WO2014203834A1 - ガラス搬送用ロールおよびその製造方法ならびにそれを用いた板ガラスの製造方法 - Google Patents

ガラス搬送用ロールおよびその製造方法ならびにそれを用いた板ガラスの製造方法 Download PDF

Info

Publication number
WO2014203834A1
WO2014203834A1 PCT/JP2014/065814 JP2014065814W WO2014203834A1 WO 2014203834 A1 WO2014203834 A1 WO 2014203834A1 JP 2014065814 W JP2014065814 W JP 2014065814W WO 2014203834 A1 WO2014203834 A1 WO 2014203834A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
glass
thermal expansion
ceramic
sprayed coating
Prior art date
Application number
PCT/JP2014/065814
Other languages
English (en)
French (fr)
Inventor
貴史 迫田
典之 安尾
泰成 石川
和雄 浜島
Original Assignee
旭硝子株式会社
トーカロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社, トーカロ株式会社 filed Critical 旭硝子株式会社
Priority to KR1020157035493A priority Critical patent/KR102209272B1/ko
Priority to CN201480034557.5A priority patent/CN105324341B/zh
Priority to JP2015522895A priority patent/JP6493840B2/ja
Publication of WO2014203834A1 publication Critical patent/WO2014203834A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/16Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands by roller conveyors
    • C03B35/18Construction of the conveyor rollers ; Materials, coatings or coverings thereof
    • C03B35/181Materials, coatings, loose coverings or sleeves thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the present invention relates to a glass transport roll used for transporting glass in a high temperature state in the manufacture of plate glass, a method for manufacturing the same, and a method for manufacturing plate glass using the glass transport roll.
  • Many glass transport rolls such as rare rolls for gradually cooling while being used are used.
  • Patent Document 1 describes a transport roll in which a ceramic sprayed coating is formed on the surface of an iron-based alloy roll base material and a base film made of cermet is provided between the ceramic sprayed coating and the base material.
  • Patent Document 2 a ceramic thermal spray coating is provided on the surface of the metal base material of the roll body portion, and the linear thermal expansion coefficient is between the metal base material and the ceramic thermal spray coating.
  • the surface of the roll is made of a ceramic spray coating as in Patent Documents 1 and 2, adhesion of glass residues and tin aggregates is difficult to occur. Moreover, peeling of the ceramic sprayed coating resulting from the difference in a linear thermal expansion coefficient can be suppressed by providing a base film between this ceramic sprayed coating and a roll base material.
  • a conventional transport roll having a base layer made of metal or cermet on the surface of a roll base material and laminated with a ceramic spray coating thereon has a high temperature at least when used in a plate glass production line.
  • the roll atmosphere temperature is 550 ° C. or higher, fine cracks on the surface of the ceramic sprayed coating are inevitable, so the particles constituting the ceramic sprayed coating drop off and adhere to the glass being conveyed. Inconvenience is likely to occur.
  • a high temperature and corrosive gas is often used. In many cases, the thermal spray coating itself peels off.
  • the applicant of the present application is to use ceramics in a roll for glass conveyance, which is often used at high temperatures, in which a base layer and a ceramic spray coating are laminated on the surface of a roll base material.
  • a roll for transporting glass described in Patent Document 3 is proposed.
  • a first thermal spray coating made of cermet or metal is provided on the surface of a roll base material, and a second thermal spray coating made of ceramics is provided on the first thermal spray coating.
  • This 2nd thermal spray coating is a sealing process using the silica precursor solution.
  • the particles fall off from the ceramic spray coating and the interface between the base layer and the ceramic surface layer. Peeling of the ceramic spray coating that occurs from the vicinity can be remarkably suppressed. For this reason, it is hard to produce the particle adhesion to the glass in conveyance, and quality improvement of glass can be implement
  • the surface of a metal roll base material is coated with a ceramic spray coating, particles from the ceramic spray coating It aims at further suppression of falling off and peeling of the ceramic sprayed coating itself.
  • the present invention is a roll for transporting glass in which a metal roll base material surface is coated with a ceramic spray coating
  • the linear thermal expansion coefficient of the roll base material is ⁇ s
  • the linear thermal expansion coefficient of the ceramic spray coating is ⁇ c in the temperature range of 500 to 750 ° C., ⁇ s ⁇ c ⁇ 2 ⁇ 10 ⁇ 6 / ° C., 8 ⁇ 10 ⁇ 6 / ° C. ⁇ ⁇ c ⁇ 14 ⁇ 10 ⁇ 6 / ° C.
  • the ceramic sprayed coating has a thickness of 100 to 500 ⁇ m, Provided is a glass transport roll, wherein the ceramic sprayed coating has a porosity of 2% or less by a cross-sectional image analysis method.
  • the present invention provides a film having a linear thermal expansion coefficient ⁇ s in a temperature range of 500 to 750 ° C. on the surface of a roll base material having 10 ⁇ 10 ⁇ 6 / ° C. ⁇ ⁇ s ⁇ 16 ⁇ 10 ⁇ 6 / ° C. 7 to 23 wt.
  • a film forming step of forming a ceramic sprayed coating comprising stabilized zirconia containing, An impregnation step of impregnating the ceramic sprayed coating with a silica precursor solution;
  • a method for producing a glass transport roll comprising a curing step of curing the silica precursor solution to seal a ceramic sprayed coating.
  • the present invention also provides a method for forming a metal on the surface of a roll base material having a linear thermal expansion coefficient ⁇ s in a temperature range of 500 to 750 ° C. of 10 ⁇ 10 ⁇ 6 / ° C. ⁇ ⁇ s ⁇ 16 ⁇ 10 ⁇ 6 / ° C. Or a first film forming step of forming a thermal spray base film made of cermet; 7 to 23 wt.
  • a method for producing a glass transport roll comprising a curing step of curing the silica precursor solution to seal a ceramic sprayed coating.
  • this invention provides the manufacturing method of plate glass which has the process of conveying glass using the roll for glass conveyance of this invention.
  • FIG. 1 is a schematic diagram showing a test apparatus used for evaluating the adhesion of particles to a glass plate.
  • FIG. 2 is a graph showing the evaluation results of Examples 1 to 4 and Comparative Examples 1 to 6.
  • the roll for glass conveyance of the present invention is a roll for glass conveyance in which a metal roll base material surface is coated with a ceramic spray coating, ⁇ s ⁇ c ⁇ 2 ⁇ 10 ⁇ 6 / ° C.
  • ⁇ s is the linear thermal expansion coefficient of the roll base material
  • ⁇ c is the linear thermal expansion coefficient of the ceramic sprayed coating in the temperature range of 500 to 750 ° C. 8 ⁇ 10 ⁇ 6 / ° C. ⁇ ⁇ c ⁇ 14 ⁇ 10 ⁇ 6 / ° C.
  • the elongation due to thermal expansion of the ceramic spray coating from room temperature to 750 ° C is 0.6 to 1.05%.
  • the ceramic sprayed coating has a thickness of 100 to 500 ⁇ m,
  • the ceramic sprayed coating has a porosity of 2% or less by a cross-sectional image analysis method.
  • the material of the roll base material is not particularly limited as long as it is made of metal, but the linear thermal expansion coefficient ⁇ s of the roll base material in the temperature range of 500 to 750 ° C. is equal to the linear thermal expansion coefficient ⁇ c of the ceramic sprayed coating. In relation, ⁇ s ⁇ c ⁇ 2 ⁇ 10 ⁇ 6 / ° C. is required.
  • the linear thermal expansion coefficients ⁇ s and ⁇ c indicate the linear thermal expansion coefficients in the temperature range of 500 to 750 ° C.
  • the linear thermal expansion coefficient ⁇ c can be measured by the following method.
  • a sintered body having a diameter of 20 mm and a length of 20 mm was produced by using a spark plasma sintering (SPS) method.
  • SPS spark plasma sintering
  • the linear thermal expansion coefficient in a temperature range of 20 to 750 ° C. of the sintered body was measured with a push-rod dilatometer (TD5000SA manufactured by NETZSCH) using a horizontal suggestion detection method, and linear heat in a temperature range of 500 to 750 ° C.
  • the expansion coefficient ⁇ c was determined.
  • the linear thermal expansion coefficient ⁇ s can be measured using the above-described push rod dilatometer.
  • the linear thermal expansion coefficient ⁇ c of the ceramic sprayed coating in one embodiment of the present invention is 8 ⁇ 10 ⁇ 6 / ° C. ⁇ ⁇ c ⁇ 14 ⁇ 10 ⁇ 6 / ° C.
  • the linear thermal expansion coefficient ⁇ s of the roll base material Is preferably 10 ⁇ 10 ⁇ 6 / ° C. ⁇ ⁇ s ⁇ 16 ⁇ 10 ⁇ 6 / ° C.
  • the metal material having a linear thermal expansion coefficient ⁇ s satisfying the above range include SUS430 of ferritic stainless steel, SUS410 of martensitic stainless steel, Inconel 625 of Ni-based alloy, SKH of high-speed steel, SKD of tool steel, and the like. Illustrated.
  • the outer diameter of the roll base material is not particularly limited, but the outer diameter of the roll base material in a general glass transport roll is 200 to 500 mm.
  • the surface of the metal roll base material is coated with a ceramic spray coating.
  • the ceramic forming the thermal spray coating has a linear thermal expansion coefficient ⁇ s of the roll base material and ⁇ c is the linear thermal expansion coefficient of the ceramic thermal spray coating, and the difference between the linear thermal expansion coefficients ⁇ s ⁇ c ⁇ 2 ⁇ It is required to satisfy 10 ⁇ 6 / ° C.
  • zirconia ceramics mainly composed of zirconium oxide (ZrO 2 ), or aluminum oxide ( Alumina-based ceramics whose main component is Al 2 O 3 ) are preferred.
  • main component means that it is contained in an amount of 50% by mass or more, preferably 80% by mass or more, based on the entire ceramic phase.
  • Zirconia ceramics are particularly stabilized zirconia or partially stabilized containing as an additive Y 2 O 3 , CaO, MgO, CeO 2 , or one or more of other oxides in an amount of about 3 to 20% by mass. Zirconia is preferred.
  • stabilized zirconia refers to both stabilized zirconia and partially stabilized zirconia.
  • yttrium fluoride is further added to the stabilized zirconia containing about 3 to 20% by mass of the above additive.
  • a metal oxide having a linear thermal expansion coefficient of 11 ⁇ 10 ⁇ 6 / ° C. or less, and a linear thermal expansion coefficient of 11 ⁇ 10 ⁇ It is preferable to use a metal oxide containing at least one metal oxide greater than 6 / ° C.
