WO2014208023A1 - 除湿システム - Google Patents
除湿システム Download PDFInfo
- Publication number
- WO2014208023A1 WO2014208023A1 PCT/JP2014/003043 JP2014003043W WO2014208023A1 WO 2014208023 A1 WO2014208023 A1 WO 2014208023A1 JP 2014003043 W JP2014003043 W JP 2014003043W WO 2014208023 A1 WO2014208023 A1 WO 2014208023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- adsorption
- dehumidification
- regeneration
- air
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
- F24F3/1429—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
Definitions
- the present invention relates to a dehumidification system, and more particularly to a dehumidification system including a dehumidification unit that uses two adsorption heat exchangers by alternately switching between an adsorption side and a regeneration side.
- a dehumidification unit that uses two adsorption heat exchangers carrying an adsorbent by alternately switching between an adsorption side and a regeneration side is used to dehumidify or humidify an indoor space that is a dehumidifying target space.
- the air dehumidified by the adsorption heat exchanger on the adsorption side is supplied to the room, while the air that has regenerated the adsorbent through the adsorption heat exchanger on the regeneration side is outdoor. To be discharged.
- FIG. 1 when performing the operation of dehumidifying the room, as shown in FIG.
- the room air (RA) is supplied to the adsorption heat exchanger (EX1, EX2) on the adsorption side and dehumidified, and then supplied to the room (SA)
- outdoor air (OA) is supplied to the regeneration-side adsorption heat exchanger (EX2, EX1) to regenerate the adsorbent, and then discharged to the outside as exhaust (EA). This is a so-called air circulation type operation.
- the dehumidifying unit when applied to a warehouse for storing food and seeds, it is necessary to dry the room by setting the room air to a low dew point temperature (for example, about 5 ° C. to minus 20 ° C.). There is.
- a low dew point temperature for example, about 5 ° C. to minus 20 ° C.
- the present invention has been made in view of such problems, and its purpose is to provide regeneration in a dehumidification system including a dehumidification unit that uses two adsorption heat exchangers alternately on an adsorption side and a regeneration side. It is to put into practical use a configuration in which the dew point temperature of room air can be lowered without raising the temperature.
- the 1st invention is equipped with the dehumidification apparatus (10) which supplies dehumidified air to dehumidification object space (S), and the said dehumidification apparatus (10) is a dehumidification provided with the adsorption
- the system is assumed.
- the dehumidifying device (10) of the dehumidifying system includes a front-stage dehumidifying unit (20) that performs dehumidification in the front stage, and a rear-stage dehumidifying unit (30) that performs dehumidification in the rear stage.
- An indoor circulation circuit (12) is circulated, and an intermediate circulation circuit (13) is constructed in which intermediate air circulates between the adsorption part of the upstream dehumidification unit (20) and the regeneration part of the downstream dehumidification unit (30). It is characterized by having.
- two adsorption heat exchangers in which both the front-stage dehumidification unit (20) and the rear-stage dehumidification unit (30) are alternately switched between the adsorption section and the regeneration section. 47).
- the intermediate circulation circuit (13) dehumidifies air at the adsorption unit of the front dehumidification unit (20) to generate dry air.
- the regeneration unit of the rear dehumidifying unit (30) is regenerated by the dry air.
- the moisture content of the adsorbing member (45) (adsorption heat exchanger (46, 47)) of the rear-stage dehumidifying unit (30) regenerated in this way should be less than when no intermediate circulation circuit (13) is provided. Can do.
- a plurality of rear stage dehumidifying units (30) are connected in parallel to the front stage dehumidifying unit (20), and each rear stage dehumidifying unit (30) performs adsorption heat exchange.
- the timing for switching the container (46, 47) between the adsorption unit and the regeneration unit is different from each other. For example, in each post-dehumidification unit (30), the time interval (length of time) at which the adsorption heat exchanger (46, 47) is switched between the adsorption unit and the regeneration unit is the same, but the switching time is different.
- the timing for switching the adsorption heat exchanger (46, 47) to the adsorption unit and the regeneration unit in the plurality of subsequent dehumidifying units (30) is the same, the temperature fluctuation and humidity fluctuation in the room tend to increase.
- the timing for switching the adsorption heat exchanger (46, 47) to the adsorption unit and the regeneration unit in the plurality of subsequent dehumidification units (30) is different from each other, so that the temperature fluctuations in the room And humidity fluctuations are suppressed.
- the amount of processing air per unit of the front-stage dehumidifying unit (20) is set larger than the amount of processing air per unit of the rear-stage dehumidifying unit (30). It is characterized by that.
- the processing air volume per unit of the upstream dehumidifying unit (20) It is set more than the processing air volume per unit.
- the intermediate circulation circuit (13) is provided with a return passage (16) for returning a part of the air from the regeneration side outlet to the regeneration side inlet of the downstream dehumidifying unit (30). It is characterized by having.
- the return passage (16) when the air volume of the intermediate air supplied from the upstream dehumidifying unit (20) to the downstream dehumidifying unit (30) is smaller than the processing air volume of the downstream dehumidifying unit (30), the return passage (16) The air volume can be balanced by letting air flow through.
- the adsorption heat exchanger (46, 47) is regenerated from the adsorption unit with the front-stage dehumidification unit (20) and the rear-stage dehumidification unit (30). It is characterized in that the time intervals for switching to the part are different from each other. This “time interval is different” means that the time required to switch the adsorption heat exchanger (46, 47) between the adsorption unit and the regeneration unit differs between the upstream dehumidifying unit (20) and the downstream dehumidifying unit (30). Means.
- the time interval for switching the adsorption heat exchanger (46, 47) between the adsorption unit and the regeneration unit in the front-stage dehumidification unit (20) and the rear-stage dehumidification unit (30) is adjusted to be different from each other. Specifically, the regeneration time so that the adsorbent immediately after regeneration is sufficiently dry, and the adsorption time during which the adsorbent does not excessively adsorb moisture and dehumidification ability does not decrease Therefore, an optimal switching time interval is set for the front-stage dehumidification unit (20) and the rear-stage dehumidification unit (30).
- the processing air volume per unit of the front-stage dehumidification unit (20) is set to be larger than the processing air volume per unit of the rear-stage dehumidification unit (30), the adsorption time can be shortened to adsorb moisture. Since it is necessary to reduce the amount, it is better to set the switching time interval shorter than the downstream dehumidifying unit (30).
- heat exchange is performed between the adsorption-side outlet air of the upstream dehumidifying unit (20) and the regeneration-side outlet air of the downstream dehumidifying unit (30). It is characterized in that a sensible heat exchanger (14) for performing the above is provided.
- the sensible heat exchanger (14) is used between the adsorption side outlet air of the front stage dehumidification unit (20) and the regeneration side outlet air of the rear stage dehumidification unit (30). Heat recovery is performed. Specifically, the heat of the regeneration-side outlet air of the rear stage dehumidification unit (30) can be used for regeneration of the regeneration unit of the rear stage dehumidification unit (30).
- an outdoor bypass passage (bypassing the upstream dehumidifying unit (20) and introducing outdoor air to the regeneration side inlet of the downstream dehumidifying unit (30)) It is characterized by having 17).
- the operation is performed only with the rear stage dehumidification unit (30), bypassing the front stage dehumidification unit (20).
- the intermediate circulation circuit (13) dehumidifies air at the adsorption unit of the front-stage dehumidification unit (20) to generate dry air, and the drying
- the moisture content of the adsorption member (45) (adsorption heat exchanger (46, 47)) of the rear-stage dehumidification unit (30) can be reduced.
- the indoor air can be dehumidified using the adsorption member (45) (adsorption heat exchanger (46, 47)) of the downstream dehumidification unit (30) with a low water content
- the room air can be reduced without increasing the regeneration temperature.
- the regeneration outlet air of the rear-stage dehumidification unit (30) also becomes sufficiently low in humidity, and this dry air circulates between the adsorption section of the front-stage dehumidification unit (20).
- the timing for switching the adsorption heat exchanger (46, 47) between the adsorption unit and the regeneration unit in the plurality of downstream dehumidification units (30) is different from each other.
- the fluctuation can be suppressed and the state of the indoor air can be stabilized.
- the dew point temperature of the air processed by the front-stage dehumidification unit (20) can be made higher than that of the rear-stage dehumidification unit (30). Since it can be operated with a large air volume, the number of upstream dehumidification units (20) can be reduced. Therefore, the initial cost of the system can be reduced.
- the return passage (16 ) when the air volume supplied from the upstream dehumidifying unit (20) to the downstream dehumidifying unit (30) is smaller than the processing air volume of the downstream dehumidifying unit (30), the return passage (16 ), It is possible to balance the air flow by reducing the system capacity.
- the switching time interval of the front-stage dehumidifying unit (20) can be made shorter than the switching time interval of the rear-stage dehumidifying unit (30), optimum operation is performed in each stage of the dehumidifying unit. It becomes possible.
- a sensible heat exchanger (14) is disposed between the adsorption side outlet air of the front stage dehumidifying unit (20) and the regeneration side outlet air of the rear stage dehumidifying unit (30). ) Can be recovered and the temperature of the regeneration-side outlet air of the rear-stage dehumidification unit (30) can be used for regeneration of the regeneration section of the rear-stage dehumidification unit (30), so that the performance of the dehumidification system can be improved.
- the outdoor bypass passage (17) for bypassing the upstream dehumidifying unit (20) and introducing the outdoor air to the regeneration side inlet of the downstream dehumidifying unit (30), for example, outside air is
- the first stage dehumidification unit (20) can be bypassed and the operation can be performed only with the second stage dehumidification unit (30), so that the system can save energy.
- FIG. 1 is a system configuration diagram of a dehumidification system according to the first embodiment.
- FIG. 2 is a refrigerant circuit diagram of the dehumidifying unit.
- FIG. 3 is a perspective view showing the structure of the dehumidifying unit.
- 4A and 4B are configuration diagrams of the dehumidifying unit.
- FIG. 4A is a plan view
- FIG. 4B is a left side view
- FIG. 4C is a right side view.
- 5A and 5B are diagrams showing the air flow of the dehumidifying unit during the first operation.
- FIG. 5A is a plan view
- FIG. 5B is a left side view
- FIG. 5C is a right side view.
- FIG. 5A is a plan view
- FIG. 5B is a left side view
- FIG. 5C is a right side view.
- FIG. 5A is a plan view
- FIG. 5B is a left side view
- FIG. 5C is
- FIG. 6A and 6B are diagrams showing the air flow of the dehumidifying unit during the second operation.
- FIG. 6A is a plan view
- FIG. 6B is a left side view
- FIG. 6C is a right side view.
- FIG. 7 is an operation explanatory diagram showing a simplified configuration of the dehumidifying system of FIG.
- FIG. 8 is a system configuration diagram of a dehumidification system according to Modification 1 of Embodiment 1.
- FIG. 9 is a system configuration diagram of a dehumidification system according to Modification 2 of Embodiment 1.
- FIG. 10 is a schematic configuration diagram of the system of FIG.
- FIG. 11 is a schematic configuration diagram of a dehumidification system according to Modification 3 of Embodiment 1.
- FIG. 12 is a schematic configuration diagram of a dehumidification system according to the second embodiment.
- FIG. 13 is a schematic configuration diagram of a dehumidification system according to the third embodiment.
- FIG. 14 is a schematic configuration diagram of a conventional dehumidification system.
- Embodiment 1 of the Invention A first embodiment of the present invention will be described.
- Embodiment 1 shown in FIG. 1 relates to a dehumidification system (1) for dehumidifying an indoor space (S) using an adsorption heat exchanger.
- This dehumidification system (1) is a circulation type dehumidification system that dehumidifies indoor air (RA) and returns it to the room as air supply (SA).
- Outdoor air (OA) is used to regenerate the adsorbent of the adsorption heat exchanger.
- the indoor space (S) to be dehumidified is, for example, an internal space of a warehouse (2) where low dew point air having a dew point plus about 5 ° C. to minus 20 ° C. is required.
