WO2014207796A1 - ターボ冷凍機 - Google Patents

ターボ冷凍機 Download PDF

Info

Publication number
WO2014207796A1
WO2014207796A1 PCT/JP2013/067201 JP2013067201W WO2014207796A1 WO 2014207796 A1 WO2014207796 A1 WO 2014207796A1 JP 2013067201 W JP2013067201 W JP 2013067201W WO 2014207796 A1 WO2014207796 A1 WO 2014207796A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
gas
centrifugal compressor
impeller
economizer
Prior art date
Application number
PCT/JP2013/067201
Other languages
English (en)
French (fr)
Inventor
古賀 淳
上田 憲治
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/893,405 priority Critical patent/US20160123639A1/en
Priority to CN201380076771.2A priority patent/CN105247298B/zh
Priority to PCT/JP2013/067201 priority patent/WO2014207796A1/ja
Priority to CN201710430104.XA priority patent/CN107255371B/zh
Publication of WO2014207796A1 publication Critical patent/WO2014207796A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5846Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present invention relates to a turbo refrigerator using a centrifugal compressor.
  • turbo refrigerator As the refrigerator, a turbo refrigerator using a centrifugal compressor is known.
  • This turbo refrigerator is used in a wide variety of applications such as large-scale air conditioning in buildings and cooling facilities in chemical plants.
  • due to an increase in awareness of environmental problems there is a demand for higher performance by improving the refrigerating capacity of this turbo refrigerator.
  • a gas-liquid separator is arranged between two decompression devices (expansion valve and capillary tube) connected in series, and the first decompression After the gas phase and the liquid phase are separated from the refrigerant that has passed through the apparatus, only the liquid phase is introduced into the second decompression device to perform decompression.
  • the improvement of the refrigerating capacity R which is the enthalpy difference of the refrigerant
  • Patent Document 1 the structure disclosed in Patent Document 1 is limited to a screw compressor, and an example applied to a centrifugal compressor provided with an impeller is not shown.
  • a gas-liquid separator is provided in a flow path disposed between the impellers between the compressor stages.
  • the gas-liquid separator was used to improve the refrigerating capacity by blowing in the gas phase of the refrigerant separated in (1). For this reason, the number of gas-liquid separators to be installed is one less than the number of compressor stages, and no further improvement in refrigeration capacity using the gas-liquid separator could be expected.
  • the present invention has been made in view of such circumstances, and provides a turbo chiller with improved refrigeration capacity and improved performance while suppressing costs.
  • the turbo refrigerator includes a centrifugal compressor, a condenser, a plurality of decompressors, an evaporator, a gas-liquid separator, and an inflow path.
  • a centrifugal compressor compresses a refrigerant by rotation of an impeller having a plurality of blades.
  • the condenser cools the compressed refrigerant.
  • the decompressor depressurizes the refrigerant from the condenser to form a gas-liquid two-phase, and a greater number than the number of stages of the centrifugal compressor is connected in series.
  • the evaporator evaporates the refrigerant that has passed through the plurality of decompressors.
  • the gas-liquid separator is disposed one by one between these pressure reducers, and separates the refrigerant into two phases.
  • the inflow path allows the gas phase separated from the refrigerant to flow between a front edge and a rear edge between adjacent blades in at least one of the gas-liquid separators.
  • the gas phase separated from the refrigerant is blown from the inflow path between the front edge and the rear edge of the blade. For this reason, it is not always necessary to blow the gas phase separated from the refrigerant by the gas-liquid separator between the impellers that are located between the stages of the centrifugal compressor. Furthermore, even if the number of stages of the centrifugal compressor is a single stage or multiple stages, the gas-liquid separator can be reliably installed without being influenced by the number of stages of the centrifugal compressor. Depending on the gas-liquid separator, the refrigerant can be brought into a liquid phase only state, so that the pressure can be reduced again by the pressure reducer.
  • a refrigeration cycle that is a single-stage compression single-stage expansion cycle can be a single-stage compression two-stage expansion cycle. Therefore, compared with the case where the gas phase is not separated from the refrigerant by the gas-liquid separator, the enthalpy difference of the refrigerant before and after passing through the evaporator can be increased, and the refrigerating capacity can be improved. Furthermore, by blowing the gas phase separated from the refrigerant by the gas-liquid separator into the centrifugal compressor, the temperature of the refrigerant in the compressor can be reduced, and the compression efficiency can be improved.
  • the inflow path may cause the gas phase to flow into a front edge side of an intermediate portion between a front edge and a rear edge of the blade.
  • the inflow path allows the gas phase to flow in this way, and in particular, the stall region generated on the front edge side around the impeller blade can be accelerated, and the surge suppression effect is improved. This leads to an expansion of the compressor operating range. Therefore, further performance improvement is possible.
  • the inflow path may allow the gas phase to flow in a flow direction of the refrigerant on a meridian surface of the impeller.
  • the inflow path does not disturb the smoothness of the main flow when the gas phase is mixed with the main flow of the refrigerant flowing through the impeller by allowing the gas phase to flow in in this way. . Therefore, it is possible to reduce the mixing loss and further improve the impeller performance.
  • the inflow path has guide vanes provided in parallel to the blades on an inner peripheral surface of the inflow path. May be.
  • an end of the blade side of the inflow path may have a diameter increasing toward a downstream side.
  • the gas phase can be blown into the impeller in a state where the flow velocity of the gas phase is reduced. Therefore, when the gas phase is mixed with the main flow in the impeller, the smoothness of the main flow is not hindered, and the mixing loss can be reduced to prevent the impeller from deteriorating in performance.
  • the number of installed units is not limited by the number of centrifugal compressor stages, and the gas-liquid separator can be installed. Is possible. Therefore, it is possible to improve the refrigerating capacity while reducing the number of stages of the centrifugal compressor and suppressing the cost, and the performance can be improved.
  • FIG. 1 is an overall system diagram showing a turbo refrigerator according to a first embodiment of the present invention. It is sectional drawing which shows the impeller periphery regarding the centrifugal compressor in the turbo refrigerator which concerns on 1st embodiment of this invention. It is a whole perspective view of an impeller regarding a centrifugal compressor in a turbo refrigerator concerning a first embodiment of the present invention. It is a figure which simplifies and shows a refrigerating cycle about a turbo refrigerator concerning a first embodiment of the present invention. It is sectional drawing which shows an impeller periphery regarding the centrifugal compressor in the turbo refrigerator which concerns on 1st embodiment of this invention, Comprising: The case where an impeller is a closed type is shown.
  • FIG. 10 is a view of a centrifugal compressor in a turbo chiller according to a second embodiment of the present invention when an inflow path is viewed from the outside in the radial direction, and shows a cross section along line AA in FIG.
  • the turbo chiller 1A is a cooling device that uses a turbo compressor such as a centrifugal compressor, and is used for an air conditioner in a large-scale facility such as an office building.
  • a turbo compressor such as a centrifugal compressor
  • the turbo chiller 1 depressurizes the refrigerant W from the centrifugal compressor 10 that compresses the refrigerant W, the condenser 11 that cools the compressed refrigerant W, and the condenser 11.