  • Yttrium fluoride has an effect of increasing the linear thermal expansion coefficient of stabilized zirconia, and is 7 to 23 wt. % Content of linear thermal expansion coefficient ⁇ s - ⁇ c falls within the above range.
  • the content of yttrium fluoride is 7 wt. If it is less than%, the effect of increasing the linear thermal expansion coefficient of stabilized zirconia is insufficient, and the linear thermal expansion coefficient difference ⁇ s ⁇ c may be higher than 2 ⁇ 10 ⁇ 6 / ° C. On the other hand, the content of yttrium fluoride is 23 wt. If it exceeds%, the hardness of the ceramic sprayed coating will decrease, making it unusable as a coating for a glass transport roll. The hardness of the ceramic sprayed coating was determined from the average value obtained by measuring the micro Vickers hardness 10 times with a load of 300 g in the cross section of the ceramic sprayed coating.
  • the metal oxide having a linear thermal expansion coefficient of 11 ⁇ 10 ⁇ 6 / ° C. or less zirconia (ZrO 2 ) or alumina (Al 2 O 3 ) is preferably used, and the linear thermal expansion coefficient is 11 ⁇ 10 ⁇ 6 / It is preferable to use magnesia (MgO) or calcia (CaO) as the metal oxide higher than ° C. Further, silica (SiO 2 ) may be included. By adding silica (SiO 2 ), it becomes easy to sinter the thermal spray material mixed with oxide.
  • the hardness of the ceramic spray coating in one embodiment of the present invention is preferably 600 or more, more preferably 650 or more, and further preferably 700 or more in terms of Vickers hardness (Hv).
  • the roll for conveying a glass of the present invention has a very small difference in linear thermal expansion coefficient ⁇ s ⁇ c ⁇ 2 ⁇ 10 ⁇ 6 / ° C.
  • peeling of the ceramic spray coating due to the difference in linear thermal expansion coefficient between the two is marked. Can be suppressed. Thereby, the drop-off of particles from the ceramic spray coating and the peeling of the ceramic spray coating itself can be remarkably suppressed.
  • the reason why the linear thermal expansion coefficient difference ⁇ s ⁇ c in the temperature range of 500 to 750 ° C. is defined is the temperature range expected when the glass transport roll is used.
  • the linear thermal expansion coefficient difference ⁇ s ⁇ c ⁇ 2 ⁇ 10 ⁇ 6 / ° C. is preferably satisfied, and the linear thermal expansion coefficient difference ⁇ s ⁇ c ⁇ 1 ⁇ 10 ⁇ 6 / ° C. is satisfied. It is more preferable to satisfy.
  • the linear thermal expansion coefficient ⁇ c of the ceramic sprayed coating is 8 ⁇ 10 ⁇ 6 / ° C. ⁇ ⁇ c ⁇ 14 ⁇ 10 ⁇ 6 / ° C. because the linear thermal expansion coefficient difference ⁇ s ⁇ c Elongation due to thermal expansion of the ceramic spray coating, specifically, elongation due to thermal expansion from room temperature to a temperature range assumed when the roll for glass conveyance is used is also suitable for the above range. This is because it affects the peeling of the thermal spray coating.
  • the linear thermal expansion coefficient alpha c is the range of the ceramic sprayed coating, be in the range of elongation due to thermal expansion from room temperature to a temperature range that is assumed when using the glass conveying rolls will be described later, the peeling of the ceramic sprayed coating is suppressed Because it is done.
  • the linear thermal expansion coefficient ⁇ c is less than 8 ⁇ 10 ⁇ 6 / ° C., cracks occur in the coating after thermal spraying, and fine cracks occur as the temperature rises. In some cases, the coating expands the base material. There is a problem in that it cannot follow and causes peeling.
  • the linear thermal expansion coefficient ⁇ c is preferably 8 ⁇ 10 ⁇ 6 / ° C. ⁇ ⁇ c ⁇ 14 ⁇ 10 ⁇ 6 / ° C., and 11 ⁇ 10 ⁇ 6 / ° C. ⁇ ⁇ c ⁇ . More preferably, it is 13 ⁇ 10 ⁇ 6 / ° C.
  • the ceramic sprayed coating in the present invention has an elongation of 0.6 to 1.05% due to thermal expansion from room temperature to 750 ° C.
  • the elongation due to linear expansion can be obtained by multiplying the linear thermal expansion coefficient by temperature.
  • the elongation due to the thermal expansion from room temperature to 750 ° C. corresponds to the elongation due to the thermal expansion of the ceramic spray coating when the glass conveying roll is heated up. Since the ceramic sprayed coating has the largest elongation due to thermal expansion when the glass conveying roll is heated, peeling of the coating tends to occur at this point.
  • the elongation due to thermal expansion from room temperature to 750 ° C. is in the above range, the elongation due to thermal expansion is appropriate when the glass conveying roll is heated up, and peeling of the ceramic spray coating is suppressed.
  • the thickness of the ceramic sprayed coating in the present invention is 100 to 500 ⁇ m.
  • the thickness of the ceramic sprayed coating in one embodiment of the present invention is preferably 100 to 500 ⁇ m, and more preferably 150 to 300 ⁇ m.
  • the ceramic sprayed coating in the present invention has a porosity of 2% or less by a cross-sectional image analysis method.
  • the porosity of the ceramic spray coating is within the above range, it is possible to suppress peeling due to a difference in coefficient of linear thermal expansion between the roll base material and the ceramic spray coating.
  • these metal corrosive gases pass through the ceramic spray coating and prevent contact with the roll base material over a long period of time. it can.
  • the porosity of the ceramic sprayed coating exceeds 2%, peeling of the ceramic sprayed coating cannot be suppressed.
  • the porosity was calculated by an image analysis method in the field of view of an optical microscope (200 times) after polishing a cross-section of the ceramic sprayed coating with a diamond paste having a particle size of 1 ⁇ m.
  • the ceramic sprayed coating in one embodiment of the present invention can be formed by a known spraying method such as plasma spraying, high-speed flame spraying, and powder flame spraying. However, it is preferably formed by plasma spraying in that a high melting temperature can be realized and the sprayed particles can be in a semi-molten state.
  • the raw material used for forming the ceramic sprayed coating is preferably a powder raw material. The powder raw material is previously mixed, granulated, sintered, pulverized, classified and used as a granulated sintered powder or sintered pulverized powder for thermal spraying. preferable.
  • the ceramic coating formed by the thermal spraying method generally has pores because the droplet particles in which the raw material is melted collide with the base material (roll base material surface) and rapidly solidify.
  • the ceramic sprayed coating in the present invention is required to have a porosity of 2% or less. Therefore, the ceramic film formed by thermal spraying, preferably by plasma spraying, needs to have a porosity of 2% or less by performing a sealing treatment.
  • One aspect of the sealing treatment performed for the above purpose is performed by impregnation with a silica precursor solution.
  • the silica precursor refers to a compound that generates silica (SiO 2 ) by physical and chemical changes.
  • Examples of the silica precursor include alkoxysilane and oligomers thereof, polysilazane, alkali silicate, and polysilicic acid.
  • the alkoxysilane oligomer refers to a partially hydrolyzed condensate of alkoxysilane.
  • Examples of the alkoxysilane oligomer include dimer to 20mer obtained by partially hydrolyzing and condensing alkoxysilane.
  • As the polysilazane perhydropolysilazane is preferable.
  • alkoxysilanes include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane (ethyl silicate), tetraisopropoxysilane, and oligomers thereof; organoalkoxysilanes such as methyltriethoxysilane, ethyltriethoxysilane, and oligomers thereof. Etc. These alkoxysilanes are preferably used in a hydrolyzed form in the precursor solution. As a specific example of polysilazane, perhydropolysilazane is preferable.
  • silica precursor solution a known coating solution containing a silica precursor can be used as appropriate.
  • a known coating solution containing a silica precursor can be used as appropriate.
  • Specific examples include an alcoholic solution of alkoxysilane and its oligomer, an organic solvent solution of polysilazane, an aqueous alkali silicate solution (water glass), an aqueous polysilicic acid solution, and the like.
  • the silica precursor solution may appropriately contain other components such as a catalyst, a surfactant, and a shrinkage inhibitor as necessary.
  • Precursor solution consisting of alkali silicate aqueous solution (water glass) is applied to the surface of ceramic sprayed coating and kept at an appropriate temperature in the atmosphere, silicon dioxide is deposited, and macroscopically becomes a surface coating. Some penetrate into the particle boundary of the thermal spray coating. This infiltration effect can be increased by adjusting the concentration of the aqueous solution.
  • silicon dioxide materials may have a slightly weak effect of improving the bonding force between the ceramic spray particles.
  • a coating formed on the surface of the sprayed coating inevitably generates a tortoiseshell-like crack by holding at a high temperature, and a liquid phase easily appears in the structure.
  • alkoxysilane (typically, tetramethoxysilane, tetraethoxysilane) exhibits a fine powdery gel shape although it turns into silica depending on the heating history. They are poorly cohesive and often detach into the environment when an external force is applied. However, these problems can be solved by using an alkoxysilane oligomer or using a shrinkage inhibitor such as silica sol.
  • silicon oxide formed from polysilazanes has a dense structure, high mechanical durability and gas barrier properties, and sealing of ceramic spray coating When used as an agent, it enhances the bonding force of ceramic particles and has a great effect on preventing the particles from falling off.
  • the silica precursor used in one embodiment of the present invention is not limited to alkoxysilane, its oligomer, polysilazane, or alkali silicate, and other silica precursors can be used.
  • the impregnation conditions are preferably set so that the silica precursor solution penetrates into all pores existing on the surface of the formed ceramic film by thermal spraying, preferably by plasma spraying.
  • the penetration depth at which the silica precursor solution penetrates into the pores is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and even more preferably 50 ⁇ m or more in order to satisfactorily prevent permeation of oxygen and corrosive gas. It may penetrate through the entire thickness of the ceramic spray coating.
  • the penetration depth of the silica precursor solution can be adjusted by the viscosity of the silica precursor solution, the impregnation time, the atmospheric temperature, and the like.
  • the silica precursor solution adhered on the ceramic spray coating is wiped off, and the silica precursor solution layer remaining on the surface of the ceramic spray coating is cured and formed
  • the thickness (residue film thickness) of the silica film is 5 ⁇ m or less.
  • the area where the residual film thickness is zero on the surface of the ceramic sprayed coating that is, the area where the silica precursor solution penetrates into the pores and the silica precursor solution does not adhere to the surface before curing. May be.
  • the wiping off of the silica precursor solution described above is not essential, the occurrence of cracks in the silica precursor cured on the surface at the time of heating can be suppressed by wiping before the curing of the silica precursor solution described later.
