WO2015014083A1 - 触摸点定位检测电路、光学式触摸屏及显示装置 - Google Patents

触摸点定位检测电路、光学式触摸屏及显示装置 Download PDF

Info

Publication number
WO2015014083A1
WO2015014083A1 PCT/CN2013/089816 CN2013089816W WO2015014083A1 WO 2015014083 A1 WO2015014083 A1 WO 2015014083A1 CN 2013089816 W CN2013089816 W CN 2013089816W WO 2015014083 A1 WO2015014083 A1 WO 2015014083A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
switching transistor
capacitor
sub
transistor
Prior art date
Application number
PCT/CN2013/089816
Other languages
English (en)
French (fr)
Inventor
胡祖权
王国磊
胡明
Original Assignee
合肥京东方光电科技有限公司
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥京东方光电科技有限公司, 京东方科技集团股份有限公司 filed Critical 合肥京东方光电科技有限公司
Priority to US14/370,434 priority Critical patent/US20150355743A1/en
Publication of WO2015014083A1 publication Critical patent/WO2015014083A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • Touch point positioning detection circuit optical touch screen and display device
  • the present invention relates to the field of touch display technologies, and in particular, to a touch point location detection circuit, an optical touch screen, and a display device. Background technique
  • In Cell Touch Panel is a device that integrates touch drive electrodes and touch-sensing electrodes into the display for touch and image display.
  • the in-line touch screen is classified into functional, capacitive, and optical types.
  • Capacitive and optical touch screens have attracted attention due to their ability to achieve multi-touch.
  • the capacitive touch screen uses the human body electric field to change the magnitude of the projected electric field in the touch screen, and determines the position of the touch point by detecting the amount of change in the current or voltage of the touch point.
  • the optical touch screen determines the touch point position by detecting the amount of change in current or voltage value caused by the intensity of the light on the surface of the touch screen.
  • the touch drive electrodes and touch sensing electrodes of the in-cell touch screen are integrated in the display screen, for example, integrated in the color filter substrate and/or the array substrate.
  • the touch driving electrode and the touch sensing electrode are disposed in the array substrate or are disposed in a structure far from the light emitting side surface of the in-cell touch panel, the touch effect of the capacitive touch screen is poor.
  • the In-cell Optical Touch Panel enables better touch, thinner, lighter, and lower cost than other touch methods. the goal of. Therefore, in-cell optical touch screens are gaining more and more attention.
  • the touch point location detecting circuit of the existing in-cell optical touch screen includes: an optical touch control sub-circuit 100 and an output detecting sub-circuit 200.
  • the optical touch sub-circuit 100 includes a switching transistor (Photo TFT) that is very sensitive to light, a capacitor C1, and a switching transistor (Readout TFT) for controlling signal output.
  • the gate and the source of the switching transistor Photo TFT are both connected to a bias voltage (Bias) line; one end of the capacitor C1 is connected to the bias voltage (Bias) line, and the other end is connected to the source of the switching transistor Readout TFT (corresponding to The node A in Fig. 1; the gate of the switching transistor Readout TFT is connected to the gate line (gate line (n-1)) in the display screen, and the drain is connected to the signal output line (Readout Line).
  • the switching transistor Photo TFT and Readout TFT are n-type transistors, and the gate is at a high level The TFT is turned on under the action, and the TFT is turned off under the action of the low level.
  • the circuit shown in Figure 1 works as follows: When the Bias line is high, the switching transistor Photo TFT is turned on, node A is charged to a high level; then, the Bias line voltage is changed from a high level to a low level, when Select When (n-1) becomes a high level, the switching transistor Readout TFT is turned on, which transfers the charge at the node A to the output detecting sub-circuit 200 through the switching transistor Readout Line. If the touch screen does not have strong light illumination, the switching transistor Photo TFT is turned off. At this time, when the switching transistor Readout TFT is turned on, the output detecting sub-circuit 200 will detect the voltage value corresponding to the high level, if the touch screen has strong light irradiation.
  • the switching transistor Photo TFT is turned on. Since the Bias line voltage is at a low level at this time, the node A is discharged via the switching transistor Photo TFT, and the node A voltage value is discharged to a low level. Therefore, when the switching transistor Readout TFT is turned on, the output detecting sub-circuit 200 will detect the voltage value corresponding to the low level, and compare the change amount of the voltage value before and after the illumination to determine the occurrence of the touch screen and the optical touch. Determine the location of the touch point.
  • the in-cell optical touch screen touch point location detecting circuit shown in FIG. 1 determines that the position of the touch point has the following disadvantages: When an optical touch signal causes the switching transistor Photo TFT to be turned on, the discharge capability to the node A is not strong, and thus The voltage value detected by the detecting sub-circuit is not obvious in the case of the presence or absence of the light touch and the absence of the light touch. The accuracy of the detection sub-circuit detecting the touch point is not high, and the accuracy of the touch point positioning is not high. Summary of the invention
  • the embodiment of the invention provides a touch point location detection circuit, an optical touch screen and a display device for improving the accuracy of the touch point positioning of the optical touch screen.
  • a touch point location detecting circuit provided by an embodiment of the present invention includes an optical touch sub-circuit for sensing a touch and generating a touch signal, and an amplification method for amplifying the touch signal connected to the optical touch sub-circuit a sub-circuit, an output sub-circuit connected to the amplifying sub-circuit for outputting the touch signal, and a detecting sub-circuit connected to the output sub-circuit for determining a touch point position according to the output touch signal.
  • the optical touch sub-circuit includes: a first switching transistor, a capacitor, and a photo-sensing capacitor; wherein a gate and a source of the first switching transistor are connected to a first reference voltage source, a drain and the One end of the capacitor is connected; the other end of the capacitor is connected to one end of the photo-capacitor, and the other end of the photo-capacitor is connected to a second reference voltage source; the amplifying sub-circuit is connected to one end of the capacitor connected to the first switching transistor.
  • the amplifying subcircuit includes a second switching transistor, a third switching transistor, and an amplifying transistor;
  • the gate of the second switching transistor is connected to one end of the capacitor connected to the first switching transistor, and the gate of the third switching transistor is connected to one end of the capacitor connected to the photosensor;
  • the second switch a drain of the transistor is connected to a drain of the third switching transistor;
  • a source of the second switching transistor is connected to a high-level voltage source, and a source of the third switching transistor is connected to a low-level voltage source;
  • a gate of the amplifying transistor is connected to a drain of the second switching transistor, a drain of the amplifying transistor is connected to an output sub-circuit, and a source of the amplifying transistor is connected to a high-level supply voltage source.