- a specific example of such a warehouse (2) is a warehouse for storing seeds and foods.
- the dehumidification system (1) includes a dehumidifier (10) that supplies dehumidified air to the dehumidified space.
- the dehumidifier (10) has a front-stage dehumidification unit (20) that performs dehumidification in the front stage with respect to the indoor space (S), and a rear-stage dehumidification unit (30) that performs dehumidification in the rear stage on the indoor space side.
- Both the front-stage dehumidification unit (20) and the rear-stage dehumidification unit (30) include an adsorption member (45) that can be switched between an adsorption section and a regeneration section.
- the adsorption member (45) of each unit uses two adsorption heat exchangers (46, 47) that can be switched alternately between the adsorption unit and the regeneration unit.
- a pair of adsorption heat exchangers (46, 47) of each dehumidifying unit (20, 30) is constituted by two heat exchangers of a refrigerant circuit (40) (see FIG. 2) in which a refrigerant circulates and performs a refrigeration cycle.
- a refrigerant circulates and performs a refrigeration cycle.
- Each dehumidifying unit (20, 30) dehumidifies air with an adsorption side adsorption heat exchanger (46, 47) that is an adsorption unit, while with a regeneration side adsorption heat exchanger (47, 46) that is a regeneration unit.
- This is a switchable dehumidifying unit that regenerates the adsorbent by releasing moisture into the air.
- each dehumidifying unit (20, 30) includes a compressor (41), a first adsorption heat exchanger (first adsorption member) (46), an expansion valve (42), and a second adsorption heat exchange.
- Each adsorption heat exchanger (46, 47) is a fin-and-tube heat exchanger having an adsorbent supported on the surface thereof, and a first adsorption heat exchanger (46) is installed in the casing (111).
- a first heat exchanger chamber (137), which will be described later, and a second heat exchanger chamber (138), which will be described later, which store the second adsorption heat exchanger (47) are provided.
- the four-way selector valve (43) has first to fourth ports, the first port (P1) is the discharge side of the compressor (41), and the second port (P2) is the compressor (41). The suction side, the third port (P3) is connected to the end of the first adsorption heat exchanger (46), and the fourth port (P4) is connected to the end of the second adsorption heat exchanger (47). .
- the four-way switching valve (43) is in a first state (FIG. 1) in which the first port (P1) and the third port (P3) communicate with each other and the second port (P2) and the fourth port (P4) communicate with each other.
- the state can be switched to the state shown in FIG.
- an outdoor circulation circuit (11) in which outdoor air circulates between the regeneration unit of the front-stage dehumidification unit (20) and the outdoor space, and a rear-stage dehumidification unit (30)
- An indoor circulation circuit (12) through which indoor air (RA) circulates between the adsorption section and the dehumidifying target space (S), an adsorption section of the front dehumidification unit (20), and a regeneration section of the rear dehumidification unit (30)
- an intermediate circulation circuit (13) in which intermediate air circulates between the two.
- the rear stage dehumidification unit (30) has a plurality of units (30A, 30B) connected in parallel to the front stage dehumidification unit (20).
- a sensible heat exchanger (14) that exchanges heat between the adsorption side outlet air of the upstream dehumidifying unit (20) and the regeneration side outlet air of the downstream dehumidifying unit (30).
- the indoor circulation circuit (12) is provided with a temperature adjustment air conditioning unit (15) for adjusting the temperature of the air supplied to the room (S).
- “upper”, “lower”, “left”, “right”, “front”, “rear”, “front”, and “rear” used in the description here are the front of each dehumidifying unit (20, 30) unless otherwise specified. It means the direction when viewed from the side.
- the front stage dehumidification unit (20) and the high stage side dehumidification unit (30) are comprised substantially the same.
- the air flowing through the adsorption side adsorption heat exchanger (46, 47) serving as the adsorption unit is referred to as adsorption air, and flows through the regeneration side adsorption heat exchanger (47, 46) serving as the regeneration unit.
- Air is referred to as regeneration air.
- Each dehumidifying unit (20, 30) includes a casing (111).
- a first adsorption heat exchanger (46), a second adsorption heat exchanger (47), a compressor (41), a four-way switching valve (43), which are components of the refrigerant circuit (40), are provided.
- a four-way switching valve (43), which are components of the refrigerant circuit (40), are provided.
- the casing (111) is formed in a rectangular parallelepiped shape that is slightly flat and relatively low in height.
- a front panel (112) is erected on the left front side in FIG. 3
- a rear panel (113) is erected on the right rear side in FIG.
- the casing (111) has substantially the same length in the front-rear direction and the width in the left-right direction.
- a regeneration air outlet (121) is opened at a position on the left side, and an adsorption air outlet (122) is opened at a position on the right side.
- an adsorption air suction port (123) is opened at a position closer to the upper side, and a regeneration air suction port (124) is opened at a position closer to the lower side.
- the internal space of the casing (111) is partitioned into a part on the front panel (112) side and a part on the back panel (113) side.
- the space on the front panel (112) side in the casing (111) is divided into two left and right spaces by a partition plate (115) on the downstream side of the adsorption heat exchanger (46, 47).
- the left side space constitutes the reproduction side fan chamber (135)
- the right side space constitutes the adsorption side fan chamber (136).
- the regeneration-side fan chamber (135) is provided with the regeneration air outlet (121).
- the regeneration-side fan chamber (135) accommodates a regeneration-side fan (125), and the blowing port of the regeneration-side fan (125) is connected to the regeneration air outlet (121).
- the suction side fan chamber (136) is provided with the suction side outlet (122).
- the suction side fan chamber (136) accommodates the suction side fan (126), and the air blowing port of the suction side fan (126) is connected to the suction side outlet (122).
- the suction side fan chamber (136) also houses a compressor (41).
- the space on the back panel (113) side in the casing (111) is partitioned into three front and rear spaces by the first partition plate (116) and the second partition plate (117) standing upright in the casing (111). It has been.
- These partition plates (116, 117) extend in the left-right direction of the casing (111).
- the first partition plate (116) is disposed closer to the rear panel (113), and the second partition plate (117) is disposed closer to the front panel (112).
- the space behind the first partition plate (116) is partitioned into two upper and lower spaces, the upper space is on the adsorption side inflow passage (132), and the lower space is on the regeneration side.
- Each path (134) is configured.
- the adsorption side inflow passage (132) communicates with the adsorption air suction port (123).
- An adsorption air filter (161) is disposed in the adsorption side inflow passage (132) so as to cross over the left and right inner walls of the casing (111).
- This adsorption air filter (161) collects dust in the adsorption air taken in from the adsorption air suction port (123).
- the regeneration side inflow passage (134) communicates with the regeneration air suction port (124).
- a regeneration air filter (162) is disposed in the regeneration side inflow passage (134) so as to cross over the left and right inner walls of the casing (111).
- the regeneration air filter (162) collects dust in the regeneration air taken in from the regeneration air suction port
- the space in front of the second partition plate (117) is divided into two upper and lower spaces, with the upper space constituting the regeneration side outflow passage (131) and the lower space constituting the adsorption side outflow passage (133). ing.
- the regeneration side outflow passage (131) communicates with the regeneration side fan chamber (135).
- the suction side outflow passage (133) communicates with the suction side fan chamber (136).
- the space between the first partition plate (116) and the second partition plate (117) is further divided into two left and right spaces by the central partition plate (118).
- the space on the right side of the central partition plate (118) constitutes the first heat exchanger chamber (137), and the space on the left side constitutes the second heat exchanger chamber (138).
- the first heat exchanger chamber (137) accommodates the first adsorption heat exchanger (46), and the second heat exchanger chamber (138) accommodates the second adsorption heat exchanger (47).
- These two adsorption heat exchangers (46, 47) are arranged so as to cross the heat exchanger chambers (137, 138) in which they are accommodated in the left-right direction.
- the first partition plate (116) is provided with four open / close dampers (141 to 144). Specifically, in the first partition plate (116), the first damper (141) is located at the upper right side, the second damper (142) is located at the upper left side, and the third damper (143) is located at the lower left side.
- the fourth damper (144) is attached to the lower part of each.
- the first damper (141) is opened, the adsorption side inflow passage (132) and the first heat exchanger chamber (137) communicate with each other.
- the second damper (142) is opened, the adsorption side inflow passage (132) and the second heat exchanger chamber (138) communicate with each other.
- dampers (141 to 144) constitute a first flow path switching unit (151).
- the second partition plate (117) is provided with four open / close dampers (145 to 148). Specifically, in the second partition plate (117), the fifth damper (145) is on the upper right side, the sixth damper (146) is on the upper left side, and the seventh damper (147) is on the lower left side.
- the eighth damper (148) is attached to the lower part of each.
- the fifth damper (145) is opened, the regeneration side outflow passage (131) and the first heat exchanger chamber (137) communicate with each other.
- the sixth damper (146) is opened, the regeneration side outflow passage (131) and the second heat exchanger chamber (138) communicate with each other.
- dampers (145 to 148) constitute a second flow path switching unit (152).
- the first flow path switching unit (151) and the second flow path switching unit (152) allow the adsorbed air that has passed through the first adsorption heat exchanger (46) to flow through the adsorption side fan chamber (136) and the second.
- an air passage switching mechanism (151, 152) capable of switching between the second air circulation state in which the dehumidified air that has passed through the second adsorption heat exchanger (47) flows through the adsorption-side fan chamber (136). ing.
- the adsorption side and the regeneration side of the pair of adsorption heat exchangers (46, 47) are alternately switched at a predetermined timing (for example, every 3 minutes or every 5 minutes).
- the casing (111) is configured to switch the air flow (flow path) in the air passage as the pair of adsorption heat exchangers (46, 47) is switched to the adsorption side and the regeneration side. Yes.
- the outdoor circulation circuit (11) is connected to the outdoor air intake (3) and the regenerative air intake (124) of the front dehumidifying unit (20) to regenerate the regenerated air of the front dehumidifying unit (20). It is configured by connecting the air outlet (121) and the exhaust port (4).
- the indoor circulation circuit (12) connects the indoor air intake (5) and the adsorbed air intake (123) of the rear dehumidification unit (30) to the adsorbed air outlet (122) of the rear dehumidification unit (30). And the air supply port (6).
- the intermediate circulation circuit (13) connects the adsorption air outlet (122) of the front-stage dehumidification unit (20) and the regenerative air inlet (124) of the rear-stage dehumidification unit (30) to connect the rear-stage dehumidification unit (30).
- the regenerative air outlet (121) is connected to the adsorbed air inlet (123) of the upstream dehumidifying unit (20).
- the timing for switching the adsorption heat exchanger (46, 47) between the adsorption unit and the regeneration unit in each subsequent-stage dehumidification unit (30A, 30B) is configured to be different from each other.
- a controller (100) is provided for performing control to shift the timing of switching the two adsorption heat exchangers (46, 47) between the adsorption side and the regeneration side.
- the controller (100) adsorbs the two adsorption heat exchangers (46, 47) of the rear stage first dehumidification unit (30A) and the rear stage second dehumidification unit (30B) both at the same time interval (eg, 3 minutes).
- the switching timing of the first dehumidifying unit (30A) and the second dehumidifying unit (30B) is shifted by half the switching time interval (for example, 1 minute 30 seconds).
- the air that has flowed out from the adsorption heat exchanger (46, 47) on the adsorption side of the downstream dehumidification unit (30) has a high temperature immediately after the adsorption heat exchanger heated on the regeneration side is switched to the adsorption side.
- the adsorption heat exchanger (46, 47) gradually decreases in temperature when switched to the adsorption side, but then increases in temperature when switched to the regeneration side, and changes in temperature by switching to the adsorption side at the higher temperature. Is repeated. Therefore, the air temperature at the treatment outlet of the rear-stage dehumidification unit (30) repeats rising and lowering with time.