  • a first expansion valve (decompressor) 12 and an economizer (gas-liquid separator) 14 that separates the refrigerant W from the first expansion valve 12 into gas-liquid two phases are provided.
  • the centrifugal chiller 1A includes an inflow path 16 that allows the gas phase W1 from the economizer 14 to flow into the centrifugal compressor 10, and a second expansion valve (decompressor) that depressurizes the liquid phase from the economizer 14 again. 13 and an evaporator 15 for evaporating the refrigerant W from the second expansion valve 13.
  • R134a hydrofluorocarbon
  • R134a hydrofluorocarbon
  • the centrifugal compressor 10 is attached to a rotating shaft 5 that is rotatable about an axis P.
  • the centrifugal compressor 10 includes an impeller 18 that can rotate about the axis P together with the rotary shaft 5, and a casing 17 that covers the impeller 18 from the outside in the radial direction of the axis P.
  • the rotary shaft 5 is axially coupled to an electric motor (not shown) and is rotatable about the axis P.
  • the impeller 18 has a radial direction of the axis P as the upstream surface into which the refrigerant W flows, which is one side (the upper side in FIG. 3) in the axis P direction, flows from the upstream side to the downstream side.
  • the disk 20 has a curved surface that gradually increases in diameter from the inside to the outside, and a plurality of blades 21 (in this embodiment, 17 blades) that are provided so as to rise from the curved surface.
  • the impeller 18 is an open type without a shroud.
  • a main flow path FC through which the refrigerant W can flow from the upstream side to the downstream side.
  • the casing 17 is a member that covers the impeller 18 from the outside in the radial direction with a gap between the casing 17 and the impeller 18.
  • the centrifugal compressor 10 is a single-stage compressor that performs adiabatic compression of the refrigerant W by one impeller 18.
  • the condenser 11 cools the refrigerant W compressed by the centrifugal compressor 10 by performing heat exchange with cooling water or the like, so that the refrigerant W is in a liquid state.
  • the first expansion valve 12 adiabatically expands and depressurizes the liquid refrigerant W from the condenser 11 to evaporate a part of the liquid, thereby bringing the refrigerant W into a gas-liquid two-phase state.
  • the economizer 14 separates the refrigerant W, which is in a gas-liquid two-phase state in the first expansion valve 12, into a gas phase W1 and a liquid phase.
  • the inflow channel 16 allows the gas phase W1 separated from the gas-liquid two-phase refrigerant W by the economizer 14 to flow into the main channel FC in the impeller 18 of the centrifugal compressor 10.
  • the inflow path 16 is provided in the casing 17 of the centrifugal compressor 10 between a front edge 21a that is an upstream end of the blade 21 and a rear edge 21b that is a downstream end. ing.
  • the inflow path 16 includes an inflow port 22 that opens to a surface facing the impeller 18 side, and an inflow pipe 23 that connects the inflow port 22 and the economizer 14.
  • the inlet 22 is formed so as to penetrate the inside and outside of the casing 17. It is more preferable that the opening position of the inflow port 22 is formed closer to the front edge 21a than the intermediate part between the front edge 21a and the rear edge 21b of the blade 21.
  • the second expansion valve 13 adiabatically expands and depressurizes the refrigerant W which is separated from the gas phase W1 by the economizer 14 and becomes only the liquid phase.
  • the evaporator 15 evaporates the refrigerant W from the second expansion valve 13 by exchanging heat with water or the like to obtain a saturated vapor state.
  • the gaseous refrigerant W is first adiabatically compressed from the point A by the centrifugal compressor 10 and isentropic. It reaches point B in the state. Thereafter, the gas refrigerant W is cooled by the condenser 11 to be in a saturated liquid state, reaches a point C on the saturation curve, and further, the liquid refrigerant W is adiabatically expanded by the first expansion valve 12, and the gas-liquid two-phase And reaches point D.
  • the refrigerant W that has passed through the first expansion valve 12 is separated from the gas phase W1 by the economizer 14, and this gas phase W1 passes through the inlet 22 of the inlet 16 and the main channel FC of the impeller 18 in the centrifugal compressor 10. To be blown into. Accordingly, only the liquid phase of the refrigerant W is left, so that the refrigerant W is introduced into the second expansion valve 13 in a state of saturated liquid. That is, the point D in FIG. 4 reaches the point E on the saturation curve.
  • the second expansion valve 13 causes the refrigerant W, which is only in the liquid phase, that is, the liquid refrigerant W to be adiabatically expanded again to reach point F. From the point F, the liquid refrigerant W is evaporated by the evaporator 15 to be in a saturated vapor state, and reaches a point A on the saturation curve.
  • the gas phase W1 of the refrigerant W can be introduced into the main flow path FC of the impeller 18 from the inlet 22 formed in the casing 17 of the centrifugal compressor 10 through the inflow pipe 23 in the inflow path 16.
  • the economizer 14 can be installed. That is, an equal pressure change from point D to point E in FIG. 4 can be added to the refrigeration cycle.
  • a single-stage compression single-stage expansion cycle that does not separate the gas phase W1 from the refrigerant W can be a single-stage compression two-stage expansion cycle.
  • the enthalpy difference of the refrigerant W before and after passing through the evaporator 15 can be increased. That is, R> R1, and the refrigeration capacity can be improved.
  • the economizer 14 blows the gas phase W1 separated from the refrigerant W into the centrifugal compressor 10, the temperature of the refrigerant W in the centrifugal compressor 10 can be reduced, and thus the compression efficiency is improved. it can.
  • the opening position of the inflow port 22 is formed between the front edge 21a and the rear edge 21b of the blade 21, and preferably on the front edge 21a side of the intermediate portion between the front edge 21a and the rear edge 21b of the blade 21. ing. Therefore, the stall area generated on the front edge 21a side around the blade 21 can be increased. Therefore, the surge suppression effect is improved, leading to an expansion of the operating range of the centrifugal compressor 10.
  • the inlet 22 of the inflow passage 16 is provided between the front edge 21a and the rear edge 21b of the blade 21, preferably on the front edge 21a side, and the economizer 14 is connected to the main passage FC.
  • the economizer 14 can be installed also in the single-stage centrifugal compressor. Therefore, the centrifugal compressor 10 can be made into a single stage, that is, by reducing the number of stages, the refrigeration capacity can be improved while suppressing the cost, and further the compression efficiency can be improved, so that the performance can be improved.
  • the first expansion valve 12 and the second expansion valve 13 may be, for example, a capillary tube made of a metal capillary.
  • the impeller 18 is an open type.
  • a closed type impeller 18A having a shroud 29 may be used, for example.
  • the inlet 22 of the inflow path 16 from the economizer 14 is formed in the diaphragm 28 outside the shroud 29 as shown in FIG.
  • the gas phase W1 is blown into the gap between the shroud 29 and the diaphragm 28, and is sucked from the upstream side through the seal 24 into the main flow path FC of the impeller 18A.
  • the economizer 14 described in the present embodiment is installed and the casing 17 of the centrifugal compressor 10 is installed. It is possible to introduce the gas phase W1 of the refrigerant W from the economizer 14 into the main flow path FC of the impeller 18.
  • the economizer 14 since it is not necessary to connect the inflow pipe 23 from the economizer 14 between the stages between the impellers 18, the economizer 14 is provided even when the centrifugal compressor 10 is a two-stage centrifugal compressor. Two can be provided. That is, the economizer 14 can be installed regardless of the number of stages, and the refrigeration capacity can be improved and the performance can be improved while suppressing the cost.
  • the centrifugal compressor 10 when the centrifugal compressor 10 is a two-stage centrifugal compressor, the inflow pipe 23 from one economizer 14 is connected to one impeller 18 inlet 22 and the other economizer.
  • the inflow pipe 23 from 14 may be connected between the stages between the impellers 18.