  • the output sub-circuit includes a fourth switching transistor and a touch driving electrode line, a gate of the fourth switching transistor is connected to the touch driving electrode line, a source of the fourth switching transistor and the A drain of the amplifying transistor is connected, and a drain of the fourth switching transistor is connected to the detecting sub-circuit.
  • the detecting sub-circuit includes: an amplifier, a capacitor connected across an inverting input and an output of the amplifier, and a switch connected across an inverting input and an output of the amplifier, a drain of the transistor Connected to the inverting input of the amplifier.
  • the touch drive electrode line is time-driven, used as a touch drive electrode line during the touch phase, and serves as a gate line during the image display phase.
  • the first reference voltage source is a high level supply voltage source
  • the second reference voltage source is a low level supply voltage source
  • the first switching transistor, the second switching transistor, the third switching transistor, the fourth switching transistor, and the amplifying transistor are n-type transistors.
  • Embodiments of the present invention provide an optical touch screen including the above detection circuit.
  • the embodiment of the invention further provides a display device comprising the above optical touch screen.
  • the capacitance Cf and the photo sensing capacitor Cs connected in series are arranged in the optical touch sub-circuit, and the series capacitor Cf and the photo sensing capacitor Cs have a voltage dividing effect.
  • the photo-sensing capacitor Cs is very sensitive to light, and the capacitance value increases rapidly under the illumination of light. Under irrelevant illumination, the capacitance value rapidly decreases.
  • the capacitance value of the photo-sensing capacitor Cs By changing the capacitance value of the photo-sensing capacitor Cs, the voltage across the capacitor Cf is changed, thereby changing the voltage value output to the detecting sub-circuit.
  • the light-sensing capacitor Cs changes greatly before and after illumination. Therefore, the amount of signal detected by the detector sub-circuit before and after illumination is also large, which effectively improves the accuracy of touch point positioning.
  • FIG. 1 is a schematic structural diagram of a touch screen positioning detection circuit of a touch screen of the prior art
  • FIG. 2 is a schematic structural diagram of a touch screen positioning detection circuit of a touch screen according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of voltages across a capacitor Cf when the detection circuit shown in FIG. 2 has no touch and a touch occurs;
  • FIG. 4 is a schematic structural diagram of a touch screen position detection circuit of a touch screen according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an output sub-voltage V of a detection sub-circuit before and after illumination according to an embodiment of the present invention.
  • Ut vs. probe time time Ut vs. probe time time.
  • the embodiment of the invention provides a touch point location detection circuit, an optical touch screen and a display device for improving the accuracy of the touch point positioning of the optical touch screen.
  • Photosensitive capacitor is a kind of capacitor that is very sensitive to light. Under the illumination of light, the capacitance value increases rapidly. Under the illumination without light, the capacitance value decreases rapidly, and the capacitance of the photo-sensitive capacitor under the illumination of light and no light. The value becomes 4 ⁇ larger.
  • the touch point location detecting circuit provided by the embodiment of the present invention controls the gate voltage of the amplifying transistor Tamp in the amplifying sub-circuit connected to the optical touch sub-circuit through the capacitor Cf and the photo-sensing capacitor Cs connected in series to realize illumination. Before and after the touch screen is displayed, the amount of signal detected by the output detection sub-circuit is large, and the accuracy of the touch point positioning is higher.
  • the technical solution of the embodiment of the invention is compared with the existing optical touch screen with low touch precision, and the touch screen is an in-cell touch screen.
  • an optical touch sub-circuit for realizing a touch function and a touch driving electrode line and a touch sensing electrode line for implementing a touch function are embedded in the display screen, thereby realizing a structural unit and a touch point positioning.
  • the touch screen touch point location detecting circuit may be embedded in a liquid crystal display (LCD) or embedded in an organic light emitting diode (OLED).
  • the touch driving electrode line in the touch screen may be a separately arranged electrode line independent of the gate line, the data line, the common electrode line, or the like, or may be one of a gate line, a data line, and a common electrode line.
  • a touch driving electrode line as a gate line as an example.
  • the touch point location detection circuit provided by the embodiment of the present invention includes:
  • An optical touch sub-circuit 1 for sensing a touch and generating a touch signal, wherein the touch signal is a touch signal generated by illumination;
  • An output sub-circuit 3 for outputting the amplified touch signal
  • a detecting sub-circuit 4 for detecting a touch point based on the output touch signal.
  • the optical touch sub-circuit 1 includes:
  • a first switching transistor T1 a capacitor Cf, and a photo sensing capacitor Cs;
  • the two ends of the capacitor Cf are a terminal and b terminal, respectively;
  • the gate and the source of the first switching transistor T1 are connected to the first reference voltage source V reference, the drain is connected to one end (b end) of the capacitor Cf; the other end (a end) of the capacitor Cf and the photoreceptor Cs One end is connected, and the other end of the photo-capacitor Cs is connected to the second reference voltage source V « 2 ; the amplifying sub-circuit 2 is connected to one end of the capacitor Cf connected to the first switching transistor T1.
  • the capacitor Cf used in the embodiment of the present invention may be a fixed capacitor or a variable capacitor.
  • the touch can be realized by means of a light stylus or a laser pen, and the optical touch control circuit 1 senses the touch and generates a touch signal.
  • a light stylus or laser pointer can be used for remote operation to achieve touch.
  • the first reference voltage source V reference and the second reference voltage source V reference 2 may be respectively provided for the first bias voltage line Bias1 and the second bias voltage line Bias2 shown in FIG. 2, respectively.
  • Bias voltages V Biasl and V Bias2 may be respectively provided for the first bias voltage line Bias1 and the second bias voltage line Bias2 shown in FIG. 2, respectively.
  • the source and the gate of the first switching transistor T1 are simultaneously connected to the first reference voltage source V reference as an exemplary embodiment, and the connection manner can be a tubular structure.
  • the source and the gate of the first switching transistor T1 may also be respectively connected to different reference voltage sources.
  • the gate of the first switching transistor T1 is connected to the first reference voltage source V reference, and the gate and the third reference voltage source V reference 3 is connected.
  • the b-terminal voltage of the capacitor Cf corresponds to the node voltage V b
  • the a terminal corresponds to the node voltage V a .
  • the first switching transistor T1 shown in Fig. 2 may be an n-type transistor or a p-type transistor.
  • the operation of the above optical touch sub-circuit will be described below by taking an n-type transistor as an example.
  • the capacitance value of the photo-sensing capacitor Cs is relatively small, and the capacitance value is set to 0 ⁇ .
  • the capacitance value of the photo-sensing capacitor Cs is relatively large. Let its capacitance be c mix .
  • the first switching transistor T1 is turned on, the node b is charged to a high level V, and the capacitor Cf and the photo sensing capacitor Cs connected in series have a voltage dividing effect, and the voltage V a of the node a is as shown in the formula (1):