  • the surface roughness (Ra) of the ceramic sprayed coating after polishing is preferably 0.2 to 0.8 ⁇ m. It is only necessary to remove the fragile outermost layer of the sprayed coating and obtain a smooth surface.
  • the surface roughness (Ra) of the ceramic sprayed coating after impregnation with the silica precursor solution is determined by wiping away the polysilazane on the surface after impregnation, so that the surface roughness of the ceramic sprayed coating before impregnation with the silica precursor solution is reduced. Is substantially equal to (Ra).
  • the polishing method is not particularly limited, and for example, hand polishing using water-resistant polishing paper, mechanical polishing with a diamond tool, or the like can be used.
  • Another embodiment of the treatment for reducing the porosity of the ceramic sprayed coating to 2% or less is performed by explosive spraying.
  • explosive spraying oxygen and flammable gas such as acetylene are mixed and explode inside the spray gun, and a fine powder spray material is mixed in the combustion flame, spraying the spray material onto the surface of the base material and coating it. Since the combustion energy can be obtained at high temperature and high speed by the explosion energy, the porosity of the film becomes very small.
  • the linear thermal expansion coefficient is ⁇ b in the temperature range of 500 to 750 ° C. made of cermet or metal between the roll base material and the ceramic sprayed coating.
  • a base film satisfying ⁇ c ⁇ ⁇ b ⁇ ⁇ s may be formed.
  • the linear thermal expansion coefficient alpha b of the base film, and linear thermal expansion coefficient alpha c of the ceramic sprayed coating, the linear thermal expansion coefficient alpha s of the roll base material, in order to position the intermediate, and the roll base material described above it is possible to further improve the action of suppressing the peeling of the ceramic sprayed coating resulting from the difference in the coefficient of linear thermal expansion between the ceramic sprayed coating and the ceramic sprayed coating.
  • the linear thermal expansion coefficient ⁇ b can be measured using a push rod dilatometer in the same manner as described above.
  • the cermet forming the base film is not particularly limited as long as the linear thermal expansion coefficient ⁇ b satisfies the above range, and a known cermet can be appropriately used as the base film in the glass transport roll.
  • a known cermet can be appropriately used as the base film in the glass transport roll.
  • chromium carbide cermet, boride cermet, oxide dispersion cermet and the like are preferably used.
  • the chromium carbide cermet is composed of a ceramic phase mainly composed of chromium carbide and a metal phase serving as a binder.
  • the ceramic phase is mainly composed of Cr 3 C 2 , but may contain Cr 23 C 6 , Cr 7 C 3, etc. as inevitable impurities.
  • the main body in this invention refers to the compound used as the center in comprising a ceramic sprayed coating or a ceramic layer, and the compound is the compound whose content rate is 50% or more.
  • “consisting mainly of Cr 3 C 2 ” means that the ceramic phase contains the largest amount of Cr 3 C 2 , and specifically, 50% by mass or more with respect to the entire ceramic phase, preferably Means 80% by weight or more.
  • the metal phase is made of a heat resistant alloy containing two or more metals selected from Co, Ni, and Cr.
  • the ceramic phase content in the chromium carbide-based cermet is preferably 45 to 95% by mass, and the metal phase content is preferably 5 to 55% by mass.
  • the ratio of the ceramic phase and the metal phase can be obtained by obtaining the area ratio of each phase based on the cross-sectional photograph and converting it to the mass ratio (the same applies hereinafter).
  • a powder prepared by sintering a mixture of chromium carbide ceramics and a heat-resistant alloy as a binder, pulverizing and adjusting the particle size to about 30 to 150 ⁇ m is used. It is preferable to use it.
  • a commercially available chromium carbide cermet sprayed material may be used.
  • the boride-based cermet is composed of a ceramic phase mainly composed of a composite boride containing at least one of Mo and W, Co, Cr and B, and a metal phase mainly composed of Co and Cr.
  • the “ceramic phase mainly composed of composite boride” means that the ceramic phase contains the largest amount of composite boride, and specifically, 50% by mass or more based on the entire ceramic phase. , Preferably, it means that 80% by weight or more is contained.
  • the preferable content of each element constituting the ceramic phase is Mo: 60 mass% or less, W: 74 mass% or less, Co: 15 to 36 mass%, Cr: 3 to 16 mass%, B: 4 to 7 mass%
  • the total of Mo and W is 65% by mass or more.
  • the ceramic phase may contain Nb, Ta, V, etc. as inevitable impurities.
  • the total content of Co and Cr in the metal phase is preferably 75% by mass or more.
  • the mass ratio of Cr content to Co content (Cr: Co) in the metal phase is preferably 1: 0.15 to 1: 0.40.
  • the metal phase may contain Ti, Al, Ta, Nb, etc. as inevitable impurities.
  • a preferable content of the ceramic phase in the boride-based cermet is 40 to 80% by mass, and more preferably 50 to 75% by mass.
  • a preferable content of the metal phase is 20 to 60% by mass, and more preferably 25 to 50% by mass.
  • the oxide-dispersed cermet is composed of a ceramic phase mainly composed of oxide and a metal phase serving as a binder.
  • the ceramic phase is mainly composed of Al 2 O 3 , but may contain ZrO 2 , Cr 2 O 3 or the like which does not melt even at high temperatures.
  • “consisting mainly of Al 2 O 3 ” means containing the most Al 2 O 3 in the ceramic phase, specifically, 50% by mass or more based on the entire ceramic phase, Preferably, it means that 80% by weight or more is contained.
  • the metal phase is made of a heat-resistant alloy containing two or more metals selected from Co, Ni, and Cr. For example, a Ni-based alloy, a Co-based alloy, or the like is preferably used.
  • Ni-based alloy examples include a Cr—Ni alloy containing about 20 to 70% by mass of Cr.
  • Co-based alloy examples include a Co alloy containing 15 to 30% by mass of Cr, 5 to 16% Al, and 0.1 to 1% by mass of Y.
  • MCrAlY alloy M is at least 1 type of Ni and Co
  • the oxide phase cermet preferably has a ceramic phase content of 5 to 20% by mass and a metal phase content of 80 to 95% by mass.
  • a raw material for forming the oxide-dispersed cermet sprayed coating it is preferable to use a mixture of an oxide having a particle diameter adjusted to about 10 to 100 ⁇ m and a heat-resistant alloy as a binder.
  • the metal forming the base film is not particularly limited as long as the linear thermal expansion coefficient ⁇ b satisfies the above range, and a known metal material can be appropriately used as the base film in the glass transport roll.
  • Ni-base alloy a Ni-base alloy, a Co-base alloy, or the like is preferably used.
  • the Ni-based alloy include a Cr—Ni alloy containing about 20 to 70% by mass of Cr.
  • the Co-based alloy include a Co alloy containing 15 to 30% by mass of Cr, 5 to 16% by mass of Al, and 0.1 to 1% by mass of Y.
  • a known cobalt-based alloy such as a stellite alloy or a trivalloy alloy can be used.
  • cermet is more preferable in terms of high adhesion to the roll base material.
  • the base film can be formed by a known spraying method such as plasma spraying or high-speed flame spraying. However, it is preferably formed by plasma spraying in that a high melting temperature can be realized and the sprayed particles can be in a semi-molten state.
  • the raw material used for forming the base film is preferably a powder raw material, and the powder raw material is preferably used for thermal spraying as a granulated sintered powder or sintered pulverized powder by mixing, granulating, sintering, pulverizing, classification, etc. in advance. .
  • the thickness of the base film is preferably 30 to 150 ⁇ m, more preferably 50 to 80 ⁇ m. When the thickness of the base film is in the above range, the adhesion of the ceramic sprayed coating is easily obtained. In the case where a base film is formed between the roll base material and the ceramic sprayed coating, the total thickness of the base film and the ceramic sprayed coating is preferably 100 to 500 ⁇ m.
  • the base film in one embodiment of the present invention preferably has a porosity of 0.5 to 5% by a cross-sectional image analysis method. If the porosity of the underlying film is in the above range, the roll base metal is corroded by the corrosive gas that has passed through the ceramic spray coating when the transport roll is used in the presence of a corrosive gas such as sulfur oxide. Can be suppressed over a relatively long period of time.
  • the surface roughness of the roll base material after the blast treatment is preferably 2.0 to 5.0 ⁇ m.
  • a sheet glass manufacturing method generally includes a melting step in which raw materials are melted to obtain molten glass, a molding step in which molten glass is molded, and slow cooling in which the glass after molding is gradually cooled to remove stress. And a cutting step of cutting the glass.
  • molding processes such as a float process, a roll-out process, a down draw process, and a fusion process.
  • the conveyance roll of the present invention can be used anywhere as long as it is in the process intended for conveyance in the above-mentioned process, and is mainly at a high temperature in each process after the molding process and between each process, preferably 550 to 750. It is used to transport glass ribbons in the atmosphere at 0 ° C and flat glass after cutting.
  • the sheet glass after the above cutting is moved using a transport roll, heated to a temperature higher than the softening point in a tempering furnace, then rapidly cooled with cooling air, or softened as necessary.
  • the plate glass formed after heating to a point or higher is quenched with cooling air.
  • the rapid cooling is usually performed by blowing cooling air from a plurality of nozzles opposed to the glass surface. As a result, compressive residual stress is applied to the surface of the glass, and a tempered glass sheet is obtained by a so-called physical strengthening method or air cooling strengthening method.
  • strengthening process may be continued with the said cutting process, may take out plate glass after storing plate glass, and may perform it after cutting
  • the conveyance roll of the present invention can be used anywhere as long as it is intended for conveyance during the above process.
  • chemical strengthening step in which compressive stress is chemically applied to the glass surface by ion exchange.
  • the conveyance roll of one embodiment of the present invention can be used even for the purpose of conveyance during the chemical strengthening step.
  • a high-quality plate glass can be provided by the above-described method for producing a plate glass using the glass transport roll of the present invention.
  • Example 1 First, a roll base material made of stainless steel (SUS430 equivalent, for high temperature) containing about 18% by mass of Cr was prepared.
  • the linear thermal expansion coefficient ⁇ s of this roll base material in the temperature range of 500 to 750 ° C. is 12 ⁇ 10 ⁇ 6 / ° C.
  • the shape of the roll base material is a disk shape with an outer diameter of 150 mm ⁇ thickness of 20 mm for convenience in use in the test described later, the radial cross section of the outer peripheral surface of the roll is an outwardly convex curved surface, and the curvature radius of the curved surface was 50 mm.
  • the linear thermal expansion coefficient of the roll base material was measured using the aforementioned push rod dilatometer.
  • the outer peripheral surface of the roll base material was blasted using alumina particles having an average particle diameter of about 300 ⁇ m, and the surface roughness (Ra) was set to 3.0 ⁇ m.
