 20 J 20 J ⁇ 100J energy transition temperature (° C.): to evaluate the brittle fracture propagation stopping performance based on pT E.
  • the brittle fracture propagation stop performance is evaluated based on the temperature: pT 40J at which the absorbed energy obtained by the press notch Charpy test shows 40 J.
  • the case where the brittle fracture propagation stop performance is evaluated by estimating the temperature at which the brittle fracture propagation stop performance Kca value is 6000 N / mm 1.5 will be described below.
  • Non-patent Document 2 From 20J to 100J energy transition temperature: pT E (° C.) where the absorbed energy obtained from the press notch Charpy test is 20J to 100J, or from the 40J energy transition temperature pT 40J where the absorbed energy is 40J, the Kca value is A temperature of 6000 N / mm 1.5 is obtained, and the brittle fracture propagation stop performance is evaluated depending on whether the temperature is higher or lower than ⁇ 10 ° C.
  • a press notch Charpy impact test piece is taken from the center position of the plate thickness, and after introducing the press notch, a Charpy impact test is performed at various test temperatures. Since the direction of introduction of the press notch should be taken in the direction in which the crack propagates, it is put in the rolling direction or the rolling width direction in combination with the notch direction in the ESSO test.
  • Tk a ⁇ (pT E or BATT) + b (1-1)
  • pT E 20 to 100 J energy transition temperature (° C.) of press notch Charpy absorbed energy.
  • BATT Fracture surface transition temperature (° C.) of 50 to 90%.
  • a and b are coefficients.
  • Tk a ⁇ pT 40J + b (1-2)
  • pT 40J temperature at which the press notch Charpy absorbed energy is 40 J. a and b are coefficients.
  • Equation (1-2) is obtained by measuring the pT 40J at the center of the plate thickness for various test pieces and performing an ESSO test on a test piece common to these test pieces to obtain a temperature: Tk (6000). This is an empirical formula in which the measurement results are organized and the correlation between pT 40J at the center of the plate thickness and temperature: Tk (6000) is obtained.
  • the brittle fracture surface ratio is 50% to 90%, and when the absorbed energy is 25 J to 60 J, the brittle fracture surface ratio is 60% to 90%.
  • a fracture surface ratio in the present invention, the brittle fracture surface ratio is 63%) can be recognized that brittle cracks generated from the press notch are stopped due to the characteristics of the steel sheet. It is done.
  • FIG. 6 shows the relationship between the press notch Charpy absorbed energy and the brittle fracture surface ratio. That is, even if pT E (° C.) in the formula (1-1) is replaced with a fracture surface transition temperature BATT (° C.) of 50 to 90%, a good correlation with the temperature: Tk (6000) (° C.) can be obtained.
  • 63% BATT When the temperature at which the brittle fracture surface ratio is 63% is defined as 63% BATT, 63% BATT and pT 40J are substantially the same temperature.
  • STEP3 Temperature When Tk (6000) is lower than ⁇ 10 ° C., it is determined that the brittle fracture propagation stopping performance is excellent.
  • the present invention brittle fracture propagation stop performance (Kca value) and 4000 N / mm 1.5 or 8000 N / mm 1.5, also when a value other than 6000 N / mm 1.5, applicable, respectively Evaluation similar to the above can be performed by deriving the correlation equation from the experimental results.
  • the present invention is preliminarily implemented for one of them to evaluate the brittle fracture propagation stop performance of the steel plate.
  • the absorbed energy (J) of press notch Charpy at the test temperature pT 40J can be obtained, and the brittle crack propagation stopping performance at ⁇ 10 ° C. can be determined by the following equation. In the case of a steel sheet that satisfies the formula (2), the brittle crack propagation stopping performance is excellent.
  • Non-patent Document 2 if the Kca value at ⁇ 10 ° C. is 6000 N / mm 1.5 or more, the brittle crack stops at ⁇ 10 ° C.
  • the absorbed energy obtained by conducting a Charpy test using a deformed press notch Charpy test piece is 20 to 225 J energy transition temperature: pT E (° C.) is used to determine the temperature at which the Kca value is 6000 N / mm 1.5 , The brittle fracture propagation stop performance is evaluated depending on whether the temperature is higher or lower than ⁇ 10 ° C.
  • STEP1 For a thick steel plate with a thickness of 50 mm or more, a deformed press notch Charpy impact test piece is collected from the center position of the plate thickness, and after introducing the press notch, a Charpy impact test is performed at various test temperatures. . Since the direction of introduction of the press notch should be taken in the direction in which the crack propagates, it is put in the rolling direction or the rolling width direction in combination with the notch direction in the ESSO test.
  • Tk a ⁇ pT E + b (3)
  • pT E 20 to 225J energy transition temperature (temperature indicating 100 J when the deformed press notch Charpy absorbed energy is 15 mm square, 68 J when the 13 mm square is absorbed), and a and b are coefficients.
  • Equation (3) measures pT E (° C.) for various test pieces when the deformed press notch Charpy absorbed energy at the center of the plate thickness is 15 mm square and 100 J, and when 13 mm square is 68 J, An ESSO test is performed on the test specimens common to these test pieces to obtain a temperature: Tk (6000) (° C.), and these measurement results are arranged, and pT E (° C.) and temperature: Tk (6000) (° C.) This is an empirical formula for obtaining the correlation.
  • STEP3 Temperature When Tk (6000) (° C.) is lower than ⁇ 10 ° C., it is determined that the brittle fracture propagation stopping performance is excellent.
  • the present invention brittle fracture propagation stop performance (Kca value) and 4000 N / mm 1.5 or 8000 N / mm 1.5, also when a value other than 6000 N / mm 1.5, applicable, respectively Evaluation similar to the above can be performed by deriving the correlation equation from the experimental results.
  • the present invention is preliminarily implemented for one of them to evaluate the brittle fracture propagation stop performance of the steel plate.
  • press notch Charpy test specimens at test temperature pT E (J) by the following equation, it is possible to determine the brittle crack arrest performance at -10 ° C..
  • pE ⁇ 100 (J) (4) pE: Absorption energy (J) of deformed press notch Charpy at test temperature pT E (° C.)
  • a Charpy impact test piece material is collected from the center of the plate thickness, a deformed press notch is introduced into the test piece material using a blade mold made of hard steel, and the Charpy impact test is performed.
  • Table 1 shows the component composition of the thick steel plate, and Table 2 shows the production conditions.
  • the rectangular cross-sectional area of the press notch Charpy impact test piece was 100 mm 2 (10 mm square).
  • the Charpy impact test was performed at various temperatures, and the temperature at which the press notch Charpy absorbed energy was 40 J: pT 40J was determined.
  • the press notch Charpy impact test the press notch Charpy impact test piece was observed after the test, and the test piece in which no fracture occurred from the brittle crack was regarded as not evaluating the brittle crack propagation stop performance, and excluded. An average value of five test pieces in which fracture occurred from a brittle crack at each test temperature was taken. Thereafter, the value of pT 40J was substituted into the above equation (1-2) to obtain the temperature Tk *. Further, 63% BATT was substituted for the value of pT 40J in the above equation (1-2) to obtain the temperature Tk **.
  • Tk6000 a temperature at which the Kca value was 6000 N / mm 1.5 : Tk6000 was obtained.
  • Table 3 shows Tk *, Tk **, and Tk6000.
  • the comparative example is the result of prediction based on the ductile brittle fracture surface transition temperature vTrs of the V-notch Charpy specimen used in the conventional prediction.
  • the prediction error is large and the error is 30 ° C. or more.
  • the prediction errors are all very accurate within 10 ° C., and the usefulness of the evaluation method for brittle crack propagation stopping performance according to the present invention was confirmed.
  • a Charpy impact test piece material is collected from the center of the plate thickness, a deformed press notch is introduced into the test piece material using a blade mold made of hard steel, and the Charpy impact test is performed. Provided.
  • the deformed press notch Charpy specimens were manufactured with 15 mm square and 13 mm square in the cross section perpendicular to the longitudinal direction. Table 4 shows the composition of thick steel plates, and Table 5 shows the production conditions.
  • the Charpy impact test was performed at various temperatures, and the deformed press notch Charpy absorbed energy was found to be a temperature: pT 100 (° C.) when the 15 mm square was 100 J, and a temperature: pT 68 (° C.) where the 13 mm square was 68 J.
  • the deformed press notch Charpy impact test piece was observed after the test, and the test piece that had not broken due to the brittle crack was deemed to have not been evaluated for brittle crack propagation stop performance and was excluded. Thus, the average value of five test pieces in which fracture occurred from brittle cracks at each test temperature was taken.
  • an ESSO test is performed as a large brittle crack propagation test on the same thick steel plate together with a deformed press notch Charpy impact test, and the temperature at which the Kca value becomes 6000 N / mm 1.5 : Tk6000 (° C.) Asked.
  • Tables 6 and 7 show Tk (° C.) and Tk 6000 (° C.).
  • the comparative example is the result of prediction based on the ductile brittle fracture surface transition temperature vTrs of the V-notch Charpy specimen used in the conventional prediction.
  • the prediction error is large and the error is 30 ° C. or more.
  • the prediction errors are all very accurate within 10 ° C., and the usefulness of the evaluation method for brittle crack propagation stopping performance according to the present invention was confirmed.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