  • the invention is not limited to one economizer 14 and two expansion valves as described in the present embodiment.
  • two economizers 14 and three expansion valves 25, 26, 27 are provided, and the inflow pipes 23 from the two economizers 14 are connected to the inlet 22 of one impeller 18, and the economizer 14 is connected to the main flow path FC.
  • the gas phase W1 of the refrigerant W from may be introduced.
  • the inlet 22 is separated from the impeller 18 between the front edge 21a and the rear edge 21b of the blade 21 as shown in FIG. Form one or more. Then, one inlet 22 may be connected to one economizer 14 and the other inlet 22 may be connected to the other economizer 14.
  • the number of expansion valves is set to be one greater than the number of economizers 14, the number of economizers 14 installed does not depend on the number of stages of the centrifugal compressor 10. Therefore, the number of installed economizers 14 can be selected without being limited by the number of stages of the centrifugal compressor 10, and the performance can be further improved by further improving the refrigerating capacity by the economizer 14.
  • Such a configuration can also be applied to a two-stage centrifugal compressor and a multistage centrifugal compressor.
  • turbo chiller 1B according to a second embodiment of the present invention will be described.
  • symbol is attached
  • the centrifugal compressor 30 in the centrifugal compressor 30, the inflow path 36 from the economizer 14 to the impeller 18 is different from the inflow path 16 in the first embodiment.
  • the inflow path 36 includes an inflow port 42 formed in the casing 17 of the centrifugal compressor 30 and an inflow pipe 43 that connects the inflow port 42 and the economizer 14.
  • the formation position of the inflow port 42 is between the front edge 21a and the rear edge 21b of the blade 21, and preferably before the intermediate portion between the front edge 21a and the rear edge 21b of the blade 21. It is the edge 21a side.
  • each inflow path 36 has a guide vane 44 that extends over the entire height of the inflow port 42 on the inner peripheral surface 42 a before the opening in the inflow port 42.
  • the guide vane 44 is provided in parallel to the extending direction of the blade 21.
  • the inflow port 42 opens in the main flow path FC toward the flow direction of the refrigerant W on the meridian surface of the impeller 18. Specifically, as shown in FIG. 10, the opening of the inlet 42 is formed along the flow direction of the refrigerant W in order to allow the gas phase W ⁇ b> 1 to flow along the flow direction of the refrigerant W. In this case, the inflow port 42 may be smoothly turned before the opening (see FIG. 10), or may be turned in the middle of the inflow pipe 43.
  • the vapor phase W1 of the refrigerant W from the economizer 14 is blown into the main flow path FC in the impeller 18 through the inflow path 36.
  • the gas phase W1 of the refrigerant W from the economizer 14 is mixed with the refrigerant W flowing through the main channel FC.
  • the gas phase W1 of the refrigerant W from the economizer 14 flows in along the flow direction of the refrigerant W in the main channel FC on the meridian surface of the impeller 18.
  • the guide vanes 44 also flow in the circumferential direction along the flow direction of the refrigerant W in the main channel FC. Therefore, the smoothness of the flow of the refrigerant W in the main channel FC is not hindered, and the mixing loss to the refrigerant W in the main channel FC can be reduced.
  • the performance can be improved while the cost is reduced by reducing the number of stages of the centrifugal compressor 30.
  • the formation direction of the inlet 42 of the inflow path 36 and the guide vane 44 can reduce the mixing loss when the gas phase W1 of the refrigerant W from the economizer 14 flows into the main flow path FC.
  • the performance of the impeller 18 can be further improved.
  • the guide vane 44 may not be provided if the formation direction of the inlet 42 is directed to the flow direction of the refrigerant W. Further, if the guide vane 44 is provided, the formation direction of the inflow port 42 does not have to face the flow direction of the refrigerant W.
  • turbo chiller 1C according to a third embodiment of the present invention will be described.
  • symbol is attached
  • the inflow path 56 from the economizer 14 to the impeller 18 is different from the inflow path 16 in the first embodiment and the inflow path 36 in the second embodiment.
  • the inflow path 56 includes an inflow port 62 formed in the casing 17 of the centrifugal compressor 50, and an inflow pipe 63 that connects the inflow port 62 and the economizer 14.
  • the inflow port 62 is formed between the front edge 21a and the rear edge 21b of the blade 21, preferably between the front edge 21a and the rear edge 21b of the blade 21. It is formed closer to the front edge 21a than the middle part.
  • the inflow path 56 has an enlarged diameter on the opening side that is the end of the inlet 62 on the blade 21 side. That is, the inflow path 56 has an enlarged diameter portion 64 that is recessed in a concave shape with a size larger than that of the inflow port 62 in the circumferential direction from the opening toward the middle of the inflow port toward the inside of the casing 17. .
  • the gas phase W1 of the refrigerant W from the economizer 14 is blown into the main flow path FC in the impeller 18 through the inflow path 56, and the refrigerant from the economizer 14 flows into the refrigerant W flowing through the main flow path FC.
  • a gas phase W1 of W is mixed.
  • the inflow channel 56 has the enlarged diameter portion 64, the cross-sectional area of the inflow port 62 increases on the opening side, and the gas phase W1 of the refrigerant W from the economizer 14 has a reduced flow rate. Will flow in. Therefore, the smoothness of the flow of the refrigerant W in the main channel FC is not hindered, and the mixing loss to the refrigerant W in the main channel FC can be reduced.
  • the performance can be improved while the cost is reduced by reducing the number of stages of the centrifugal compressor 50.
  • the expanded diameter portion 64 of the inflow path 56 can reduce the mixing loss when the gas phase W1 of the refrigerant W from the economizer 14 flows into the main flow path FC, thereby further improving the performance of the impeller 18. It becomes.
  • the enlarged diameter portion 64 is not concave, and the inner peripheral surface 62 a of the inflow port 62 gradually increases in diameter toward the opening. May be formed.
  • the inner peripheral surface 62a is smoothly expanded in diameter without the cross-sectional area of the inflow port 62 increasing rapidly. Therefore, it can be made to flow into main channel FC in the state where flow velocity was decreased more smoothly, suppressing that gas phase W1 of refrigerant W which blows out from inflow port 62 exfoliates.
  • the enlarged diameter portion 64 is not concave, and the inner peripheral surface 62 a is gradually toward the inlet 22 only on the rear edge side of the impeller 18. You may form by the curved surface which expands in diameter.
  • the gas phase W1 of the refrigerant W blown from the inlet 62 can be flowed into the main channel FC in a state where the flow velocity is smoothly reduced. Moreover, it can blow out from the inflow port 62 along the distribution direction of the refrigerant W flowing through the main channel FC.
  • the number of installed units is not limited by the number of centrifugal compressor stages, and the gas-liquid separator can be installed. Is possible. Therefore, it is possible to improve the refrigerating capacity while reducing the number of stages of the centrifugal compressor and suppressing the cost, and the performance can be improved.
  • Turbo refrigerator 30 Centrifugal compressor 36 ... Inflow path 42 ... Inlet 42a ... Inner peripheral surface 43 ... Inflow pipe 44 ... Guide Vane 1C ... turbo refrigerator 50 ... centrifugal compressor 56 ... inflow path 62 ... inflow port 62a ... inner peripheral surface 63 ... inflow pipe 64 ... expanded diameter portion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 ターボ冷凍機(1A)は、複数のブレード(21)を有するインペラ(18)の回転により、冷媒(W)を圧縮する遠心圧縮機(10)と、圧縮された冷媒(W)を冷却する凝縮器(11)と、凝縮器(11)からの冷媒(W)を減圧して気液二相とする直列接続された第一膨張弁(12)及び第二膨張弁(13)と、第二膨張弁(13)からの冷媒(W)を蒸発させる蒸発器(15)と、これら第一膨張弁(12)及び第二膨張弁(13)の間に配置され、冷媒(W)を気液二相に分離するエコノマイザ(14)と、エコノマイザ(14)において冷媒(W)から分離された気相(W1)が、インペラ(18)の隣接するブレード間の主流路(FC)において、ブレード(21)の前縁(21a)と後縁(21b)との間に流入可能とする流入路(16)とを備える。

