WO2014205982A1 - 一种显示面板 - Google Patents

一种显示面板 Download PDF

Info

Publication number
WO2014205982A1
WO2014205982A1 PCT/CN2013/087257 CN2013087257W WO2014205982A1 WO 2014205982 A1 WO2014205982 A1 WO 2014205982A1 CN 2013087257 W CN2013087257 W CN 2013087257W WO 2014205982 A1 WO2014205982 A1 WO 2014205982A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display panel
substrate
electrode
row
Prior art date
Application number
PCT/CN2013/087257
Other languages
English (en)
French (fr)
Inventor
张春兵
徐利燕
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/348,398 priority Critical patent/US9530825B2/en
Publication of WO2014205982A1 publication Critical patent/WO2014205982A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133362Optically addressed liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel
    • G09G2360/148Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel the light being detected by light detection means within each pixel

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display panel. Background technique
  • the active matrix type display devices each include a thin film transistor (TFT).
  • the driving method of the TFT is generally to scan each of the gate lines 500 in a row, so as to be connected to one gate line 500. All of the TFTs are simultaneously turned on or off by a control signal input to the gate line.
  • the sub-pixel equivalent on the gate line 500 is added.
  • a resistor forms a low-pass filter equivalent circuit in series RC (R represents a resistance, C represents a capacitance) as shown in FIG. 2 on the gate line 500.
  • Rn represents a resistance
  • C represents a capacitance
  • the equivalent resistance Rn far from the signal input end of the gate line 500 is the sum of the front equivalent resistances R1, R2, R3 ⁇ Rn_l, and is closer to the signal input end of the gate line 500.
  • the distant equivalent capacitance Cn is the sum of the previous equivalent capacitances C1, C2, C3 to Cn-1, so that the RC delay of the signal received by the TFT farther from the signal input end of the gate line 500 is larger, thereby The TFT that is farther away from the signal input terminal of the gate line is insufficiently charged or charged abnormally.
  • the present invention provides a display panel that avoids RC delay.
  • the present invention adopts the following technical solutions.
  • a display panel comprising: a photo transistor, a data line electrically connected to a source of the photo transistor, a first electrode electrically connected to a drain of the photo transistor, and a light emitting diode, wherein the phototransistors are arranged in a row, the extending direction of the data lines is perpendicular to a row direction of the phototransistor, and Each of the rows of light emitting diodes is extended in a row direction perpendicular to the extending direction of the data lines for simultaneously turning on all of the phototransistors of the corresponding row.
  • the display panel provided by the present invention since all the phototransistors of each row are turned on by a corresponding row of LEDs, there is no need to provide a gate line, and in the display panel provided by the present invention, the phototransistors of each row are mutually Independent, and the conduction of the LED is not affected by the capacitance, and therefore, there is no problem of RC delay.
  • a gate driving IC is also required, and the structure thereof is relatively complicated, and the electrostatic breakdown phenomenon is easily generated.
  • the display panel provided by the present invention does not need to set the gate line, the corresponding display does not need to be set again.
  • the gate drive IC can reduce the incidence of electrostatic breakdown, and at the same time, the aperture ratio can be increased since there is no need to provide a gate line.
  • FIG. 1 is a schematic diagram of a TFT driving equivalent provided by the prior art
  • FIG. 2 is a schematic diagram of an RC equivalent formed on a gate line provided by the prior art
  • FIG. 3 is a partial schematic structural view of a display panel according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional view of a second substrate according to an embodiment of the present invention
  • FIG. 6 is a cross-sectional view of a second substrate according to an embodiment of the present invention
  • FIG. 8 is a schematic cross-sectional view showing a first substrate of a liquid crystal display panel according to an embodiment of the present invention
  • FIG. 9 is a schematic top plan view of a second substrate of a liquid crystal display panel according to an embodiment of the present invention.
  • FIG. 10 is a top plan view of a first substrate of a liquid crystal display panel according to a first embodiment of the present invention
  • FIG. 11 is a cross-sectional view showing a first substrate of an organic electroluminescent diode display panel according to a second embodiment of the present invention.
  • An embodiment of the present invention provides a display panel, as shown in FIG. 3, including a phototransistor 110, a data line (not labeled in FIG. 3) electrically connected to the source 1102 of the phototransistor, and the photosensitive a first electrode (not labeled in FIG. 3) electrically connected to the drain 1 103 of the transistor, and a light emitting diode 210, wherein the phototransistors 110 are arranged in a row (only one of the phototransistors in one row is shown in FIG.
  • an extending direction of the data line is perpendicular to a row direction of the photo transistor 110, and each of the light emitting diodes 210 extends in a row direction perpendicular to an extending direction of the data line for use in a corresponding row
  • All of the phototransistors are simultaneously turned on, the phototransistor 110, a data line electrically connected to the source of the phototransistor, a first electrode electrically connected to the drain of the phototransistor, and the light emitting diode 210 are disposed at a flat layer is disposed on the same substrate, and between the photo transistor 110 and the light emitting diode 210, the flat layer A light-transmitting, insulating material.
  • the phototransistor may be located above the LED, which is not limited in the present invention.
  • An embodiment of the present invention further provides a display panel. As shown in FIG. 4, the display panel includes: a first substrate 10 and a second substrate 20.
  • the first substrate 10 includes a first substrate 100, a phototransistor 110 disposed on the first substrate, and a data line electrically connected to the source 1102 of the phototransistor (not identified in FIG. 4) And a first electrode 120 electrically connected to the drain 1103 of the phototransistor.
  • the photo transistor 110 can be sensitive only to non-visible light, so that light emitted by a backlight of the liquid crystal display device, or light emitted by the organic electroluminescent diode display device itself can be prevented from being turned on or off by the photo transistor 110. influences.
  • a photoresist member for example, a black matrix or the like
  • Sensitive phototransistor 110 is disposed between the photo transistor 110 and the display light source of the display panel to distinguish the light for display and the light for control from the optical path.
  • the second substrate 20 includes a second substrate 200, a light emitting diode 210 disposed on the second substrate, and a second portion disposed between the second substrate 200 and the light emitting diode 210 A black matrix 220.
  • Each of the light emitting diodes 210 extends in a row direction perpendicular to the extending direction of the data line, and corresponds to a row of phototransistors 110 for simultaneously turning on all the phototransistors 110 on the corresponding row, the first The black matrix 220 is for completely absorbing light that is incident on the phototransistor 110 via the second substrate 200 from the external environment.
  • the area of the first black matrix 220 projected onto the second base substrate 200 may be set to be larger than the area projected by the light emitting diode 210 to the second base substrate 200 to avoid being passed by the external environment.
  • the interference of the light of the second substrate substrate 200 directed to the photo transistor 110 on the turning on or off of the photo transistor 110 is described.
  • the phototransistor 110 is sensitive to non-visible light
  • the light emitting diode 210 is used to turn on the phototransistor 110, accordingly, the light emitted by the light emitting diode 210 is also non-visible light
  • the phototransistor 110 is sensitive to visible light, correspondingly, the light emitted by the LED 210 is also visible light.
  • the first black matrix 220 is further configured to absorb light emitted by the LED 210 to the second substrate 200 to avoid the LED 210. Visible light effect display panel The normal display.
  • the principle of the display is as follows: when the light emitting diodes 210 disposed on the second substrate 20 emit light, all the phototransistors 110 on the corresponding row on the first substrate 10 are exposed, and At the same time, all the phototransistors 110 on the row are turned on, so that each of the LEDs 210 is controlled to sequentially emit light, and the phototransistors 110 of each row corresponding thereto can be sequentially turned on.
  • the source drive can charge a whole row of first electrodes 120 to respective required voltages through the data lines, so that the display points of the row display different gray levels, when the line is charged
  • the LED 210 corresponding to the row stops emitting light, and then the next LED 210 starts to emit light, and then the source drives the first electrode of the next row through the data line pair.
  • the embodiment of the present invention does not limit the phototransistor, and the phototransistor may be any existing structure, and only needs to replace the photosensitive material therein with light according to different wavelengths of light. Light-sensitive materials of different wavelengths can be used. Preferably, all of the phototransistors in the same row are the same.
  • the display panel is a liquid crystal display panel
  • the display panel further includes a liquid crystal layer disposed between the first substrate 10 and the second substrate 20;
  • the display panel is an organic electroluminescent diode display panel And comprising an anode, a cathode, and an organic light-emitting layer disposed between the anode and the cathode;
  • the display panel is another type of display panel, including a corresponding type of display structure, and details are not described herein.
  • the first substrate 10 or the second substrate 20 further includes a second electrode 130 (not labeled in FIG. 4), wherein the first electrode 120 is a pixel.