 厚鋼板の脆性破壊伝播停止性能を小型試験で評価する簡易な手法を提供する。 小型試験として、採取位置が板厚中心部位置で、プレスノッチが脆性亀裂の伝播方向に導入された変形プレスノッチシャルピー衝撃試験片による変形プレスノッチシャルピー衝撃試験を行い、前記シャルピー衝撃試験で求めた変形プレスノッチシャルピー吸収エネルギーが40Jを示す温度(℃):pT40Jに基いて、脆性破壊伝播停止性能を評価する。

Description

厚鋼板の脆性破壊伝播停止性能の評価方法
 本発明は、船舶、海洋構造物、低温貯蔵タンクおよび建築・土木構造物等の大型構造物に用いられる厚鋼板、特に板厚が50mm以上の厚鋼板の脆性破壊伝播停止性能の評価方法に関する。
 船舶、海洋構造物、低温貯蔵タンクおよび建築・土木構造物等の大型構造物においては、脆性破壊に伴う事故が経済や環境に及ぼす影響が大きく、安全性の向上が常に求められる。そして、使用される鋼材に対しては、使用温度における靭性や脆性破壊伝播停止性能を有することが要求されている。
 脆性破壊伝播停止性能の評価は、ESSO試験や二重引張試験に代表される大型試験によって行われるのが通例である。しかし、これらの試験は大型であるため、試験を行うために多くの日数やコストを要することになり、簡便に行うことが難しい点が問題である。
 そのため、WES3003-1995にVノッチシャルピー試験の破面遷移温度vTrsより脆性破壊伝播停止性能を予測する手法が制定されている。しかしながら、近年の板厚50mmを超える材料については予測精度が悪く、簡便に評価を行うことが難しい状況にある。
 この問題を解決するため、大型試験に代り、試験片形状を工夫したシャルピー衝撃試験や落重試験など、比較的小型で簡易な評価方法が開発されている。落重試験については、より安定して脆性破面から試験が進行するように、試験片の板厚方向に圧縮変形を与えた後に、プレスノッチにより試験片を作製する方法が、特許文献1に提案されている。
 シャルピー衝撃試験については、シャルピー衝撃試験片に代り、より効率よく脆性破面から試験を進行させる方法として、シャルピー衝撃試験片のノッチに相当する部分に溶接ビードを盛った後に深さ2mm以下のソーノッチを入れる試験片を用いることが、特許文献2に提案されている。
 非特許文献1には、板厚位置により靭性に分布があることに起因して、脆性破壊伝播停止性能を表す、ESSO試験により求まるKca値は低靭性領域の影響を強く受ける、として、各板厚位置における靭性値をその鋼板の面積平均を取った値に、さらに、板厚中央部の値を重み付けして脆性破壊伝播停止性能を評価することが、記載されている。
 その他、板厚効果を考慮した、脆性破壊伝播停止性能の簡易評価法として、板厚中心部と表層部から採取した試験片で3点曲げ試験を行って得られた結果よりKca値を予測する方法が、特許文献3に提案されている。また、特許文献4には、特殊形状を有する変形シャルピー衝撃試験片を用いて脆性破壊伝播停止性能を評価する技術が提案されている。
 特許文献5には、プレスノッチシャルピー衝撃試験片を用いて板厚が50mm以上の厚鋼板の脆性破壊伝播停止性能を評価する技術が開示されている。そこには、板厚が50mm以上の厚鋼板の板厚の中心部および表面から板厚の1/4の位置から採取しプレスノッチを導入したシャルピー衝撃試験片を用いて、シャルピー衝撃試験を行い、試験片毎のシャルピー衝撃試験にて得られた破面遷移温度vTrsに基いて、脆性破壊伝播停止性能を評価することを特徴とする厚鋼板の脆性破壊伝播停止性能の評価方法が記載されている。
 また、特許文献6には、板厚50mm以上の厚鋼板全体のアレスト性能と、厚鋼板から採取した小型試験片を用いた試験結果との相関関係を高精度で求める方法が開示されている。そこには、小型試験片を板厚方向に沿って複数個採取し、採取位置に応じた最適な方法、すなわち、鋼板表層は落重試験、鋼板内部は脆性破面率や吸収エネルギーを測定する方法、で小型試験を行い、試験結果を適切に組み合わせて、組み合わせ結果より、大型試験で得られるKca値を推定することが提案されている。
特開昭63-67544号公報 特開昭62-274258号公報 特開2008-46106号公報 特開2009-47462号公報 特開2011-33457号公報 特許4795487号公報
溶接学会全国大会講演概要 第49集 P.108(1991) 脆性き裂アレスト設計指針 財団法人 日本海事協会(2009)
 しかしながら、特許文献1~3の試験片の採取方法は、試験片の大きさや、溶接を行った後に再度加工を行うことなど、試験片の作製が煩雑であり必ずしも簡便な方法とは言い難い。特許文献4の技術は、試験片形状が特殊であるため、汎用性に乏しい。また、非特許文献1に記載されている、板厚位置の靭性値を考慮して求めたKca値により大型試験結果を推定する方法では、確かに両者にある程度の相関は認められる。しかしながら、全体としてはばらつきが大きく、大型試験の代りに採用出来るほどには一致していないのが現状である。
 特許文献5や特許文献6の技術は、厚鋼板の板厚方向の複数の位置から試験片を採取して試験を行うことが必要なため、試験片の採取が煩雑であり、必ずしも簡便な方法とは言い難い。
 そこで、本発明は、厚鋼板の脆性破壊伝播停止性能を小型試験で評価する簡易な手法を提供することを目的とする。
 本発明者らは、特許文献5記載の厚鋼板の脆性破壊伝播停止性能の評価方法を用いて、板厚が50mm以上の厚肉材のESSO試験による脆性破壊伝播停止性能とプレスノッチを導入したプレスノッチシャルピー試験片あるいは変形シャルピー試験片(以下、変形プレスノッチシャルピー試験片とする。)によるシャルピー衝撃試験結果の相関について更に検討を加え、以下の知見を新たに得た。図4に、検討に用いた板厚が50mm以上の厚肉材のESSO試験片の破面の模式図を示す。脆性き裂は板厚方向断面で伝播挙動が異なり、板厚中央部の脆性き裂長さが表面部近傍の脆性き裂長さより短く、板厚中央部が凹んだ凹陥部を形成している。なお、板厚が50mm以上の厚肉材のESSO試験片の破面には、図5に示すように板厚中央部は凸部で、板厚中央部を挟んだ上下の領域が凹部を形成する場合がある。しかしながら、本発明においてこれらは対象としない。
