WO2014207843A1 - 内燃機関の診断装置 - Google Patents

内燃機関の診断装置 Download PDF

Info

Publication number
WO2014207843A1
WO2014207843A1 PCT/JP2013/067546 JP2013067546W WO2014207843A1 WO 2014207843 A1 WO2014207843 A1 WO 2014207843A1 JP 2013067546 W JP2013067546 W JP 2013067546W WO 2014207843 A1 WO2014207843 A1 WO 2014207843A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
fuel
sensor
ratio sensor
Prior art date
Application number
PCT/JP2013/067546
Other languages
English (en)
French (fr)
Inventor
寛史 宮本
圭一郎 青木
靖志 岩崎
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2013/067546 priority Critical patent/WO2014207843A1/ja
Priority to JP2015523717A priority patent/JP6011726B2/ja
Priority to US14/900,645 priority patent/US9719449B2/en
Publication of WO2014207843A1 publication Critical patent/WO2014207843A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1624Catalyst oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/228Warning displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0816Oxygen storage capacity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a diagnostic device for an internal combustion engine.
  • Air-fuel ratio sensors used in such internal combustion engines gradually deteriorate with use.
  • Such deterioration includes, for example, responsiveness deterioration of the air-fuel ratio sensor.
  • the responsiveness deterioration of the air-fuel ratio sensor is caused by, for example, a vent hole provided in the sensor cover for preventing the sensor element from being wetted by being partially blocked by particulates (PM). If the vent hole is partially blocked in this way, gas exchange between the inner side and the outer side of the sensor cover is delayed, and as a result, the output of the air-fuel ratio sensor becomes dull.
  • various controls executed by the control device for the internal combustion engine will be hindered.
  • a diagnostic apparatus for diagnosing abnormality of responsiveness deterioration of the air-fuel ratio sensor has been proposed (see, for example, Patent Documents 1 to 4).
  • a diagnostic apparatus for diagnosing an abnormality in an air-fuel ratio sensor hereinafter referred to as a “downstream air-fuel ratio sensor” disposed downstream of the exhaust purification catalyst, for example, a combustion chamber
  • an apparatus for diagnosing an abnormality in a downstream air-fuel ratio sensor during execution of fuel cut control for stopping or significantly reducing fuel supply for example, Patent Document 1.
  • an air-fuel ratio corresponding to the output of the downstream air-fuel ratio sensor passes through a predetermined air-fuel ratio region during fuel cut control.
  • Abnormalities are diagnosed based on the transit time. Specifically, when the passage time is longer than a predetermined abnormality determination value, it is diagnosed that an abnormality of responsiveness deterioration has occurred in the downstream air-fuel ratio sensor.
  • the fuel cut control is performed in consideration of the transition of the exhaust air / fuel ratio immediately before the start of the fuel cut control and the passage time changing according to the oxygen storage amount of the exhaust purification catalyst.
  • the downstream air-fuel ratio sensor When the intake air amount integrated value from the start of the engine until the output air-fuel ratio reaches a predetermined air-fuel ratio richer than a predetermined air-fuel ratio range is less than a predetermined threshold, the downstream air-fuel ratio sensor is abnormal. Do not make a diagnosis.
  • an object of the present invention is to provide an internal combustion engine diagnostic apparatus capable of diagnosing abnormality of responsiveness deterioration of a downstream air-fuel ratio sensor whenever necessary when performing fuel cut control. Is to provide.
  • an exhaust purification catalyst that is disposed in an exhaust passage of an internal combustion engine and that can store oxygen in exhaust gas flowing in, and an exhaust purification catalyst downstream side in the exhaust flow direction
  • an air-fuel ratio sensor for detecting the air-fuel ratio of the exhaust gas flowing out from the exhaust purification catalyst, and performing a fuel cut control for stopping or reducing the fuel supply to the combustion chamber
  • the air-fuel ratio is based on the output air-fuel ratio when the output air-fuel ratio output from the air-fuel ratio sensor first passes through a part of the air-fuel ratio region equal to or higher than the theoretical air-fuel ratio.
  • An internal combustion engine diagnosis device is provided that calculates a change characteristic and diagnoses an abnormality of the air-fuel ratio sensor based on the air-fuel ratio change characteristic.
  • air-fuel ratio control means for controlling the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst to a target air-fuel ratio in the first invention.
  • the target air-fuel ratio is set to the first air-fuel ratio after completion of the fuel cut control.
  • the second air-fuel ratio is set to be leaner than the first air-fuel ratio.
  • the target air-fuel ratio is set to the first air-fuel ratio immediately after the end of the fuel cut control.
  • the abnormality diagnosis of the air-fuel ratio sensor is not performed when the abnormality diagnosis of the air-fuel ratio sensor has already been completed after the internal combustion engine is started.
  • the second air-fuel ratio is a stoichiometric air-fuel ratio.
  • the abnormality diagnosis of the air-fuel ratio sensor is completed. After that time, the target air-fuel ratio is changed from the second air-fuel ratio to the first air-fuel ratio.
  • a seventh invention in any one of the second to sixth inventions, further comprising a catalyst deterioration degree estimating means for estimating a deterioration degree of the exhaust purification catalyst, the catalyst deterioration detected by the catalyst deterioration degree estimating means.
  • the target air-fuel ratio is equal to the first air-fuel ratio immediately after completion of the fuel cut control even when the abnormality diagnosis of the air-fuel ratio sensor is performed.
  • the air-fuel ratio when the first air-fuel ratio is set to the second air-fuel ratio before setting the target air-fuel ratio to the first air-fuel ratio, The air-fuel ratio is richer than when the second air-fuel ratio is not set before the first air-fuel ratio is set.
  • the air-fuel ratio sensor generates a limit current when the air-fuel ratio of the exhaust gas passing through the air-fuel ratio sensor is within a predetermined air-fuel ratio region.
  • the output is a limit current type air-fuel ratio sensor, and the air-fuel ratio region is within the predetermined air-fuel ratio region where the air-fuel ratio sensor generates a limit current.
  • the air-fuel ratio change characteristic is an air-fuel ratio change rate when an output air-fuel ratio of the air-fuel ratio sensor first passes through the air-fuel ratio region.
  • the air-fuel ratio change speed is slower than the abnormality reference change speed, it is determined that the air-fuel ratio sensor is abnormal, and the air-fuel ratio change speed changes to the abnormal reference change. If it is faster than the speed, it is determined that the air-fuel ratio sensor is normal.
  • the air-fuel ratio change characteristic is obtained by integrating the output air-fuel ratio when the output air-fuel ratio of the air-fuel ratio sensor is in the air-fuel ratio region.
  • the air-fuel ratio sensor abnormality diagnosis if the air-fuel ratio integrated value is equal to or greater than the abnormality reference integrated value, it is determined that the air-fuel ratio sensor is abnormal, and the air-fuel ratio integrated value is determined. When the value is smaller than the abnormal reference integrated value, it is determined that the air-fuel ratio sensor is normal.
  • a warning lamp when it is determined in the abnormality diagnosis of the air-fuel ratio sensor that the air-fuel ratio sensor is abnormal, a warning lamp is turned on.
  • a diagnostic apparatus for an internal combustion engine capable of diagnosing abnormality of responsiveness deterioration of a downstream air-fuel ratio sensor whenever necessary when performing fuel cut control.
  • FIG. 1 is a diagram schematically showing an internal combustion engine in which the diagnostic apparatus of the present invention is used.
  • FIG. 2 is a schematic cross-sectional view of the air-fuel ratio sensor.
  • FIG. 3 is a diagram showing the relationship between the sensor applied voltage and the output current at each exhaust air-fuel ratio.
  • FIG. 4 is a diagram showing the relationship between the exhaust air-fuel ratio and the output current I when the applied voltage is made constant.
  • FIG. 5 is a time chart of the upstream output air-fuel ratio and the downstream output air-fuel ratio before and after fuel cut control.
  • FIG. 6 is a time chart of the upstream output air-fuel ratio and the downstream output air-fuel ratio before and after fuel cut control.
  • FIG. 1 is a diagram schematically showing an internal combustion engine in which the diagnostic apparatus of the present invention is used.
  • FIG. 2 is a schematic cross-sectional view of the air-fuel ratio sensor.
  • FIG. 3 is a diagram showing the relationship between the sensor applied voltage and the output current at each exhaust air-fuel
  • FIG. 7 is a time chart of the upstream output air-fuel ratio and the downstream output air-fuel ratio before and after fuel cut control.
  • FIG. 8 is a flowchart showing a control routine of change time calculation control.
  • FIG. 9 is a flowchart showing a control routine for abnormality diagnosis control.
  • FIG. 10 is a time chart of the upstream output air-fuel ratio and the downstream output air-fuel ratio before and after fuel cut control.
  • FIG. 11 is a time chart of the upstream output air-fuel ratio and the downstream output air-fuel ratio before and after fuel cut control.
  • FIG. 12 is a time chart of the downstream output air-fuel ratio and the like when the target air-fuel ratio is controlled based on the third embodiment.
  • FIG. 13 is a flowchart showing a control routine of air-fuel ratio control for setting the target air-fuel ratio.
  • FIG. 14 is a flowchart showing a control routine of air-fuel ratio control for setting the target air-fuel ratio.
  • FIG. 15 is a flowchart showing a control routine of air-fuel ratio control for setting the target air-fuel ratio.
  • FIG. 1 is a diagram schematically showing an internal combustion engine in which a control device according to a first embodiment of the present invention is used.
  • 1 is an engine body
  • 2 is a cylinder block
  • 3 is a piston that reciprocates within the cylinder block
  • 4 is a cylinder head fixed on the cylinder block 2
  • 5 is a piston
  • 6 is an intake valve
  • 7 is an intake port
  • 8 is an exhaust valve
  • 9 is an exhaust port.
  • the intake valve 6 opens and closes the intake port 7, and the exhaust valve 8 opens and closes the exhaust port 9.
  • a spark plug 10 is disposed at the center of the inner wall surface of the cylinder head 4, and a fuel injection valve 11 is disposed around the inner wall surface of the cylinder head 4.
  • the spark plug 10 is configured to generate a spark in response to the ignition signal.
  • the fuel injection valve 11 injects a predetermined amount of fuel into the combustion chamber 5 according to the injection signal.
  • the fuel injection valve 11 may be arranged so as to inject fuel into the intake port 7.
  • gasoline having a theoretical air-fuel ratio of 14.6 is used as the fuel.
  • other fuels may be used in the internal combustion engine in which the diagnostic device of the present invention is used.
  • the intake port 7 of each cylinder is connected to a surge tank 14 via a corresponding intake branch pipe 13, and the surge tank 14 is connected to an air cleaner 16 via an intake pipe 15.
  • the intake port 7, the intake branch pipe 13, the surge tank 14, and the intake pipe 15 form an intake passage.
  • a throttle valve 18 driven by a throttle valve drive actuator 17 is disposed in the intake pipe 15. The throttle valve 18 is rotated by a throttle valve drive actuator 17 so that the opening area of the intake passage can be changed.
  • the exhaust port 9 of each cylinder is connected to an exhaust manifold 19.
  • the exhaust manifold 19 has a plurality of branches connected to the exhaust ports 9 and a collective part in which these branches are assembled.
  • a collecting portion of the exhaust manifold 19 is connected to an upstream casing 21 containing an upstream exhaust purification catalyst 20.
  • the upstream casing 21 is connected to a downstream casing 23 containing a downstream exhaust purification catalyst 24 via an exhaust pipe 22.
  • the exhaust port 9, the exhaust manifold 19, the upstream casing 21, the exhaust pipe 22, and the downstream casing 23 form an exhaust passage.
  • An electronic control unit (ECU) 31 comprises a digital computer, and is connected to each other via a bidirectional bus 32, a RAM (Random Access Memory) 33, a ROM (Read Only Memory) 34, a CPU (Microprocessor) 35, and an input.
  • a port 36 and an output port 37 are provided.
  • An air flow meter 39 for detecting the flow rate of air flowing through the intake pipe 15 is disposed in the intake pipe 15, and the output of the air flow meter 39 is input to the input port 36 via the corresponding AD converter 38.
  • an upstream air-fuel ratio sensor 40 that detects the air-fuel ratio of the exhaust gas flowing through the exhaust manifold 19 (that is, the exhaust gas flowing into the upstream exhaust purification catalyst 20) is disposed at the collecting portion of the exhaust manifold 19.
  • the downstream side that detects the air-fuel ratio of the exhaust gas that flows in the exhaust pipe 22 (that is, the exhaust gas that flows out of the upstream side exhaust purification catalyst 20 and flows into the downstream side exhaust purification catalyst 24).
  • An air-fuel ratio sensor 41 is arranged. The outputs of these air-fuel ratio sensors 40 and 41 are also input to the input port 36 via the corresponding AD converter 38. The configuration of these air-fuel ratio sensors 40 and 41 will be described later.
  • a load sensor 43 that generates an output voltage proportional to the amount of depression of the accelerator pedal 42 is connected to the accelerator pedal 42, and the output voltage of the load sensor 43 is input to the input port 36 via the corresponding AD converter 38.
  • the crank angle sensor 44 generates an output pulse every time the crankshaft rotates 15 degrees, and this output pulse is input to the input port 36.
  • the CPU 35 calculates the engine speed from the output pulse of the crank angle sensor 44.
  • the output port 37 is connected to the spark plug 10, the fuel injection valve 11, and the throttle valve drive actuator 17 via the corresponding drive circuit 45.
  • the upstream side exhaust purification catalyst 20 is a three-way catalyst having an oxygen storage capacity. Specifically, the upstream side exhaust purification catalyst 20 supports a noble metal having a catalytic action (for example, platinum (Pt)) and a substance having an oxygen storage capacity (for example, ceria (CeO 2 )) on a carrier made of ceramic. It has been made. When the upstream exhaust purification catalyst 20 reaches a predetermined activation temperature, the upstream exhaust purification catalyst 20 exhibits oxygen storage capacity in addition to the catalytic action of simultaneously purifying unburned gas (HC, CO, etc.) and nitrogen oxides (NOx).
  • HC, CO, etc. hydrogen oxides
  • the upstream side exhaust purification catalyst 20 has an air / fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 that is leaner than the stoichiometric air / fuel ratio (hereinafter referred to as “lean air / fuel ratio”). Is stored in the exhaust gas.
  • the upstream side exhaust purification catalyst 20 has oxygen stored in the upstream side exhaust purification catalyst 20 when the air-fuel ratio of the inflowing exhaust gas is richer than the stoichiometric air-fuel ratio (hereinafter referred to as “rich air-fuel ratio”). Release.
  • air-fuel ratio of exhaust gas means the ratio of the mass of fuel to the mass of air supplied until the exhaust gas is generated. Normally, combustion is performed when the exhaust gas is generated. It means the ratio of the mass of fuel to the mass of air supplied into the chamber 5.
  • the air-fuel ratio of the exhaust gas may be referred to as “exhaust air-fuel ratio”.
  • the upstream side exhaust purification catalyst 20 has a catalytic action and an oxygen storage capacity, and thus has a NOx and unburned gas purification action according to the oxygen storage amount.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio
  • oxygen in the exhaust gas is occluded by the upstream side exhaust purification catalyst 20 when the oxygen storage amount is small, and NOx is reduced accordingly. Reduced and purified.
  • there is a limit to the oxygen storage capacity and when the oxygen storage amount of the upstream side exhaust purification catalyst 20 exceeds the upper limit storage amount, oxygen is hardly stored in the upstream side exhaust purification catalyst 20 any more.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is the lean air-fuel ratio
  • the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is also the lean air-fuel ratio.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is rich, the oxygen stored in the upstream side exhaust purification catalyst 20 is released when the oxygen storage amount is large, Unburned gas is oxidized and purified.
  • the oxygen storage amount of the upstream side exhaust purification catalyst 20 decreases and falls below the lower limit storage amount, oxygen is hardly released from the upstream side exhaust purification catalyst 20 any more.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio
  • the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 also becomes a rich air-fuel ratio.
  • the exhaust purification catalysts 20 and 24 used in the present embodiment NOx and unburned gas in the exhaust gas are purified according to the air-fuel ratio and oxygen storage amount of the exhaust gas flowing into the exhaust purification catalyst.
  • the exhaust purification catalysts 20 and 24 may be different from the three-way catalyst as long as they have a catalytic action and an oxygen storage capacity.
  • the air-fuel ratio sensors 40 and 41 include a solid electrolyte layer 51, an exhaust-side electrode 52 disposed on one side surface thereof, an atmosphere-side electrode 53 disposed on the other side surface, and diffusion of exhaust gas passing therethrough.
  • a diffusion control layer 54 that controls the speed, a protective layer 55 that protects the diffusion control layer 54, and a heater unit 56 that heats the air-fuel ratio sensors 40 and 41 are provided.
  • the solid electrolyte layer 51 is an oxygen ion conductive oxide in which ZrO 2 (zirconia), HfO 2 , ThO 2 , Bi 2 O 3, etc. are distributed with CaO, MgO, Y 2 O 3 , Yb 2 O 3, etc. as stabilizers.
  • the sintered body is formed.
  • the diffusion control layer 54 is formed of a porous sintered body of a heat-resistant inorganic substance such as alumina, magnesia, silica, spinel, mullite or the like.
  • the exhaust-side electrode 52 and the atmosphere-side electrode 53 are formed of a noble metal having high catalytic activity such as platinum.
  • a sensor application voltage V is applied between the exhaust side electrode and the atmosphere side electrode by a voltage application device 60 mounted on the ECU 31.
  • the ECU 31 is provided with a current detection device 61 that detects a current I flowing between the electrodes 52 and 53 via the solid electrolyte layer when a sensor applied voltage is applied.
  • the current detected by the current detector 61 is the output current of the air-fuel ratio sensors 40 and 41.
  • the thus configured air-fuel ratio sensors 40 and 41 have voltage-current (VI) characteristics as shown in FIG.
  • V voltage-current
  • the output current (I) increases as the exhaust air-fuel ratio increases (lean).
  • the VI line at each exhaust air-fuel ratio includes a region parallel to the V axis, that is, a region where the output current hardly changes even when the sensor applied voltage changes. This voltage region is referred to as a limiting current region, and the current at this time is referred to as a limiting current.
  • the limit current region and limit current when the exhaust air-fuel ratio is 18 are indicated by W 18 and I 18 , respectively.
  • the output current changes almost in proportion to the sensor applied voltage.
  • a region where the sensor applied voltage is lower than the limit current region.
  • the inclination at this time is determined by the DC element resistance of the solid electrolyte layer 51.
  • the output current increases as the sensor applied voltage increases. In this region, the output voltage changes according to the change in the sensor applied voltage due to, for example, decomposition of moisture contained in the exhaust gas on the exhaust side electrode 52.
  • FIG. 4 is a diagram showing the relationship between the exhaust air-fuel ratio and the output current I when the applied voltage is kept constant at about 0.4V.
  • the output current I from the air-fuel ratio sensors 40 and 41 increases as the exhaust air-fuel ratio increases (that is, as the exhaust air-fuel ratio becomes leaner).
  • the air-fuel ratio sensors 40 and 41 are configured such that the output current I becomes zero when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio.
  • the exhaust air-fuel ratio becomes larger than a certain value (18 or more in the present embodiment) or becomes smaller than a certain value, the ratio of the change in the output current to the change in the exhaust air-fuel ratio becomes smaller.
  • the limit current type air-fuel ratio sensor having the structure shown in FIG.
  • any structure such as a limit current type air-fuel ratio sensor of another structure or an air-fuel ratio sensor not of the limit current type will be used.
  • An air-fuel ratio sensor may be used.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is based on the engine operating state based on the outputs of the upstream side air-fuel ratio sensor 40 and the downstream side air-fuel ratio sensor 41.
  • the fuel injection amount from the fuel injection valve 11 and the like are controlled so as to achieve an optimal target air-fuel ratio.
  • the fuel injection amount from the fuel injection valve 11 is controlled so that the air-fuel ratio of the exhaust gas flowing out from the engine body 1 becomes the target air-fuel ratio.
  • control is performed so that the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes the target air-fuel ratio based on the output of the upstream side air-fuel ratio sensor 40, and the downstream side.
  • Examples include a method of correcting the output of the upstream air-fuel ratio sensor 40 based on the output of the side air-fuel ratio sensor 41 or changing the target air-fuel ratio.
  • control for setting the air-fuel ratio of the exhaust gas to the target air-fuel ratio is performed by the ECU 31, and the ECU 31 functions as air-fuel ratio control means.
  • the fuel injection from the fuel injection valve 11 is stopped or significantly reduced to supply the fuel into the combustion chamber 5.
  • Fuel cut control that is stopped or significantly reduced is performed.
  • Such fuel cut control is performed by, for example, a predetermined rotational speed in which the depression amount of the accelerator pedal 42 is zero or almost zero (that is, the engine load is zero or almost zero) and the engine speed is higher than the idling speed.
  • the upstream side exhaust purification catalyst 20 When the fuel cut control is performed, air or exhaust gas similar to air is discharged from the internal combustion engine. Therefore, the upstream side exhaust purification catalyst 20 has a very high air-fuel ratio (that is, an extremely lean degree). High) gas will flow in. As a result, during fuel cut control, a large amount of oxygen flows into the upstream side exhaust purification catalyst 20, and the oxygen storage amount of the upstream side exhaust purification catalyst 20 reaches the upper limit storage amount.
  • FIG. 5 shows the air-fuel ratio corresponding to the output value of the upstream air-fuel ratio sensor 40 (hereinafter referred to as “upstream-side output air-fuel ratio”) and the oxygen storage of the upstream side exhaust purification catalyst 20 when the fuel cut control is performed.