  • An electrode, the second electrode 130 is a common electrode;
  • the first substrate 10 or the second substrate 20 further includes a second electrode 130 ′ (Fig. 4, wherein the second electrode 130' is a cathode, and when the first electrode 120 is a cathode, the second electrode 130'. It is an anode.
  • the material of the first electrode 120 and the second electrode 130 or 130 is The type of the display panel is not limited in the embodiment of the present invention, so that the display can be implemented.
  • FIG. 3 and FIG. 4 only show the pattern layers on the substrate of the partially non-transmissive region, that is, the cross-sectional view from the light-emitting diode 210 of the display panel along the vertical direction of the data line.
  • all of the drawings are only for the purpose of clearly describing the structure of the embodiments of the present invention, and other structures that are not related to the point of the invention are not shown or only partially reflected in the drawings.
  • the display panel provided by the embodiment of the present invention since all the phototransistors on each row on the first substrate are turned on by the corresponding one of the LEDs on the second substrate, there is no need to set on the first substrate.
  • the phototransistors of the respective rows are independent of each other, and the conduction of the LEDs on the second substrate is not affected by the capacitance, and thus there is no problem of RC delay.
  • the gate driving IC is also disposed on the first substrate, and the structure of the first substrate itself is relatively complicated, and the electrostatic breakdown phenomenon is easily generated on the first substrate, and the embodiment of the present invention
  • the display panel provided does not need to be provided with a gate line on the first substrate, and correspondingly, the gate drive IC is not required to be disposed, so that the incidence of electrostatic breakdown on the first substrate can be reduced, and at the same time, since the first substrate is not needed
  • the grid line is also provided to increase the aperture ratio.
  • the phototransistor 110 is sensitive to visible light, it is difficult to control the light for display without causing interference to the phototransistor 110. Therefore, preferably, the phototransistor 110 is sensitive to non-visible light. Transistor 110.
  • the phototransistor 110 is a thin film phototransistor, which can make the display panel thinner to meet the market demand for thinning the display panel.
  • the first black matrix 220 is further configured to prevent the light emitted by each of the LEDs 210 from interfering with the phototransistor 110 corresponding to the adjacent LEDs 210.
  • the first black matrix 220 may be formed into a certain pattern (for example, a U-shape or other shapes) to propagate the light emitted by the LED 210 in the vertical direction (ie, the thickness direction of the cell), thereby making any of the lights.
  • the light emitted by the diode 210 is only used to turn on all of the phototransistors 110 in a row corresponding thereto. Further preferably, as shown in the cross-sectional view of the second substrate 20 along the data line direction (FIG.
  • the first black matrix 220 may be formed in a U shape, in which case the light emitting diode may be 210 is disposed in the U-shaped groove and fits with the bottom in the U-shaped groove, and the total height of the U-shape is greater than the height of the bottom of the U-shaped groove The height sum of the light emitting diodes 210.
  • the light emitting diode 210 is disposed in the U-shaped groove and is in contact with the bottom in the U-shaped groove, that is, the light-emitting diode 210 is adjacent to the second substrate 200.
  • the side is completely fitted to the bottom surface of the U-shaped groove.
  • the total height of the U-shaped first black matrix 220 is hl
  • the height of the bottom of the U-shaped groove is h2
  • the height of the LED 210 is h3
  • the total height of the U-shape is greater than the U
  • the height of the bottom in the groove of the type and the height of the light-emitting diode 210 are: hl > h2 + h3.
  • the total height of the U-shape is greater than the height of the bottom of the U-shaped recess and the height of the LED 210, this can avoid the situation where the light emitted by the LED 210 is While the row of phototransistors 110 corresponding to the LEDs 210 are turned on, the phototransistors 110 on the other rows are also turned on.
  • the light emitting diode 210 includes a third electrode 2101, a fourth electrode 2102, and a light emitting layer 2103 disposed between the third electrode and the fourth electrode.
  • the second substrate 20 further includes a plurality of signal lines (not shown), and the plurality of signal lines are electrically connected to the third electrode 2101 of the LED 210, for example.
  • the third electrode 2101 respectively connected to each of the signal lines is sequentially charged.
  • the illuminating layer 2103 can select different materials according to the light of different wavelengths, which is not limited herein.
  • a driving IC similar to the gate line driving can be provided, and a signal is input to each signal line in turn, so that the third electrodes 2101 electrically connected to each of the signal lines are sequentially charged, so that the light emitting diode 210 and the conventional grating Like the line, the purpose of opening the phototransistors 110 of each row row by row is achieved.
  • the materials of the third electrode 2101 and the fourth electrode 2102 and the light-emitting layer 2103 are not limited to enable the light-emitting diode 210 to emit light. Further preferably, the materials of the light-emitting layers 2103 of any two adjacent light-emitting diodes 210 may be different, such that the wavelengths of the non-visible light emitted by them are also different. In this case, the photosensitive material in the phototransistor 110 on any adjacent row perpendicular to the data line is also different, wherein the photosensitive material in all the phototransistors 110 of each row only corresponds to the corresponding light. The light of the corresponding wavelength emitted by diode 210 is sensitive.
  • the material of the light-emitting layer 2103 of all the odd-numbered light-emitting diodes 210 is the same in the direction of the data line, and the material of the light-emitting layer 2103 of all the even-numbered light-emitting diodes 210 is the same.
  • the photosensitive materials in all the phototransistors 110 on each row corresponding to the odd-numbered light-emitting diodes 210 are the same, and the photosensitive light in all the phototransistors 110 on each row corresponding to the even-numbered light-emitting diodes 210 The materials are the same.
  • the light-emitting diode 210 on the second substrate 20 is not made large in consideration of the aperture ratio in the manufacturing process of the display panel, the range of radiation emitted by the light is not so wide, so it is only necessary to avoid The phototransistors of adjacent rows can interfere with each other.
  • the light-emitting diodes 210 are formed on the entire second substrate 20, it is only necessary to separately form the light-emitting layers 2103 of different materials in a specific region by two patterning processes, thereby reducing the number of patterning processes and reducing the cost.
  • a plurality of (here, 10 are exemplified) light-emitting diodes 210 are disposed on the second substrate 20, wherein the light-emitting layers 2103 of the first, third, fifth, seventh, and nine light-emitting diodes have the same material, for example, It is made of GaAs (gallium arsenide) material, and the non-visible light emitted by the material is infrared light.
  • the materials of the light-emitting layer 2103 of the second, fourth, sixth, eighth, and tenth light-emitting diodes are also the same.
  • InGaN indium gallium nitride
  • the photosensitive material in the phototransistor 110 is the same, for example, it can be made of an N-Si type material sensitive to infrared light, which is sensitive only to infrared light, and is in all the phototransistors 110 on the 2nd, 4th, 6th, 8th, and 10th rows.
  • the photosensitive material is the same, for example, it can be made of an ultraviolet-sensitive N-Si type material, which is only sensitive to ultraviolet light.
  • the phototransistor having the remaining number of rows is similar to the above and will not be described in detail herein.
  • Transistor 110 receives and senses the infrared light such that all phototransistors 110 on the first row are turned on.
  • the second LED 210 is in operation, non-visible ultraviolet light is emitted, and then all of the phototransistors 110 on the second row corresponding to the second LED 210 receive and sense the ultraviolet light, so that the second All phototransistors 110 on the line are turned on. The rest are analogous.
  • the display panel is further configured to be disposed on the first substrate 10 and the second substrate 20 when the display panel is a liquid crystal display panel, as shown in FIG.
  • the liquid crystal layer 30 is interposed.
  • the display panel provided by the embodiment of the present invention may be a type of liquid crystal display panel such as a twisted nematic (TN) mode, an advanced super-dimensional field conversion (ADS) mode, an internal plane conversion (IPS) mode, or the like.
  • TN twisted nematic
  • ADS advanced super-dimensional field conversion
  • IPS internal plane conversion
  • the core technical characteristics of the advanced super-dimensional field conversion technology are described as: forming an electric field generated by the edge of the slit electrode in the same plane and an electric field generated between the slit electrode layer and the plate-like electrode layer to form a multi-dimensional electric field, so that the liquid crystal cell is narrow All oriented liquid crystal molecules between the electrodes and directly above the electrodes can be rotated, thereby improving the liquid crystal working efficiency and increasing the light transmission efficiency.
  • Advanced super-dimensional field conversion technology can improve the picture quality of Thin Film Transistor-Liquid Crystal Display (TFT-LCD) products with high resolution, high transmittance, low power consumption and wide viewing angle. , high aperture ratio, low chromatic aberration, and no push mura.
  • TFT-LCD Thin Film Transistor-Liquid Crystal Display
  • 0LED has the characteristics of self-illumination, and it has the advantages of large viewing angle and significant energy saving.
  • the first substrate 10 further includes a second electrode 130 and a first electrode 120 and the second electrode. Passivation layer 140 between 130.
