WO2022099748A1 - 热泵系统 - Google Patents

热泵系统 Download PDF

Info

Publication number
WO2022099748A1
WO2022099748A1 PCT/CN2020/129996 CN2020129996W WO2022099748A1 WO 2022099748 A1 WO2022099748 A1 WO 2022099748A1 CN 2020129996 W CN2020129996 W CN 2020129996W WO 2022099748 A1 WO2022099748 A1 WO 2022099748A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat pump
pump system
expansion valve
temperature
Prior art date
Application number
PCT/CN2020/129996
Other languages
English (en)
French (fr)
Inventor
韩年生
项宇
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011249243.0A external-priority patent/CN114484865A/zh
Priority claimed from CN202022591867.2U external-priority patent/CN214469331U/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2022099748A1 publication Critical patent/WO2022099748A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously

Definitions

  • the present disclosure relates to the field of heat pump systems, and more particularly, to a high temperature heat pump system with a secondary throttling device.
  • high-temperature heat pump units can absorb heat from low-grade water or air sources, compress the refrigerant directly to high pressure, and finally generate hot air or hot water above 100°C, thereby replacing traditional drying. device.
  • the high temperature heat pump system mainly includes a working medium circulation path formed by sequentially connecting a compressor, a condenser, an expansion valve and an evaporator.
  • the temperature of the refrigerant before the expansion valve may exceed 110°C, up to 135°C, while the general expansion valve can withstand a maximum temperature of 70°C. If a special expansion valve is used, it will lead to an increase in cost. Therefore, the tolerance temperature of the expansion valve limits the large-scale popularization and application of high-temperature heat pump systems.
  • the purpose of the present disclosure is to provide a simple, reliable and low-cost high-temperature heat pump system, which adopts a secondary throttling device to reduce the temperature of the refrigerant before the expansion valve in the system, so that in the case of using a conventional expansion valve Under the application of high temperature heat pump system.
  • a heat pump system includes a working medium circulation main path, and a compressor, a condenser, and a main circuit expansion are sequentially arranged in the working medium circulation main path along the flow direction of the refrigerant.
  • a valve and an evaporator wherein in the main path of the working medium circulation, a throttling device and a cooling device are further arranged between the condenser and the expansion valve of the main circuit.
  • the condenser, the throttling device, the cooling device and the main circuit expansion valve are sequentially arranged along the flow direction of the refrigerant.
  • the throttling device is configured as a capillary, needle valve, ball valve or thermal expansion valve.
  • the cooling device is configured as a heat exchanger, which is a refrigerant-water heat exchanger or a refrigerant-air heat exchanger.
  • the refrigerant in the heat exchanger is cooled by the cooling capacity of the evaporator.
  • the heat pump system further includes a supplementary air circuit
  • the cooling device is configured as an economizer
  • the economizer is a refrigerant-refrigerant heat exchanger
  • the economizer includes a medium temperature refrigerant passage and a part of the main path of the working medium circulation. Low temperature refrigerant passage that is part of the supplementary air circuit.
  • the compressor is configured as a jet enthalpy compressor, including a suction port, an exhaust port and a supplemental gas port, and the supplementary gas auxiliary circuit extends from a branch point located downstream of the economizer of the main working medium circulation path, and passes through the low-temperature refrigerant passage. Then connect to the air supply port.
  • an auxiliary circuit expansion valve is further provided between the branch point and the inlet of the low-temperature refrigerant passage.
  • the refrigerant entering the low-temperature refrigerant passage is a gas-liquid mixed refrigerant
  • the refrigerant discharged from the low-temperature refrigerant passage is a gaseous refrigerant.
  • the refrigerant discharged from the throttling device is a gas-liquid mixed refrigerant
  • the refrigerant discharged from the cooling device is a liquid refrigerant
  • the high-temperature heat pump system according to the present disclosure brings at least the following beneficial effects: the high-temperature heat pump system according to the present disclosure can effectively reduce the pressure before the expansion valve in the system through the throttling and depressurization effect of the throttling device and the cooling effect of the cooling device. temperature of the refrigerant, so as to ensure that the expansion valve operates within a safe range.
  • the high-temperature heat pump system of the present disclosure has a small number of components, a simple structure, and a conventional expansion valve can be used to meet the needs, and has high cost-effectiveness.
  • FIG. 1 shows a schematic diagram of a high temperature heat pump system according to a first embodiment of the present disclosure
  • FIG. 2 shows a schematic diagram of a high temperature heat pump system according to a second embodiment of the present disclosure.
  • FIG 3 shows a schematic diagram of a high temperature heat pump system according to a third embodiment of the present disclosure.
  • FIGS. 1-3 Preferred embodiments of the present disclosure will now be described in detail with reference to FIGS. 1-3.
  • the following description is merely exemplary in nature and is not intended to limit the present disclosure and its application or uses.
  • corresponding components or parts are given the same reference numerals.
  • the high-temperature heat pump system includes a compressor 1 , a condenser 2 , a main circuit expansion valve 6 and an evaporator 7 connected in sequence through pipes.
