WO2014205977A1 - 触控驱动电路、光学式内嵌触摸屏及显示装置 - Google Patents

触控驱动电路、光学式内嵌触摸屏及显示装置 Download PDF

Info

Publication number
WO2014205977A1
WO2014205977A1 PCT/CN2013/087069 CN2013087069W WO2014205977A1 WO 2014205977 A1 WO2014205977 A1 WO 2014205977A1 CN 2013087069 W CN2013087069 W CN 2013087069W WO 2014205977 A1 WO2014205977 A1 WO 2014205977A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
touch
module
transistor
sub
Prior art date
Application number
PCT/CN2013/087069
Other languages
English (en)
French (fr)
Inventor
聂磊森
祁小敬
吴博
青海刚
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/355,472 priority Critical patent/US9310937B2/en
Publication of WO2014205977A1 publication Critical patent/WO2014205977A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally

Definitions

  • the present invention relates to the field of touch screen technologies, and in particular, to a touch driving circuit, an optical embedded touch screen, and a display device. Background technique
  • the Touch Screen Panel has gradually spread throughout people's lives.
  • the In Cell Touch Panel has a built-in touch panel embedded in the inside of the display screen, which can reduce the thickness of the module as a whole, and can greatly reduce the manufacturing cost of the touch screen, and is favored by various panel manufacturers. Therefore, the driving method of the embedded touch screen has become a hot spot for people to study the touch exhibition.
  • the driving circuit of the existing optical touch screen is composed of a multi-level driving circuit for implementing a touch function.
  • each stage of the driving circuit is as shown in FIG. 1 , and includes: a photodiode PD, a capacitor Cst, a first transistor M1, and a second transistor M2; wherein, the first end cl of the capacitor Cst is connected to the constant voltage signal terminal RWS, The second end c2 of the capacitor is respectively connected to the first end pi of the photodiode PD and the gate of the first transistor M1; the second end p2 of the photodiode PD is connected to the control signal terminal RST; the source and the height of the first transistor M1
  • the level signal terminal VDD is connected, the drain of the first transistor M1 is respectively connected to the source of the second transistor M2 and the read signal terminal Sensor; the gate of the second transistor M2 is connected to the reset signal terminal VB, and the second transistor M2 is The drain is connected to the low level signal terminal VSS.
  • the touch signal reading end of the driving circuit of the respective stages is connected to the same touch signal reading line, the touch signal reading end of the driving circuit of the different stages is used.
  • the output signals crosstalk each other, which affects the accuracy of the touch screen touch signal detection. If the touch signal read lines are respectively configured on the touch signal read ends of the drive circuits of the respective stages, the wiring area in the touch screen is increased. Big. Summary of the invention
  • the embodiment of the invention provides a touch driving circuit, an optical embedded touch screen and a display device, which can improve the accuracy of the touch signal detection without increasing the touch wiring area.
  • the embodiment of the invention provides a touch driving circuit, comprising: a photosensitive submodule, a driving submodule, and a control submodule; wherein
  • the first signal input end of the photoreceptor sub-module is connected to the switch signal end, the second signal input end of the photo-sensing sub-module is connected to the gate signal end, and the signal output end of the photo-sensing sub-module and the drive sub-module
  • the first signal input end is connected; under the control of the switch signal end and the gate signal end, the photo submodule outputs a touch signal to the driving submodule;
  • the second signal input end of the driving submodule is connected to the reference signal end, and the third signal input end of the driving submodule is respectively connected to the control signal end and the first signal input end of the control submodule, the driving The signal output end of the sub-module is connected to the second signal input end of the control sub-module; the drive sub-module outputs a touch sensing signal to the control sub-module under the control of the touch signal, the touch The control sensing signal decreases as the light intensity of the photosensitive sub-module is increased;
  • the signal output end of the control sub-module is connected to the touch signal reading end; when the control signal end controls the control sub-module to be in an open state, the control sub-module outputs the touch sensing signal to The touch signal reading end.
  • the embodiment of the invention provides an optical in-cell touch panel, which comprises the touch control driving circuit provided by the embodiment of the invention.
  • the embodiment of the invention provides a display device, which comprises an optical in-cell touch screen provided by an embodiment of the invention.
  • the embodiment of the present invention provides a touch driving circuit, an optical embedded touch screen, and a display device.
  • the touch driving circuit includes: a driving submodule, a photo submodule, and a control submodule; wherein, the first signal of the photoreceptor submodule The input end is connected to the switch signal end, the second signal input end of the photoreceptor sub-module is connected to the gate signal end, and the signal output end of the photo-sensing sub-module is connected to the first signal input end of the driving sub-module; the second signal of the driving sub-module The input end is connected to the reference signal end, and the third signal of the driving submodule is The input end is respectively connected to the control signal end and the first signal input end of the control sub-module, and the signal output end of the drive sub-module is connected to the second signal input end of the control sub-module; the signal output end of the control sub-module and the touch signal read Connected to the end.
  • the photosensitive sub-module Under the control of the switch signal end and the gate signal end, the photosensitive sub-module outputs a touch signal to the driving sub-module; the driving sub-module outputs a touch sensing signal to the control sub-module under the control of the touch signal, and the touch sensing signal As the light intensity of the photosensitive sub-module increases, the control sub-module outputs the touch sensing signal to the touch signal reading end to realize the touch. Detection function.
  • the touch driving circuit provided by the embodiment of the present invention uses a control sub-module to control the driving sub-module to output a touch sensing signal to the touch signal reading end, in comparison with the driving circuit of the existing optical in-cell touch panel.
  • FIG. 1 is a schematic structural view of a driving circuit of an optical touch screen in the prior art
  • FIG. 2 is a schematic structural diagram of a touch driving circuit according to an embodiment of the present invention.
  • FIGS. 4a to 4d are circuit timing diagrams of a touch driving circuit according to an embodiment of the present invention. detailed description
  • a touch driving circuit provided by the embodiment of the present invention includes: a photosensitive sub-module 1, a driving sub-module 2, and a control sub-module 3;
  • the first signal input terminal la of the photoreceptor sub-module 1 is connected to the switch signal terminal STV, the photoreceptor sub-module
  • the second signal input terminal 1b of 1 is connected to the gate signal terminal Gate, and the signal output terminal of the photosensor module 1 La, connected to the first signal input terminal 2a of the driving sub-module 2; under the control of the switching signal terminal STV and the gate signal terminal Gate, the photosensitive sub-module 1 outputs a touch signal to the driving sub-module 2;
  • the second signal input terminal 2b of the driving submodule 2 is connected to the reference signal terminal Ref, and the third signal input terminal 2c of the driving submodule 2 is respectively connected to the control signal terminal EN and the first signal input terminal 3a of the control submodule 3, and is driven.
  • the signal output terminal 2a of the sub-module 2 is connected to the second signal input terminal 3b of the control sub-module 3; the driving sub-module 2 outputs a touch sensing signal to the control sub-module 3 under the control of the touch signal, the touch sense
  • the measured signal decreases as the light intensity of the photosensitive sub-module 1 is increased;
  • the signal output terminal 3a of the control sub-module 3 is connected to the touch signal reading terminal Sensor; when the control signal terminal EN controls the control sub-module 3 to be in an open state, the control sub-module 3 outputs the touch sensing signal to the touch signal. Reader Sensor.
  • the touch control circuit controls the driving sub-module to output a touch sensing signal to the touch signal reading end by using the control sub-module as compared with the driving circuit of the existing optical in-line touch screen.
  • the touch signal reading ends of the driving circuits of the respective stages are connected to the same touch signal reading line, the signals outputted by the touch signal reading ends of the driving circuits of different levels can be avoided from being crosstalked, thereby realizing that the touch screen is not added. In the case of the wiring area, the accuracy of the touch signal detection is improved.
  • the photo-sensing sub-module 1 of the above-mentioned touch driving circuit may specifically include: a phototransistor PD-TFT; wherein, the phototransistor PD-TFT The gate is connected to the switching signal terminal STV, the source of the photosensitive transistor PD-TFT is connected to the gate signal terminal Gate, and the drain of the photosensitive transistor PD-TFT is connected to the first signal input terminal of the driving sub-module 2.
  • the phototransistor PD-TFT may be an N-type transistor, as shown in FIG. 3a and FIG. 3d; or, the phototransistor PD-TFT may also be a P-type transistor, as shown in FIG. 3b and FIG. 3c. , there is no limit here.
  • the phototransistor PD-TFT is an N-type transistor, when the signal of the switching signal terminal STV is a high level signal, the phototransistor PD-TFT is turned on; when the phototransistor PD-TFT is a P-type transistor, at the switch When the signal of the signal terminal STV is a low level signal, the phototransistor PD-TFT is turned on.
  • the phototransistor PD-TFT is turned on as long as the phototransistor PD-TFT is illuminated.
  • the touch signal output from the phototransistor PD-TFT to the driving sub-module 2 is related to the light intensity of the light irradiated to the phototransistor PD-TFT.
  • the phototransistor PD-TFT is an N-type transistor, the greater the light intensity, the smaller the touch signal; when the photodiode PD-TFT is a P-type transistor, the greater the light intensity, the larger the touch signal.
  • the driving sub-module 2 may specifically include: a capacitor Cst and a driving transistor T1;
  • the first end X of the capacitor Cst is connected to the control signal terminal EN, and the second end y of the capacitor Cst is respectively connected to the gate of the driving transistor T1 and the signal output end of the photoreceptor submodule 1;
  • the source of the driving transistor T1 is connected to the reference signal terminal Ref, and the drain of the driving transistor T1 is connected to the second signal input terminal of the control sub-module 3.
  • the signal of the reference signal terminal Ref is generally a constant voltage signal, and may specifically be a power signal.
  • the touch sensing signal outputted by the drain of the driving transistor T1 is only related to the touch signal output from the photo sub-module 1 to the gate of the driving transistor T1, and the photoreceptor
  • the touch signal output from the module 1 to the gate of the driving transistor T1 is related to the magnitude of the light intensity irradiated to the photoreceptor sub-module 1. The greater the intensity of the light that is incident on the photoreceptor sub-module 1, the touch sensing of the drain output of the driving transistor T1. The smaller the signal.
  • control sub-module 3 in the touch driving circuit may specifically include: a switching transistor T2; wherein, the gate of the switching transistor T2 The pole is connected to the control signal terminal EN, the source of the switching transistor T2 is connected to the drain of the driving transistor T1, and the drain of the switching transistor T2 is connected to the touch signal reading terminal Sensor.
  • the switching transistor T2 may be an N-type transistor, and the switching transistor T2 may also be a P-type transistor, which is not limited herein.
  • the switching transistor T2 is an N-type transistor, when the signal of the control signal terminal EN is at a high level, the switching transistor T2 is turned on.
  • the switching transistor T2 is a P-type transistor, when the signal of the control signal terminal EN is low, the switching transistor T2 is turned on.
  • the control sub-module 3 is used to control the driving sub-module 2 to output a touch sensing signal to the touch signal reading end sensor, that is, when the switching transistor T2 is in an open state.
  • the touch sensing signal outputted by the driving sub-module 2 is output to the touch signal reading terminal Sensor through the switching transistor T2; when the switching transistor T2 is in the off state, no signal is output to the touch signal reading end sensor.
  • the control sub-module of the first-level driving circuit is turned on.