  • 4 is a time chart of the amount and the air-fuel ratio corresponding to the output value of the downstream air-fuel ratio sensor 41 (hereinafter referred to as “downstream-side output air-fuel ratio”).
  • fuel cut control is started at time t 1 and fuel cut control is ended at time t 3 .
  • the lean air-fuel ratio exhaust gas is discharged from the engine body 1, and the output air-fuel ratio of the upstream air-fuel ratio sensor 40 increases accordingly.
  • oxygen in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is stored in the upstream side exhaust purification catalyst 20, so that the oxygen storage amount of the upstream side exhaust purification catalyst 20 increases, while the downstream side air-fuel ratio.
  • the output air-fuel ratio of the sensor 41 remains the stoichiometric air-fuel ratio.
  • the upstream side exhaust purification catalyst 20 can no longer store oxygen.
  • the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is leaner than the stoichiometric air-fuel ratio.
  • the rich control after the return is performed in order to release the oxygen stored in the upstream side exhaust purification catalyst 20 during the fuel cut control.
  • the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is set to a post-return rich air-fuel ratio (for example, 14.5, first air-fuel ratio) slightly richer than the stoichiometric air-fuel ratio. Is done.
  • the output air-fuel ratio of the upstream side air-fuel ratio sensor 40 becomes a rich air-fuel ratio, and the oxygen storage amount of the upstream side exhaust purification catalyst 20 gradually decreases.
  • the oxygen stored in the upstream side exhaust purification catalyst 20 reacts with the unburned gas in the exhaust gas.
  • the air-fuel ratio of the exhaust gas discharged from the side exhaust purification catalyst 20 is substantially the stoichiometric air-fuel ratio. For this reason, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 almost converges to the stoichiometric air-fuel ratio.
  • the oxygen storage amount of the upstream side exhaust purification catalyst 20 continues to decrease, the oxygen storage amount finally becomes almost zero, and unburned gas flows out from the upstream side exhaust purification catalyst 20.
  • the exhaust gas air-fuel ratio detected by the downstream side air-fuel ratio sensor 41 is richer than the stoichiometric air-fuel ratio.
  • the output air-fuel ratio of the downstream air-fuel ratio sensor 41 reaches the end determination air-fuel ratio that is slightly richer than the stoichiometric air-fuel ratio, the rich control after returning is ended. Thereafter, normal air-fuel ratio control is started, and in the illustrated example, the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is set to the stoichiometric air-fuel ratio.
  • the end condition of the rich control after the return does not necessarily have to be when the rich air-fuel ratio is detected by the downstream air-fuel ratio sensor 41.
  • the predetermined time has elapsed after the fuel cut control ends, You may make it complete
  • such an output abnormality of the air-fuel ratio sensors 40 and 41 includes responsive deterioration.
  • the response deterioration of the air-fuel ratio sensor is caused by, for example, the ventilation hole provided in the sensor cover (cover provided outside the protective layer 55) for preventing the sensor element from getting wet with particulates (PM). This is caused by partial blockage.
  • FIG. 6 shows how the air-fuel ratio sensor changes when such responsiveness deterioration occurs.
  • FIG. 6 is a time chart similar to FIG. 5 for the upstream output air-fuel ratio and the downstream output air-fuel ratio before and after execution of the fuel cut control.
  • fuel cut control is started at time t 1 and fuel cut control is ended at time t 3 .
  • the rich air-fuel ratio exhaust gas is caused to flow into the upstream side exhaust purification catalyst 20 by the rich control after the return.
  • unburned gas in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is combined with oxygen stored in the upstream side exhaust purification catalyst 20. It reacts and is purified.
  • the air-fuel ratio of the exhaust gas discharged from the upstream side exhaust purification catalyst 20 is the stoichiometric air-fuel ratio.
  • the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 changes as indicated by the solid line A in FIG. That is, since there is a distance from the engine body 1 to the downstream air-fuel ratio sensor 41 after the fuel cut control is finished, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 starts to decrease slightly after the fuel cut control is finished. . At this time, since the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is substantially the stoichiometric air-fuel ratio, the output air-fuel ratio of the downstream-side air-fuel ratio sensor 41 converges to almost the stoichiometric air-fuel ratio.
  • the output air-fuel ratio of the downstream air-fuel ratio sensor 41 changes as indicated by the broken line B in FIG.
  • the rate of decrease in the output air-fuel ratio is slower than when the downstream air-fuel ratio sensor 41 has not deteriorated in responsiveness (solid line A).
  • the rate of decrease in the output air-fuel ratio of the downstream air-fuel ratio sensor 41 changes according to whether or not the downstream air-fuel ratio sensor 41 has deteriorated in responsiveness. Therefore, by calculating this rate of decrease, it is possible to diagnose whether or not the downstream air-fuel ratio sensor 41 has deteriorated responsiveness.
  • the diagnosis of such responsiveness deterioration is performed based on the rate of decrease in the region where the exhaust air-fuel ratio is between about 18 and 17.
  • the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 is a predetermined air level between about 18 and about 17.
  • a change speed of the output air-fuel ratio (hereinafter referred to as “determination air-fuel ratio change speed”) when passing through the fuel ratio area X (hereinafter referred to as “determination air-fuel ratio area”) is calculated.
  • the time ⁇ T during which the output air-fuel ratio changes from the upper limit air-fuel ratio (that is, 18) to the lower limit air-fuel ratio (that is, 17) in the determination air-fuel ratio region is a parameter representing the determination air-fuel ratio change rate. Used. This means that the longer the determination air-fuel ratio change time ⁇ T, the slower the determination air-fuel ratio change speed.
  • the determination air-fuel ratio change time ⁇ T in FIG. 1 is a parameter representing the determination air-fuel ratio change speed for the solid line A.
  • the abnormality diagnosis of the downstream air-fuel ratio sensor 41 is performed based on the determination air-fuel ratio change time ⁇ T thus calculated. Specifically, if the determination air-fuel ratio change time ⁇ T is longer than the abnormal reference change time, that is, if the determination air-fuel ratio change speed is slower than the abnormal reference change speed, the response to the downstream air-fuel ratio sensor 41 is made. It is determined that an abnormality of sex degradation has occurred.
  • the abnormal reference change time is, for example, a time slightly longer than the minimum time that the change time in the determination air-fuel ratio region X can take when the downstream air-fuel ratio sensor 41 has not deteriorated in responsiveness.
  • the abnormality reference change time may be a predetermined value, or may be a value that changes in accordance with operating parameters such as engine speed and engine load during rich control after return.
  • the downstream air-fuel ratio sensor 41 is deteriorated in responsiveness. It is determined that the downstream air-fuel ratio sensor 41 is normal.
  • the fuel cut control is performed, that is, the state where the air-fuel ratio of the exhaust gas passing around the downstream air-fuel ratio sensor 41 is extremely high (the degree of leanness is extremely high), the downstream An abnormality diagnosis is performed when the air-fuel ratio of the exhaust gas passing around the side air-fuel ratio sensor 41 changes to the stoichiometric air-fuel ratio.
  • the abnormality diagnosis is performed when the air-fuel ratio of the exhaust gas passing around the downstream air-fuel ratio sensor 41 changes greatly, thereby reducing the influence of noise on the downstream air-fuel ratio sensor 41, Diagnosis accuracy in abnormality diagnosis can be increased.
  • the air-fuel ratio of the exhaust gas passing around the downstream air-fuel ratio sensor 41 is maintained at an extremely high air-fuel ratio. For this reason, when performing abnormality diagnosis after completion of fuel cut control, it is possible to eliminate the influence of fluctuations in the air-fuel ratio before abnormality diagnosis.
  • the oxygen storage amount of the upstream side exhaust purification catalyst 20 basically reaches the upper limit storage amount during fuel cut control, the influence of the oxygen storage amount can be eliminated in the abnormality diagnosis. For this reason, according to the diagnostic apparatus of this embodiment, abnormality diagnosis of the downstream air-fuel ratio sensor 41 can be performed with high accuracy.
  • the diagnostic device of the present embodiment it is not necessary to prohibit the abnormality diagnosis in consideration of the fluctuation of the air-fuel ratio before the abnormality diagnosis and the oxygen storage amount of the upstream side exhaust purification catalyst 20, and the abnormality diagnosis is required. An abnormality diagnosis can always be performed.
  • a warning lamp is lit in a vehicle equipped with an internal combustion engine.
  • abnormality diagnosis is performed based on the determination air-fuel ratio change time ⁇ T.
  • an air-fuel ratio change speed V 1 obtained by subtracting the lower limit air-fuel ratio from the upper limit air-fuel ratio in the determination air-fuel ratio region X and the determination air-fuel ratio change time is used. May be.
  • the integrated value of the exhaust gas amount may be estimated from the output value of the air flow meter 39, or may be estimated from the engine load and the engine speed.
  • the abnormality diagnosis is performed only once before the engine is stopped.
  • abnormality diagnosis may be performed a plurality of times after the engine is started and before the engine is stopped.
  • the determination air-fuel ratio change time ⁇ T is longer than the abnormality reference change time in one abnormality diagnosis, it is diagnosed that the upstream side exhaust purification catalyst 20 is abnormal.
  • it is determined that the determination air-fuel ratio change time ⁇ T is continuously longer than the abnormality reference change time in two abnormality diagnoses it may be diagnosed that the upstream side exhaust purification catalyst 20 is abnormal. Good.
  • the determination air-fuel ratio change time ⁇ T is determined in the subsequent abnormality diagnosis. If it is determined that the time is shorter than the abnormal reference change time, the downstream air-fuel ratio sensor 41 is diagnosed as normal.
  • the determination air-fuel ratio region is a region between the upper limit air-fuel ratio and the lower limit air-fuel ratio on the richer side, the upper-limit air-fuel ratio is 18 and the lower-limit air-fuel ratio is 17 in the above-described example.
  • the determination air-fuel ratio region does not necessarily have to be a region between them.
  • the determination air-fuel ratio region basically needs to be a region where the change rate of the output air-fuel ratio changes when responsiveness deterioration occurs in the downstream air-fuel ratio sensor 41. Therefore, the determination upper limit air-fuel ratio needs to be lower than the output air-fuel ratio when air is discharged from the upstream side exhaust purification catalyst 20 by the fuel cut control.
  • the upper limit air-fuel ratio needs to be an air-fuel ratio at which the downstream side air-fuel ratio sensor 41 can generate the limit current. It is.
  • the upper limit air-fuel ratio is an air-fuel ratio at which the downstream air-fuel ratio sensor 41 can generate a limit current, and is 18 or less in the air-fuel ratio sensor having the VI characteristic shown in FIG.
  • the timing at which the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 becomes richer than the stoichiometric air-fuel ratio varies according to the amount of oxygen that can be stored by the upstream side exhaust purification catalyst 20 (maximum oxygen storage amount). To do. Therefore, when the lower limit air-fuel ratio is set to be richer than the stoichiometric air-fuel ratio, even if the responsiveness deterioration of the downstream air-fuel ratio sensor 41 is approximately the same, it changes according to the maximum oxygen storage amount of the upstream side exhaust purification catalyst 20. . Therefore, the lower limit air-fuel ratio needs to be equal to or higher than the theoretical air-fuel ratio.
  • the determination air-fuel ratio region is a part of the air-fuel ratio region equal to or higher than the theoretical air-fuel ratio.
  • the determination air-fuel ratio change time ⁇ T is as shown in FIG.
  • the lower limit air-fuel ratio is preferably leaner than the stoichiometric air-fuel ratio.
  • the lower limit air-fuel ratio needs to be an air-fuel ratio at which the downstream side air-fuel ratio sensor 41 can generate the limit current. It is. Therefore, in the air-fuel ratio sensor having the VI characteristic shown in FIG. In consideration of the fact that both the upper limit air-fuel ratio and the lower limit air-fuel ratio need to be the air-fuel ratios at which the downstream air-fuel ratio sensor 41 can generate a limit current, the determination air-fuel ratio region is the downstream air-fuel ratio sensor. It can be said that 41 is a region within the air-fuel ratio region where the limit current is generated.
  • the determination air-fuel ratio region is a region between the upper limit air-fuel ratio and the lower limit air-fuel ratio
  • the upper limit air-fuel ratio is 18
  • the lower limit air-fuel ratio is 17 in the above-described example.
  • FIG. 8 is a flowchart showing a control routine of change time calculation control. The illustrated control routine is performed by interruption at regular time intervals.
  • step S11 after the internal combustion engine is started (or after the ignition key of a vehicle equipped with the internal combustion engine is turned on), it is determined whether an abnormality diagnosis has not yet been executed. If the abnormality diagnosis has already been completed, it is not necessary to calculate the change time for the abnormality diagnosis, so that the control routine is terminated. On the other hand, if it is determined in step S11 that the abnormality diagnosis has not been completed, the process proceeds to step S12.
  • step S12 it is determined whether or not fuel cut control is currently being performed.
  • the process proceeds to step S13.
  • step S13 it is determined whether or not a condition satisfaction flag is 1.
  • the condition satisfaction flag is a flag that is set to 1 when the execution condition for changing time calculation is satisfied, and is set to 0 when the execution condition is not satisfied.
  • step S14 it is determined whether the output air-fuel ratio AF of the downstream air-fuel ratio sensor 41 is equal to or higher than the upper limit air-fuel ratio Xup of the determination air-fuel ratio region X. If it is determined that the output air-fuel ratio AF of the downstream side air-fuel ratio sensor 41 is lower than the upper limit air-fuel ratio Xup, the change routine in the determination air-fuel ratio region X cannot be calculated, and the control routine is terminated.
  • step S14 if it is determined in step S14 that the output air-fuel ratio AF of the downstream air-fuel ratio sensor 41 is greater than or equal to the upper limit air-fuel ratio Xup, the process proceeds to step S15.
  • step S15 the condition satisfaction flag is set to 1.
  • step S12 it is determined that the condition satisfaction flag is 1, and the process proceeds to step S16 to calculate the change time.
  • step S16 it is determined whether or not the output air-fuel ratio AF of the downstream air-fuel ratio sensor 41 is equal to or lower than the upper limit air-fuel ratio Xup of the determination air-fuel ratio region X. If it is determined in step S16 that the output air-fuel ratio AF is greater than the upper limit air-fuel ratio Xup, the control routine is terminated.
  • step S17 it is determined whether or not the output air-fuel ratio AF of the downstream air-fuel ratio sensor 41 is greater than or equal to the lower limit air-fuel ratio Xlow of the determination air-fuel ratio region X. While the output air-fuel ratio AF of the downstream air-fuel ratio sensor 41 is within the determination air-fuel ratio region X, it is determined in step S17 that the output air-fuel ratio AF is equal to or higher than the lower limit air-fuel ratio Xlow, and the process proceeds to step S18.
  • step S18 1 is added to the provisional air-fuel ratio change time ⁇ T '. While the output air-fuel ratio AF is within the determination air-fuel ratio region X, the process repeatedly proceeds to step S18, and during this time, the provisional air-fuel ratio change time ⁇ T 'is increased. As a result, in step S18, an elapsed time after the output air-fuel ratio AF enters the determination air-fuel ratio region X is calculated.
  • step S19 the temporary air-fuel ratio change time ⁇ T ′ at this time is set as the determination air-fuel ratio change time ⁇ T.
  • step S20 the calculation completion flag is set to 1.
  • the calculation completion flag is a flag that is set to 0 until the calculation of the time ⁇ T is completed, and is set to 1 when the calculation is completed.
  • the execution conditions for calculating the change time are not limited to these. For example, instead of the execution condition that the output air-fuel ratio AF is equal to or higher than the upper limit air-fuel ratio Xup in the fuel cut control, the start time of the fuel cut control is used.
  • the execution condition may be that the elapsed time is equal to or greater than a predetermined threshold, or that the intake air amount integrated value from the start of fuel cut control is equal to or greater than the predetermined threshold. Also, unless the determination air-fuel ratio change time is calculated, the abnormality diagnosis of the downstream air-fuel ratio sensor 41 is not performed, and therefore the above-described change time calculation execution condition is an abnormality diagnosis execution condition. You can also
  • FIG. 9 is a flowchart showing a control routine for abnormality diagnosis control.
  • the illustrated control routine is performed by interruption at regular time intervals.
  • the determination air-fuel ratio change time ⁇ T calculated by the change time calculation control shown in FIG. 8 is used.
  • step S31 it is determined whether or not abnormality diagnosis has been completed. If the abnormality diagnosis has already been completed, it is not necessary to perform the abnormality diagnosis again, so that the control routine is terminated. On the other hand, if it is determined in step S31 that the abnormality diagnosis has not been completed, the process proceeds to step S32.
  • step S32 it is determined whether or not the calculation completion flag is 1. Until the calculation completion flag is set to 1 in step S20 in FIG. 8, the control routine is terminated because the calculation completion flag is not 1. On the other hand, when the calculation completion flag is set to 1, the process proceeds to step S33.
  • step S33 it is determined whether the determination air-fuel ratio change time ⁇ T is equal to or longer than the abnormal reference change time ⁇ Tref. If it is determined that the determination air-fuel ratio change time ⁇ T is equal to or greater than the abnormality reference change time ⁇ Tref, the process proceeds to step S34, where it is determined that the downstream air-fuel ratio sensor 41 has an abnormality in responsiveness deterioration. The On the other hand, when it is determined that the determination air-fuel ratio change time ⁇ T 1 is shorter than the abnormality reference change time ⁇ Tref, the process proceeds to step S 35, and the downstream air-fuel ratio sensor 41 does not have an abnormality in responsiveness deterioration. It is determined that it is normal.
  • condition establishment flag and the calculation completion flag in the control routine shown in FIGS. 8 and 9 are reset to 0, for example, when the ignition key of a vehicle equipped with an internal combustion engine is turned off.
  • the diagnostic device according to the second embodiment is basically configured similarly to the diagnostic device according to the first embodiment. However, in the first embodiment, abnormality diagnosis is performed based on the change rate (change time) of the output air-fuel ratio of the downstream air-fuel ratio sensor 41, whereas in the second embodiment, the downstream air-fuel ratio is measured. An abnormality diagnosis is performed based on the integrated value (integrated value) of the output air-fuel ratio of the sensor 41.
  • the integrated value of the output air-fuel ratio shows the same tendency as the air-fuel ratio change speed. This is shown in FIG.
  • FIG. 10 is a time chart similar to FIG. I A in FIG. 10, if the response deterioration to the downstream side air-fuel ratio sensor 41 does not occur in the (solid line A), integration of the output air-fuel ratio when the output air-fuel ratio passes through the first determining an air-fuel ratio region X Value. Further, the output air-fuel ratio at the time when I B in FIG. 10, which in the case (solid line B) the response of the deterioration in the downstream-side air-fuel ratio sensor 41 has occurred, the output air-fuel ratio passes through the first determining an air-fuel ratio region X Is an integrated value of.
  • the integrated value I B is larger than the integrated value I A. Therefore, when responsiveness deterioration occurs in the downstream air-fuel ratio sensor 41, the integrated value of the output air-fuel ratio when passing through the determination air-fuel ratio region X (hereinafter referred to as “determination air-fuel ratio integrated value”) becomes large. I understand that. Therefore, it can be seen that the determination air-fuel ratio integrated value also shows the same tendency as the determination air-fuel ratio change speed depending on whether or not the downstream air-fuel ratio sensor 41 has deteriorated responsiveness.
  • an abnormality diagnosis of the downstream air-fuel ratio sensor 41 is performed based on the determination air-fuel ratio integrated value. Specifically, when the determination air-fuel ratio integrated value is equal to or greater than the abnormality reference integrated value, it is determined that the downstream air-fuel ratio sensor 41 has an abnormality in responsiveness deterioration. On the contrary, when the determined small air-fuel ratio integrated value is smaller than the abnormality reference integrated value, it is determined that the downstream air-fuel ratio sensor 41 is not abnormally deteriorated in responsiveness. Thereby, also by the diagnostic apparatus of this embodiment, the abnormality diagnosis of the downstream side air-fuel ratio sensor 41 can be performed with high accuracy similarly to the diagnostic apparatus of the first embodiment.
  • the output air-fuel ratio output from the downstream air-fuel ratio sensor 41 is a part of the theoretical air-fuel ratio or more. It can be said that the air-fuel ratio change characteristic is calculated based on the output air-fuel ratio when it first passes through the air-fuel ratio region, and the abnormality diagnosis of the downstream air-fuel ratio sensor 41 is performed based on this air-fuel ratio change characteristic.
  • the air-fuel ratio change characteristic means the degree to which other parameters change while the output air-fuel ratio changes by a predetermined amount, or the degree to which the output air-fuel ratio changes while parameters other than the output air-fuel ratio change by a predetermined amount.
  • the determination air-fuel ratio change time (air-fuel ratio change speed), the air-fuel ratio integrated value, and the output air-fuel ratio are lower than the upper limit air-fuel ratio in the determination air-fuel ratio region.
  • Examples include an integrated value of the amount of exhaust gas that has passed through the downstream air-fuel ratio sensor 41 while changing to the air-fuel ratio.