1.脆性き裂の板厚方向断面における伝播挙動が異なる場合(図4に示す、板厚中央部に比べ表面部の脆性き裂が長く伝播する場合)でも、板厚中央部の脆性き裂が伝播停止すれば力学的に表面部分の動的応力拡大係数(Dynamic stress intensity factor)は低下し、伝播停止しやすい状況になるため、板厚中央部の脆性き裂伝播停止性能が鋼板全体の脆性き裂伝播停止性能を代表する。
2.鋼板の板厚中央部位置から採取した試験片で行ったプレスノッチシャルピー衝撃試験において吸収エネルギーが20Jから100J(好ましくは25Jから60J)を示す温度は当該鋼板の脆性破壊伝播停止性能の値と良い相関を示す。特に、40Jを示す温度(℃):pT40Jは、当該鋼板の脆性破壊伝播停止性能の値と非常に良い相関を示す。
3.プレスノッチシャルピー吸収エネルギーと脆性破面率には相関があり、2.において、プレスノッチシャルピー吸収エネルギーが20Jから100Jを示す場合には脆性破面率が50%から90%、プレスノッチシャルピー吸収エネルギーが25Jから60Jを示す場合には脆性破面率が60%から90%となる。特に40Jを示す場合、脆性破面率は63%となる。プレスノッチシャルピー試験片の脆性破面率が50%から90%を示す温度(℃)は、プレスノッチシャルピー吸収エネルギーと同様に脆性破壊伝播停止性能の値と良い相関を示す。特に、プレスノッチシャルピー試験片の脆性破面率が63%を示す温度(℃):63%BATT(Brittle area transition temperature)は、プレスノッチシャルピー吸収エネルギーと同様に脆性破壊伝播停止性能の値と非常に良い相関を示す。
4.また、厚鋼板の板厚中央部から採取した、長手に対し直角方向となる断面積を通常の試験片より大きく100mm超えとした変形プレスノッチシャルピー試験片においても破面形態は脆性破壊から延性破壊に遷移しており、脆性き裂伝播停止が試験片内で再現される。一方、厚鋼板の表面近傍で採取した変形プレスノッチシャルピー試験片の破面形態は延性破壊から脆性破壊に遷移するものが多く存在し、脆性き裂伝播停止が試験片内で再現できてない。
 そして同様に鋼板の板厚中央部位置から採取した試験片で行った変形プレスノッチシャルピー衝撃試験においても吸収エネルギーが20Jから225Jを示す温度は当該鋼板の脆性破壊伝播停止性能の値と良い相関を示す。そして変形プレスノッチシャルピー衝撃試験において吸収エネルギーが20Jから225Jを示す場合には、脆性破面率が50%から90%となる。
5.厚鋼板の板厚中央部位置から採取した、長手に対し直角方向となる断面積(矩形断面積)が100mm超えとした試験片で行った変形プレスノッチシャルピー衝撃試験において、変形プレスノッチシャルピー試験片の長手直角方向断面が15mm角の場合は吸収エネルギーが100Jとなる温度(pT100Jと称する)、13mm角の場合は68Jを示す温度(pT68Jと称する)が20~225Jエネルギー遷移温度(℃)となり、当該鋼板の脆性破壊伝播停止性能の値と良い相関を示す。
6.矩形断面積が100mm超えとした変形プレスノッチシャルピー試験片の場合、図3に示すように、変形プレスノッチシャルピー吸収エネルギーと脆性破面率には相関があり、長手方向直角断面が15mm角の場合の変形プレスノッチシャルピー吸収エネルギーが100J、長手方向直角断面が13mm角の場合の変形プレスノッチシャルピー吸収エネルギーが68Jを示す場合の、両方の変形プレスノッチシャルピー試験片の脆性破面率は、63%を示す。変形プレスノッチシャルピー試験片の脆性破面率が63%を示す温度(℃):63%破面遷移温度BATTは、変形プレスノッチシャルピー吸収エネルギーと同様に脆性破壊伝播停止性能の値と良い相関を示すので、シャルピー吸収エネルギーの20~225Jエネルギー遷移温度:pTに換えて、脆性破壊伝播停止性能の評価に用いることが可能である。
 本発明は、上記した知見を基に更に検討を加えてなされたものであり、その要旨は次のとおりである。
[1]50mm以上の厚鋼板につき、その板厚の中心部位置(板厚の40%~60%位置)から採取しプレスノッチを導入したプレスノッチシャルピー衝撃試験片を用いて、プレスノッチシャルピー衝撃試験を行い、試験片毎のシャルピー衝撃試験にて得られた20J~100Jエネルギー遷移温度pTに基いて、あるいは50~90%の破面遷移温度BATTに基づいて脆性破壊伝播停止性能を評価することを特徴とする厚鋼板の脆性破壊伝播停止性能の評価方法。
[2]前記エネルギー遷移温度pTあるいは破面遷移温度BATTに基いて、下記式(1-1)に従って算出されるTkをもって、脆性破壊伝播停止性能(Kca値)がある値となる温度を推定することを特徴とする請求項1に記載の厚鋼板の脆性破壊伝播停止性能の評価方法。
Tk=a×(pT or BATT)+b・・・(1-1)
但し、pT:プレスノッチシャルピー吸収エネルギーの20~100Jエネルギー遷移温度(℃)。BATT:50~90%の破面遷移温度(℃)。a、bは係数。
[3]厚鋼板の脆性破壊伝播停止性能を、小型試験より推定する厚鋼板の脆性破壊伝播停止性能の評価方法であって、前記小型試験は、採取位置が板厚中心部位置で、プレスノッチが脆性亀裂の伝播方向に導入されたプレスノッチシャルピー衝撃試験片によるプレスノッチシャルピー衝撃試験で、前記シャルピー衝撃試験で求めたプレスノッチシャルピー吸収エネルギーが40Jを示す温度(℃):pT40Jに基いて、脆性破壊伝播停止性能を評価することを特徴とする厚鋼板の脆性破壊伝播停止性能の評価方法。
[4]前記pT40Jに基いて、式(1-2)に従って算出されるTkを、脆性破壊伝播停止性能(Kca値)が6000N/mm1.5となる温度として、脆性破壊伝播停止性能を評価することを特徴とする[3]に記載の厚鋼板の脆性破壊伝播停止性能の評価方法。
Tk=a×pT40J+b・・・(1-2)
但し、pT40J:プレスノッチシャルピー吸収エネルギーが40Jを示す温度。a、bは係数。