  • the driving transistor T1 and the switching transistor T2 may be N-type transistors at the same time; or the driving transistor T1 and the switching transistor T2 may be P-type transistors at the same time, which is not limited herein.
  • the driving transistor T1 and the switching transistor T2 are N-type transistors at the same time, when the signal of the control signal terminal EN is at a high level, the switching transistor T2 is turned on, and at the same time, the driving transistor T1 is at a high level when its gate voltage is high. The driving transistor T1 is turned on.
  • the driving transistor T1 and the switching transistor T2 are P-type transistors, when the signal of the control signal terminal EN is low level, the switching transistor T2 is turned on, and at the same time, the driving transistor T1 is low when its gate voltage is low. The driving transistor T1 is in an on state.
  • the driving transistor and the switching transistor may be a thin film transistor (TFT) or a metal oxide semiconductor field effect transistor (MOSFET). , Metal Oxide Semiconductor Field Effect Transistor ), which is not limited here.
  • TFT thin film transistor
  • MOSFET metal oxide semiconductor field effect transistor
  • the source and drain of the transistor used herein are symmetrical, the source and drain are interchangeable.
  • one of the poles is referred to as a source and the other pole is referred to as a drain. If you select the source as a letter The input is the input, then the drain acts as the signal output and vice versa.
  • the photosensitive sub-module 1 is specifically a phototransistor PD-TFT
  • the driving sub-module 2 is specifically a driving transistor T1 and a capacitor Cst
  • the control sub-module 3 is specifically a switching transistor T2
  • the signal of the reference signal terminal Ref is constant voltage and high voltage Flat signal V DD .
  • the phototransistor PD-TFT, the driving transistor T1, and the switching transistor T2 are all N-type transistors.
  • 4a is a circuit timing diagram of FIG. 3a, wherein, in FIG. 4a, the voltage of the switching signal terminal is V STV , the voltage of the gate signal terminal is V Gate , the voltage of the control signal terminal is V EN , and the gate of the driving transistor T1 is present.
  • the touch voltage is V A1
  • the voltage of the gate of the driving transistor T1 is V A2 when there is no touch
  • the voltage of the touch signal reading end sensor is V B1 when there is a touch
  • the voltage of the touch signal reading end sensor when there is no touch.
  • the working principle of the touch driving circuit is as follows:
  • the first phase 1 the voltage V STV of the switching signal terminal and the voltage V Gate of the gate signal terminal are simultaneously at a high level, the phototransistor PD-TFT is in an on state; the voltage of the control signal terminal is at a low level, and the switching transistor T2 is in a off state. .
  • the voltage V Gate of the gate signal terminal is transmitted to the gate of the driving transistor T1 through the turned-on phototransistor PD-TFT.
  • the gate voltage of the driving transistor T1 is slowly increased, the driving transistor T1 is slowly turned on, and the voltage V DD of the reference signal terminal is transmitted to the source of the switching transistor T2 through the turned-on driving transistor T1. pole.
  • the switching transistor T2 since the switching transistor T2 is in the off state, the touch signal reading end sensor has no touch sensing signal output.
  • the second stage 2 the voltage V STV of the switching signal terminal, the voltage V Gate of the gate signal terminal and the voltage V Er ⁇ of the control signal terminal are at a low level, the switching transistor ⁇ 2 is in a closed state, and the touch signal reading end sensor has no touch feeling. Signal output.
  • the phototransistor PD-TFT When the phototransistor PD-TFT is illuminated without touch: At this time, although the voltage V STV of the switching signal terminal is at a low level, the phototransistor PD-TFT generates photo-generated carriers in the active layer under the action of the photoelectric effect. Forming a photocurrent, causing the phototransistor PD-TFT to be in an on state, and the voltage V Gate of the gate signal terminal is at a low level.
  • the gate voltage V A2 of the driving transistor T1 is output to the gate through the phototransistor PD-TFT
  • the gate terminal Gate causes the gate voltage V A2 of the driving transistor T1 to slowly decrease, so that the touch sensing signal outputted by the drain of the driving transistor T1 is also smaller and smaller, and the driving transistor T1 is gradually turned off.
  • the greater the intensity of the light that is incident on the phototransistor PD-TFT the smaller the voltage at the gate of the driving transistor T1.
  • the third stage 3 the voltage V STV of the switching signal terminal and the voltage V Gate of the gate signal terminal are both at a low level, the voltage V EN of the control signal terminal is at a high level, and the switching transistor T2 is in an on state.
  • the phototransistor PD-TFT When the phototransistor PD-TFT has no light, there is a touch: At this time, the high level voltage V EN of the control signal terminal is loaded to the gate of the driving transistor T1 through the capacitor Cst, so that the gate voltage V A1 of the driving transistor T1 is in the original On the basis of continued rise, the drive transistor T1 continues to be on.
  • the touch sensing signal outputted by the driving transistor T1 is input to the touch signal reading terminal Sensor via the switching transistor T2. The larger the gate voltage of the driving transistor T1 is, the larger the touch sensing signal output to the touch signal reading end sensor is.
  • the high-level voltage V EN of the control signal terminal is loaded to the gate of the driving transistor T1 through the capacitor Cst, so that the gate voltage V A2 of the driving transistor T1 is in the original Slowly rising on the basis; the gate voltage of the driving transistor T1 is slowly lowered in the second stage due to the photoelectric effect of the phototransistor PD-TFT, so that the driving transistor T1 is gradually turned off in the second stage, and here third At the stage, the slowly rising gate voltage of the driving transistor T1 causes the driving transistor T1 to be slowly turned on.
  • the driving transistor T1 is turned on to output the touch sensing signal to the switching transistor T2, and the switching transistor T2 inputs the touch sensing signal to the touch signal reading terminal Sensor.
  • the fourth stage 4 the voltage V STV of the switching signal terminal, the voltage V Gate of the gate signal terminal and the voltage V EN of the control signal terminal are all at a low level, the switching transistor T2 is in a closed state, and the output is touched to the touch signal reading end sensor. The sense sensing signal is stopped as the switching transistor T2 is turned off.
  • the touch sensing signal output by the touch signal reading end sensor is larger than the touch sensing signal outputted by the touch signal reading end when there is no touch, and is analyzed by touch
  • the size of the touch sensing signal outputted by the control driving circuit can determine whether the touch screen has a touch, thereby determining the position of the contact, and realizing the function of the touch driving.
  • the phototransistor PD-TFT is a P-type transistor, and the driving transistor T1 and the switching transistor T2 are both N-type transistors.
  • 4b is a circuit timing diagram of FIG. 3b, wherein, in FIG. 4b, the voltage of the switching signal terminal is V STV , the voltage of the gate signal terminal is V Gate , the voltage of the control signal terminal is V EN , and the gate of the driving transistor T1 is present.
  • the touch voltage is V A1
  • the voltage of the gate of the driving transistor T1 is V A2 when there is no touch
  • the voltage of the touch signal reading end sensor is V B1 when there is a touch
  • the voltage of the touch signal reading end sensor when there is no touch.
  • the working principle of the touch driving circuit is as follows:
  • the first stage 1 the voltage of the gate signal terminal V Gate is at a high level, the voltage V STV of the switching signal terminal and the voltage V EN of the control signal terminal are at a low level, the phototransistor PD-TFT is in an on state, and the switching transistor T2 is in a off state. .
  • the voltage at the gate signal terminal is transmitted to the gate of the driving transistor T1 through the turned-on phototransistor PD-TFT.
  • the gate voltage of the driving transistor T1 rises slowly, the driving transistor T1 is slowly turned on, and the voltage V DD of the reference signal terminal is transmitted to the source of the switching transistor T2 through the turned-on driving transistor T1.
  • the switching transistor T2 since the switching transistor T2 is in the off state, the touch signal reading end sensor has no touch sensing signal output.
  • Second stage 2 The voltage of the switching signal terminal V STV is at a high level, and the voltage at the gate signal terminal is V Gate The voltage V Er ⁇ of the control signal terminal is at a low level, the switching transistor ⁇ 2 is in a closed state, and the touch signal reading end sensor has no touch sensing signal output.
  • the phototransistor PD-TFT When the phototransistor PD-TFT has no light, there is a touch: At this time, since the voltage V STV of the switching signal terminal is at a high level, the phototransistor PD-TFT is turned off, and the gate voltage V A1 of the driving transistor T1 is kept at A high potential, the drive transistor T1 is always on.
  • the phototransistor PD-TFT When the phototransistor PD-TFT is illuminated without touch: At this time, although the voltage V STV of the switching signal terminal is at a high level, the phototransistor PD-TFT generates photo-generated carriers in the active layer under the action of the photoelectric effect. Forming a photocurrent, causing the phototransistor PD-TFT to be in an on state, and the voltage V Gate of the gate signal terminal is at a low level.
  • the gate voltage V A2 of the driving transistor T1 is output to the gate through the phototransistor PD-TFT
  • the gate terminal Gate causes the gate voltage V A2 of the driving transistor T1 to slowly decrease, so that the touch sensing signal outputted by the drain of the driving transistor T1 is also smaller and smaller, and the driving transistor T1 is gradually turned off.
  • the greater the intensity of the light that is incident on the phototransistor PD-TFT the smaller the voltage at the gate of the driving transistor T1.
  • the third stage 3 the voltage of the gate signal terminal V Gate is at a low level, the voltage V STV of the switching signal terminal and the voltage V EN of the control signal terminal are at a high level, and the switching transistor T2 is in an on state.
  • the high level signal V EN of the control signal terminal is loaded to the gate of the driving transistor T1 through the capacitor Cst, so that the gate voltage V A2 of the driving transistor T1 is in the original Slowly rising on the basis; the gate voltage of the driving transistor T1 is slowly lowered in the second stage due to the photoelectric effect of the phototransistor PD-TFT, so that the driving transistor T1 is gradually turned off in the second stage, and here third Phase, the voltage of the gate of the driving transistor T1 rises slowly High causes the driving transistor T1 to be slowly turned on.
  • the driving transistor T1 is turned on to output the touch sensing signal to the switching transistor T2, and the switching transistor T2 inputs the touch sensing signal to the touch signal reading terminal Sensor.
  • the fourth stage 4 the voltage V STV of the switching signal terminal is at a high level, the voltage V Gate of the gate signal terminal and the voltage V Er ⁇ of the control signal terminal are at a low level, the switching transistor ⁇ 2 is in a closed state, and the output is read to the touch signal.
  • the touch sensing signal of the terminal sensor stops as the switching transistor T2 is turned off.
  • the touch sensing signal output by the touch signal reading end sensor is larger than the touch sensing signal outputted by the touch signal reading end when there is no touch, and is analyzed by touch
  • the size of the touch sensing signal outputted by the control driving circuit can determine whether the touch screen has a touch, thereby determining the position of the contact, and realizing the function of the touch driving.
  • the phototransistor PD-TFT, the driving transistor T1, and the switching transistor T2 are all P-type transistors.
  • 4c is a circuit timing diagram of FIG. 3c, wherein, in FIG. 4c, the voltage of the switching signal terminal is V STV , the voltage of the gate signal terminal is V Gate , the voltage of the control signal terminal is V EN , and the gate of the driving transistor T1 is present.
  • the touch voltage is V A1
  • the voltage of the gate of the driving transistor T1 is V A2 when there is no touch
  • the voltage of the touch signal reading end sensor is V B1 when there is a touch
  • the voltage of the touch signal reading end sensor when there is no touch.
  • the working principle of the touch driving circuit is as follows:
  • the first stage 1 the voltage V STV of the switching signal terminal and the voltage V Gate of the gate signal terminal are simultaneously at a low level, the phototransistor PD-TFT is in an on state; the voltage V EN of the control signal terminal is at a high level, and the switching transistor T2 is turned off. status.
  • the voltage at the gate signal terminal is transmitted to the gate of the driving transistor T1 through the turned-on phototransistor PD-TFT.