  • the diagnostic device according to the third embodiment is basically configured similarly to the diagnostic devices according to the first embodiment and the second embodiment.
  • the target air-fuel ratio is set to the rich air-fuel ratio after return that is richer than the stoichiometric air-fuel ratio.
  • the fuel cut control is performed.
  • the target air-fuel ratio is made the stoichiometric air-fuel ratio (second air-fuel ratio) before returning to the rich air-fuel ratio.
  • the transition of the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 after the end of the fuel cut control also changes according to the degree of deterioration of the upstream side exhaust purification catalyst 20.
  • the degree of deterioration of the upstream side exhaust purification catalyst 20 is high and its oxygen storage capacity is reduced, almost no oxygen is stored in the upstream side exhaust purification catalyst 20 even during fuel cut control.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is made rich after the fuel cut control is finished, the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is accordingly accompanied.
  • the air-fuel ratio also decreases rapidly.
  • FIG. 11 is a time chart similar to that of FIG. 6 showing the upstream output air-fuel ratio and the downstream output air-fuel ratio before and after the execution of the fuel cut control.
  • a one-dot chain line C in FIG. 11 represents the transition of the output air-fuel ratio when the responsiveness deterioration does not occur in the downstream side air-fuel ratio sensor 41 and the degree of deterioration of the upstream side exhaust purification catalyst 20 is high.
  • the rate of decrease in the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 deteriorates to the upstream side exhaust purification catalyst 20. Compared to the case where no occurs.
  • the downstream side air-fuel ratio sensor 41 when the downstream side air-fuel ratio sensor 41 has deteriorated in responsiveness and the degree of deterioration of the upstream side exhaust purification catalyst 20 is high, the reduction in the output air-fuel ratio decreases due to the responsiveness deterioration and the upstream side exhaust gas. This is combined with an increase in the rate of decrease in the output air-fuel ratio accompanying the deterioration of the purification catalyst 20.
  • the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 is in the region where the exhaust air-fuel ratio is between about 18 and 17, as indicated by a two-dot chain line D in FIG.
  • the transition is the same as the output air-fuel ratio.
  • the downstream air-fuel ratio sensor 41 is in the case shown by the two-dot chain line D in FIG. Despite the occurrence of abnormality in responsiveness deterioration, the abnormality cannot be determined.
  • ⁇ Principle of abnormality diagnosis in the present invention> when the abnormality diagnosis of the downstream side air-fuel ratio sensor 41 is performed, the rich control after the return is not performed immediately after the end of the fuel cut control, but the target air-fuel ratio is first set to the stoichiometric air-fuel ratio, and thereafter Then, after the abnormality diagnosis is completed, the rich control is performed after the return. That is, in the present embodiment, when performing an abnormality diagnosis of the downstream air-fuel ratio sensor 41, after the fuel cut control ends, the target air-fuel ratio is first set to the theoretical air-fuel ratio, and then after the abnormality diagnosis ends, the return rich air-fuel ratio. It is set to. On the other hand, when the abnormality diagnosis of the downstream air-fuel ratio sensor 41 is not performed, the rich control after return is performed immediately after the fuel cut control is completed.
  • FIG. 12 is a time chart of the downstream output air-fuel ratio and the like when the target air-fuel ratio is controlled based on this embodiment (only when the target air-fuel ratio and the upstream output air-fuel ratio correspond to the solid line A). Is shown). Also in FIG. 12, similarly to FIG. 6 or the like, the fuel cut control is started at time t 1, the fuel cut control is made to exit it is in the time t 3. In the following, referring to the case of the solid line A (when the deterioration of the responsiveness deterioration of the downstream side air-fuel ratio sensor 41 has not occurred and the degree of deterioration of the upstream side exhaust purification catalyst 20 is low), first, in the present embodiment. The control of the target air / fuel ratio will be described.
  • the fuel cut control is made to finished at time t 3, the exhaust gas flowing into the upstream side exhaust purification catalyst 20
  • the target air-fuel ratio is set to the stoichiometric air-fuel ratio. Accordingly, the output air-fuel ratio of the upstream air-fuel ratio sensor 40 changes to the stoichiometric air-fuel ratio. Further, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is the stoichiometric air-fuel ratio, the upstream side exhaust purification catalyst 20 does not react with unburned gas or oxygen.
  • the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 also changes toward the stoichiometric air-fuel ratio. Accordingly, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 indicated by the solid line A also changes toward the stoichiometric air-fuel ratio, and passes through the determination air-fuel ratio region X by time t 4 .
  • the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 passes through the determination air-fuel ratio region X, so at this time the output air-fuel ratio when the output air-fuel ratio passes through the determination air-fuel ratio region X is output.
  • the change rate of the fuel ratio can be calculated. Therefore, in the present embodiment, when the output air-fuel ratio of the downstream air-fuel ratio sensor 41 passes the determination air-fuel ratio region X, the target air-fuel ratio is changed from the stoichiometric air-fuel ratio to the rich air-fuel ratio after returning.
  • the target air-fuel ratio is set to the stoichiometric air-fuel ratio
  • the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is the lower limit air-fuel ratio in the determination air-fuel ratio region X
  • the target air-fuel ratio is changed to the rich air-fuel ratio after return in order to perform rich control after return.
  • the output air-fuel ratio of the upstream air-fuel ratio sensor 40 becomes a rich air-fuel ratio.
  • the exhaust gas reaching the downstream air-fuel ratio sensor 41 has a stoichiometric air-fuel ratio. Therefore, whether the target air-fuel ratio is set to the stoichiometric air-fuel ratio or the rich air-fuel ratio after the fuel cut control is finished, the same air-fuel ratio exhaust gas flows into the downstream air-fuel ratio sensor 41. Will do.
  • the output air-fuel ratio of the downstream-side air-fuel ratio sensor 41 is the same regardless of whether the target air-fuel ratio is set to the rich air-fuel ratio after the fuel cut control ends or the target air-fuel ratio is set to the stoichiometric air-fuel ratio as in this embodiment. It changes in the same way.
  • the target air-fuel ratio after completion of the fuel cut control is set.
  • the output air-fuel ratio changes in the same manner as the broken line B shown in FIG.
  • the downstream air-fuel ratio sensor 41 receives the same air-fuel ratio exhaust gas. This is due to the inflow.
  • the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 becomes the rich air-fuel ratio after completion of fuel cut control. It changes differently from when it is set.
  • An alternate long and short dash line C in FIG. 12 indicates the output when the target air-fuel ratio is controlled when the downstream side air-fuel ratio sensor 41 has no responsiveness deterioration and the upstream side exhaust purification catalyst 20 has a high degree of deterioration. It shows the transition of air-fuel ratio.
  • the one-dot chain line C changes in the same manner as the solid line A until the output air-fuel ratio passes through the determination air-fuel ratio region X after the fuel cut control is terminated at time t 3 . That is, when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is the stoichiometric air-fuel ratio, the upstream side exhaust purification catalyst 20 does not have any unburned gas or There is no oxygen reaction or oxygen storage / release.
  • the stoichiometric air-fuel ratio exhaust gas that has flowed into the upstream side exhaust purification catalyst 20 flows out of the upstream side exhaust purification catalyst 20 as it is, regardless of the degree of deterioration of the upstream side exhaust purification catalyst 20.
  • the output air-fuel ratio passes through the determination air-fuel ratio region X, even when the degree of deterioration of the upstream side exhaust purification catalyst 20 is high, the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 is the same as when the degree of deterioration is low. Transition.
  • the target air-fuel ratio is set to perform rich control after return. After returning, the rich air-fuel ratio is changed. Therefore, as can be seen from FIG. 12, when the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 becomes smaller than the lower limit air-fuel ratio Xlow in the case indicated by the alternate long and short dash line C, compared to the case indicated by the solid line A, The rate of decrease in the output air-fuel ratio increases.
  • a two-dot chain line D in FIG. 12 shows when the target air-fuel ratio is controlled when the downstream side air-fuel ratio sensor 41 has deteriorated in responsiveness and the upstream side exhaust purification catalyst 20 has a high degree of deterioration. This represents the transition of the output air-fuel ratio.
  • the two-dot chain line D changes in the same manner as the broken line B until the output air-fuel ratio passes the determination air-fuel ratio region X after the fuel cut control is terminated at time t 3 .
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is the stoichiometric air-fuel ratio
  • the exhaust gas that has flowed in is directly upstream of the upstream side exhaust purification catalyst 20 regardless of the degree of deterioration of the upstream side exhaust purification catalyst 20. This is because it flows out of 20.
  • the target air-fuel ratio is changed to the rich air-fuel ratio after returning. For this reason, even in the case indicated by the two-dot chain line D, when the output air-fuel ratio becomes smaller than the lower limit air-fuel ratio Xlow, the output air-fuel ratio decreases more rapidly than in the case indicated by the broken line B.
  • the upstream side exhaust purification catalyst 20 can be detected from the change speed of the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 in the determination air-fuel ratio region X.
  • the influence of the deterioration degree can be reduced. Therefore, according to the present embodiment, the downstream air-fuel ratio sensor 41 is based on the output air-fuel ratio of the downstream air-fuel ratio sensor 41 in the determination air-fuel ratio region X regardless of the degree of deterioration of the upstream side exhaust purification catalyst 20. It is possible to accurately diagnose the abnormality of the responsiveness degradation.
  • the target air-fuel ratio is set to the stoichiometric air-fuel ratio after the fuel cut control is completed and before the rich control is started after the return.
  • the target air-fuel ratio at this time is not necessarily the stoichiometric air-fuel ratio, and may be an air-fuel ratio different from the stoichiometric air-fuel ratio.
  • the target air-fuel ratio at this time needs to be leaner than the air-fuel ratio at the time of rich control after return (rich air-fuel ratio after return).
  • the target air-fuel ratio at this time is preferably equal to or higher than the theoretical air-fuel ratio.
  • FIG. 13 is a flowchart showing a control routine of air-fuel ratio setting control for setting the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20.
  • the illustrated control routine is performed by interruption at regular time intervals.
  • Steps S41 to S45 are the same as steps S11 to S15 in FIG. However, as can be seen from steps S41 to S45, in this embodiment, the abnormality diagnosis of the downstream air-fuel ratio sensor 41 has not yet been executed, and the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is determined during the fuel cut control. It is an execution condition for diagnosing abnormality of the downstream side air-fuel ratio sensor 41 that the air-fuel ratio region X is equal to or higher than the upper limit air-fuel ratio Xup. It should be noted that other conditions may be added to the execution conditions for performing abnormality diagnosis of the downstream air-fuel ratio sensor 41.
  • step S43 it is determined whether or not the output air-fuel ratio AF of the downstream air-fuel ratio sensor 41 is equal to or greater than the lower limit air-fuel ratio Xlow of the determination air-fuel ratio region X.
  • step S46 it is determined whether or not the output air-fuel ratio AF of the downstream air-fuel ratio sensor 41 is equal to or greater than the lower limit air-fuel ratio Xlow of the determination air-fuel ratio region X.
  • step S47 the target air-fuel ratio is made the stoichiometric air-fuel ratio, and the control routine is ended.
  • step S46 the output air-fuel ratio AF is lower than the lower limit air-fuel ratio Xlow.
  • step S48 the post-return rich control is executed to set the target air-fuel ratio to the post-return rich air-fuel ratio, and the control routine is ended.
  • the target rich control is performed so as to perform rich control after return.
  • the air-fuel ratio is changed to the rich air-fuel ratio after returning.
  • the timing at which the target air-fuel ratio is changed from the stoichiometric air-fuel ratio to the rich air-fuel ratio after returning does not necessarily have to be when the output air-fuel ratio reaches the lower limit air-fuel ratio Xlow.
  • the fuel cut control is performed when the output air-fuel ratio reaches an air-fuel ratio lower than the lower limit air-fuel ratio Xlow (for example, the theoretical air-fuel ratio).
  • the timing may be different.
  • the timing for changing the target air-fuel ratio from the stoichiometric air-fuel ratio to the rich air-fuel ratio after returning is set to be later than the time when the output air-fuel ratio reaches the lower limit air-fuel ratio Xlow after the end of the fuel cut control. Needs to be set to
  • the target air-fuel ratio is set to the stoichiometric air-fuel ratio only after executing the abnormality diagnosis of the downstream-side air-fuel ratio sensor 41 and after performing the fuel cut control and before performing the rich control after the return. Specifically, when the condition for executing the abnormality diagnosis of the downstream side air-fuel ratio sensor 41 is satisfied (in the above-described example, the abnormality diagnosis after the start of the internal combustion engine has not been completed and the output air-fuel ratio becomes the upper limit during the fuel cut control).
  • the target air-fuel ratio is set to the stoichiometric air-fuel ratio before the rich control is performed after returning when the air-fuel ratio becomes equal to or higher than Xup.
  • the target air-fuel ratio is temporarily set to the stoichiometric air-fuel ratio before performing rich control after returning whenever fuel cut control is executed, regardless of whether or not abnormality diagnosis of the downstream air-fuel ratio sensor 41 is executed. Also good.
  • a diagnostic device according to a fourth embodiment of the present invention will be described with reference to FIG.
  • the diagnostic device according to the fourth embodiment is basically configured similarly to the diagnostic device according to the third embodiment.
  • a catalyst deterioration degree estimating means for estimating the deterioration degree of the upstream side exhaust purification catalyst 20 is provided.
  • the downstream air-fuel ratio sensor 41 changes its output air-fuel ratio transition in accordance with the degree of deterioration of the upstream side exhaust purification catalyst 20 in addition to the presence or absence of abnormality in the downstream air-fuel ratio sensor 41. To do. In other words, when the degree of deterioration of the upstream side exhaust purification catalyst 20 is low, the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 changes depending on whether there is an abnormality in the downstream side air-fuel ratio sensor 41. . Therefore, in this case, it is not necessary to temporarily set the target air-fuel ratio to the stoichiometric air-fuel ratio after the end of the fuel cut control.
  • a catalyst deterioration degree estimation means for estimating the deterioration degree of the upstream side exhaust purification catalyst 20 is provided. If the degree of deterioration estimated by the catalyst deterioration degree estimating means is equal to or less than a predetermined reference deterioration degree, rich control after return is performed immediately after the end of fuel cut control even when abnormality diagnosis is performed. Therefore, the target air-fuel ratio is made the rich air-fuel ratio after returning.
  • the target The air-fuel ratio is the stoichiometric air-fuel ratio.
  • the oxygen storage amount of the upstream side exhaust purification catalyst 20 is large after completion of the fuel cut control, if it is left as it is, it is difficult to purify NOx in the exhaust gas, which may lead to deterioration of exhaust emission.
  • the target air-fuel ratio is set to a rich air-fuel ratio immediately after the end of the fuel cut control, so that deterioration of exhaust emission can be suppressed.
  • the catalyst deterioration degree estimating means estimates, for example, the amount of oxygen that can be stored in the upstream side exhaust purification catalyst 20 as the degree of deterioration of the upstream side exhaust purification catalyst 20.
  • the target air-fuel ratio is maintained at the rich air-fuel ratio until exhaust gas having a rich air-fuel ratio flows out from the upstream side exhaust purification catalyst 20.
  • the target air-fuel ratio is maintained at the lean air-fuel ratio until the lean air-fuel ratio exhaust gas flows out from the upstream side exhaust purification catalyst 20.
  • the amount of oxygen that flows into the upstream side exhaust purification catalyst 20 after the rich air-fuel ratio exhaust gas flows out from the upstream side exhaust purification catalyst 20 until the lean air-fuel ratio exhaust gas flows out is output from the air flow meter 39. And estimation based on the output of the upstream air-fuel ratio sensor 40 and the like. The amount of oxygen estimated in this way represents the amount of oxygen that can be stored in the upstream side exhaust purification catalyst 20.
  • the target air-fuel ratio is set to the rich air-fuel ratio immediately after the end of the fuel cut control.
  • the target air-fuel ratio is set to the stoichiometric air-fuel ratio after completion of the fuel cut control.
  • FIG. 14 is a flowchart showing a control routine of air-fuel ratio control for setting a target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20.
  • the illustrated control routine is performed by interruption at regular time intervals. Steps S51 to S55 and S57 to S59 are the same as steps S41 to S48 in FIG.
  • step S52 when the fuel cut control is terminated, the process proceeds from step S52 to step S53. If it is determined in step S53 that the condition satisfaction flag is 1, the process proceeds to step S56. In step S56, whether or not the estimated value C of the storable oxygen amount estimated by the catalyst deterioration degree estimating means is smaller than a predetermined threshold value Cref, that is, whether the degree of deterioration of the upstream side exhaust purification catalyst 20 is high. It is determined whether or not.
  • step S56 If it is determined in step S56 that the estimated value C of the storable oxygen amount is equal to or greater than a predetermined threshold Cref, that is, if it is determined that the degree of deterioration of the upstream side exhaust purification catalyst 20 is low, step S56 is performed. Proceeding to S59, rich control is performed after return. On the other hand, if it is determined in step S56 that the estimated value C of the occluding oxygen amount is smaller than a predetermined threshold value Cref, the process proceeds to step S57. In step S57, as in step S46 of FIG. 13, it is determined whether or not the output air-fuel ratio AF of the downstream air-fuel ratio sensor 41 is equal to or greater than the lower limit air-fuel ratio Xlow of the determination air-fuel ratio region X.
  • a diagnostic device according to a fifth embodiment of the present invention will be described with reference to FIG.
  • the diagnostic device according to the fifth embodiment is basically configured similarly to the diagnostic devices according to the third embodiment and the fourth embodiment.
  • the target air-fuel ratio in the rich control after return is changed according to whether or not the target air-fuel ratio is temporarily set to the stoichiometric air-fuel ratio after the end of the fuel cut control.
  • the target air-fuel ratio when the abnormality diagnosis of the downstream air-fuel ratio sensor 41 is performed, the target air-fuel ratio may be temporarily set to the stoichiometric air-fuel ratio after the fuel cut control is completed. In this case, the start of the rich control after the return is delayed, and accordingly, the release of the oxygen stored in the upstream side exhaust purification catalyst 20 during the fuel cut control is delayed.
  • the target air-fuel ratio in the post-return rich control is set to the normal air-fuel ratio (the above-described rich after return).
  • the air-fuel ratio is set to be richer than the air-fuel ratio.
  • oxygen stored in the upstream side exhaust purification catalyst 20 is quickly released and reduced during the fuel cut control. Will be able to.
  • the above-mentioned “air-fuel ratio richer than the normal air-fuel ratio” may be a predetermined value, or a value that changes according to the degree of deterioration of the upstream side exhaust purification catalyst 20 or the like. Also good.
  • FIG. 15 is a flowchart showing a control routine of air-fuel ratio control for setting a target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20.
  • the illustrated control routine is performed by interruption at regular time intervals. Steps S61 to S68 are the same as steps S51 to S58 in FIG.
  • step S67 when it is determined in step S67 that the output air-fuel ratio AF of the downstream air-fuel ratio sensor 41 is equal to or higher than the lower limit air-fuel ratio Xlow, that is, after the fuel cut control is finished, the output air-fuel ratio AF is If it is determined that it has not passed the determination air-fuel ratio region X, the routine proceeds to step S68, where the target air-fuel ratio is set to the stoichiometric air-fuel ratio. Thereafter, in step S69, the stoichiometric air-fuel ratio switch flag is set to 1, and the control routine is ended.
  • the stoichiometric air-fuel ratio switch flag is set to 1 when the target air-fuel ratio has been temporarily set to the stoichiometric air-fuel ratio after completion of fuel cut control and before the start of rich control after return, and is set to 0 otherwise. Flag.
  • step S66 when it is determined in step S66 that the estimated value C of the storable oxygen amount estimated by the catalyst deterioration degree estimating means is greater than or equal to a predetermined threshold Cref, or in step S67, the downstream air-fuel ratio sensor 41 is determined.
  • the process proceeds to step S70.
  • step S70 it is determined whether or not the stoichiometric air-fuel ratio switch flag is 1, that is, whether or not the target air-fuel ratio has been temporarily set to the stoichiometric air-fuel ratio after completion of fuel cut control and before the start of rich control after return.
  • step S71 the target air-fuel ratio during the rich control after return is set to an air-fuel ratio (AFtrglow) that is richer than the rich air-fuel ratio after return (AFtrgnor), and the control routine is ended.
  • step S70 the target air-fuel ratio during the rich control after return is set to an air-fuel ratio (AFtrglow) that is richer than the rich air-fuel ratio after return (AFtrgnor), and the control routine is ended.
  • step S72 the target air-fuel ratio at the time of rich control after return is set to the normal post-return rich air-fuel ratio (AFtrgnor), and the control routine is ended.