  • the main path of the working medium circulation (the arrow in the drawing indicates the flow direction of the refrigerant).
  • a capillary 3 and an economizer 4 are further provided in the path between the condenser 2 and the main circuit expansion valve 6 upstream of the main circuit expansion valve 6 .
  • the compressor 1 , the condenser 2 , the capillary 3 , the economizer 4 , the main circuit expansion valve 6 and the evaporator 7 are in sequence along the flow direction of the working fluid It is arranged in the main path of working fluid circulation.
  • the condenser 2 and the evaporator 7 are configured as refrigerant-water heat exchangers or refrigerant-air heat exchangers, and have refrigerant passages for the refrigerant in the main path of the working medium circulation to pass through and for the working medium circulation A medium channel through which a medium other than the main path (such as water or air) passes.
  • the high temperature heat pump system also includes an auxiliary gas supply circuit.
  • the supplementary gas auxiliary circuit can be arranged with an auxiliary circuit expansion valve 5 and an economizer 4 .
  • the economizer 4 is constructed as a refrigerant-refrigerant heat exchanger.
  • the economizer 4 includes a medium-temperature refrigerant passage as a part of the working medium circulation main path and a low-temperature refrigerant passage as a part of the supplementary gas auxiliary circuit.
  • the compressor 1 is configured as a jet enthalpy compressor. Air supply port 13.
  • the main path of the working medium circulation also includes a branch point 46 on the path downstream of the economizer 4 and between the economizer 4 and the main circuit expansion valve 6.
  • the auxiliary air supplementary circuit extends from the branch point 46 , passes through the low-temperature refrigerant passage and is finally connected to the air supplementation port 13 of the compressor 1 (the arrow in the drawing indicates the flow direction of the refrigerant), and the auxiliary circuit expansion valve 5 is arranged at the branch point 46 on the path to the inlet 43 of the low-temperature refrigerant passage.
  • the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 enters the condenser 2 through the pipeline, where the air or water in the cooling medium channel is heated in the condenser 2 to generate, for example, a desiccant for drying.
  • the hot air or hot water above 100°C is discharged from the condenser 2 .
  • the refrigerant discharged from the condenser 2 changes from a gaseous state to a liquid state compared to the refrigerant discharged from the compressor 1, but can still have a temperature of, for example, 110°C or more.
  • the high-temperature and high-pressure refrigerant liquid flows through the capillary tube 3, and through the throttling and pressure reduction action of the capillary tube 3, the temperature and pressure of the refrigerant discharged from the capillary tube 3 decrease, and a part (for example, a small part) of the refrigerant flashes as gaseous refrigerant.
  • the high-temperature and high-pressure refrigerant liquid is converted into a refrigerant in a gas-liquid mixed state of medium temperature and medium pressure via the capillary tube 3 .
  • the refrigerant from the capillary 3 enters the intermediate temperature refrigerant passage of the economizer 4 through the intermediate temperature refrigerant passage inlet 41, and is discharged from the economizer 4 through the intermediate temperature refrigerant passage outlet 42 (the refrigerant can be completely changed to liquid state at this time).
  • a part of the refrigerant discharged from the economizer 4 from the outlet of the medium temperature refrigerant passage (hereinafter referred to as the first refrigerant part) directly enters the main circuit expansion valve 6, and is further cooled and depressurized by the main circuit expansion valve 6 to convert to a low temperature Low pressure refrigerant liquid.
  • the low-temperature and low-pressure refrigerant liquid enters the evaporator 7 , is vaporized into refrigerant gas in the evaporator 7 and then enters the air inlet 12 of the compressor 1 .
  • the second refrigerant portion when the second refrigerant portion subsequently enters the low temperature refrigerant passage of the economizer 4 through the low temperature refrigerant passage inlet 43, the second refrigerant portion exchanges heat with the refrigerant in the medium temperature refrigerant passage, thereby reducing the medium temperature refrigerant
  • the temperature of the refrigerant in the channel makes it change from a gas-liquid mixed refrigerant to a liquid refrigerant (that is, to cool the refrigerant gas flashed through the capillary 3 into a supercooled refrigerant liquid).
  • the temperature of the second refrigerant discharged from the outlet 44 of the low-temperature refrigerant passage is also appropriately increased, so that it is converted from a refrigerant in a gas-liquid mixed state to a refrigerant in a gaseous state, and finally sent back to the air supply port 13 of the compressor 1 .
  • the working medium circulation main path is provided with a secondary throttling device including a capillary tube 3 and a main-circuit expansion valve 6 and a cooling device located in front of the main-circuit expansion valve 6 (economical device 4).
  • the high-temperature and high-pressure refrigerant liquid is converted into a medium-temperature and medium-pressure gas-liquid mixed refrigerant;
  • the generated refrigerant gas is cooled into subcooled refrigerant liquid, so as to reduce the temperature of the refrigerant (the first refrigerant part) in the main path of the working medium cycle before throttling (before the main path expansion valve 6), so as to reduce the temperature of the main path.
  • the temperature of the refrigerant before the expansion valve 6 is reduced to within the tolerance temperature range of the expansion valve, thereby ensuring the reliable operation of the expansion valve.
  • the economizer 4 can also preheat the part of the second working medium throttled through the auxiliary circuit expansion valve 5 to reach a suitable medium pressure, and provide it to the compressor for secondary compression, thereby improving the system efficiency.