  • the gate voltage of the driving transistor T1 is gradually lowered, the driving transistor T1 is slowly turned on, and the voltage V DD of the reference signal terminal is transmitted to the switching transistor T2 through the driving transistor T1 that is turned on.
  • the source since the switching transistor T2 is in the off state, the touch signal reading end sensor has no touch sensing signal output.
  • the second stage 2 the voltage V STV of the switching signal terminal, the voltage V Gate of the gate signal terminal and the voltage V EN of the control signal terminal are both at a high level, the switching transistor T2 is in a closed state, and the touch signal reading end sensor has no touch feeling. Signal output.
  • the phototransistor PD-TFT When the phototransistor PD-TFT has no light, there is a touch: At this time, since the voltage V STV of the switching signal terminal is at a high level, the phototransistor PD-TFT is turned off, and the gate voltage V A1 of the driving transistor T1 is kept at At a low potential, the driving transistor T1 is always on.
  • the phototransistor PD-TFT When the phototransistor PD-TFT is illuminated without touch: At this time, although the voltage V STV of the switching signal terminal is at a high level, the phototransistor PD-TFT generates photo-generated carriers in the active layer under the action of the photoelectric effect. , a light current, so that the photosensitive transistor PD-TFT is turned on, and the gate terminal voltage V gate signal at a high level, therefore, the gate terminal voltage V gate signal is output through the photo transistor to the driving transistor PD-TFT T1
  • the gate electrode causes the gate voltage V A2 of the driving transistor T1 to rise slowly, so that the touch sensing signal outputted by the drain of the driving transistor T1 is also smaller and smaller, and the driving transistor T1 is gradually turned off. Among them, the higher the light intensity irradiated to the phototransistor PD-TFT, the higher the voltage of the gate of the driving transistor T1.
  • the third stage 3 the voltage V STV of the switching signal terminal and the voltage V Gate of the gate signal terminal are both at a high level, the voltage V EN of the control signal terminal is at a low level, and the switching transistor T2 is in an on state.
  • the phototransistor PD-TFT When the phototransistor PD-TFT has no light, there is a touch: At this time, the low-level voltage V EN of the control signal terminal is loaded to the gate of the driving transistor T1 through the capacitor Cst, so that the gate voltage V A1 of the driving transistor T1 is in the original On the basis of continued reduction, the driving transistor T1 continues to be in an on state.
  • the touch sensing signal outputted by the driving transistor T1 is input to the touch signal reading terminal Sensor via the switching transistor T2. The lower the gate voltage of the driving transistor T1, the larger the touch sensing signal output to the reading end of the touch signal.
  • the low level voltage V EN of the control signal terminal is loaded to the gate of the driving transistor T1 through the capacitor Cst, so that the driving transistor T1 is gated.
  • the voltage V A2 is slowly lowered on the basis of the original; the gate voltage of the driving transistor T1 is slowly increased in the second stage due to the photoelectric effect of the phototransistor PD-TFT, so that the driving transistor T1 is gradually turned off in the second stage.
  • the slow decrease of the gate voltage of the driving transistor T1 causes the driving transistor T1 to be slowly turned on.
  • the driving transistor T1 is turned on to output the touch sensing signal to the switching transistor T2, and the switching transistor T2 inputs the touch sensing signal to the touch signal reading terminal Sensor.
  • the fourth stage 4 the voltage of the switching signal terminal V STV , the voltage of the gate signal terminal V Gate and the voltage of the control signal terminal V EN are both at a high level, the switching transistor T2 is in a closed state, and the output is touched to the touch signal reading end sensor. The sense sensing signal is stopped as the switching transistor T2 is turned off.
  • the touch sensing signal output by the touch signal reading end sensor is larger than the touch sensing signal outputted by the touch signal reading end when there is no touch, and is analyzed by touch
  • the size of the touch sensing signal outputted by the control driving circuit can determine whether the touch screen has a touch, thereby determining the position of the contact, and realizing the function of the touch driving.
  • the phototransistor PD-TFT is an N-type transistor, and the driving transistor T1 and the switching transistor T2 are both P-type transistors.
  • 4d is a circuit timing diagram of FIG. 3d, wherein, in FIG. 4d, the voltage of the switching signal terminal is V STV , the voltage of the gate signal terminal is V Gate , the voltage of the control signal terminal is V EN , and the gate of the driving transistor T1 is present.
  • the touch voltage is V A1
  • the voltage of the gate of the driving transistor T1 is V A2 when there is no touch
  • the voltage of the touch signal reading end sensor is V B1 when there is a touch
  • the voltage of the touch signal reading end sensor when there is no touch.
  • the working principle of the touch driving circuit is as follows:
  • the first phase 1 the voltage of the gate signal terminal V Gate is at a low level, the voltage of the switching signal terminal V STV is at a high level, the phototransistor PD-TFT is in an on state; the voltage of the control signal terminal V EN is at a high level, the switching transistor T2 is off.
  • the voltage at the gate signal terminal will be The phototransistor PD-TFT is turned on to the gate of the driving transistor T1, and due to the action of the capacitor Cst, the gate voltage of the driving transistor T1 is gradually lowered, the driving transistor T1 is slowly turned on, and the voltage V of the reference signal terminal is gradually turned on.
  • the DD is transmitted to the source of the switching transistor T2 through the turned-on driving transistor T1.
  • the touch signal reading end sensor has no touch sensing signal output.
  • the second stage 2 the voltage V STV of the switch signal terminal is at a low level, the voltage V Gate of the gate signal terminal and the voltage V Er ⁇ of the control signal terminal are at a high level, the switching transistor ⁇ 2 is in a closed state, and the touch signal reading end sensor There is no touch sensing signal output.
  • the phototransistor PD-TFT When the phototransistor PD-TFT has no light, there is a touch: At this time, since the voltage V STV of the switching signal terminal is at a low level, the phototransistor PD-TFT is turned off, and the gate voltage V A1 of the driving transistor T1 is kept at At a low potential, the driving transistor T1 is always on.
  • the phototransistor PD-TFT When the phototransistor PD-TFT is illuminated without touch: At this time, although the voltage V STV of the switching signal terminal is at a low level, the phototransistor PD-TFT generates photo-generated carriers in the active layer under the action of the photoelectric effect. , photocurrent is formed, the TFT-photosensitive transistor is on the PD, and, since the gate voltage V gate signal terminal is at high level, therefore, the gate voltage V gate signal terminal is output to the driving transistor the TFT through the photo-transistor the PD
  • the gate of T1 causes the gate voltage V A2 of the driving transistor T1 to rise slowly, so that the touch sensing signal outputted by the drain of the driving transistor T1 is also smaller and smaller, and the driving transistor T1 is gradually turned off. Among them, the higher the light intensity irradiated to the phototransistor PD-TFT, the higher the voltage of the gate of the driving transistor T1.
  • the third stage 3 the voltage of the gate signal terminal V Gate is at a high level, the voltage at the switching signal terminal
  • the voltage V EN of the V STV and the control signal terminal is at a low level, and the switching transistor T2 is in an on state.
  • the phototransistor PD-TFT When the phototransistor PD-TFT has no light, there is a touch: At this time, the low-level voltage V EN of the control signal terminal is loaded to the gate of the driving transistor T1 through the capacitor Cst, so that the gate voltage V A1 of the driving transistor T1 is in the original On the basis of continued reduction, the driving transistor T1 continues to be in an on state.
  • the touch sensing signal outputted by the driving transistor T1 is input to the touch signal reading end via the switching transistor T2.
  • the low-level voltage V EN of the control signal terminal is loaded to the gate of the driving transistor T1 through the capacitor Cst, so that the gate voltage V A2 of the driving transistor T1 is in the original Slowly decreasing on the basis; the gate voltage of the driving transistor T1 is slowly increased in the second stage due to the photoelectric effect of the phototransistor PD-TFT, so that the driving transistor T1 is gradually turned off in the second stage, and here third At the stage, the slow decrease of the gate voltage of the driving transistor T1 causes the driving transistor T1 to be slowly turned on.
  • the driving transistor T1 is turned on to output the touch sensing signal to the switching transistor T2, and the switching transistor T2 inputs the touch sensing signal to the touch signal reading terminal Sensor.
  • the fourth stage 4 the voltage V STV of the switching signal terminal is at a low level, the voltage V Gate of the gate signal terminal and the voltage V EN of the control signal terminal are both at a high level, the switching transistor T2 is in a closed state, and the output is read to a touch signal.
  • the touch sensing signal of the terminal sensor stops as the switching transistor T2 is turned off.
  • the touch sensing signal output by the touch signal reading end sensor is larger than the touch sensing signal outputted by the touch signal reading end when there is no touch, and is analyzed by touch
  • the size of the touch sensing signal outputted by the control driving circuit can determine whether the touch screen has a touch, thereby determining the position of the contact, and realizing the function of the touch driving.
  • an embodiment of the present invention further provides an optical in-cell touch panel, including the touch driving circuit provided by the embodiment of the present invention, and the principle of solving the problem by the optical in-cell touch panel and the foregoing touch
  • the driving circuit is similar. Therefore, the implementation of the optical in-cell touch panel can be referred to the implementation of the touch driving circuit, and the repeated description is omitted.
  • an embodiment of the present invention further provides a display device, including the above-mentioned optical in-cell touch screen provided by the embodiment of the present invention, which may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, Any product or component that has a display function such as a digital photo frame or a navigator.
  • a display device including the above-mentioned optical in-cell touch screen provided by the embodiment of the present invention, which may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, Any product or component that has a display function such as a digital photo frame or a navigator.
  • Other indispensable components of the display device are understood by those skilled in the art, and are not described herein, nor should they be construed as limiting the invention.
  • a touch driving circuit, an optical embedded touch screen and a display device are provided in the embodiment of the present invention.
  • the touch driving circuit includes: a driving submodule, a photosensitive submodule, and a control submodule; wherein, the first signal of the photoreceptor submodule The input end is connected to the switch signal end, the second signal input end of the photoreceptor sub-module is connected to the gate signal end, and the signal output end of the photo-sensing sub-module is connected to the first signal input end of the driving sub-module; the second signal of the driving sub-module The input end is connected to the reference signal end, and the third signal input end of the driving submodule is respectively connected to the control signal end and the first signal input end of the control submodule, and the signal output end of the driving submodule and the second signal input of the control submodule The terminal is connected; the signal output end of the control submodule is connected to the touch signal reading end.
  • the photosensitive sub-module Under the control of the switch signal end and the gate signal end, the photosensitive sub-module outputs a touch signal to the driving sub-module; the driving sub-module outputs a touch sensing signal to the control sub-module under the control of the touch signal, and the touch sensing signal As the light intensity of the photosensitive sub-module increases, the control sub-module outputs the touch sensing signal to the touch signal reading end to realize the touch. Detection function.
  • the touch driving circuit provided by the embodiment of the invention controls the touch sensing signal outputted by the driving sub-module by using the control sub-module, and the touch of each driving circuit is used.
  • the signals outputted by the touch signal reading ends of different levels of driving circuits can be prevented from crosstalking each other, thereby realizing the improvement of the touch screen without increasing the wiring area of the touch screen.
  • the accuracy of the control signal detection It is within the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and modifications of the embodiments of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electronic Switches (AREA)