Description

ターボ冷凍機
 本発明は、遠心圧縮機を用いたターボ冷凍機に関するものである。
 冷凍機には、遠心圧縮機を用いたターボ冷凍機が知られている。このターボ冷凍機は、ビルの大型空調や、化学プラントにおける冷却設備等、多岐にわたって使用されている。
そして、近年、環境問題への意識の高まりから、このターボ冷凍機においても冷凍能力の向上による高性能化が求められている。
 また、高性能化が求められている一方で、コストダウンの観点からは、圧縮機の段数を低減することが必要とされている。従って、コストダウンのために圧縮機段数を低減したとしても冷凍能力は維持しなければならず、即ち、冷凍能力のさらなる向上の必要性が増している。
 ここで、特許文献1に開示されているCO冷凍サイクル装置では、直列に接続した二つの減圧装置(膨張弁とキャピラリチューブ)の間に、気液分離器を配置し、一つ目の減圧装置を通過した冷媒から気相と液相とを分離した後に液相のみを二つ目の減圧装置へ導入して減圧を行なっている。
このようにすることで、蒸発器前後の冷媒のエンタルピー差である冷凍能力Rの向上を図っている。
特開2006-292229号公報
 しかしながら、特許文献1に開示された構造は、スクリュー圧縮機に限定されたものであり、インペラを備えた遠心圧縮機に適用した例は示されていない。
 ここで、これまで、複数のインペラを有する多段遠心圧縮機を圧縮機に適用したターボ冷凍機においては、圧縮機の段間であるインペラ同士の間に配された流路に、気液分離器で分離された冷媒の気相を吹き込むことで、気液分離器によって冷凍能力の向上を図っていた。このため、気液分離器の設置数量は、圧縮機の段数よりも一つ少ない数量となってしまい、気液分離器を用いた冷凍能力の向上については、これ以上は望めなかった。
 さらに、上述のように、気液分離器からの冷媒の気相をインペラ同士の間の流路に吹き込んでいるため、例えば一つのインペラによって圧縮を行なう単段遠心圧縮機を圧縮機に採用する場合には、気液分離器で分離された冷媒の気相を吹き込むことができない。従って、単段遠心圧縮機に対して気液分離器を適用することが困難であった。このため、単段遠心圧縮機を用いた冷凍機においては、気液分離器を用いて冷凍能力の向上を図ることは難しかった。
 このように、気液分離器を用いる際には、その設置数量が圧縮機の段数に制限されてしまい、圧縮機の段数を低減しながらの冷凍能力向上は困難であった。
 本発明はこのような事情を考慮してなされたものであり、コストを抑制しながら冷凍能力を向上して、性能向上を図ったターボ冷凍機を提供する。
 (1)本発明の第一の態様によれば、ターボ冷凍機は、遠心圧縮機と、凝縮器と、複数の減圧器と、蒸発器と、気液分離器と、流入路とを備える。遠心圧縮機は、複数のブレードを有するインペラの回転により、冷媒を圧縮する。凝縮器は、圧縮された前記冷媒を冷却する。減圧器は、前記凝縮器からの前記冷媒を減圧して気液二相とするとともに、前記遠心圧縮機の段数よりも多い数量が直列接続されている。蒸発器は、これら複数の減圧器を通過した前記冷媒を蒸発させる。気液分離器は、これら減圧器同士の間に一つずつ配置され、前記冷媒を気液二相に分離する。流入路は、前記気液分離器のうちの少なくとも一つにおいて、前記冷媒から分離された気相を、隣接する前記ブレード間の前縁と後縁との間に流入させる。
 上記した構成によれば、少なくとも一つの気液分離器において、冷媒から分離された気相が、流入路からブレードの前縁と後縁との間に吹き込まれる。このため、必ずしも遠心圧縮機の段間となるインペラ同士の間に、気液分離器で冷媒から分離された気相を吹き込む必要が無い。さらに、遠心圧縮機の段数が単段または多段であったとしても、遠心圧縮機の段数に左右されることなく、確実に気液分離器を設置できる。
 そして、気液分離器によっては、冷媒を液相のみの状態とすることができるため、再度、減圧器で減圧を行なうことが可能となる。即ち、例えば冷凍サイクルが単段圧縮単段膨張サイクルであったものを、単段圧縮二段膨張サイクルとすることができる。従って、気液分離器によって冷媒から気相を分離しない場合と比較して、蒸発器通過前後の冷媒のエンタルピー差を大きくすることができ、冷凍能力の向上が可能となる。さらに、気液分離器によって冷媒から分離された気相を遠心圧縮機内に吹き込むことで、圧縮機内の冷媒の温度を低減でき、圧縮効率の向上も可能となる。
 (2)上記(1)のターボ冷凍機において、前記流入路は、前記ブレードの前縁と後縁との中間部よりも前縁側に前記気相を流入させてもよい。
 上記した構成によれば、流入路が、このように気相を流入させることによって、特に、インペラのブレード周りの前縁側で発生する失速領域を増速でき、サージの抑制効果の向上によって、遠心圧縮機の作動範囲の拡大につながる。従って、さらなる性能向上が可能となる。
 (3)上記(1)又は(2)のターボ冷凍機において、前記流入路は、前記インペラの子午面における前記冷媒の流通方向に前記気相を流入させてもよい。
 上記した構成によれば、流入路が、このように気相を流入させることで、インペラ内を流通する冷媒の主流に気相が混合される際に主流の流れの円滑性を妨げることがない。よって、混合ロスを低減して、インペラのさらなる性能向上が可能となる。
 (4)上記(1)から(3)いずれか一に記載のターボ冷凍機において、前記流入路は、該流入路の内周面に、前記ブレードに平行に設けられたガイドベーンを有していてもよい。
 上記した構成によれば、このようなガイドベーンによって、気液分離器からの気相が流入路を通じて吹き込まれ、インペラ内の冷媒の主流に混合する際に、主流の流れの方向に沿って、周方向に同一方向に流入することとなる。従って、主流の流れの円滑性を妨げることがなく、混合ロスを低減してインペラの性能向上が可能となる。
 (5)上記(1)から(4)いずれか一に記載のターボ冷凍機において、前記流入路は、前記ブレード側の端部が、下流側に向かって拡径していてもよい。
 上記した構成によれば、流入路がブレード側で拡径していることで、気相の流速を減少させた状態で、気相をインペラ内へ吹き込むことができる。従って、インペラ内の主流に気相が混合される際に、主流の流れの円滑性を妨げることがなく、混合ロスを低減してインペラの性能低下を防止することができる。
 上記したターボ冷凍機によると、隣接するブレード間の前縁と後縁との間に流入路を設けることで、遠心圧縮機の段数によって設置数量が制限されることなく、気液分離器の設置が可能となる。従って、遠心圧縮機の段数を低減してコストを抑制しながら冷凍能力を向上でき、性能向上が可能となる。
本発明の第一実施形態に係るターボ冷凍機を示す全体系統図である。 本発明の第一実施形態に係るターボ冷凍機における遠心圧縮機に関し、インペラ周辺を示す断面図である。 本発明の第一実施形態に係るターボ冷凍機における遠心圧縮機に関し、インペラの全体斜視図である。 本発明の第一実施形態に係るターボ冷凍機に関し、冷凍サイクルを簡略化して示す図である。 本発明の第一実施形態に係るターボ冷凍機における遠心圧縮機に関し、インペラ周辺を示す断面図であって、インペラがクローズド型である場合を示すものである。 本発明の第一実施形態に係るターボ冷凍機の第一変形例を示す全体系統図である。 本発明の第一実施形態に係るターボ冷凍機の第二変形例を示す全体系統図である。 本発明の第一実施形態に係るターボ冷凍機の第三変形例を示す全体系統図である。 本発明の第一実施形態に係るターボ冷凍機の第三変形例のおける遠心圧縮機に関し、インペラ周辺を示す断面図である。 本発明の第二実施形態に係るターボ冷凍機における遠心圧縮機に関し、インペラ周辺を示す断面図である。 本発明の第二実施形態に係るターボ冷凍機における遠心圧縮機に関し、流入路を径方向外側から見た図であって、図10のA-A断面を示すものである。 本発明の第三実施形態に係るターボ冷凍機における遠心圧縮機に関し、インペラ周辺を示す断面図である。 本発明の第三実施形態に係るターボ冷凍機の第一変形例に係るターボ冷凍機における遠心圧縮機に関し、インペラ周辺を示す断面図である。 本発明の第三実施形態に係るターボ冷凍機の第二変形例に係るターボ冷凍機における遠心圧縮機に関し、インペラ周辺を示す断面図である。
 以下、本発明の第一実施形態に係るターボ冷凍機1Aについて説明する。
 ターボ冷凍機1Aは、遠心圧縮機等のターボ式の圧縮機を用いた冷却装置であり、オフィスビル等の大規模設備における空調装置に用いられるものである。