  • the refrigerant discharged from the condenser usually has a high temperature above 110°C.
  • the refrigerant is directly delivered to the main circuit expansion valve through the pipeline, so the main circuit expansion valve needs to withstand higher temperature to maintain the stable and reliable operation of the system.
  • the withstand temperature of the conventional expansion valve is only 70 °C, and the use of a special expansion valve will lead to an increase in the manufacturing cost of the entire system.
  • the high temperature heat pump system Compared with the traditional high temperature heat pump system, the high temperature heat pump system according to the first embodiment of the present disclosure utilizes the capillary tube and the economizer to cooperate with each other, especially the capillary tube is arranged upstream of the economizer, so that between the condenser and the main circuit expansion valve, the The liquid-gas-liquid mixed state-liquid transition of the refrigerant is formed on the main circuit circulation path between the two parts, which greatly reduces the refrigerant temperature before the main circuit expansion valve, and after one throttling, the subcooling ensures that the main circuit expansion valve is supercooled.
  • the refrigerants are all liquid, thus meeting the temperature resistance and reliability requirements of conventional expansion valves. Therefore, the high-temperature heat pump system can adopt the conventional expansion valve, and the design is simple and reliable, and the manufacturing cost is low.
  • the second embodiment of the present disclosure is a modification of the first embodiment of the present disclosure.
  • a second embodiment of the present disclosure will be described below with reference to FIG. 2 .
  • the high-temperature heat pump system includes a working medium circulation main path and a supplementary gas auxiliary circuit.
  • the main path of the working medium circulation is mainly composed of the compressor 1 , the condenser 2 , the economizer 4 , the main path expansion valve 6 and the evaporator 7 connected in sequence through pipes.
  • the supplementary air auxiliary circuit includes the auxiliary circuit expansion valve 5 and the economizer 4 , starts downstream of the outlet of the medium temperature refrigerant passage of the economizer 4 , passes through the low temperature refrigerant passage, and is finally connected to the air supplementation port 13 of the compressor 1 .
  • each device in the main working fluid circulation path and the auxiliary gas supplementary path, such as the compressor 1 are similar to those in the first embodiment, and will not be repeated here.
  • a needle valve 3 a is used instead of the capillary 3 provided upstream of the main circuit expansion valve 6 in the first embodiment. That is, for the high temperature heat pump system according to the second embodiment of the present disclosure, the compressor 1, the condenser 2, the needle valve 3a, the economizer 4, the main circuit expansion valve 6 and the evaporator 7 are along the flow direction of the working fluid Arranged in sequence in the main path of the working fluid circulation.
  • the high-temperature and high-pressure refrigerant liquid discharged from the condenser 2 flows through the needle valve 3a, and the needle valve 3a has a section similar to that of the capillary tube 3.
  • the flow depressurization effect reduces the temperature and pressure of the refrigerant discharged from the capillary tube 3, and a part of the refrigerant flashes into a gaseous refrigerant.
  • the high-temperature and high-pressure refrigerant liquid is converted into a refrigerant in a gas-liquid mixed state of medium temperature and medium pressure through the needle valve 3 a, and then enters the medium temperature refrigerant passage of the economizer 4 .
  • the subsequent flow and working state of the refrigerant, including the flow and working state of the auxiliary air supplementary circuit, are similar to those in the first embodiment, and the description will not be repeated here.
  • the high temperature heat pump system has the secondary throttle device including the needle valve 3 a and the main circuit expansion valve 6 and the cooling device (economizer 4 ) provided before the main circuit expansion valve 6 .
  • the secondary throttle device including the needle valve 3 a and the main circuit expansion valve 6 and the cooling device (economizer 4 ) provided before the main circuit expansion valve 6 .
  • the high-temperature and high-pressure refrigerant liquid is converted into a medium-temperature and medium-pressure gas-liquid mixed refrigerant; on the other hand, the use of the economizer 4 will pass the needle valve
  • the flashed refrigerant gas in 3a is cooled into subcooled refrigerant liquid, thereby cooling the refrigerant (first refrigerant part) in the main path of the working medium circulation before throttling (before the main path expansion valve 6 ).
  • the needle valve and the economizer are used to cooperate with each other, especially the needle valve is arranged upstream of the economizer, so that a liquid-gas-liquid mixed state-liquid state of refrigerant is formed on the main circuit circulation path between the condenser and the main circuit expansion valve.
  • the transformation greatly reduces the temperature of the refrigerant before the expansion valve of the main circuit, and after one throttling, the subcooling ensures that the refrigerant before the expansion valve of the main circuit is all liquid, thus meeting the temperature resistance and reliability requirements of the conventional expansion valve. Therefore, the high-temperature heat pump system can adopt the conventional expansion valve, and the design is simple and reliable, and the manufacturing cost is low.
  • needle valve 3a can also be replaced with other throttling devices having similar throttling and pressure reducing effects, such as a ball valve, a thermal expansion valve, and the like.