Abstract

本发明的实施例公开了一种触控驱动电路、光学式内嵌触摸屏及显示装置,该触控驱动电路包括:驱动子模块、感光子模块以及控制子模块。在开关信号端和栅极信号端的控制下,感光子模块输出触控信号到驱动子模块;驱动子模块在触控信号的控制下向控制子模块输出触控感测信号,触控感测信号随着照射到感光子模块光强的增大而减小;在控制信号端控制控制子模块开启时,控制子模块将触控感测信号输出到触控信号读取端,实现触控功能。与现有光学式内嵌触摸屏的驱动电路相比,采用控制子模块控制驱动子模块向触控信号读取端输出触控感测信号,在将各级驱动电路的触控信号读取端与同一根触控信号读取线连接时,可以避免不同级驱动电路输出的信号相互串扰。

Description

触控驱动电路、 光学式内嵌触 ^及显示装置 技术领域
本发明涉及触摸屏技术领域, 尤其涉及一种触控驱动电路、 光学式内嵌触 摸屏及显示装置。 背景技术
随着显示技术的飞速发展, 触摸屏( Touch Screen Panel ) 已经逐渐遍及人 们的生活中。 目前, 内嵌式触摸屏(In Cell Touch Panel ) 由于将触控部件内嵌 在显示屏内部,可以减薄模组整体的厚度,又可以大大降低触摸屏的制作成本, 受到各大面板厂家的青睐。 因此, 内嵌式触摸屏的驱动方式也成为人们研究触 摸展的热点。
现有的光学式触摸屏的驱动电路是由用以实现触控功能的多级驱动电路 组成。 具体地, 每一级驱动电路如图 1所示, 包括: 光电二极管 PD、 电容 Cst、 第一晶体管 Ml和第二晶体管 M2; 其中, 电容 Cst的第一端 cl与恒压信号端 RWS相连, 电容的第二端 c2分别与光电二极管 PD的第一端 pi和第一晶体管 Ml的栅极相连; 光电二极管 PD的第二端 p2与控制信号端 RST相连; 第一晶 体管 Ml的源极与高电平信号端 VDD相连, 第一晶体管 Ml的漏极分别与第 二晶体管 M2的源极和读取信号端 Sensor相连; 第二晶体管 M2的栅极与复位 信号端 VB相连, 第二晶体管 M2的漏极与低电平信号端 VSS相连。
在上述现有的光学式触摸屏的驱动电路中, 若将各级驱动电路的触控信号 读取端连接到同一根触控信号读取线上, 则不同级驱动电路的触控信号读取端 输出的信号相互会发生串扰, 从而影响触摸屏触控信号检测的准确率; 若对各 级驱动电路的触控信号读取端分别配置触控信号读取线, 则又会使触摸屏中布 线面积增大。 发明内容
本发明实施例提供了一种触控驱动电路、 光学式内嵌触摸屏及显示装置, 用以实现在不增加触控布线面积的情况下, 提高触控信号检测的准确率。
本发明实施例提供了一种触控驱动电路, 包括: 感光子模块、驱动子模块、 以及控制子模块; 其中,
所述感光子模块的第一信号输入端与开关信号端相连, 所述感光子模块的 第二信号输入端与栅极信号端相连, 所述感光子模块的信号输出端与所述驱动 子模块的第一信号输入端相连; 在所述开关信号端和所述栅极信号端的控制 下, 所述感光子模块输出触控信号到所述驱动子模块;
所述驱动子模块的第二信号输入端与参考信号端相连, 所述驱动子模块的 第三信号输入端分别与控制信号端和所述控制子模块的第一信号输入端相连, 所述驱动子模块的信号输出端与所述控制子模块的第二信号输入端相连; 所述 驱动子模块在所述触控信号的控制下向所述控制子模块输出触控感测信号, 所 述触控感测信号随着照射到所述感光子模块光强的增大而减小;
所述控制子模块的信号输出端与触控信号读取端相连; 在所述控制信号端 控制所述控制子模块处于开启状态时, 所述控制子模块将所述触控感测信号输 出到所述触控信号读取端。
本发明实施例提供了一种光学式内嵌触摸屏, 包括本发明实施例提供的触 控驱动电路。
本发明实施例提供了一种显示装置, 包括本发明实施例提供的光学式内嵌 触摸屏。
本发明实施例提供了一种触控驱动电路、 光学式内嵌触摸屏及显示装置, 该触控驱动电路包括: 驱动子模块、 感光子模块以及控制子模块; 其中, 感光 子模块的第一信号输入端与开关信号端相连, 感光子模块的第二信号输入端与 栅极信号端相连, 感光子模块的信号输出端与驱动子模块的第一信号输入端相 连; 驱动子模块的第二信号输入端与参考信号端相连, 驱动子模块的第三信号 输入端分别与控制信号端和控制子模块的第一信号输入端相连, 驱动子模块的 信号输出端与控制子模块的第二信号输入端相连; 控制子模块的信号输出端与 触控信号读取端相连。 在开关信号端和栅极信号端的控制下, 感光子模块输出 触控信号到驱动子模块; 驱动子模块在触控信号的控制下向控制子模块输出触 控感测信号, 触控感测信号随着照射到感光子模块光强的增大而减小; 在控制 信号端控制控制子模块处于开启状态时,控制子模块将触控感测信号输出到触 控信号读取端, 实现触控侦测功能。 与现有的光学式内嵌触摸屏的驱动电路相 比, 本发明实施例提供的触控驱动电路采用控制子模块控制驱动子模块向触控 信号读取端输出触控感测信号,在将各级驱动电路的触控信号读取端连接到同 一根触控信号读取线上时, 可以避免不同级驱动电路的触控信号读取端输出的 信号相互串扰, 实现了在不增加触摸屏布线面积的情况下, 提高触控信号检测 的准确率。 附图说明
图 1为现有技术中光学式触摸屏的驱动电路的结构示意图;
图 2为本发明实施例提供的触控驱动电路的结构示意图;
图 3a至图 3d为本发明实施例提供的触控驱动电路的具体结构示意图; 图 4a至图 4d为本发明实施例提供的触控驱动电路的电路时序图。 具体实施方式
下面结合附图, 对本发明实施例提供的触控驱动电路、 光学式内嵌触摸屏 及显示装置的具体实施方式进行详细地说明。
本发明实施例提供的一种触控驱动电路, 如图 2所示, 包括: 感光子模块 1、 驱动子模块 2、 以及控制子模块 3; 其中,
感光子模块 1的第一信号输入端 la与开关信号端 STV相连, 感光子模块
1的第二信号输入端 lb与栅极信号端 Gate相连, 感光子模块 1的信号输出端 la,与驱动子模块 2的第一信号输入端 2a相连;在开关信号端 STV和栅极信号 端 Gate的控制下, 感光子模块 1输出触控信号到驱动子模块 2;
驱动子模块 2的第二信号输入端 2b与参考信号端 Ref相连,驱动子模块 2 的第三信号输入端 2c分别与控制信号端 EN和控制子模块 3的第一信号输入端 3a相连, 驱动子模块 2的信号输出端 2a,与控制子模块 3的第二信号输入端 3b 相连; 驱动子模块 2在触控信号的控制下向控制子模块 3输出触控感测信号, 该触控感测信号随着照射到感光子模块 1光强的增大而减小;
控制子模块 3的信号输出端 3a,与触控信号读取端 Sensor相连; 在控制信 号端 EN控制控制子模块 3处于开启状态时, 控制子模块 3将触控感测信号输 出到触控信号读取端 Sensor。
本发明实施例提供的上述触控驱动电路, 与现有的光学式内嵌触摸屏的驱 动电路相比,采用控制子模块控制驱动子模块向触控信号读取端输出触控感测 信号, 在将各级驱动电路的触控信号读取端连接到同一根触控信号读取线上 时, 可以避免不同级驱动电路的触控信号读取端输出的信号相互串扰, 实现了 在不增加触摸屏布线面积的情况下, 提高触控信号检测的准确率。
在具体实施时,本发明实施例提供的上述触控驱动电路中的感光子模块 1 , 如图 3a至图 3d所示, 可以具体包括: 感光晶体管 PD-TFT; 其中, 感光晶体 管 PD-TFT的栅极与开关信号端 STV相连,感光晶体管 PD-TFT的源极与栅极 信号端 Gate相连,感光晶体管 PD-TFT的漏极与驱动子模块 2的第一信号输入 端相连。
进一步地, 在具体实施时, 感光晶体管 PD-TFT可以为 N型晶体管, 如图 3a和图 3d所示; 或者, 感光晶体管 PD-TFT也可以为 P型晶体管, 如图 3b和 图 3c所示, 在此不做限定。 当感光晶体管 PD-TFT为 N型晶体管时, 在开关 信号端 STV的信号为高电平信号时,感光晶体管 PD-TFT会处于开启状态; 当 感光晶体管 PD-TFT为 P型晶体管时, 在开关信号端 STV的信号为低电平信 号时, 感光晶体管 PD-TFT会处于开启状态。 需要注意的是, 无论感光晶体管 PD-TFT的栅极为高电平还是低电平, 只 要感光晶体管 PD-TFT有光照射时, 感光晶体管 PD-TFT都会处于开启状态。