[5]pT40Jに換えて、プレスノッチシャルピー試験片の脆性破面率が63%を示す温度:63%BATTを用いることを特徴とする[3]または[4]に記載の厚鋼板の脆性破壊伝播停止性能の評価方法。
[6]厚鋼板の脆性破壊伝播停止性能を、小型試験より推定する厚鋼板の脆性破壊伝播停止性能の評価方法であって、前記小型試験は、採取位置が板厚中心部位置で、プレスノッチが脆性亀裂の伝播方向に導入され、矩形断面積が100mm超えの変形プレスノッチシャルピー衝撃試験片による変形プレスノッチシャルピー衝撃試験で、前記シャルピー衝撃試験で求めた変形プレスノッチシャルピー吸収エネルギーの20~225Jエネルギー遷移温度:pT(℃)に基いて、脆性破壊伝播停止性能(Kca値)を評価することを特徴とする厚鋼板の脆性破壊伝播停止性能の評価方法。
[7]前記pT(℃)に基いて、式(3)に従って算出されるTk(℃)を、脆性破壊伝播停止性能(Kca値)が目標値となる停止温度とし、前記停止温度と前記脆性破壊伝播停止性能(Kca値)の目標値が設定された設定温度を比較して、脆性破壊伝播停止性能を評価することを特徴とする[6]に記載の厚鋼板の脆性破壊伝播停止性能の評価方法。
Tk=a×pT+b・・・(3)
但し、pT:変形プレスノッチシャルピー吸収エネルギーの20~225Jエネルギー遷移温度(℃)。a、bは係数。
[8]pT(℃)に換えて、変形プレスノッチシャルピー衝撃試験片の脆性破面率が50~90%の破面遷移を示す50~90%の破面遷移温度BATT(℃)を用いることを特徴とする[6]または[7]に記載の厚鋼板の脆性破壊伝播停止性能の評価方法。
 本発明によれば、板厚50mm以上の厚鋼板の脆性破壊伝播停止性能を、ESSO試験など大型の脆性亀裂伝播試験を行わずとも、通常のシャルピー衝撃試験と同様のサイズの試験片を用いて、板厚採取箇所が1箇所で簡便かつ精度良く評価できるため、産業上極めて有用である。
図1は、プレスノッチシャルピー試験片あるいは変形プレスノッチシャルピー試験片の採取位置(板厚の50%の例)を示す図である。 図2(a)はプレスノッチシャルピー試験片を示す図であり、(b)は変形プレスノッチシャルピー試験片を示す図である。 図3は、矩形断面積が100mm超えとした変形プレスノッチシャルピー試験片による変形プレスノッチシャルピー衝撃試験で、変形プレスノッチシャルピー吸収エネルギー(J)と脆性破面率(%)の関係を示す図である(変形プレスノッチシャルピー試験片の長手直角方向断面が13mm角、15mm角の場合)。 図4は、板厚が50mm以上の厚肉材のESSO試験片の破面の模式図である。 図5は、板厚が50mm以上の厚肉材のESSO試験片の他の破面の模式図である。 図6は、プレスノッチシャルピー吸収エネルギーと脆性破面率の関係を示す図である。
 本発明は、板厚が50mm以上で、ESSO試験片の破面が図4の模式図に示す形状となる厚鋼板を対象とし、脆性破壊伝播停止性能を、プレスノッチシャルピー試験結果あるいは変形プレスノッチシャルピー試験結果を用いて推定する評価方法である。
 シャルピー試験は、採取位置が板厚中心部位置で、プレスノッチが脆性亀裂の伝播方向に導入されたプレスノッチシャルピー試験片あるいは変形プレスノッチシャルピー試験片を用いて行う衝撃試験とする。なお、長手直角方向断面積(矩形断面積)が100mm超えの変形スプレノッチシャルピー試験片の場合、100mm~225mmの試験片とする。採取位置が板厚中心部位置とは、プレスノッチシャルピー試験あるいは変形プレスノッチシャルピー試験片の試験片幅中心が鋼板の板厚の40%~60%位置に合わせて採取することを指す。図1は板厚の50%位置に合わせて採取した場合の模式図である。
 切り欠きによるノッチではなく、プレスによるノッチを導入したシャルピー試験片を用いた場合に、シャルピー試験結果が、脆性亀裂伝播性能試験の結果と良い相関を示すため、プレスノッチシャルピー試験片とする。
 プレスノッチは、以下のように導入することが好ましい。試験片方向を考慮したうえで、試験片を採取すべき素材を分割・切断し、さらに、外形仕上げ加工を施して得られた直方体状の小鋼片に対して、切り欠き部を刃型で圧入する。本発明は、図2(a)に示すように本体の寸法を、長手方向を55mm、長手直角方向断面の寸法を10×10mm、または、図2(b)に示すように、本体の寸法を、長手方向を50~60mm、長手直角方向断面の寸法を(10~15)×(10~15)mmとした、深さ2mm、角度45度の2mmV切欠きとなるプレスノッチシャルピー試験片あるいは変形プレスノッチシャルピー試験片を用いる。
 プレスノッチシャルピー試験あるいは変形プレスノッチシャルピー試験では、得られる試験結果から、脆性破壊発生特性の影響を排除する必要がある。このため試験後のプレスノッチシャルピー試験あるいは変形プレスノッチシャルピー試験片を観察し、脆性亀裂から破壊が発生していない試験片は脆性亀裂伝播停止性能の評価をしていないとみなして、試験結果より削除する。脆性亀裂から破壊が発生している試験片のみで整理した衝撃試験結果は、脆性破壊発生特性の影響を排除し、脆性破壊伝播停止性能のみを反映したものになる。
 本発明では、プレスノッチシャルピー試験にて得られた吸収エネルギーが20Jから100Jとなる20J~100Jエネルギー遷移温度(℃):pTに基づいて脆性破壊伝播停止性能を評価する。特に本発明では、プレスノッチシャルピー試験にて得られた吸収エネルギーが40Jを示す温度:pT40Jに基づいて脆性破壊伝播停止性能を評価する。以下に、脆性破壊伝播停止性能Kca値が6000N/mm1.5となる温度の推定をもって脆性破壊伝播停止性能を評価する場合について説明する。
 板厚75mm以下の鋼板の場合、-10℃におけるKca値が6000N/mm1.5以上であれば、-10℃において脆性亀裂が停止する(非特許文献2)。プレスノッチシャルピー試験を行って得られた吸収エネルギーが20Jから100Jとなる20J~100Jエネルギー遷移温度:pT(℃)、または、吸収エネルギーが40Jを示す40Jエネルギー遷移温度pT40Jから、Kca値が6000N/mm1.5となる温度を求め、当該温度が、-10℃より高いか低いかによって、脆性破壊伝播停止性能を評価する。