  • the capacitance value of the photo-sensing capacitor Cs changes with or without the illumination. Select a suitable photo-sensing capacitor Cs to make Cf C mix at a preset intensity of illumination, C > C mix in the absence of light.
  • the voltage value of node b is VM V ; V b2 ⁇ Vio
  • V al and V bl when there is no optical touch signal on the touch screen, the voltages of V a and V b are respectively indicated by V al and V bl ; when there is an optical touch signal on the touch screen, the voltages of 3 and V b are respectively V a2 and V b2 are shown. It can be seen that when there is an optical touch signal on the touch screen, the voltage of the 3- node is greatly reduced, and the voltage of the V b point is almost unchanged, so when there is an optical touch signal on the touch screen, the voltage difference between V a and V b is compared without optical touch. The signal is much larger.
  • the output voltage V of the output sub-circuit 3 and the probe sub-circuit 4 is output.
  • Ut is related to V a and V b .
  • the V a value changes more, V. The greater the change in ut , the more accurate the position of the touch point is detected.
  • the photosensitive capacitor Cs of the embodiment of the present invention has higher sensitivity than the inductive capacitor.
  • the touch driving electrode and the touch sensing electrode are disposed at a position far away from the surface of the touch screen in the display screen, when there is an optical touch signal on the touch screen,
  • the light-sensing capacitor can detect the occurrence of an optical touch signal very sensitively, and accurately detect the position of the light touch point.
  • one end of the photo-sensing capacitor Cs is connected to the second bias voltage line Bias2, and the source of the first switching transistor T1 is connected to the first bias voltage line Bias1, and the voltage V provided by the second bias voltage line Bias2 can be controlled. It is much smaller than the voltage V l5 provided by the first bias voltage line Bias1, so that the V a value changes more and more before and after the optical touch signal on the touch screen, V. The greater the change in ut , the more accurate the position of the touch point is detected.
  • the amplifying sub-circuit 2 is a two-stage amplifying sub-circuit, and the amplifying sub-circuit 2 includes: an amplifying transistor Tamp, and a second switching transistor T2 and a third switching transistor T3.
  • the gate of the second switching transistor T2 is connected to the b terminal of the capacitor Cf
  • the gate of the third switching transistor T3 is connected to the a terminal of the capacitor Cf
  • the drain of the second switching transistor T2 and the drain of the third switching transistor T3 Connected, the source of the second switching transistor T2 is connected to a high-level voltage source, corresponding to the voltage V
  • the source of the third switching transistor T3 is connected to a low-level voltage source, and the corresponding voltage is V gl .
  • the gate of the amplification transistor Tamp is connected between the second switching transistor T2 and the third switching transistor T3.
  • V a When there is an optical touch signal on the touch screen, V a is greatly reduced, and the third switching transistor T3 connected to V a is almost in an off state, and the increase in V b further increases the opening of the second switching transistor T2. Capability, at this time, the amplification transistor Tamp has a larger gate bias than when no optical touch signal occurs on the touch screen.
  • the output sub-circuit 3 includes a fourth switching transistor T4 and a touch driving electrode line (corresponding to the gate line Select (n-1) in Fig. 4).
  • the gate of the fourth switching transistor T4 is connected to the touch driving electrode line, the source is connected to the drain of the amplifying transistor Tamp, and the drain is connected to the input terminal of the detecting sub-circuit 4.
  • the touch driving electrode line provided by the embodiment of the present invention may be an electrode line independent of a gate line, a data line, or the like, or an electrode line shared with the gate line, that is, the gate line is driven by time, in the touch stage. Used as a touch drive electrode line, used as a gate line in the image display stage.
  • the gate line is used as a touch driving electrode line in the touch phase as an example.
  • the detecting sub-circuit 4 includes an amplifier OP, a capacitor CO connected across the inverting input and output of the amplifier OP, and a switch SW connected across the OP inverting input and output; a touch driving electrode line Select ( n- 1) (i.e., the n-1th gate line) is connected to the inverted input terminal via the output sub-circuit 3.
  • the touch driving electrode line Select (n-1) when the touch driving electrode line Select (n-1) is at a high level, the current output from the amplifying transistor Tamp flows through the output sub-circuit 3 before and after the occurrence of the optical touch signal on the touch screen during the detection time of the touch signal.
  • the detecting sub-circuit 4 has a large amount of change, and detects the voltage V output from the sub-circuit 4. The amount of ut change is also large, and the touch precision of the touch screen is high. For example, when there is an optical touch signal on the touch screen, the voltage V output by the sub-circuit 4 is detected.
  • Ut is V.
  • Utl before the optical touch signal on the touch screen
  • V out2 after the optical touch signal on the touch screen
  • the relationship between ut and detection time is shown in Figure 5.
  • the structure of the amplifying sub-circuit 2 is not limited to the structure shown in FIG. 4, for example, the amplifying sub-circuit 2 may also be a primary amplifying sub-circuit, and specifically includes: an amplifying transistor Tamp, the amplifying crystal The gate of the body tube Tamp is connected to the a terminal of the capacitor Cf. The source of the amplifying transistor Tamp is connected to a high-level supply voltage source, the high-level supply voltage is V DD , and the drain is connected to the output sub-circuit.
  • Each transistor provided by the embodiment of the invention for example, the first switching transistor, the second switching transistor, the third switching transistor, the fourth switching transistor, and the amplifying transistor are n-type transistors, and the gate of the transistor is turned on at a high level, low Turn off at level.
  • the transistor used in the embodiment of the present invention may be a switching transistor or another type of transistor.
  • each transistor is not limited to an n-type transistor, and may be a p-type transistor.
  • the embodiment of the invention provides an optical touch screen, which is an in-cell touch screen, and includes a plurality of touch point location detecting circuits provided by the above embodiments of the present invention.
  • the number of the touch point location detection circuits in the touch screen is similar to the prior art, and will not be described here.
  • the embodiment of the invention further provides a display device, which comprises the above optical touch screen, and the display device can be a liquid crystal display panel with a touch function, a liquid crystal display, an organic electroluminescence display OLED panel, an OLED display or the like.
  • an embodiment of the present invention provides an optical touch screen, a touch point positioning detection circuit, and a display device, which are controlled by an externally connected capacitor Cf and a photosensor Cs to be connected to an optical subcircuit connected to the optical subcircuit. Amplifying the gate voltage of the transistor Tamp, before and after the illumination touches the display screen, the amount of signal detected by the output detection sub-circuit is large, and the accuracy of the touch point positioning is higher.
  • the spirit and scope of the Ming Thus, it is intended that the present invention cover the modifications and variations of the inventions