当感光晶体管 PD-TFT是由于光照射处于开启状态时,感光晶体管 PD-TFT 输出到驱动子模块 2的触控信号与光照射到感光晶体管 PD-TFT的光强有关。 当感光晶体管 PD-TFT为 N型晶体管时, 光强越大, 触控信号越小; 当感光晶 体管 PD-TFT为 P型晶体管时,光强越大, 触控信号越大。
具体地, 在具体实施时, 在本发明实施例提供的上述触控驱动电路中, 驱 动子模块 2如图 3a至图 3d所示, 可以具体包括: 电容 Cst和驱动晶体管 T1; 其中,
电容 Cst的第一端 X与控制信号端 EN相连, 电容 Cst的第二端 y分别与 驱动晶体管 T1的栅极和感光子模块 1的信号输出端相连;
驱动晶体管 T1的源极与参考信号端 Ref相连,驱动晶体管 T1的漏极与控 制子模块 3的第二信号输入端相连。
进一步地, 在具体实施时, 参考信号端 Ref的信号一般为恒压信号, 具体 可以为电源信号。 这样, 由于输入到驱动晶体管 T1源极的电压为恒定值, 驱 动晶体管 T1漏极输出的触控感测信号仅与感光子模块 1输出到驱动晶体管 T1 栅极的触控信号有关, 而感光子模块 1输出到驱动晶体管 T1栅极的触控信号 又与照射到感光子模块 1光强的大小有关, 照射到感光子模块 1的光强越大, 驱动晶体管 T1漏极输出的触控感测信号越小。
具体地, 在具体实施时, 在本发明实施例提供的触控驱动电路中的控制子 模块 3, 如图 3a至图 3d所示, 可以具体包括: 开关晶体管 T2; 其中, 开关晶 体管 T2的栅极与控制信号端 EN相连, 开关晶体管 T2的源极与驱动晶体管 T1的漏极相连, 开关晶体管 T2的漏极与触控信号读取端 Sensor相连。
需要注意的是, 在具体实施时, 开关晶体管 T2可以为 N型晶体管, 开关 晶体管 T2也可以为 P型晶体管, 在此不做限定。 当开关晶体管 T2为 N型晶 体管时, 在控制信号端 EN的信号为高电平时, 开关晶体管 T2会处于开启状 态; 当开关晶体管 T2为 P型晶体管时, 在控制信号端 EN的信号为低电平时, 开关晶体管 T2会处于开启状态。
进一步地, 在本发明实施例提供的触控驱动电路中, 采用控制子模块 3控 制驱动子模块 2向触控信号读取端 Sensor输出触控感测信号,即在开关晶体管 T2处于开启状态时, 驱动子模块 2输出的触控感测信号才会经开关晶体管 T2 输出到触控信号读取端 Sensor; 在开关晶体管 T2处于关闭状态时, 没有信号 输出到触控信号读取端 Sensor。 这样, 在多个上述触控驱动电路组成的多级驱 动电路中, 各级驱动电路的触控信号读取端连接同一根触控信号读取线时, 其 中一级驱动电路的控制子模块开启时, 其他级驱动电路的控制子模块关闭, 仅 有该级驱动电路的触控信号读取端输出信号, 不会受到其他级驱动电路输出信 号的影响, 避免了不同级驱动电路的触控信号读取端输出的信号相互串扰, 实 现了在不增加触摸屏布线面积的情况下, 提高触控信号检测的准确率。
进一步地,在具体实施时,驱动晶体管 T1与开关晶体管 T2可以同时为 N 型晶体管; 或者, 驱动晶体管 T1与开关晶体管 T2也可以同时为 P型晶体管, 在此不做限定。 当驱动晶体管 T1与开关晶体管 T2同时为 N型晶体管时, 在 控制信号端 EN的信号为高电平时, 开关晶体管 T2才会处于开启状态, 同时, 驱动晶体管 T1在其栅极电压为高电平时, 驱动晶体管 T1才会处于开启状态。 当驱动晶体管 T1与开关晶体管 T2为 P型晶体管时,在控制信号端 EN的信号 为低电平时, 开关晶体管 T2才会处于开启状态, 同时, 驱动晶体管 T1在其栅 极电压为低电平时, 驱动晶体管 T1才会处于开启状态。
需要说明的是, 在本发明实施例提供的触控驱动电路中, 提到的驱动晶体 管和开关晶体管可以是薄膜晶体管 (TFT, Thin Film Transistor ), 也可以是金 属氧化物半导体场效应管 ( MOSFET, Metal Oxide Semiconductor Field Effect Transistor ), 在此不做限定。 此外, 由于这里采用的晶体管的源极、 漏极是对 称的, 所以其源极、 漏极是可以互换的。 在本发明实施例中, 为区分晶体管除 栅极之外的两极, 将其中一极称为源极, 另一极称为漏极。 若选取源极作为信 号输入端、 则漏极作为信号输出端, 反之亦然。
下面通过几个具体实例对本发明实施例提供的触控驱动电路的具体工作 原理进行详细说明。 在实例中, 感光子模块 1具体为感光晶体管 PD-TFT, 驱 动子模块 2具体为驱动晶体管 T1和电容 Cst,控制子模块 3具体为开关晶体管 T2; 参考信号端 Ref的信号为恒压高电平信号 VDD
实例一:
如图 3a所示,感光晶体管 PD-TFT、驱动晶体管 T1和开关晶体管 T2均为 N型晶体管。 图 4a为图 3a的电路时序图, 其中, 在图 4a中, 开关信号端的电 压为 VSTV, 栅极信号端的电压为 VGate, 控制信号端的电压为 VEN, 驱动晶体管 T1的栅极在有触摸时电压为 VA1, 驱动晶体管 T1的栅极在无触摸时电压为 VA2, 触控信号读取端 Sensor在有触摸时电压为 VB1, 触控信号读取端 Sensor 在无触摸时电压为 VB2
具体地, 触控驱动电路的工作原理如下:
第一阶段 1: 开关信号端的电压 VSTV和栅极信号端的电压 VGate同时处于 高电平, 感光晶体管 PD-TFT处于开启状态; 控制信号端的电压 ^处于低电 平, 开关晶体管 T2处于关闭状态。 在此阶段中, 无论感光晶体管 PD-TFT有 无触摸, 即有无外部光线照射感光晶体管 PD-TFT, 栅极信号端的电压 VGate都 会通过开启的感光晶体管 PD-TFT传输到驱动晶体管 T1的栅极处, 并且由于 电容 Cst的作用, 驱动晶体管 T1的栅极电压会慢慢的升高, 驱动晶体管 T1慢 慢开启, 参考信号端的电压 VDD通过开启的驱动晶体管 T1传输到开关晶体管 T2的源极。 然而, 由于开关晶体管 T2处于关闭状态, 触控信号读取端 Sensor 没有触控感测信号输出。
第二阶段 2: 开关信号端的电压 VSTV、栅极信号端的电压 VGate和控制信号 端的电压 VEr^ 处于低电平, 开关晶体管 Τ2处于关闭状态, 触控信号读取端 Sensor没有触控感测信号输出。
当感光晶体管 PD-TFT无光照即有触摸时: 此时, 由于开关信号端的电压 VSTV处于低电平, 感光晶体管 PD-TFT会处于关闭状态, 驱动晶体管 T1的栅 极电压 VA1会保持在一个高电位, 驱动晶体管 T1一直处于开启状态。
当感光晶体管 PD-TFT有光照即无触摸时: 此时, 虽然开关信号端的电压 VSTV处于低电平,但感光晶体管 PD-TFT在光电效应的作用下其活性层中会产 生光生载流子, 形成光电流, 使感光晶体管 PD-TFT处于开启状态, 并且, 栅 极信号端的电压 VGate处于低电平, 因此, 驱动晶体管 T1的栅极电压 VA2会经 过感光晶体管 PD-TFT输出到栅极信号端 Gate, 使驱动晶体管 T1的栅极电压 VA2緩慢降低,从而导致由驱动晶体管 T1的漏极输出的触控感测信号也越来越 小, 驱动晶体管 T1渐渐处于关闭状态。 其中, 照射到感光晶体管 PD-TFT的 光强越大, 驱动晶体管 T1栅极的电压越小。
第三阶段 3: 开关信号端的电压 VSTV和栅极信号端的电压 VGate均处于低 电平, 控制信号端的电压 VEN处于高电平, 开关晶体管 T2处于开启状态。
当感光晶体管 PD-TFT无光照即有触摸时: 此时, 控制信号端的高电平电 压 VEN会通过电容 Cst加载到驱动晶体管 T1的栅极,使驱动晶体管 T1的栅极 电压 VA1在原有的基础上继续上升, 驱动晶体管 T1继续处于开启状态。 驱动 晶体管 T1输出的触控感测信号经开关晶体管 T2输入到触控信号读取端 Sensor。 驱动晶体管 T1的栅极电压越大, 输出到触控信号读取端 Sensor的触 控感测信号越大。
当感光晶体管 PD-TFT有光照即无触摸时: 此时, 控制信号端的高电平电 压 VEN会通过电容 Cst加载到驱动晶体管 T1的栅极,使驱动晶体管 T1栅极电 压 VA2在原有的基础上緩慢升高; 驱动晶体管 T1的栅极电压在第二阶段由于 感光晶体管 PD-TFT的光电效应的作用而緩慢降低, 使驱动晶体管 T1在第二 阶段渐渐处于关闭状态, 而在此第三阶段, 驱动晶体管 T1栅极电压的慢慢升 高使驱动晶体管 T1慢慢处于开启状态。开启的驱动晶体管 T1输出触控感测信 号到开关晶体管 T2, 开关晶体管 T2将该触控感测信号输入到触控信号读取端 Sensor。照射到感光晶体管 PD-TFT的光强越大,驱动晶体管 T1栅极的电压越 小, 触控感测信号越小。