  • the surface roughness was measured with a surface roughness / contour shape measuring instrument (SURFCOM130A manufactured by Tokyo Seimitsu Co., Ltd.).
  • a base film made of Al 2 O 3 —CoNiCrAlY was formed by plasma spraying.
  • a powder having a particle size of 50 to 150 ⁇ m was used as the thermal spraying raw material.
  • the film thickness of the obtained base film was 80 ⁇ m.
  • the linear thermal expansion coefficient ⁇ b of the base film in the temperature range of 500 to 750 ° C. is measured by the following procedure. After a thermal spray coating having a thickness of 1 mm is formed on the surface of a carbon flat plate, only the coating is mechanically peeled off and measured in an argon atmosphere using a push rod dilatometer.
  • the linear thermal expansion coefficient ⁇ b of the base film is 12 ⁇ 10 ⁇ 6 / ° C.
  • a ceramic sprayed coating was formed on the base film by plasma spraying.
  • yttria stabilized zirconia (3YSZ) and yttrium fluoride at 7 wt. % Powder with a particle size of 10-60 ⁇ m was used as a thermal spraying raw material.
  • the obtained ceramic sprayed coating had a film thickness of 400 ⁇ m, a surface roughness (Ra) of 2.0 ⁇ m, and a porosity of 8%.
  • the surface of the ceramic sprayed coating was polished by hand polishing.
  • the film thickness of the ceramic sprayed coating after polishing was 300 ⁇ m, the surface roughness (Ra) was 0.5 ⁇ m, and the porosity was 8%.
  • the silica precursor solution was applied onto the polished ceramic spray coating, and the pores of the ceramic spray coating were impregnated with the silica precursor solution.
  • the silica precursor solution is a polysilazane-based perhydropolysilazane xylene solution (perhydropolysilazane containing) that easily impregnates the pores of the sprayed coating and easily reacts with atmospheric oxygen and moisture to form amorphous silica. Amount: 10% by mass).
  • the coating method was performed by painting with a brush. The same results can be obtained even if the application method is a method such as spraying, roll coating, or liquid immersion.
  • the coating was performed until the solution was sufficiently infiltrated into the ceramic spray coating, and the remaining of the solution on the ceramic spray coating was visually confirmed, and the coating amount was controlled by this visual observation.
  • the silica precursor solution on the surface of the ceramic sprayed coating was wiped off using a wiping cloth, and the residual film thickness of the silica precursor solution on the surface of the ceramic sprayed coating was set to 1 ⁇ m or less.
  • These operations were performed in an atmospheric environment with a temperature of 5 to 35 ° C. and a relative humidity of 35 to 60%.
  • the silica precursor solution was cured by holding in room temperature atmosphere for 24 hours to obtain a sprayed coating in which pores of the ceramic sprayed coating were sealed.
  • the porosity after the sealing treatment was 1% or less.
  • atmosphere for 24 hours is acquired also by hold
  • the linear thermal expansion coefficient ⁇ c of the ceramic spray coating in the temperature range of 500 to 750 ° C. and the elongation due to thermal expansion from room temperature to 750 ° C. were evaluated by the following procedure.
  • Yttrium fluoride was mixed with yttria-stabilized zirconia (3YSZ) at a specified ratio, and a sintered body having a diameter of 20 mm and a length of 20 mm was produced by using a spark plasma sintering (SPS) method.
  • SPS spark plasma sintering
  • the linear thermal expansion coefficient in the temperature range of 20 to 750 ° C. of the sintered body was measured with a Rigaku thermomechanical analyzer (TMA) to determine the linear thermal expansion coefficient ⁇ c in the temperature range of 500 to 750 ° C.
  • TMA Rigaku thermomechanical analyzer
  • the elongation due to thermal expansion at the time of measuring the linear thermal expansion coefficient was defined as elongation due to thermal expansion from room temperature to 750 ° C.
  • the linear thermal expansion coefficient ⁇ c of the ceramic sprayed coating was 12 ⁇ 10 ⁇ 6 / ° C.
  • the elongation due to thermal expansion from room temperature to 750 ° C. was 0.9%.
  • the difference ( ⁇ s ⁇ c ) between the linear thermal expansion coefficients ⁇ c and ⁇ s between the ceramic sprayed coating and the roll base material is 0 ⁇ 10 ⁇ 6 / ° C.
  • Example 2 The same procedure as in Example 1 was performed except that yttria-stabilized zirconia (8YSZ) powder having a particle size of 10 to 60 ⁇ m was used as a raw material for the ceramic spray coating.
  • the porosity of the ceramic sprayed coating after the sealing treatment was 1%.
  • the linear thermal expansion coefficient ⁇ c of the ceramic sprayed coating was 10 ⁇ 10 ⁇ 6 / ° C., and the elongation due to thermal expansion from room temperature to 750 ° C. was 0.75%.
  • the difference ( ⁇ s ⁇ c ) between the linear thermal expansion coefficients ⁇ c and ⁇ s between the ceramic spray coating and the roll base material was 2 ⁇ 10 ⁇ 6 / ° C.
  • Example 3 As a thermal spraying raw material, magnesia (MgO) and zirconia (ZrO 2 ) at 12.5 wt. %, Silica (SiO 2 ) 6.5 wt. The same procedure as in Example 1 was performed, except that sintered and pulverized powder having a particle diameter of 10 to 60 ⁇ m was mixed and the sealing treatment was not performed. The porosity of the ceramic sprayed coating not subjected to the sealing treatment was 8%. Further, the linear thermal expansion coefficient ⁇ c of the ceramic spray coating was 12 ⁇ 10 ⁇ 6 / ° C., and the elongation due to thermal expansion from room temperature to 750 ° C. was 0.9%.
  • Example 4 As a thermal spraying raw material, magnesia (MgO) and zirconia (ZrO 2 ) 7 wt. %, The same procedure as in Example 1 was performed, except that sintered and pulverized powder having a particle diameter of 10 to 60 ⁇ m was used, which was mixed at a ratio of silica (SiO 2 ). The porosity of the ceramic sprayed coating after the sealing treatment was 1%.
  • the linear thermal expansion coefficient ⁇ c of the ceramic spray coating was 12 ⁇ 10 ⁇ 6 / ° C., and the elongation due to thermal expansion from room temperature to 750 ° C. was 0.9%. There was no difference ( ⁇ s ⁇ c ) between the linear thermal expansion coefficients ⁇ c and ⁇ s between the ceramic sprayed coating and the roll base material (0 ⁇ 10 ⁇ 6 / ° C.).
  • Comparative Example 1 a roll base material made of stainless steel (SUS310 equivalent, for high temperature) containing about 25% by mass of Cr was used.
  • the roll base material has a linear thermal expansion coefficient ⁇ s in the temperature range of 500 to 750 ° C. of 17 ⁇ 10 ⁇ 6 / ° C.
  • yttria-stabilized zirconia (8YSZ) powder having a particle diameter of 10 to 60 ⁇ m, in which yttrium fluoride was not added as a raw material for the ceramic sprayed coating, was used.
  • the porosity of the ceramic sprayed coating after polishing was 8%, and the porosity of the ceramic sprayed coating after sealing treatment was 1%.
  • the linear thermal expansion coefficient ⁇ c of the ceramic sprayed coating was 10 ⁇ 10 ⁇ 6 / ° C., and the elongation due to thermal expansion from room temperature to 750 ° C. was 0.75%.
  • the difference ( ⁇ s ⁇ c ) between the linear thermal expansion coefficients ⁇ c and ⁇ s between the ceramic spray coating and the roll base material was 7 ⁇ 10 ⁇ 6 / ° C.
  • Comparative Example 2 It is the same as Comparative Example 1 except that the porosity of the ceramic sprayed coating after polishing is 2% and the porosity of the ceramic sprayed coating after sealing treatment is 1%.
  • the linear thermal expansion coefficient ⁇ c of the ceramic sprayed coating was 10 ⁇ 10 ⁇ 6 / ° C., and the elongation due to thermal expansion from room temperature to 750 ° C. was 0.75%.
  • the difference ( ⁇ s ⁇ c ) between the linear thermal expansion coefficients ⁇ c and ⁇ s between the ceramic spray coating and the roll base material was 7 ⁇ 10 ⁇ 6 / ° C.
  • Comparative Example 3 The same as Comparative Example 1 except that the ceramic sprayed coating after polishing was not sealed.
  • the linear thermal expansion coefficient ⁇ c of the ceramic sprayed coating was 10 ⁇ 10 ⁇ 6 / ° C., and the elongation due to thermal expansion from room temperature to 750 ° C. was 0.75%.
  • the difference ( ⁇ s ⁇ c ) between the linear thermal expansion coefficients ⁇ c and ⁇ s between the ceramic spray coating and the roll base material was 7 ⁇ 10 ⁇ 6 / ° C.
  • Comparative Example 4 The same as Comparative Example 2 except that the ceramic sprayed coating after polishing was not sealed.
  • the linear thermal expansion coefficient ⁇ c of the ceramic sprayed coating was 10 ⁇ 10 ⁇ 6 / ° C., and the elongation due to thermal expansion from room temperature to 750 ° C. was 0.75%.
  • the difference ( ⁇ s ⁇ c ) between the linear thermal expansion coefficients ⁇ c and ⁇ s between the ceramic spray coating and the roll base material was 7 ⁇ 10 ⁇ 6 / ° C.
  • Comparative Example 5 The same as Comparative Example 1 except that the surface of the ceramic sprayed coating after the sealing treatment was polished by 20 ⁇ m by manual polishing.
  • the surface sprayed ceramic spray coating had a surface roughness (Ra) of 0.5 ⁇ m and a porosity of 1%.
  • the linear thermal expansion coefficient ⁇ c of the ceramic sprayed coating was 10 ⁇ 10 ⁇ 6 / ° C., and the elongation due to thermal expansion from room temperature to 750 ° C. was 0.75%.
  • the difference ( ⁇ s ⁇ c ) between the linear thermal expansion coefficients ⁇ c and ⁇ s between the ceramic spray coating and the roll base material was 7 ⁇ 10 ⁇ 6 / ° C.
  • Comparative Example 6 The same as Comparative Example 1 except that the surface of the ceramic sprayed coating after the sealing treatment was polished by 200 ⁇ m by hand polishing.
  • the surface sprayed ceramic spray coating had a surface roughness (Ra) of 0.5 ⁇ m and a porosity of 1%.
  • the linear thermal expansion coefficient ⁇ c of the ceramic sprayed coating was 10 ⁇ 10 ⁇ 6 / ° C., and the elongation due to thermal expansion from room temperature to 750 ° C. was 0.75%.