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明涉及触摸显示技术领域。公开了一种触摸点定位检测电路、光学式触摸屏及显示装置,用以提高触摸屏的触控精度。所述触摸点定位检测电路包括:用于感应触摸并生成触摸信号的光学触控子电路,与所述光学触控子电路相连的用于将所述触摸信号放大的放大子电路,与所述放大子电路相连的用于输出所述触摸信号的输出子电路,以及与所述输出子电路相连的根据所述输出的触摸信号确定触摸点位置的探测子电路。

Description

触摸点定位检测电路、 光学式触摸屏及显示装置
技术领域
本发明涉及触摸显示技术领域, 尤其涉及一种触摸点定位检测电路、 光学 式触摸屏及显示装置。 背景技术
内嵌式触摸屏 ( In cell Touch Panel )是一种触摸驱动电极和触摸感应电极 集成在显示屏中可实现触控和图像显示功能的装置。 内嵌式触摸屏按照功能分 类包括电容式、 电阻式和光学式等。
由于电容式和光学式的触摸屏可以实现多点触控而备受关注。 电容式触摸 屏利用人体电场改变触摸屏中的投射电场的大小,通过检测触摸点电流或电压 的变化量确定触摸点的位置。 光学式触摸屏通过检测触摸屏表面光的强弱引起 电流或电压值的变化量确定触摸点位置。
内嵌式触摸屏的触摸驱动电极和触摸感应电极集成在显示屏中, 例如集成 在彩膜基板和 /或阵列基板中。当触摸驱动电极和触摸感应电极设置在阵列基板 中或者设置在距离内嵌式触摸屏的出光侧表面较远的结构中时, 电容式触摸屏 的触控效果较差。 由于触摸屏较长距离内的操作控制的需求, 内嵌式光学触摸 屏( In-cell Optical Touch Panel )相对其他的触摸方式, 能够实现触控效果更好、 结构更薄、 更轻, 以及成本更低的目的。 因此, 内嵌式光学触摸屏越来越受到 广泛重视。
如图 1所示, 现有内嵌式光学触摸屏的触摸点定位检测电路包括: 光学触 控子电路 100和输出探测子电路 200。 光学触控子电路 100包括对光线非常敏 感的开关晶体管(Photo TFT ), 电容 C1 , 以及用于控制信号输出的开关晶体管 ( Readout TFT )。 其中, 开关晶体管 Photo TFT的栅极与源极均连接到偏置电 压(Bias )线; 电容 C1的一端连接到偏置电压(Bias )线, 另一端连接至开关 晶体管 Readout TFT的源极(对应图 1中的节点 A ); 开关晶体管 Readout TFT 的栅极连接到显示屏中的栅线(栅线( n-1 ) ) , 漏极连接到信号输出线( Readout Line )。
所述开关晶体管 Photo TFT和 Readout TFT为 n型晶体管, 栅极在高电平 作用下 TFT开启, 栅极在低电平作用下 TFT关闭。
图 1所示的电路的工作原理如下:当 Bias线为高电平时,开关晶体管 Photo TFT开启, 节点 A被充电至高电平; 然后, Bias线电压由高电平变为低电平, 当 Select ( n-1 )变为高电平时, 开关晶体管 Readout TFT开启, 其将节点 A处 的电荷通过开关晶体管 Readout Line传输给输出探测子电路 200。 如果触摸屏 没有较强的光照射, 开关晶体管 Photo TFT关断, 这时当开关晶体管 Readout TFT开启时, 输出探测子电路 200将探测到高电平对应的电压值, 如果触摸屏 有较强的光照射,开关晶体管 Photo TFT开启,由于此时 Bias线电压为低电平, 经由开关晶体管 Photo TFT对节点 A进行放电, 节点 A电压值放电至低电平。 故当开关晶体管 Readout TFT开启时, 这时输出探测子电路 200将探测到与低 电平对应的电压值, 比较光照前后电压值的变化量确定触摸屏有、 无光触摸 ( Optical touch ) 的发生, 确定触摸点的位置。
图 1所示的内嵌式光学式触摸屏触摸点定位检测电路确定触摸点的位置存 在以下不足: 当有光学式触摸信号使得开关晶体管 Photo TFT开启时, 对节点 A的放电能力不强, 因此由探测子电路探测到的电压值在有无光触摸和无无光 触摸两种情况下的电压值变化不明显, 探测子电路探测触摸点的精度不高, 触 摸点定位的精度不高。 发明内容
本发明实施例提供一种触摸点定位检测电路、 光学式触摸屏及显示装置, 用以提高光学式触摸屏触摸点定位的精度。
本发明实施例提供的一种触摸点定位检测电路, 包括用于感应触摸并生成 触摸信号的光学触控子电路, 与所述光学触控子电路相连的用于将所述触摸信 号放大的放大子电路, 与所述放大子电路相连的用于输出所述触摸信号的输出 子电路, 以及与所述输出子电路相连的根据所述输出的触摸信号确定触摸点位 置的探测子电路。
示例性地,所述光学触控子电路包括: 第一开关晶体管、 电容和感光电容; 其中, 所述第一开关晶体管的栅极和源极与第一参考电压源相连, 漏极与 所述电容的一端相连; 电容的另一端与所述感光电容的一端相连, 感光电容的 另一端与第二参考电压源相连; 所述放大子电路与所述电容连接第一开关晶体 管的一端相连。 示例性地, 所述放大子电路包括第二开关晶体管、 第三开关晶体管, 以及 放大晶体管;