  • the third embodiment of the present disclosure is another modification made on the basis of the first embodiment of the present disclosure.
  • a third embodiment of the present disclosure will be described below with reference to FIG. 3 .
  • the high-temperature heat pump system includes a working fluid circulation main path mainly composed of a compressor 1, a condenser 2, a main path expansion valve 6, and an evaporator 7 connected in sequence by pipes (indicated by arrows in the drawings). refrigerant flow).
  • the capillary 3 and the heat exchanger 4b are also provided in the path between the condenser 2 and the main-circuit expansion valve 6 upstream of the main-circuit expansion valve 6 .
  • the compressor 1, the condenser 2, the capillary 3, the heat exchanger 4b, the main circuit expansion valve 6 and the evaporator 7 are along the flow direction of the working fluid Arranged in sequence in the main path of the working fluid circulation.
  • the condenser 2, the heat exchanger 4b and the evaporator 7 are all configured as refrigerant-water heat exchangers or refrigerant-air heat exchangers, and have refrigerant passages for the refrigerant in the working medium circulation main path to pass through. and a medium channel for the medium (such as water or air) other than the main path of the working medium to pass through.
  • the high temperature heat pump system does not have a supplementary air circuit, and the compressor 1 can be configured as a conventional compressor with only the suction port 12 and the discharge port 11 .
  • the high-temperature and high-pressure refrigerant gas discharged from the discharge port 11 of the compressor 1 enters the condenser 2 through the pipeline, and the refrigerant gas in the condenser 2
  • the air or water in the cooling medium passage is heated to generate, for example, hot air or hot water above 100° C. for drying, and then discharged from the condenser 2 .
  • the high-temperature and high-pressure refrigerant liquid discharged from the condenser 2 flows through the capillary tube 3, and through the throttling and decompression effect of the capillary tube 3, the temperature and pressure of the refrigerant discharged from the capillary tube 3 decrease, and a part of the refrigerant flashes into gaseous refrigeration. agent.
  • the high-temperature and high-pressure refrigerant liquid is converted into a refrigerant in a gas-liquid mixed state of medium temperature and medium pressure via the capillary tube 3 .
  • the refrigerant from the capillary 3 enters the refrigerant passage in the heat exchanger 4b, and the refrigerant in the refrigerant passage exchanges heat with the medium (air or water) in the medium passage, thereby reducing the
  • the temperature of the refrigerant makes it change from a gas-liquid mixed refrigerant to a liquid refrigerant (that is, to cool the refrigerant gas flashed through the capillary 3 into a supercooled refrigerant liquid).
  • a power device such as a fan or a water pump needs to be provided to drive the medium to flow in the medium channel of the heat exchanger 4b, thereby cooling the refrigerant.
  • the liquid refrigerant discharged from the heat exchanger 4b enters the main circuit expansion valve 6, and is further reduced in temperature and pressure through the main circuit expansion valve 6 to be converted into a low temperature and low pressure refrigerant liquid.
  • the low-temperature and low-pressure refrigerant liquid enters the evaporator 7 , is vaporized into refrigerant gas in the evaporator 7 and then enters the air inlet 12 of the compressor 1 .
  • the medium for heat exchange with the refrigerant in the heat exchanger 4b may be a medium discharged from the evaporator 7 after heat exchange with the refrigerant in the evaporator 7 has occurred.
  • the outlet of the medium channel of the evaporator 7 and the inlet of the medium channel of the heat exchanger 4b can be connected by pipes, and the medium discharged from the medium channel of the evaporator 7 can be guided through the medium of the heat exchanger 4b A passage is formed, so that the refrigerant in the heat exchanger 4b is cooled by the cooling capacity of the evaporator 7 .
  • the system can avoid the use of additional cooling sources, further improving the energy efficiency of the system.
  • the high temperature heat pump system has a secondary throttling device including a capillary tube 3 and a main circuit expansion valve 6 and a cooling device (heat exchanger 4 b ) provided before the main circuit expansion valve 6 .
  • a secondary throttling device including a capillary tube 3 and a main circuit expansion valve 6 and a cooling device (heat exchanger 4 b ) provided before the main circuit expansion valve 6 .
  • the capillary 3 upstream of the main circuit expansion valve 6, the high-temperature and high-pressure refrigerant liquid is converted into a medium-temperature and medium-pressure gas-liquid mixed refrigerant;
  • the flashed refrigerant gas is cooled into supercooled refrigerant liquid, so as to reduce the temperature of the refrigerant in the main path of the working medium circulation before throttling (before the main path expansion valve 6 ).
  • the capillary tube and the heat exchanger are used to cooperate with each other, especially the capillary tube is arranged upstream of the heat exchanger, so that a liquid-gas-liquid mixed state-liquid state of refrigerant is formed on the main circuit circulation path between the condenser and the main circuit expansion valve.
  • the transformation greatly reduces the temperature of the refrigerant before the expansion valve of the main circuit, and after one throttling, the subcooling ensures that the refrigerant before the expansion valve of the main circuit is all liquid, thus meeting the temperature resistance and reliability requirements of the conventional expansion valve. Therefore, the high-temperature heat pump system can adopt the conventional expansion valve, and the design is simple and reliable, and the manufacturing cost is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种热泵系统,包括工质循环主路径,其中沿着制冷剂的流动方向依次布置有压缩机(1)、冷凝器(2)、主路膨胀阀(6)和蒸发器(7),冷凝器(2)和主路膨胀阀(6)之间还设置有节流装置(3)和冷却装置(4)。该系统通过节流装置(3)的节流降压作用和冷却装置(4)的冷却,能够有效降低系统中的膨胀阀前的制冷剂温度。