  • the difference ( ⁇ s ⁇ c ) between the linear thermal expansion coefficients ⁇ c and ⁇ s between the ceramic spray coating and the roll base material was 7 ⁇ 10 ⁇ 6 / ° C.
  • FIG. 1 is a schematic diagram for explaining a test apparatus used for the evaluation.
  • This test apparatus is configured by combining a roll-on-disk type rolling friction tester (hereinafter sometimes simply referred to as a tester) 1 (manufactured by Takachiho Seiki Co., Ltd.) and an electric furnace (not shown).
  • a tester roll-on-disk type rolling friction tester
  • the peripheral surface of a glass transport roll (hereinafter sometimes simply referred to as a roll) 3 is in contact with the upper surface of a disk-shaped glass plate 2 that rotates in the circumferential direction. It is provided to do.
  • the roll 3 is rotatable in the circumferential direction, the rotation axis direction is the same as the radial direction of the glass plate 2, and is provided so as to be able to advance and retreat in the rotation axis direction.
  • the upper surface of the glass plate 2 and the peripheral surface of the roll 3 are brought into contact with each other, and a constant load is applied to the roll 3 in the direction from the center of the roll 3 toward the glass plate 2.
  • the roll 3 rotates so as to roll on the glass plate 2 along with the rotation. And while rotating the glass plate 2, the roll 3 rolls forward while drawing a spiral friction mark on the upper surface of the glass plate 2 by advancing the roll 3 toward the center of the glass plate 2 in the rotation axis direction. Moreover, in the said Example and comparative example, since the outer peripheral surface of the roll was made into the outward convex curved surface, the contact with the upper surface of the glass plate 2 and the peripheral surface of the roll 3 becomes a point contact, and a friction trace becomes linear. .
  • the testing machine 1 is accommodated in an electric furnace, and the atmospheric temperature of the testing machine 1 is controlled to a predetermined temperature.
  • the test conditions were an atmospheric temperature of 600 ° C., a load of 500 gf on the roll 3, a radius of the glass plate 2 of 90 mm, a rotation speed of the glass plate 2 of 0.5 rps, and a width of the friction trace (corresponding to a point contact diameter between the glass plate 2 and the roll 3.
  • the distance between the friction marks in the radial direction of the glass plate 2 was 0.125 mm.
  • the glass plate 2 and the roll 3 were set in the testing machine 1.
  • the temperature in the electric furnace was raised to 600 ° C. so that the glass plate 2 and the roll 3 were not in contact with each other. After holding at 600 ° C.
  • the following method evaluated how much ZrO 2 particles adhered to the upper surface of the glass plate 2 thus obtained.
  • observation points were determined at intervals of 10 mm along the radial direction from the edge toward the center.
  • a glass plate piece of an appropriate size including all of the observation points was cut out from the glass plate 2, and the upper surface thereof was carbon coated.
  • a backscattered electron image centered on each observation point was photographed at a constant magnification by an electron microscope, and based on the area of ZrO 2 particles present in each photographed image (observation region) and the total area of the photographed image, The particle adhesion rate in each observation region was calculated according to equation (1).
  • Particle adhesion rate (%) (total area of ZrO 2 particles / total area of photographed image) ⁇ 100 (1)
  • FIG. 2 shows the results of measuring the adhesion rate of ZrO 2 particles to the glass plate for the glass transport rolls obtained in Examples 1 to 4 and Comparative Examples 1 to 6 in this way.
  • the horizontal axis indicates the distance from the edge (outer periphery) of the glass plate 2 to each observation point, and the vertical axis indicates the particle adhesion rate (unit:%) to the glass plate.
  • the glass transport rolls of Comparative Examples 1 to 6 caused much adhesion of ZrO 2 particles from the roll to the glass plate, whereas the glass transport rolls of Examples 1 and 2
  • the roll for use had an adhesion rate of such particles of almost 0%, and Examples 3 and 4 also had an adhesion rate of 0.05% or less, and the adhesion was well suppressed.
  • Comparative Examples 5 and 6 were polished after the sealing treatment, foreign matter adhered due to polishing scraps on the surface of the film or cracks in the film due to processing stress.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

 金属製のロール母材表面が、セラミックス溶射皮膜で被覆された、高温で使用されることが多いガラス搬送用ロールにおいて、該セラミックス溶射皮膜からの粒子脱落、および、該セラミックス溶射皮膜自体の剥離のさらなる抑制。金属製のロール母材表面が、セラミックス溶射皮膜で被覆されたガラス搬送用ロールであって、500~750℃の温度域における、前記ロール母材の線熱膨張係数をαsとし、前記セラミックス溶射皮膜の線熱膨張係数をαcとするとき、αs-αc≦2×10-6/℃であり、8×10-6/℃≦αc≦14×10-6/℃であり、前記セラミックス溶射皮膜の常温から750℃までの熱膨張による伸びが、0.6~1.05%であり、前記セラミックス溶射皮膜の厚みが100~500μmであり、前記セラミックス溶射皮膜の断面画像解析法による気孔率が2%以下であることを特徴とするガラス搬送用ロール。

Description

ガラス搬送用ロールおよびその製造方法ならびにそれを用いた板ガラスの製造方法