第四阶段 4: 开关信号端的电压 VSTV、栅极信号端的电压 VGate和控制信号 端的电压 VEN均处于低电平, 开关晶体管 T2处于关闭状态, 输出到触控信号 读取端 Sensor的触控感测信号随着开关晶体管 T2的关闭而停止。
综上, 上述触控驱动电路在有触摸时,触控信号读取端 Sensor输出的触控 感测信号比在无触摸时触控信号读取端输出的触控感测信号大, 通过分析触控 驱动电路输出的触控感测信号大小可以确定触摸屏有无触摸, 进而确定出触点 的位置, 实现了触控驱动的功能。
实例二:
如图 3b所示, 感光晶体管 PD-TFT为 P型晶体管, 驱动晶体管 T1和开关 晶体管 T2均为 N型晶体管。 图 4b为图 3b的电路时序图, 其中, 在图 4b中, 开关信号端的电压为 VSTV, 栅极信号端的电压为 VGate, 控制信号端的电压为 VEN, 驱动晶体管 T1的栅极在有触摸时电压为 VA1, 驱动晶体管 T1的栅极在 无触摸时电压为 VA2, 触控信号读取端 Sensor在有触摸时电压为 VB1, 触控信 号读取端 Sensor在无触摸时电压为 VB2
具体地, 触控驱动电路的工作原理如下:
第一阶段 1:栅极信号端的电压 VGate处于高电平,开关信号端的电压 VSTV 和控制信号端的电压 VEN处于低电平, 感光晶体管 PD-TFT处于开启状态, 开 关晶体管 T2处于关闭状态。 在此阶段中, 无论感光晶体管 PD-TFT有无触摸, 即有无外部光线照射感光晶体管 PD-TFT, 栅极信号端的电压都会通过开启的 感光晶体管 PD-TFT传输到驱动晶体管 T1的栅极处, 并且由于电容 Cst的作 用, 驱动晶体管 T1的栅极电压会隄慢的升高, 驱动晶体管 T1慢慢开启, 参考 信号端的电压 VDD通过开启的驱动晶体管 T1传输到开关晶体管 T2的源极。然 而, 由于开关晶体管 T2处于关闭状态, 触控信号读取端 Sensor没有触控感测 信号输出。
第二阶段 2: 开关信号端的电压 VSTV处于高电平,栅极信号端的电压 VGate 和控制信号端的电压 VEr^ 处于低电平, 开关晶体管 Τ2处于关闭状态, 触控 信号读取端 Sensor没有触控感测信号输出。
当感光晶体管 PD-TFT无光照即有触摸时: 此时, 由于开关信号端的电压 VSTV处于高电平, 感光晶体管 PD-TFT会处于关闭状态, 驱动晶体管 T1的栅 极电压 VA1会保持在一个高电位, 驱动晶体管 T1一直处于开启状态。
当感光晶体管 PD-TFT有光照即无触摸时: 此时, 虽然开关信号端的电压 VSTV处于高电平,但感光晶体管 PD-TFT在光电效应的作用下其活性层中会产 生光生载流子, 形成光电流, 使感光晶体管 PD-TFT处于开启状态, 并且, 栅 极信号端的电压 VGate处于低电平, 因此, 驱动晶体管 T1的栅极电压 VA2会经 过感光晶体管 PD-TFT输出到栅极信号端 Gate, 使驱动晶体管 T1的栅极电压 VA2緩慢降低,从而导致由驱动晶体管 T1的漏极输出的触控感测信号也越来越 小, 驱动晶体管 T1渐渐处于关闭状态。 其中, 照射到感光晶体管 PD-TFT的 光强越大, 驱动晶体管 T1栅极的电压越小。
第三阶段 3:栅极信号端的电压 VGate处于低电平,开关信号端的电压 VSTV 和控制信号端的电压 VEN处于高电平, 开关晶体管 T2处于开启状态。
当感光晶体管 PD-TFT无光照即有触摸时: 此时, 控制信号端的高电平电 压 VEN会通过电容 Cst加载到驱动晶体管 T1的栅极,使驱动晶体管 T1的栅极 电压 VA1在原有的基础上继续上升, 驱动晶体管 T1继续处于开启状态。 驱动 晶体管 T1输出的触控感测信号经开关晶体管 T2输入到触控信号读取端
Sensor。 驱动晶体管 T1的栅极电压越大, 输出到触控信号读取端 Sensor的触 控感测信号越大。
当感光晶体管 PD-TFT有光照即无触摸时: 此时, 控制信号端的高电平信 号 VEN会通过电容 Cst加载到驱动晶体管 T1的栅极,使驱动晶体管 T1栅极电 压 VA2在原有的基础上緩慢升高; 驱动晶体管 T1的栅极电压在第二阶段由于 感光晶体管 PD-TFT的光电效应的作用而緩慢降低, 使驱动晶体管 T1在第二 阶段渐渐处于关闭状态, 而在此第三阶段, 驱动晶体管 T1栅极电压的慢慢升 高使驱动晶体管 T1慢慢处于开启状态。开启的驱动晶体管 T1输出触控感测信 号到开关晶体管 T2, 开关晶体管 T2将该触控感测信号输入到触控信号读取端 Sensor。照射到感光晶体管 PD-TFT的光强越大,驱动晶体管 T1栅极的电压越 小, 触控感测信号越小。
第四阶段 4: 开关信号端的电压 VSTV处于高电平,栅极信号端的电压 VGate 和控制信号端的电压 VEr^ 处于低电平, 开关晶体管 Τ2处于关闭状态, 输出 到触控信号读取端 Sensor的触控感测信号随着开关晶体管 T2的关闭而停止。
综上, 上述触控驱动电路在有触摸时,触控信号读取端 Sensor输出的触控 感测信号比在无触摸时触控信号读取端输出的触控感测信号大, 通过分析触控 驱动电路输出的触控感测信号大小可以确定触摸屏有无触摸, 进而确定出触点 的位置, 实现了触控驱动的功能。
实例三:
如图 3c所示,感光晶体管 PD-TFT、驱动晶体管 T1和开关晶体管 T2均为 P型晶体管。 图 4c为图 3c的电路时序图, 其中, 在图 4c中, 开关信号端的电 压为 VSTV, 栅极信号端的电压为 VGate, 控制信号端的电压为 VEN, 驱动晶体管 T1的栅极在有触摸时电压为 VA1, 驱动晶体管 T1的栅极在无触摸时电压为 VA2, 触控信号读取端 Sensor在有触摸时电压为 VB1, 触控信号读取端 Sensor 在无触摸时电压为 VB2
具体地, 触控驱动电路的工作原理如下:
第一阶段 1: 开关信号端的电压 VSTV和栅极信号端的电压 VGate同时处于 低电平, 感光晶体管 PD-TFT处于开启状态; 控制信号端的电压 VEN处于高电 平, 开关晶体管 T2处于关闭状态。 在此阶段中, 无论感光晶体管 PD-TFT有 无触摸, 即有无外部光线照射感光晶体管 PD-TFT, 栅极信号端的电压都会通 过开启的感光晶体管 PD-TFT传输到驱动晶体管 T1的栅极处, 并且由于电容 Cst的作用, 驱动晶体管 T1的栅极电压会慢慢的降低, 驱动晶体管 T1慢慢开 启, 参考信号端的电压 VDD通过开启的驱动晶体管 T1传输到开关晶体管 T2 的源极。 然而, 由于开关晶体管 T2处于关闭状态, 触控信号读取端 Sensor没 有触控感测信号输出。
第二阶段 2: 开关信号端的电压 VSTV、栅极信号端的电压 VGate和控制信号 端的电压 VEN均处于高电平, 开关晶体管 T2处于关闭状态, 触控信号读取端 Sensor没有触控感测信号输出。
当感光晶体管 PD-TFT无光照即有触摸时: 此时, 由于开关信号端的电压 VSTV处于高电平, 感光晶体管 PD-TFT会处于关闭状态, 驱动晶体管 T1的栅 极电压 VA1会保持在一个低电位, 驱动晶体管 T1一直处于开启状态。
当感光晶体管 PD-TFT有光照即无触摸时: 此时, 虽然开关信号端的电压 VSTV处于高电平,但感光晶体管 PD-TFT在光电效应的作用下其活性层中会产 生光生载流子, 形成光电流, 使感光晶体管 PD-TFT处于开启状态, 并且, 栅 极信号端的电压 VGate处于高电平, 因此, 栅极信号端的电压 VGate会经过感光 晶体管 PD-TFT输出到驱动晶体管 T1的栅极, 使驱动晶体管 T1的栅极电压 VA2緩慢升高,从而导致由驱动晶体管 T1的漏极输出的触控感测信号也越来越 小, 驱动晶体管 T1渐渐处于关闭状态。 其中, 照射到感光晶体管 PD-TFT的 光强越大, 驱动晶体管 T1栅极的电压越高。
第三阶段 3: 开关信号端的电压 VSTV和栅极信号端的电压 VGate均处于高 电平, 控制信号端的电压 VEN处于低电平, 开关晶体管 T2处于开启状态。
当感光晶体管 PD-TFT无光照即有触摸时: 此时, 控制信号端的低电平电 压 VEN会通过电容 Cst加载到驱动晶体管 T1的栅极,使驱动晶体管 T1的栅极 电压 VA1在原有的基础上继续降低, 驱动晶体管 T1继续处于开启状态。 驱动 晶体管 T1输出的触控感测信号经开关晶体管 T2输入到触控信号读取端 Sensor。 驱动晶体管 T1的栅极电压越低, 输出到触控信号读取端的触控感测 信号越大。