Description

热泵系统
本申请要求以下中国专利申请的优先权:于2020年11月10日提交中国专利局的申请号为202011249243.0、发明创造名称为“热泵系统”的中国专利申请;于2020年11月10日提交中国专利局的申请号为202022591867.2、发明创造名称为“热泵系统”的中国专利申请。这些专利申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及热泵系统领域,更具体地,涉及一种具有二次节流装置的高温热泵系统。
背景技术
本部分提供了与本公开相关的背景信息,这些信息并不必然构成现有技术。
目前在100℃以上烘干应用中通常采用电加热、燃气、燃油等传统的干燥器,但传统的干燥器存在易燃、易爆、耗能严重等问题。高温热泵机组作为高能效、环保的新能源技术,能够从低品位的水源或空气源中吸收热量,将制冷剂直接压缩至高压,最终产生100℃以上的热风或热水,从而替代传统的干燥器。高温热泵系统主要包括由压缩机、冷凝器、膨胀阀和蒸发器依次连接而构成的工质循环路径。
在高温热泵系统中,膨胀阀前的制冷剂温度可能超过110℃,最高可达135℃,而一般膨胀阀的最高耐受温度则为70℃。如果采用特制的膨胀阀,则会导致成本的增加。因此,膨胀阀的耐受温度限制了高温热泵系统的大规模推广应用。
因此,需要提供一种改进的高温热泵系统,以降低膨胀阀前的制冷剂温度,从而保证膨胀阀在安全范围内运行。
发明内容
在本部分中提供本公开的总体概要,而不是本公开完全范围或本公开所 有特征的全面公开。
本公开的目的提供一种简单、可靠、低成本的高温热泵系统,该高温热泵系统采用二次节流装置,使得系统中的膨胀阀前的制冷剂温度降低,从而在采用常规膨胀阀的情况下应用高温热泵系统。
根据本公开的一个方面,提供了一种热泵系统,该热泵系统包括工质循环主路径,在工质循环主路径中沿着制冷剂的流动方向依次布置有压缩机、冷凝器、主路膨胀阀和蒸发器,其中,在工质循环主路径中,冷凝器与主路膨胀阀之间还设置有节流装置和冷却装置。
可选地,冷凝器、节流装置、冷却装置和主路膨胀阀沿着制冷剂的流动方向依次布置。
可选地,节流装置构造为毛细管、针阀、球阀或热力膨胀阀。
可选地,冷却装置构造为换热器,该换热器为制冷剂-水换热器或者制冷剂-空气换热器。
可选地,换热器中的制冷剂通过蒸发器的冷量进行冷却。
可选地,热泵系统还包括补气辅路,冷却装置构造为经济器,经济器为制冷剂-制冷剂换热器,在经济器中包括作为工质循环主路径的一部分的中温制冷剂通道和作为补气辅路的一部分的低温制冷剂通道。
可选地,压缩机构造为喷气增焓压缩机,包括吸气口、排气口和补气口,补气辅路从工质循环主路径的位于经济器下游的分支点延伸、经过低温制冷剂通道然后连接至补气口。
可选地,在补气辅路中,分支点与低温制冷剂通道的入口之间还设置有辅路膨胀阀。
可选地,在补气辅路中,进入低温制冷剂通道的制冷剂为气液混合态的制冷剂,从低温制冷剂通道排出的制冷剂为气态的制冷剂。
可选地,在工质循环主路径中,从节流装置排出的制冷剂为气液混合态的制冷剂,从冷却装置中排出的制冷剂为液态的制冷剂。
总体上,根据本公开的高温热泵系统至少带来以下有益效果:根据本公开的高温热泵系统通过节流装置的节流降压作用以及冷却装置的冷却作用,能够有效降低系统中的膨胀阀前的制冷剂温度,从而保证膨胀阀在安全范围内运行。并且,本公开的高温热泵系统中设置的部件数量较少、结构简单、采用常 规膨胀阀即可以满足需要,具有较高的成本效益。
附图说明
根据以下参照附图的详细描述,本公开的前述及另外的特征和特点将变得更加清楚,这些附图仅作为示例并且不一定是按比例绘制。在附图中采用相同的参考标记指示相同的部件,在附图中:
图1示出了根据本公开的第一实施方式的高温热泵系统的示意图;
图2示出了根据本公开的第二实施方式的高温热泵系统的示意图;以及
图3示出了根据本公开的第三实施方式的高温热泵系统的示意图。
具体实施方式
现在将结合附图1-3对本公开的优选实施方式进行详细描述。以下的描述在本质上只是示例性的而非意在限制本公开及其应用或用途。在各视图中,相对应的构件或部分采用相同的参考标记。
图1示出了根据本公开的第一实施方式的高温热泵系统的示意图,该高温热泵系统包括主要由压缩机1、冷凝器2、主路膨胀阀6和蒸发器7依次通过管道连接构成的工质循环主路径(在附图中箭头表示制冷剂的流向)。另外,在主路膨胀阀6的上游、冷凝器2与主路膨胀阀6之间的路径中还设置有毛细管3和经济器4。也就是说,对于根据本公开的第一实施方式的高温热泵系统,压缩机1、冷凝器2、毛细管3、经济器4、主路膨胀阀6和蒸发器7沿着工质的流动方向依次布置在工质循环主路径中。其中,冷凝器2和蒸发器7构造为制冷剂-水换热器或者制冷剂-空气换热器,具有用于工质循环主路径中的制冷剂通过的制冷剂通道和用于工质循环主路径以外的介质(例如水或空气)通过的介质通道。