  • the second substrate 20 further includes: a color filter layer 230 disposed between any two adjacent of the light emitting diodes 210, where the color filter layer includes a red pixel 2301 and a green pixel. 2302 and blue pixel 2303, further including a second black matrix 240 disposed between adjacent pixels of the red pixel 2301, the green pixel 2302, and the blue pixel 2303, and the second black matrix 240 and the The data lines of the first substrate 10 correspond to each other.
  • the first substrate 10 further includes: an organic light emitting layer 150 disposed between the first electrode 120 and the second electrode 130 ′ The second electrode 130 ′ is disposed on the first substrate 10 .
  • the second electrode 130' may be made of a metal such as Mg (magnesium), Ag (silver), or A1 (aluminum), and the first electrode 120 may be made of ITO (Indium t in oxi de, indium tin oxide). to make.
  • Mg magnesium
  • Ag silver
  • A1 aluminum
  • ITO Indium t in oxi de, indium tin oxide
  • a liquid crystal display panel in a first embodiment, includes: a first substrate 10, a second substrate 20, a liquid crystal layer 30 disposed between the substrates, and a first substrate disposed away from the liquid crystal layer Backlight on one side.
  • the first substrate 10 includes a first substrate 100, and a plurality of phototransistors 110 disposed on the first substrate 100.
  • the plurality of phototransistors 10 are arranged in a row.
  • the photo transistor 1 10 includes: a source 1 102 and a drain 1 103, and other pattern layers necessary for constituting the phototransistor, wherein odd-numbered lines (for example, 1, 3, All phototransistors on 5 ⁇ ) are phototransistors sensitive to infrared light, and all phototransistors on even-numbered rows (eg, 2, 4, 6 ⁇ ) are photo-sensitive transistors sensitive to ultraviolet light, and the first substrate 10 is also
  • the method includes: a plurality of data lines 160 electrically connected to the source 1 102, a first electrode 120 electrically connected to the drain 1 103, a second electrode 130, and a first electrode 120 and a A passivation layer 140 (not shown in FIG.
  • the second substrate 20 includes a second substrate 200, a plurality of light emitting diodes 210 disposed on the second substrate, and the second substrate 200 and the a first black matrix 220 between the light emitting diodes 210, and a color filter layer 230 disposed between any two adjacent light emitting diodes 210, the color filter layer including red pixels 2301, green pixels 2302, and blue
  • the pixel 2303 further includes a second black matrix 240 disposed between the red pixel, the green pixel, and an adjacent pixel of the blue pixel, and the second black matrix 240 and the first substrate 10 are The data lines correspond.
  • Each of the light emitting diodes 210 corresponds to a row of phototransistors 110, and each of the light emitting diodes 210 includes a third electrode 2101, a fourth electrode 2102, and a light emitting layer 2103 disposed between the third electrode and the fourth electrode.
  • the material of the illuminating layer 2103 of the odd-numbered LED 210 is a material that emits infrared light
  • the material of the illuminating layer 2103 of the even-numbered LED 210 is a material that emits ultraviolet light
  • the second substrate 20 further includes A plurality of signal lines (not shown) electrically connected to the third electrode 2101 of the light emitting diodes.
  • the first black matrix 220 may be formed into a U-shape, and the LED 210 is disposed in the U-shaped groove and in the U-shaped groove.
  • the bottom of the U is fitted, and the total height of the U-shape is greater than the height of the bottom of the U-shaped groove and the height of the LED 210.
  • an organic electroluminescent diode display panel comprising: a first substrate 10 and a second substrate 20.
  • the first substrate 10 includes a first substrate 100, a plurality of phototransistors 110 disposed on the first substrate 100, and the plurality of phototransistors 110 are arranged in a row,
  • the phototransistor 110 includes a source 1 102 and a drain 1103, and other pattern layers necessary for forming a phototransistor, wherein all phototransistors on odd-numbered rows (eg, 1, 3, 5 ⁇ ) are sensitive to infrared light.
  • Phototransistor All of the phototransistors on the numbered rows are photosensitive electrodes that are sensitive to ultraviolet light
  • the first substrate 10 further includes: a plurality of data lines electrically connected to the source 1102, respectively ( The first electrode 120 electrically connected to the drain 1103, the second electrode 130', and the organic light disposed between the first electrode 120 and the second electrode 130' are not identified in FIG.
  • the layer 150 has a direction in which the data lines extend perpendicular to the row direction of the phototransistors 110 arranged in a row of the plurality of phototransistors 110.
  • the first substrate 10 may further include a hole injection layer and a hole transport layer disposed between the first electrode 120 and the organic light emitting layer 150, and disposed on the second electrode 130' and the An electron injecting layer and an electron transporting layer between the organic light emitting layers 150 are described.
  • the first electrode 120 may be made of IT0
  • the second electrode 130' may be made of metal such as Mg (magnesium), Ag (silver), A1 (aluminum).
  • the second substrate 20, as shown in FIG. 6, includes a second substrate 200, a plurality of light emitting diodes 210 disposed on the second substrate, and a second substrate 200 and A first black matrix 220 between the light emitting diodes 210 is described.
  • Each of the light emitting diodes 210 corresponds to a row of phototransistors 110, and each of the light emitting diodes 210 includes a third electrode 2101, a fourth electrode 2102, and a light emitting layer 2103 disposed between the third electrode and the fourth electrode.
  • the material of the illuminating layer 2103 of the odd-numbered LED 210 is a material that emits infrared light
  • the material of the illuminating layer 2103 of the even-numbered LED 210 is a material that emits ultraviolet light
  • the second substrate 20 further includes A plurality of signal lines (not shown) electrically connected to the third electrode 2101 of the light emitting diodes.
  • the first black matrix 220 may be formed into a U-shape, and the LED 210 is disposed in the U-shaped groove and in the U-shaped groove.
  • the bottom of the U is fitted, and the total height of the U-shape is greater than the height of the bottom of the U-shaped groove and the height of the LED 210.
  • An embodiment of the present invention further provides a display method for a display panel as described above, including: controlling light-emitting diodes 210 on the second substrate 20 of the display panel to sequentially emit light, thereby All of the phototransistors 110 on a row corresponding to the LEDs 210 are turned on.
  • the drive IC When all of the phototransistors 110 on a row are turned on, the drive IC provides a drive signal through a data line electrically coupled to the source 1102 of all of the phototransistors on the row, to the drain of all phototransistors on the row.
  • the first electrodes 120 electrically connected to the poles 1103 are respectively charged, and the display structures corresponding to the first electrodes 120 and the second electrodes 130 or 130' disposed on the first substrate 10 or the second substrate 20 are displayed, wherein The first electrode 120 corresponds to the second electrode 130 or 130'.
  • a display structure is a display point.
  • a display structure includes a photo transistor 110 on the first substrate 10 and a first electrode 120 electrically connected to the drain 1103 of the photo transistor (ie, a pixel electrode).
  • the second electrode 130 corresponding to the first electrode that is, the common electrode
  • a display structure includes a photo transistor 110 on the first substrate 10, a first electrode 120 (eg, an anode) electrically connected to the drain 1103 of the phototransistor, and a second corresponding to the first electrode. Electrode 130'
  • an organic light-emitting layer 150 between the first electrode 120 and the second electrode 130'.
  • Embodiments of the present invention provide a display method for a display panel, in which all phototransistors of each row on the first substrate are opened by light-emitting diodes corresponding to the corresponding light-emitting diodes on the second substrate, so that the first substrate is
  • the phototransistors of the rows are independent of each other, and the conduction of the LEDs on the second substrate is not affected by the capacitance, and thus does not exist.
  • the problem of RC delay is a display method for a display panel, in which all phototransistors of each row on the first substrate are opened by light-emitting diodes corresponding to the corresponding light-emitting diodes on the second substrate, so that the first substrate is
  • the phototransistors of the rows are independent of each other, and the conduction of the LEDs on the second substrate is not affected by the capacitance, and thus does not exist.
  • the problem of RC delay is a display method for a display panel, in which all phototransistors of each row on
  • the gate driving IC is also disposed on the first substrate, and the structure of the first substrate itself is relatively complicated, and the electrostatic breakdown phenomenon is easily generated on the first substrate, and the embodiment of the present invention
  • the display panel provided has no need to provide a gate line on the first substrate, and accordingly does not need to further provide a gate driving IC, so that the incidence of electrostatic breakdown on the first substrate can be reduced, and at the same time, since the first substrate is not needed
  • the grid line is also provided to increase the aperture ratio.
  • controlling the light-emitting diodes 210 on the second substrate 20 to sequentially emit light comprises: sequentially lighting the light-emitting diodes 210 by controlling signal lines respectively electrically connected to the third electrodes 2101 of the light-emitting diodes 210.
  • each row of the light emitting diodes may correspond to one or more rows of phototransistors, wherein each row of the light emitting diodes includes a plurality of light emitting diodes.
  • the third electrodes of the light-emitting diodes of each row are integrated, and the fourth electrodes of the light-emitting diodes of each row are integrated.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板,可避免RC延迟。该显示面板包括光敏晶体管(110)、与该光敏晶体管(110)的源极(1102)电连接的数据线、与该光敏晶体管(110)的漏极(1103)电连接的第一电极、以及发光二极管(210),其中,该光敏晶体管(110)成行地排列,该数据线的延伸方向与该光敏晶体管(110)的行方向垂直,每行发光二极管(210)沿与该数据线的延伸方向垂直的行方向延伸设置,用于将对应行的所有光敏晶体管(110)同时打开。