- the switching timing of the rear stage first dehumidifying unit (30A) and the rear stage second dehumidifying unit (30B) is the same as the comparative example, in this case, the timing of temperature fluctuation and humidity fluctuation is synchronized. There is a problem that temperature fluctuation and humidity fluctuation become remarkable.
- the adsorption / regeneration switching timing in the rear first dehumidification unit (30A) and the adsorption / regeneration switching timing in the rear second dehumidification unit (30B) are shifted by half the switching time interval. Yes. By shifting the switching timing in this manner, in the present embodiment, temperature fluctuations and humidity fluctuations of the outlet air of the rear stage dehumidifying unit (30) can be suppressed.
- controller (100) performs control so that the processing air volume per unit of the front-stage dehumidification unit (20) is larger than the processing air volume per unit of the rear-stage dehumidification unit (30A, 30B).
- the processing air volume per unit of the front-stage dehumidification unit (20) is changed to the rear-stage dehumidification unit (30). ) Is larger than the processing air volume per unit.
- each dehumidifying unit (20, 30) will be described. During the operation of the dehumidifying system (10), each dehumidifying unit (20, 30) alternately performs the first operation shown in FIG. 5 and the second operation shown in FIG. 6 at predetermined time intervals.
- the suction side fan (126) and the regeneration side fan (125) are operated.
- the suction air is taken into the casing (111) from the suction air suction port (123).
- the regeneration side fan (125) is started, the regeneration air is taken into the casing (111) from the regeneration air suction port (124).
- air is dehumidified by the second adsorption heat exchanger (47), and at the same time, the adsorbent of the first adsorption heat exchanger (46) is regenerated.
- the four-way switching valve (25) is in the state of the solid line in FIG. 2, and the expansion valve (42) is controlled to a predetermined opening.
- the first flow path switching unit (151) communicates the adsorption side inflow passage (132) with the accommodation chamber (second heat exchanger chamber (138)) of the second adsorption heat exchanger (47), and is on the regeneration side.
- the inflow path (134) is communicated with the accommodation chamber (first heat exchanger chamber (137)) of the first adsorption heat exchanger (46).
- the second flow path switching unit (152) communicates the storage chamber (second heat exchanger chamber (138)) of the second adsorption heat exchanger (47) with the adsorption side outflow passage (133), and The accommodation chamber (first heat exchanger chamber (137)) of the first adsorption heat exchanger (46) and the regeneration side outflow passage (131) are communicated with each other.
- the refrigerant compressed by the compressor (41) passes through the four-way switching valve (43) and flows through the first adsorption heat exchanger (46).
- the adsorbent is heated by the refrigerant, and the moisture in the adsorbent is released to the air.
- the refrigerant radiated and condensed by the first adsorption heat exchanger (46) is depressurized by the expansion valve (42) and then flows through the second adsorption heat exchanger (47).
- the second adsorption heat exchanger (47) moisture in the air is adsorbed by the adsorbent, and adsorption heat generated at this time is imparted to the refrigerant.
- the refrigerant that has absorbed heat and evaporated in the second adsorption heat exchanger (47) is sucked into the compressor (41) and compressed.
- the adsorbed air dehumidified by the second adsorption heat exchanger (47) flows into the adsorption side outflow passage (133) through the eighth damper (148), passes through the adsorption side fan chamber (136), and then blows the adsorption air. It is discharged from the casing (111) through the outlet (122).
- air is dehumidified by the first adsorption heat exchanger (46) and at the same time, the adsorbent of the second adsorption heat exchanger (47) is regenerated.
- the four-way switching valve (43) is in the state of the broken line in FIG. 2, and the expansion valve (42) is controlled to a predetermined opening.
- the first flow path switching unit (151) communicates the adsorption side inflow path (132) with the accommodation chamber (first heat exchanger chamber (137)) of the first adsorption heat exchanger (46) and regenerates air.
- the inflow path (134) is communicated with the storage chamber (second heat exchanger chamber (138)) of the second adsorption heat exchanger (47).
- the second flow path switching unit (152) communicates the storage chamber (first heat exchanger chamber (137)) of the first adsorption heat exchanger (46) with the adsorption side outflow passage (133), and The accommodation chamber (second heat exchanger chamber (138)) of the second adsorption heat exchanger (47) and the regeneration side outflow passage (131) are communicated with each other.
- the refrigerant compressed by the compressor (41) passes through the four-way switching valve (43) and flows through the second adsorption heat exchanger (47).
- the adsorbent is heated by the refrigerant, and moisture in the adsorbent is released to the air.
- the refrigerant radiated and condensed by the second adsorption heat exchanger (47) is depressurized by the expansion valve (42) and then flows through the first adsorption heat exchanger (46).
- moisture in the air is adsorbed by the adsorbent, and adsorption heat generated at this time is imparted to the refrigerant.
- the refrigerant that has absorbed heat and evaporated in the first adsorption heat exchanger (46) is sucked into the compressor (41) and compressed.
- the indoor air (RA) that is the adsorbed air is circulated in the subsequent stage when circulating through the indoor circulation circuit (12).
- the operation of dehumidifying by the dehumidifying unit (30) and supplying it indoors as supply air (SA) is repeated.
- the temperature of the air is also adjusted by the temperature adjusting air conditioning unit (15) shown in FIG.
- the intermediate air is dehumidified by the adsorption heat exchanger (46, 47) on the adsorption side of the front-stage dehumidification unit (20), and the regeneration-side adsorption heat exchanger (47, 47) on the rear-stage dehumidification unit (30). 46) is played back repeatedly. In this case, heat recovery is performed on the adsorption side and regeneration side of the intermediate air in the sensible heat exchanger (14) shown in FIG. 1, and the heat recovered from the regeneration side outlet of the downstream dehumidification unit (30) is transferred to the downstream stage. Used to regenerate the adsorption heat exchanger (47, 46) of the dehumidifying unit (20).
- the regeneration unit (regeneration side adsorption heat exchanger) of the upstream dehumidification unit (20) is regenerated with regeneration air (outdoor air (OA)), while the upstream circuit (13) Air is dehumidified by the adsorption unit (adsorption side adsorption heat exchanger) of the dehumidification unit (20) to generate dry air, and the regeneration unit of the subsequent dehumidification unit (30) is regenerated by the dry air.
- the amount of water in the adsorption heat exchanger (46, 47) on the regeneration side of the regenerated post-dehumidification unit (30) can be reduced.
- this adsorption heat exchanger (46, 47) becomes the adsorption side next and the indoor air (RA) circulates in the indoor circulation circuit (12), the air is dehumidified until it reaches a low dew point temperature. Can be supplied to.
- the indoor temperature fluctuation and humidity fluctuation are synchronized.
- the adsorption / regeneration switching timing in the rear first dehumidification unit (30A) and the adsorption / regeneration switching timing in the rear second dehumidification unit (30B) are set to the switching time interval. Therefore, it is possible to suppress indoor temperature fluctuations and humidity fluctuations.
- the regeneration unit (regeneration-side adsorption heat exchanger (46, 47)) of the upstream dehumidification unit (20) is regenerated with regeneration air (outdoor air (OA)), while the intermediate circulation circuit (13 ),
- the intermediate air is dehumidified by the adsorption part (regeneration heat exchanger (46, 47) on the adsorption side) of the upstream dehumidifying unit (20) to generate dry air, which is then used to regenerate the downstream dehumidifying unit (30).
- the amount of water in the adsorption heat exchanger (46, 47) on the regeneration side of the downstream dehumidification unit (30) can be reduced.
- the room air (RA) can be dehumidified using the adsorption heat exchanger (46, 47) with a small amount of water, so the regeneration temperature
- the room air (RA) can be made into air with a low dew point temperature without raising the temperature.
- the regeneration outlet air of the rear dehumidifying unit (30) is also sufficiently low in humidity, and this air is exchanged with the adsorption heat exchanger (46, 47) on the adsorption side of the front dehumidifying unit (20) ( 13) Cycle.
- the timing for switching the adsorption heat exchanger (46, 47) between the adsorption side and the regeneration side in the plurality of subsequent dehumidification units (30) is different from each other.
- the fluctuation can be suppressed and the state of the indoor air can be stabilized.
- the upstream dehumidifying unit (20) since the dew point temperature of the air processed by the upstream dehumidifying unit (20) can be lower than the dew point temperature of the air processed by the downstream dehumidifying unit (30), the upstream dehumidifying unit (20) It is designed to operate at a larger air volume than the dehumidifying unit (30). Therefore, it is possible to reduce the initial cost of the system by reducing the number of upstream dehumidification units.
- the sensible heat exchanger (14) between the regeneration side outlet air of the rear stage dehumidification unit (30) and the regeneration side outlet air of the rear stage dehumidification unit (30). To recover heat. Specifically, since the heat recovered from the regeneration-side outlet air of the downstream dehumidification unit (30) can be used for regeneration of the downstream dehumidification unit (30), the performance of the dehumidification system (1) can be improved.
- FIG. 8 shows a first modification of the first embodiment.
- a return passage (16) for returning a part of the air from the regeneration side outlet of the rear stage dehumidifying unit (30) to the regeneration side inlet is provided. Since other configurations are the same as those of the first embodiment shown in FIGS. 1 to 6, the description thereof is omitted.
- Modification 2 of Embodiment 1 is an outdoor bypass that bypasses the front dehumidifying unit (20) and introduces outdoor air (OA) to the regeneration side inlet of the rear dehumidifying unit (30).
- OA outdoor air
- FIG. 8 is a system configuration diagram
- FIG. 9 is a schematic configuration diagram of the system, and only one post-dehumidification unit (30) is shown. Except for the point that the outdoor bypass passage (17) is provided, this embodiment is the same as Embodiment 1 in FIGS.
- the outdoor bypass passage (17) is used, so that the operation with only the rear stage dehumidification unit (30) is performed without using the front stage dehumidification unit (20). .
- the outdoor bypass passage (17) for bypassing the upstream dehumidifying unit (20) and introducing the outdoor air to the regeneration side inlet of the downstream dehumidifying unit (30) is provided.
- the operation can be performed only by the rear stage dehumidification unit (30) without using the front stage dehumidification unit, energy saving can be achieved.
- outdoor air that has flowed into the upstream dehumidifying unit (20) is not processed and passes through the adsorption heat exchanger (46, 47) on the regeneration side of the downstream dehumidifying unit (30). , 47).
- the air regenerated in the adsorption heat exchanger (46, 47) of the latter-stage dehumidifying unit passes through without being processed in the former-stage dehumidifying unit, and is discharged outside as an exhaust.
- the indoor air is processed by the adsorption heat exchanger (46, 47) of the rear stage dehumidifying unit (30) in the same manner as in the second modification, and is supplied to the room as low dew point air.
- Modification 4 In the fourth modification of the first embodiment, the time interval for switching the adsorption heat exchanger (46, 47) between the adsorption side and the regeneration side is different between the upstream dehumidifying unit (20) and the downstream dehumidifying unit (30). This is an example. Since the apparatus configuration is the same as that of the first embodiment and only the control content of the controller (100) is different, the illustration of the system is omitted.
- the time interval for switching the adsorption heat exchanger (46, 47) of the upstream dehumidifying unit (20) and the downstream dehumidifying unit (30) between the adsorption side and the regeneration side is sufficiently dried by the adsorbent immediately after regeneration.
- the optimal switching time interval is set based on the regeneration time for achieving the state in which the adsorbent is in the state of adsorbing and the adsorption time for which the adsorbent does not excessively adsorb moisture during the adsorption so that the dehumidifying ability does not decrease.
- the processing air volume per unit of the front-stage dehumidification unit (20) is set to be larger than the processing air volume per unit of the rear-stage dehumidification unit (30), the adsorption time can be shortened to adsorb moisture. Since the amount needs to be reduced, the switching time interval is set shorter than that of the downstream dehumidifying unit (30).
- the time interval for switching the adsorption heat exchanger (46, 47) between the adsorption side and the regeneration side is different between the upstream dehumidifying unit (20) and the downstream dehumidifying unit (30).