 本発明は、板ガラスの製造において高温状態のガラスを搬送するために用いられるガラス搬送用ロール、およびその製造方法、ならびにそのガラス搬送用ロールを用いた板ガラスの製造方法に関する。
 従来から、フロート法によって板ガラスを製造する工程では、溶融錫の上面を流れてきたガラスリボンと呼ばれる高温状態のガラスの連続した層を錫浴から引き上げるためのリフトアウトロールや、該ガラスリボンを移動させながら徐々に冷却していくためのレアロールなど多くのガラス搬送用ロールが用いられている。
 そこで金属からなるロール母材の表面にセラミックス溶射皮膜を被覆し、ロール母材と該セラミックス溶射皮膜との間に、下地層としてメタル層やサーメット溶射膜を設けたガラス搬送用ロールが提案されている。
 例えば特許文献1には、鉄基合金のロール母材の表面にセラミックス溶射皮膜を形成するとともに、該セラミックス溶射皮膜と母材との間にサーメットからなる下地膜を設けた搬送用ロールが記載されている。
 また、特許文献2には、ロール胴部の金属基材の表面にセラミックの溶射皮膜を設けるとともに、該金属基材と該セラミック溶射皮膜との間に、両者の中間の線熱膨張係数を有する金属溶射皮膜を設けたフロートガラス製造用ロールが記載されている。
 特許文献1および2のようにロールの表面をセラミックス溶射皮膜とすると、ガラス残留物や錫凝集物の付着が生じ難くなる。また、該セラミックス溶射皮膜とロール母材との間に下地膜を設けることにより線熱膨張係数の差異に起因するセラミックス溶射皮膜の剥離を抑制できる。
 しかしながら、ロール母材の表面上に金属またはサーメットからなる下地層を有し、その上にセラミックス溶射皮膜が積層された従来の搬送用ロールは、板ガラスの製造ラインで使用する際に、高温、少なくともロールの存在雰囲気温度が550℃以上の場合に、セラミックス溶射皮膜の表面の微細な亀裂が不可避であるため、セラミックス溶射皮膜を構成している粒子が脱落して、搬送されているガラスに付着するという不都合が生じやすい。
 さらにガラスリボンの搬送工程では、搬送用ロールとリボンの摩擦による傷が発生することを防止するために、高温でしかも腐食性ガスを用いることが多く、この環境において該ロールを長期間使用するとセラミックス溶射皮膜自体が剥離することも少なくない。
 上述した従来技術における問題点を解決するため、本願出願人は、ロール母材の表面に下地層とセラミックス溶射皮膜が積層された、高温で使用されることが多いガラス搬送用ロールにおいて、該セラミックス溶射皮膜からの粒子脱落および溶射皮膜自体の剥離を抑制できるようするため、特許文献3に記載のガラス搬送用ロールを提案している。
 特許文献3に記載のガラス搬送用ロールは、ロール母材の表面に、サーメットまたは金属からなる第1の溶射皮膜が設けられ、該第1の溶射皮膜上にセラミックスからなる第2の溶射皮膜が設けられたガラス搬送用ロールであって、該第2の溶射皮膜がシリカ前駆体溶液を用いて封孔処理されたものである。
 特許文献3に記載のガラス搬送用ロールでは、ロール母材の表面に下地層とセラミックス溶射皮膜が積層されたガラス搬送用ロールにおける、セラミックス溶射皮膜からの粒子脱落および下地層とセラミックス表面層の界面近傍から生じるセラミックス溶射皮膜の剥離自体を格段に抑制できる。このため、搬送中のガラスへの粒子付着が生じ難く、ガラスの高品質化を実現することができる。
 しかしながら、板ガラスのさらなる高品質化の要求を満たすため、ガラス搬送用ロールからのセラミックス溶射皮膜の粒子脱落、および、該セラミックス溶射皮膜の剥離のさらなる抑制が求められる。
日本国特開2004-277828号公報 日本国特開平4-260623号公報 国際公開第2009/113638号
 本発明では、上記の問題を解決するため、金属製のロール母材表面が、セラミックス溶射皮膜で被覆された、高温で使用されることが多いガラス搬送用ロールにおいて、該セラミックス溶射皮膜からの粒子脱落、および、該セラミックス溶射皮膜自体の剥離のさらなる抑制を目的とする。
 本発明は、上記の目的を達成するため、金属製のロール母材表面が、セラミックス溶射皮膜で被覆されたガラス搬送用ロールであって、
 500~750℃の温度域における、前記ロール母材の線熱膨張係数をαsとし、前記セラミックス溶射皮膜の線熱膨張係数をαcとするとき、αs-αc≦2×10-6/℃であり、8×10-6/℃≦αc≦14×10-6/℃であり、
 前記セラミックス溶射皮膜の常温から750℃までの熱膨張による伸びが、0.6~1.05%であり、
 前記セラミックス溶射皮膜の厚みが100~500μmであり、
 前記セラミックス溶射皮膜の断面画像解析法による気孔率が2%以下であることを特徴とするガラス搬送用ロールを提供する。
 また、本発明は、500~750℃の温度域における線熱膨張係数αsが、10×10-6/℃≦αs≦16×10-6/℃であるロール母材の表面に、フッ化イットリウムを7~23wt.%含有する安定化ジルコニアからなるセラミックス溶射皮膜を形成する成膜工程と、
 該セラミックス溶射皮膜に、シリカ前駆体溶液を含浸させる含浸工程と、
 該シリカ前駆体溶液を硬化させてセラミックス溶射皮膜を封孔処理する硬化工程を有する、ガラス搬送用ロールの製造方法を提供する。
 また、本発明は、500~750℃の温度域における線熱膨張係数αsが、10×10-6/℃≦αs≦16×10-6/℃であるロール母材の表面に、金属またはサーメットからなる溶射下地膜を形成する第1の成膜工程と、
 該溶射下地膜上にフッ化イットリウムを7~23wt.%含有する安定化ジルコニアからなるセラミックス溶射皮膜を形成する第2の成膜工程と、
 該セラミックス溶射皮膜に、シリカ前駆体溶液を含浸させる含浸工程と、
 該シリカ前駆体溶液を硬化させてセラミックス溶射皮膜を封孔処理する硬化工程を有する、ガラス搬送用ロールの製造方法を提供する。
 また、本発明は、本発明のガラス搬送用ロールを用いてガラスを搬送する工程を有する、板ガラスの製造方法を提供する。
 本発明によれば、金属製のロール母材表面がセラミックス溶射皮膜で被覆されたガラス搬送用ロールにおける、該セラミックス溶射皮膜からの粒子脱落、および、該セラミックス溶射皮膜自体の剥離を格段に抑制できる。
 また、本発明のガラス搬送用ロールにおいて、ロール母材と、セラミックス溶射皮膜と、の間に、サーメットまたは金属からなる下地膜を形成した場合、硫黄酸化物のような腐食性ガスの存在下で搬送用ロールを使用した場合に、セラミックス溶射皮膜を通過した腐食性ガスによるロール母材の腐食を抑制できる。
 本発明のガラス搬送用ロールを用いた板ガラスおよび強化板ガラスの製造方法によって、高品質の板ガラスを提供することができる。
図1は、ガラス板への粒子の付着性評価に用いられる試験装置を示す概略図である。 図2は、実施例1~4および比較例1~6の評価結果を示すグラフである。
 本発明のガラス搬送用ロールは、金属製のロール母材表面が、セラミックス溶射皮膜で被覆されたガラス搬送用ロールであって、
 500~750℃の温度域における、ロール母材の線熱膨張係数をαsとし、セラミックス溶射皮膜の線熱膨張係数をαcとするとき、αs-αc≦2×10-6/℃であり、8×10-6/℃≦αc≦14×10-6/℃であり、
 セラミックス溶射皮膜の常温から750℃までの熱膨張による伸びが、0.6~1.05%であり、
 セラミックス溶射皮膜の厚みが100~500μmであり、
 セラミックス溶射皮膜の断面画像解析法による気孔率が2%以下であることを特徴とする。
<ロール母材>
 ロール母材の材質は、金属製である限り特に限定されないが、500~750℃の温度域における、ロール母材の線熱膨張係数αsが、セラミックス溶射皮膜の線熱膨張係数αcとの関係で、αs-αc≦2×10-6/℃を満たすことが求められる。
 以下、本明細書において、線熱膨張係数αs,αcと記載した場合、500~750℃の温度域における線熱膨張係数を指す。なお、線熱膨張率αcは、以下の方法で測定することができる。セラミックス溶射皮膜は、原料を規定の比率で混合し、放電プラズマ焼結(SPS:Spark Plasma Sintering)法を用いて、φ20mm長さ20mmの焼結体を作製した。これを水平示唆検出方式の押し棒式膨張計(NETZSCH社製 TD5000SA)にて焼結体の20~750℃の温度域における線熱膨張係数を測定し、500~750℃の温度域における線熱膨張係数αcを求めた。また、線熱膨張係数αsは、前述の押し棒式膨張計を用いて測定することができる。
 本発明の一態様におけるセラミックス溶射皮膜の線熱膨張係数αcは、8×10-6/℃≦αc≦14×10-6/℃であるため、ロール母材の線熱膨張係数αsは、10×10-6/℃≦αs≦16×10-6/℃であることが好ましい。
 線熱膨張係数αsが上記範囲を満たす金属材料としては、フェライト系ステンレス鋼のSUS430、マルテンサイト系ステンレス鋼のSUS410、Ni基合金のインコネル625、ハイス鋼のSKH、工具鋼のSKD、などが例示される。
 ロール母材の外径は特に限定されないが、一般的なガラス搬送用ロールにおけるロール母材の外径は200~500mmである。
<セラミックス溶射皮膜>
 本発明のガラス搬送用ロールにおいて、金属製のロール母材表面はセラミックス溶射皮膜で被覆されている。
 溶射皮膜をなすセラミックスは、ロール母材の線熱膨張係数をαsとし、セラミックス溶射皮膜の線熱膨張係数をαcとするとき、両者の線熱膨張係数差αs-αc≦2×10-6/℃を満たすことが求められる。
 ガラス搬送用ロールの被覆としては、高温においてもガラス、錫、酸化錫等が付着し難いという利点を有することから、酸化ジルコニウム(ZrO2)を主成分とするジルコニア系セラミックス、または、酸化アルミニウム(Al)を主成分とするアルミナ系セラミックスが好ましい。ここで、“主成分とする”とは、セラミックス相全体に対して、50質量%以上、好ましくは80質量%以上含まれることを意味する。ジルコニア系セラミックスは、特に、添加剤としてY23、CaO、MgO、CeO、その他の酸化物の1種ないし2種以上を、3~20質量%程度含有する安定化ジルコニアまたは部分安定化ジルコニアが好ましい。以下、本明細書において、「安定化ジルコニア」と記載した場合、安定化ジルコニアおよび部分安定化ジルコニアの両方を指す。
 本発明では、線熱膨張係数差αs-αcが上記範囲を満たすことが求められることから、上記の添加剤を3~20質量%程度含有する安定化ジルコニアに対し、さらに、フッ化イットリウムを所定量含有させたもの、または、複数の金属酸化物を含み、金属酸化物は線熱膨張係数が11×10-6/℃以下の金属酸化物と、線熱膨張係数が11×10-6/℃よりも大きい金属酸化物とを、それぞれひとつ以上含む金属酸化物を用いることが好ましい。
 フッ化イットリウムは、安定化ジルコニアの線熱膨張係数を高める作用があり、7~23wt.%含有させることで、線熱膨張係数差αs-αcが上記範囲となる。
 フッ化イットリウムの含有量が7wt.%未満だと、安定化ジルコニアの線熱膨張係数を高める作用が不十分であり、線熱膨張係数差αs-αcが2×10-6/℃よりも高くなることがある。
 一方、フッ化イットリウムの含有量が23wt.%超だと、セラミックス溶射被覆の硬度が低下し、ガラス搬送用ロールの被覆として使用不可となる。なお、セラミックス溶射皮膜の硬度は、セラミック溶射皮膜の断面において荷重300gでマイクロビッカース硬度を10回測定した平均値から求めた。
 線熱膨張係数が11×10-6/℃以下の金属酸化物としては、ジルコニア(ZrO)やアルミナ(Al)を用いることが好ましく、線熱膨張係数が11×10-6/℃よりも大きい金属酸化物としては、マグネシア(MgO)やカルシア(CaO)を用いることが好ましい。また、さらにシリカ(SiO)を含んでもよい。シリカ(SiO)を添加することで酸化物を混合した溶射原料の焼結が容易になる。