Abstract

 内燃機関は、内燃機関の排気通路に配置されると共に流入する排気ガス中の酸素を吸蔵可能な排気浄化触媒(20)と、排気浄化触媒の排気流れ方向下流側に配置されると共に前記排気浄化触媒から流出する排気ガスの空燃比を検出する空燃比センサ(41)とを具備し、燃焼室(5)への燃料供給を停止又は減量する燃料カット制御を実行する。異常診断装置は、燃料カット制御の終了後、空燃比センサから出力される出力空燃比が理論空燃比以上の一部の空燃比領域を最初に通過するときの出力空燃比に基づいて、空燃比変化特性を算出し、空燃比変化特性に基づいて空燃比センサの異常を診断する。これにより、燃料カット制御を行った際に、必要であれば必ず下流側空燃比センサの応答性劣化の異常を診断することができる。

Description

内燃機関の診断装置
 本発明は、内燃機関の診断装置に関する。
 従来から、内燃機関の排気通路に空燃比センサを設け、この空燃比センサの出力に基づいて内燃機関に供給する燃料量を制御するように構成された内燃機関が知られている。
 このような内燃機関に用いられる空燃比センサは、使用に伴って徐々に劣化する。このような劣化としては、例えば、空燃比センサの応答性劣化が挙げられる。空燃比センサの応答性劣化は、センサ素子が被水することを防止するためのセンサカバーに設けられた通気孔がパティキュレート(PM)により部分的に塞がってしまうこと等により生じる。このように通気孔が部分的に塞がると、センサカバーの内側と外側との間のガス交換が遅くなり、その結果、空燃比センサの出力が鈍くなってしまう。このような空燃比センサの劣化が生じると、内燃機関の制御装置が実行する各種制御に支障が生じてしまう。
 そこで、空燃比センサの応答性劣化の異常を診断する診断装置が提案されている(例えば、特許文献1~4を参照)。このような診断装置のうち、排気浄化触媒よりも下流側に配置された空燃比センサ(以下、「下流側空燃比センサ」という)の異常を診断する診断装置としては、例えば、燃焼室への燃料供給を停止又は大幅に減量する燃料カット制御の実行中に下流側空燃比センサの異常を診断する装置が提案されている(例えば、特許文献1)。
 特に、特許文献1に記載された診断装置では、燃料カット制御中に下流側空燃比センサの出力に相当する空燃比(以下、「出力空燃比」という)が予め定められた空燃比領域を通過するときの通過時間に基づいて異常が診断される。具体的には、通過時間が予め定められた異常判定値よりも大きい場合には下流側空燃比センサには応答性劣化の異常が発生していると診断される。加えて、特許文献1に記載された診断装置では、燃料カット制御開始直前の排気空燃比の推移や排気浄化触媒の酸素吸蔵量に応じて通過時間が変化することを考慮して、燃料カット制御の開始から出力空燃比が予め定められた空燃比領域よりもリッチな所定の空燃比に到達するまでの間の吸入空気量積算値が所定の閾値未満の場合には下流側空燃比センサの異常診断を行わないこととしている。
特開2012-052462号公報 特開2004-225684号公報 特開2001-242126号公報 特開2010-007534号公報
 上述したように、特許文献1に記載された診断装置では、燃料カット制御の開始から出力空燃比が所定の空燃比に到達するまでの間における吸入吸気量積算値が所定の閾値未満の場合には空燃比センサの異常診断が禁止される。このため、燃料カット制御時に斯かる吸入空気量積算値が所定の閾値未満である状態が繰り返されると、空燃比センサの異常診断は長期間に亘って実行されないことになる。
 そこで、上記課題に鑑みて、本発明の目的は、燃料カット制御を行った際に、必要であれば必ず下流側空燃比センサの応答性劣化の異常を診断することができる内燃機関の診断装置を提供することにある。
 上記課題を解決するために、第1の発明では、内燃機関の排気通路に配置されると共に流入する排気ガス中の酸素を吸蔵可能な排気浄化触媒と、該排気浄化触媒の排気流れ方向下流側に配置されると共に前記排気浄化触媒から流出する排気ガスの空燃比を検出する空燃比センサとを具備し、燃焼室への燃料供給を停止又は減量する燃料カット制御を実行する内燃機関の診断装置において、前記燃料カット制御の終了後、前記空燃比センサから出力される出力空燃比が理論空燃比以上の一部の空燃比領域を最初に通過するときの該出力空燃比に基づいて、空燃比変化特性を算出し、該空燃比変化特性に基づいて前記空燃比センサの異常を診断する、内燃機関の診断装置が提供される。
 第2の発明では、第1の発明において、前記排気浄化触媒に流入する排気ガスの空燃比を目標空燃比に制御する空燃比制御手段を更に具備し、前記目標空燃比は、燃料カット制御の終了後に理論空燃比よりもリッチである第一空燃比に設定され、前記空燃比センサの異常診断を行うときには、前記目標空燃比は、前記燃料カット制御の終了後に、前記第一空燃比に設定される前に、前記第一空燃比よりもリーンである第二空燃比に設定される。
 第3の発明では、第2の発明において、前記空燃比センサの異常診断を行わないときには、前記目標空燃比は前記燃料カット制御の終了後すぐに第一空燃比に設定される。
 第4の発明では、第3の発明において、内燃機関の始動後既に前記空燃比センサの異常診断が完了しているときには前記空燃比センサの異常診断は行われない。
 第5の発明では、第2~第4のいずれか一つの発明において、前記第二空燃比は、理論空燃比である。
 第6の発明では、第2~第5のいずれか一つの発明において、前記燃料カット制御の終了後に前記目標空燃比を第二空燃比に設定したときには、前記空燃比センサの異常診断が完了した時以降に前記目標空燃比が第二空燃比から第一空燃比に変更せしめられる。
 第7の発明では、第2~6のいずれか一つの発明において、前記排気浄化触媒の劣化度合いを推定する触媒劣化度合い推定手段を更に具備し、前記触媒劣化度合い推定手段によって検出された触媒劣化度合いが予め定められた基準劣化度合い以下である場合には、前記空燃比センサの異常診断を行うときであっても、前記目標空燃比は、前記燃料カット制御の終了後すぐに第一空燃比に設定される。
 第8の発明では、第2~第7のいずれか一つの発明において、前記第一空燃比は、前記目標空燃比を第一空燃比に設定する前に第二空燃比に設定されたときには、第一空燃比に設定する前に第二空燃比に設定されないときに比べて、リッチな空燃比とされる。
 第9の発明では、第1~第8のいずれか一つの発明において、前記空燃比センサは、該空燃比センサを通過する排気ガスの空燃比が所定空燃比領域内にあるときに限界電流を出力する限界電流式空燃比センサであり、前記空燃比領域は、前記空燃比センサが限界電流を発生させる前記所定空燃比領域内である。
 第10の発明では、第1~第9のいずれか一つの発明において、前記空燃比変化特性は、前記空燃比センサの出力空燃比が前記空燃比領域を最初に通過するときの空燃比変化速度であり、前記空燃比センサの異常診断においては、前記空燃比変化速度が異常基準変化速度よりも遅い場合には前記空燃比センサに異常があると判定され、前記空燃比変化速度が異常基準変化速度よりも速い場合には前記空燃比センサは正常であると判定される。
 第11の発明では、第1~第9のいずれか一つの発明において、前記空燃比変化特性は、前記空燃比センサの出力空燃比が前記空燃比領域内にあるときの該出力空燃比を積算した空燃比積算値であり、前記空燃比センサの異常診断においては、前記空燃比積算値が異常基準積算値以上である場合には前記空燃比センサに異常があると判定され、前記空燃比積算値が異常基準積算値よりも小さい場合には前記空燃比センサは正常であると判定される。
 第12の発明では、第1~第11のいずれか一つの発明において、前記空燃比センサの異常診断において、前記空燃比センサに異常があると判定されたときには、警告灯が点灯せしめられる。
 本発明によれば、燃料カット制御を行った際に、必要であれば必ず下流側空燃比センサの応答性劣化の異常を診断することができる内燃機関の診断装置が提供される。
図1は、本発明の診断装置が用いられる内燃機関を概略的に示す図である。 図2は、空燃比センサの概略的な断面図である。 図3は、各排気空燃比におけるセンサ印加電圧と出力電流との関係を示す図である。 図4は、印加電圧を一定にしたときの排気空燃比と出力電流Iとの関係を示す図である。 図5は、上流側出力空燃比及び下流側出力空燃比等の、燃料カット制御前後におけるタイムチャートである。 図6は、上流側出力空燃比及び下流側出力空燃比等の、燃料カット制御前後におけるタイムチャートである。 図7は、上流側出力空燃比及び下流側出力空燃比等の、燃料カット制御前後におけるタイムチャートである。 図8は、変化時間算出制御の制御ルーチンを示すフローチャートである。 図9は、異常診断制御の制御ルーチンを示すフローチャートである。 図10は、上流側出力空燃比及び下流側出力空燃比等の、燃料カット制御前後におけるタイムチャートである。 図11は、上流側出力空燃比及び下流側出力空燃比等の、燃料カット制御前後におけるタイムチャートである。 図12は、第三実施形態に基づいて目標空燃比の制御を行った際の下流側出力空燃比等のタイムチャートである。 図13は、目標空燃比を設定する空燃比制御の制御ルーチンを示すフローチャートである。 図14は、目標空燃比を設定する空燃比制御の制御ルーチンを示すフローチャートである。 図15は、目標空燃比を設定する空燃比制御の制御ルーチンを示すフローチャートである。
 以下、図面を参照して本発明の内燃機関の診断装置について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。図1は、本発明の第一実施形態に係る制御装置が用いられる内燃機関を概略的に示す図である。
<内燃機関全体の説明>
 図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。吸気弁6は吸気ポート7を開閉し、排気弁8は排気ポート9を開閉する。
 図1に示したようにシリンダヘッド4の内壁面の中央部には点火プラグ10が配置され、シリンダヘッド4の内壁面周辺部には燃料噴射弁11が配置される。点火プラグ10は、点火信号に応じて火花を発生させるように構成される。また、燃料噴射弁11は、噴射信号に応じて、所定量の燃料を燃焼室5内に噴射する。なお、燃料噴射弁11は、吸気ポート7内に燃料を噴射するように配置されてもよい。また、本実施形態では、燃料として理論空燃比が14.6であるガソリンが用いられる。しかしながら、本発明の診断装置が用いられる内燃機関では、他の燃料を用いても良い。
 各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気管15を介してエアクリーナ16に連結される。吸気ポート7、吸気枝管13、サージタンク14、吸気管15は吸気通路を形成する。また、吸気管15内にはスロットル弁駆動アクチュエータ17によって駆動されるスロットル弁18が配置される。スロットル弁18は、スロットル弁駆動アクチュエータ17によって回動せしめられることで、吸気通路の開口面積を変更することができる。
 一方、各気筒の排気ポート9は排気マニホルド19に連結される。排気マニホルド19は、各排気ポート9に連結される複数の枝部とこれら枝部が集合した集合部とを有する。排気マニホルド19の集合部は上流側排気浄化触媒20を内蔵した上流側ケーシング21に連結される。上流側ケーシング21は、排気管22を介して下流側排気浄化触媒24を内蔵した下流側ケーシング23に連結される。排気ポート9、排気マニホルド19、上流側ケーシング21、排気管22及び下流側ケーシング23は、排気通路を形成する。
 電子制御ユニット(ECU)31はデジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36および出力ポート37を具備する。吸気管15には、吸気管15内を流れる空気流量を検出するためのエアフロメータ39が配置され、このエアフロメータ39の出力は対応するAD変換器38を介して入力ポート36に入力される。また、排気マニホルド19の集合部には排気マニホルド19内を流れる排気ガス(すなわち、上流側排気浄化触媒20に流入する排気ガス)の空燃比を検出する上流側空燃比センサ40が配置される。加えて、排気管22内には排気管22内を流れる排気ガス(すなわち、上流側排気浄化触媒20から流出して下流側排気浄化触媒24に流入する排気ガス)の空燃比を検出する下流側空燃比センサ41が配置される。これら空燃比センサ40、41の出力も対応するAD変換器38を介して入力ポート36に入力される。なお、これら空燃比センサ40、41の構成については後述する。
 また、アクセルペダル42にはアクセルペダル42の踏込み量に比例した出力電圧を発生する負荷センサ43が接続され、負荷センサ43の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。クランク角センサ44は例えばクランクシャフトが15度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35ではこのクランク角センサ44の出力パルスから機関回転数が計算される。一方、出力ポート37は対応する駆動回路45を介して点火プラグ10、燃料噴射弁11及びスロットル弁駆動アクチュエータ17に接続される。
<排気浄化触媒の説明>
 上流側排気浄化触媒20及び下流側排気浄化触媒24は、いずれも同様な構成を有する。以下では、上流側排気浄化触媒20についてのみ説明するが、下流側排気浄化触媒24も同様な構成及び作用を有する。
 上流側排気浄化触媒20は、酸素吸蔵能力を有する三元触媒である。具体的には、上流側排気浄化触媒20は、セラミックから成る担体に、触媒作用を有する貴金属(例えば、白金(Pt))及び酸素吸蔵能力を有する物質(例えば、セリア(CeO2))を担持させたものである。上流側排気浄化触媒20は、所定の活性温度に達すると、未燃ガス(HCやCO等)と窒素酸化物(NOx)とを同時に浄化する触媒作用に加えて、酸素吸蔵能力を発揮する。
 上流側排気浄化触媒20の酸素吸蔵能力によれば、上流側排気浄化触媒20は、上流側排気浄化触媒20に流入する排気ガスの空燃比が理論空燃比よりもリーン(以下、「リーン空燃比」という)であるときには排気ガス中の酸素を吸蔵する。一方、上流側排気浄化触媒20は、流入する排気ガスの空燃比が理論空燃比よりもリッチ(以下、「リッチ空燃比」という)であるときには、上流側排気浄化触媒20に吸蔵されている酸素を放出する。なお、「排気ガスの空燃比」は、その排気ガスが生成されるまでに供給された空気の質量に対する燃料の質量の比率を意味するものであり、通常はその排気ガスが生成されるにあたって燃焼室5内に供給された空気の質量に対する燃料の質量の比率を意味する。本明細書では、排気ガスの空燃比を「排気空燃比」という場合もある。
 上流側排気浄化触媒20は、触媒作用及び酸素吸蔵能力を有することにより、酸素吸蔵量に応じてNOx及び未燃ガスの浄化作用を有する。上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比である場合、酸素吸蔵量が少ないときには上流側排気浄化触媒20により排気ガス中の酸素が吸蔵され、これに伴ってNOxが還元浄化される。ただし、酸素吸蔵能力には限界があり、上流側排気浄化触媒20の酸素吸蔵量が上限吸蔵量を超えると、それ以上、上流側排気浄化触媒20に酸素がほとんど吸蔵されなくなる。この場合、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比であると、上流側排気浄化触媒20から流出する排気ガスの空燃比もリーン空燃比となる。
 一方、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比である場合、酸素吸蔵量が多いときには上流側排気浄化触媒20に吸蔵されている酸素が放出され、排気ガス中の未燃ガスが酸化浄化される。ただし、上流側排気浄化触媒20の酸素吸蔵量が少なくなって下限吸蔵量を下回ると、それ以上、上流側排気浄化触媒20から酸素がほとんど放出されなくなる。この場合、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比であると、上流側排気浄化触媒20から流出する排気ガスの空燃比もリッチ空燃比となる。
 以上のように、本実施形態において用いられる排気浄化触媒20、24によれば、排気浄化触媒に流入する排気ガスの空燃比及び酸素吸蔵量に応じて排気ガス中のNOx及び未燃ガスの浄化特性が変化する。なお、触媒作用及び酸素吸蔵能力を有していれば、排気浄化触媒20、24は三元触媒とは異なる触媒であってもよい。
<空燃比センサの説明>