 STEP1  
 板厚が50mm以上の厚鋼板に対して、その板厚の中心部位置からプレスノッチシャルピー衝撃試験片を採取し、プレスノッチを導入してから、種々の試験温度にてシャルピー衝撃試験を行う。プレスノッチの導入方向は、亀裂の伝播する方向に採取すべきであるため、ESSO試験におけるノッチ方向に併せて、具体的には圧延方向もしくは圧延幅方向に入れる。
 STEP2
 プレスノッチシャルピー衝撃試験の結果より、吸収エネルギーが20J~100Jとなる温度をpT、または、吸収エネルギーが40Jを示す温度をpT40Jとし、その値を(1-1)式または(1-2)式に代入してTk*を求める。ここで求まるTk*は、ESSO試験により測定される、脆性破壊伝播停止性能Kca値が6000N/mm1.5となる温度:Tk(6000)と極めて良好な相関を示す。前記の如く算出したTk*をもって、脆性破壊伝播停止性能の評価が可能になる。
Tk=a×(pT or BATT)+b・・・(1-1)
但し、pT:プレスノッチシャルピー吸収エネルギーの20~100Jエネルギー遷移温度(℃)。BATT:50~90%の破面遷移温度(℃)。a、bは係数。
Tk=a×pT40J+b・・・(1-2)
但し、pT40J:プレスノッチシャルピー吸収エネルギーが40Jを示す温度。a、bは係数。
 脆性破壊伝播停止性能を評価しようとする鋼板の降伏強度が360MPaクラス以上の場合、0.4<a<1.5、0<b<40の範囲で良い相関が得られる。
 式(1-2)は、種々の試験片について板厚中心部のpT40Jを測定するとともに、これら試験片と共通の試験体についてESSO試験を行って温度:Tk(6000)を求め、これらの測定結果を整理し、板厚中心部のpT40Jと温度:Tk(6000)との相関を求めた実験式である。
 プレスノッチシャルピー吸収エネルギーと脆性破面率は相関があることが知られている。プレスノッチシャルピー吸収エネルギーが20Jから100Jを示す場合には脆性破面率が50%から90%、吸収エネルギーが25Jから60Jを示す場合には脆性破面率が60%から90%となる。特に、プレスノッチシャルピー吸収エネルギーが40Jを示す温度では、プレスノッチより発生した脆性亀裂が、鋼板の特性により停止したと認識できる破面率(本発明では、脆性破面率が63%)が得られる。
 図6にプレスノッチシャルピー吸収エネルギーと脆性破面率の関係を示す。すなわち、式(1-1)のpT(℃)を50~90%の破面遷移温度BATT(℃)に置き換えても温度:Tk(6000)(℃)と良い相関が得られる。
 脆性破面率が63%を示す温度を63%BATTと規定した場合、63%BATTとpT40Jとは略同じ温度である。
 STEP3
 温度:Tk(6000)が-10℃より低い場合、脆性破壊伝播停止性能に優れると判定する。
 本発明は、脆性破壊伝播停止性能(Kca値)が4000N/mm1.5や8000N/mm1.5など、6000N/mm1.5以外の値をとる場合についても、適用可能であり、それぞれ実験結果から相関式を導くことによって、上記と同様の評価が可能となる。
 脆性破壊伝播停止性能を評価しようとする同一鋼種の厚鋼板が複数枚ある場合、そのうちの一枚について、予備的に本発明を実施して、当該鋼板の脆性破壊伝播停止性能を評価しておき、他の鋼板については試験温度pT40Jにおけるプレスノッチシャルピーの吸収エネルギー(J)を求めて、次式により、-10℃における脆性き裂伝播停止性能を判定することが可能である。(2)式を満足する鋼板の場合、脆性き裂伝播停止性能に優れている。
pE≧40(J)・・・(2)
pE:プレスノッチシャルピーの吸収エネルギー(J)
 次に、本発明では、矩形断面積が100mm超えとした変形プレスノッチシャルピー試験片の場合、変形プレスノッチシャルピー試験にて得られた吸収エネルギーが20~225Jとなる20~225Jエネルギー遷移温度(℃):pTに基づいて脆性破壊伝播停止性能を評価する。以下に、脆性破壊伝播停止性能Kca値が6000N/mm1.5となる温度の推定をもって脆性破壊伝播停止性能を評価する場合について説明する。
 板厚75mm以下の鋼板の場合、-10℃におけるKca値が6000N/mm1.5以上であれば、-10℃において脆性亀裂が停止する(非特許文献2)。変形プレスノッチシャルピー試験片を用いたシャルピー試験を行って得られる吸収エネルギーが20~225Jエネルギー遷移温度:pT(℃)を用いて、Kca値が6000N/mm1.5となる温度を求め、当該温度が、-10℃より高いか低いかによって、脆性破壊伝播停止性能を評価する。
 STEP1:
 板厚が50mm以上の厚鋼板に対して、その板厚の中心部位置から変形プレスノッチシャルピー衝撃試験片を採取し、プレスノッチを導入してから、種々の試験温度にてシャルピー衝撃試験を行う。プレスノッチの導入方向は、亀裂の伝播する方向に採取すべきであるため、ESSO試験におけるノッチ方向に併せて、具体的には圧延方向もしくは圧延幅方向に入れる。
 STEP2
 シャルピー衝撃試験の結果より、吸収エネルギーが20~225Jとなる温度を求めて20~225Jエネルギー遷移温度:pT(℃)とし、その値を(3)式に代入してTk(℃)を求める。ここで求まるTk(℃)は、ESSO試験により測定される、脆性破壊伝播停止性能Kca値が6000N/mm1.5となる温度:Tk(6000)(℃)と極めて良好な相関を示す。前記の如く算出したTk(℃)で、脆性破壊伝播停止性能の評価が可能になる。
Tk=a×pT+b・・・(3)
但し、pT:20~225Jエネルギー遷移温度(変形プレスノッチシャルピー吸収エネルギーが15mm角の場合は100J、13mm角の場合は68Jを示す温度)、a、bは係数。
 脆性破壊伝播停止性能を評価しようとする鋼板の降伏強度が360MPaクラス以上の場合、0.4<a<1.5、0<b<40の範囲で良い相関が得られる。