Description

一种显示面板 技术领域
本发明涉及显示技术领域, 尤其涉及显示面板。 背景技术
目前, 有源矩阵型显示装置均包括薄膜晶体管 (Thin Fi lm Transistor, TFT) , 如图 1所示, TFT的驱动方式一般均为逐行扫 描各条栅线 500,使得与一条栅线 500连接的所有 TFT由输入该条栅 线的控制信号同时驱动打开或关闭。
然而, 由于 TFT本身的寄生电容、 像素电极与相邻栅线 500之 间的电容、以及液晶显示装置的存储电容和液晶电容等这些电容的存 在,再加上栅线 500上的亚像素等效电阻,在所述栅线 500上形成如 图 2所示的串联 RC ( R表示电阻, C表示电容)低通滤波器等效电路。 根据串联 RC低通滤波器原理, 离栅线 500的信号输入端较远处的等 效电阻 Rn为前面的等效电阻 Rl、 R2、 R3〜Rn_l之和, 离栅线 500 的信号输入端较远处的等效电容 Cn为前面的等效电容 Cl、 C2、 C3〜 Cn-1之和, 这样导致离栅线 500的信号输入端越远的 TFT接收到的 信号的 RC延迟越大, 从而导致离栅线的信号输入端越远的 TFT充电 不足或充电异常。 发明内容
本发明提供一种显示面板, 可避免 RC延迟。
为达到上述目的, 本发明采用如下技术方案。
一方面, 提供一种显示面板, 其特征在于, 包括光敏晶体管、 与所述光敏晶体管的源极电连接的数据线、与所述光敏晶体管的漏极 电连接的第一电极、 以及发光二极管, 其中, 所述光敏晶体管成行地 排列,所述数据线的延伸方向与所述光敏晶体管的行方向垂直, 以及 每行所述发光二极管沿与所述数据线的延伸方向垂直的行方向延伸 设置, 用于将对应行的所有光敏晶体管同时打开。
本发明提供的显示面板, 由于每一行的所有光敏晶体管是依靠 与之对应的一行发光二极管发光来打开的, 因此便无需再设置栅线, 而且本发明提供的显示面板中,各行的光敏晶体管相互独立,且发光 二极管的导通不会受到电容的影响, 因而,不会存在 RC延迟的问题。 此外, 传统显示面板的结构中, 还需要设置栅极驱动 IC, 其结构比 较复杂,很容易产生静电击穿现象,而本发明提供的显示面板由于无 需再设置栅线, 也相应的无需再设置栅极驱动 IC, 从而可以减小静 电击穿的发生率, 同时, 由于无需设置栅线, 还可以提高开口率。 附图说明
为了更清楚地说明本发明或现有技术中的技术方案, 下面将对 本发明或现有技术描述中所需要使用的附图作简单地介绍,显而易见 地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通 技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图 获得其他的附图, 附图中:
图 1为现有技术提供的 TFT驱动等效示意图;
图 2为现有技术提供的在栅线上形成的 RC等效示意图; 图 3为本发明的实施例提供的一种显示面板的局部结构示意图; 图 4为本发明的实施例提供的一种显示面板的结构示意图; 图 5为本发明的实施例提供的一种第二基板的剖视示意图; 图 6为本发明的实施例提供的一种第二基板的剖视示意图; 图 7为本发明的实施例提供的一种液晶显示面板的结构示意图; 图 8 为本发明的实施例提供的一种液晶显示面板的第一基板的 剖视示意图;
图 9为本发明的实施例提供的一种液晶显示面板的第二基板的 俯视示意图;
图 10为本发明的第一实施例提供的一种液晶显示面板的第一基 板的俯视示意图; 图 11为本发明的第二实施例提供的一种有机电致发光二极管显 示面板的第一基板的剖视示意图。
附图标记:
10-第一基板; 20-第二基板; 30-液晶层; 100-第一衬底基板; 200-第二衬底基板; 110-光敏晶体管; 120-第一电极; 130、 130 ' - 第二电极; 140-钝化层; 150-有机发光层; 160-数据线; 210-发光二 极管; 220-第一黑矩阵; 230-滤色层; 240-第二黑矩阵; 500-栅线; 1102-源极; 1 103-漏极; 2101-第三电极; 2102-第四电极; 2103-发 光层; 2301-红色像素; 2302-绿色像素; 2303-蓝色像素。 具体实施方式
下面将结合附图, 对本发明的实施例的技术方案进行清楚、 完 整地描述, 显然, 所描述的实施例仅仅是本发明的优选实施例, 而不 是全部的实施例。基于本发明的实施例,本领域普通技术人员所获得 的所有其他实施例, 都属于本发明保护的范围。
本发明的实施例提供了一种显示面板, 如图 3所示, 包括光敏 晶体管 110、 与所述光敏晶体管的源极 1102 电连接的数据线 (图 3 中未标识出)、与所述光敏晶体管的漏极 1 103电连接的第一电极(图 3中未标识出) 、 以及发光二极管 210, 其中, 所述光敏晶体管 110 成行地排列 (图 3中仅示出一行光敏晶体管中的一个光敏晶体管) , 所述数据线的延伸方向与所述光敏晶体管 1 10的行方向垂直,以及每 个所述发光二极管 210 沿与所述数据线的延伸方向垂直的行方向延 伸,用于将对应行的所有光敏晶体管同时打开,所述光敏晶体管 110、 与所述光敏晶体管的源极电连接的数据线、与所述光敏晶体管的漏极 电连接的第一电极、 以及所述发光二极管 210 设置在同一衬底基板 上,以及在所述光敏晶体管 110与所述发光二极管 210之间设置平坦 层, 所述平坦层由透光、 绝缘材料制成。
需要说明的是, 尽管图 3 中仅示出了光敏晶体管位于发光二极 管下方的示例, 但是, 光敏晶体管也可以位于发光二极管的上方, 本 发明对此不做限定。 本发明的实施例还提供了一种显示面板, 如图 4所示, 该显示 面板包括: 第一基板 10和第二基板 20。
所述第一基板 10包括第一衬底基板 100、 设置在所述第一衬底 基板上的光敏晶体管 110、 与所述光敏晶体管的源极 1102电连接的 数据线 (图 4中未标识出) 、 以及与所述光敏晶体管的漏极 1103电 连接的第一电极 120。
此处, 所述光敏晶体管 110可以只对非可见光敏感, 这样可避 免例如液晶显示装置的背光源发出的光、或有机电致发光二极管显示 装置自身发出的光对光敏晶体管 110的开启或关闭的影响。当然,如 果在光敏晶体管 110与显示面板的显示光源之间设置有光阻部件(例 如黑矩阵等),以对显示用的光线和控制用的光线从光路上加以区分, 那么也可以采用对可见光敏感的光敏晶体管 110。
所述第二基板 20包括第二衬底基板 200、 设置在所述第二衬底 基板上的发光二极管 210、以及设置在所述第二衬底基板 200和所述 发光二极管 210之间的第一黑矩阵 220。
其中, 每个发光二级管 210沿与所述数据线的延伸方向垂直的 行方向延伸,并与一行光敏晶体管 110对应,用于同时将对应行上的 所有光敏晶体管 110打开,所述第一黑矩阵 220用于完全吸收由外界 环境经由所述第二衬底基板 200射向所述光敏晶体管 110的光。
这里例如可以设置所述第一黑矩阵 220投影到所述第二衬底基 板 200的面积大于等于所述发光二极管 210投影到所述第二衬底基板 200的面积,来避免由外界环境经由所述第二衬底基板 200射向所述 光敏晶体管 110的光对所述光敏晶体管 110的开启或关闭的干扰。