 本実施形態では、空燃比センサ40、41としては、限界電流式の空燃比センサが用いられる。図2を用いて、空燃比センサ40、41の構造について簡単に説明する。空燃比センサ40、41は、固体電解質層51と、その一方の側面上に配置された排気側電極52と、その他方の側面上に配置された大気側電極53と、通過する排気ガスの拡散律速を行う拡散律速層54と、拡散律速層54を保護する保護層55と、空燃比センサ40、41の加熱を行うヒータ部56とを具備する。
 固体電解質層51は、ZrO2(ジルコニア)、HfO2、ThO2、Bi23等にCaO、MgO、Y23、Yb23等を安定剤として配当した酸素イオン伝導性酸化物の焼結体により形成されている。また、拡散律速層54は、アルミナ、マグネシア、けい石質、スピネル、ムライト等の耐熱性無機物質の多孔質焼結体により形成されている。さらに、排気側電極52及び大気側電極53は、白金等の触媒活性の高い貴金属により形成されている。
 また、排気側電極と大気側電極との間には、ECU31に搭載された電圧印加装置60によりセンサ印加電圧Vが印加される。加えて、ECU31には、センサ印加電圧を印加したときに固体電解質層を介してこれら電極52、53間に流れる電流Iを検出する電流検出装置61が設けられる。この電流検出装置61によって検出される電流が空燃比センサ40、41の出力電流である。
 このように構成された空燃比センサ40、41は、図3に示したような電圧-電流(V-I)特性を有する。図3からわかるように、出力電流(I)は、排気空燃比が大きくなるほど(リーンになるほど)、大きくなる。また、各排気空燃比におけるV-I線には、V軸に平行な領域、すなわちセンサ印加電圧が変化しても出力電流がほとんど変化しない領域が存在する。この電圧領域は限界電流領域と称され、このときの電流は限界電流と称される。図3では、排気空燃比が18であるときの限界電流領域及び限界電流をそれぞれW18、I18で示している。
 一方、センサ印加電圧が限界電流領域よりも低い領域では、センサ印加電圧にほぼ比例して出力電流が変化する。斯かる領域は比例領域と称される。このときの傾きは、固体電解質層51の直流素子抵抗によって定まる。また、センサ印加電圧が限界電流領域よりも高い領域では、センサ印加電圧の増加に伴って出力電流も増加する。この領域では、排気側電極52上にて排気ガス中に含まれる水分の分解等が生じること等により、センサ印加電圧の変化に応じて出力電圧が変化する。
 図4は、印加電圧を0.4V程度で一定にしたときの、排気空燃比と出力電流Iとの関係を示す図である。図4からわかるように、空燃比センサ40、41では、排気空燃比が大きくなるほど(すなわち、リーンになるほど)、空燃比センサ40、41からの出力電流Iが大きくなる。加えて、空燃比センサ40、41は、排気空燃比が理論空燃比であるときに出力電流Iが零になるように構成される。また、排気空燃比が一定以上(本実施形態では18以上)に大きくなったとき、或いは一定以下に小さくなったときには、排気空燃比の変化に対する出力電流の変化の割合が小さくなる。
 なお、上記例では、空燃比センサ40、41として図2に示した構造の限界電流式の空燃比センサを用いている。しかしながら、少なくとも理論空燃比近傍において、排気空燃比の変化に対して出力値がなだらかに変化すれば、他の構造の限界電流式の空燃比センサや、限界電流式ではない空燃比センサ等、如何なる空燃比センサを用いてもよい。
<基本的な制御>
 このように構成された内燃機関では、上流側空燃比センサ40及び下流側空燃比センサ41の出力に基づいて、上流側排気浄化触媒20に流入する排気ガスの空燃比が機関運転状態に基づいた最適な目標空燃比となるように、燃料噴射弁11からの燃料噴射量等が制御される。特に、本実施形態では、機関本体1から流出する排気ガスの空燃比が目標空燃比となるように、燃料噴射弁11からの燃料噴射量が制御される。
 このような燃料噴射量の設定方法としては、上流側空燃比センサ40の出力に基づいて上流側排気浄化触媒20に流入する排気ガスの空燃比が目標空燃比となるように制御すると共に、下流側空燃比センサ41の出力に基づいて上流側空燃比センサ40の出力を補正したり、目標空燃比を変更したりする方法が挙げられる。なお、排気ガスの空燃比を目標空燃比にする制御は、ECU31により行われ、ECU31は空燃比制御手段として機能する。
 また、本発明の実施形態に係る内燃機関では、内燃機関を搭載した車両の減速時等に、燃料噴射弁11からの燃料噴射を停止又は大幅に減量して燃焼室5内への燃料供給を停止又は大幅に低減する燃料カット制御が実施される。斯かる燃料カット制御は、例えば、アクセルペダル42の踏込み量がゼロ又はほぼゼロ(すなわち、機関負荷がゼロ又はほぼゼロ)であり且つ機関回転数がアイドリング時の回転数よりも高い所定の回転数以上であるときに実施される。
 燃料カット制御が行われたときは、内燃機関から空気又は空気と同様な排気ガスが排出されることになるため、上流側排気浄化触媒20には空燃比の極めて高い(すなわち、リーン度合いの極めて高い)ガスが流入することになる。この結果、燃料カット制御中には、上流側排気浄化触媒20に多量の酸素が流入し、上流側排気浄化触媒20の酸素吸蔵量は上限吸蔵量に達する。
 また、本実施形態の内燃機関では、燃料カット制御中に上流側排気浄化触媒20に吸蔵された酸素を放出させるために、燃料カット制御の終了直後には、上流側排気浄化触媒20に流入する排気ガスの目標空燃比をリッチ空燃比にする復帰後リッチ制御が行われる。この様子を図5に示す。
 図5は、燃料カット制御を行った際に、上流側空燃比センサ40の出力値に相当する空燃比(以下、「上流側出力空燃比」という)と、上流側排気浄化触媒20の酸素吸蔵量と、下流側空燃比センサ41の出力値に相当する空燃比(以下、「下流側出力空燃比」という)とのタイムチャートである。図示した例では、時刻t1において燃料カット制御が開始されると共に、時刻t3において燃料カット制御が終了せしめられる。
 図示した例では、時刻t1において、燃料カット制御が開始せしめられると、機関本体1からはリーン空燃比の排気ガスが排出され、これに伴って上流側空燃比センサ40の出力空燃比が増大する。このとき、上流側排気浄化触媒20に流入する排気ガス中の酸素は上流側排気浄化触媒20に吸蔵されるため、上流側排気浄化触媒20の酸素吸蔵量は増大し、一方、下流側空燃比センサ41の出力空燃比は理論空燃比のままとなる。
 その後、時刻t2において上流側排気浄化触媒20の酸素吸蔵量が上限吸蔵量(Cmax)に達すると上流側排気浄化触媒20はそれ以上酸素を吸蔵することができなくなる。このため、時刻t2以降においては、下流側空燃比センサ41の出力空燃比が理論空燃比よりもリーンになる。
 時刻t3において、燃料カット制御が終了せしめられると、燃料カット制御中に上流側排気浄化触媒20に吸蔵された酸素を放出させるために、復帰後リッチ制御が行われる。復帰後リッチ制御では、上流側排気浄化触媒20に流入する排気ガスの目標空燃比が理論空燃比よりも僅かにリッチな復帰後リッチ空燃比(例えば、14.5。第一空燃比)に設定される。これに伴って、上流側空燃比センサ40の出力空燃比がリッチ空燃比になると共に、上流側排気浄化触媒20の酸素吸蔵量が徐々に減少する。このとき、上流側排気浄化触媒20にリッチ空燃比の排気ガスが流入せしめられても、上流側排気浄化触媒20に吸蔵されている酸素と排気ガス中の未燃ガスとが反応するため、上流側排気浄化触媒20から排出される排気ガスの空燃比はほぼ理論空燃比となる。このため、下流側空燃比センサ41の出力空燃比はほぼ理論空燃比に収束する。
 上流側排気浄化触媒20の酸素吸蔵量の減少が続くと、ついには酸素吸蔵量がほぼゼロとなって、上流側排気浄化触媒20から未燃ガスが流出する。これにより、時刻t4において、下流側空燃比センサ41によって検出された排気空燃比が理論空燃比よりもリッチとなる。このように、下流側空燃比センサ41の出力空燃比が理論空燃比よりも僅かにリッチである終了判定空燃比に達すると、復帰後リッチ制御が終了せしめられる。その後、通常の空燃比制御が開始され、図示した例では、上流側排気浄化触媒20に流入する排気ガスの目標空燃比は理論空燃比とされる。
 なお、復帰後リッチ制御の終了条件は必ずしも下流側空燃比センサ41によってリッチ空燃比が検出された時でなくてもよく、例えば、燃料カット制御終了後、一定時間が経過した時等、他の条件で終了するようにされてもよい。
<基本的な応答性劣化診断>
 上述したように、空燃比センサ40、41に基づいて燃料噴射量を設定する場合には、空燃比センサ40、41に異常が生じて、空燃比センサ40、41の出力の精度が悪化してしまうと、燃料噴射量を最適に設定することができなくなる。その結果、排気エミッションの悪化や燃費の悪化を招いてしまう。このため、多くの内燃機関では、空燃比センサ40、41の異常を自己診断する診断装置が設けられている。
 ところで、このような空燃比センサ40、41の出力異常としては、応答性劣化が挙げられる。空燃比センサの応答性劣化は、例えば、センサ素子が被水することを防止するためのセンサカバー(保護層55よりも外側に設けられたカバー)に設けられた通気孔がパティキュレート(PM)により部分的に塞がってしまうことより生じる。このような応答性劣化が生じたときにおける空燃比センサの推移の様子を、図6に示す。
 図6は、燃料カット制御の実行前後における、上流側出力空燃比及び下流側出力空燃比の図5と同様なタイムチャートである。図示した例では、時刻t1において燃料カット制御が開始されると共に、時刻t3において燃料カット制御が終了せしめられる。燃料カット制御が終了せしめられると、復帰後リッチ制御により上流側排気浄化触媒20にはリッチ空燃比の排気ガスが流入せしめられる。ただし、上流側排気浄化触媒20には多量の酸素が吸蔵されているため、上流側排気浄化触媒20に流入した排気ガス中の未燃ガスは上流側排気浄化触媒20に吸蔵されていた酸素と反応して浄化される。この結果、上流側排気浄化触媒20から排出される排気ガスの空燃比は理論空燃比となっている。
 下流側空燃比センサ41に応答性劣化の異常が生じていない場合、下流側空燃比センサ41の出力空燃比は図6に実線Aで示したように推移する。すなわち、燃料カット制御の終了後、機関本体1から下流側空燃比センサ41まで距離があるため、燃料カット制御の終了から僅かに遅れて、下流側空燃比センサ41の出力空燃比が低下し始める。また、このとき上流側排気浄化触媒20から流出する排気ガスの空燃比はほぼ理論空燃比となっているため、下流側空燃比センサ41の出力空燃比もほぼ理論空燃比に収束する。
 一方、下流側空燃比センサ41に応答性劣化の異常が生じている場合、下流側空燃比センサ41の出力空燃比は図6に破線Bで示したように推移する。すなわち、下流側空燃比センサ41に応答性劣化が生じていない場合(実線A)に比べて、出力空燃比の低下速度が遅くなる。このように、下流側空燃比センサ41の応答性劣化の有無に応じて、下流側空燃比センサ41の出力空燃比の低下速度が変化する。このため、この低下速度を算出することにより、下流側空燃比センサ41の応答性劣化の有無を診断することができる。特に、このような応答性劣化の診断は、排気空燃比が18程度と17程度との間の領域の低下速度に基づいて行うのが好ましい。
 そこで、本発明の第一実施形態では、燃料カット制御の終了後、復帰後リッチ制御の実行中に、下流側空燃比センサ41の出力空燃比が18程度と17程度との間の所定の空燃比領域X(以下、「判定用空燃比領域」という)内を通過するときの出力空燃比の変化速度(以下、「判定用空燃比変化速度」という)を算出する。特に、本実施形態では、出力空燃比が判定用空燃比領域の上限空燃比(すなわち、18)から下限空燃比(すなわち、17)まで変化する時間ΔTが判定用空燃比変化速度を表すパラメータとして用いられる。この判定用空燃比変化時間ΔTは長くなるほど、判定用空燃比変化速度が遅くなることを意味する。なお、図1中の判定用空燃比変化時間ΔTは、実線Aについての判定用空燃比変化速度を表すパラメータである。
 そして、本実施形態では、このようにして算出された判定用空燃比変化時間ΔTに基づいて、下流側空燃比センサ41の異常診断が行われる。具体的には、判定用空燃比変化時間ΔTが、異常基準変化時間よりも長い場合、すなわち判定用空燃比変化速度が異常基準変化速度よりも遅い場合には、下流側空燃比センサ41に応答性劣化の異常が発生していると判定する。
 なお、異常基準変化時間は、例えば、下流側空燃比センサ41に応答性劣化が生じていないときに判定用空燃比領域X内における変化時間が取り得る最低時間よりも僅かに長い時間とされる。そして、異常基準変化時間は、予め定められた値であってもよいし、復帰後リッチ制御中における機関回転数や機関負荷等の運転パラメータに応じて変化する値であってもよい。
 逆に、判定用空燃比変化時間ΔTが異常基準変化時間よりも短い場合には、すなわち修正空燃比変化速度が異常基準変化速度よりも速い場合には、下流側空燃比センサ41に応答性劣化の異常は発生しておらず、下流側空燃比センサ41は正常であると判定する。
 本実施形態の診断装置によれば、燃料カット制御が行われている状態、すなわち下流側空燃比センサ41周りを通過する排気ガスの空燃比が極めて高い(リーン度合いが極めて高い)状態から、下流側空燃比センサ41周りを通過する排気ガスの空燃比が理論空燃比に変化するときに異常診断が行われる。このように、下流側空燃比センサ41周りを通過する排気ガスの空燃比が大きく変化するときに異常診断が行われることにより、下流側空燃比センサ41のノイズの影響を低減させることができ、異常診断における診断精度を高めることができる。
 また、燃料カット制御が行われると、下流側空燃比センサ41周りを通過する排気ガスの空燃比は極めて高い空燃比に維持される。このため、燃料カット制御終了後に異常診断を行うにあたって異常診断前の空燃比の変動の影響を排除することができる。また、燃料カット制御中に上流側排気浄化触媒20の酸素吸蔵量は基本的に上限吸蔵量に達しているため、異常診断において酸素吸蔵量の影響も排除することができる。このため、本実施形態の診断装置によれば、下流側空燃比センサ41の異常診断を高い精度で行うことができる。そして、本実施形態の診断装置によれば、異常診断前の空燃比の変動や上流側排気浄化触媒20の酸素吸蔵量を考慮して異常診断を禁止する必要はなく、異常診断が必要とされるときには必ず異常診断を行うことができる。
 なお、本実施形態では、診断装置により下流側空燃比センサ41に異常があると判定された場合には、内燃機関を搭載した車両において警告灯が点灯するように構成される。
 また、上記実施形態では、判定用空燃比変化時間ΔTに基づいて異常診断を行っている。しかしながら、判定用空燃比変化時間ΔTの代わりに、判定用空燃比領域Xの上限空燃比から下限空燃比を減算した値を判定用空燃比変化時間で除算した空燃比変化速度V1等を用いてもよい。
 或いは、判定用空燃比変化時間ΔTの代わりに、出力空燃比が判定用空燃比領域の上限空燃比から下限空燃比まで変化する間に下流側空燃比センサ41を通過した排気ガス量の積算値を用いても良い。この排気ガス量の積算値は、エアフロメータ39の出力値から推定するようにしてもよいし、機関負荷及び機関回転数から推定するようにしてもよい。
 さらに、上記実施形態では、機関始動後、機関停止するまでに異常診断は一回のみしか行われていない。しかしながら、機関始動後、機関停止するまでに異常診断を複数回行うようにしてもよい。また、上記実施形態では、一回の異常診断において判定用空燃比変化時間ΔTが異常基準変化時間よりも長い場合に、上流側排気浄化触媒20に異常があると診断している。しかしながら、二回の異常診断において連続して判定用空燃比変化時間ΔTが異常基準変化時間よりも長いと判定された場合に、上流側排気浄化触媒20に異常があると診断するようにしてもよい。この場合、例えば、異常診断により、1回、判定用空燃比変化時間ΔTが異常基準変化時間よりも長いと判定された場合であっても、その後の異常診断において判定用空燃比変化時間ΔTが異常基準変化時間よりも短いと判定された場合には下流側空燃比センサ41は正常であると診断される。
<判定用空燃比領域>
 ところで、判定用空燃比領域を上限空燃比とこれよりもリッチ側の下限空燃比との間の領域とすると、上述した例では、上限空燃比を18、下限空燃比を17としている。しかしながら、判定用空燃比領域は必ずしもこれらの間の領域でなくてもよい。
 ここで、判定用空燃比領域は、基本的に、下流側空燃比センサ41に応答性劣化が生じたときにその出力空燃比の変化速度が変化する領域であることが必要である。したがって、判定用上限空燃比は、燃料カット制御により上流側排気浄化触媒20から空気が排出されているときの出力空燃比よりも低いことが必要である。