 式(3)は、種々の試験片について板厚中心部の変形プレスノッチシャルピー吸収エネルギーが15mm角の場合は100J、13mm角の場合は68Jを示す場合のpT(℃)を測定するとともに、これら試験片と共通の試験体についてESSO試験を行って温度:Tk(6000)(℃)を求め、これらの測定結果を整理し、pT(℃)と温度:Tk(6000)(℃)との相関を求めた実験式である。
 変形プレスノッチシャルピー吸収エネルギーと脆性破面率は相関があることが知られている。変形プレスノッチシャルピー吸収エネルギーが15mm角の場合は100J、13mm角の場合は68Jを示す温度では、プレスノッチより発生した脆性亀裂が、鋼板の特性により停止したと認識できる破面率(本発明では、脆性破面率が63%)が得られる。脆性破面率が63%を示す温度を63%BATT(℃)と規定した場合、63%BATT(℃)と変形プレスノッチシャルピー吸収エネルギーが15mm角の場合は100J、13mm角の場合は68Jを示す温度とは略同じ温度で、式(3)のpT(℃)を63%BATT(50~90%の破面遷移温度BATT)(℃)に置き換えても温度:Tk(6000)(℃)と良い相関が得られる。
 STEP3
 温度:Tk(6000)(℃)が-10℃より低い場合、脆性破壊伝播停止性能に優れると判定する。
 本発明は、脆性破壊伝播停止性能(Kca値)が4000N/mm1.5や8000N/mm1.5など、6000N/mm1.5以外の値をとる場合についても、適用可能であり、それぞれ実験結果から相関式を導くことによって、上記と同様の評価が可能となる。
 脆性破壊伝播停止性能を評価しようとする同一鋼種の厚鋼板が複数枚ある場合、そのうちの一枚について、予備的に本発明を実施して、当該鋼板の脆性破壊伝播停止性能を評価しておき、他の鋼板については試験温度pTにおける変形プレスノッチシャルピー試験片の吸収エネルギー(J)を求めて、次式により、-10℃における脆性き裂伝播停止性能を判定することが可能である。15mm角の変形プレスノッチシャルピー試験片で試験温度pT100(℃)で(4)式を満足する鋼板の場合、脆性き裂伝播停止性能に優れている。
pE≧100(J)・・・(4)
pE:試験温度pT(℃)における変形プレスノッチシャルピーの吸収エネルギー(J)
 板厚50mm以上の厚鋼板について、板厚中心部よりシャルピー衝撃試験片素材を採取し、硬鋼で作製された刃型を用いて該試験片素材に変形プレスノッチを導入し、シャルピー衝撃試験に供した。表1に厚鋼板の成分組成を、表2に製造条件を示す。なお、プレスノッチシャルピー衝撃試験片の矩形断面積は100mm(10mm角)とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 シャルピー衝撃試験は種々の温度にて行い、プレスノッチシャルピー吸収エネルギーが40Jを示す温度:pT40Jを求めた。プレスノッチシャルピー衝撃試験では、試験後にプレスノッチシャルピー衝撃試験片を観察し、脆性亀裂から破壊が発生していない試験片は脆性亀裂伝播停止性能の評価をしていないものとみなして除外して、各試験温度において脆性亀裂から破壊が発生した試験片5本の平均値をとった。その後、上記した(1-2)式にpT40Jの値を代入し、温度Tk*を求めた。また上記した(1-2)式にpT40Jの値に換えて63%BATTを代入し、温度Tk**を求めた。
 一方、同じ厚鋼板に対して、プレスノッチシャルピー衝撃試験と併せて、大型の脆性亀裂伝播試験として、ESSO試験を行い、Kca値が6000N/mm1.5となる温度:Tk6000を求めた。表3にTk*、Tk**及びTk6000を示す。比較例は従来予測に使われていたVノッチシャルピー試験片の延性脆性破面遷移温度vTrsを基に予測した結果である。
 比較例では、予測誤差が大きく誤差が30℃以上ある。一方、本発明では予測誤差が全て10℃以内と非常に精度良く、本発明による脆性亀裂伝播停止性能の評価方法の有用性が確認された。
Figure JPOXMLDOC01-appb-T000003
 板厚50mm以上の厚鋼板について、板厚中心部よりシャルピー衝撃試験片素材を採取し、硬鋼で作製された刃型を用いて該試験片素材に変形プレスノッチを導入し、シャルピー衝撃試験に供した。変形プレスノッチシャルピー試験片は長手方向直角断面が15mm角と13mm角を製作した。表4に厚鋼板の成分組成を、表5に製造条件を示す。
Figure JPOXMLDOC01-appb-T000005
 シャルピー衝撃試験は種々の温度にて行い、変形プレスノッチシャルピー吸収エネルギーが15mm角は100Jを示す温度:pT100(℃)、13mm角は68Jを示す温度:pT68(℃)を求めた。変形プレスノッチシャルピー衝撃試験では、試験後に変形プレスノッチシャルピー衝撃試験片を観察し、脆性亀裂から破壊が発生していない試験片は脆性亀裂伝播停止性能の評価をしていないものとみなして除外して、各試験温度において脆性亀裂から破壊が発生した試験片5本の平均値をとった。その後、上記した(3)式にpT100(℃)、またはpT68(℃)の値を代入し、15mm角と13mm角のそれぞれの温度Tk*(℃)を求めた。また、脆性破面率から求まる15mm角と13mm角のそれぞれの温度Tk**も同様の方法で求めた。
 一方、同じ厚鋼板に対して、変形プレスノッチシャルピー衝撃試験と併せて、大型の脆性亀裂伝播試験として、ESSO試験を行い、Kca値が6000N/mm1.5となる温度:Tk6000(℃)を求めた。表6、7にTk(℃)及びTk6000(℃)を示す。比較例は従来予測に使われていたVノッチシャルピー試験片の延性脆性破面遷移温度vTrsを基に予測した結果である。
 比較例では、予測誤差が大きく誤差が30℃以上ある。一方、本発明では予測誤差が全て10℃以内と非常に精度良く、本発明による脆性亀裂伝播停止性能の評価方法の有用性が確認された。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 1  プレスノッチシャルピー試験片あるいは変形プレスノッチシャルピー衝撃試験片
 2  2mmVプレスノッチ