此外, 当所述光敏晶体管 110对非可见光敏感时, 由于所述发 光二极管 210用于打开所述光敏晶体管 110, 因此, 相应的, 所述发 光二极管 210 发出的光也是非可见光; 同理当所述光敏晶体管 110 对可见光敏感时,相应的,所述发光二极管 210发出的光也是可见光。
当所述光敏晶体管 110为对可见光敏感的光敏晶体管 110时, 所述第一黑矩阵 220还用于吸收所述发光二极管 210射向所述第二衬 底基板 200的光,以避免发光二极管 210发出的可见光影响显示面板 的正常显示。
根据上述描述的显示面板, 其实现显示的原理为: 设置在所述 第二基板 20上的发光二极管 210发光时,使第一基板 10上与之对应 的一行上的所有光敏晶体管 110感光,并同时打开该行上的所有光敏 晶体管 110, 这样, 控制每一个所述发光二极管 210依次发光, 便可 将与之对应的每一行的光敏晶体管 110依次打开。当一行光敏晶体管 110打开时,源极驱动通过数据线便可将一整行的第一电极 120充电 到各自所需的电压,从而使该行的显示点显示不同的灰阶, 当这一行 充好电后,与这行对应的发光二极管 210停止发光,然后下一个发光 二极管 210开始发光,再由源极驱动通过数据线对下一行的第一电极
120进行充电, 如此依序下去。
需要说明的是, 第一, 本发明的实施例不对所述光敏晶体管进 行限定,所述光敏晶体管可以是任意现有结构的,只需根据感应不同 波长的光将其中的感光材料置换为对所述不同波长的光敏感的材料 即可。 优选地, 同一行中的所有光敏晶体管相同。
第二, 本领域技术人员在没有做出创造性劳动的前提下获得的 所述显示面板的结构均为本发明的保护范围。例如,若所述显示面板 是液晶显示面板, 则该显示面板还包括设置在所述第一基板 10和第 二基板 20之间的液晶层; 如果所述显示面板是有机电致发光二极管 显示面板,则包括阳极、阴极以及设置在所述阳极和阴极之间的有机 发光层;如果所述显示面板是其他类型的显示面板,则包括相应类型 的显示结构, 在此不再赘述。
当所述显示面板为液晶显示面板时, 所述第一基板 10或所述第 二基板 20还包括第二电极 130 (图 4中未标识出) , 其中, 所述第 一电极 120即为像素电极,所述第二电极 130即为公共电极; 当所述 显示面板为有机电致发光二极管显示面板时, 所述第一基板 10或所 述第二基板 20还包括第二电极 130 ' (图 4中未标识出) , 其中, 当所述第一电极 120为阳极时, 所述第二电极 130' 为阴极, 反之, 当所述第一电极 120为阴极时, 所述第二电极 130' 为阳极。
第三, 所述第一电极 120、 第二电极 130或 130, 的材料根据显 示面板的类型而定,在本发明的实施例中不做限定, 以能实现显示为 准。
第四,附图 3、图 4仅绘示出部分非透光区的基板上的各图案层, 即,绘示的是从显示面板的发光二极管 210处沿数据线的垂直方向的 剖视图。此外,所有附图只为清楚地描述本发明的实施例体现的与发 明点相关的结构,对于其他的与发明点无关的结构,在附图中并未体 现或只体现部分。
本发明的实施例提供的显示面板, 由于第一基板上每一行上的 所有光敏晶体管是依靠第二基板上与之对应的一个发光二极管发光 来打开的, 因此在第一基板上便无需再设置栅线,而且本发明的实施 例提供的显示面板中,各行的光敏晶体管相互独立,且第二基板上的 发光二极管的导通不会受到电容的影响, 因而, 不会存在 RC延迟的 问题。 此外, 传统显示面板的结构中, 栅极驱动 IC也会设置在第一 基板上,而第一基板本身结构比较复杂,很容易在第一基板上产生静 电击穿现象,而本发明的实施例提供的显示面板其第一基板上由于无 需再设置栅线, 也相应的无需再设置栅极驱动 IC, 从而可以减小第 一基板上静电击穿的发生率,同时,由于无需在第一基板上设置栅线, 还可以提高开口率。
考虑制作工艺的限制, 当所述光敏晶体管 110对可见光敏感时, 很难控制显示用的光线不会对光敏晶体管 110造成干扰, 因此,优选 的, 所述光敏晶体管 110为对非可见光敏感的光敏晶体管 110。
优选的, 所述光敏晶体管 110为薄膜光敏晶体管, 这样可以将 显示面板做的更薄一些, 以适应显示面板薄型化的市场需求。
优选的,所述第一黑矩阵 220还用于避免各所述发光二极管 210 所发出的光对相邻的发光二极管 210所对应的光敏晶体管 110造成干 扰。
此处, 可以通过将所述第一黑矩阵 220制作成一定图形 (例如 U型或其他形状), 以将发光二极管 210发出的光沿垂直方向(即盒 厚方向)传播,从而使任一个发光二极管 210发出的光仅用于打开与 之对应的一行的所有光敏晶体管 110。 进一步优选的, 如所述第二基板 20沿数据线方向的剖面图 (图 5 ) 所示, 可以将所述第一黑矩阵 220制作为 U型, 在此情况下, 可 将所述发光二极管 210设置在所述 U型的凹槽内,并与所述 U型的凹 槽内的底部贴合,且所述 U型的总高度大于所述 U型的凹槽内的底部 的高度与所述发光二极管 210的高度和。
此处, 发光二极管 210设置在所述 U型的凹槽内, 并与所述 U 型的凹槽内的底部贴合, 即为:发光二极管 210在靠近所述第二衬底 基板 200的一侧与 U型的凹槽内的底面完全贴合。此外, 当 U型的第 一黑矩阵 220的总高度为 hl, U型的凹槽内的底部的高度为 h2, 发 光二极管 210的高度为 h3时, 所述 U型的总高度大于所述 U型的凹 槽内的底部的高度与所述发光二极管 210的高度和, 即为: hl > h2+ h3。
由于所述 U型的总高度大于所述 U型的凹槽内的底部的高度与 所述发光二极管 210的高度和,这样可以避免这样的情况:所述发光 二极管 210发出的光在将与该发光二极管 210对应的一行光敏晶体管 110打开的同时, 还将其它行上的光敏晶体管 110打开。
可选的,如图 6所示,所述发光二极管 210包括第三电极 2101、 第四电极 2102和设置在所述第三电极和所述第四电极之间的发光层 2103。 在此情况下, 所述第二基板 20还包括多条信号线 (图中未标 识出),所述多条信号线例如分别与所述发光二极管 210的所述第三 电极 2101电连接, 用于依次给分别与每一条信号线连接的所述第三 电极 2101充电。
其中, 所述发光层 2103可根据发射不同波长的光而选择不同的 材料, 在此不做限定。
这样, 可以设置类似于栅线驱动的驱动 IC, 依次给每一条信号 线输入信号, 从而使分别与每一条信号线电连接的第三电极 2101依 次被充电,使所述发光二极管 210与传统栅线一样,实现逐行打开各 行的光敏晶体管 110的目的。
需要说明的是,不对所述第三电极 2101和第四电极 2102、 以及 发光层 2103的材料进行限定, 以能使该发光二极管 210发光为准。 进一步优选的, 可以设置任意相邻的两个所述发光二极管 210 的所述发光层 2103的材料不相同, 这样其发出的非可见光的波长也 不相同。在此情况下,与所述数据线垂直的任意相邻行上的所述光敏 晶体管 110 中的感光材料也不相同, 其中每一行的所有光敏晶体管 110中的感光材料只对对应的所述发光二极管 210发出的相应波长的 光敏感。