- the switching time interval of the front dehumidification unit (20) shorter than the switching time interval of the rear dehumidification unit (30) it is possible to perform optimum operation in each stage of the dehumidification unit (20, 30). become.
- Embodiment 2 of the Invention A second embodiment of the present invention will be described.
- Embodiment 2 is an example in which a middle-stage dehumidifying unit (50) is provided between a front-stage dehumidifying unit (20) and a high-stage dehumidifying unit (30) as shown in FIG. That is, Embodiment 1 is an example in which the dehumidifying device (10) is configured by two stages of the front-stage dehumidification unit (20) and the rear-stage dehumidification unit (30). This is an example in which the dehumidifying device (10) is configured by three stages of the side dehumidifying unit (30) and the middle dehumidifying unit (50).
- a two-stage intermediate circulation circuit (13a, 13b) is formed between the front-stage dehumidifying unit (20) and the rear-stage dehumidifying unit (30).
- the adsorption heat exchanger (46, 47) on the regeneration side of the post-dehumidification unit (30) lower in humidity. This is because the water content after regeneration of the adsorption heat exchanger (47, 46) on the regeneration side can be reduced as the stage becomes further.
- the air supplied to the room can be made to have a low dew point temperature without increasing the regeneration temperature.
- Embodiment 3 of the Invention >> In Modification 1 of Embodiment 3, as shown in FIG. 13, two front-stage dehumidification units (20) are connected in parallel and three high-stage dehumidification units (30) are connected in parallel. It is an example.
- the timing of switching the adsorption heat exchanger (46, 47) between the adsorption side and the regeneration side is different between the subsequent dehumidification units (30). Also, the timing for switching the adsorption heat exchanger (46, 47) between the adsorption side and the regeneration side is made different between the upstream dehumidification units (20).
- two adsorption heat exchangers (46, 47) are used as adsorption members in both the front dehumidification unit (20) and the rear dehumidification unit (30), and the adsorption side and the regeneration side are separated. I try to switch.
- the post-dehumidification unit (30) may be configured to use an adsorption rotor instead of the adsorption heat exchanger (46, 47).
- the adsorption rotor is arranged so as to straddle the adsorption-side air passage and the regeneration-side air passage and is configured to be rotatable, and moisture in the air at the adsorption portion of the adsorption rotor located in the adsorption-side air passage.
- the moisture of the rotor is released to the air at the regeneration portion of the adsorption rotor located in the air passage on the regeneration side.
- the adsorption rotor of the post-dehumidification unit can be regenerated with the dry air dehumidified by the pre-dehumidification unit (20), so that the amount of water contained in the post-regeneration adsorption rotor can be reduced. Therefore, since the indoor air can be dehumidified by the adsorption rotor with less moisture, the air supplied to the room can be made into a low dew point air without increasing the regeneration temperature.
- the number and the number of stages of the front-stage dehumidification unit (20) and the rear-stage dehumidification unit (30) can be appropriately changed from the number and the number of stages described in the above embodiments.
- the present invention is useful for a dehumidification system including a dehumidification unit that uses two adsorption heat exchangers by alternately switching between an adsorption side and a regeneration side.
- Dehumidification system Dehumidifier Dehumidification target space Adsorption part Regeneration part Adsorption member Front dehumidification unit Rear dehumidification unit Adsorption heat exchanger Adsorption member Outdoor circulation circuit
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Central Air Conditioning (AREA)
Abstract
2つの吸着熱交換器(46,47)を吸着側と再生側に交互に切り換えて用いる除湿ユニットを備えた除湿システムにおいて、前段除湿ユニット(20)と後段除湿ユニット(30)とを設け、前段除湿ユニット(20)の再生側と室外空間との間で室外空気が循環する室外循環回路(11)と、後段除湿ユニット(30)の吸着側と除湿対象空間(S)との間で室内空気が循環する室内循環回路(12)と、前段除湿ユニット(20)の吸着側と後段除湿ユニット(30)の再生側との間で空気が循環する中間循環回路(13)とを設けることにより、再生温度を上げずに室内空気の露点温度を下げられる構成を実用化する。
Description
本発明は、除湿システムに関し、特に2つの吸着熱交換器を吸着側と再生側に交互に切り換えて用いる除湿ユニットを備えた除湿システムに関するものである。
従来、吸着剤を担持した2つの吸着熱交換器を吸着側と再生側に交互に切り換えて用いる除湿ユニットは、除湿対象空間である室内空間を除湿したり加湿したりするために用いられている(例えば特許文献1参照)。上記除湿ユニットで室内を除湿する際には、吸着側の吸着熱交換器で除湿した空気が室内に供給される一方、再生側の吸着熱交換器を通過して吸着剤を再生した空気が室外に排出される。一方、室内を除湿する運転を行う際、図14に示すように、室内空気(RA)を吸着側の吸着熱交換器(EX1,EX2)に供給して除湿した後に室内に給気(SA)として戻し、室外空気(OA)を再生側の吸着熱交換器(EX2,EX1)に供給して吸着剤を再生した後に室外に排気(EA)として放出する運転を行うことがある。いわゆる空気循環式の運転である。
2つの吸着熱交換器(EX1,EX2)を吸着側と再生側に交互に切り換えて用いる運転では、吸着(冷却吸湿)側の吸着熱交換器(EX1,EX2)である程度の水分を吸着すると、その吸着熱交換器が再生(加熱放湿)側に切り換えられ、逆にそれまで再生側であった吸着熱交換器(EX2,EX1)が吸着側に切り換えられて、室内空気の除湿が連続して行われる。
ここで、食品や種子を保管する倉庫などに上記除湿ユニットを適用する場合、室内空気を低露点温度(例えば露点5℃~マイナス20℃程度)にして、室内を乾燥させることが必要となることがある。
その際、再生側の吸着熱交換器(EX2,EX1)において、再生温度を高くすれば水分の放出量が多くなり、次に吸着側になったときに吸着量も多くなるから、室内空気を低露点温度にすることができると考えられる。しかし、吸着熱交換器(EX1,EX2)を用いるシステムでは一般に冷媒回路が採用されるため、再生温度は実際には60℃程度であり、それよりも高くするには補助加熱器を設ける必要が生じるなど実用性に問題がある。その結果、上記のシステムで室内空気を低露点温度にすることは困難であった。
本発明は、このような問題点に鑑みてなされたものであり、その目的は、2つの吸着熱交換器を吸着側と再生側に交互に切り換えて用いる除湿ユニットを備えた除湿システムにおいて、再生温度を上げずに室内空気の露点温度を下げられる構成を実用化することである。
第1の発明は、除湿対象空間(S)に除湿空気を供給する除湿装置(10)を備え、上記除湿装置(10)が、吸着部と再生部を有する吸着部材(45)を備えた除湿システムを前提としている。
そして、上記除湿システムの除湿装置(10)は、前段で除湿を行う前段除湿ユニット(20)と、後段で除湿を行う後段除湿ユニット(30)とを備え、前段除湿ユニット(20)が、吸着部と再生部に交互に切り換えられる2つの吸着熱交換器(46,47)を備え、後段除湿ユニット(30)が、吸着部と再生部に切り換えられる吸着部材(45)を備え、前段除湿ユニット(20)の再生部と室外空間との間で室外空気が循環する室外循環回路(11)が構成され、後段除湿ユニット(30)の吸着部と除湿対象空間(S)との間で室内空気が循環する室内循環回路(12)が構成され、前段除湿ユニット(20)の吸着部と後段除湿ユニット(30)の再生部との間で中間空気が循環する中間循環回路(13)が構成されていることを特徴としている。
また、第2の発明は、第1の発明において、前段除湿ユニット(20)と後段除湿ユニット(30)の両方が、吸着部と再生部に交互に切り換えられる2つの吸着熱交換器(46,47)を備えていることを特徴としている。