 加えて、下流側空燃比センサ41として上述したように限界電流式空燃比センサを用いたときには、上限空燃比は、下流側空燃比センサ41が限界電流を発生させ得る空燃比であることが必要である。例えば、図3に示した例では、下流側空燃比センサ41における印加電圧を0.4Vとしたときには、排気空燃比が18程度であれば限界電流が出力されるが、排気空燃比がそれ以上になると限界電流は出力されない。このように限界電流が出力されなくなると、実際の空燃比に対する出力電流の精度が悪化するため、空燃比の検出精度が低下する。そこで、上限空燃比は、下流側空燃比センサ41が限界電流を発生させ得る空燃比とされ、図3に示したV-I特性を有する空燃比センサでは18以下とされる。
 また、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比よりもリッチになるタイミングは、上流側排気浄化触媒20が吸蔵可能な酸素量(最大酸素吸蔵量)に応じて変化する。したがって、下限空燃比を理論空燃比よりもリッチに設定すると、下流側空燃比センサ41の応答性劣化が同程度であっても、上流側排気浄化触媒20の最大酸素吸蔵量に応じて変化する。したがって、下限空燃比は理論空燃比以上であることが必要である。このため、判定用空燃比領域は、理論空燃比以上の一部の空燃比領域であるといえる。なお、例えば、下限空燃比を理論空燃比とした場合には、判定用空燃比変化時間ΔTは図7に示したような時間となる。ただし、下限空燃比は理論空燃比よりもリーンであることが好ましい。
 加えて、下流側空燃比センサ41として上述したように限界電流式空燃比センサを用いたときには、下限空燃比も、下流側空燃比センサ41が限界電流を発生させ得る空燃比であることが必要である。したがって、図3に示したV-I特性を有する空燃比センサでは、12以上とされる。なお、上限空燃比及び下限空燃比のいずれも下流側空燃比センサ41が限界電流を発生させ得る空燃比であることが必要である点を考慮すると、判定用空燃比領域は下流側空燃比センサ41が限界電流を発生させる空燃比領域内の領域であるといえる。
 以上より、判定用空燃比領域を上限空燃比及び下限空燃比との間の領域とすると、上述した例では、上限空燃比を18、下限空燃比を17としている。
<フローチャート>
 図8は、変化時間算出制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔の割り込みによって行われる。
 まず、ステップS11において、内燃機関の始動後(或いは、内燃機関を搭載した車両のイグニッションキーをONにした後)、異常診断が未だ実行されていないか否かが判定される。異常診断が既に終了している場合には異常診断のために変化時間を算出する必要がないため、制御ルーチンが終了せしめられる。一方、ステップS11において、異常診断が未了であると判定された場合にはステップS12へと進む。
 次いで、ステップS12において、現在、燃料カット制御中であるか否かが判定される。未だ燃料カット制御が行われていないときには、ステップS13へと進む。ステップS13では、条件成立フラグが1であるか否かが判定される。条件成立フラグは、変化時間算出の実行条件が成立したときに1とされ、成立していないときに0とされるフラグである。未だ燃料カット制御が行われていないときには、変化時間算出の実行条件は成立していないため、制御ルーチンが終了せしめられる。
 その後、燃料カット制御が行われると、ステップS12からステップS14へと進む。ステップS14では、下流側空燃比センサ41の出力空燃比AFが、判定用空燃比領域Xの上限空燃比Xup以上であるか否かが判定される。下流側空燃比センサ41の出力空燃比AFが上限空燃比Xupよりも低いと判定された場合には、判定用空燃比領域Xにおける変化時間の算出ができないため、制御ルーチンが終了せしめられる。一方、ステップS14において、下流側空燃比センサ41の出力空燃比AFが上限空燃比Xup以上であると判定された場合にはステップS15へと進む。ステップS15では、条件成立フラグが1とされる。
 その後、燃料カット制御が終了せしめられると、ステップS12から再びステップS13へと進む。ステップS13では、条件成立フラグが1であると判定され、変化時間の算出を行うべくステップS16へと進む。ステップS16では、下流側空燃比センサ41の出力空燃比AFが、判定用空燃比領域Xの上限空燃比Xup以下であるか否かが判定される。ステップS16において、出力空燃比AFが上限空燃比Xupよりも大きいと判定された場合には制御ルーチンが終了せしめられる。
 その後、出力空燃比AFが上限空燃比Xup以下になると、次の制御ルーチンではステップS16からS17へと進む。ステップS17では、下流側空燃比センサ41の出力空燃比AFが判定用空燃比領域Xの下限空燃比Xlow以上であるか否かが判定される。下流側空燃比センサ41の出力空燃比AFが判定用空燃比領域X内にある間は、ステップS17において出力空燃比AFが下限空燃比Xlow以上であると判定され、ステップS18へと進む。ステップS18では、暫定空燃比変化時間ΔT’に1が加算される。出力空燃比AFが判定用空燃比領域X内にある間はステップS18へ繰り返し進むため、この間、暫定空燃比変化時間ΔT’が増加せしめられる。その結果、ステップS18では、出力空燃比AFが判定用空燃比領域X内に進入してからの経過時間が算出されることになる。
 その後、下流側空燃比センサ41の出力空燃比AFが下限空燃比Xlowよりも低くなると、次の制御ルーチンではステップS17からステップS19へと進む。ステップS19では、このときの暫定空燃比変化時間ΔT’が判定用空燃比変化時間ΔTとされる。次いで、ステップS20では、算出完了フラグが1とされる。なお、算出完了フラグは、時間ΔTの算出が完了するまでは0とされ、算出が完了すると1とされるフラグである。
 なお、上記制御ルーチンでは、異常診断が未了の場合及び燃料カット制御中の下流側空燃比センサ41の出力空燃比AFが判定用空燃比領域Xの上限空燃比Xup以上である場合に判定用空燃比変化時間の算出を行っている。したがって、これらは、事実上、変化時間算出の実行条件として機能する。また、変化時間算出の実行条件はこれらに限定されるものではなく、例えば、燃料カット制御に出力空燃比AFが上限空燃比Xup以上であるとの実行条件の代わりに、燃料カット制御の開始からの経過時間が所定の閾値以上であることや、燃料カット制御の開始からの吸入空気量積算値が所定の閾値以上であることを実行条件としてもよい。また、判定用空燃比変化時間の算出が行われない限り、下流側空燃比センサ41の異常診断も行われないことから、上述した変化時間算出の実行条件は、異常診断の実行条件であるということもできる。
 図9は、異常診断制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔の割り込みによって行われる。異常診断制御では、図8に示した変化時間算出制御によって算出された判定用空燃比変化時間ΔTが利用される。
 図9に示したように、まずステップS31では、異常診断が未了であるか否かが判定される。異常診断が既に終了している場合には、異常診断を再度する必要がないため、制御ルーチンが終了せしめられる。一方、ステップS31において、異常診断が未了であると判定された場合にはステップS32へと進む。
 ステップS32では、算出完了フラグが1であるか否かが判定される。図8のステップS20により、算出完了フラグが1にセットされるまでは、算出完了フラグが1ではないとして制御ルーチンが終了せしめられる。一方、算出完了フラグが1にセットされると、ステップS33へと進む。
 ステップS33では、判定用空燃比変化時間ΔTが異常基準変化時間ΔTref以上であるか否かが判定される。判定用空燃比変化時間ΔTが異常基準変化時間ΔTref以上であると判定された場合には、ステップS34へと進み、下流側空燃比センサ41に応答性劣化の異常が発生していると判定される。一方、判定用空燃比変化時間ΔT1が異常基準変化時間ΔTrefよりも小さいと判定された場合には、ステップS35へと進み、下流側空燃比センサ41には応答性劣化の異常は生じておらず、正常であると判定される。
 なお、図8及び図9に示した制御ルーチンにおける条件成立フラグ及び算出完了フラグは、例えば、内燃機関を搭載した車両のイグニッションキーがOFFにされた時等に0にリセットされる。
<第二実施形態>
 次に、図10を参照して、本発明の第二実施形態に係る診断装置について説明する。第二実施形態に係る診断装置は、基本的に第一実施形態に係る診断装置と同様に構成される。しかしながら、第一実施形態では、下流側空燃比センサ41の出力空燃比の変化速度(変化時間)に基づいて異常診断が行われているのに対して、第二実施形態では、下流側空燃比センサ41の出力空燃比の積算値(積分値)に基づいて異常診断が行われる。
 下流側空燃比センサ41の出力空燃比の応答性劣化の有無については、出力空燃比の積算値も、空燃比変化速度と同様な傾向を示す。この様子を、図10に示す。
 図10は、図6と同様なタイムチャートである。図10のIAは、下流側空燃比センサ41に応答性劣化が生じていない場合(実線A)に、出力空燃比が初めて判定用空燃比領域X内を通過するときの出力空燃比の積算値である。また、図10のIBは、下流側空燃比センサ41に応答性劣化が生じている場合(実線B)に、出力空燃比が初めて判定用空燃比領域X内を通過するときの出力空燃比の積算値である。
 これら積算値IA、IBを比較すると、積算値IBは積算値IAよりも大きい。したがって、下流側空燃比センサ41に応答性劣化が生じると、判定用空燃比領域X内を通過するときの出力空燃比の積算値(以下、「判定用空燃比積算値」という)は大きくなることがわかる。したがって、判定用空燃比積算値も、下流側空燃比センサ41の応答性劣化の有無に応じて、判定用空燃比変化速度と同様な傾向を示すことがわかる。
 そこで、本実施形態では、判定用空燃比積算値に基づいて下流側空燃比センサ41の異常診断が行われる。具体的には、判定用空燃比積算値が、異常基準積算値以上である場合には下流側空燃比センサ41に応答性劣化の異常が発生していると判定する。逆に、判定小空燃比積算値が、異常基準積算値よりも小さい場合には下流側空燃比センサ41には応答性劣化の異常が発生していないと判定する。これにより、本実施形態の診断装置によっても、第一実施形態の診断装置と同様に、下流側空燃比センサ41の異常診断を高い精度で行うことができる。
 上述した第一実施形態と第二実施形態をまとめて表現すると、本発明によれば、燃料カット制御終了後、下流側空燃比センサ41から出力される出力空燃比が理論空燃比以上の一部の空燃比領域を最初に通過するときの出力空燃比に基づいて空燃比変化特性を算出し、この空燃比変化特性に基づいて下流側空燃比センサ41の異常診断が行われるといえる。空燃比変化特性は、出力空燃比が所定量変化する間に他のパラメータが変化する程度、又は出力空燃比以外のパラメータが所定量変化する間に出力空燃比が変化する程度を意味する。空燃比変化特性としては、具体的には、上述した実施形態では判定用空燃比変化時間(空燃比変化速度)、空燃比積算値、出力空燃比が判定用空燃比領域の上限空燃比から下限空燃比まで変化する間に下流側空燃比センサ41を通過した排気ガス量の積算値等が挙げられる。
<第三実施形態>
 次に、図11を参照して、本発明の第三実施形態に係る診断装置について説明する。第三実施形態に係る診断装置は、基本的に第一実施形態及び第二実施形態に係る診断装置と同様に構成される。しかしながら、第一実施形態及び第二実施形態では、燃料カット制御終了後、目標空燃比が理論空燃比よりもリッチな復帰後リッチ空燃比とされていたが、第三実施形態では、燃料カット制御終了後、目標空燃比は復帰後リッチ空燃比とされる前に理論空燃比(第二空燃比)とされる。
<応答性劣化診断における課題>
 ところで、燃料カット制御終了後の下流側空燃比センサ41の出力空燃比の推移は、上流側排気浄化触媒20の劣化度合いに応じても変化する。例えば、上流側排気浄化触媒20の劣化度合いが高くて、その酸素吸蔵能力が低下している場合には、燃料カット制御中においても上流側排気浄化触媒20にはほとんど酸素が吸蔵されない。このため、燃料カット制御が終了して上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比にされると、これに伴って、上流側排気浄化触媒20から流出する排気ガスの空燃比も急激に低下する。
 図11は、燃料カット制御の実行前後における、上流側出力空燃比及び下流側出力空燃比の図6と同様なタイムチャートである。図11の一点鎖線Cは、下流側空燃比センサ41に応答性劣化が生じておらず且つ上流側排気浄化触媒20の劣化度合いが高い場合の出力空燃比の推移を表している。図11の実線Aと一点鎖線Cとの比較からもわかるように、燃料カット制御の終了後においては、下流側空燃比センサ41の出力空燃比の低下速度は、上流側排気浄化触媒20に劣化が生じていない場合に比べて速くなる。
 一方、下流側空燃比センサ41に応答性劣化が生じており且つ上流側排気浄化触媒20の劣化度合いが高い場合には、応答性劣化に伴う出力空燃比の低下速度の低下と、上流側排気浄化触媒20の劣化に伴う出力空燃比の低下速度の増大とが合わさる。この結果、斯かる場合には、下流側空燃比センサ41の出力空燃比は、図11中に二点鎖線Dで示したように、排気空燃比が18程度と17程度との間の領域において、実線Aの場合(下流側空燃比センサ41に応答性劣化が生じておらず且つ上流側排気浄化触媒20の劣化度合いが低い場合)における出力空燃比と同様に推移する。
 このため、上述したように出力空燃比の低下速度に基づいて応答性劣化を診断していると、図11中に二点鎖線Dで示したような場合には、下流側空燃比センサ41に応答性劣化の異常が生じているにもかかわらず、異常判定することができない。
<本発明における異常診断の原理>
 そこで、本実施形態では、下流側空燃比センサ41の異常診断を行うときには、燃料カット制御の終了後に、すぐに復帰後リッチ制御を行うのではなく、まず目標空燃比を理論空燃比にし、その後、異常診断の終了後に復帰後リッチ制御を行うようにしている。すなわち、本実施形態では、下流側空燃比センサ41の異常診断を行うときには、燃料カット制御終了後、目標空燃比をまず理論空燃比に設定し、その後、異常診断の終了後に復帰後リッチ空燃比に設定するようにしている。一方、下流側空燃比センサ41の異常診断を行わないときには、燃料カット制御の終了後すぐに復帰後リッチ制御が行われる。
 図12は、本実施形態に基づいて目標空燃比の制御を行った際の下流側出力空燃比等のタイムチャートである(目標空燃比及び上流側出力空燃比については実線Aに対応する場合のみを示している)。図12においても、図6等と同様に、時刻t1において燃料カット制御が開始され、時刻t3にいて燃料カット制御が終了せしめられる。以下では、まず、実線Aの場合(下流側空燃比センサ41の応答性劣化の異常が生じておらず且つ上流側排気浄化触媒20の劣化度合いが低い場合)を参照して、本実施形態における目標空燃比の制御について説明する。
 図12に示したように、本実施形態では、下流側空燃比センサ41の異常診断を行うときには、時刻t3において燃料カット制御が終了せしめられると、上流側排気浄化触媒20に流入する排気ガスの目標空燃比が理論空燃比に設定される。これに伴って上流側空燃比センサ40の出力空燃比が理論空燃比へと変化する。また、上流側排気浄化触媒20に流入する排気ガスの空燃比は理論空燃比であるため、上流側排気浄化触媒20では未燃ガスや酸素の反応は生じない。このため、上流側排気浄化触媒20から流出する排気ガスの空燃比も理論空燃比に向かって変化する。したがって、実線Aで示した下流側空燃比センサ41の出力空燃比も理論空燃比に向かって変化し、時刻t4までに判定用空燃比領域Xを通過する。
 時刻t4において、下流側空燃比センサ41の出力空燃比は判定用空燃比領域Xを通過していることから、この時点で出力空燃比が判定用空燃比領域Xを通過するときの出力空燃比の変化速度を算出することができる。そこで、本実施形態では、下流側空燃比センサ41の出力空燃比が判定用空燃比領域Xを通過すると、目標空燃比が理論空燃比から復帰後リッチ空燃比に変更される。換言すると、本実施形態によれば、燃料カット制御終了後、目標空燃比が理論空燃比に設定されると共に、下流側空燃比センサ41の出力空燃比が判定用空燃比領域Xの下限空燃比Xlow(図示した例では17)に到達すると、復帰後リッチ制御を行うべく、目標空燃比が復帰後リッチ空燃比に変更される。これに伴って、上流側空燃比センサ40の出力空燃比はリッチ空燃比となる。