 そして、図1に示すように、このターボ冷凍機1Aは、冷媒Wを圧縮する遠心圧縮機10と、圧縮された冷媒Wを冷却する凝縮器11と、凝縮器11からの冷媒Wを減圧する第一膨張弁(減圧器)12と、第一膨張弁12からの冷媒Wを気液二相に分離するエコノマイザ(気液分離器)14とを備えている。
 さらに、ターボ冷凍機1Aは、エコノマイザ14からの気相W1を、遠心圧縮機10内へ流入可能とする流入路16と、エコノマイザ14からの液相を再度減圧する第二膨張弁(減圧器)13と、第二膨張弁13からの冷媒Wを蒸発させる蒸発器15とを備えている。
 ここで、上記冷媒Wは、例えば、代替フロンのR134a(ハイドロフルオロカーボン)等が用いられる。
 図2に示すように、遠心圧縮機10は、軸線P回りに回転可能とされた回転軸5に取り付けられている。遠心圧縮機10は、回転軸5とともに軸線P回りに回転可能とされたインペラ18と、インペラ18を軸線Pの径方向外側から覆うケーシング17とを備えている。
 回転軸5は、図示しない電動機等に軸結合され、軸線P回りに回転可能とされている。
 図3に示すように、インペラ18は、軸線P方向の一方側(図3における上側)となる冷媒Wの流入する上流側の面が、上流側から下流側に向かうに従って、軸線Pの径方向内側から外側に漸次拡径する曲面とされたディスク20と、この曲面から立ち上がるように設けられた複数(本実施形態では17枚)の羽根状をなすブレード21とを有している。
 また、本実施形態では、インペラ18はシュラウドの無いオープン型となっている。
 そして、隣接するブレード21同士の間は、冷媒Wが上流側から下流側へ流通可能な主流路FCとされている。
 ケーシング17は、インペラ18との間に間隙をあけた状態でインペラ18を径方向外側から覆う部材である。
 ここで、本実施形態では、遠心圧縮機10は一つのインペラ18によって冷媒Wの断熱圧縮を行なう単段圧縮機となっている。
 凝縮器11は、遠心圧縮機10で圧縮された冷媒Wを冷却水等によって熱交換させることで冷却し、冷媒Wを液体の状態にする。
 第一膨張弁12は、凝縮器11からの液体の冷媒Wを断熱膨張して減圧し、液体の一部を蒸発させることによって、冷媒Wを気液二相の状態にする。
 エコノマイザ14は、第一膨張弁12において気液二相の状態とされた冷媒Wを気相W1と液相とに分離する。
 流入路16は、エコノマイザ14によって気液二相の冷媒Wから分離された気相W1を、遠心圧縮機10のインペラ18における主流路FCに流入可能とする。具体的には、流入路16は、ブレード21の上流側の端部となる前縁21aと、下流側の端部となる後縁21bとの間において、遠心圧縮機10のケーシング17に設けられている。流入路16は、インペラ18側を向く面に開口した流入口22と、流入口22とエコノマイザ14とを接続する流入管23とを有している。
 流入口22は、ケーシング17の内外を貫通するように形成されている。この流入口22の開口位置は、ブレード21の前縁21aと後縁21bとの中間部よりも前縁21a側に形成されていることがより好ましい。
 第二膨張弁13は、第一膨張弁12と同様に、エコノマイザ14で気相W1が分離されて、液相のみとなった冷媒Wを断熱膨張して減圧する。
 蒸発器15は、第二膨張弁13からの冷媒Wを水等との間で熱交換して蒸発させ、飽和蒸気の状態にする。
 このようなターボ冷凍機1Aにおいては、図4に示すp-h線図によると、実線で示したように、まず点Aから遠心圧縮機10によって気体の冷媒Wが断熱圧縮されて等エントロピーの状態で点Bに至る。その後、凝縮器11によって気体の冷媒Wが冷却されて飽和液の状態となり、飽和曲線上の点Cに至り、さらに、第一膨張弁12によって液体の冷媒Wが断熱膨張され、気液二相の状態となって点Dに至る。
 ここで、第一膨張弁12を通過した冷媒Wは、エコノマイザ14によって気相W1が分離され、この気相W1が、流入路16の流入口22から遠心圧縮機10におけるインペラ18の主流路FCへ吹き込まれる。従って、冷媒Wの液相のみが残されることで、冷媒Wが飽和液の状態となった状態で第二膨張弁13へ導入される。即ち、図4の点Dからは飽和曲線上の点Eに至ることとなる。
 点Eからは、第二膨張弁13によって、液相のみとなった冷媒W、即ち液体の冷媒Wが再度断熱膨張され、点Fに至る。そして、点Fからは、蒸発器15によって液体の冷媒Wが蒸発させられて飽和蒸気の状態となり、飽和曲線上の点Aに至る。
 このように、流入路16における流入管23を通じて、遠心圧縮機10のケーシング17に形成された流入口22からインペラ18の主流路FCに、冷媒Wの気相W1を導入可能としているため、単段遠心圧縮機を用いた場合であっても、エコノマイザ14を設置することが可能となる。即ち、図4における点Dから点Eにおける等圧変化分を冷凍サイクルに追加できることとなる。
 ここで、図4の破線で示したように、仮にエコノマイザ14を設置しない場合には、図4における点Dから点Eの線分が存在しない。即ち、点Fが、点F1に位置することとなる。従って、点Fよりも高エンタルピーの側に点F1が位置しており、点Aと点F1との距離R1よりも、点Aと点Fとの距離Rの方が大きくなっていることが確認できる。
 これは、図4において、破線で示した冷凍サイクルは単段圧縮単段膨張サイクルである一方で、実線で示したものは単段圧縮二段膨張サイクルとなっていることを示している。
 このように、冷媒Wから気相W1を分離しない単段圧縮単段膨張サイクルを、エコノマイザ14を設置することで、単段圧縮二段膨張サイクルとすることができる。この結果、蒸発器15通過前後の冷媒Wのエンタルピー差を大きくすることができる。即ち、R>R1となり、冷凍能力の向上が可能となる。
 さらに、エコノマイザ14によって、冷媒Wから分離された気相W1を遠心圧縮機10内に吹き込むことで、遠心圧縮機10内の冷媒Wの温度を低減することが可能となるため、圧縮効率を向上できる。
 また、流入口22の開口位置は、ブレード21の前縁21aと後縁21bとの間に、好ましくはブレード21の前縁21aと後縁21bとの中間部よりも前縁21a側に形成されている。よって、ブレード21周りの前縁21a側で発生する失速領域を増速できる。従って、サージの抑制効果を向上して、遠心圧縮機10の作動範囲の拡大につながる。
 本実施形態のターボ冷凍機1Aによると、ブレード21の前縁21aと後縁21bとの間に、好ましくは前縁21a側に流入路16の流入口22を設け、主流路FCへエコノマイザ14からの冷媒Wの気相W1を流入可能としたことで、単段遠心圧縮機にもエコノマイザ14の設置が可能となる。従って、遠心圧縮機10を単段とし、即ち、段数を低減することでコストを抑制しながら冷凍能力を向上でき、さらに、圧縮効率の向上も可能となるため、性能向上を図ることができる。
 なお、第一膨張弁12、第二膨張弁13は、例えば金属製の毛細管よりなるキャピラリチューブ等であってもよい。
 また、本実施形態では、インペラ18がオープン型である場合について説明を行なったが、例えばシュラウド29を有するクローズド型のインペラ18Aであってもよい。この場合、エコノマイザ14からの流入路16の流入口22は、図5に示すように、シュラウド29の外側のダイヤフラム28に形成されていることとなる。
 そして、この場合、気相W1は、シュラウド29とダイヤフラム28の隙間に吹き込まれ、シール24を通ってインペラ18Aの主流路FCへ上流側から吸込まれる。
 ここで、例えば、図6に示すように、遠心圧縮機10に二段遠心圧縮機を適用した場合にも、本実施形態で説明したエコノマイザ14を設置して、遠心圧縮機10のケーシング17にエコノマイザ14からの冷媒Wの気相W1をインペラ18の主流路FCへ導入することが可能である。
 具体的には、三つの膨張弁25、26、27を直列に接続して、各々の間に二つのエコノマイザ14を設置する。そして、一方のエコノマイザ14からの流入管23は、一方のインペラ18の流入口22に接続され、他方のエコノマイザ14からの流入管23は、他方のインペラ18の流入口22に接続されている。
 このように、必ずしもインペラ18同士の間である段間に、エコノマイザ14からの流入管23を接続する必要がなくなるため、遠心圧縮機10が二段遠心圧縮機である場合にも、エコノマイザ14を二つ設けることが可能となる。即ち、段数に左右されることなくエコノマイザ14の設置が可能となり、コストを抑制しながら、冷凍能力を向上でき、性能向上を図ることができる。
 さらに、図7に示すように、遠心圧縮機10を二段遠心圧縮機とした場合においては、一方のエコノマイザ14からの流入管23は、一方のインペラ18流入口22に接続され、他方のエコノマイザ14からの流入管23は、インペラ18同士の間の段間に接続されてもよい。