上記第1,第2の発明では、前段除湿ユニット(20)の再生部を再生しながら、中間循環回路(13)において前段除湿ユニット(20)の吸着部で空気を除湿して乾燥空気を生成し、その乾燥空気により後段除湿ユニット(30)の再生部が再生される。このようにして再生した後段除湿ユニット(30)の吸着部材(45)(吸着熱交換器(46,47))の水分量は、中間循環回路(13)を設けない場合と比べて少なくすることができる。したがって、この後段除湿ユニット(30)の吸着部材(45)(吸着熱交換器(46,47))が次に吸着部になって室内空気が室内循環回路(12)を循環するときに、空気を低露点温度になるまで除湿して室内に供給することができる。
第3の発明は、第2の発明において、後段除湿ユニット(30)が、前段除湿ユニット(20)に対して複数台が互いに並列に接続され、各後段除湿ユニット(30)で、吸着熱交換器(46,47)を吸着部と再生部に切り換えるタイミングが互いに相違することを特徴としている。例えば、各後段除湿ユニット(30)で、吸着熱交換器(46,47)を吸着部と再生部に切り換える時間間隔(時間の長さ)は同じでも、切り換え時点が異なるような場合である。
ここで、複数の後段除湿ユニット(30)において吸着熱交換器(46,47)を吸着部と再生部に切り換えるタイミングが互いに一致していると、室内の温度変動や湿度変動が大きくなりやすいのに対して、この第3の発明では、複数の後段除湿ユニット(30)において吸着熱交換器(46,47)を吸着部と再生部に切り換えるタイミングを互いに相違させているので、室内の温度変動や湿度変動が抑えられる。
第4の発明は、第2または第3の発明において、前段除湿ユニット(20)の1台あたりの処理風量が、後段除湿ユニット(30)の1台あたりの処理風量よりも多く設定されていることを特徴としている。
この第4の発明では、室内への供給空気の露点温度を下げるためには後段除湿ユニット(30)の風量を多くすることが困難であるのに対して、前段除湿ユニット(20)はそれよりも露点温度が高くてもよいので、後段除湿ユニット(30)よりも大風量での運転が行えることから、前段除湿ユニット(20)の1台あたりの処理風量を、後段除湿ユニット(30)の1台あたりの処理風量よりも多く設定している。
第5の発明は、第4の発明において、中間循環回路(13)には、後段除湿ユニット(30)の再生側出口から再生側入口に空気の一部を戻す戻し通路(16)が設けられていることを特徴としている。
この第5の発明では、前段除湿ユニット(20)から後段除湿ユニット(30)に供給される中間空気の風量が後段除湿ユニット(30)の処理風量よりも少ない場合に、上記戻し通路(16)に空気を流すことにより、風量のバランスをとることができる。
第6の発明は、第2から第5の発明の何れか1つにおいて、前段除湿ユニット(20)と後段除湿ユニット(30)とで、吸着熱交換器(46,47)を吸着部と再生部に切り換える時間間隔が互いに相違することを特徴としている。この「時間間隔が相違する」は、前段除湿ユニット(20)と後段除湿ユニット(30)とで、吸着熱交換器(46,47)を吸着部と再生部に切り換える時間の長さが異なることを意味している。
この第6の発明では、前段除湿ユニット(20)と後段除湿ユニット(30)において、吸着熱交換器(46,47)を吸着部と再生部に切り換える時間間隔が互いに異なるように調整される。具体的には、再生直後の吸着剤が十分に乾燥している状態となるような再生時間と、吸着中に吸着剤が水分を吸着しすぎて除湿能力が低下するようなことがない吸着時間とから、前段除湿ユニット(20)と後段除湿ユニット(30)に最適な切り換え時間間隔が設定される。特に、前段除湿ユニット(20)の1台あたりの処理風量が、後段除湿ユニット(30)の1台あたりの処理風量よりも多く設定されている場合には、吸着時間を短くして水分の吸着量を抑える必要があることから、後段除湿ユニット(30)よりも切り換え時間間隔を短く設定するとよい。
第7の発明は、第2から第6の発明の何れか1つにおいて、前段除湿ユニット(20)の吸着側出口空気と、後段除湿ユニット(30)の再生側出口空気との間で熱交換を行わせる顕熱交換器(14)が設けられていることを特徴としている。
この第7の発明では、中間循環回路(13)において、前段除湿ユニット(20)の吸着側出口空気と後段除湿ユニット(30)の再生側出口空気との間で顕熱交換器(14)により熱回収が行われる。具体的には、後段除湿ユニット(30)の再生側出口空気の温熱を後段除湿ユニット(30)の再生部の再生に利用できる。
第8の発明は、第2から第7の発明の何れか1つにおいて、前段除湿ユニット(20)をバイパスして後段除湿ユニット(30)の再生側入口に室外空気を導入する室外バイパス通路(17)を備えていることを特徴としている。
この第8の発明では、例えば外気が低湿度である場合には、前段除湿ユニット(20)をバイパスして後段除湿ユニット(30)だけでの運転が行われる。
本発明によれば、前段除湿ユニット(20)の再生部を再生しながら、中間循環回路(13)において前段除湿ユニット(20)の吸着部で空気を除湿して乾燥空気を生成し、その乾燥空気で後段除湿ユニット(30)の再生部を再生することにより、再生した後段除湿ユニット(30)の吸着部材(45)(吸着熱交換器(46,47))の水分量を下げることができる。そして、水分量の少ない後段除湿ユニット(30)の吸着部材(45)(吸着熱交換器(46,47))を用いて室内空気を除湿できるから、再生温度を上げなくても室内空気を低露点温度の空気にすることができる。その際、後段除湿ユニット(30)の再生出口空気も十分に低湿になり、この乾いた空気が前段除湿ユニット(20)の吸着部との間で循環することになる。
上記第3の発明によれば、複数の後段除湿ユニット(30)において吸着熱交換器(46,47)を吸着部と再生部に切り換えるタイミングを互いに相違させているので、室内の温度変動や湿度変動を抑えることができ、室内空気の状態を安定させることができる。
上記第4の発明によれば、前段除湿ユニット(20)で処理する空気の露点温度を後段除湿ユニット(30)よりも高くできることから、前段除湿ユニット(20)を後段除湿ユニット(30)よりも大風量で運転できるようにしているから、前段除湿ユニット(20)の台数を少なくすることができる。したがって、システムのイニシャルコストを下げることが可能になる。
上記第5の発明によれば、前段除湿ユニット(20)から後段除湿ユニット(30)に供給される空気の風量が後段除湿ユニット(30)の処理風量よりも少ない場合に、上記戻し通路(16)に空気を流して風量のバランスをとることができるから、システムの能力が低下するのを抑えられる。
上記第6の発明によれば、前段除湿ユニット(20)の切り換え時間間隔を後段除湿ユニット(30)の切り換え時間間隔よりも短くすることができるので、各段の除湿ユニットにおいて最適な運転を行うことが可能になる。
上記第7の発明によれば、中間循環回路(13)において、前段除湿ユニット(20)の吸着側出口空気と後段除湿ユニット(30)の再生側出口空気との間で顕熱交換器(14)により熱回収を行ない、後段除湿ユニット(30)の再生側出口空気の温熱を後段除湿ユニット(30)の再生部の再生に利用できるので、除湿システムの性能向上を図ることができる。
上記第8の発明によれば、前段除湿ユニット(20)をバイパスして後段除湿ユニット(30)の再生側入口に室外空気を導入する室外バイパス通路(17)を設けたことにより、例えば外気が低湿度である場合には、前段除湿ユニット(20)をバイパスして後段除湿ユニット(30)だけでの運転を行えるから、システムの省エネルギ化を図ることが可能となる。
以下、本発明の実施形態を図面に基づいて詳細に説明する。
《発明の実施形態1》
本発明の実施形態1について説明する。
本発明の実施形態1について説明する。
図1に示す実施形態1は、吸着熱交換器を用いて室内空間(S)を除湿する除湿システム(1)に関するものである。この除湿システム(1)は、室内空気(RA)を除湿して室内へ給気(SA)として戻す循環型の除湿システムである。室外空気(OA)は吸着熱交換器の吸着剤を再生するのに用いられる。除湿対象となる室内空間(S)は、例えば、露点プラス5℃~マイナス20℃程度の低露点空気が求められる倉庫(2)の内部空間である。このような倉庫(2)の具体例としては、種子や食品等を保管する倉庫などが挙げられる。
この除湿システム(1)は、除湿対象空間に除湿空気を供給する除湿装置(10)を備えている。除湿装置(10)は、室内空間(S)に対して前段で除湿を行う前段除湿ユニット(20)と、室内空間側の後段で除湿を行う後段除湿ユニット(30)とを有している。前段除湿ユニット(20)と後段除湿ユニット(30)は、いずれも、吸着部と再生部に切り換えられる吸着部材(45)を備えている。各ユニットの吸着部材(45)には、上記吸着部と再生部に交互に切り換えられる2つの吸着熱交換器(46,47)が用いられている。
各除湿ユニット(20,30)の一対の吸着熱交換器(46,47)は、冷媒が循環して冷凍サイクルを行う冷媒回路(40)(図2参照)の2つの熱交換器により構成されていて、冷媒の循環方向を反転させることにより、蒸発器になる吸着熱交換器(46,47)と凝縮器になる吸着熱交換器(47,46)を入れ換えて、吸着側と再生側を交互に切り換えるようになっている。
各除湿ユニット(20,30)は、吸着部である吸着側の吸着熱交換器(46,47)で空気を除湿する一方、再生部である再生側の吸着熱交換器(47,46)では空気に水分を放出して吸着剤が再生される切り換え式の除湿ユニットである。各除湿ユニット(20,30)は、図2に示すように、圧縮機(41)、第1吸着熱交換器(第1吸着部材)(46)、膨張弁(42)、第2吸着熱交換器(第2吸着部材)(47)、及び四方切換弁(43)が接続された冷媒回路(40)を備え、図3から図6に示すようにケーシング(111)内に機器が収納されている。各吸着熱交換器(46,47)はフィンアンドチューブ式の熱交換器の表面に吸着剤が担持されたものであり、ケーシング(111)内には、第1吸着熱交換器(46)を収納する後述の第1熱交換器室(137)と、第2吸着熱交換器(47)を収納する後述の第2熱交換器室(138)が設けられている。
四方切換弁(43)は、第1から第4までのポートを有し、第1ポート(P1)が圧縮機(41)の吐出側と、第2ポート(P2)が圧縮機(41)の吸入側と、第3ポート(P3)が第1吸着熱交換器(46)の端部と、第4ポート(P4)が第2吸着熱交換器(47)の端部とそれぞれ接続されている。四方切換弁(43)は、第1ポート(P1)と第3ポート(P3)とが連通するとともに第2ポート(P2)と第4ポート(P4)とが連通する第1状態(図1の実線で示す状態)と、第1ポート(P1)と第4ポート(P4)とが連通するとともに第2ポート(P2)と第3ポート(P3)とが連通する第2状態(図1の破線で示す状態)とに切換可能に構成されている。
図1に示すように、この除湿システム(1)では、前段除湿ユニット(20)の再生部と室外空間との間で室外空気が循環する室外循環回路(11)と、後段除湿ユニット(30)の吸着部と除湿対象空間(S)との間で室内空気(RA)が循環する室内循環回路(12)と、前段除湿ユニット(20)の吸着部と後段除湿ユニット(30)の再生部との間で中間空気が循環する中間循環回路(13)とが構成されている。
この除湿システム(1)では、後段除湿ユニット(30)は、前段除湿ユニット(20)に対して複数台(30A,30B)が互いに並列に接続されている。また、この除湿システム(1)では、前段除湿ユニット(20)の吸着側出口空気と、後段除湿ユニット(30)の再生側出口空気との間で熱交換を行わせる顕熱交換器(14)が設けられている。室内循環回路(12)には、室内(S)に供給する空気の温度を調整するための温度調整用空調ユニット(15)が設けられている。
次に、前段除湿ユニット(20)と高段側除湿ユニット(30)の具体的な装置構成について、図3及び図4を参照しながら説明する。なお、ここでの説明で用いる「上」「下」「左」「右」「前」「後」「手前」「奥」は、特にことわらない限り、各除湿ユニット(20,30)を前面側から見た場合の方向を意味している。また、前段除湿ユニット(20)と高段側除湿ユニット(30)は実質的に同じように構成されている。なお、以下の説明では、吸着部である吸着側の吸着熱交換器(46,47)を流れる空気を吸着空気と称し、再生部である再生側の吸着熱交換器(47,46)を流れる空気を再生空気と称する。
各除湿ユニット(20,30)は、ケーシング(111)を備えている。ケーシング(111)内には、上記冷媒回路(40)の構成部品である第1吸着熱交換器(46)、第2吸着熱交換器(47)、圧縮機(41)、四方切換弁(43)、及び膨張弁(42)が収容されている。
ケーシング(111)は、やや扁平で高さが比較的低い直方体状に形成されている。このケーシング(111)では、図3における左手前側に前面パネル(112)が、同図における右奥側に背面パネル(113)がそれぞれ立設されている。このケーシング(111)は、前後方向の幅と左右方向の幅とが略同一の長さとなっている。
ケーシング(111)の前面パネル(112)では、左寄りの位置に再生空気吹出口(121)が、右寄りの位置に吸着空気吹出口(122)がそれぞれ開口している。ケーシング(111)の背面パネル(113)の中央部には、上側寄りの位置に吸着空気吸込口(123)が、下側寄りの位置に再生空気吸込口(124)がそれぞれ開口している。
ケーシング(111)の内部空間は、前面パネル(112)側の部分と背面パネル(113)側の部分とに区画されている。