 図12からわかるように、下流側空燃比センサ41に応答性劣化の異常が生じておらず且つ上流側排気浄化触媒20の劣化度合いが低い場合(図12の実線A)、燃料カット制御終了後の目標空燃比を上述したように制御すると、出力空燃比は図11に示した実線Aと同様に推移する。すなわち、上流側排気浄化触媒20の劣化度合いが低い場合には、目標空燃比がリッチ空燃比であっても、過剰な未燃ガスは上流側排気浄化触媒20において酸化、除去されるため、結果的に下流側空燃比センサ41に到達する排気ガスは理論空燃比となっている。したがって、燃料カット制御終了後に目標空燃比を理論空燃比に設定した場合であってもリッチ空燃比にした場合であっても、下流側空燃比センサ41には同様な空燃比の排気ガスが流入することになる。この結果、燃料カット制御終了後に目標空燃比をリッチ空燃比にした場合も、本実施形態のように目標空燃比を理論空燃比に設定した場合も、下流側空燃比センサ41の出力空燃比は同様に推移する。
 同様に、下流側空燃比センサ41に応答性劣化の異常が生じており且つ上流側排気浄化触媒20の劣化度合いが低い場合(図12の破線B)、燃料カット制御終了後の目標空燃比を上述したように制御すると、出力空燃比は図11に示した破線Bと同様に推移する。これも、燃料カット制御終了後に目標空燃比を理論空燃比に設定した場合であってもリッチ空燃比にした場合であっても、下流側空燃比センサ41には同様な空燃比の排気ガスが流入することによるものである。
 一方、上流側排気浄化触媒20の劣化度合いが高い場合、目標空燃比を上述したように設定すると、下流側空燃比センサ41の出力空燃比は燃料カット制御終了後に目標空燃比をリッチ空燃比に設定したときとは異なって推移する。図12の一点鎖線Cは、下流側空燃比センサ41に応答性劣化が生じておらず且つ上流側排気浄化触媒20の劣化度合いが高い場合に、上記目標空燃比の制御を行ったときの出力空燃比の推移を表している。
 図12からわかるように、時刻t3において燃料カット制御が終了せしめられてから出力空燃比が判定用空燃比領域Xを通過するまで、一点鎖線Cは実線Aと同様に推移する。すなわち、上流側排気浄化触媒20に流入する排気ガスの空燃比が理論空燃比である場合には、上流側排気浄化触媒20の劣化度合いに関わらず、上流側排気浄化触媒20では未燃ガスや酸素の反応や酸素の吸蔵・放出が行われない。このため、上流側排気浄化触媒20に流入した理論空燃比の排気ガスは、上流側排気浄化触媒20の劣化度合いに関わらず、そのまま上流側排気浄化触媒20から流出する。この結果、出力空燃比が判定用空燃比領域Xを通過する間、上流側排気浄化触媒20の劣化度合いが高い場合でも、下流側空燃比センサ41の出力空燃比は劣化度合いが低い場合と同様に推移する。
 なお、上述したように、本実施形態では、下流側空燃比センサ41の出力空燃比が判定用空燃比領域Xの下限空燃比Xlowに到達すると、復帰後リッチ制御を行うべく、目標空燃比が復帰後リッチ空燃比に変更される。このため、図12からわかるように、一点鎖線Cで示した場合には、下流側空燃比センサ41の出力空燃比が下限空燃比Xlowよりも小さくなると、実線Aで示した場合に対して、出力空燃比の低下速度が速くなる。
 また、図12の二点鎖線Dは、下流側空燃比センサ41に応答性劣化が生じており且つ上流側排気浄化触媒20の劣化度合いが高い場合に、上記目標空燃比の制御を行ったときの出力空燃比の推移を表している。図12からわかるように、時刻t3において燃料カット制御が終了せしめられてから出力空燃比が判定用空燃比領域Xを通過するまで、二点鎖線Dは破線Bと同様に推移する。これも、上流側排気浄化触媒20に流入する排気ガスの空燃比を理論空燃比とした場合には、流入した排気ガスは上流側排気浄化触媒20の劣化度合いに関わらずそのまま上流側排気浄化触媒20から流出するためである。なお、本実施形態においては、出力空燃比が下限空燃比Xlowに到達すると、目標空燃比が復帰後リッチ空燃比に変更される。このため、二点鎖線Dで示した場合においても、出力空燃比が下限空燃比Xlowよりも小さくなると、破線Bに示した場合に対して、出力空燃比の低下速度が速くなる。
 以上より、燃料カット制御終了後に目標空燃比を理論空燃比に設定することで、判定用空燃比領域Xにおける下流側空燃比センサ41の出力空燃比の変化速度から、上流側排気浄化触媒20の劣化度合いの影響を低減することができる。このため、本実施形態によれば、上流側排気浄化触媒20の劣化度合いに関わらず、判定用空燃比領域Xにおける下流側空燃比センサ41の出力空燃比に基づいて、下流側空燃比センサ41の応答性劣化の異常を正確に診断することができる。
 なお、上記実施形態では、燃料カット制御終了後、復帰後リッチ制御開始前に目標空燃比を理論空燃比にしている。しかしながら、このときの目標空燃比は必ずしも理論空燃比である必要はなく、理論空燃比とは異なる空燃比であってもよい。ただし、この場合、このときの目標空燃比は、復帰後リッチ制御時の空燃比(復帰後リッチ空燃比)よりもリーンであることが必要である。また、このときの目標空燃比は、理論空燃比以上であることが好ましい。
<フローチャート>
 図13は、上流側排気浄化触媒20に流入する排気ガスの目標空燃比を設定する空燃比設定制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔の割り込みによって行われる。ステップS41~S45は、図8のステップS11~S15と同様であるため、説明を省略する。ただし、ステップS41~S45からわかるように、本実施形態では、下流側空燃比センサ41の異常診断が未だ実行されていないこと及び燃料カット制御中に下流側空燃比センサ41の出力空燃比が判定用空燃比領域Xの上限空燃比Xup以上になることを下流側空燃比センサ41の異常診断を行う実行条件としている。なお、下流側空燃比センサ41の異常診断を行う実行条件にはその他の条件が加わっても良い。
 図13に示したフローチャートでは、燃料カット制御が終了せしめられると、ステップS42からステップS43へと進む。そして、ステップS43において、条件成立フラグが1であると判定されると、ステップS46へと進む。ステップS46では、下流側空燃比センサ41の出力空燃比AFが判定用空燃比領域Xの下限空燃比Xlow以上であるか否かが判定される。ステップS46において、出力空燃比AFが下限空燃比Xlow以上であると判定された場合、すなわち燃料カット制御終了後、出力空燃比AFが判定用空燃比領域Xを通過していないと判定された場合には、ステップS47へと進む。ステップS47では、目標空燃比が理論空燃比とされ制御ルーチンが終了せしめられる。一方、ステップS46において、出力空燃比AFが下限空燃比Xlowよりも低いと判定された場合には、ステップS48へと進む。ステップS48では、復帰後リッチ制御が実行されて目標空燃比が復帰後リッチ空燃比とされ、制御ルーチンが終了せしめられる。
 なお、上記実施形態では、下流側空燃比センサ41の出力空燃比が判定用空燃比領域Xの下限空燃比Xlow(図示した例では17)に到達した時に、復帰後リッチ制御を行うべく、目標空燃比が復帰後リッチ空燃比に変更されている。しかしながら、目標空燃比を理論空燃比から復帰後リッチ空燃比に変更するタイミングは、必ずしも出力空燃比が下限空燃比Xlowに到達した時である必要はない。例えば、燃料カット制御が終了してからの経過時間が予め定められた時間経過した時、出力空燃比が下限空燃比Xlowよりも低い空燃比(例えば理論空燃比)に到達した時、燃料カット制御が終了してからの吸入空気量(燃焼室5に供給された空気量)やの積算値が予め定められた空気量に到達した時等、異なるタイミングであってもよい。ただし、いずれにせよ、目標空燃比を理論空燃比から復帰後リッチ空燃比に変更するタイミングは、燃料カット制御終了後、出力空燃比が下限空燃比Xlowに到達する時よりも遅い時期になるように設定される必要がある。
 また、上記実施形態では、下流側空燃比センサ41の異常診断を実行するときにのみ燃料カット制御終了後、復帰後リッチ制御を行う前に目標空燃比を理論空燃比に設定している。具体的には、下流側空燃比センサ41の異常診断の実行条件が成立した時(上述した例では、内燃機関の始動後異常診断が未了であり且つ燃料カット制御中に出力空燃比が上限空燃比Xup以上となった時)に復帰後リッチ制御を行う前に目標空燃比が理論空燃比に設定される。しかしながら、下流側空燃比センサ41の異常診断実行の有無にかかわらず、燃料カット制御を実行したときには常に復帰後リッチ制御を行う前に目標空燃比を一時的に理論空燃比に設定するようにしてもよい。
<第四実施形態>
 次に、図14を参照して、本発明の第四実施形態に係る診断装置について説明する。第四実施形態に係る診断装置は、基本的に第三実施形態に係る診断装置と同様に構成される。加えて、第四実施形態では、上流側排気浄化触媒20の劣化度合いを推定する触媒劣化度合い推定手段が設けられている。
 図11からわかるように、下流側空燃比センサ41は、下流側空燃比センサ41における異常の有無に加えて、上流側排気浄化触媒20の劣化度合いに応じて、その出力空燃比の推移が変化する。逆に言うと、上流側排気浄化触媒20の劣化度合いが低い場合には、下流側空燃比センサ41の出力空燃比は、下流側空燃比センサ41における異常の有無に応じて変化することになる。したがってこの場合には、燃料カット制御終了後に目標空燃比を一時的に理論空燃比に設定する必要がないことになる。
 そこで、本実施形態では、上流側排気浄化触媒20の劣化度合いを推定するための触媒劣化度合い推定手段が設けられる。そして、触媒劣化度合い推定手段によって推定された劣化度合いが予め定められた基準劣化度合い以下である場合には、異常診断を行うときであっても燃料カット制御終了後すぐに復帰後リッチ制御が行われ、目標空燃比が復帰後リッチ空燃比とされる。一方、触媒劣化度合い推定手段によって推定された劣化度合いが予め定められた基準劣化度合いよりも高い場合には、異常診断を行うときには、上記第三実施形態と同様に、燃料カット制御終了後、目標空燃比が理論空燃比とされる。
 ここで、燃料カット制御終了後は、上流側排気浄化触媒20の酸素吸蔵量が多いため、そのままの状態にすると排気ガス中のNOxを浄化しにくく、排気エミッションの悪化を招く可能性がある。本実施形態では、上流側排気浄化触媒20の劣化度合いが低いときには、燃料カット制御終了後すぐに目標空燃比がリッチ空燃比に設定されるため、排気エミッションの悪化を抑制することができる。
 なお、触媒劣化度合い推定手段は、例えば、上流側排気浄化触媒20の劣化度合いとして上流側排気浄化触媒20に吸蔵可能な酸素量を推定する。具体的な推定方法としては、まず上流側排気浄化触媒20からリッチ空燃比の排気ガスが流出するまで目標空燃比をリッチ空燃比に維持する。その後、上流側排気浄化触媒20からリッチ空燃比の排気ガスが流出すると、上流側排気浄化触媒20からリーン空燃比の排気ガスが流出するまで目標空燃比をリーン空燃比に維持する。そして、上流側排気浄化触媒20からリッチ空燃比の排気ガスが流出してから、リーン空燃比の排気ガスが流出するまでに上流側排気浄化触媒20に流入した酸素量を、エアフロメータ39の出力及び上流側空燃比センサ40の出力等に基づいて推定する。このようにして推定された酸素量は、上流側排気浄化触媒20に吸蔵可能な酸素量を表している。
 そして、上流側排気浄化触媒20に吸蔵可能な酸素量の推定値が予め定められた閾値以上であるときには上流側排気浄化触媒20の劣化度合いが基準劣化度合い以下であると判定され、異常診断を行うときであっても燃料カット制御終了後すぐに目標空燃比がリッチ空燃比に設定される。一方、上流側排気浄化触媒20に吸蔵可能な酸素量の推定値が予め定められた閾値よりも少ないときには上流側排気浄化触媒20の劣化度合いが基準劣化度合いよりも高いと判定され、異常診断を行うときには燃料カット制御終了後、目標空燃比が理論空燃比に設定される。
<フローチャート>
 図14は、上流側排気浄化触媒20に流入する排気ガスの目標空燃比を設定する空燃比制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔の割り込みによって行われる。ステップS51~S55、S57~S59は、それぞれ、図13のステップS41~S48と同様であるため、説明を省略する。
 図14に示したフローチャートでは、燃料カット制御が終了せしめられると、ステップS52からステップS53へと進む。そして、ステップS53において、条件成立フラグが1であると判定されると、ステップS56へと進む。ステップS56では、触媒劣化度合い推定手段によって推定された吸蔵可能な酸素量の推定値Cが予め定められた閾値Crefよりも小さいか否か、すなわち、上流側排気浄化触媒20の劣化度合いが高いか否かが判定される。ステップS56において、吸蔵可能な酸素量の推定値Cが予め定められた閾値Cref以上であると判定された場合、すなわち上流側排気浄化触媒20の劣化度合いが低いと判定された場合には、ステップS59へと進み、復帰後リッチ制御が行われる。一方、ステップS56において、吸蔵可能な酸素量の推定値Cが予め定められた閾値Crefよりも小さいと判定された場合にはステップS57へと進む。ステップS57では、図13のステップS46と同様に、下流側空燃比センサ41の出力空燃比AFが判定用空燃比領域Xの下限空燃比Xlow以上であるか否かが判定される。
<第五実施形態>
 次に、図15を参照して、本発明の第五実施形態に係る診断装置について説明する。第五実施形態に係る診断装置は、基本的に第三実施形態及び第四実施形態に係る診断装置と同様に構成される。加えて、第五実施形態では、燃料カット制御終了後に目標空燃比を一時的に理論空燃比に設定したか否かに応じて、復帰後リッチ制御における目標空燃比を変更するようにしている。
 上記第三実施形態及び第四実施形態では、下流側空燃比センサ41の異常診断を行う際には、燃料カット制御終了後に目標空燃比を一時的に理論空燃比に設定する場合がある。この場合、復帰後リッチ制御の開始が遅れ、その分、燃料カット制御時に上流側排気浄化触媒20に吸蔵された酸素を放出、還元させるのが遅れる。
 そこで、本実施形態では、燃料カット制御終了後に目標空燃比を一時的に理論空燃比に設定した場合には、復帰後リッチ制御における目標空燃比を、通常時の空燃比(上述した復帰後リッチ空燃比)よりもリッチな空燃比に設定するようにしている。これにより、燃料カット制御終了後に目標空燃比を一時的に理論空燃比に設定した場合であっても、燃料カット制御中に上流側排気浄化触媒20に吸蔵された酸素を迅速に放出、還元させることができるようになる。なお、上述した「通常時の空燃比よりもリッチな空燃比」は、予め定められた値であってもよいし、上流側排気浄化触媒20の劣化度合い等に応じて変化する値であってもよい。
<フローチャート>
 図15は、上流側排気浄化触媒20に流入する排気ガスの目標空燃比を設定する空燃比制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔の割り込みによって行われる。ステップS61~S68は、それぞれ、図14のステップS51~S58と同様であるため、説明を省略する。
 図15に示したフローチャートでは、ステップS67において、下流側空燃比センサ41の出力空燃比AFが下限空燃比Xlow以上であると判定された場合、すなわち、燃料カット制御終了後、出力空燃比AFが判定用空燃比領域Xを通過していないと判定された場合には、ステップS68へと進み、目標空燃比が理論空燃比に設定される。その後、ステップS69では、理論空燃比切替フラグが1とされ、制御ルーチンが終了せしめられる。理論空燃比切替フラグは、燃料カット制御終了後、復帰後リッチ制御の開始前に目標空燃比が一時的に理論空燃比にされたことがある場合に1とされ、それ以外の場合には0とされるフラグである。
 一方、ステップS66において、触媒劣化度合い推定手段によって推定された吸蔵可能な酸素量の推定値Cが予め定められた閾値Cref以上であると判定された場合、又はステップS67において下流側空燃比センサ41の出力空燃比AFが下限空燃比Xlowよりも低いと判定された場合には、ステップS70へと進む。ステップS70では、理論空燃比切替フラグが1であるか否か、すなわち燃料カット制御終了後、復帰後リッチ制御の開始前に目標空燃比が一時的に理論空燃比にされたか否かが判定される。理論空燃比切替フラグが1であると判定された場合には、ステップS71へと進む。ステップS71では、復帰後リッチ制御時の目標空燃比が、復帰後リッチ空燃比(AFtrgnor)よりもリッチな空燃比(AFtrglow)に設定され、制御ルーチンが終了せしめられる。一方、ステップS70において、理論空燃比切替フラグが1ではないと判定された場合には、ステップS72へと進む。ステップS72では、復帰後リッチ制御時の目標空燃比が通常の復帰後リッチ空燃比(AFtrgnor)に設定され、制御ルーチンが終了せしめられる。
 1  機関本体
 5  燃焼室
 6  吸気弁
 8  排気弁
 11  燃料噴射弁
 19  排気マニホルド
 20  上流側排気浄化触媒
 21  上流側ケーシング
 23  下流側ケーシング
 24  下流側排気浄化触媒
 31  電子制御ユニット(ECU)
 40  上流側空燃比センサ
 41  下流側空燃比センサ