另外,该高温热泵系统还包括补气辅路。该补气辅路可以布置有辅路膨胀阀5和经济器4。经济器4构造为制冷剂-制冷剂换热器。在经济器4中包括作为工质循环主路径的一部分的中温制冷剂通道和作为补气辅路的一部分的低温制冷剂通道。在具有补气辅路的高温热泵系统中,压缩机1构造为喷气增焓压缩机,与普通压缩机相比,喷气增焓压缩机除了具有吸气口12和排气口11之外,还具有补气口13。在工质循环主路径中还包括位于经济器4下游、经济器 4与主路膨胀阀6之间的路径上的分支点46。补气辅路从该分支点46开始延伸,经过低温制冷剂通道并最终连接至压缩机1的补气口13(在附图中箭头表示制冷剂的流向),辅路膨胀阀5设置在该分支点46与低温制冷剂通道的入口43之间的路径上。
在工质循环主路径中,从压缩机1排出的高温高压制冷剂气体经由管道进入冷凝器2,在冷凝器2中对其冷却介质通道中的空气或水加热、产生例如用于烘干的100℃以上的热风或热水后从冷凝器2排出。从冷凝器2中排出的制冷剂相较于从压缩机1排出的制冷剂从气态转变为液态,但仍然可以具有例如110℃以上的温度。接着,该高温高压制冷剂液体流经毛细管3,通过毛细管3的节流降压作用,从毛细管3排出的制冷剂的温度降低、压力下降,其中一部分(比如,少部分)制冷剂闪发为气态制冷剂。由此,经由毛细管3将高温高压制冷剂液体转变为中温中压的气液混合态的制冷剂。来自毛细管3的制冷剂通过中温制冷剂通道入口41进入经济器4的中温制冷剂通道,并通过中温制冷剂通道出口42排出经济器4(此时制冷剂可以完全变为液态)。从中温制冷剂通道的出口排出经济器4的制冷剂中的一部分(下称第一制冷剂部分)直接进入主路膨胀阀6,并经过主路膨胀阀6的进一步降温降压而转变为低温低压的制冷剂液体。随后,该低温低压的制冷剂液体进入蒸发器7,在蒸发器7中被气化为制冷剂气体后进入压缩机1的进气口12。
从中温制冷剂通道的出口42排出经济器4的制冷剂中的另一部分(下称第二制冷剂部分)从工质循环主路径上的分支点46进入补气辅路,依次经过辅路膨胀阀5、经济器4中的低温制冷剂通道并回到压缩机1的与中压部位连通的补气口13。经过辅路膨胀阀5节流后,第二制冷剂部分的温度和压力均降低,从液态制冷剂转变为气液混合态制冷剂。因此,当第二制冷剂部分随后通过低温制冷剂通道入口43进入经济器4的低温制冷剂通道时,第二制冷剂部分与中温制冷剂通道中的制冷剂发生热交换,从而降低中温制冷剂通道中的制冷剂的温度,使其从气液混合态的制冷剂转变为液态制冷剂(即将经由毛细管3闪发的制冷剂气体冷却为过冷的制冷剂液体)。另外,从低温制冷剂通道出口44排出的第二制冷剂的温度还被适当地提高,使其从气液混合态的制冷剂转变为气态制冷剂并最终输送回压缩机1的补气口13。
在根据本公开的第一实施方式的高温热泵系统中,工质循环主路径设置有 包括毛细管3和主路膨胀阀6的二次节流装置以及位于主路膨胀阀6前的冷却装置(经济器4)。一方面,通过在主路膨胀阀6的上游设置毛细管3,将高温高压的制冷剂液体转变为中温中压的气液混合态的制冷剂;另一方面,利用经济器4将经由毛细管3闪发的制冷剂气体冷却为过冷的制冷剂液体,从而对工质循环主路径中的制冷剂(第一制冷剂部分)进行节流前(主路膨胀阀6前)降温,以将主路膨胀阀6前的制冷剂温度降低至膨胀阀的耐受温度范围内,从而保证膨胀阀的可靠运行。另外,经济器4还能够对经过辅路膨胀阀5节流的第二工质部分进行预热,以达到合适的中压,提供给压缩机进行二次压缩,从而提高系统效率。
在未设置经济器并且未设置毛细管而仅具有一次节流装置(即主路膨胀阀)的传统的高温热泵系统中,从冷凝器排出的制冷剂通常具有110℃以上的高温,这种高温的制冷剂直接经由管道输送至主路膨胀阀,因此导致主路膨胀阀需要耐受较高的温度才能维持系统稳定、可靠地运行。常规膨胀阀的耐受温度仅为70℃,而采用特制的膨胀阀则将会导致整个系统的制造成本上升。与传统的高温热泵系统相比,根据本公开的第一实施方式的高温热泵系统利用毛细管和经济器相互配合,尤其是将毛细管设置在经济器的上游,使得在冷凝器与主路膨胀阀之间的主路循环路径上形成制冷剂的液态-气液混合态-液态的转变,极大地降低了主路膨胀阀前的制冷剂温度,并且经过一次节流之后过冷保证主路膨胀阀前制冷剂全部为液态,从而满足常规膨胀阀的耐温和可靠性要求。由此,高温热泵系统可以采用常规膨胀阀,设计简单、可靠,制造成本低廉。
本公开的第二实施方式是在本公开的第一实施方式的基础上做出的改型。下面参照图2对本公开的第二实施方式进行说明。
与本公开的第一实施方式类似,根据本公开的第二实施方式的高温热泵系统包括工质循环主路径和补气辅路。具体地,工质循环主路径主要由压缩机1、冷凝器2、经济器4、主路膨胀阀6和蒸发器7依次通过管道连接构成。补气辅路包括辅路膨胀阀5和经济器4,从经济器4的中温制冷剂通道的出口的下游开始,经过低温制冷剂通道并最终连通至压缩机1的补气口13。其中,工质循环主路径和补气辅路中的例如压缩机1等的各装置的构造、布置、连接方式、工作原理均与第一实施方式类似,在此不再重复说明。与第一实施方式不同的是,在第二实施方式中采用针阀3a替代第一实施方式中设置在主路膨胀阀6 的上游的毛细管3。也就是说,对于根据本公开的第二实施方式的高温热泵系统,压缩机1、冷凝器2、针阀3a、经济器4、主路膨胀阀6和蒸发器7沿着工质的流动方向依次布置在工质循环主路径中。