Claims (8)

  1.  50mm以上の厚鋼板につき、その板厚の中心部位置(板厚の40%~60%位置)から採取しプレスノッチを導入したプレスノッチシャルピー衝撃試験片を用いて、プレスノッチシャルピー衝撃試験を行い、試験片毎のシャルピー衝撃試験にて得られた20J~100Jエネルギー遷移温度pTに基いて、あるいは50~90%の破面遷移温度BATTに基づいて脆性破壊伝播停止性能を評価することを特徴とする厚鋼板の脆性破壊伝播停止性能の評価方法。
  2.  前記エネルギー遷移温度pTあるいは破面遷移温度BATTに基いて、下記式(1-1)に従って算出されるTkをもって、脆性破壊伝播停止性能(Kca値)がある値となる温度を推定することを特徴とする請求項1に記載の厚鋼板の脆性破壊伝播停止性能の評価方法。
    Tk=a×(pT or BATT)+b・・・(1-1)
    但し、pT:プレスノッチシャルピー吸収エネルギーの20~100Jエネルギー遷移温度(℃)。BATT:50~90%の破面遷移温度(℃)。a、bは係数。
  3.  厚鋼板の脆性破壊伝播停止性能を、小型試験より推定する厚鋼板の脆性破壊伝播停止性能の評価方法であって、前記小型試験は、採取位置が板厚中心部位置で、プレスノッチが脆性亀裂の伝播方向に導入されたプレスノッチシャルピー衝撃試験片によるプレスノッチシャルピー衝撃試験で、前記シャルピー衝撃試験で求めたプレスノッチシャルピー吸収エネルギーが40Jを示す温度(℃):pT40Jに基いて、脆性破壊伝播停止性能を評価することを特徴とする厚鋼板の脆性破壊伝播停止性能の評価方法。
  4.  前記pT40Jに基いて、式(1-2)に従って算出されるTkを、脆性破壊伝播停止性能(Kca値)が6000N/mm1.5となる温度として、脆性破壊伝播停止性能を評価することを特徴とする請求項3に記載の厚鋼板の脆性破壊伝播停止性能の評価方法。
    Tk=a×pT40J+b・・・(1-2)
    但し、pT40J:プレスノッチシャルピー吸収エネルギーが40Jを示す温度。a、bは係数。
  5.  pT40Jに換えて、プレスノッチシャルピー試験片の脆性破面率が63%を示す温度:63%BATTを用いることを特徴とする請求項3または4に記載の厚鋼板の脆性破壊伝播停止性能の評価方法。
  6.  厚鋼板の脆性破壊伝播停止性能を、小型試験より推定する厚鋼板の脆性破壊伝播停止性能の評価方法であって、前記小型試験は、採取位置が板厚中心部位置で、プレスノッチが脆性亀裂の伝播方向に導入され、矩形断面積が100mm超えの変形プレスノッチシャルピー衝撃試験片による変形プレスノッチシャルピー衝撃試験で、前記シャルピー衝撃試験で求めたシャルピー吸収エネルギーの20~225Jエネルギー遷移温度:pT(℃)に基いて、脆性破壊伝播停止性能(Kca値)を評価することを特徴とする厚鋼板の脆性破壊伝播停止性能の評価方法。
  7.  前記pT(℃)に基いて、式(3)に従って算出されるTk(℃)を、脆性破壊伝播停止性能(Kca値)が目標値となる停止温度とし、前記停止温度と前記脆性破壊伝播停止性能(Kca値)の目標値が設定された設定温度を比較して、脆性破壊伝播停止性能を評価することを特徴とする請求項6に記載の厚鋼板の脆性破壊伝播停止性能の評価方法。
    Tk=a×pT+b・・・(3)
    但し、pT:変形プレスノッチシャルピー吸収エネルギーの20~225Jエネルギー遷移温度(℃)。a、bは係数。
  8.  pT(℃)に換えて、変形プレスノッチシャルピー衝撃試験片の脆性破面率が50~90%の破面遷移を示す50~90%の破面遷移温度BATT(℃)を用いることを特徴とする請求項6または7に記載の厚鋼板の脆性破壊伝播停止性能の評価方法。
PCT/JP2014/003352 2013-06-26 2014-06-23 厚鋼板の脆性破壊伝播停止性能の評価方法 WO2014208072A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480031789.5A CN105308431B (zh) 2013-06-26 2014-06-23 厚钢板的脆性断裂传播停止性能的评价方法
KR1020157034598A KR101813351B1 (ko) 2013-06-26 2014-06-23 후강판의 취성 파괴 전파 정지 성능의 평가 방법
BR112015032521-1A BR112015032521B1 (pt) 2013-06-26 2014-06-23 método para avaliar a capacidade de interrupção de propagação de rachadura frágil de placa de aço espessa