当感光晶体管 PD-TFT有光照即无触摸时: 此时, 控制信号端的低电平电 压 VEN会通过电容 Cst加载到驱动晶体管 T1的栅极,使驱动晶体管 T1栅极电 压 VA2在原有的基础上緩慢降低; 驱动晶体管 T1的栅极电压在第二阶段由于 感光晶体管 PD-TFT的光电效应的作用而緩慢升高, 使驱动晶体管 T1在第二 阶段渐渐处于关闭状态, 而在此第三阶段, 驱动晶体管 T1栅极电压的慢慢降 低使驱动晶体管 T1慢慢处于开启状态。开启的驱动晶体管 T1输出触控感测信 号到开关晶体管 T2, 开关晶体管 T2将该触控感测信号输入到触控信号读取端 Sensor。照射到感光晶体管 PD-TFT的光强越大,驱动晶体管 T1栅极的电压越 高, 触控感测信号越小。
第四阶段 4: 开关信号端的电压 VSTV、栅极信号端的电压 VGate和控制信号 端的电压 VEN均处于高电平, 开关晶体管 T2处于关闭状态, 输出到触控信号 读取端 Sensor的触控感测信号随着开关晶体管 T2的关闭而停止。
综上, 上述触控驱动电路在有触摸时,触控信号读取端 Sensor输出的触控 感测信号比在无触摸时触控信号读取端输出的触控感测信号大, 通过分析触控 驱动电路输出的触控感测信号大小可以确定触摸屏有无触摸, 进而确定出触点 的位置, 实现了触控驱动的功能。
实例四:
如图 3d所示,感光晶体管 PD-TFT为 N型晶体管,驱动晶体管 T1和开关 晶体管 T2均为 P型晶体管。 图 4d为图 3d的电路时序图, 其中, 在图 4d中, 开关信号端的电压为 VSTV, 栅极信号端的电压为 VGate, 控制信号端的电压为 VEN, 驱动晶体管 T1的栅极在有触摸时电压为 VA1, 驱动晶体管 T1的栅极在 无触摸时电压为 VA2, 触控信号读取端 Sensor在有触摸时电压为 VB1, 触控信 号读取端 Sensor在无触摸时电压为 VB2
具体地, 触控驱动电路的工作原理如下:
第一阶段 1:栅极信号端的电压 VGate处于低电平,开关信号端的电压 VSTV 处于高电平, 感光晶体管 PD-TFT处于开启状态; 控制信号端的电压 VEN处于 高电平, 开关晶体管 T2处于关闭状态。 在此阶段中, 无论感光晶体管 PD-TFT 有无触摸, 即有无外部光线照射感光晶体管 PD-TFT, 栅极信号端的电压都会 通过开启的感光晶体管 PD-TFT传输到驱动晶体管 T1的栅极处, 并且由于电 容 Cst的作用, 驱动晶体管 T1的栅极电压会慢慢的降低, 驱动晶体管 T1慢慢 开启,参考信号端的电压 VDD通过开启的驱动晶体管 T1传输到开关晶体管 T2 的源极。 然而, 由于开关晶体管 T2处于关闭状态, 触控信号读取端 Sensor没 有触控感测信号输出。
第二阶段 2: 开关信号端的电压 VSTV处于低电平,栅极信号端的电压 VGate 和控制信号端的电压 VEr^ 处于高电平, 开关晶体管 Τ2处于关闭状态, 触控 信号读取端 Sensor没有触控感测信号输出。
当感光晶体管 PD-TFT无光照即有触摸时: 此时, 由于开关信号端的电压 VSTV处于低电平, 感光晶体管 PD-TFT会处于关闭状态, 驱动晶体管 T1的栅 极电压 VA1会保持在一个低电位, 驱动晶体管 T1一直处于开启状态。
当感光晶体管 PD-TFT有光照即无触摸时: 此时, 虽然开关信号端的电压 VSTV处于低电平,但感光晶体管 PD-TFT在光电效应的作用下其活性层中会产 生光生载流子, 形成光电流, 使感光晶体管 PD-TFT处于开启状态, 并且, 由 于栅极信号端的电压 VGate处于高电平, 因此, 栅极信号端的电压 VGate会经过 感光晶体管 PD-TFT输出到驱动晶体管 T1的栅极,使驱动晶体管 T1的栅极电 压 VA2緩慢升高, 从而导致由驱动晶体管 T1的漏极输出的触控感测信号也越 来越小, 驱动晶体管 T1渐渐处于关闭状态。 其中, 照射到感光晶体管 PD-TFT 的光强越大, 驱动晶体管 T1栅极的电压越高。
第三阶段 3: 栅极信号端的电压 VGate均处于高电平, 开关信号端的电压
VSTV和控制信号端的电压 VEN处于低电平, 开关晶体管 T2处于开启状态。
当感光晶体管 PD-TFT无光照即有触摸时: 此时, 控制信号端的低电平电 压 VEN会通过电容 Cst加载到驱动晶体管 T1的栅极,使驱动晶体管 T1的栅极 电压 VA1在原有的基础上继续降低, 驱动晶体管 T1继续处于开启状态。 驱动 晶体管 T1输出的触控感测信号经开关晶体管 T2输入到触控信号读取端
Sensor。 驱动晶体管 T1的栅极电压越低, 输出到触控信号读取端 Sensor的触 控感测信号越大。
当感光晶体管 PD-TFT有光照即无触摸时: 此时, 控制信号端的低电平电 压 VEN会通过电容 Cst加载到驱动晶体管 T1的栅极,使驱动晶体管 T1栅极电 压 VA2在原有的基础上緩慢降低; 驱动晶体管 T1的栅极电压在第二阶段由于 感光晶体管 PD-TFT的光电效应的作用而緩慢升高, 使驱动晶体管 T1在第二 阶段渐渐处于关闭状态, 而在此第三阶段, 驱动晶体管 T1栅极电压的慢慢降 低使驱动晶体管 T1慢慢处于开启状态。开启的驱动晶体管 T1输出触控感测信 号到开关晶体管 T2, 开关晶体管 T2将该触控感测信号输入到触控信号读取端 Sensor。照射到感光晶体管 PD-TFT的光强越大,驱动晶体管 T1栅极的电压越 高, 触控感测信号越小。
第四阶段 4: 开关信号端的电压 VSTV处于低电平,栅极信号端的电压 VGate 和控制信号端的电压 VEN均处于高电平, 开关晶体管 T2处于关闭状态, 输出 到触控信号读取端 Sensor的触控感测信号随着开关晶体管 T2的关闭而停止。
综上, 上述触控驱动电路在有触摸时,触控信号读取端 Sensor输出的触控 感测信号比在无触摸时触控信号读取端输出的触控感测信号大, 通过分析触控 驱动电路输出的触控感测信号大小可以确定触摸屏有无触摸, 进而确定出触点 的位置, 实现了触控驱动的功能。
基于同一发明构思, 本发明实施例还提供了一种光学式内嵌触摸屏, 包括 本发明实施例提供的上述触控驱动电路, 由于该光学式内嵌触摸屏解决问题的 原理与前述一种触控驱动电路相似, 因此该光学式内嵌触摸屏的实施可以参见 触控驱动电路的实施, 重复之处不再赘述。
基于同一发明构思, 本发明实施例还提供了一种显示装置, 包括本发明 实施例提供的上述光学式内嵌触摸屏, 该显示装置可以为: 手机、 平板电 脑、 电视机、 显示器、 笔记本电脑、 数码相框、 导航仪等任何具有显示功能 的产品或部件。 对于显示装置的其它必不可少的组成部分均为本领域的普通 技术人员应该理解具有的, 在此不做赘述, 也不应作为对本发明的限制。 本发明实施例提供的一种触控驱动电路、 光学式内嵌触摸屏及显示装置, 该触控驱动电路包括: 驱动子模块、 感光子模块以及控制子模块; 其中, 感光 子模块的第一信号输入端与开关信号端相连, 感光子模块的第二信号输入端与 栅极信号端相连, 感光子模块的信号输出端与驱动子模块的第一信号输入端相 连; 驱动子模块的第二信号输入端与参考信号端相连, 驱动子模块的第三信号 输入端分别与控制信号端和控制子模块的第一信号输入端相连, 驱动子模块的 信号输出端与控制子模块的第二信号输入端相连; 控制子模块的信号输出端与 触控信号读取端相连。 在开关信号端和栅极信号端的控制下, 感光子模块输出 触控信号到驱动子模块; 驱动子模块在触控信号的控制下向控制子模块输出触 控感测信号, 触控感测信号随着照射到感光子模块光强的增大而减小; 在控制 信号端控制控制子模块处于开启状态时,控制子模块将触控感测信号输出到触 控信号读取端, 实现触控侦测功能。 与现有的光学式内嵌触摸屏的驱动电路相 比, 本发明实施例提供的触控驱动电路采用控制子模块控制驱动子模块输出的 触控感测信号,在将各级驱动电路的触控信号读取端连接到同一根触控信号读 取线上时, 可以避免不同级驱动电路的触控信号读取端输出的信号相互串扰, 实现了在不增加触摸屏布线面积的情况下, 提高触控信号检测的准确率。 脱离本发明的精神和范围。 这样, 倘若本发明的实施例的这些修改和变型属于 本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变 型在内。