与第一实施方式中制冷剂的流动和工作状态类似,在工质循环主路径中,从冷凝器2排出的高温高压制冷剂液体流经针阀3a,针阀3a具有与毛细管3类似的节流降压作用,使得从毛细管3排出的制冷剂的温度降低、压力下降,其中一部分制冷剂闪发为气态制冷剂。由此,经由针阀3a将高温高压制冷剂液体转变为中温中压的气液混合态的制冷剂,然后进入经济器4的中温制冷剂通道。随后制冷剂的流动和工作状态包括在补气辅路中的流动和工作状态均与第一实施方式类似,在此不再重复说明。
也就是说,根据本公开的第二实施方式的高温热泵系统具有包括针阀3a和主路膨胀阀6的二次节流装置和设置在主路膨胀阀6前的冷却装置(经济器4)。一方面,通过在主路膨胀阀6的上游设置针阀3a,将高温高压的制冷剂液体转变为中温中压的气液混合态的制冷剂;另一方面,利用经济器4将经由针阀3a闪发的制冷剂气体冷却为过冷的制冷剂液体,从而对工质循环主路径中的制冷剂(第一制冷剂部分)进行节流前(主路膨胀阀6前)降温。利用针阀和经济器相互配合,尤其是将针阀设置在经济器的上游,使得在冷凝器与主路膨胀阀之间的主路循环路径上形成制冷剂的液态-气液混合态-液态的转变,极大地降低了主路膨胀阀前的制冷剂温度,并且经过一次节流之后过冷保证主路膨胀阀前制冷剂全部为液态,从而满足常规膨胀阀的耐温和可靠性要求。由此,高温热泵系统可以采用常规膨胀阀,设计简单、可靠,制造成本低廉。
另外,本领域技术人员可以理解的是,针阀3a也可以替换为球阀、热力膨胀阀等具有类似的节流降压效果的其他节流装置。
本公开的第三实施方式是在本公开的第一实施方式的基础上做出的另一改型。下面参照图3对本公开的第三实施方式进行说明。
根据本公开的第三实施方式的高温热泵系统包括主要由压缩机1、冷凝器2、主路膨胀阀6和蒸发器7依次通过管道连接构成的工质循环主路径(在附图中箭头表示制冷剂的流向)。另外,在主路膨胀阀6的上游、冷凝器2与主路膨胀阀6之间的路径中还设置有毛细管3和换热器4b。也就是说,对于根据本公开的第三实施方式的高温热泵系统,压缩机1、冷凝器2、毛细管3、换热器4b、 主路膨胀阀6和蒸发器7沿着工质的流动方向依次布置在工质循环主路径中。其中,冷凝器2、换热器4b和蒸发器7均构造为制冷剂-水换热器或者制冷剂-空气换热器,具有用于工质循环主路径中的制冷剂通过的制冷剂通道和用于工质循环主路径以外的介质(例如水或空气)通过的介质通道。
与第一实施方式不同的是,该高温热泵系统不具有补气辅路,压缩机1可以构造为仅具有吸气口12和排气口11的常规压缩机。
与第一实施方式中制冷剂的流动和工作状态类似,在工质循环主路径中,从压缩机1的排气口11排出的高温高压制冷剂气体经由管道进入冷凝器2,在冷凝器2中对其冷却介质通道中的空气或水加热、产生例如用于烘干的100℃以上的热风或热水后从冷凝器2排出。从冷凝器2排出的高温高压制冷剂液体流经毛细管3,通过毛细管3的节流降压作用,使得从毛细管3排出的制冷剂的温度降低、压力下降,其中一部分制冷剂闪发为气态制冷剂。由此,经由毛细管3将高温高压制冷剂液体转变为中温中压的气液混合态的制冷剂。与第一实施方式不同的是,来自毛细管3的制冷剂进入换热器4b中的制冷剂通道,制冷剂通道中的制冷剂与介质通道中的介质(空气或水)发生热交换,从而降低制冷剂的温度,使其从气液混合态的制冷剂转变为液态制冷剂(即将经由毛细管3闪发的制冷剂气体冷却为过冷的制冷剂液体)。另外,本领域技术人员可以理解的是,对于换热器4b,还需要设置诸如风机或水泵的动力装置来驱动介质在换热器4b的介质通道中流动,从而对制冷剂进行冷却。随后,从换热器4b中排出的液态制冷剂进入主路膨胀阀6,并经过主路膨胀阀6的进一步降温降压而转变为低温低压的制冷剂液体。随后,该低温低压的制冷剂液体进入蒸发器7,在蒸发器7中被气化为制冷剂气体后进入压缩机1的进气口12。
另外,在换热器4b中用于与制冷剂进行热交换的介质可以是从蒸发器7中排出的、已经在蒸发器7中与制冷剂发生热交换后的介质。本领域技术人员可以理解,可以通过管道连接蒸发器7的介质通道的出口和换热器4b的介质通道的入口,将从蒸发器7的介质通道中排出的介质引导通过换热器4b的介质通道,从而利用蒸发器7的冷量来对换热器4b中的制冷剂进行冷却。由此,系统可以避免使用额外的冷源,进一步提高了系统的能效。
根据本公开的第三实施方式的高温热泵系统具有包括毛细管3和主路膨胀阀6的二次节流装置和设置在主路膨胀阀6前的冷却装置(换热器4b)。一方 面,通过在主路膨胀阀6的上游设置毛细管3,将高温高压的制冷剂液体转变为中温中压的气液混合态的制冷剂;另一方面,利用换热器4b将经由毛细管3闪发的制冷剂气体冷却为过冷的制冷剂液体,从而对工质循环主路径中的制冷剂进行节流前(主路膨胀阀6前)降温。利用毛细管和换热器相互配合,尤其是将毛细管设置在换热器的上游,使得在冷凝器与主路膨胀阀之间的主路循环路径上形成制冷剂的液态-气液混合态-液态的转变,极大地降低了主路膨胀阀前的制冷剂温度,并且经过一次节流之后过冷保证主路膨胀阀前制冷剂全部为液态,从而满足常规膨胀阀的耐温和可靠性要求。由此,高温热泵系统可以采用常规膨胀阀,设计简单、可靠,制造成本低廉。
上文结合具体实施方式描述了根据本公开的优选实施方式的高温热泵系统。可以理解,以上描述仅为示例性的而非限制性的,在不背离本公开的范围的情况下,本领域技术人员参照上述描述可以想到多种变型和修改。这些变型和修改同样包含在本公开的保护范围内。