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013133849A JP5682663B2 (ja) 2013-06-26 2013-06-26 厚鋼板の脆性破壊伝播停止性能の評価方法
JP2013-133849 2013-06-26
JP2013157422A JP5582233B1 (ja) 2013-07-30 2013-07-30 厚鋼板の脆性破壊伝播停止性能の評価方法
JP2013-157422 2013-07-30

Publications (1)

Publication Number Publication Date
WO2014208072A1 true WO2014208072A1 (ja) 2014-12-31

Family

ID=52141431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003352 WO2014208072A1 (ja) 2013-06-26 2014-06-23 厚鋼板の脆性破壊伝播停止性能の評価方法

Country Status (5)

Country Link
KR (1) KR101813351B1 (ja)
CN (1) CN105308431B (ja)
BR (1) BR112015032521B1 (ja)
TW (1) TWI530680B (ja)
WO (1) WO2014208072A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003377A (ja) * 2015-06-09 2017-01-05 Jfeスチール株式会社 厚鋼板の脆性破壊伝播停止性能の評価方法
JP2019158423A (ja) * 2018-03-08 2019-09-19 三菱重工業株式会社 衝撃試験分析装置、衝撃試験分析システム、衝撃試験分析方法及びプログラム
CN115330726A (zh) * 2022-08-16 2022-11-11 广东中鉴检测技术有限公司 一种钢筋保护层质量及墙体质量快速评定系统
KR20230159710A (ko) 2021-06-10 2023-11-21 제이에프이 스틸 가부시키가이샤 후강판의 취성 균열 전파 정지 성능의 평가 방법
KR20240090903A (ko) 2021-11-29 2024-06-21 제이에프이 스틸 가부시키가이샤 후강판의 취성 균열 전파 정지 성능의 평가 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895274A (zh) * 2018-09-11 2020-03-20 中国石化工程建设有限公司 测试钢材的回火脆性的方法及其应用
CN118566036B (zh) * 2024-08-02 2024-11-22 洛阳船舶材料研究所(中国船舶集团有限公司第七二五研究所) 一种基于夏比冲击试验预测止裂钢止裂韧性的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130824A (ja) * 2001-10-22 2003-05-08 Nippon Steel Corp 厚鋼板の出荷判定方法
JP2011033457A (ja) * 2009-07-31 2011-02-17 Jfe Steel Corp 厚鋼板の脆性破壊伝播停止性能の評価方法
WO2012108543A1 (ja) * 2011-02-08 2012-08-16 Jfeスチール株式会社 長大脆性き裂伝播停止特性に優れる板厚50mm以上の厚鋼板およびその製造方法ならびに長大脆性き裂伝播停止性能を評価する方法および試験装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274258A (ja) 1986-05-23 1987-11-28 Nippon Kokan Kk <Nkk> 脆性亀裂伝播停止特性の評価試験方法
JPS6367544A (ja) 1986-09-10 1988-03-26 Nippon Kokan Kk <Nkk> プレスノツチdwtt試験方法
JP4782067B2 (ja) 2006-07-19 2011-09-28 新日本製鐵株式会社 厚鋼板の脆性き裂伝播停止特性の品質管理方法
JP4823986B2 (ja) 2007-08-15 2011-11-24 新日本製鐵株式会社 厚鋼板の脆性破壊伝播停止特性評価用の変形シャルピー衝撃試験片および厚鋼板の脆性破壊伝播停止特性の品質管理方法
WO2011108135A1 (ja) 2010-03-04 2011-09-09 新日本製鐵株式会社 高強度厚鋼板の脆性き裂伝播停止性能の判定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130824A (ja) * 2001-10-22 2003-05-08 Nippon Steel Corp 厚鋼板の出荷判定方法
JP2011033457A (ja) * 2009-07-31 2011-02-17 Jfe Steel Corp 厚鋼板の脆性破壊伝播停止性能の評価方法
WO2012108543A1 (ja) * 2011-02-08 2012-08-16 Jfeスチール株式会社 長大脆性き裂伝播停止特性に優れる板厚50mm以上の厚鋼板およびその製造方法ならびに長大脆性き裂伝播停止性能を評価する方法および試験装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003377A (ja) * 2015-06-09 2017-01-05 Jfeスチール株式会社 厚鋼板の脆性破壊伝播停止性能の評価方法
JP2019158423A (ja) * 2018-03-08 2019-09-19 三菱重工業株式会社 衝撃試験分析装置、衝撃試験分析システム、衝撃試験分析方法及びプログラム
JP6998243B2 (ja) 2018-03-08 2022-01-18 三菱重工業株式会社 衝撃試験分析装置、衝撃試験分析システム、衝撃試験分析方法及びプログラム
KR20230159710A (ko) 2021-06-10 2023-11-21 제이에프이 스틸 가부시키가이샤 후강판의 취성 균열 전파 정지 성능의 평가 방법
KR20240090903A (ko) 2021-11-29 2024-06-21 제이에프이 스틸 가부시키가이샤 후강판의 취성 균열 전파 정지 성능의 평가 방법
CN115330726A (zh) * 2022-08-16 2022-11-11 广东中鉴检测技术有限公司 一种钢筋保护层质量及墙体质量快速评定系统

Also Published As

Publication number Publication date
BR112015032521A2 (pt) 2017-07-25
CN105308431B (zh) 2017-11-28
TWI530680B (zh) 2016-04-21
KR101813351B1 (ko) 2017-12-28
BR112015032521B1 (pt) 2020-11-10
TW201510524A (zh) 2015-03-16
CN105308431A (zh) 2016-02-03
KR20160009589A (ko) 2016-01-26

Similar Documents

Publication Publication Date Title
WO2014208072A1 (ja) 厚鋼板の脆性破壊伝播停止性能の評価方法
JP5304520B2 (ja) 厚鋼板の脆性破壊伝播停止性能の評価方法
JP4782067B2 (ja) 厚鋼板の脆性き裂伝播停止特性の品質管理方法
EP2508866B1 (en) Method for determination of brittle crack propagation stopping performance in high-intensity thick steel plate
JP4782084B2 (ja) 厚鋼板の脆性き裂伝播停止特性の判定方法
JP6308171B2 (ja) 厚鋼板の脆性破壊伝播停止性能の評価方法
JP5582233B1 (ja) 厚鋼板の脆性破壊伝播停止性能の評価方法
JP7188655B1 (ja) 厚鋼板の脆性亀裂伝播停止性能の評価方法
JP4823986B2 (ja) 厚鋼板の脆性破壊伝播停止特性評価用の変形シャルピー衝撃試験片および厚鋼板の脆性破壊伝播停止特性の品質管理方法
CN111433585A (zh) 厚钢板的脆性裂纹传播停止性能的评价方法
JP5682663B2 (ja) 厚鋼板の脆性破壊伝播停止性能の評価方法
CN102374951A (zh) 一种评价延性金属材料撕裂韧性的方法
JP5962578B2 (ja) 軟質溶接継手の継手強度評価方法
JP7252525B1 (ja) 厚鋼板の脆性亀裂伝播停止性能の評価方法
JP2011179984A (ja) 落重破壊特性の評価方法
Pilhagen et al. Delaminations by cleavage cracking in duplex stainless steels at sub-zero temperatures
KR20130125822A (ko) 판두께 방향의 내피로 특성이 우수한 후강판 및 그의 제조 방법, 그 후강판을 이용한 필렛 용접 조인트
Goritskii et al. Nature of anisotropy of impact toughness of structural steels with ferrite-pearlite structure
JP7299554B1 (ja) 溶接構造体、ならびにその設計方法および施工方法
Aihara et al. Numerical and experimental analysis of brittle crack propagation and arrest in steels
JPS62274258A (ja) 脆性亀裂伝播停止特性の評価試験方法
RU2507296C1 (ru) Хладостойкая arc-сталь высокой прочности
Tayyebi Behaviour and design of direct-formed hollow structural section members
Chiew et al. Comparative study on cold-formed, hot-formed and hotfinished structural hollow sections
WO2012133872A1 (ja) 板厚方向の耐疲労特性に優れた厚鋼板およびその製造方法、その厚鋼板を用いた隅肉溶接継手

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480031789.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157034598

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015032521

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14818488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015032521

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151223