其中, 所述第二开关晶体管的栅极与所述电容连接第一开关晶体管的一端 相连, 所述第三开关晶体管的栅极与所述电容连接光感电容的一端相连; 所述 第二开关晶体管的漏极与所述第三开关晶体管的漏极相连; 所述第二开关晶体 管的源极与高电平电压源相连, 所述第三开关晶体管的源极与低电平电压源相 连; 所述放大晶体管的栅极与所述第二开关晶体管的漏极相连, 所述放大晶体 管的漏极与输出子电路相连, 所述放大晶体管的源极与高电平供电电压源相 连。
示例性地, 所述输出子电路包括第四开关晶体管和触摸驱动电极线, 所述 第四开关晶体管的栅极与所述触摸驱动电极线相连, 所述第四开关晶体管的源 极与所述放大晶体管的漏极相连, 所述第四开关晶体管的漏极与所述探测子电 路相连。
示例性地, 所述探测子电路包括: 放大器、 跨接在该放大器的反向输入端 与输出端的电容, 以及跨接在该放大器的反向输入端与输出端的开关, 所述晶 体管的漏极与所述放大器的反向输入端相连。
示例性地, 所述触摸驱动电极线分时间驱动, 在触控阶段用作触摸驱动电 极线, 在图像显示阶段用作栅线。
示例性地, 所述第一参考电压源为高电平供电电压源, 所述第二参考电压 源为低电平供电电压源。
示例性地, 所述第一开关晶体管、 第二开关晶体管、 第三开关晶体管、 第 四开关晶体管和放大晶体管为 n型晶体管。
本发明实施例提供一种光学式触摸屏, 包括上述检测电路。
本发明实施例还提供一种显示装置, 包括上述光学式触摸屏。
本发明实施例提供的触摸点定位检测电路, 在光学触控子电路中设置相互 串联的电容 Cf和光感电容 Cs, 串联的电容 Cf和光感电容 Cs具有分压作用。 光感电容 Cs对光照非常敏感, 在光的照射下电容值迅速增加, 在无关的照射 下, 电容值迅速降低。 通过改变光感电容 Cs的电容值, 改变电容 Cf两端的电 压, 从而改变输出到探测子电路的电压值。 光感电容 Cs在光照前后改变量非 常大, 因此, 探测子电路在光照前后探测到的信号变化量也较大, 有效提高了 触摸点定位的精度。 附图说明
图 1为现有技术触摸屏触摸点定位检测电路结构示意图;
图 2为本发明实施例提供的触摸屏触摸点定位检测电路结构示意图之一; 图 3为图 2所示检测电路在没有触摸和有触摸发生时电容 Cf两端的电压 示意图;
图 4为本发明实施例提供的触摸屏触摸点定位检测电路结构示意图之二; 图 5为本发明实施例提供的探测子电路在光照前和光照后输出点电压 V。ut 与探测时间 time的关系曲线图。 具体实施方式
本发明实施例提供了一种触摸点定位检测电路、 光学式触摸屏及显示装 置, 用以提高光学式触摸屏触摸点定位的精度。
光感电容是一种在对光非常敏感的电容, 在光的照射下电容值迅速增加, 在无光的照射下, 电容值迅速降低, 且在有光和无光照射下光感电容的电容值 变 4匕较大。
本发明实施例提供的触摸点定位检测电路光学触控子电路通过相互串联 的电容 Cf和光感电容 Cs控制与光学触控子电路相连的放大子电路中的放大晶 体管 Tamp的栅极电压, 实现光照触摸显示屏前后, 输出探测子电路检测到的 信号变化量较大, 触摸点定位的精度更高。
本发明实施例的技术方案是相对于现有触控精度较低的光学式触摸屏提 出的, 该触摸屏为内嵌式触摸屏。
本发明实施例通过在显示屏中内嵌用于实现触摸功能的光学触控子电路, 以及内嵌实现触摸功能的触摸驱动电极线和触摸感应电极线, 实现一种结构筒 单, 触摸点定位的精度较高的光学式触摸屏。
以下结合附图具体说明本发明实施例提供的技术方案。
本发明实施例提供的触摸屏触摸点定位检测电路可以内嵌于液晶显示屏 ( Liquid Crystal Display, LCD ) 中, 或内嵌在有机发光显示屏 (Organic Light Emitting Diode , OLED)中。 且触摸屏中的触摸驱动电极线可以为独立于栅线、 数据线、 公共电极线等的单独设置的电极线, 也可以是栅线, 数据线、 公共电 极线其中之一。 以下将以触摸驱动电极线为栅线为例对本发明实施例进行详细说明。
如图 2所示, 本发明实施例提供的触摸点定位检测电路包括:
用于感应触摸并生成触控信号的光学触控子电路 1 , 该触控信号为因光照 而生成的触控信号;
用于放大触控信号的放大子电路 2;
用于将放大后的触控信号输出的输出子电路 3;
用于根据输出的触控信号探测触摸点的探测子电路 4。
示例性地, 光学触控子电路 1包括:
第一开关晶体管 Tl、 电容 Cf和光感电容 Cs;
电容 Cf的两端分别为 a端和 b端;
其中, 第一开关晶体管 T1的栅极和源极与第一参考电压源 V 参考 相连, 漏极与电容 Cf的一端 (b端)相连; 电容 Cf的另一端 (a端)与感光电容 Cs的 一端相连, 感光电容 Cs的另一端与第二参考电压源 V « 2相连; 放大子电路 2 与电容 Cf连接第一开关晶体管 T1的一端相连。
本发明实施例中采用的电容 Cf可以为固定电容或可变电容。
在具体实施过程中, 可以通过光触控笔或激光笔的方式实现触摸, 光学触 控子电路 1感应触摸并生成触控信号。 光触控笔或激光笔可以实现远距离操作 实现触摸的功能。
在具体实施过程中, 第一参考电压源 V 参考 和第二参考电压源 V 参考 2分别 可以但不限于为图 2所示的第一偏置电压线 Biasl和第二偏置电压线 Bias2提 供的偏置电压 VBiasl和 VBias2
需要说明的是, 第一开关晶体管 T1的源极和栅极同时与所述第一参考电 压源 V 参考 相连为一种示例性的实施例, 这种连接方式可以筒化电路结构。 第 一开关晶体管 T1 的源极和栅极也可以分别与不同的参考电压源相连, 例如, 第一开关晶体管 T1 的栅极与第一参考电压源 V 参考 相连, 栅极与第三参考电 压源 V 参考 3相连。
电容 Cf的 b端电压对应节点电压 Vb, a端对应节点电压 Va
图 2中所示的第一开关晶体管 T1可以为 n型晶体管或 p型晶体管。 以下 将以 n型晶体管为例, 说明上述光学触控子电路的工作过程。
当触摸屏上无光学触摸信号时, 光感电容 Cs的电容值相对较小, 设其电 容值为 0^, 当触摸屏上有光学触摸信号时, 光感电容 Cs的电容值相对较大, 设其电容值为 cmix
当第一偏置电压线 Biasl提供高电平 时, 第二偏置电压线 Bias2提供低 电压 Vo时, 设 Vo=OV;
第一开关晶体管 T1 开启, 节点 b被充电至接近高电平 V 串联的电容 Cf和光感电容 Cs具有分压作用, 节点 a的电压 Va如公式(1 )所示:
Figure imgf000007_0001
光感电容 Cs的电容值随有无光照的变化而变化, 选择合适的光感电容 Cs 使其在预设强度的光照时 Cf Cmix, 在无光照射时 C >Cmix
当所述触摸点无光照时,
Figure imgf000007_0002
Cf^Cm Va Vi;光感电容
Cs几乎没有分压。
当触摸屏某一触摸点有光照时,
Figure imgf000007_0003
CS两端 的电压值为
光照前后, b节点的电压值 VM V ; Vb2~Vio
如图 3所示, 当触摸屏上无光学触摸信号时, Va和 Vb点的电压分别如 Val 和 Vbl所示; 当触摸屏上有光学触摸信号时, 3和 Vb的电压分别如 Va2和 Vb2 所示。 由此可见, 当触摸屏上有光学触摸信号时, 3节点电压极大地降低, Vb点电压几乎不变, 因此当触摸屏上有光学触摸信号时 Va和 Vb的电压差相比 较没有光学触摸信号时增大了许多。
输出子电路 3和探测子电路 4的输出电压 V。ut与 Va和 Vb有关。 触摸屏上 有光学触摸信号前后, Va值变化越大, V。ut也变化越大, 检测触摸点的位置更 加^ t确。
本发明实施例的光感电容 Cs相比较电感式电容的灵敏度高, 当触摸驱动 电极和触摸感应电极设置在显示屏中距离触摸屏的表面较远的位置时, 当触摸 屏上有光学触摸信号时, 光感电容能够非常灵敏地检测到有光学触摸信号的发 生, 精确检测光触摸点的位置。
此外, 光感电容 Cs的一端与第二偏置电压线 Bias2相连, 第一开关晶体 管 T1的源极与第一偏置电压线 Biasl相连,可以控制第二偏置电压线 Bias2提 供的电压 V。远小于第一偏置电压线 Biasl提供的电压 Vl5使得触摸屏上有光学 触摸信号前后, Va值变化越大, V。ut也变化越大,检测触摸点的位置更加精确。
以下将举例说明本发明实施例提供的放大子电路 2、 输出子电路 3和探测 子电路 4的具体结构。 参见图 4, 放大子电路 2为二级放大子电路, 该放大子电路 2包括: 放大 晶体管 Tamp, 以及第二开关晶体管 T2和第三开关晶体管 T3。 其中, 第二开 关晶体管 Τ2的栅极与电容 Cf的 b端相连, 第三开关晶体管 T3的栅极与电容 Cf的 a端相连; 第二开关晶体管 T2的漏极与第三开关晶体管 T3漏极相连, 第二开关晶体管 T2的源极连接至高电平电压源,对应电压 V , 第三开关晶体 管 T3的源极连接至低电平电压源, 对应电压为 Vgl。 放大晶体管 Tamp的栅极 连接在第二开关晶体管 T2和第三开关晶体管 T3之间。当触摸屏上有光学触摸 信号时, Va极大地降低, 与 Va相连的第三开关晶体管 T3几乎处于关断状态, 而 Vb的增大更进一步的增大了第二开关晶体管 T2的开启能力,此时相对于触 摸屏上没有光学触摸信号发生时, 放大晶体管 Tamp有更大的栅极偏压。
参见图 4, 输出子电路 3 包括第四开关晶体管 T4和触摸驱动电极线 (对 应图 4中的栅线 Select ( n-1 ) )。 第四开关晶体管 T4的栅极与触摸驱动电极线 相连, 源极与放大晶体管 Tamp的漏极相连, 漏极与探测子电路 4的输入端相 连。
需要说明的是, 本发明实施例提供的触摸驱动电极线可以为独立于栅线、 数据线等的电极线, 或者为与栅线共用的电极线, 即栅线分时间驱动, 在触控 阶段用作触摸驱动电极线, 在图像显示阶段用作栅线。
以下以栅线在触控阶段作为触摸驱动电极线为例说明。
参见图 4, 探测子电路 4包括放大器 OP, 跨接在放大器 OP反向输入端与 输出端的电容 CO, 以及跨接在 OP反向输入端与输出端的开关 SW; 触摸驱动 电极线 Select ( n-1 ) (即第 n-1条栅线) 经由输出子电路 3与所述反向输入端 连接。
如图 4所示, 当触摸驱动电极线 Select ( n-1 )为高电平时, 在触控信号探 测时间内触摸屏上有光学触摸信号发生前后, 放大晶体管 Tamp输出的电流经 由输出子电路 3流向探测子电路 4变化量较大, 探测子电路 4输出的电压 V。ut 变化量也较大,触摸屏的触控精度较高。例如,在触摸屏上有光学触摸信号时, 探测子电路 4输出的电压 V。ut分别为 V。utl (触摸屏上有光学触摸信号前)和 Vout2 (触摸屏上有光学触摸信号后), V。ut与探测时间 time 的关系曲线如图 5 所示。
需要说明的是, 放大子电路 2的结构不限于为图 4所示的结构, 例如放大 子电路 2也可以为一级放大子电路, 具体包括: 放大晶体管 Tamp, 该放大晶 体管 Tamp的栅极与电容 Cf的 a端相连, 该放大晶体管 Tamp的源极与高电平 供电电压源相连, 高电平供电电压为 VDD, 漏极与输出子电路相连。
发明实施例提供的各晶体管,例如所述第一开关晶体管、第二开关晶体管、 第三开关晶体管、 第四开关晶体管和放大晶体管为 n型晶体管, 晶体管的栅极 在高电平下开启, 低电平下关闭。
本发明实施例采用的晶体管可以是开关晶体管也可以是其他类型的晶体 管。
此处仅是以栅线作为触摸驱动电极线为例说明本发明实施例。 本发明实施 例的触摸驱动电极线为其他功能电极线时, 各晶体管不限于为 n型晶体管, 也 可以是 p型晶体管。
本发明实施例提供一种光学式触摸屏, 该触摸屏为内嵌式触摸屏, 包括多 个本发明上述实施例提供的触摸点定位检测电路。触摸点定位检测电路在触摸 屏内的设置个数, 相互之间的距离类似现有技术, 这里不再赘述。
本发明实施例还提供一种显示装置, 包括上述光学式触摸屏, 该显示装置 可以为具有触摸功能的液晶显示面板、 液晶显示器、 有机电致发光显示 OLED 面板、 OLED显示器等。
综上所述, 本发明实施例提供一种光学式触摸屏、 触摸点定位检测电路和 显示装置,通过相互串联连接的电容 Cf和光感电容 Cs控制与光学触控子电路 相连的放大子电路中的放大晶体管 Tamp的栅极电压, 实现光照触摸显示屏前 后, 输出探测子电路检测到的信号变化量较大, 触摸点定位的精度更高。 明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及 其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求 书
1、 一种触摸点定位检测电路, 包括:
用于感应触摸并生成触摸信号的光学触控子电路;
与所述光学触控子电路相连的用于将所述触摸信号放大的放大子电路; 与所述放大子电路相连的用于输出所述触摸信号的输出子电路; 以及 与所述输出子电路相连的根据所述输出的触摸信号确定触摸点位置的探 测子电路。
2、 根据权利要求 1 所述的检测电路, 其中, 所述光学触控子电路包括: 第一开关晶体管、 电容和感光电容;
其中, 所述第一开关晶体管的栅极和源极与第一参考电压源相连, 漏极与 所述电容的一端相连;
所述电容的另一端与所述感光电容的一端相连, 所述感光电容的另一端与 第二参考电压源相连;
所述放大子电路与所述电容连接第一开关晶体管的一端相连。
3、 根据权利要求 1 所述的检测电路, 其中, 所述放大子电路包括第二开 关晶体管、 第三开关晶体管, 以及放大晶体管;
其中, 所述第二开关晶体管的栅极与所述电容连接第一开关晶体管的一端 相连, 所述第三开关晶体管的栅极与所述电容连接光感电容的一端相连, 所述 第二开关晶体管的漏极与所述第三开关晶体管的漏极相连, 所述第二开关晶体 管的源极与高电平电压源相连;
所述第三开关晶体管的源极与低电平电压源相连;
所述放大晶体管的栅极与所述第二开关晶体管的漏极相连, 所述放大晶体 管的漏极与输出子电路相连, 所述放大晶体管的源极与高电平供电电压源相 连。
4、 根据权利要求 3所述的检测电路, 其中, 所述输出子电路包括第四开 关晶体管和触摸驱动电极线, 所述第四开关晶体管的栅极与所述触摸驱动电极 线相连, 所述第四开关晶体管的源极与所述放大晶体管的漏极相连, 所述第四 开关晶体管的漏极与所述探测子电路相连。
5、 根据权利要求 4所述的检测电路, 其中, 所述探测子电路包括: 放大 器、 跨接在该放大器的反向输入端与输出端的电容, 以及跨接在该放大器的反 向输入端与输出端的开关, 所述晶体管的漏极与所述放大器的反向输入端相 连。
6、 根据权利要求 4所述的检测电路, 其中, 所述触摸驱动电极线分时间 驱动, 在触控阶段用作触摸驱动电极线, 在图像显示阶段用作栅线。
7、 根据权利要求 2所述的检测电路, 其中, 所述第一参考电压源为高电 平供电电压源, 所述第二参考电压源为低电平供电电压源。
8、 根据权利要求 4所述的检测电路, 其中, 所述第一开关晶体管、 第二 开关晶体管、 第三开关晶体管、 第四开关晶体管和放大晶体管为 n型晶体管。
9、 一种光学式触摸屏, 包括权利要求 1-8任一权项所述的检测电路。
10、 一种显示装置, 包括权利要求 9所述的光学式触摸屏。
PCT/CN2013/089816 2013-08-01 2013-12-18 触摸点定位检测电路、光学式触摸屏及显示装置 WO2015014083A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/370,434 US20150355743A1 (en) 2013-08-01 2013-12-18 Touch point positioning detection circuit, optical touch panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310331811.5 2013-08-01
CN2013103318115A CN103440072A (zh) 2013-08-01 2013-08-01 触摸点定位检测电路、光学式触摸屏及显示装置

Publications (1)

Publication Number Publication Date
WO2015014083A1 true WO2015014083A1 (zh) 2015-02-05

Family

ID=49693763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089816 WO2015014083A1 (zh) 2013-08-01 2013-12-18 触摸点定位检测电路、光学式触摸屏及显示装置

Country Status (3)

Country Link
US (1) US20150355743A1 (zh)
CN (1) CN103440072A (zh)
WO (1) WO2015014083A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9164606B2 (en) * 2012-06-08 2015-10-20 Apple Inc. Dynamic voltage generation for touch-enabled displays
CN103440072A (zh) * 2013-08-01 2013-12-11 合肥京东方光电科技有限公司 触摸点定位检测电路、光学式触摸屏及显示装置
CN104699354B (zh) * 2015-04-01 2017-12-22 上海天马微电子有限公司 触控面板及其驱动方法、触控显示装置
US10977476B2 (en) 2015-06-01 2021-04-13 Beijing Boe Optoelectronics Technology Co., Ltd. Dermatoglyphics data acquisition device, acquisition method thereof and display device
CN104850292B (zh) * 2015-06-01 2017-09-29 京东方科技集团股份有限公司 一种内嵌式触摸屏、其驱动方法及显示装置
CN106527850A (zh) * 2016-10-31 2017-03-22 维沃移动通信有限公司 一种消息的显示方法及移动终端
CN112083593B (zh) * 2020-09-29 2021-12-03 Tcl华星光电技术有限公司 显示面板及显示装置
CN113407055A (zh) * 2021-06-15 2021-09-17 深圳市华星光电半导体显示技术有限公司 显示装置及其屏幕传感模块

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090091552A1 (en) * 2007-10-05 2009-04-09 Chi Mei Optoelectronics Corp. Touch panel and control method thereof
CN102096506A (zh) * 2010-04-06 2011-06-15 友达光电股份有限公司 触控面板
CN103164099A (zh) * 2013-03-04 2013-06-19 合肥京东方光电科技有限公司 一种触摸屏触摸点定位检测电路、触摸屏及显示装置
CN103440072A (zh) * 2013-08-01 2013-12-11 合肥京东方光电科技有限公司 触摸点定位检测电路、光学式触摸屏及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101133753B1 (ko) * 2004-07-26 2012-04-09 삼성전자주식회사 감지 소자를 내장한 액정 표시 장치
TWI360072B (en) * 2007-07-26 2012-03-11 Au Optronics Corp Touching panel
WO2010150573A1 (ja) * 2009-06-25 2010-12-29 シャープ株式会社 表示装置
CN102023440B (zh) * 2009-09-15 2012-07-04 群康科技(深圳)有限公司 触控屏幕及其制造方法
US8643132B2 (en) * 2011-06-08 2014-02-04 Omnivision Technologies, Inc. In-pixel high dynamic range imaging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090091552A1 (en) * 2007-10-05 2009-04-09 Chi Mei Optoelectronics Corp. Touch panel and control method thereof
CN102096506A (zh) * 2010-04-06 2011-06-15 友达光电股份有限公司 触控面板
CN103164099A (zh) * 2013-03-04 2013-06-19 合肥京东方光电科技有限公司 一种触摸屏触摸点定位检测电路、触摸屏及显示装置
CN103440072A (zh) * 2013-08-01 2013-12-11 合肥京东方光电科技有限公司 触摸点定位检测电路、光学式触摸屏及显示装置

Also Published As

Publication number Publication date
CN103440072A (zh) 2013-12-11
US20150355743A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
WO2015014083A1 (zh) 触摸点定位检测电路、光学式触摸屏及显示装置
JP6652921B2 (ja) タッチディスプレイ駆動回路、及びその駆動方法とディスプレイデバイス
TWI421746B (zh) 觸控面板
US9690424B2 (en) In-cell multi-touch display panel system
US10068950B2 (en) Pixel circuit, driving method thereof, and display apparatus
US9652095B2 (en) Pixel circuit, method for driving the same, organic light-emitting diode display panel, and display device
KR101189092B1 (ko) 센싱회로 및 이를 갖는 표시장치
WO2014131226A1 (zh) 触摸屏触摸点定位检测电路、触摸屏及显示装置
JP4927452B2 (ja) センシング回路及びこれを有する表示装置
KR101022118B1 (ko) 광 감지회로 및 그 구동방법과 이를 구비한 터치 스크린 패널
US8441459B2 (en) In-cell capacitive touch panel
WO2016045301A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
US20160342268A1 (en) Display device
WO2016015392A1 (zh) 触控显示电路及显示装置
US20170220194A1 (en) Optical sensing device, semiconductor device containing the same, and method for driving the same
WO2015188468A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
TWI488091B (zh) 光學式觸控顯示面板
WO2019029282A1 (zh) 像素电路及其驱动方法以及触控显示装置
WO2014205950A1 (zh) 有源矩阵有机发光二极管像素单元电路以及显示面板
US9703414B2 (en) Pixel circuit, organic electroluminescent display panel and display apparatus
WO2014205939A1 (zh) Amoled像素电路及其驱动方法、显示装置
WO2014206033A1 (zh) 一种amoled像素电路及其驱动方法、显示装置
WO2014206036A1 (zh) 一种amoled像素电路及其驱动方法、显示装置
WO2014153829A1 (zh) 内嵌式触摸屏及显示装置
WO2014205944A1 (zh) Amoled像素电路及其驱动方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14370434

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890742

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13890742

Country of ref document: EP

Kind code of ref document: A1