Claims

权 利 要 求 书
1、 一种触控驱动电路, 包括: 感光子模块、 驱动子模块、 以及控制子模 块; 其中,
所述感光子模块的第一信号输入端与开关信号端相连, 所述感光子模块的 第二信号输入端与栅极信号端相连, 所述感光子模块的信号输出端与所述驱动 子模块的第一信号输入端相连; 在所述开关信号端和所述栅极信号端的控制 下, 所述感光子模块输出触控信号到所述驱动子模块;
所述驱动子模块的第二信号输入端与参考信号端相连, 所述驱动子模块的 第三信号输入端分别与控制信号端和所述控制子模块的第一信号输入端相连, 所述驱动子模块的信号输出端与所述控制子模块的第二信号输入端相连; 所述 驱动子模块在所述触控信号的控制下向所述控制子模块输出触控感测信号, 所 述触控感测信号随着照射到所述感光子模块光强的增大而减小;
所述控制子模块的信号输出端与触控信号读取端相连; 在所述控制信号端 控制所述控制子模块处于开启状态时, 所述控制子模块将所述触控感测信号输 出到所述触控信号读取端。
2、 如权利要求 1所述的触控驱动电路, 其中, 所述感光子模块具体包括: 感光晶体管; 其中,
所述感光晶体管的栅极与所述开关信号端相连, 所述感光晶体管的源极与 所述栅极信号端相连, 所述感光晶体管的漏极与所述驱动子模块的第一信号输 入端相连。
3、 如权利要求 2所述的触控驱动电路, 其中, 所述感光晶体管为 N型晶 体管; 或所述感光晶体管为 P型晶体管。
4、 如权利要求 1-3任一项所述的触控驱动电路, 其中, 所述驱动子模块 具体包括: 电容和驱动晶体管; 其中,
所述电容的第一端与所述控制信号端相连, 所述电容的第二端分别与所述 驱动晶体管的栅极和所述感光子模块的信号输出端相连;
所述驱动晶体管的源极与所述参考信号端相连, 所述驱动晶体管的漏极与 所述控制子模块的第二信号输入端相连。
5、 如权利要求 4所述的触控驱动电路, 其中, 所述控制子模块具体包括: 开关晶体管; 其中,
所述开关晶体管的栅极与所述控制信号端相连, 所述开关晶体管的源极与 所述驱动晶体管的漏极相连, 所述开关晶体管的漏极与所述触控信号读取端相 连。
6、 如权利要求 5所述的触控驱动电路, 其中, 所述驱动晶体管与所述开 关晶体管为 N型晶体管; 或,
所述驱动晶体管与所述开关晶体管为 P型晶体管。
7、 一种光学式内嵌触摸屏, 包括如权利要求 1-6任一项所述的触控驱动 电路。
8、 一种显示装置, 包括如权利要求 7所述的光学式内嵌触摸屏。
PCT/CN2013/087069 2013-06-27 2013-11-13 触控驱动电路、光学式内嵌触摸屏及显示装置 WO2014205977A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/355,472 US9310937B2 (en) 2013-06-27 2013-11-13 Touch driving circuit, optical in cell touch panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310263575.8A CN103353813B (zh) 2013-06-27 2013-06-27 一种触控驱动电路、光学式内嵌触摸屏及显示装置
CN201310263575.8 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014205977A1 true WO2014205977A1 (zh) 2014-12-31

Family

ID=49310190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087069 WO2014205977A1 (zh) 2013-06-27 2013-11-13 触控驱动电路、光学式内嵌触摸屏及显示装置

Country Status (3)

Country Link
US (1) US9310937B2 (zh)
CN (1) CN103353813B (zh)
WO (1) WO2014205977A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353813B (zh) * 2013-06-27 2015-11-18 京东方科技集团股份有限公司 一种触控驱动电路、光学式内嵌触摸屏及显示装置
CN104679355B (zh) 2015-03-19 2017-10-10 合肥鑫晟光电科技有限公司 一种光学触摸屏及显示装置
CN106354345B (zh) * 2016-11-11 2020-01-10 京东方科技集团股份有限公司 触控单元、触控模组、内嵌式触控屏和显示装置
CN108596134B (zh) * 2018-04-28 2020-08-11 京东方科技集团股份有限公司 一种触控面板或者纹路识别面板及制作方法、装置
CN113467642A (zh) * 2021-07-05 2021-10-01 深圳市华星光电半导体显示技术有限公司 光触控检测电路和光触控显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101957695A (zh) * 2010-09-10 2011-01-26 友达光电股份有限公司 具光感测定位功能的显示面板
CN101989152A (zh) * 2009-07-29 2011-03-23 瀚宇彩晶股份有限公司 内嵌式光学感应输入装置及其方法
CN102004581A (zh) * 2009-09-02 2011-04-06 三星移动显示器株式会社 光敏元件电路、其驱动方法及触摸屏面板
CN103135861A (zh) * 2013-01-25 2013-06-05 京东方科技集团股份有限公司 一种光电传感器及光电触摸屏
CN103176676A (zh) * 2013-02-28 2013-06-26 合肥京东方光电科技有限公司 一种触摸屏触摸点定位检测电路、触摸屏及显示装置
CN103353813A (zh) * 2013-06-27 2013-10-16 京东方科技集团股份有限公司 一种触控驱动电路、光学式内嵌触摸屏及显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467134B (zh) * 2011-08-22 2015-01-01 Ind Tech Res Inst 感測裝置與感測方法
TWI470509B (zh) * 2011-09-08 2015-01-21 Hannstar Display Corp 光學觸控顯示面板及其觸控感測方法
CN103135846B (zh) * 2012-12-18 2016-03-30 北京京东方光电科技有限公司 触控显示电路结构及其驱动方法、阵列基板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989152A (zh) * 2009-07-29 2011-03-23 瀚宇彩晶股份有限公司 内嵌式光学感应输入装置及其方法
CN102004581A (zh) * 2009-09-02 2011-04-06 三星移动显示器株式会社 光敏元件电路、其驱动方法及触摸屏面板
CN101957695A (zh) * 2010-09-10 2011-01-26 友达光电股份有限公司 具光感测定位功能的显示面板
CN103135861A (zh) * 2013-01-25 2013-06-05 京东方科技集团股份有限公司 一种光电传感器及光电触摸屏
CN103176676A (zh) * 2013-02-28 2013-06-26 合肥京东方光电科技有限公司 一种触摸屏触摸点定位检测电路、触摸屏及显示装置
CN103353813A (zh) * 2013-06-27 2013-10-16 京东方科技集团股份有限公司 一种触控驱动电路、光学式内嵌触摸屏及显示装置

Also Published As

Publication number Publication date
CN103353813A (zh) 2013-10-16
US20150301686A1 (en) 2015-10-22
US9310937B2 (en) 2016-04-12
CN103353813B (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
CN103353814B (zh) 一种触控驱动电路、光学式内嵌触摸屏及显示装置
JP6743101B2 (ja) 光検出装置
CN103413523B (zh) 一种像素电路、有机电致发光显示面板及显示装置
CN103176676B (zh) 一种触摸屏触摸点定位检测电路、触摸屏及显示装置
CN103218076B (zh) 一种内嵌式触摸屏及显示装置
US9529472B2 (en) Touch circuit and method for driving the same, array substrate, touch display device
WO2017036094A1 (zh) 光电传感器及其驱动方法、阵列基板和显示装置
KR101022118B1 (ko) 광 감지회로 및 그 구동방법과 이를 구비한 터치 스크린 패널
WO2014205977A1 (zh) 触控驱动电路、光学式内嵌触摸屏及显示装置
WO2018000927A1 (zh) 像素电路、半导体摄像头检测电路以及显示装置
TWI448950B (zh) 自調式光感觸控電路及其顯示裝置
KR102056905B1 (ko) 광센싱 장치 및 그 구동 방법, 광센싱 장치를 포함하는 광터치 스크린 장치
WO2015014146A1 (zh) 像素电路、有机电致发光显示面板及显示装置
CN108171192B (zh) 指纹识别检测电路及其驱动方法、显示装置
KR20110117993A (ko) 단순화된 광센싱 회로 및 상기 광센싱 회로를 채용한 리모트 광터치 패널 및 영상 획득 장치
WO2015014083A1 (zh) 触摸点定位检测电路、光学式触摸屏及显示装置
CN103761002B (zh) 一种触控电路及其单元和触控显示面板及其装置
TWI764161B (zh) 光偵測裝置
TW201512949A (zh) 觸控模組的感光畫素電路
US20100066703A1 (en) Embedded optical induction input device and method of implementing the same
TWI416390B (zh) 光感測裝置以及具該光感測裝置之顯示器
CN203366295U (zh) 一种触控驱动电路、光学式内嵌触摸屏及显示装置
CN106959384B (zh) 一种光电检测电路、显示面板及显示装置
CN203299790U (zh) 一种触控驱动电路、光学式内嵌触摸屏及显示装置
CN203366705U (zh) 一种像素电路、有机电致发光显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14355472

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 070616)

122 Ep: pct application non-entry in european phase

Ref document number: 13888097

Country of ref document: EP

Kind code of ref document: A1