ケーシング(111)内における前面パネル(112)側の空間は、吸着熱交換器(46,47)の下流側で、仕切板(115)により、左右2つの空間に仕切られている。この左右に仕切られた2つの空間は、左寄りの空間が再生側ファン室(135)を、右寄りの空間が吸着側ファン室(136)をそれぞれ構成している。
再生側ファン室(135)には、上記再生空気吹出口(121)が設けられている。この再生側ファン室(135)には再生側ファン(125)が収容されており、再生側ファン(125)の送風口が再生空気吹出口(121)に接続されている。一方、吸着側ファン室(136)には、上記吸着側吹出口(122)が設けられている。この吸着側ファン室(136)には、吸着側ファン(126)が収容されており、吸着側ファン(126)の送風口が吸着側吹出口(122)に接続されている。また、吸着側ファン室(136)には、圧縮機(41)も収容されている。
一方、ケーシング(111)内の背面パネル(113)側の空間は、ケーシング(111)内に立設された第1仕切板(116)及び第2仕切板(117)によって前後3つの空間に仕切られている。これら仕切板(116,117)は、ケーシング(111)の左右方向に延びている。第1仕切板(116)は上記背面パネル(113)寄りに、第2仕切板(117)は前面パネル(112)寄りにそれぞれ配置されている。
ケーシング(111)内において、第1仕切板(116)の奥の空間は上下2つの空間に仕切られており、上側の空間が吸着側流入路(132)を、下側の空間が再生側流入路(134)をそれぞれ構成している。吸着側流入路(132)は、吸着空気吸込口(123)と連通している。この吸着側流入路(132)には、ケーシング(111)の左右の内壁に亘って横断するように吸着空気フィルタ(161)が配置されている。この吸着空気フィルタ(161)は、吸着空気吸込口(123)から取り込まれる吸着空気中の塵埃を捕集する。再生側流入路(134)は再生空気吸込口(124)と連通している。この再生側流入路(134)には、ケーシング(111)の左右の内壁に亘って横断するように再生空気フィルタ(162)が配置されている。この再生空気フィルタ(162)は、再生空気吸込口(124)から取り込まれる再生空気中の塵埃を捕集する。
第2仕切板(117)の手前の空間は上下2つの空間に仕切られており、上側の空間が再生側流出路(131)を、下側の空間が吸着側流出路(133)を構成している。再生側流出路(131)は、再生側ファン室(135)と連通している。吸着側流出路(133)は、吸着側ファン室(136)と連通している。
第1仕切板(116)と第2仕切板(117)との間の空間は、更に中央仕切板(118)によって左右2つの空間に仕切られている。そして、中央仕切板(118)の右側の空間が第1熱交換器室(137)を構成し、その左側の空間が第2熱交換器室(138)を構成している。第1熱交換器室(137)には第1吸着熱交換器(46)が、第2熱交換器室(138)には第2吸着熱交換器(47)がそれぞれ収容されている。これら2つの吸着熱交換器(46,47)は、それぞれが収容される熱交換器室(137,138)を左右方向へ横断するように配置されている。
第1仕切板(116)には、開閉式のダンパ(141~144)が4つ設けられている。具体的に、第1仕切板(116)では、右側の上部に第1ダンパ(141)が、左側の上部に第2ダンパ(142)が、右側の下部に第3ダンパ(143)が、左側の下部に第4ダンパ(144)がそれぞれ取り付けられている。第1ダンパ(141)を開くと、吸着側流入路(132)と第1熱交換器室(137)が連通する。第2ダンパ(142)を開くと、吸着側流入路(132)と第2熱交換器室(138)が連通する。第3ダンパ(143)を開くと、再生側流入路(134)と第1熱交換器室(137)が連通する。第4ダンパ(144)を開くと、再生側流入路(134)と第2熱交換器室(138)が連通する。これらのダンパ(141~144)により、第1流路切換部(151)が構成されている。
第2仕切板(117)には、開閉式のダンパ(145~148)が4つ設けられている。具体的に、第2仕切板(117)では、右側の上部に第5ダンパ(145)が、左側の上部に第6ダンパ(146)が、右側の下部に第7ダンパ(147)が、左側の下部に第8ダンパ(148)がそれぞれ取り付けられている。第5ダンパ(145)を開くと、再生側流出路(131)と第1熱交換器室(137)が連通する。第6ダンパ(146)を開くと、再生側流出路(131)と第2熱交換器室(138)が連通する。第7ダンパ(147)を開くと、吸着側流出路(133)と第1熱交換器室(137)が連通する。第8ダンパ(148)を開くと、吸着側流出路(133)と第2熱交換器室(138)が連通する。これらのダンパ(145~148)により、第2流路切換部(152)が構成されている。
そして、第1流路切換部(151)と第2流路切換部(152)により、第1吸着熱交換器(46)を通過した吸着空気が吸着側ファン室(136)を流れるとともに第2吸着熱交換器(47)を通過した再生空気が再生側ファン室(135)を流れる第1空気流通状態と、第1吸着熱交換器(46)を通過した再生空気が再生側ファン室(135)を流れるとともに第2吸着熱交換器(47)を通過した除湿空気が吸着側ファン室(136)を流れる第2空気流通状態とを切り換え可能な空気通路切換機構(151,152)が構成されている。
上記各除湿ユニット(20,30)では、一対の吸着熱交換器(46,47)は、所定のタイミング(例えば3分間隔や5分間隔)で吸着側と再生側が交互に切り換えられる。上記ケーシング(111)は、一対の吸着熱交換器(46,47)が吸着側と再生側に切り換わるのに合わせて、空気通路における空気の流れ(流路)も切り換わるように構成されている。
上記室外循環回路(11)は、図1において、室外空気取込口(3)と前段除湿ユニット(20)の再生空気吸込口(124)とを接続し、前段除湿ユニット(20)の再生空気吹出口(121)と排気口(4)とを接続することにより構成されている。室内循環回路(12)は、室内空気取込口(5)と後段除湿ユニット(30)の吸着空気吸込口(123)とを接続し、後段除湿ユニット(30)の吸着空気吹出口(122)と給気口(6)とを接続することにより構成されている。また、中間循環回路(13)は、前段除湿ユニット(20)の吸着空気吹出口(122)と後段除湿ユニット(30)の再生空気吸込口(124)とを接続し、後段除湿ユニット(30)の再生空気吹出口(121)と前段除湿ユニット(20)の吸着空気吸込口(123)とを接続することにより構成されている。
この実施形態では、各後段除湿ユニット(30A,30B)で吸着熱交換器(46,47)を吸着部と再生部に切り換えるタイミングが互いに相違するように構成されている。
具体的に、この実施形態では、後段第1除湿ユニット(30A)で2つの吸着熱交換器(46,47)を吸着側と再生側に切り換えるタイミングと、後段第2除湿ユニット(30B)で2つの吸着熱交換器(46,47)を吸着側と再生側に切り換えるタイミングを、相互にずらす制御を行うコントローラ(100)が設けられている。コントローラ(100)は、後段第1除湿ユニット(30A)と後段第2除湿ユニット(30B)のそれぞれの2つの吸着熱交換器(46,47)をいずれも同じ時間間隔(例えば3分)で吸着側と再生側に切り換えるとすると、第1除湿ユニット(30A)と第2除湿ユニット(30B)の切り換えタイミングを、切り換え時間間隔の半分の時間(例えば1分30秒)ずらすようにしている。
後段除湿ユニット(30)の吸着側の吸着熱交換器(46,47)から流出した空気は、再生側で加熱されていた吸着熱交換器が吸着側に切り換わった直後は温度が高い。吸着熱交換器(46,47)は吸着側に切り換わると徐々に温度が低下するが、その後に再生側に切り換わると温度が上昇し、その高い温度で吸着側に切り換わる形で温度変動が繰り返される。したがって、後段除湿ユニット(30)の処理出口の空気温度は、時間の経過に伴って上昇と下降を繰り返す。
ここで、後段第1除湿ユニット(30A)と後段第2除湿ユニット(30B)の切り換えタイミングが同じである場合を比較例として考えると、その場合は温度変動や湿度変動のタイミングが同期するため、温度変動や湿度変動が顕著になる問題がある。一方、本実施形態では、後段第1除湿ユニット(30A)における吸着/再生の切り換えタイミングと後段第2除湿ユニット(30B)における吸着/再生の切り換えタイミングを、切り換え時間間隔の半分だけずらすようにしている。このように切り換えタイミングをずらすことにより、本実施形態では、後段除湿ユニット(30)の出口空気の温度変動や湿度変動を抑えることができる。
また、コントローラ(100)は、前段除湿ユニット(20)の1台あたりの処理風量が、後段除湿ユニット(30A,30B)の1台あたりの処理風量よりも多くなるように制御を行う。
具体的に、室内への供給空気の露点温度を下げるためには後段除湿ユニット(30)の風量を多くすることが困難であるのに対して、前段除湿ユニット(20)はそれよりも露点温度が高くてもよいので、後段除湿ユニット(30)よりも大風量での運転が行えることから、本実施形態では、前段除湿ユニット(20)の1台あたりの処理風量を、後段除湿ユニット(30)の1台あたりの処理風量よりも多く設定している。
-運転動作-
次に、除湿システム(10)の運転動作について説明する。
次に、除湿システム(10)の運転動作について説明する。
〈除湿ユニットの動作〉
まず、各除湿ユニット(20,30)の動作を説明する。除湿システム(10)の運転時には、各除湿ユニット(20,30)が図5に示す第1動作と図6に示す第2動作とを所定時間おきに交互に行う。
まず、各除湿ユニット(20,30)の動作を説明する。除湿システム(10)の運転時には、各除湿ユニット(20,30)が図5に示す第1動作と図6に示す第2動作とを所定時間おきに交互に行う。
各除湿ユニット(20)では、吸着側ファン(126)及び再生側ファン(125)が運転される。吸着側ファン(126)の運転が開始されると、吸着空気が吸着空気吸込口(123)からケーシング(111)内へ取り込まれる。再生側ファン(125)の運転が開始されると、再生空気が再生空気吸込口(124)からケーシング(111)内へ取り込まれる。
第1動作では、第2吸着熱交換器(47)で空気を除湿すると同時に、第1吸着熱交換器(46)の吸着剤を再生する。
具体的に、第1動作中の冷媒回路(40)では、四方切換弁(25)が図2の実線の状態となり、膨張弁(42)が所定開度に制御される。第1流路切換部(151)は、吸着側流入路(132)と第2吸着熱交換器(47)の収容室(第2熱交換器室(138))とを連通させ、且つ再生側流入路(134)と第1吸着熱交換器(46)の収容室(第1熱交換器室(137))とを連通させる。また、第2流路切換部(152)は、第2吸着熱交換器(47)の収容室(第2熱交換器室(138))と吸着側流出路(133)とを連通させ、且つ第1吸着熱交換器(46)の収容室(第1熱交換器室(137))と再生側流出路(131)とを連通させる。
第1動作において、圧縮機(41)で圧縮された冷媒は、四方切換弁(43)を通過して、第1吸着熱交換器(46)を流れる。第1吸着熱交換器(46)では、冷媒によって吸着剤が加熱され、吸着剤中の水分が空気へ放出される。第1吸着熱交換器(46)で放熱して凝縮した冷媒は、膨張弁(42)で減圧された後、第2吸着熱交換器(47)を流れる。第2吸着熱交換器(47)では、空気中の水分が吸着剤に吸着され、この際に生じる吸着熱が冷媒に付与される。第2吸着熱交換器(47)で吸熱して蒸発した冷媒は、圧縮機(41)に吸入されて圧縮される。
図5に示すように、この第1動作中には、第2ダンパ(142)、第3ダンパ(143)、第5ダンパ(145)、及び第8ダンパ(148)だけが開状態となり、残りのダンパ(141,144,146,147)が閉状態となる。
吸着空気吸込口(123)から吸着側流入路(132)へ流入した吸着空気は、第2ダンパ(142)を通って第2熱交換器室(138)へ流入し、その後に第2吸着熱交換器(47)を通過する。第2吸着熱交換器(47)では、吸着空気中の水分が吸着剤に吸着される。第2吸着熱交換器(47)で除湿された吸着空気は、第8ダンパ(148)を通って吸着側流出路(133)へ流入し、吸着側ファン室(136)を通過後に吸着空気吹出口(122)を通ってケーシング(111)から排出される。
一方、再生空気吸込口(124)から再生側流入路(134)へ流入した再生空気は、第3ダンパ(143)を通って第1熱交換器室(137)へ流入し、その後に第1吸着熱交換器(46)を通過する。第1吸着熱交換器(46)では、冷媒で加熱された吸着剤から水分が脱離し、この脱離した水分が再生空気に付与される。第1吸着熱交換器(46)で水分を付与された再生空気は、第5ダンパ(145)を通って再生側流出路(131)へ流入し、再生側ファン室(135)を通過後に再生空気吹出口(121)を通ってケーシング(111)から排出される。
第2動作では、第1吸着熱交換器(46)で空気を除湿すると同時に、第2吸着熱交換器(47)の吸着剤を再生する。
第2動作中の冷媒回路(40)では、四方切換弁(43)が図2の破線の状態となり、膨張弁(42)が所定開度に制御される。第1流路切換部(151)は、吸着側流入路(132)と第1吸着熱交換器(46)の収容室(第1熱交換器室(137))とを連通させ、且つ再生空気流入路(134)と第2吸着熱交換器(47)の収容室(第2熱交換器室(138))とを連通させる。また、第2流路切換部(152)は、第1吸着熱交換器(46)の収容室(第1熱交換器室(137))と吸着側流出路(133)とを連通させ、且つ第2吸着熱交換器(47)の収容室(第2熱交換器室(138))と再生側流出路(131)とを連通させる。