Claims (10)

  1. 一种热泵系统,所述热泵系统包括工质循环主路径,在所述工质循环主路径中沿着制冷剂的流动方向依次布置有压缩机(1)、冷凝器(2)、主路膨胀阀(6)和蒸发器(7),
    其特征在于,在所述工质循环主路径中,所述冷凝器(2)与所述主路膨胀阀(6)之间还设置有节流装置和冷却装置。
  2. 根据权利要求1所述的热泵系统,其特征在于,所述冷凝器(2)、所述节流装置、所述冷却装置和所述主路膨胀阀(6)沿着制冷剂的流动方向依次布置。
  3. 根据权利要求1所述的热泵系统,其特征在于,所述节流装置构造为毛细管(3)、针阀(3a)、球阀或热力膨胀阀。
  4. 根据权利要求1至3中的任一项所述的热泵系统,其特征在于,所述冷却装置构造为换热器(4b),所述换热器(4b)为制冷剂-水换热器或者制冷剂-空气换热器。
  5. 根据权利要求4所述的热泵系统,其特征在于,所述换热器(4b)中的制冷剂通过所述蒸发器(7)的冷量进行冷却。
  6. 根据权利要求1至3中的任一项所述的热泵系统,其特征在于,所述热泵系统还包括补气辅路,所述冷却装置构造为经济器(4),所述经济器(4)为制冷剂-制冷剂换热器,在所述经济器(4)中包括作为所述工质循环主路径的一部分的中温制冷剂通道和作为所述补气辅路的一部分的低温制冷剂通道。
  7. 根据权利要求6所述的热泵系统,其特征在于,所述压缩机(1)构造为喷气增焓压缩机,包括吸气口(12)、排气口(11)和补气口(13),所述补气辅路从所述工质循环主路径的位于所述经济器(4)下游的分支点(46)延 伸、经过所述低温制冷剂通道然后连接至所述补气口(13)。
  8. 根据权利要求7所述的热泵系统,其特征在于,在所述补气辅路中,所述分支点(46)与所述低温制冷剂通道的入口(43)之间还设置有辅路膨胀阀(5)。
  9. 根据权利要求6所述的热泵系统,其特征在于,在所述补气辅路中,进入所述低温制冷剂通道的制冷剂为气液混合态的制冷剂,从所述低温制冷剂通道排出的制冷剂为气态的制冷剂。
  10. 根据权利要求1至3中的任一项所述的热泵系统,其特征在于,在所述工质循环主路径中,从所述节流装置排出的制冷剂为气液混合态的制冷剂,从所述冷却装置中排出的制冷剂为液态的制冷剂。
PCT/CN2020/129996 2020-11-10 2020-11-19 热泵系统 WO2022099748A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011249243.0 2020-11-10
CN202011249243.0A CN114484865A (zh) 2020-11-10 2020-11-10 热泵系统
CN202022591867.2U CN214469331U (zh) 2020-11-10 2020-11-10 热泵系统
CN202022591867.2 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022099748A1 true WO2022099748A1 (zh) 2022-05-19

Family

ID=81602113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129996 WO2022099748A1 (zh) 2020-11-10 2020-11-19 热泵系统

Country Status (1)

Country Link
WO (1) WO2022099748A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115307352A (zh) * 2022-08-16 2022-11-08 四川长虹空调有限公司 一种补气增焓热泵系统的双电子膨胀阀控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009118A1 (fr) * 1996-08-27 1998-03-05 Daikin Industries, Ltd. Conditionneur d'air
JP2007205612A (ja) * 2006-01-31 2007-08-16 Mitsubishi Electric Corp 冷凍サイクル装置
US20150096315A1 (en) * 2013-10-03 2015-04-09 Carrier Corporation Flash Tank Economizer for Two Stage Centrifugal Water Chillers
CN104613665A (zh) * 2015-02-02 2015-05-13 珠海格力电器股份有限公司 热泵空调系统
CN105247298A (zh) * 2013-06-24 2016-01-13 三菱重工业株式会社 涡轮制冷机
CN105258392A (zh) * 2015-10-15 2016-01-20 珠海格力电器股份有限公司 热泵制热系统、控制方法及热泵热水器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009118A1 (fr) * 1996-08-27 1998-03-05 Daikin Industries, Ltd. Conditionneur d'air
JP2007205612A (ja) * 2006-01-31 2007-08-16 Mitsubishi Electric Corp 冷凍サイクル装置
CN105247298A (zh) * 2013-06-24 2016-01-13 三菱重工业株式会社 涡轮制冷机
US20150096315A1 (en) * 2013-10-03 2015-04-09 Carrier Corporation Flash Tank Economizer for Two Stage Centrifugal Water Chillers
CN104613665A (zh) * 2015-02-02 2015-05-13 珠海格力电器股份有限公司 热泵空调系统
CN105258392A (zh) * 2015-10-15 2016-01-20 珠海格力电器股份有限公司 热泵制热系统、控制方法及热泵热水器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115307352A (zh) * 2022-08-16 2022-11-08 四川长虹空调有限公司 一种补气增焓热泵系统的双电子膨胀阀控制方法

Similar Documents

Publication Publication Date Title
CN107366621B (zh) 带有三级补气的滚动转子压缩机及空调系统
CN101135503A (zh) 一种带有涡流管的高温热泵系统
CN109869940B (zh) 喷射式跨临界二氧化碳双级压缩制冷系统
CN109751795B (zh) 热泵系统及其控制方法
WO2018018967A1 (zh) 一种结合空压系统与热泵系统的复合系统
CN112229085B (zh) 一种适用于大温跨的低温热泵循环系统及循环方法
CN111271752A (zh) 一种多换热器串联式跨临界co2热泵供暖系统
CN105135729B (zh) 单制冷剂回路、多排气压力的蒸气压缩制冷/热泵系统
CN210089175U (zh) 喷射式跨临界二氧化碳双级压缩制冷系统
WO2022099748A1 (zh) 热泵系统
CN103968477B (zh) 空调器
WO2024098868A1 (zh) 空调系统及控制方法
CN210089181U (zh) 吸收式跨临界二氧化碳双级压缩制冷系统
CN112963979A (zh) 一种可实现工作循环转换的复叠热泵系统
CN214469331U (zh) 热泵系统
CN110307669B (zh) 一种基于压缩热泵循环的太阳能增效多模式制热装置
CN110307673B (zh) 一种太阳能增效热泵系统
CN205783983U (zh) 空气源冷水机组的热量高效回收装置
CN108759157B (zh) 一次节流双级压缩热泵系统
CN113899095B (zh) 一种带喷射器增效的准二级压缩式循环系统
CN104807184A (zh) 一种两级压缩热泵热水器系统及其工作方法
CN110285572B (zh) 一种补气增焓双源热泵热水器系统
WO2021208197A1 (zh) 一种双压缩机空气源冷水热泵机组及其控制方法
CN113340026A (zh) 一种部分负荷运行时的高能效空气源热泵
CN109869945B (zh) 吸收式跨临界二氧化碳双级压缩制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961302

Country of ref document: EP

Kind code of ref document: A1