 なお、本発明の一態様におけるセラミックス溶射被覆の硬度は、ビッカース硬さ (Hv)で600以上であることが好ましく、650以上であることがより好ましく、700以上であることがさらに好ましい。
 本発明のガラス搬送用ロールは、線熱膨張係数差αs-αc≦2×10-6/℃ときわめて小さいため、両者の線熱膨張係数の差異に起因するセラミックス溶射皮膜の剥離が格段に抑制できる。これにより、セラミックス溶射皮膜からの粒子脱落、および、該セラミックス溶射皮膜自体の剥離を格段に抑制できる。
 ここで、500~750℃の温度域における、線熱膨張係数差αs-αcを規定しているのは、ガラス搬送用ロールの使用時に想定される温度域だからである。
 本発明の一態様において、線熱膨張係数差αs-αc≦2×10-6/℃を満たすことが好ましく、線熱膨張係数差αs-αc≦1×10-6/℃を満たすことがより好ましい。
 本発明において、セラミックス溶射皮膜の線熱膨張係数αcを、8×10-6/℃≦αc≦14×10-6/℃とするのは、線熱膨張係数差αs-αcを上記の範囲とするうえで好適であり、かつ、セラミックス溶射皮膜の熱膨張による伸び、具体的には、常温からガラス搬送用ロールの使用時に想定される温度域までの熱膨張による伸びも、セラミックス溶射皮膜の剥離に影響するからである。セラミックス溶射皮膜の線熱膨張係数αcが上記範囲であれば、常温からガラス搬送用ロールの使用時に想定される温度域までの熱膨張による伸びが後述する範囲となり、セラミックス溶射皮膜の剥離が抑制されるからである。
 線熱膨張係数αcが8×10-6/℃未満だと、溶射後の皮膜中にクラックが発生し、温度上昇に伴って微細なクラックが発生し、場合によっては皮膜が母材の膨張に追随できなくなり剥離を生じる点で問題がある。
 一方、14×10-6/℃超だと、皮膜の機械的特性が落ちる点で問題がある。
 本発明の一態様において、線熱膨張係数αcは、8×10-6/℃≦αc≦14×10-6/℃であることが好ましく、11×10-6/℃≦αc≦13×10-6/℃であることがより好ましい。
 本発明におけるセラミックス溶射皮膜は、常温から750℃までの熱膨張による伸びが、0.6~1.05%である。なお、線膨張による伸びは、線熱膨張係数に温度を掛けて求めることができる。常温から750℃までの熱膨張による伸びは、ガラス搬送用ロールの熱上げ時のセラミックス溶射皮膜の熱膨張による伸びに相当する。セラミックス溶射皮膜はガラス搬送用ロールの熱上げ時に熱膨張による伸びが最大になるため、この時点で皮膜の剥離が起こりやすい。
 常温から750℃までの熱膨張による伸びが上記範囲であれば、ガラス搬送用ロールの熱上げ時に熱膨張による伸びが適度であり、セラミックス溶射皮膜の剥離が抑制される。
 本発明におけるセラミックス溶射皮膜の厚みは100~500μmである。
 セラミックス溶射皮膜の厚みが100μm以上であると、熱衝撃の緩衝層としての効果が充分に得られやすく、熱サイクルによるセラミックス溶射皮膜の剥離が生じ難い。
 一方、セラミックス溶射皮膜の厚みが500μm以下であると、メンテナンスなどの際の機械的な力による亀裂が生じ難い。
 本発明の一態様におけるセラミックス溶射皮膜の厚みは100~500μmであることが好ましく、150~300μmであることがより好ましい。
 本発明におけるセラミックス溶射皮膜は断面画像解析法による気孔率が2%以下である。セラミックス溶射皮膜の気孔率が上記範囲であると、ロール母材とセラミックス溶射皮膜と線熱膨張係数の差異に起因する剥離を抑制できる。また、ガラス搬送用ロールを、酸素や硫黄酸化物が存在する雰囲気下で使用した場合でも、これらの金属腐食性ガスがセラミックス溶射皮膜を通過して、ロール母材に接触するのを長期にわたって抑制できる。
 セラミックス溶射皮膜の気孔率が2%超だと、セラミックス溶射皮膜の剥離を抑制できない。また、ガラス搬送用ロールが設置された雰囲気中に存在する酸素や硫黄酸化物によるロール母材の侵食が問題となる。気孔率は、セラミック溶射皮膜を切断した断面を粒度1μmのダイヤモンドペーストを用いて研磨した後、光学顕微鏡(200倍)の視野で画像解析法により算出した。
 本発明の一態様におけるセラミックス溶射皮膜は、プラズマ溶射、高速フレーム溶射、粉末式フレーム溶射などの公知の溶射法で形成できる。但し、高い溶融温度が実現でき、溶射粒子を半溶融状態にすることができるという点で、プラズマ溶射により形成することが好ましい。
 セラミックス溶射皮膜の形成に用いる原料は粉末原料が好ましい、粉末原料は、予め混合、造粒、焼結、粉砕、分級などを行い造粒焼結粉や焼結粉砕粉として、溶射に用いることが好ましい。
 但し、溶射法により形成されるセラミックス皮膜は、原料が溶融した液滴粒子が基材(ロール母材表面)へ衝突し、急速凝固することによって形成されるため一般に気孔を有する。
 上述したように、本発明におけるセラミックス溶射皮膜は気孔率が2%以下であることが求められる。
 このため、溶射により、好ましくは、プラズマ溶射により、形成されたセラミックス皮膜は、封孔処理を施すことで気孔率を2%以下にする必要がある。
 上記の目的で実施する封孔処理の一態様は、シリカ前駆体溶液の含浸によりなされる。
<シリカ前駆体溶液>
 シリカ前駆体とは、物理的、化学的変化によりシリカ(SiO2)を生じる化合物をいう。シリカ前駆体の例としてはアルコキシシランやそのオリゴマー、ポリシラザン、アルカリケイ酸塩、ポリケイ酸が挙げられる。ここでアルコキシシランのオリゴマーとは、アルコキシシランの部分加水分解縮合物をいう。アルコキシシランのオリゴマーとしては、例えばアルコキシシランを部分的に加水分解縮合して得られる2~20量体がある。ポリシラザンとしてはパーヒドロポリシラザンが好ましい。アルコキシシランの具体例としてはテトラメトキシシラン、テトラエトキシシラン(珪酸エチル)、テトライソプロポキシシラン等のテトラアルコキシシランやそのオリゴマー;メチルトリエトキシシラン、エチルトリエトキシシラン等のオルガノアルコキシシランやそれらのオリゴマー等が挙げられる。これらアルコキシシランは、前駆体溶液中で加水分解された形で用いることが好ましい。ポリシラザンの具体例としては、パーヒドロポリシラザンが好ましい。
 シリカ前駆体溶液として、シリカ前駆体を含有する公知のコーティング液を適宜使用できる。具体例としては、アルコキシシランやそのオリゴマーのアルコール溶液、ポリシラザンの有機溶媒溶液、アルカリケイ酸塩水溶液(水ガラス)、ポリケイ酸水溶液等が挙げられる。シリカ前駆体溶液は、必要に応じて触媒、界面活性剤、収縮抑制剤等の他の成分を適宜含有してもよい。
 アルカリケイ酸塩水溶液(水ガラス)からなる前駆体溶液は、セラミックス溶射皮膜表面に塗布し大気中で適当な温度で保持すると二酸化ケイ素を析出して、巨視的には表面の塗膜となるとともに、一部は溶射皮膜の粒子境界に滲入する。水溶液の濃度などを調整することによって、この滲入効果を大きくすることが可能である。しかし、これらの二酸化ケイ素物質はセラミック溶射粒子間の結合力を向上させる効果が若干弱い場合がある。また溶射皮膜表面に塗膜状に形成したものは、高温保持によって亀甲状のわれを不可避に生じるとともに、その組織内に容易に液相が出現する。
 また、アルコキシシラン(代表的にはテトラメトキシシラン、テトラエトキシシラン)は加熱履歴によってシリカに転じるものの微細粉末のゲル状を呈する。これらは凝集性に乏しくかつ外力が働いたとき、その環境中にしばしば脱離する場合がある。ただし、アルコキシシランオリゴマーの使用やシリカゾルなどの収縮抑制剤の併用によりこれら問題を解決することができる。
 一方、アルコキシシラン類から形成される酸化ケイ素に比較して、ポリシラザン類から形成される酸化ケイ素は緻密な構造を有し、高い機械的耐久性やガスバリヤ性を有し、セラミックス溶射皮膜の封孔剤として用いた場合に、セラミックス粒子の結合力を高め、粒子の脱落防止への効果が大きい。
 本発明の一態様で用いるシリカ前駆体は、アルコキシシランやそのオリゴマー、ポリシラザンまたはアルカリケイ酸塩に限定されるものではなく、他のシリカ前駆体を用いることが出来る。
 含浸条件は、溶射により、好ましくは、プラズマ溶射により、形成されたセラミックス皮膜表面に存在する全部の気孔内にシリカ前駆体溶液が浸透するように設定するのが好ましい。該気孔内にシリカ前駆体溶液が浸透する浸透深さは、酸素および腐食性ガスの透過を良好に防止するうえで10μm以上が好ましく、20μm以上がより好ましく、50μm以上がさらに好ましい。セラミックス溶射皮膜の全厚にわたって浸透してもよい。シリカ前駆体溶液の浸透深さは、シリカ前駆体溶液の粘度、含浸時間、雰囲気温度等によって調整できる。
 シリカ前駆体溶液を含浸させた後、好ましくは、セラミックス溶射皮膜上に付着しているシリカ前駆体溶液を拭き取り、該セラミックス溶射皮膜の表面上に残っているシリカ前駆体溶液層が硬化して形成されるシリカ皮膜の厚さ(残渣膜厚)を5μm以下とすることが好ましい。セラミックス溶射皮膜の表面上において該残渣膜厚がゼロの領域、すなわち硬化前において、気孔内にはシリカ前駆体溶液が浸透しており、表面にはシリカ前駆体溶液が付着していない領域が存在してもよい。
 上記したシリカ前駆体溶液の拭き取りは必須ではないが、後述するシリカ前駆体溶液の硬化の前に拭き取りを行うことにより、加熱時に表面で硬化したシリカ前駆体の亀裂発生を抑制することができる。
 なお、セラミックス溶射皮膜の形成後、上述したシリカ前駆体溶液の含浸による封孔処理を実施する前に、該セラミックス溶射皮膜の表面を研磨することが好ましい。シリカ前駆体溶液の含浸の前に研磨を行うことによりシリカ前駆体硬化後の皮膜中の亀裂発生を抑制できる。
 研磨後のセラミックス溶射皮膜の表面の粗さ(Ra)は0.2~0.8μmが好ましい。溶射皮膜の脆弱な最表層を除去し、平滑な面が得られればよい。
 尚、シリカ前駆体溶液の含浸後のセラミックス溶射皮膜の表面の粗さ(Ra)は、含浸後の表面のポリシラザンを払拭することにより、シリカ前駆体溶液の含浸前のセラミックス溶射皮膜の表面の粗さ(Ra)とほぼ同等となる。
 研磨方法は特に限定されず、例えば耐水性研磨紙を用いた手研磨、ダイヤモンド工具による機械的研磨等を用いることができる。
 またセラミックス溶射皮膜の気孔率を2%以下にする処理の別の一態様は、爆発溶射によりなされる。
 爆発溶射は、溶射ガンの内部で酸素とアセチレンなどの可燃性ガスを混合し爆発させ、その燃焼炎中に微粉末の溶射材料を混入することで、溶射材料を母財の表面に吹き付けて皮膜を形成するプロセスであり、爆発エネルギーにより高温で高速度な燃焼フレームを得ることができるため、皮膜の気孔率が非常に小さくなる。
 本発明の一態様のガラス搬送用ロールにおいて、ロール母材と、セラミックス溶射皮膜と、の間に、サーメットまたは金属からなり、500~750℃の温度域における、線熱膨張係数をαbとするとき、αc≦αb≦αsを満たす下地膜を形成してもよい。
 このような下地膜を形成した場合、硫黄酸化物のような腐食性ガスの存在下で搬送用ロールを使用した場合に、セラミックス溶射皮膜を通過した腐食性ガスによるロール母材の腐食を抑制できる。
 なお、下地膜の線熱膨張係数αbは、セラミックス溶射皮膜の線熱膨張係数αcと、ロール母材の線熱膨張係数αsと、の中間に位置するため、上述したロール母材と、セラミックス溶射皮膜と、の線熱膨張係数の差異に起因するセラミックス溶射皮膜の剥離を抑制する作用をさらに向上させることができる。線熱膨張係数αbは、前述と同様に押し棒式膨張計を用いて測定することができる。