第2動作において、圧縮機(41)で圧縮された冷媒は、四方切換弁(43)を通過して、第2吸着熱交換器(47)を流れる。第2吸着熱交換器(47)では、冷媒によって吸着剤が加熱され、吸着剤中の水分が空気へ放出される。第2吸着熱交換器(47)で放熱して凝縮した冷媒は、膨張弁(42)で減圧された後、第1吸着熱交換器(46)を流れる。第1吸着熱交換器(46)では、空気中の水分が吸着剤に吸着され、この際に生じる吸着熱が冷媒に付与される。第1吸着熱交換器(46)で吸熱して蒸発した冷媒は、圧縮機(41)に吸入されて圧縮される。
図6に示すように、この第2動作中には、第1ダンパ(141)、第4ダンパ(144)、第6ダンパ(146)、及び第7ダンパ(147)だけが開状態となり、残りのダンパ(142,143,145,148)が閉状態となる。
吸着空気吸込口(123)から吸着側流入路(132)へ流入した吸着空気は、第1ダンパ(141)を通って第1熱交換器室(137)へ流入し、その後に第1吸着熱交換器(46)を通過する。第1吸着熱交換器(46)では、吸着空気中の水分が吸着剤に吸着される。第1吸着熱交換器(46)で除湿された吸着空気は、第7ダンパ(147)を通って吸着側流出路(133)へ流入し、吸着側ファン室(136)を通過後に吸着空気吹出口(122)を通ってケーシング(111)から排出される。
一方、再生空気吸込口(124)から再生側流入路(134)へ流入した再生空気は、第4ダンパ(144)を通って第2熱交換器室(138)へ流入し、その後に第2吸着熱交換器(47)を通過する。第2吸着熱交換器(47)では、冷媒で加熱された吸着剤から水分が脱離し、この脱離した水分が再生空気に付与される。第2吸着熱交換器(47)で水分を付与された再生空気は、第6ダンパ(146)を通って再生側流出路(131)へ流入し、再生側ファン室(135)を通過後に再生空気吹出口(121)を通ってケーシング(111)から排出される。
〈除湿システムの動作〉
本実施形態の除湿システム(1)では、システム構成を簡略化して示した図7の動作説明図において、吸着空気である室内空気(RA)が、室内循環回路(12)を循環する際に後段除湿ユニット(30)で除湿され、給気(SA)として室内に供給される動作が繰り返される。なお、この空気は、図1に示す温度調整用空調ユニット(15)で温度も調整される。
本実施形態の除湿システム(1)では、システム構成を簡略化して示した図7の動作説明図において、吸着空気である室内空気(RA)が、室内循環回路(12)を循環する際に後段除湿ユニット(30)で除湿され、給気(SA)として室内に供給される動作が繰り返される。なお、この空気は、図1に示す温度調整用空調ユニット(15)で温度も調整される。
中間循環回路では、中間空気が前段除湿ユニット(20)の吸着側の吸着熱交換器(46,47)で除湿されるとともに、後段除湿ユニット(30)の再生側の吸着熱交換器(47,46)を再生する動作が繰り返される。また、その際には、図1に示す顕熱交換器(14)において中間空気の吸着側と再生側で熱回収が行われ、後段除湿ユニット(30)の再生側出口から回収した温熱が後段除湿ユニット(20)の吸着熱交換器(47,46)の再生に利用される。
室外循環回路(11)では、再生空気である室外空気(OA)により前段除湿ユニット(20)の吸着熱交換器(46,47)が再生された後、室外に排出される動作が繰り返される。
このように、本実施形態では、前段除湿ユニット(20)の再生部(再生側の吸着熱交換器)を再生空気(室外空気(OA))で再生しながら、中間循環回路(13)において前段除湿ユニット(20)の吸着部(吸着側の吸着熱交換器)で空気を除湿して乾燥空気を生成し、その乾燥空気により後段除湿ユニット(30)の再生部が再生される。このことにより、再生した後段除湿ユニット(30)の再生側の吸着熱交換器(46,47)の水分量を少なくすることができる。したがって、この吸着熱交換器(46,47)が次に吸着側になって室内空気(RA)が室内循環回路(12)を循環するときに、空気を低露点温度になるまで除湿して室内に供給することができる。
また、複数の後段除湿ユニット(30A,30B)において吸着熱交換器(46,47)を吸着部と再生部に切り換えるタイミングが互いに一致していると、室内の温度変動や湿度変動が同期して大きくなりやすいのに対して、この実施形態では、後段第1除湿ユニット(30A)における吸着/再生の切り換えタイミングと後段第2除湿ユニット(30B)における吸着/再生の切り換えタイミングを、切り換え時間の間隔の半分ずらすようにしているので、室内の温度変動や湿度変動が抑えられる。
-実施形態1の効果-
本実施形態によれば、前段除湿ユニット(20)の再生部(再生側の吸着熱交換器(46,47))を再生空気(室外空気(OA))で再生しながら、中間循環回路(13)において前段除湿ユニット(20)の吸着部(吸着側の再生熱交換器(46,47))で中間空気を除湿して乾燥空気を生成し、その乾燥空気により後段除湿ユニット(30)の再生部を再生することにより、後段除湿ユニット(30)の再生側の吸着熱交換器(46,47)の水分量を下げることができる。そして、この吸着熱交換器(46,47)が吸着側になったときに、その水分量の少ない吸着熱交換器(46,47)を用いて室内空気(RA)を除湿できるから、再生温度を上げなくても室内空気(RA)を低露点温度の空気にすることができる。その際、後段除湿ユニット(30)の再生出口空気も十分に低湿であり、この空気が前段除湿ユニット(20)の吸着側の吸着熱交換器(46,47)との間で中間循環回路(13)を循環する。
本実施形態によれば、前段除湿ユニット(20)の再生部(再生側の吸着熱交換器(46,47))を再生空気(室外空気(OA))で再生しながら、中間循環回路(13)において前段除湿ユニット(20)の吸着部(吸着側の再生熱交換器(46,47))で中間空気を除湿して乾燥空気を生成し、その乾燥空気により後段除湿ユニット(30)の再生部を再生することにより、後段除湿ユニット(30)の再生側の吸着熱交換器(46,47)の水分量を下げることができる。そして、この吸着熱交換器(46,47)が吸着側になったときに、その水分量の少ない吸着熱交換器(46,47)を用いて室内空気(RA)を除湿できるから、再生温度を上げなくても室内空気(RA)を低露点温度の空気にすることができる。その際、後段除湿ユニット(30)の再生出口空気も十分に低湿であり、この空気が前段除湿ユニット(20)の吸着側の吸着熱交換器(46,47)との間で中間循環回路(13)を循環する。
また、本実施形態によれば、複数の後段除湿ユニット(30)において吸着熱交換器(46,47)を吸着側と再生側に切り換えるタイミングを互いに相違させているので、室内の温度変動や湿度変動を抑えることができ、室内空気の状態を安定させることができる。
さらに、本実施形態によれば、前段除湿ユニット(20)で処理する空気の露点温度を後段除湿ユニット(30)で処理する空気の露点温度よりも低くできることから、前段除湿ユニット(20)を後段除湿ユニット(30)よりも大風量で運転するようにしている。したがって、前段除湿ユニットの台数を少なくしてシステムのイニシャルコストを下げることが可能になる。
また、本実施形態によれば、中間循環回路(13)において、後段除湿ユニット(30)の再生側出口空気と後段除湿ユニット(30)の再生側出口空気との間で顕熱交換器(14)により熱回収を行うようにしている。具体的には、後段除湿ユニット(30)の再生側出口空気から回収した温熱を後段除湿ユニット(30)の再生に利用できるので、除湿システム(1)の性能向上を図ることができる。
-実施形態1の変形例-
(変形例1)
図8は、実施形態1の変形例1を示している。
(変形例1)
図8は、実施形態1の変形例1を示している。
この変形例1では、後段除湿ユニット(30)の再生側出口から再生側入口に空気の一部を戻す戻し通路(16)が設けられている。その他の構成は図1~図6の実施形態1と同じであるため、説明は省略する。
この変形例1では、前段除湿ユニット(20)から後段除湿ユニット(30)に供給される風用が後段除湿ユニット(30)の処理風量よりも少なくなる場合に、上記戻し通路(16)に空気を流すようにする。そうすることにより、前段除湿ユニット(20)と後段除湿ユニット(30)の風量バランスをとることができるので、除湿システム(1)の能力が低下するのを抑えられる。
(変形例2)
実施形態1の変形例2は、図9,図10に示すように、前段除湿ユニット(20)をバイパスして後段除湿ユニット(30)の再生側入口に室外空気(OA)を導入する室外バイパス通路(17)を設けた例である。図8はシステム構成図、図9はシステムの概略構成図であり、後段除湿ユニット(30)は1台だけを示している。室外バイパス通路(17)を設けた点以外は図1~図6の実施形態1と同じであるため、説明は省略する。
実施形態1の変形例2は、図9,図10に示すように、前段除湿ユニット(20)をバイパスして後段除湿ユニット(30)の再生側入口に室外空気(OA)を導入する室外バイパス通路(17)を設けた例である。図8はシステム構成図、図9はシステムの概略構成図であり、後段除湿ユニット(30)は1台だけを示している。室外バイパス通路(17)を設けた点以外は図1~図6の実施形態1と同じであるため、説明は省略する。
この変形例2では、例えば外気が低湿度である場合に、室外バイパス通路(17)を用いることにより、前段除湿ユニット(20)を用いずに後段除湿ユニット(30)だけでの運転が行われる。
この変形例2によれば、前段除湿ユニット(20)をバイパスして後段除湿ユニット(30)の再生側入口に室外空気を導入する室外バイパス通路(17)を設けたことにより、例えば外気が低湿度である場合には、前段除湿ユニットを用いずに後段除湿ユニット(30)だけでの運転を行えるから、省エネルギ化を図ることが可能となる。
(変形例3)
変形例3は、変形例2の室外バイパス通路(17)を設けずに、図1~図6に示した実施形態1の構成において、図11に示すように前段除湿ユニット(20)の吸着側ファン(126)及び再生側ファン(125)を運転した状態で、ダンパ(141~144)の開閉状態を制御して空気の流れを切り換えるとともに、冷媒回路(40)の運転を停止するようにした例である。また、後段除湿ユニットは1台だけを示している。その他の構成は、図1~図6の実施形態1と同じである。
変形例3は、変形例2の室外バイパス通路(17)を設けずに、図1~図6に示した実施形態1の構成において、図11に示すように前段除湿ユニット(20)の吸着側ファン(126)及び再生側ファン(125)を運転した状態で、ダンパ(141~144)の開閉状態を制御して空気の流れを切り換えるとともに、冷媒回路(40)の運転を停止するようにした例である。また、後段除湿ユニットは1台だけを示している。その他の構成は、図1~図6の実施形態1と同じである。
この例では、前段除湿ユニット(20)に流入した室外空気が処理されずに後段除湿ユニット(30)の再生側の吸着熱交換器(46,47)を通過して該吸着熱交換器(46,47)を再生する。この後段除湿ユニットの吸着熱交換器(46,47)を再生した空気は前段除湿ユニットでは処理はされずに通過するだけで、排気として室外へ放出される。
また、室内空気は上記変形例2と同様にして後段除湿ユニット(30)の吸着熱交換器(46,47)で処理され、低露点空気になって室内へ供給される。
このように構成しても、外気が低湿度であるような場合には、前段除湿ユニットを用いずに後段除湿ユニット(30)だけでの運転を行えるから、省エネルギ化を図ることが可能となる。
(変形例4)
実施形態1の変形例4は、前段除湿ユニット(20)と後段除湿ユニット(30)とで、吸着熱交換器(46,47)を吸着側と再生側に切り換える時間間隔を互いに異ならせるようにした例である。装置構成は実施形態1と同じであり、コントローラ(100)の制御内容が異なるだけであるため、システムの図示は省略する。
実施形態1の変形例4は、前段除湿ユニット(20)と後段除湿ユニット(30)とで、吸着熱交換器(46,47)を吸着側と再生側に切り換える時間間隔を互いに異ならせるようにした例である。装置構成は実施形態1と同じであり、コントローラ(100)の制御内容が異なるだけであるため、システムの図示は省略する。
この変形例4では、前段除湿ユニット(20)と後段除湿ユニット(30)の吸着熱交換器(46,47)を吸着側と再生側に切り換える時間間隔を、再生直後の吸着剤が十分に乾燥している状態となるような再生時間と、吸着中に吸着剤が水分を吸着しすぎて除湿能力が低下するようなことがない吸着時間とから、最適な切り換え時間間隔に設定される。特に、前段除湿ユニット(20)の1台あたりの処理風量が、後段除湿ユニット(30)の1台あたりの処理風量よりも多く設定されている場合には、吸着時間を短くして水分の吸着量を抑える必要があることから、後段除湿ユニット(30)よりも切り換え時間間隔が短く設定される。
この変形例4によれば、前段除湿ユニット(20)と後段除湿ユニット(30)とで、吸着熱交換器(46,47)を吸着側と再生側に切り換える時間間隔が互いに相違するようにしており、特に前段除湿ユニット(20)の切り換え時間間隔を後段除湿ユニット(30)の切り換え時間間隔よりも短くすることにより、各段の除湿ユニット(20,30)において最適な運転を行うことが可能になる。
《発明の実施形態2》
本発明の実施形態2について説明する。
本発明の実施形態2について説明する。