这样, 可以进一步避免下述情况: 所述发光二极管 210发出的 光在将与该发光二极管 210对应的一行光敏晶体管 110打开的同时, 还将其它行上的光敏晶体管 110打开。
进一步优选地, 沿所述数据线的方向, 所有奇数编号的所述发 光二极管 210的所述发光层 2103的材料相同, 所有偶数编号的所述 发光二极管 210的所述发光层 2103的材料相同。
相应地, 与奇数编号的所述发光二极管 210对应的每一行上的 所有光敏晶体管 110中的感光材料相同,与偶数编号的所述发光二极 管 210对应的每一行上的所有光敏晶体管 110中的感光材料相同。
由于在显示面板的制造过程中, 考虑到开口率, 在第二基板 20 上的发光二极管 210做的不会很大, 因此,其发出的光的辐射范围也 不会很广, 因此只需避免相邻行的光敏晶体管互相干扰即可。 这样, 在整个第二基板 20上制作所述发光二极管 210时, 便只需要通过两 次构图工艺分别在特定区域形成不同材料的所述发光层 2103, 从而 可以减少构图工艺次数, 降低成本。
作为示例, 在第二基板 20上设置了多个 (此处以 10个为例) 发光二极管 210,其中,第 1、 3、 5、 7、 9个发光二极管的发光层 2103 的材料相同, 例如可以选取 GaAs (砷化镓) 材料制成, 其发出的非 可见光为红外光, 第 2、 4、 6、 8、 10 个发光二极管的发光层 2103 的材料也相同, 例如可以选取 InGaN (铟镓氮)材料制成, 其发出的 非可见光为紫外光。设置其余个数的发光二极管与上述类似,在此不 做详述。
同样在第一基板 10上设置了与所述 10个发光二极管 210分别 对应的 10行光敏晶体管 110, 其中, 第 1、 3、 5、 7、 9行上的所有 光敏晶体管 110 中的感光材料相同, 例如可以选取对红外光敏感的 N-Si类材料制成, 其只对红外光敏感, 第 2、 4、 6、 8、 10行上的所 有光敏晶体管 110中的感光材料相同,例如可以选取对紫外光敏感的 N-Si 类材料制成, 其只对紫外光敏感。 设置其余行数的光敏晶体管 与上述类似, 在此不做详述。
这样, 当第二基板 20上的第 1个发光二极管 210工作时, 发出 非可见红外光,则此时第一基板 10上只有与该第 1个发光二极管 210 对应的第 1行上的所有光敏晶体管 110接收并感应该红外光,使该第 1行上的所有光敏晶体管 110打开。当第 2个发光二极管 210工作时, 发出非可见紫外光,则此时只有与该第 2个发光二极管 210对应的第 2行上的所有光敏晶体管 110接收并感应该紫外光,使该第 2行上的 所有光敏晶体管 110打开。 其余依次类推。
基于上述描述的显示面板, 如图 7所示, 可选的, 当所述显示 面板为液晶显示面板时, 所述显示面板还包括设置在所述第一基板 10和所述第二基板 20之间的液晶层 30。
进一步地, 本发明的实施例提供的显示面板可以是扭曲向列 ( TN)模式、 高级超维场转换(ADS )模式、 内平面转换 (IPS )模式 等类型的液晶显示面板。其中,高级超维场转换技术的核心技术特性 描述为:通过同一平面内狭缝电极边缘所产生的电场以及狭缝电极层 与板状电极层间产生的电场形成多维电场, 使液晶盒内狭缝电极间、 电极正上方所有取向液晶分子都能够产生旋转,从而提高了液晶工作 效率并增大了透光效率。高级超维场转换技术可以提高薄膜场效应晶 体管液晶显示器 ( Thin Fi lm Transistor- Liquid Crystal Display, 简称 TFT-LCD)产品的画面品质, 具有高分辨率、高透过率、低功耗、 宽视角、 高开口率、 低色差、 无挤压水波紋 (push Mura) 等优点。 0LED 具有自发光的特性, 且其具有可视角度大、 显著节省电能等优 点。
例如, 对于高级超维场转换技术型液晶显示装置的显示面板, 如图 8所示, 所述第一基板 10还包括第二电极 130和设置在所述第 一电极 120和所述第二电极 130之间的钝化层 140。 此外, 如图 9所示, 所述第二基板 20还包括: 设置在任意两个 相邻的所述发光二极管 210之间的滤色层 230,所述滤色层包括红色 像素 2301、绿色像素 2302和蓝色像素 2303,还包括设置在所述红色 像素 2301、绿色像素 2302、和蓝色像素 2303中相邻像素之间的第二 黑矩阵 240, 且所述第二黑矩阵 240与所述第一基板 10的所述数据 线对应。
可选的, 当该显示面板为有机电致发光二极管显示面板时, 所 述第一基板 10 还包括: 设置在所述第一电极 120 和所述第二电极 130 ' 之间的有机发光层 150,其中,所述第二电极 130 ' 设置在所述 第一基板 10上。
在此情况下, 所述第二电极 130 ' 可由 Mg (镁) 、 Ag (银) 、 A1 (铝) 等金属制成, 第一电极 120可由 ITO ( Indium t in oxi de , 氧化铟锡) 制成。
下面将提供两个具体实施例, 以详细描述上述的显示面板的结 构。
第一实施例, 提供一种液晶显示面板, 该显示面板包括: 第一 基板 10、 第二基板 20、 设置在两基板间的液晶层 30、 以及设置在所 述第一基板远离所述液晶层一侧的背光源。
其中, 如图 10所示, 所述第一基板 10包括第一衬底基板 100、 设置在第一衬底基板 100上的多个光敏晶体管 1 10,所述多个光敏晶 体管 1 10 成行地排列 (按垂直于数据线的方向) , 所述光敏晶体管 1 10包括: 源极 1 102和漏极 1 103、 以及其他构成光敏晶体管必不可 少的图案层, 其中奇数编号行(例如 1、 3、 5〜)上的所有光敏晶体 管为对红外光敏感的光敏晶体管, 偶数编号行(例如 2、 4、 6〜)上 的所有光敏晶体管为对紫外光敏感的光敏晶体管, 所述第一基板 10 还包括: 分别与所述源极 1 102电连接的多条数据线 160、 与所述漏 极 1 103电连接的第一电极 120、第二电极 130、和设置在所述第一电 极 120和所述第二电极 130之间的钝化层 140 (图 10中未标出), 所 述数据线的延伸方向与由多个光敏晶体管 1 10 组成的成行地排列的 光敏晶体管 1 10的行方向垂直。 参考图 9所示, 所述第二基板 20包括第二衬底基板 200、 设置 在所述第二衬底基板上的多个发光二极管 210、设置在所述第二衬底 基板 200和所述发光二极管 210之间的第一黑矩阵 220、 以及设置在 任意两个相邻的所述发光二极管 210之间的滤色层 230,所述滤色层 包括红色像素 2301、绿色像素 2302和蓝色像素 2303,还包括设置在 所述红色像素、绿色像素、和蓝色像素中相邻像素之间的第二黑矩阵 240, 且所述第二黑矩阵 240与所述第一基板 10的所述数据线对应。
其中, 每个发光二极管 210与一行光敏晶体管 110对应, 每个 发光二极管 210包括第三电极 2101、第四电极 2102和设置在所述第 三电极和所述第四电极之间的发光层 2103, 其中奇数编号的发光二 极管 210的发光层 2103的材料为发出红外光的材料, 偶数编号的发 光二极管 210的发光层 2103的材料为发出紫外光的材料, 所述第二 基板 20还包括分别与每个发光二极管的第三电极 2101电连接的多条 信号线 (图中未标识出) 。