 そして、図8に示すように、遠心圧縮機10を単段遠心圧縮機とした場合には、本実施形態で説明したような一つのエコノマイザ14及び二つの膨張弁に限定されない。例えば、二つのエコノマイザ14及び三つの膨張弁25、26、27を設けて、二つのエコノマイザ14からの流入管23を、一つのインペラ18の流入口22に接続して、主流路FCにエコノマイザ14からの冷媒Wの気相W1を導入するようにしてもよい。
 さらに、二つのエコノマイザ14を設けた場合には、図9に示すように、流入口22を一つのインペラ18に対して、ブレード21の前縁21aと後縁21bとの間に離間して二つ以上形成する。そして、一方の流入口22を一方のエコノマイザ14と接続して、他方の流入口22を他方のエコノマイザ14と接続してもよい。
 また、一つのインペラ18に対してエコノマイザ14を三つ以上、及び、膨張弁を四つ以上設置することも可能である。即ち、エコノマイザ14の数量よりも膨張弁の数量が一つ多く設定されていれば、エコノマイザ14の設置数量が、遠心圧縮機10の段数に左右されることはない。従って、遠心圧縮機10の段数に制限されることなく、エコノマイザ14の設置数量を選択でき、エコノマイザ14によるさらなる冷凍能力向上で、性能をより向上することができる。そして、このような構成を、二段遠心圧縮機、多段遠心圧縮機にも適用することができる。
 次に、本発明の第二実施形態に係るターボ冷凍機1Bについて説明する。
 なお、第一実施形態と同様の構成要素には同一の符号を付して詳細説明を省略する。
 本実施形態では、遠心圧縮機30において、エコノマイザ14からインペラ18への流入路36が、第一実施形態における流入路16と異なっている。
 図10に示すように、流入路36は、遠心圧縮機30のケーシング17に形成された流入口42と、流入口42とエコノマイザ14とを接続する流入管43とから構成されている。流入口42の形成位置は、第一実施形態と同様に、ブレード21の前縁21aと後縁21bとの間、好ましくは、ブレード21の前縁21aと後縁21bとの中間部よりも前縁21a側となっている。
 さらに、図11に示すように、各流入路36は、流入口42における開口の手前で、その内周面42aに、流入口42の高さ全体に亘って延びるガイドベーン44を有している。このガイドベーン44は、ブレード21の延在方向に平行に設けられている。
 また、流入口42は、主流路FCにおいて、インペラ18の子午面における冷媒Wの流通方向を向いて開口している。具体的には、図10に示すように、冷媒Wの流通方向に沿って気相W1を流入させるために、流入口42の開口部が冷媒Wの流通方向に沿うように形成されている。この場合、流入口42を開口部の手前で滑らかに転向(図10参照)させてもよいし、流入管43の途中で転向させておいてもよい。
 このようなターボ冷凍機1Bにおいては、エコノマイザ14からの冷媒Wの気相W1が、流入路36を通じてインペラ18内の主流路FCに吹き込まれる。そして、主流路FCを流通する冷媒Wに、エコノマイザ14からの冷媒Wの気相W1が混合される。この際、エコノマイザ14からの冷媒Wの気相W1が、インペラ18の子午面における主流路FC内の冷媒Wの流通方向に沿って流入することとなる。さらに、ガイドベーン44によって、周方向にも主流路FC内の冷媒Wの流通方向に沿って流入することとなる。従って、主流路FC内の冷媒Wの流れの円滑性を妨げることがなく、主流路FC内の冷媒Wへの混合ロスを低減することができる。
 本実施形態のターボ冷凍機1Bによると、第一実施形態と同様に、遠心圧縮機30の段数を低減することでコストを抑制しながら、性能向上を図ることができる。
 これに加え、流入路36の流入口42の形成方向と、ガイドベーン44とによって、エコノマイザ14からの冷媒Wの気相W1が、主流路FC内へ流入する際の混合ロスを低減できるため、さらなるインペラ18の性能向上が可能となる。
 なお、流入口42の形成方向が冷媒Wの流通方向に向いていればガイドベーン44を設けなくてもよい。また、ガイドベーン44を設けていれば、流入口42の形成方向が冷媒Wの流通方向を向いていなくてもよい。
 次に、本発明の第三実施形態に係るターボ冷凍機1Cについて説明する。
 なお、第一実施形態及び第二実施形態と同様の構成要素には同一の符号を付して詳細説明を省略する。
 本実施形態では、遠心圧縮機50において、エコノマイザ14からインペラ18への流入路56が、第一実施形態における流入路16及び第二実施形態における流入路36と異なっている。
 図12に示すように、流入路56は、遠心圧縮機50のケーシング17に形成された流入口62と、流入口62とエコノマイザ14とを接続する流入管63とから構成されている。流入口62の形成位置は、第一実施形態及び第二実施形態と同様に、ブレード21の前縁21aと後縁21bとの間、好ましくは、ブレード21の前縁21aと後縁21bとの中間部よりも前縁21a側に形成されている。
 さらに、流入路56は、流入口62のブレード21側の端部となる開口側が拡径している。即ち、流入路56は、開口からケーシング17の内部に向かって流入口の中途位置まで、周方向視で、流入口62のよりも大きい寸法で凹状に窪む拡径部64を有している。
 このようなターボ冷凍機1Cにおいては、エコノマイザ14からの冷媒Wの気相W1が流入路56を通じてインペラ18内の主流路FCに吹き込まれ、主流路FCを流通する冷媒Wにエコノマイザ14からの冷媒Wの気相W1が混合される。この際、流入路56が拡径部64を有していることによって、流入口62の断面積が開口側で増大し、エコノマイザ14からの冷媒Wの気相W1が、流速を減少させた状態で流入することとなる。従って、主流路FC内の冷媒Wの流れの円滑性を妨げることがなく、主流路FC内の冷媒Wへの混合ロスを低減することができる。
 本実施形態のターボ冷凍機1Cによると、第一実施形態及び第二実施形態と同様に、遠心圧縮機50の段数を低減することでコストを抑制しながら、性能向上を図ることができる。
 これに加え、流入路56の拡径部64によって、エコノマイザ14からの冷媒Wの気相W1が、主流路FC内へ流入する際の混合ロスを低減できるため、さらなるインペラ18の性能向上が可能となる。
(第三実施形態の第一変形例)
 ここで、上記した第三実施形態の第一変形例として、図13に示すように、拡径部64は凹状ではなく、流入口62の内周面62aが開口に向かって漸次拡径する曲面によって形成されていてもよい。この場合、流入口62の断面積が急激に増大することなく、滑らかに内周面62aが拡径している。よって、流入口62から吹き出す冷媒Wの気相W1が剥離等してしまうことを抑制しながら、より円滑に流速を減少させた状態で、主流路FCへ流入させることができる。
(第三実施形態の第二変形例)
 また、上記した第三実施形態の第二変形例として、図14に示すように、拡径部64は凹状ではなく、内周面62aがインペラ18の後縁側のみで流入口22に向かって漸次拡径する曲面によって形成されていてもよい。この場合、円滑に流速を減少させた状態で、流入口62から吹き出す冷媒Wの気相W1を主流路FCへ流入させることができる。また、主流路FCを流通する冷媒Wの流通方向に沿って、流入口62から吹き出すことができる。
 以上、本発明の実施形態について詳細を説明したが、本発明の技術的思想を逸脱しない範囲内において、多少の設計変更も可能である。
 例えば、第二実施形態におけるガイドベーン44を、第一実施形態及び第三実施形態の流入路16、56に適用してもよい。
 上記したターボ冷凍機によると、隣接するブレード間の前縁と後縁との間に流入路を設けることで、遠心圧縮機の段数によって設置数量が制限されることなく、気液分離器の設置が可能となる。従って、遠心圧縮機の段数を低減してコストを抑制しながら冷凍能力を向上でき、性能向上が可能となる。
1A…ターボ冷凍機
5…回転軸
10…遠心圧縮機
11…凝縮器
12…第一膨張弁(減圧器)
13…第二膨張弁(減圧器)
14…エコノマイザ(気液分離器)
15…蒸発器
16…流入路
17…ケーシング
18…インペラ
18A…インペラ
20…ディスク
21…ブレード
21a…前縁
21b…後縁
22…流入口
23…流入管
24…シール
25、26、27…膨張弁
28…ダイヤフラム
29…シュラウド
W…冷媒
W1…気相
P…軸線
FC…主流路
1B…ターボ冷凍機
30…遠心圧縮機
36…流入路
42…流入口
42a…内周面
43…流入管
44…ガイドベーン
1C…ターボ冷凍機
50…遠心圧縮機
56…流入路
62…流入口
62a…内周面
63…流入管
64…拡径部