実施形態2は、図12に示すように、前段除湿ユニット(20)と高段側除湿ユニット(30)の間に中段除湿ユニット(50)を設けた例である。つまり、実施形態1は前段除湿ユニット(20)と後段除湿ユニット(30)の二段で除湿装置(10)を構成した例であるが、本実施形態は、前段除湿ユニット(20)と高段側除湿ユニット(30)と中段除湿ユニット(50)の三段で除湿装置(10)を構成した例である。
このように除湿装置(10)を三段で構成すると、前段除湿ユニット(20)と後段除湿ユニット(30)の間で2段の中間循環回路(13a,13b)が形成される。中間循環回路(13a,13b)の段数が増えると、後段除湿ユニット(30)の再生側の吸着熱交換器(46,47)をより低湿度にすることが可能になる。より後段になるほど、再生側の吸着熱交換器(47,46)の再生後の水分量を少なくできるからである。したがって、後段除湿ユニット(30)の吸着熱交換器(46,47)が吸着側になったときに、室内空気(RA)の水分吸着量を、除湿装置(10)が二段の場合よりも増やすことが可能になる。その結果、この実施形態2によれば、室内に供給する空気を、再生温度を上げずにより低露点温度の空気にすることが可能になる。
その他の構成、作用、効果は実施形態1と同様である。
《発明の実施形態3》
実施形態3の変形例1は、図13に示すように、前段除湿ユニット(20)を2台にして並列に接続するとともに、高段側除湿ユニット(30)を3台にして並列に接続した例である。
実施形態3の変形例1は、図13に示すように、前段除湿ユニット(20)を2台にして並列に接続するとともに、高段側除湿ユニット(30)を3台にして並列に接続した例である。
この実施形態3においても、実施形態1と同様に、後段除湿ユニット(30)同士で吸着熱交換器(46,47)を吸着側と再生側に切り換えるタイミングを異ならせるようにしている。また、前段除湿ユニット(20)同士でも、吸着熱交換器(46,47)を吸着側と再生側に切り換えるタイミングを異ならせるようにしている。
このように各段の除湿ユニット(20,30)の台数を増やし、各段の吸着熱交換器(46,47)の切り換えタイミングを異ならせるようにすると、実施形態1と比べて温度変動と湿度変動をさらに低減することが可能になる。したがって、この実施形態3によれば、室内空気の状態をより安定させることができる。
なお、その他の構成、作用、効果は実施形態1と同様である。
《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
上記実施形態については、以下のような構成としてもよい。
例えば、上記各実施形態や変形例では、前段除湿ユニット(20)と後段除湿ユニット(30)の両方で吸着部材として2つの吸着熱交換器(46,47)を用い、吸着側と再生側を切り換えるようにしている。しかしながら、後段除湿ユニット(30)は、吸着熱交換器(46,47)の代わりに吸着ロータを用いた構成にしてもよい。その場合、吸着ロータが吸着側の空気通路と再生側の空気通路にまたがって配置されるとともに回転可能に構成され、吸着側の空気通路に位置している吸着ロータの吸着部で空気中の水分を吸着する一方、再生側の空気通路に位置している吸着ロータの再生部でロータの水分を空気に放出することになる。
このようにしても、前段除湿ユニット(20)で除湿した乾燥空気で後段除湿ユニットの吸着ロータを再生できるから、再生後の吸着ロータに含まれる水分量を少なくすることができる。したがって、水分の少ない吸着ロータで室内空気を除湿できるから、再生温度を上げなくても室内に供給する空気を低露点の空気にすることが可能になる。
また、前段除湿ユニット(20)と後段除湿ユニット(30)の台数や段数は、上記各実施形態で説明した台数や段数から適宜変更することが可能である。
なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
以上説明したように、本発明は、2つの吸着熱交換器を吸着側と再生側に交互に切り換えて用いる除湿ユニットを備えた除湿システムについて有用である。
除湿システム
除湿装置
除湿対象空間
吸着部
再生部
吸着部材
前段除湿ユニット
後段除湿ユニット
吸着熱交換器
吸着部材
室外循環回路
除湿装置
除湿対象空間
吸着部
再生部
吸着部材
前段除湿ユニット
後段除湿ユニット
吸着熱交換器
吸着部材
室外循環回路
Claims (8)
- 除湿対象空間(S)に除湿空気を供給する除湿装置(10)を備え、
上記除湿装置(10)が、吸着部と再生部を有する吸着部材(45)を備えた除湿システムであって、
上記除湿装置(10)は、前段で除湿を行う前段除湿ユニット(20)と、後段で除湿を行う後段除湿ユニット(30)とを備え、
前段除湿ユニット(20)は、吸着部と再生部に交互に切り換えられる2つの吸着熱交換器(46,47)を備え、後段除湿ユニット(30)は、吸着部と再生部に切り換えられる吸着部材(45)を備え、
前段除湿ユニット(20)の再生部と室外空間との間で室外空気が循環する室外循環回路(11)が構成され、
後段除湿ユニット(30)の吸着部と除湿対象空間(S)との間で室内空気が循環する室内循環回路(12)が構成され、
前段除湿ユニット(20)の吸着部と後段除湿ユニット(30)の再生部との間で中間空気が循環する中間循環回路(13)が構成されていることを特徴とする除湿システム。 - 請求項1において、
前段除湿ユニット(20)と後段除湿ユニット(30)の両方が、吸着部と再生部に交互に切り換えられる2つの吸着熱交換器(46,47)を備えていることを特徴とする除湿システム。 - 請求項2において、
後段除湿ユニット(30)は、前段除湿ユニット(20)に対して複数台が互いに並列に接続され、
各後段除湿ユニット(30)で、吸着熱交換器(46,47)を吸着部と再生部に切り換えるタイミングが互いに相違することを特徴とする除湿システム。 - 請求項2または3において、
前段除湿ユニット(20)の1台あたりの処理風量が、後段除湿ユニット(30)の1台あたりの処理風量よりも多く設定されていることを特徴とする除湿システム。 - 請求項4において、
上記中間循環回路(13)には、後段除湿ユニット(30)の再生側出口から再生側入口に空気の一部を戻す戻し通路(16)が設けられていることを特徴とする除湿システム。 - 請求項2から5の何れか1つにおいて、
前段除湿ユニット(20)と後段除湿ユニット(30)とで、吸着熱交換器(46,47)を吸着部と再生部に切り換える時間間隔が互いに相違することを特徴とする除湿システム。 - 請求項2から6の何れか1つにおいて、
前段除湿ユニット(20)の吸着側出口空気と、後段除湿ユニット(30)の再生側出口空気との間で熱交換を行わせる顕熱交換器(14)が設けられていることを特徴とする除湿システム。 - 請求項2から7の何れか1つにおいて、
前段除湿ユニット(20)をバイパスして後段除湿ユニット(30)の再生側入口に室外空気を導入する室外バイパス通路(17)を備えていることを特徴とする除湿ユニット。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-137196 | 2013-06-28 | ||
JP2013137196A JP5624185B1 (ja) | 2013-06-28 | 2013-06-28 | 除湿システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014208023A1 true WO2014208023A1 (ja) | 2014-12-31 |
Family
ID=51942651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/003043 WO2014208023A1 (ja) | 2013-06-28 | 2014-06-06 | 除湿システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5624185B1 (ja) |
WO (1) | WO2014208023A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113418246A (zh) * | 2021-03-22 | 2021-09-21 | 青岛海尔空调电子有限公司 | 用于温湿度调节的系统及方法、设备 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6555710B2 (ja) * | 2015-04-23 | 2019-08-07 | 一般財団法人電力中央研究所 | 冷凍・冷蔵システム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58124719U (ja) * | 1982-02-17 | 1983-08-25 | シャープ株式会社 | 乾式除湿機 |
JP2000070657A (ja) * | 1998-08-27 | 2000-03-07 | Takasago Thermal Eng Co Ltd | 減湿システム |
JP2008249272A (ja) * | 2007-03-30 | 2008-10-16 | Osaka Gas Co Ltd | 冷房空調システム |
JP2013104606A (ja) * | 2011-11-14 | 2013-05-30 | Panasonic Corp | 冷凍サイクル装置及び温水生成装置 |
-
2013
- 2013-06-28 JP JP2013137196A patent/JP5624185B1/ja active Active
-
2014
- 2014-06-06 WO PCT/JP2014/003043 patent/WO2014208023A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58124719U (ja) * | 1982-02-17 | 1983-08-25 | シャープ株式会社 | 乾式除湿機 |
JP2000070657A (ja) * | 1998-08-27 | 2000-03-07 | Takasago Thermal Eng Co Ltd | 減湿システム |
JP2008249272A (ja) * | 2007-03-30 | 2008-10-16 | Osaka Gas Co Ltd | 冷房空調システム |
JP2013104606A (ja) * | 2011-11-14 | 2013-05-30 | Panasonic Corp | 冷凍サイクル装置及び温水生成装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113418246A (zh) * | 2021-03-22 | 2021-09-21 | 青岛海尔空调电子有限公司 | 用于温湿度调节的系统及方法、设备 |
CN113418246B (zh) * | 2021-03-22 | 2023-07-18 | 青岛海尔空调电子有限公司 | 用于温湿度调节的系统及方法、设备 |
Also Published As
Publication number | Publication date |
---|---|
JP5624185B1 (ja) | 2014-11-12 |
JP2015010784A (ja) | 2015-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5695752B2 (ja) | 除湿システム | |
JP5885781B2 (ja) | 除湿装置および除湿システム | |
US20230022397A1 (en) | Air quality adjustment system | |
JP5521106B1 (ja) | 除湿システム | |
WO2005095868A1 (ja) | 調湿装置 | |
JP5218135B2 (ja) | 調湿装置 | |
WO2005103577A1 (ja) | 調湿装置 | |
JP5624185B1 (ja) | 除湿システム | |
AU2006229152B2 (en) | Humidity control system | |
JP2015048982A (ja) | ドライルーム用の除湿システム | |
JP2015068599A (ja) | 除湿システム | |
JP6054734B2 (ja) | 除湿システム | |
JP2017044387A (ja) | 除湿システム | |
JP2015087070A (ja) | 除湿システム | |
JP2005291535A (ja) | 調湿装置 | |
JP6051039B2 (ja) | 除湿システム | |
JP6050107B2 (ja) | 除湿システム | |
JP5445559B2 (ja) | 除湿システム | |
JP2014126255A (ja) | 調湿装置及び調湿装置を用いた除湿システム | |
JP2014129984A (ja) | 除湿システム | |
JP6085468B2 (ja) | 除湿システム | |
JP6235942B2 (ja) | 除湿システム | |
JP2017138078A (ja) | 除湿システム | |
JP2015020080A (ja) | 除湿システム | |
JP2015021622A (ja) | 除湿システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14818317 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14818317 Country of ref document: EP Kind code of ref document: A1 |