进一步地,参考图 5所示,可以将所述第一黑矩阵 220制作为 U 型, 将所述发光二极管 210设置在所述 U型的凹槽内, 并与所述 U 型的凹槽内的底部贴合,且所述 U型的总高度大于所述 U型的凹槽内 的底部的高度与所述发光二极管 210的高度和。
这样, 由于第一基板 10上每一行的所有光敏晶体管 110是依靠 第二基板 20上与之对应的发光二极管 210发光来打开的, 因此在第 一基板 10上便无需再设置栅线, 而且本发明的实施例提供的显示面 板中, 各行的光敏晶体管 110相互独立, 因而, 不会存在 RC延迟的 问题。
第二实施例, 提供一种有机电致发光二极管显示面板, 该显示 面板包括: 第一基板 10和第二基板 20。
所述第一基板 10, 如图 11所示, 包括第一衬底基板 100、 设置 在第一衬底基板 100上的多个光敏晶体管 110,所述多个光敏晶体管 110成行地排列,所述光敏晶体管 110包括:源极 1 102和漏极 1103、 以及其他构成光敏晶体管必不可少的图案层,其中奇数编号行(例如 1、 3、 5〜) 上的所有光敏晶体管为对红外光敏感的光敏晶体管, 偶 数编号行 (例如 2、 4、 6〜)上的所有光敏晶体管为对紫外光敏感的 光敏晶体管,所述第一基板 10还包括:分别与所述源极 1102电连接 的多条数据线(图 11中未标识出)、 与所述漏极 1103电连接的第一 电极 120、 第二电极 130' 、 以及设置在所述第一电极 120和所述第 二电极 130 ' 之间的有机发光层 150, 所述数据线的延伸方向与多个 光敏晶体管 110组成的成行地排列的光敏晶体管 110的行方向垂直。 当然, 所述第一基板 10还可以包括设置在所述第一电极 120和所述 有机发光层 150之间的空穴注入层和空穴传输层、设置在所述第二电 极 130' 和所述有机发光层 150之间的电子注入层和电子传输层。
其中,所述第一电极 120可以由 IT0制成,所述第二电极 130' 可以由 Mg (镁) 、 Ag (银) 、 A1 (铝) 等金属制成。
所述第二基板 20, 参考图 6所示, 包括第二衬底基板 200、 设 置在所述第二衬底基板上的多个发光二极管 210、设置在所述第二衬 底基板 200和所述发光二极管 210之间的第一黑矩阵 220。
其中, 每个发光二极管 210与一行光敏晶体管 110对应, 每个 发光二极管 210包括第三电极 2101、第四电极 2102和设置在所述第 三电极和所述第四电极之间的发光层 2103, 其中奇数编号的发光二 极管 210的发光层 2103的材料为发出红外光的材料, 偶数编号的发 光二极管 210的发光层 2103的材料为发出紫外光的材料, 所述第二 基板 20还包括分别与每个发光二极管的第三电极 2101电连接的多条 信号线 (图中未标识出) 。
进一步地,参考图 5所示,可以将所述第一黑矩阵 220制作为 U 型, 将所述发光二极管 210设置在所述 U型的凹槽内, 并与所述 U 型的凹槽内的底部贴合,且所述 U型的总高度大于所述 U型的凹槽内 底部的高度与所述发光二极管 210的高度和。
这样, 由于第一基板 10上每一行的所有光敏晶体管 110是依靠 第二基板 20上与之对应的发光二极管 210发光来打开的, 因此在第 一基板 10上便无需再设置栅线, 而且本发明的实施例提供的显示面 板中, 各行的光敏晶体管 110相互独立, 因而, 不会存在 RC延迟的 问题。 本发明的实施例还提供了一种用于如上所述的显示面板的显示 方法, 包括: 控制所述显示面板的第二基板 20上的发光二极管 210 依次发光, 从而将第一基板 10上与所述发光二极管 210对应的一行 上的所有光敏晶体管 110打开。
当一行上的所有光敏晶体管 110都打开时, 驱动 IC提供的驱动 信号经与所述一行上的所有光敏晶体管的源极 1102 电连接的数据 线, 对与所述一行上的所有光敏晶体管的漏极 1103分别电连接的第 一电极 120充电, 使与所述第一电极 120和设置在第一基板 10或第 二基板 20上的第二电极 130或 130' 对应的显示结构进行显示, 其 中, 所述第一电极 120与所述第二电极 130或 130' —一对应。
此处, 一个显示结构即为一个显示点, 对于液晶显示面板, 一 个显示结构包括第一基板 10上的光敏晶体管 110、 与光敏晶体管的 漏极 1103电连接的第一电极 120 (即为像素电极) 、 与该第一电极 对应的第二电极 130 (即为公共电极) 、 与此对应的第二基板 20的 滤色层 230的红色像素 2301或绿色像素 2302或蓝色像素 2303, 当 然还包括液晶。对于有机发光二极管显示面板,一个显示结构包括第 一基板 10上的光敏晶体管 110、与光敏晶体管的漏极 1103电连接的 第一电极 120 (例如为阳极) 、 与该第一电极对应的第二电极 130'
(例如为阴极)、 以及第一电极 120和第二电极 130 ' 之间的有机发 光层 150。
本发明的实施例提供了一种用于显示面板的显示方法, 由于第 一基板上每一行的所有光敏晶体管是依靠第二基板上与之对应的发 光二极管发光来打开的, 因此在第一基板上便无需再设置栅线,而且 本发明的实施例提供的显示面板中,各行的光敏晶体管相互独立,且 第二基板上的发光二极管的导通不会受到电容的影响, 因而,不会存 在 RC延迟的问题。此外, 传统显示面板的结构中, 栅极驱动 IC也会 设置在第一基板上,而第一基板本身结构比较复杂,很容易在第一基 板上产生静电击穿现象,而本发明的实施例提供的显示面板其第一基 板上由于无需再设置栅线, 也相应的无需再设置栅极驱动 IC, 从而 可以减小第一基板上静电击穿的发生率, 同时, 由于无需在第一基板 上设置栅线, 还可以提高开口率。
进一步地,控制第二基板 20上的发光二极管 210依次发光包括: 通过控制分别与所述发光二极管 210的第三电极 2101电连接的信号 线, 使所述发光二极管 210依次发光。
尽管上述实施例中仅示出了每个发光二极管与一行光敏晶体管 对应的示例,但是,也可以是每行发光二极管与一行或多行光敏晶体 管对应, 其中, 每行发光二极管包括多个发光二极管, 该情况下, 优 选地,每行所述发光二极管的第三电极为一体,每行所述发光二极管 的第四电极为一体。
此外, 尽管上述实施例中, 以光敏晶体管的源极与数据线相连 而使漏极与像素电极相连为例进行了说明,然而本领域的技术人员应 当明白, 由于晶体管的源极和漏极在结构和组成上的可互换性,也可 以将漏极与数据线相连而使源极与像素电极相连,这属于本发明的上 述实施例的等同变换。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此,本发明的实施例可以省略上述技术特征中的一些技术 特征, 仅解决现有技术中存在的部分技术问题, 而且, 所公开的技术 特征可以进行任意组合,任何熟悉本技术领域的技术人员在本发明揭 露的技术范围内可轻易想到的变化或替换都应涵盖在本发明的保护 范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为 准。