Claims (5)

  1.  複数のブレードを有するインペラの回転により、冷媒を圧縮する遠心圧縮機と、
     圧縮された前記冷媒を冷却する凝縮器と、
     前記凝縮器からの前記冷媒を減圧して気液二相とするとともに、前記遠心圧縮機の段数よりも多い数量が直列接続された複数の減圧器と、
     これら複数の減圧器を通過した前記冷媒を蒸発させる蒸発器と、
     これら減圧器同士の間に一つずつ配置され、前記冷媒を気液二相に分離する気液分離器と、
     前記気液分離器のうちの少なくとも一つにおいて、前記冷媒から分離された気相を、隣接する前記ブレード間の前縁と後縁との間に流入させる流入路とを備えるターボ冷凍機。
  2.  前記流入路は、前記ブレードの前縁と後縁との中間部よりも前縁側に前記気相を流入させる請求項1に記載のターボ冷凍機。
  3.  前記流入路は、前記インペラの子午面における前記冷媒の流通方向に前記気相を流入させる請求項1又は2に記載のターボ冷凍機。
  4.  前記流入路は、該流入路の内周面に、前記ブレードに平行に設けられたガイドベーンを有する請求項1から3のいずれか一項に記載のターボ冷凍機。
  5.  前記流入路は、前記ブレード側の端部が、下流側に向かって拡径している請求項1から4のいずれか一項に記載のターボ冷凍機。
PCT/JP2013/067201 2013-06-24 2013-06-24 ターボ冷凍機 WO2014207796A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/893,405 US20160123639A1 (en) 2013-06-24 2013-06-24 Turbo refrigerator
CN201380076771.2A CN105247298B (zh) 2013-06-24 2013-06-24 涡轮制冷机
PCT/JP2013/067201 WO2014207796A1 (ja) 2013-06-24 2013-06-24 ターボ冷凍機
CN201710430104.XA CN107255371B (zh) 2013-06-24 2013-06-24 涡轮制冷机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/067201 WO2014207796A1 (ja) 2013-06-24 2013-06-24 ターボ冷凍機