Claims (12)

  1.  内燃機関の排気通路に配置されると共に流入する排気ガス中の酸素を吸蔵可能な排気浄化触媒と、該排気浄化触媒の排気流れ方向下流側に配置されると共に前記排気浄化触媒から流出する排気ガスの空燃比を検出する空燃比センサとを具備し、燃焼室への燃料供給を停止又は減量する燃料カット制御を実行する内燃機関の診断装置において、
     前記燃料カット制御の終了後、前記空燃比センサから出力される出力空燃比が理論空燃比以上の一部の空燃比領域を最初に通過するときの該出力空燃比に基づいて、空燃比変化特性を算出し、該空燃比変化特性に基づいて前記空燃比センサの異常を診断する、内燃機関の診断装置。
  2.  前記排気浄化触媒に流入する排気ガスの空燃比を目標空燃比に制御する空燃比制御手段を更に具備し、
     前記目標空燃比は、燃料カット制御の終了後に理論空燃比よりもリッチである第一空燃比に設定され、
     前記空燃比センサの異常診断を行うときには、前記目標空燃比は、前記燃料カット制御の終了後に、前記第一空燃比に設定される前に、前記第一空燃比よりもリーンである第二空燃比に設定される、請求項1に記載の内燃機関の診断装置。
  3.  前記空燃比センサの異常診断を行わないときには、前記目標空燃比は前記燃料カット制御の終了後すぐに第一空燃比に設定される、請求項2に記載の内燃機関の診断装置。
  4.  内燃機関の始動後既に前記空燃比センサの異常診断が完了しているときには前記空燃比センサの異常診断は行われない、請求項3に記載の内燃機関の診断装置。
  5.  前記第二空燃比は、理論空燃比である、請求項2~4のいずれか1項に記載の内燃機関の診断装置。
  6.  前記燃料カット制御の終了後に前記目標空燃比を第二空燃比に設定したときには、前記空燃比センサの異常診断が完了した時以降に前記目標空燃比が第二空燃比から第一空燃比に変更せしめられる、請求項2~5のいずれか1項に記載の内燃機関の診断装置。
  7.  前記排気浄化触媒の劣化度合いを推定する触媒劣化度合い推定手段を更に具備し、
     前記触媒劣化度合い推定手段によって検出された触媒劣化度合いが予め定められた基準劣化度合い以下である場合には、前記空燃比センサの異常診断を行うときであっても、前記目標空燃比は、前記燃料カット制御の終了後すぐに第一空燃比に設定される、請求項2~6のいずれか1項に記載の内燃機関の診断装置。
  8.  前記第一空燃比は、前記目標空燃比を第一空燃比に設定する前に第二空燃比に設定されたときには、第一空燃比に設定する前に第二空燃比に設定されないときに比べて、リッチな空燃比とされる、請求項2~7のいずれか1項に記載の内燃機関の診断装置。
  9.  前記空燃比センサは、該空燃比センサを通過する排気ガスの空燃比が所定空燃比領域内にあるときに限界電流を出力する限界電流式空燃比センサであり、前記空燃比領域は、前記空燃比センサが限界電流を発生させる前記所定空燃比領域内である、請求項1~8のいずれか1項に記載の内燃機関の診断装置。
  10.  前記空燃比変化特性は、前記空燃比センサの出力空燃比が前記空燃比領域を最初に通過するときの空燃比変化速度であり、
     前記空燃比センサの異常診断においては、前記空燃比変化速度が異常基準変化速度よりも遅い場合には前記空燃比センサに異常があると判定され、前記空燃比変化速度が異常基準変化速度よりも速い場合には前記空燃比センサは正常であると判定される、請求項1~9のいずれか1項に記載の内燃機関の診断装置。
  11.  前記空燃比変化特性は、前記空燃比センサの出力空燃比が前記空燃比領域内にあるときの該出力空燃比を積算した空燃比積算値であり、
     前記空燃比センサの異常診断においては、前記空燃比積算値が異常基準積算値以上である場合には前記空燃比センサに異常があると判定され、前記空燃比積算値が異常基準積算値よりも小さい場合には前記空燃比センサは正常であると判定される、請求項1~9のいずれか1項に記載の内燃機関の診断装置。
  12.  前記空燃比センサの異常診断において、前記空燃比センサに異常があると判定されたときには、警告灯が点灯せしめられる、請求項1~11のいずれか1項に記載の内燃機関の診断装置。
PCT/JP2013/067546 2013-06-26 2013-06-26 内燃機関の診断装置 WO2014207843A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/067546 WO2014207843A1 (ja) 2013-06-26 2013-06-26 内燃機関の診断装置
JP2015523717A JP6011726B2 (ja) 2013-06-26 2013-06-26 内燃機関の診断装置
US14/900,645 US9719449B2 (en) 2013-06-26 2013-06-26 Diagnosis system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/067546 WO2014207843A1 (ja) 2013-06-26 2013-06-26 内燃機関の診断装置

Publications (1)

Publication Number Publication Date
WO2014207843A1 true WO2014207843A1 (ja) 2014-12-31

Family

ID=52141249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067546 WO2014207843A1 (ja) 2013-06-26 2013-06-26 内燃機関の診断装置

Country Status (3)

Country Link
US (1) US9719449B2 (ja)
JP (1) JP6011726B2 (ja)
WO (1) WO2014207843A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057778A (ja) * 2015-09-16 2017-03-23 三菱自動車工業株式会社 排気浄化制御装置
WO2017103551A1 (fr) * 2015-12-18 2017-06-22 Valeo Systemes De Controle Moteur Procédé de diagnostic d'une sonde à oxygène

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6733648B2 (ja) 2017-12-12 2020-08-05 トヨタ自動車株式会社 触媒劣化検出装置
JP6637481B2 (ja) * 2017-12-26 2020-01-29 株式会社Subaru 車両用制御装置
US11432581B2 (en) 2018-09-07 2022-09-06 Altria Client Services Llc Capsule containing a matrix, device with the matrix, and method of forming the matrix
FR3091896B1 (fr) * 2019-01-22 2021-01-15 Psa Automobiles Sa Procede de test d'efficacite d'un catalyseur de ligne d'echappement d'un moteur thermique
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177575A (ja) * 1994-12-28 1996-07-09 Nippondenso Co Ltd 内燃機関の空燃比制御装置の自己診断装置
JP2003020989A (ja) * 2001-07-09 2003-01-24 Nissan Motor Co Ltd 空燃比センサの異常診断装置
JP2010007534A (ja) * 2008-06-26 2010-01-14 Nissan Motor Co Ltd 空燃比センサの異常診断装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786656B1 (en) * 1995-05-18 2005-11-09 Toyota Jidosha Kabushiki Kaisha Durability test method for exhaust gas purification device
IT1285311B1 (it) * 1996-03-12 1998-06-03 Magneti Marelli Spa Metodo di diagnosi dell'efficienza di un sensore di composizione stechiometrica dei gas di scarico posto a valle di un convertitore
JP3591283B2 (ja) * 1998-01-29 2004-11-17 日産自動車株式会社 エンジンの排気浄化装置
JP3656501B2 (ja) 2000-02-28 2005-06-08 日産自動車株式会社 空燃比センサの異常診断装置
JP2004176710A (ja) * 2002-10-01 2004-06-24 Toyota Motor Corp 動力出力装置及びハイブリッド型の動力出力装置、それらの制御方法並びにハイブリッド車両
JP4161771B2 (ja) 2002-11-27 2008-10-08 トヨタ自動車株式会社 酸素センサの異常検出装置
JP4089537B2 (ja) 2003-07-10 2008-05-28 トヨタ自動車株式会社 空燃比センサの異常検出装置
JP4221026B2 (ja) * 2006-12-25 2009-02-12 三菱電機株式会社 内燃機関の空燃比制御装置
JP4633820B2 (ja) * 2008-05-21 2011-02-16 トヨタ自動車株式会社 内燃機関の制御装置
JP2010025090A (ja) 2008-07-24 2010-02-04 Toyota Motor Corp 空燃比センサの異常診断装置
JP5182109B2 (ja) 2009-01-13 2013-04-10 トヨタ自動車株式会社 空燃比センサの異常判定装置
JP5029718B2 (ja) 2010-03-18 2012-09-19 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5515967B2 (ja) 2010-03-30 2014-06-11 トヨタ自動車株式会社 診断装置
JP5287809B2 (ja) 2010-08-31 2013-09-11 三菱自動車工業株式会社 触媒下流側排ガスセンサの劣化診断装置
JP2012127356A (ja) 2012-03-22 2012-07-05 Toyota Motor Corp 空燃比センサの異常診断装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177575A (ja) * 1994-12-28 1996-07-09 Nippondenso Co Ltd 内燃機関の空燃比制御装置の自己診断装置
JP2003020989A (ja) * 2001-07-09 2003-01-24 Nissan Motor Co Ltd 空燃比センサの異常診断装置
JP2010007534A (ja) * 2008-06-26 2010-01-14 Nissan Motor Co Ltd 空燃比センサの異常診断装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057778A (ja) * 2015-09-16 2017-03-23 三菱自動車工業株式会社 排気浄化制御装置
WO2017103551A1 (fr) * 2015-12-18 2017-06-22 Valeo Systemes De Controle Moteur Procédé de diagnostic d'une sonde à oxygène
FR3045720A1 (fr) * 2015-12-18 2017-06-23 Valeo Systemes De Controle Moteur Procede de diagnostic d'une sonde a oxygene
US10578044B2 (en) 2015-12-18 2020-03-03 Continental Automotive France S.A.S. Method for diagnosing an oxygen probe

Also Published As

Publication number Publication date
JP6011726B2 (ja) 2016-10-19
JPWO2014207843A1 (ja) 2017-02-23
US20160138506A1 (en) 2016-05-19
US9719449B2 (en) 2017-08-01

Similar Documents

Publication Publication Date Title
JP6011726B2 (ja) 内燃機関の診断装置
JP5983879B2 (ja) 内燃機関の診断装置
JP6237460B2 (ja) 内燃機関の異常診断装置
JP5962856B2 (ja) 内燃機関の診断装置
JP6020739B2 (ja) 空燃比センサの異常診断装置
JP6222020B2 (ja) 空燃比センサの異常診断装置
JP6179371B2 (ja) 空燃比センサの異常診断装置
JP6323281B2 (ja) 内燃機関の制御装置
JP6288011B2 (ja) 内燃機関
JP6090092B2 (ja) 空燃比センサの異常診断装置
JP6110270B2 (ja) 内燃機関の異常診断装置
JP5858178B2 (ja) 内燃機関の制御装置
JP6268976B2 (ja) 内燃機関の制御装置
JP6217739B2 (ja) 内燃機関の排気浄化装置
JP6361591B2 (ja) 内燃機関の制御装置
JP2016217185A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015523717

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14900645

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887899

Country of ref document: EP

Kind code of ref document: A1