Claims

权 利 要 求 书
1、 一种显示面板, 其特征在于, 包括光敏晶体管、 与所述光敏 晶体管的源极电连接的数据线、与所述光敏晶体管的漏极电连接的第 一电极、 以及发光二极管, 其中,
所述光敏晶体管成行地排列, 所述数据线的延伸方向与所述光 敏晶体管的行方向垂直, 以及
每行所述发光二极管沿与所述数据线的延伸方向垂直的行方向 延伸设置, 用于将对应行的所有光敏晶体管同时打开。
2、 根据权利要求 1所述的显示面板, 其特征在于, 包括衬底基 板,
其中, 所述光敏晶体管、 与所述光敏晶体管的源极电连接的数 据线、与所述光敏晶体管的漏极电连接的第一电极、以及所述发光二 极管设置在同一衬底基板上, 以及
其中, 在所述光敏晶体管与所述发光二极管之间设置平坦层, 所述平坦层由透光、 绝缘材料制成。
3、 根据权利要求 1所述的显示面板, 其特征在于, 包括第一衬 底基板和第二衬底基板, 其中
所述光敏晶体管、 与所述光敏晶体管的源极电连接的数据线、 以及与所述光敏晶体管的漏极电连接的第一电极设置在所述第一衬 底基板上, 形成第一基板,
所述发光二极管设置在所述第二衬底基板上, 形成第二基板。
4、 根据权利要求 3所述的显示面板, 其特征在于, 还包括第一 黑矩阵,其设置在所述第二衬底基板和所述发光二极管之间,用于完 全吸收由外界环境经由所述第二衬底基板而射向所述光敏晶体管的 光。
5、 根据权利要求 4所述的显示面板, 其特征在于, 所述第一 黑矩阵投影到所述第二衬底基板的面积大于等于所述发光二极管投 影到所述第二衬底基板的面积。
6、 根据权利要求 1所述的显示面板, 其特征在于, 所述光敏晶 体管为对非可见光敏感的光敏晶体管,所述发光二极管发出的光是非 可见光。
7、 根据权利要求 1所述的显示面板, 其特征在于, 所述光敏晶 体管为薄膜光敏晶体管。
8、 根据权利要求 4所述的显示面板, 其特征在于, 所述第一黑 矩阵还用于避免各行所述发光二极管所发出的光对相邻行的发光二 极管所对应的光敏晶体管造成干扰。
9、 根据权利要求 8所述的显示面板, 其特征在于,
所述第一黑矩阵为 U型, 所述发光二极管设置在所述 U型的凹 槽内,并与所述 U型的凹槽内的底部贴合,且所述 U型的总高度大于 所述 U型的凹槽内的底部的高度与所述发光二极管的高度和。
10、 根据权利要求 1所述的显示面板, 其特征在于, 所述发光 二极管包括第三电极、第四电极和设置在所述第三电极和所述第四电 极之间的发光层;
所述显示面板还包括多条信号线, 所述多条信号线分别与各行 所述发光二极管的所述第三电极电连接,用于依次给分别与每一条信 号线连接的所述第三电极充电。
11、 根据权利要求 10所述的显示面板, 其特征在于, 每行所述 发光二极管仅包括一个发光二极管。
12、 根据权利要求 10所述的显示面板, 其特征在于, 每行所述 发光二极管包括多个发光二极管, 其中
每行所述发光二极管的第三电极为一体, 每行所述发光二极管 的第四电极为一体。
13、 根据权利要求 10所述的显示面板, 其特征在于, 任意相邻 行的所述发光二极管的所述发光层的材料不相同,任意相邻行上的光 敏晶体管中的感光材料不相同。
14、 根据权利要求 13所述的显示面板, 其特征在于, 沿所述数 据线的方向,所有奇数编号行的所述发光二极管的所述发光层的材料 相同, 所有偶数编号行的所述发光二极管的所述发光层的材料相同, 与奇数编号行的所述发光二极管对应的每一行上的所有光敏晶体管 中的感光材料相同,与偶数编号行的所述发光二极管对应的每一行上 的所有光敏晶体管中的感光材料相同。
15、 根据权利要求 3所述的显示面板, 其特征在于, 所述显示 面板还包括设置在所述第一基板和第二基板之间的液晶层。
16、 根据权利要求 15所述的显示面板, 其特征在于, 所述第一 基板或所述第二基板还包括第二电极,其中第一电极为像素电极,第 二电极为公共电极。
17、 根据权利要求 15所述的显示面板, 其特征在于, 所述第二 基板还包括: 设置在任意两个相邻行的所述发光二极管之间的滤色 层, 所述滤色层包括红色像素、 绿色像素、 蓝色像素、 以及设置在所 述红色像素、 绿色像素、 和蓝色像素中相邻像素之间的第二黑矩阵, 且所述第二黑矩阵与所述第一基板的所述数据线对应。
18、 根据权利要求 3所述的显示面板, 其特征在于, 所述第一 基板或所述第二基板还包括第二电极、和设置在所述第一电极和所述 第二电极之间的有机发光层, 其中第二电极为阳极或阴极。
PCT/CN2013/087257 2013-06-28 2013-11-15 一种显示面板 WO2014205982A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/348,398 US9530825B2 (en) 2013-06-28 2013-11-15 Display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310267650.8A CN103336384B (zh) 2013-06-28 2013-06-28 一种显示面板
CN201310267650.8 2013-06-28

Publications (1)

Publication Number Publication Date
WO2014205982A1 true WO2014205982A1 (zh) 2014-12-31

Family

ID=49244578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087257 WO2014205982A1 (zh) 2013-06-28 2013-11-15 一种显示面板

Country Status (3)

Country Link
US (1) US9530825B2 (zh)
CN (1) CN103336384B (zh)
WO (1) WO2014205982A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103336384B (zh) * 2013-06-28 2015-11-25 京东方科技集团股份有限公司 一种显示面板
TWI607260B (zh) * 2015-01-13 2017-12-01 友達光電股份有限公司 顯示裝置
CN107093617B (zh) * 2017-05-02 2019-09-10 京东方科技集团股份有限公司 阵列基板、图像采集方法及显示装置
CN207867872U (zh) 2018-02-26 2018-09-14 惠科股份有限公司 一种显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1531375A (zh) * 2003-03-17 2004-09-22 电子科技大学 一种双稳态有机发光像素及其显示矩阵
CN1685390A (zh) * 2002-09-23 2005-10-19 皇家飞利浦电子股份有限公司 带有光敏单元的矩阵显示器件
EP1840971A1 (en) * 2006-03-31 2007-10-03 Toppoly Optoelectronics Corp. Organic electroluminescent device and fabrication methods thereof
CN101283392A (zh) * 2005-10-13 2008-10-08 皇家飞利浦电子股份有限公司 发射显示装置
EP2237262A2 (en) * 2009-04-01 2010-10-06 Acer Incorporated Liquid crystal display panel, liquid crystal display device, photo detecting device and light intensity adjustment method
CN103336384A (zh) * 2013-06-28 2013-10-02 京东方科技集团股份有限公司 一种显示面板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570990A (en) * 1993-11-05 1996-11-05 Asyst Technologies, Inc. Human guided mobile loader stocker
GB2381644A (en) * 2001-10-31 2003-05-07 Cambridge Display Tech Ltd Display drivers
US7385572B2 (en) * 2002-09-09 2008-06-10 E.I Du Pont De Nemours And Company Organic electronic device having improved homogeneity
KR100983524B1 (ko) * 2003-12-01 2010-09-24 삼성전자주식회사 광감지 패널과, 이를 갖는 광감지 장치 및 이의 구동 방법
WO2010150431A1 (ja) * 2009-06-26 2010-12-29 シャープ株式会社 フォトトランジスタ及びそれを備えた表示装置
TWI433011B (zh) * 2010-08-17 2014-04-01 Chunghwa Picture Tubes Ltd 光學觸控模組及光學觸控顯示面板
TWI452502B (zh) * 2011-12-16 2014-09-11 Au Optronics Corp 觸控畫素陣列基板、觸控顯示面板與觸控畫素結構

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1685390A (zh) * 2002-09-23 2005-10-19 皇家飞利浦电子股份有限公司 带有光敏单元的矩阵显示器件
CN1531375A (zh) * 2003-03-17 2004-09-22 电子科技大学 一种双稳态有机发光像素及其显示矩阵
CN101283392A (zh) * 2005-10-13 2008-10-08 皇家飞利浦电子股份有限公司 发射显示装置
EP1840971A1 (en) * 2006-03-31 2007-10-03 Toppoly Optoelectronics Corp. Organic electroluminescent device and fabrication methods thereof
EP2237262A2 (en) * 2009-04-01 2010-10-06 Acer Incorporated Liquid crystal display panel, liquid crystal display device, photo detecting device and light intensity adjustment method
CN103336384A (zh) * 2013-06-28 2013-10-02 京东方科技集团股份有限公司 一种显示面板

Also Published As

Publication number Publication date
US9530825B2 (en) 2016-12-27
CN103336384B (zh) 2015-11-25
CN103336384A (zh) 2013-10-02
US20160260783A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
US11018211B2 (en) Array substrate and display pane, having subpixels including corresponding self-luminous units and photosensitive units
US20220293637A1 (en) Array substrate and display panel
KR101958392B1 (ko) 표시판 및 표시 장치
US10038049B2 (en) Display device
US6714268B2 (en) Pixel structure of a sunlight readable display
JP6154660B2 (ja) タッチパネル
JP2019139232A (ja) 表示装置及びその製造方法
EP3823050A1 (en) Light-emitting device and display device comprising same
KR102086805B1 (ko) 유기전계발광표시장치
US10720479B2 (en) Display substrate, method for fabricating the same, and display device
CN104752482A (zh) 有机发光二极管显示装置
CN109728183B (zh) 有机发光二极管显示设备
JP7232809B2 (ja) 発光表示装置
KR20210131509A (ko) 화소 및 이를 포함하는 표시장치
KR20210080686A (ko) 표시 장치
US10665820B2 (en) Display device
WO2014205982A1 (zh) 一种显示面板
KR20200078874A (ko) 표시 장치
US10658623B2 (en) Electroluminescent display device having a plurality of low-refractive members
US20230095733A1 (en) Display substrate and method for manufacturing the same, driving method and display device
CN115548065A (zh) 显示装置
CN112992986A (zh) 发光显示装置
KR102239067B1 (ko) 유기전계 발광소자
KR20220072109A (ko) 표시 장치
KR20220110396A (ko) 디스플레이 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14348398

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.06.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13887662

Country of ref document: EP

Kind code of ref document: A1