Publications (1)

Publication Number Publication Date
WO2014207796A1 true WO2014207796A1 (ja) 2014-12-31

Family

ID=52141204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067201 WO2014207796A1 (ja) 2013-06-24 2013-06-24 ターボ冷凍機

Country Status (3)

Country Link
US (1) US20160123639A1 (ja)
CN (2) CN107255371B (ja)
WO (1) WO2014207796A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048163A (ja) * 2016-01-13 2016-04-07 三菱重工業株式会社 ターボ冷凍機

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107131556B (zh) * 2017-02-07 2019-07-05 陈春材 空调器
CN112492884B (zh) * 2019-07-01 2022-08-26 开利公司 多级压缩机的浪涌保护
CN111503016A (zh) * 2020-04-16 2020-08-07 广东广顺新能源动力科技有限公司 一种可控制喘振点的节流高效压缩空气系统
KR20210129881A (ko) * 2020-04-21 2021-10-29 엘지전자 주식회사 압축기 및 이를 포함하는 칠러
CN111550944B (zh) * 2020-04-26 2024-03-29 珠海格力电器股份有限公司 一种三次节流增焓双冷凝制冷系统、空调器和控制方法
CN111852783B (zh) * 2020-07-13 2022-03-01 西安交通大学 一种风力致热的两相流装置
CN112146308A (zh) * 2020-09-05 2020-12-29 万江新能源集团有限公司 一种提高离心热泵机组效率的装置
WO2022099748A1 (zh) * 2020-11-10 2022-05-19 艾默生环境优化技术(苏州)有限公司 热泵系统
WO2022225743A1 (en) * 2021-04-21 2022-10-27 Danfoss A/S Refrigerant compressor with impeller having slotted shroud

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121555A (ja) * 1990-09-11 1992-04-22 Daikin Ind Ltd ターボ冷凍機
JP2008202415A (ja) * 2007-02-16 2008-09-04 Toyota Industries Corp 遠心圧縮機
JP2011002186A (ja) * 2009-06-19 2011-01-06 Ebara Refrigeration Equipment & Systems Co Ltd ターボ冷凍機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897659A (en) * 1954-08-09 1959-08-04 Ckd Stalingrad Narodni Podnik Apparatus for gas and liquid cooling in compressor plants with two- or multistage cooling circuit
US3226940A (en) * 1963-12-12 1966-01-04 Worthington Corp Single stage centrifugal compressor refrigeration system
US3390545A (en) * 1967-06-28 1968-07-02 Trane Co Boundary layer control on interstage guide vanes of a multistage centrifugal compressor in a refrigeration system
US4695224A (en) * 1982-01-04 1987-09-22 General Electric Company Centrifugal compressor with injection of a vaporizable liquid
GB9918072D0 (en) * 1999-07-30 1999-10-06 Alliedsignal Ltd Turbocharger
DE10321572A1 (de) * 2003-05-14 2004-12-02 Daimlerchrysler Ag Ladeluftverdichter für eine Brennkraftmaschine, Brennkraftmaschine und Verfahren hierzu
JP2008303854A (ja) * 2007-06-11 2008-12-18 Ihi Corp 遠心圧縮機、及び遠心圧縮機の運転方法
WO2009114820A2 (en) * 2008-03-13 2009-09-17 Aaf-Mcquay Inc. High capacity chiller compressor
CN201463389U (zh) * 2009-07-30 2010-05-12 天津商业大学 高压级补气的两级压缩蒸气式制冷系统
JP5490338B2 (ja) * 2012-03-22 2014-05-14 パナソニック株式会社 遠心圧縮機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121555A (ja) * 1990-09-11 1992-04-22 Daikin Ind Ltd ターボ冷凍機
JP2008202415A (ja) * 2007-02-16 2008-09-04 Toyota Industries Corp 遠心圧縮機
JP2011002186A (ja) * 2009-06-19 2011-01-06 Ebara Refrigeration Equipment & Systems Co Ltd ターボ冷凍機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016048163A (ja) * 2016-01-13 2016-04-07 三菱重工業株式会社 ターボ冷凍機

Also Published As

Publication number Publication date
CN105247298B (zh) 2017-06-23
CN107255371A (zh) 2017-10-17
CN105247298A (zh) 2016-01-13
US20160123639A1 (en) 2016-05-05
CN107255371B (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
WO2014207796A1 (ja) ターボ冷凍機
EP3333431A1 (en) Centrifugal blower, air-conditioning device, and refrigeration cycle device
TWI676741B (zh) 離心式送風機、送風裝置、空調裝置以及冷凍循環裝置
US8336324B2 (en) Turbo chiller and control method therefor
JP5872931B2 (ja) ターボ冷凍機
JP5295321B2 (ja) 送風機、室外機及び冷凍サイクル装置
TWI716681B (zh) 離心式送風機、送風裝置、空調裝置以及冷凍循環裝置
CN110986403B (zh) 制冷压缩机和制冷系统
JP6152176B2 (ja) ターボ冷凍機
US11781561B2 (en) Compressor and chiller including the same
WO2017073106A1 (ja) 遠心圧縮機械の戻り流路形成部、遠心圧縮機械
JP5109695B2 (ja) ターボ圧縮機及び冷凍機
US11002292B2 (en) Propeller fan and refrigeration cycle device
US20210372411A1 (en) Turbo fan, air sending device, air conditioning device, and refrigeration cycle device
JP2010078248A (ja) 気液分離器及びこの気液分離器を備えた冷凍サイクル装置
WO2018016012A1 (ja) 熱源機及び冷凍サイクル装置
EP3904696B1 (en) Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
JP2014173499A (ja) 遠心圧縮機及びこれを備えた冷凍装置
JP5466654B2 (ja) 遠心圧縮機
JP7258099B2 (ja) 空気調和装置及び冷凍サイクル装置
Czapla et al. Performance testing of unitary split-system heat pump with an energy recovery expansion device
JP7301236B2 (ja) 遠心送風機のスクロールケーシング、このスクロールケーシングを備えた遠心送風機、空気調和装置及び冷凍サイクル装置
Tamaki et al. Development of High-Efficiency Centrifugal Compressor for Turbo Chiller
JP2018155244A (ja) ターボ圧縮機
WO2017085889A1 (ja) 遠心ファン、空気調和装置および冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888080

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14893405

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP