WO2014205952A1 - 自动散热型自由流电泳分离室装置 - Google Patents

自动散热型自由流电泳分离室装置 Download PDF

Info

Publication number
WO2014205952A1
WO2014205952A1 PCT/CN2013/084940 CN2013084940W WO2014205952A1 WO 2014205952 A1 WO2014205952 A1 WO 2014205952A1 CN 2013084940 W CN2013084940 W CN 2013084940W WO 2014205952 A1 WO2014205952 A1 WO 2014205952A1
Authority
WO
WIPO (PCT)
Prior art keywords
fastening structure
separation chamber
hole
electrode
plate
Prior art date
Application number
PCT/CN2013/084940
Other languages
English (en)
French (fr)
Inventor
曹成喜
颜健
刘小平
孔凡志
杨成章
李国庆
李军
樊柳荫
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2014205952A1 publication Critical patent/WO2014205952A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D57/00Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C
    • B01D57/02Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C by electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44708Cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44769Continuous electrophoresis, i.e. the sample being continuously introduced, e.g. free flow electrophoresis [FFE]

Definitions

  • the invention relates to the field of biochemical chemical device technology, in particular to an automatic heat dissipation type free-flow electrophoresis separation chamber device for preparative free-flow electrophoresis.
  • electrophoresis technology began in the early 20th century. This technology has been successfully used in the separation of many types of substances, such as organelles, proteins, peptides, amino acids, etc., and has been widely used in chemical biology and other fields. Supporting media commonly used in early electrophoresis are filter paper and cellulose acetate membranes. With the development of technology, such support media are gradually replaced by gels. The advantages of easy gel formation, easy adjustment of pore size, and ability to recover separated substances have greatly promoted the development of electrophoresis technology, making electrophoresis technology one of the important tools for analyzing macromolecules and organelles such as proteins and peptides. However, the solid support medium has a certain influence on the properties of the sample.
  • the flux of the sample is reduced, so it can only be used for analysis or a very small amount of separation and purification.
  • the porous nature of the support medium due to the porous nature of the support medium, it is hindered to some extent.
  • the migration of the sample results in a small migration distance that reduces the resolution, and the support medium may change the chargeability of the sample.
  • some support media can also cause adsorption, denaturation, etc. of the sample.
  • Free-flow electrophoresis technology no longer needs solid medium, and it is continuously separated and prepared in liquid phase environment. Its advantages are obvious, high efficiency, simple operation, good resolution, mild separation environment and high recovery rate.
  • Free-flow electrophoresis technology has broad application prospects. According to relevant literature and reports, this technology has been successfully used to separate small chemical small substances, from animal and plant cells. Free-flow electrophoresis plays a very important role in proteomic analysis, especially in the separation of low-abundance proteins. Currently, free-flow electrophoresis is also widely used in pharmaceutical technology. Separation of chiral drugs. Free-flow electrophoresis has been developed to date. Free-flow electrophoresis mainly has the following three basic separation modes: free-flow zone electrophoresis, free-flow isokinetic electrophoresis, free-flow isoelectric focusing electrophoresis.
  • the present invention is directed to the above-mentioned deficiencies of the prior art, and provides an automatic heat dissipation type free-flow electrophoresis separation chamber device, which can efficiently and conveniently separate and purify samples.
  • the present invention is achieved by the following technical solutions, including semiconductor refrigeration fins, air-cooled heat sinks, thermal silica gels, temperature controllers, DC power supplies, temperature sensors, upper parts of fastening structures, plexiglass plates, ion membranes, Ceramic plate, rubber pad and lower part of fastening structure, semiconductor cooling film, air-cooled heat sink, thermal silica gel, temperature controller, DC power supply and temperature sensor for automatic cooling system, in semiconductor cooling film and air-cooled radiator
  • the top copper sheets are evenly coated with thermal silica gel, and the upper part of the fastening structure, the plexiglass board, the ion film, the ceramic board, the rubber mat, and the lower part of the fastening structure are arranged from top to bottom in order; the upper part of the fastening structure is on the edge There are a plurality of threaded holes on the fastening structure; the two ends of the plexiglass plate have a liquid inlet and a liquid outlet respectively, and one side of the plexiglass plate has an electrode slot, and each
  • Electrode liquid outlet one of the four corners of the plexiglass plate has a first ion membrane fixed blind hole; the middle of the ion membrane is dug with a rectangular hole of the separation cavity, and the two sides of the ion membrane are each dug with a rectangular hole of the electrode cavity, and the ion membrane is four Each corner has an ionic membrane fixing hole; the ceramic plate has a second ion film fixing blind hole at each of the four corners; the rubber pad has two rectangular holes; the lower part of the fastening structure has a plurality of fastening structures The lower part of the threaded hole has two rectangular large holes under the fastening structure in the middle of the lower part of the fastening structure.
  • the outer diameters of the plexiglass plate, the ion film, and the ceramic plate are the same on the horizontal surface; the present invention further includes an inlet baffle and an outlet baffle, and the inlet baffle and the outlet baffle are assembled in the organic Both ends of the glass plate, and the "concave" position of the inlet baffle and the outlet baffle are strictly aligned with the lower end of the plexiglass plate and the lower end of the liquid outlet; the ends of the plexiglass plate are "concave”"Thegroove; the inlet port (5) and the outlet port at both ends of the plexiglass plate are designed with a "stepped" hole.
  • the outer diameter of the rigid plastic tube is equal to the inner diameter of the upper portion of the stepped hole.
  • the lower end of the plastic tube is inserted into the liquid inlet and the liquid outlet and is in contact with the top end of the lower portion of the stepped small hole, and the upper end of the rigid plastic tube is connected with the silicone hose, and between the hard plastic tube and the liquid inlet and the liquid outlet Both are sealed with a shadowless glue; there is a triangular notch at each end of the ionic membrane, and a small blind hole under each of the two sides of the rectangular large hole under the two fastening structures; Fixed blind hole, ionic membrane fixed hole, a small plastic cylinder is inserted between the blind holes of the second ion film fixing; the screw hole of the lower part of the fastening structure corresponds to the threaded hole of the upper part of the fastening structure, and the threaded hole of the lower part of the fastening structure and the threaded hole of the upper part of the fastening structure The hexagonal screws are assembled together
  • the upper end of the rigid plastic tube in the liquid inlet of the separation chamber device is connected to the gas-liquid buffer separation device (invention patent number: ZL200510024412.X) through a soft silicone tube, and the outlet end of the electrophoresis buffer is self-balanced with the separation liquid.
  • the connected collection device (invention patent number: ZL200510024413.4) is connected by a silicone hose, so that the flow of the fluid in the separation chamber is uniform, and finally a stable and uniform fluid dynamic environment is formed in the free-flow electrophoresis separation chamber.
  • the free-flow electrophoresis separation chamber device is designed as a multi-layer sandwich structure, from top to bottom, the upper portion of the fastening structure, the plexiglass plate, the ion film, the ceramic plate, the rubber pad, and the lower portion of the fastening structure.
  • the ion film in the free-flow electrophoresis separation chamber device is subjected to a large pressure under the screwing of the upper portion of the fastening structure and the lower portion of the fastening structure, and the background buffer and the electrode liquid can be effectively isolated. It avoids mutual pollution, and its good electrical conductivity effectively increases the effective voltage coefficient in the separation chamber.
  • the electrode liquid enters the electrode slot from the electrode liquid inlet, flows through the electrode slot, and flows out from the electrode liquid outlet, and a power source is connected to the copper column in the electrode hole.
  • the flowing electrode liquid flushes the platinum wire to conduct the power source and the ion membrane to supply power to the separation chamber, while the flowing electrode liquid carries the electrolysis product away.
  • the free-flow electrophoresis separation device of the present invention in order to eliminate the Joule heat generated during the electrophoretic separation process, a ceramic plate with a high thermal conductivity is used for the construction of the separation chamber, and a semiconductor refrigeration sheet is mounted on the lower surface of the ceramic plate. Air-cooled radiator.
  • the invention has the following remarkable and beneficial effects: the water leakage prevention performance is very good; the assembly of the entire separation chamber is very convenient; the baffle can effectively improve the stability and uniformity of the manifold in the separation chamber.
  • the combination of the ceramic plate and the semiconductor refrigeration system allows the Joule heat in the separation chamber to be quickly dissipated, ensuring a smooth separation process; the automatic heat dissipation system makes the separation chamber device more compact without the need for a complicated cooling water system.
  • Figure 1 is a schematic view of the fastening structure of the present invention, including the upper part of the fastening structure, the lower part of the fastening structure and the rubber pad;
  • Figure 2 is a view showing three main components of the separation chamber of the present invention, including a plexiglass plate, an ion film and a ceramic plate;
  • Figure 3 is a schematic view showing the structure of the ion film in the present invention;
  • FIG. 4 is a schematic structural view of a deflector in the present invention.
  • Figure 5 is a schematic view showing the assembly of the deflector and the organic glass in the present invention.
  • Figure 6 is a schematic structural view of an organic glass plate in the present invention.
  • Figure 7 is a structural schematic view of the A-A section of Figure 6 and a partial enlarged view thereof;
  • Figure 8 is a schematic view showing the bottom structure of the lower part of the fastening structure of the present invention.
  • Figure 9 is a schematic view showing the structure of the upper surface of the ceramic plate of the present invention.
  • Figure 10 is a schematic view showing the assembly of the semiconductor refrigeration system of the present invention.
  • the present invention includes a semiconductor refrigerating sheet 26, an air-cooled heat sink 27, a thermal conductive silica gel 28, a temperature controller 29, a DC power source 30, a temperature sensor 31, a fastening structure upper portion 1, and a plexiglass. Board 10, away Sub-film 11, ceramic plate 12, rubber pad 3, fastening structure lower portion 4, inlet guide vane 18 and outlet deflector 17, semiconductor refrigeration plate 26, air-cooled heat sink 27, thermal silica gel 28, temperature controller 29.
  • the automatic heat dissipation system composed of the DC power source 30 and the temperature sensor 31 is uniformly coated with a thermal conductive silica gel 28 between the semiconductor refrigerating sheet 26 and the top copper sheet of the air-cooled heat sink 27, and the fastening structure upper portion 1 and the plexiglass panel 10 , the ion film 11, the ceramic plate 12, the rubber pad 3, the lower portion 4 of the fastening structure are arranged in order from top to bottom; the upper portion of the fastening structure upper portion 1 has a plurality of fastening portions on the upper portion of the fastening structure; plexiglass plate The two ends of the 10 respectively have a liquid inlet port 5 and a liquid outlet port 9, and the plexiglass plate 10 has an electrode slot 19 on each side thereof, and an electrode hole 6 is arranged at each end of the electrode slot 19, and the electrode hole 6 is mounted therein.
  • each of the four corners of the plexiglass plate 10 has a first ion film fixed.
  • blind hole 20 the middle of the ion film 11 is dug with a separation cavity moment
  • the hole 15, the ion membrane 11 is dug with a rectangular hole 14 of the electrode cavity, and the four corners of the ion film 11 each have an ion membrane fixing hole 16;
  • the four corners of the ceramic plate 12 each have a second ion film fixed a blind hole 25;
  • two rubber holes are opened in the rubber pad 3;
  • the edge of the lower portion 4 of the fastening structure has a plurality of screw holes 22 for the lower portion of the fastening structure, and two fastenings are provided in the middle of the lower portion 4 of the fastening structure a partial rectangular large hole 24 under the structure;
  • the plexiglass plate 10, the ion film 11, and the ceramic plate 12 have the same outer circumference in the horizontal plane;
  • the inlet guide vane 18 and the outlet guide vane 17 are assembled at both ends of the plexiglass plate 10, and
  • a small blind hole 23 in the lower part of the partial rectangular large hole 24 under the two fastening structures a blind hole 20 in the first ion film fixing hole, an ion film fixing hole 16, and a second ion film
  • a small plastic cylinder is inserted between the fixing blind holes 25;
  • the lower threaded hole 22 of the fastening structure corresponds to the upper threaded hole 2 of the fastening structure, and the lower threaded hole 22 of the fastening structure and the threaded hole of the upper part of the fastening structure 2 assembled by a hexagon socket screw;
  • a small blind hole 23 under the fastening structure is assembled with the air-cooled heat sink 27, and a thermal conductive silica gel 28 is uniformly coated between the semiconductor refrigeration sheet 26 and the ceramic plate 12; 31 is attached to the center of the lower surface of the ceramic plate 12.
  • the specific assembly process is carried out as follows: The outer surface of the lower portion of the rigid plastic tube 21 is coated with a shadowless glue, inserted into the liquid inlet 5 and the liquid outlet 9 at both ends of the plexiglass plate 10, and at the same time The other end of the plastic tube 21 is connected to other components by a silicone hose; the rubber pad 3 is placed in the lower portion 4 of the fastening structure, and then the ceramic is sequentially The plate 12, the ion film 11, the plexiglass plate 10, and the upper portion 1 of the fastening structure are stacked on the rubber pad 3; the hexagonal screw is passed through the upper portion of the fastening structure and the screw hole 22 of the lower portion of the fastening structure And tightening, fixing the entire separation chamber; coating the cold end of the semiconductor refrigerating sheet 26 with the thermal silica gel 28, and attaching it to the lower surface of the ceramic board 12 through the rectangular punching portion 24 of the fastening structure; heat of the semiconductor refrigerating sheet 26 The end is coated with a thermal
  • the specific experimental procedure is carried out as follows: First, the separation chamber and the electrode chamber are rinsed 5 times with distilled water, and then the separation chamber and the electrode chamber are flushed with the corresponding background buffer and electrode solution for 10 minutes; the background buffer is filled with the whole Separation chamber, electrode liquid fills the electrode cavity; turn on the background buffer to drive the water pump, turn on the electrode liquid circulation pump to circulate the electrode liquid; turn on the semiconductor refrigeration system, turn on the injection pump, let the sample enter the separation chamber; turn on the electrode liquid power, sample and background
  • the buffer slowly flows through the separation chamber; the separated sample enters the different recovery tubes of the self-balancing recovery device at the outlet 9 end to separate the sample.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种自由流电泳分离室装置,包括有机玻璃板(10)、陶瓷板(12)、离子膜(11)、电泳室、电极室、紧固密封结构、自动半导体制冷散热装置,离子膜(11)处于有机玻璃板(10)和陶瓷板(12)之间,同时离子膜(11)中间和两侧挖空,与有机玻璃板(10)和陶瓷板(12)构成电泳室和电极室;有机玻璃板(10)的两端分别有进液口(5)和出液口(9),形成泳道。该装置能有效解决分离腔易漏水的问题,能有效地将分离腔内的焦耳热消除,提高分离腔内流体流形的稳定性,并且容易装配。

Description

说 明 书
自动散热型自由流电泳分离室装置
技术领域
本发明涉及生物化工的装置技术领域,特别是一种用于制备型自由流电泳的自动散 热型自由流电泳分离室装置。
背景技术
电泳技术的发展始于 20世纪初期, 该技术已经成功用于多种类型物质的分离, 如 细胞器、 蛋白质、 多肽、 氨基酸等, 从而在化学生物等领域得到了广泛的应用。 早期电 泳过程中常采用的支持介质有滤纸和醋酸纤维膜等, 随着技术的发展, 该类支持介质逐 渐被凝胶所替代。 凝胶的易成型、 孔径大小易于调节、 可以回收分离物质等优点大大促 进了电泳技术的发展, 使得电泳技术成为分析蛋白质、 多肽等大分子及细胞器的重要手 段之一。 可是, 固体支持介质对样品的性质会产生一定的影响, 首先降低了样品的通量 所以只能用于分析或者极小量的分离纯化; 其次, 由于支持介质的多孔特性, 在一定程 度上阻碍了样品的迁移, 造成迁移距离小降低了分辨率, 而且支持介质可能改变样品的 带电能力。 最后, 有些支持介质还会引起样品的吸附、 变性等。
基于上述的问题, 以及样品对分离条件的苛刻要求,革新性的新电泳技术一自由 流电泳孕育而生。 自由电泳技术, 完全在液相环境中进行, 分离环境温和对样品损害非 常小等优点, 具有连续分离的特点使得该技术非常适合生物、 化学材料的分离纯化和制 备, 具有极高的回收率和分辨率。 其基本形式就是在非常薄 (约 0.2~0.8mm) 的矩形腔 内,背景缓冲液和样品以不同的流速(一般情况下背景缓冲液流速大于样品流速)流动, 流过垂直于背景缓冲液流速方向的电场, 同时样品中不同物质在背景缓冲液中的带电量 有差异, 因而不同物质在电场的作用下发生偏移, 最终将不同物质分离开。 同时在分离 腔的末端, 依次排有出口对被分离物质进行收集。 由于背景缓冲液和样品可以连续进入 分离腔, 所以自由电泳技术可以进行连续制备。
自由流电泳技术不再需要固体介质, 同时在液相环境中连续进行分离制备,其优势 非常明显, 有效率高、 操作简单、 分辨率好, 分离环境温和、 回收率高等优点。
自由流电泳技术有着广泛的应用前景。根据相关文献和报道,该技术成功用于分离 小到化学小分子物质, 大到动植物细胞等。 自由流电泳在蛋白质组分析, 尤其在分离低 丰度蛋白过程中起到非常重要的作用。 目前, 自由流电泳也被广泛运用于制药技术中的 手性药物的分离。自由流电泳技术发展至今, 自由流电泳主要有以下三种基本分离模式: 自由流区带电泳,自由流等速电泳, 自由流等电聚焦电泳。
经过对现有技术文献的检索发现, 专利授权号为 ZL200710042306. 3, 名称为一种 基于聚丙烯酰胺凝胶膜的自由流电泳分离室的专利技术, 开发了大型、 中型、 小型的重 力自平衡自由流电泳仪。 利用该三种型号自由流电泳仪, 分别纯化了 Pseudomonas sp. M18 菌株发酵液的吩嗪 -1-羧酸 ( phenazine-l-carboxyl ic acid, PCA )、 分离了 Escherichia col i和 Staphylococcus aureus 细胞及三种蛋白、 微制备了猪胰液中胰 蛋白酶。 研究结果表明, 这种传统的分离室能够很好的应用于自由流电泳装置。 然而, 该系列装置存在如下缺点: 1、 聚丙烯酰胺凝胶膜在电泳操作中非常不方便; 2、 聚丙烯 酰胺凝胶膜导电性能一般导致电压效率低, 而且使用时间短; 3、 紧固装置难以保证分 离腔的密封性; 4、 分离腔的装配不方便; 5、 该类型分离装置上下板基本都采用有机玻 璃板, 同时加冷却水冷却系统进行散热, 而且由于有机玻璃板的导热系数非常低, 冷却 水的温度需要非常低才能将焦耳热散失。 基于为了使得实验操作顺利、 方便、 高效的原 则, 非常有必要对这类装置进行改进。
发明内容
本发明针对上述现有技术的不足, 提供了一种自动散热型自由流电泳分离室装置, 能够高效、 方便地对样品进行分离纯化。
本发明是通过以下技术方案来实现的, 本发明包括半导体制冷片、 风冷式散热器、 导热硅胶、 温度控制器、 直流电源、 温度传感器、 紧固结构上部分、 有机玻璃板、 离子 膜、 陶瓷板、 橡胶垫和紧固结构下部分, 半导体制冷片、 风冷式散热器、 导热硅胶、 温 度控制器、 直流电源和温度传感器构成的自动散热系统, 在半导体制冷片与风冷式散热 器顶部铜片之间均匀涂有导热硅胶, 紧固结构上部分、 有机玻璃板、 离子膜、 陶瓷板、 橡胶垫、 紧固结构下部分由上至下依次布置; 紧固结构上部分的边缘上有多个紧固结构 上部分螺纹孔; 有机玻璃板的两端分别有进液口和出液口, 有机玻璃板的两侧分别有一 个电极槽, 在电极槽的两端各有一个电极孔, 电极孔内均装有铜柱, 铜柱与铂丝相连接 形成电极, 在电极槽的两端还分别有电极液入口和电极液出口, 有机玻璃板的四个角落 各有一个第一离子膜固定盲孔; 离子膜的中间挖有分离腔矩形孔, 离子膜的两侧各挖有 电极腔矩形孔, 离子膜的四个角落各有一个离子膜固定小孔; 陶瓷板的四个角落各有一 个第二离子膜固定盲孔; 橡胶垫上开有两个矩形孔; 紧固结构下部分的边缘有多个紧固 结构下部分螺纹孔, 在紧固结构下部分的中间开有两个紧固结构下部分矩形大孔。 进一步地, 在本发明中有机玻璃板、 离子膜、 陶瓷板在水平面上的外围尺寸相同; 本发明还包括入口导流片和出口导流片,入口导流片和出口导流片装配于有机玻璃板的 两端, 并且入口导流片、 出口导流片的 "凹"型位置与有机玻璃板两端进液口与出液口 的下端严格对齐; 有机玻璃板的两端带有 "凹"型槽; 有机玻璃板两端的进液口 (5)、 出液口均采用 "台阶式"小孔设计, 硬质塑料管的外径与该台阶式小孔上部分的内径相 等, 硬质塑料管的下端插入进液口、 出液口中并与台阶式小孔下部分的顶端接触, 硬质 塑料管的上端与硅胶软管连接,硬质塑料管与进液口、出液口之间均采用无影胶水密封; 在离子膜的两端各有一个三角形缺口,在两个紧固结构下部分矩形大孔的两侧各有一个 紧固结构下部分小盲孔; 在第一离子膜固定盲孔、 离子膜固定小孔、 第二离子膜固定盲 孔之间插有小塑料圆柱; 紧固结构下部分螺纹孔与紧固结构上部分螺纹孔是相对应的, 紧固结构下部分螺纹孔与紧固结构上部分螺纹孔通过内六角螺丝装配在一起; 紧固结构 下部分小盲孔与风冷式散热器的装配在一起,在半导体制冷片与陶瓷板之间均匀涂有导 热硅胶; 温度传感器贴于陶瓷板下表面中央位置。
在本发明中,分离室装置进液口中的硬质塑料管上端通过软硅胶管与气液缓冲分离 装置(发明专利授权号: ZL200510024412.X)相连接, 电泳缓冲液出口端与分离液自平 衡连通收集装置 (发明专利授权号: ZL200510024413.4)通过硅胶软管相连接, 从而使 得分离腔内流体的流动均匀一致,最终在自由流电泳分离腔内形成稳定均匀的流体动力 学环境。
在本发明中, 自由流电泳分离室装置被设计成多层夹心结构, 由上至下依次是紧固 结构上部分、 有机玻璃板、 离子膜、 陶瓷板、 橡胶垫、 紧固结构下部分, 用内六角螺丝 穿过紧固结构上部分小孔、 紧固结构下部分小孔并旋紧。
在本发明中, 自由流电泳分离室装置中的离子膜在紧固结构上部分和紧固结构下部 分通过螺丝的旋紧下, 产生较大压力, 可以有效地隔离背景缓冲液和电极液, 避免其相 互污染, 同时其良好的导电性能有效的提高了分离腔内的有效电压系数。
本发明的自由流电泳分离室装置,在电泳过程中,电极液从电极液入口进入电极槽, 流过电极槽后从电极液出口流出, 同时在电极孔内的铜柱上接有电源。 流动的电极液冲 刷铂丝将电源与离子膜导通, 为分离腔供电, 同时流动的电极液将电解产品带走。
本发明的自由流电泳分离装置, 为了将电泳分离过程中产生的焦耳热尽快消除, 用 导热率较高的陶瓷板用于分离腔的构建, 同时在陶瓷板的下表面装有半导体制冷片和风 冷式散热器。 与现有技术相比, 本发明具有以下显著和有益的效果: 防漏水性能非常好; 整个分 离室各部件的装配非常方便; 导流片能有效的提高分离腔内流形的稳定和均匀性; 陶瓷 板和半导体制冷系统的配合使用, 使得分离腔内的焦耳热能迅速散失, 确保了分离过程 顺利进行; 自动散热系统使得分离腔装置更加紧凑, 无需外加复杂的冷却水系统。
附图说明
图 1为本发明中紧固结构示意图,包括紧固结构上部分,紧固结构下部分和橡胶垫 三部分;
图 2为本发明中构成分离腔的三个主要部件, 包括有机玻璃板, 离子膜和陶瓷板; 图 3为本发明中离子膜结构示意图;
图 4为本发明中导流片结构示意图;
图 5为本发明中导流片与有机玻璃的装配示意图;
图 6为本发明中有机玻璃板的结构示意图;
图 7为图 6中 A— A剖面的结构示意图及其局部放大图;
图 8为本发明中紧固结构下部分底部结构示意图;
图 9为本发明中陶瓷板的上表面结构示意图;
图 10为本发明中半导体制冷系统的装配示意图;
其中: 1、 紧固结构上部分, 2、 紧固结构上部分螺纹孔, 3、 橡胶垫, 4、 紧固结构 下部分, 5、 进液口, 6、 电极孔, 7、 电极液入口, 8、 电极液出口, 9、 出液口, 10、 有机玻璃板, 11、 离子膜, 12、 陶瓷板, 13、 凹型槽, 14、 电极腔矩形孔, 15、 分离腔 矩形孔, 16、 离子膜固定小孔, 17、 出口导流片, 18、 入口导流片, 19、 电极腔, 20、 第一离子膜固定盲孔, 21、 硬质塑料管, 22、 紧固结构下部分螺纹孔, 23、 紧固结构下 部分小盲孔, 24、 紧固结构下部分矩形大孔, 25、 第二离子膜固定盲孔, 26、 半导体制 冷片, 27、 风冷式散热器, 28、 导热硅胶, 29、 温度控制器, 30、 直流电源, 31、 温度 传感器。
具体实施方式
下面结合附图对本发明的实施例作详细说明, 本实施例以本发明技术方案为前提, 给出了详细的实施方式和具体的操作过程, 但本发明的保护范围不限于下述的实施例。
实施例
如图 1至图 10所示,本发明包括半导体制冷片 26、风冷式散热器 27、导热硅胶 28、 温度控制器 29、 直流电源 30、 温度传感器 31、 紧固结构上部分 1、 有机玻璃板 10、 离 子膜 11、 陶瓷板 12、 橡胶垫 3、 紧固结构下部分 4、 入口导流片 18和出口导流片 17, 半导体制冷片 26、 风冷式散热器 27、 导热硅胶 28、 温度控制器 29、 直流电源 30和温 度传感器 31构成的自动散热系统, 在半导体制冷片 26与风冷式散热器 27顶部铜片之 间均匀涂有导热硅胶 28, 紧固结构上部分 1、 有机玻璃板 10、 离子膜 11、 陶瓷板 12、 橡胶垫 3、 紧固结构下部分 4由上至下依次布置; 紧固结构上部分 1的边缘上有多个紧 固结构上部分螺纹孔 2; 有机玻璃板 10的两端分别有进液口 5和出液口 9, 有机玻璃板 10的两侧分别有一个电极槽 19, 在电极槽 19的两端各有一个电极孔 6, 电极孔 6内均 装有铜柱, 铜柱与铂丝相连接形成电极, 在电极槽 19的两端还分别有电极液入口 7和 电极液出口 8, 有机玻璃板 10的四个角落各有一个第一离子膜固定盲孔 20; 离子膜 11 的中间挖有分离腔矩形孔 15, 离子膜 11的两侧各挖有电极腔矩形孔 14, 离子膜 11的 四个角落各有一个离子膜固定小孔 16; 陶瓷板 12的四个角落各有一个第二离子膜固定 盲孔 25;橡胶垫 3上开有两个矩形孔; 紧固结构下部分 4的边缘有多个紧固结构下部分 螺纹孔 22, 在紧固结构下部分 4的中间开有两个紧固结构下部分矩形大孔 24; 有机玻 璃板 10、 离子膜 11、 陶瓷板 12在水平面上的外围尺寸相同; 入口导流片 18和出口导 流片 17装配于有机玻璃板 10的两端, 并且入口导流片 18、 出口导流片 17的 "凹"型 位置与有机玻璃板 10两端进液口 5与出液口 9的下端严格对齐;有机玻璃板 10的两端 带有 "凹"型槽 13; 有机玻璃板 10两端的进液口 5、 出液口 9均采用 "台阶式"小孔 设计, 硬质塑料管 21的外径与该台阶式小孔上部分的内径相等, 硬质塑料管 21的下端 插入进液口 5、出液口 9中并与台阶式小孔下部分的顶端接触,硬质塑料管 21的上端与 硅胶软管连接, 硬质塑料管 21与进液口 5、 出液口 9之间均采用无影胶水密封; 在离子 膜 11的两端各有一个三角形缺口,在两个紧固结构下部分矩形大孔 24的两侧各有一个 紧固结构下部分小盲孔 23; 在第一离子膜固定盲孔 20、 离子膜固定小孔 16、 第二离子 膜固定盲孔 25之间插有小塑料圆柱; 紧固结构下部分螺纹孔 22与紧固结构上部分螺纹 孔 2是相对应的, 紧固结构下部分螺纹孔 22与紧固结构上部分螺纹孔 2通过内六角螺 丝装配在一起; 紧固结构下部分小盲孔 23与风冷式散热器 27的装配在一起, 在半导体 制冷片 26与陶瓷板 12之间均匀涂有导热硅胶 28;温度传感器 31贴于陶瓷板 12下表面 中央位置。
在本发明中, 具体装配过程实施步骤如下: 将硬质塑料管 21下部分外表面涂上无 影胶水, 插于有机玻璃板 10两端的进液口 5和出液口 9, 同时其硬质塑料管 21的另一 端用硅胶软管与其它部件连接; 将橡胶垫 3放于紧固结构下部分 4中, 然后依次将陶瓷 板 12、 离子膜 11、 有机玻璃板 10、 紧固结构上部分 1叠放于橡胶垫 3之上; 用内六角 螺丝穿过紧固结构上部分螺纹孔 2和紧固结构下部分螺纹孔 22并旋紧, 将整个分离腔 固定; 将半导体制冷片 26 的冷端涂上导热硅胶 28, 通过紧固结构下部分矩形打孔 24 贴放于陶瓷板 12下表面;将半导体制冷片 26的热端涂上导热硅胶 28,将风冷式散热器 27的顶端铜片与其贴紧, 并用螺丝将风冷式散热器 27通过紧固结构下部分小盲孔将其 固定。
在本发明中, 具体实验过程实施步骤如下: 首先将分离腔和电极腔用蒸馏水冲洗 5 次, 然后用相应的背景缓冲液、 电极液冲刷分离腔和电极腔十分钟; 让背景缓冲液充满 整个分离腔, 电极液充满电极腔; 开启背景缓冲液驱动水泵, 开启电极液循环泵使电极 液循环; 开启半导体制冷系统, 开启进样泵, 让样品进入分离腔; 开启电极液电源, 样 品与背景缓冲液缓慢流过分离腔; 被分离的样品, 在出液口 9端进入自平衡回收装置的 不同回收管, 从而将样品分离开来。

Claims

权 利 要 求 书
1、 一种自动散热型自由流电泳分离室装置, 包括半导体制冷片 (26)、 风冷式散热 器 (27)、 导热硅胶 (28)、 温度控制器 (29)、 直流电源 (30) 和温度传感器 (31 ), 半 导体制冷片 (26)、 风冷式散热器 (27)、 导热硅胶 (28)、 温度控制器 (29)、 直流电源
( 30)和温度传感器 (31 ) 构成的自动散热系统, 在半导体制冷片 (26) 与风冷式散热 器 (27 ) 顶部铜片之间均匀涂有导热硅胶 (28), 其特征在于, 还包括紧固结构上部分 ( 1 )、 有机玻璃板 (10)、 离子膜 (11 )、 陶瓷板 (12)、 橡胶垫 (3) 和紧固结构下部分 (4), 紧固结构上部分 (1 )、 有机玻璃板 (10)、 离子膜 (11 )、 陶瓷板 (12)、 橡胶垫 ( 3)、 紧固结构下部分 (4) 由上至下依次布置; 紧固结构上部分 (1 ) 的边缘上有多个 紧固结构上部分螺纹孔(2); 有机玻璃板(10)的两端分别有进液口 (5)和出液口 (9), 有机玻璃板 (10) 的两侧分别有一个电极槽 (19), 在电极槽 (19) 的两端各有一个电 极孔 (6), 电极孔 (6) 内均装有铜柱, 铜柱与铂丝相连接形成电极, 在电极槽 (19) 的两端还分别有电极液入口 (7) 和电极液出口 (8 ), 有机玻璃板 (10) 的四个角落各 有一个第一离子膜固定盲孔 (20); 离子膜 (11 ) 的中间挖有分离腔矩形孔 (15), 离子 膜 (11 ) 的两侧各挖有电极腔矩形孔 (14), 离子膜 (11 ) 的四个角落各有一个离子膜 固定小孔 (16); 陶瓷板 (12) 的四个角落各有一个第二离子膜固定盲孔 (25); 橡胶垫 ( 3)上开有两个矩形孔;紧固结构下部分 (4)的边缘有多个紧固结构下部分螺纹孔(22), 在紧固结构下部分 (4) 的中间开有两个紧固结构下部分矩形大孔 (24)。
2、 根据权利要求 1所述的自动散热型自由流电泳分离室装置, 其特征在于, 有机 玻璃板 (10)、 离子膜 (11 )、 陶瓷板 (12) 在水平面上的外围尺寸相同。
3、 根据权利要求 1所述的自动散热型自由流电泳分离室装置, 其特征在于, 还包 括入口导流片 (18 ) 和出口导流片 (17 ), 入口导流片 (18) 和出口导流片 (17 ) 装配 于有机玻璃板 (10) 的两端, 并且入口导流片 (18 )、 出口导流片 (17) 的 "凹"型位 置与有机玻璃板 (10) 两端进液口 (5) 与出液口 (9) 的下端严格对齐。
4、 根据权利要求 1所述的自动散热型自由流电泳分离室装置, 其特征在于, 有机 玻璃板 (10) 的两端带有 "凹"型槽 (13)。
5、 根据权利要求 1所述的自动散热型自由流电泳分离室装置, 其特征在于, 有机 玻璃板 (10) 两端的进液口 (5)、 出液口 (9) 均采用 "台阶式"小孔设计, 硬质塑料 管 (21 ) 的外径与该台阶式小孔上部分的内径相等, 硬质塑料管 (21 ) 的下端插入进液 口 (5 )、 出液口 (9) 中并与台阶式小孔下部分的顶端接触, 硬质塑料管 (21 ) 的上端 与硅胶软管连接, 硬质塑料管 (21 ) 与进液口 (5 )、 出液口 (9) 之间均采用无影胶水 密封。
6、 根据权利要求 1所述的自动散热型自由流电泳分离室装置, 其特征在于, 在离 子膜 (11 ) 的两端各有一个三角形缺口, 在两个紧固结构下部分矩形大孔 (24) 的两侧 各有一个紧固结构下部分小盲孔 (23)。
7、 根据权利要求 1所述的自动散热型自由流电泳分离室装置, 其特征在于, 在第 一离子膜固定盲孔 (20)、 离子膜固定小孔 (16)、 第二离子膜固定盲孔 (25)之间插有 小塑料圆柱。
8、 根据权利要求 1所述的自动散热型自由流电泳分离室装置, 其特征在于, 紧固 结构下部分螺纹孔 (22 ) 与紧固结构上部分螺纹孔 (2) 是相对应的, 紧固结构下部分 螺纹孔 (22) 与紧固结构上部分螺纹孔 (2) 通过内六角螺丝装配在一起。
9、 根据权利要求 6所述的自动散热型自由流电泳分离室装置, 其特征在于, 紧固 结构下部分小盲孔 (23) 与风冷式散热器 (27) 的装配在一起, 在半导体制冷片 (26) 与陶瓷板 (12) 之间均匀涂有导热硅胶 (28)。
10、 根据权利要求 6所述的自动散热型自由流电泳分离室装置, 其特征在于, 温度 传感器 (31 ) 贴于陶瓷板 (12) 下表面中央位置。
PCT/CN2013/084940 2013-06-28 2013-10-10 自动散热型自由流电泳分离室装置 WO2014205952A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310270169.4 2013-06-28
CN201310270169.4A CN103331099B (zh) 2013-06-28 2013-06-28 自动散热型自由流电泳分离室装置

Publications (1)

Publication Number Publication Date
WO2014205952A1 true WO2014205952A1 (zh) 2014-12-31

Family

ID=49239345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084940 WO2014205952A1 (zh) 2013-06-28 2013-10-10 自动散热型自由流电泳分离室装置

Country Status (2)

Country Link
CN (1) CN103331099B (zh)
WO (1) WO2014205952A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114885566A (zh) * 2022-05-25 2022-08-09 东莞市洪港电子有限公司 一种带有插接端子且塑封防水型单面线路板

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103331099B (zh) * 2013-06-28 2015-04-01 上海交通大学 自动散热型自由流电泳分离室装置
CN103760211B (zh) * 2014-01-26 2016-03-16 成都医学院 一种微小组织透明化微液流电泳槽板
CN104307367B (zh) * 2014-10-27 2016-06-01 上海交通大学 一种往复式自由流等电聚焦电泳装置及方法
CN110639365B (zh) * 2019-09-12 2021-10-15 大连理工大学 一种用于混合蛋白分离的具有支持介质的制备型垂直流电泳系统
CN114062469B (zh) * 2021-11-18 2022-11-29 上海交通大学 一种提高区带电泳分离效率的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310408A (en) * 1980-02-20 1982-01-12 Mcdonnell Douglas Corporation Electrophoresis chamber
US5399255A (en) * 1993-06-21 1995-03-21 Helena Laboratories Corporation Platform for conducting electrophoresis, and electrophoresis plate for use with the platform
CN2417917Y (zh) * 2000-04-18 2001-02-07 辛毅 垂直板电泳槽复合式制胶板
CN102688692A (zh) * 2012-05-28 2012-09-26 上海交通大学 用于制备型自由流电泳的分离室装置
CN102692444A (zh) * 2011-03-23 2012-09-26 爱科来株式会社 分析装置及分析方法
CN103331099A (zh) * 2013-06-28 2013-10-02 上海交通大学 自动散热型自由流电泳分离室装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3833110B2 (ja) * 2001-12-05 2006-10-11 オリンパス株式会社 フリーフロー電気泳動法
CN101042369A (zh) * 2006-03-21 2007-09-26 简子超 电泳装置
JP5475449B2 (ja) * 2006-08-29 2014-04-16 ベクトン・ディキンソン・アンド・カンパニー 無担体の偏向電気泳動の方法及び装置
CN100425331C (zh) * 2006-12-26 2008-10-15 福建医科大学 由膜分隔的多个特异性亚室构成的连续自由流电泳设备
CN100493682C (zh) * 2007-06-21 2009-06-03 上海交通大学 自由流电泳的分离室装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310408A (en) * 1980-02-20 1982-01-12 Mcdonnell Douglas Corporation Electrophoresis chamber
US5399255A (en) * 1993-06-21 1995-03-21 Helena Laboratories Corporation Platform for conducting electrophoresis, and electrophoresis plate for use with the platform
CN2417917Y (zh) * 2000-04-18 2001-02-07 辛毅 垂直板电泳槽复合式制胶板
CN102692444A (zh) * 2011-03-23 2012-09-26 爱科来株式会社 分析装置及分析方法
CN102688692A (zh) * 2012-05-28 2012-09-26 上海交通大学 用于制备型自由流电泳的分离室装置
CN103331099A (zh) * 2013-06-28 2013-10-02 上海交通大学 自动散热型自由流电泳分离室装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114885566A (zh) * 2022-05-25 2022-08-09 东莞市洪港电子有限公司 一种带有插接端子且塑封防水型单面线路板
CN114885566B (zh) * 2022-05-25 2024-02-20 东莞市洪港电子有限公司 一种带有插接端子且塑封防水型单面线路板

Also Published As

Publication number Publication date
CN103331099B (zh) 2015-04-01
CN103331099A (zh) 2013-10-02

Similar Documents

Publication Publication Date Title
WO2014205952A1 (zh) 自动散热型自由流电泳分离室装置
Turgeon et al. Micro free-flow electrophoresis: theory and applications
CN100493682C (zh) 自由流电泳的分离室装置
CN102688692A (zh) 用于制备型自由流电泳的分离室装置
JPS6327744A (ja) 制御および再現が可能な温度勾配を発生させる方法と装置
CN105510490A (zh) 一种微型气相色谱柱芯片及其制备方法
JP2004508574A (ja) 電気泳動装置および方法
CN1687770A (zh) 集成高效恒温系统的微流控芯片一体化装置
Yan et al. A simple and highly stable free-flow electrophoresis device with thermoelectric cooling system
CN102252878A (zh) Off-Gel自由流电泳耦合芯片及其制作方法
CN206235594U (zh) 可快速降温的电泳仪
CN101672830A (zh) 色谱柱柱上加热装置
US3509035A (en) Continuous particle electrophoresis cell
JPS63100367A (ja) 電気泳動装置
WO2014205953A1 (zh) 自由流电泳分离腔排气装置及其实施方法
CN1108983C (zh) 一种平行板式水冷臭氧发生器
US7736517B2 (en) Method and apparatus for performing planar electrochromatography at elevated pressure
CN103920397B (zh) 一种适用于通用平板膜元件的复合场膜分离实验装置
CN102053113A (zh) 一种带有冷却腔的电泳槽
CN206262371U (zh) 一种可拆卸并重复使用的透析装置
JP2000088805A (ja) カラム接続用ジョイント、キャピラリーカラム及びこれを用いたキャピラリー電気クロマトグラフィー装置
JP2003172725A (ja) フリーフロー電気泳動法
CN207605604U (zh) 一种平板式正渗透膜性能测试装置
CN114887676B (zh) 一种风冷式的多通道体声波微流控分选器件
JPH0329844A (ja) 電気泳動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.05.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13888388

Country of ref document: EP

Kind code of ref document: A1