(サーメット)
 下地膜をなすサーメットとしては、線熱膨張係数αbが上記範囲を満たす限り特に限定されず、ガラス搬送用ロールにおける下地膜として公知のサーメットを適宜用いることができる。
 例えば炭化クロム系サーメット、硼化物系サーメット、酸化物分散系サーメット等が好適に用いられる。
 炭化クロム系サーメットは炭化クロムが主体であるセラミックス相と、バインダーとなる金属相とからなる。セラミックス相は主としてCr32からなるが、不可避不純物としてCr236、Cr73等を含有していてもよい。なお、本発明における主体とは、セラミック溶射被膜又はセラミックス層を構成するうえで中心となる化合物を指し、その含有率が50%以上の化合物である。
 また、“主としてCrからなる”とは、セラミックス相中で、Crを最も多く含むことを意味し、具体的には、セラミックス相全体に対して、50質量%以上、好ましくは、80量%以上含まれることを意味する。ここで金属相はCo、Ni、およびCrから選ばれる2種以上の金属を含む耐熱合金からなる。
 炭化クロム系サーメットにおけるセラミックス相の含有率が45~95質量%で、金属相の含有率が5~55質量%であることが好ましい。セラミックス相および金属相の割合は、断面写真に基づき、各相の面積率を求め、質量率に換算することにより求めることができる(以下、同様)。
 炭化クロム系サーメット溶射皮膜を形成するための原料としては、炭化クロムセラミックスと、バインダーとなる耐熱合金との混合物を焼結し、粉砕整粒して粒子径を30~150μm程度に調整した粉末を用いることが好ましい。市販の炭化クロム系サーメット溶射材料を用いてもよい。
 硼化物系サーメットは、MoおよびWの少なくとも一方、Co、Cr及びBを含有する複合硼化物が主体であるセラミックス相と、CoおよびCrを主体とする金属相とからなる。ここで、“複合硼化物が主体であるセラミックス相”とは、セラミックス相中で、複合硼化物を最も多く含むことを意味し、具体的には、セラミックス相全体に対して、50質量%以上、好ましくは、80量%以上含まれることを意味する。
 セラミック相を構成する各元素の好ましい含有量は、Mo:60質量%以下、W:74質量%以下、Co:15~36質量%、Cr:3~16質量%、B:4~7質量%であり、MoとWの合計が65質量%以上である。セラミックス相には、これらの各元素のほかに、不可避不純物としてNb、Ta、Vなどが含まれてもよい。
 金属相におけるCoとCrの含有量の合計は75質量%以上であることが好ましい。また該金属相における、Cr含有量とCo含有量の質量比(Cr:Co)は1:0.15~1:0.40であることが好ましい。金属相にはCoおよびCrのほかに、不可避不純物としてTi、Al、Ta、Nbなどが含まれてもよい。
 硼化物系サーメットにおけるセラミックス相の好ましい含有率は、40~80質量%であり、50~75質量%がより好ましい。金属相の好ましい含有率は、20~60質量%であり、25~50質量%がより好ましい。
 酸化物分散系サーメットは、酸化物が主体であるセラミックス相と、バインダーとなる金属相とからなる。セラミックス相は主としてAl23からなるが、高温でも溶融しないZrO2、Cr23等を含有していてもよい。ここで、“主としてAlからなる”とは、セラミックス相中で、Alを最も多く含むことを意味し、具体的には、セラミックス相全体に対して、50質量%以上、好ましくは、80量%以上含まれることを意味する。金属相はCo、Ni、およびCrから選ばれる2種以上の金属を含む耐熱合金からなり、例えばNi基合金、Co基合金等が好適に用いられる。Ni基合金としては、例えば約20~70質量%のCrを含有するCr-Ni合金が挙げられる。Co基合金としては、例えば15~30質量%のCrと、5~16%のAlと、0.1~1質量%のYを含有するCo合金が挙げられる。また公知のMCrAlY合金(MはNi及びCoの少なくとも1種)等を使用することもできる。
 酸化物分散系サーメットにおけるセラミックス相の含有率が5~20質量%で、金属相の含有率が80~95質量%であることが好ましい。
 酸化物分散系サーメット溶射皮膜を形成するための原料としては、粒子径を10~100μm程度に調整した酸化物と、バインダーとなる耐熱合金を混合して用いることが好ましい。
(金属)
 下地膜をなす金属としては、線熱膨張係数αbが上記範囲を満たす限り特に限定されず、ガラス搬送用ロールにおける下地膜として公知の金属材料を適宜用いることができる。
 下地膜の金属材料としては、例えばNi基合金、Co基合金等が好適に用いられる。Ni基合金としては、例えば約20~70質量%のCrを含有するCr-Ni合金が挙げられる。Co基合金としては、例えば15~30質量%のCrと、5~16質量%のAlと、0.1~1質量%のYを含有するCo合金が挙げられる。また公知のコバルト基合金であるステライト合金やトリバロイ合金等を使用することもできる。
 下地膜の構成材料としては、ロール母材との密着力が高い点でサーメットがより好ましい。
 上記の下地膜は、プラズマ溶射、高速フレーム溶射などの公知の溶射法で形成できる。但し、高い溶融温度が実現でき、溶射粒子を半溶融状態にすることができるという点で、プラズマ溶射により形成することが好ましい。
 下地膜の形成に用いる原料は粉末原料が好ましい、粉末原料は、予め混合、造粒、焼結、粉砕、分級などを行い造粒焼結粉や焼結粉砕粉として、溶射に用いることが好ましい。
 下地膜の厚さは30~150μmが好ましく、50~80μmがより好ましい。下地膜の厚さが上記範囲であるとセラミックス溶射皮膜の密着力が得られやすい。
 また、ロール母材と、セラミックス溶射皮膜と、の間に、下地膜を形成する場合、下地膜とセラミックス溶射皮膜の厚みの合計が100~500μmであることが好ましい。
 本発明の一態様における下地膜は、断面画像解析法による気孔率が0.5~5%であることが好ましい。下地膜の気孔率が上記の範囲であれば、硫黄酸化物のような腐食性ガスの存在下で搬送用ロールを使用した場合に、セラミックス溶射皮膜を通過した腐食性ガスによるロール母材の腐食を比較的長期にわたって抑制できる。
 ロール母材と、セラミックス溶射皮膜と、下地膜を形成する場合、下地膜の形成に先立って、ロール母材の表面を粗化するブラスト処理を行うことが好ましい。ブラスト処理後のロール母材の表面粗さ(JIS B0601:2001に規定される算術平均高さRa、以下同様。)は2.0~5.0μmが好ましい。
<板ガラスの製造方法>
 本発明の一態様の板ガラスの製造方法は、建築用板ガラス、自動車ガラス、ディスプレイ用板ガラスなどの公知の種々の製造方法や、ガラスの組成によらず利用できる。例えば、板ガラスの製造方法は一般に、原材料を溶解して溶融ガラスを得る溶融工程と、溶融ガラスを成形する成形工程と、成形後のガラスを移動させながら徐々に冷却して応力を除去する徐冷工程と、そのガラスを切断する切断工程と、を有する。上記成形工程は、フロート法、ロールアウト法、ダウンドロー法、フュージョン法など種々のものがある。本発明の搬送用ロールは、上記工程中の搬送を目的とする工程中であればどこでも利用することができ、おもに成形工程以降の各工程内および各工程間での高温、好ましくは550~750℃の雰囲気下にあるガラスリボンならびに切断後の板ガラスの搬送に利用する。
 さらに、前述の切断工程後に物理強化工程を含む場合では、上記切断後の板ガラスを搬送用ロールを用いて移動し、強化炉で軟化点以上に加熱後に冷却空気で急冷、または必要に応じて軟化点以上に加熱後に成形をした板ガラスを冷却空気で急冷する。急冷は通常、ガラス表面に対向させた複数のノズルから冷却空気を吹き付けることによって行う。これによって、ガラスの表面に圧縮性の残留応力が付与され、いわゆる物理強化法あるいは風冷強化法による強化板ガラスになる。上記物理強化工程は、前記の切断工程と連続していてもよいし、板ガラスを貯蔵後に板ガラスを取り出し、必要に応じて切断後に行ってもよい。本発明の搬送用ロールは、上記工程中の搬送を目的とするところであればどこでも利用することができる。
 板ガラスの製造方法において物理強化工程以外に、イオン交換によって化学的にガラス表面に圧縮応力を付与するいわゆる化学強化工程がある。本発明の一態様の搬送用ロールは、この化学強化工程中の搬送を目的とするところでも利用することができる。
 以上の本発明のガラス搬送用ロールを用いた板ガラスの製造方法によって、高品質の板ガラスを提供することができる。
 以下に実施例を用いて本発明の一態様における搬送用ロールと搬送用ロールの製造方法をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
 まず、18質量%程度のCrを含有するステンレス(SUS430相当、高温用)からなるロール母材を用意した。このロール母材の500~750℃の温度域における線熱膨張係数αsは、12×10-6/℃である。ロール母材の形状は、後述する試験に用いるために便宜上、外径150mm×厚み20mmの円板状とし、ロール外周面の半径方向断面は外方に凸状の曲面とし、該曲面の曲率半径は50mmとした。
 ロール母材の線熱膨張係数は前述の押し棒式膨張計を用いて測定した。
 次に、ロール母材の外周面に対して、平均粒子径300μm程度のアルミナ粒子を用いてブラスト処理を施し、表面粗さ(Ra)を3.0μmとした。表面粗さは、表面粗さ・輪郭形状測定器(東京精密社製SURFCOM130A)にて測定した。
 ブラスト処理後、プラズマ溶射法によりAl23-CoNiCrAlYからなる下地膜を形成した。溶射原料として、粒子径50~150μmの粉末を用いた。得られた下地膜の膜厚は80μmであった。
 500~750℃の温度域における下地膜の線熱膨張係数αbを下記手順で測定する。
 カーボン製平板の表面に膜厚1mmの溶射皮膜を成膜させた後、皮膜のみを機械的に剥がしとり、押し棒式膨張計を用いてアルゴン雰囲気で測定する。
 下地膜の線熱膨張係数αbは12×10-6/℃である。
 次に、下地膜上に、プラズマ溶射法により、セラミックス溶射皮膜を形成した。溶射原料として、イットリア安定化ジルコニア(3YSZ)に、フッ化イットリウムを7wt.%添加した、粒子径10~60μmの粉末を用いた。得られたセラミックス溶射皮膜の膜厚は400μm、表面粗さ(Ra)は2.0μm、気孔率は8%であった。
 続いて、セラミックス溶射皮膜の表面を手研磨にて研磨した。研磨後のセラミックス溶射皮膜の膜厚は300μm、表面粗さ(Ra)は0.5μm、気孔率は8%であった。
 次いで、研磨後のセラミックス溶射皮膜上にシリカ前駆体溶液を塗布し、セラミックス溶射皮膜の気孔にシリカ前駆体溶液を含浸させた。シリカ前駆体溶液としては、溶射皮膜の気孔に含浸しやすく、大気中の酸素および水分と容易に反応して非晶質シリカを形成するポリシラザン系のパーヒドロポリシラザンのキシレン溶液(パーヒドロポリシラザンの含有量:10質量%)を用いた。塗布方法としては刷毛を用いて塗りこむことによって行った。塗布方法は噴霧、ロールコート、液浸漬などの方法を用いても同様の結果を得ることができる。塗布は溶液がセラミックス溶射皮膜に十分に染込み、溶液のセラミックス溶射皮膜上への残存が目視で確認されるまで行い、塗布量の制御はこの目視観察によって行なった。
 塗布後、ワイピングクロスを用いてセラミックス溶射皮膜の表面上のシリカ前駆体溶液を拭き取り、セラミックス溶射皮膜の表面上におけるシリカ前駆体溶液の残渣膜厚を1μm以下とした。これらの作業は、温度を5~35℃、相対湿度を35~60%の大気環境で実施した。この後、室温大気中で24時間保持してシリカ前駆体溶液を硬化させることにより、セラミックス溶射皮膜の気孔が封孔処理された溶射皮膜を得た。封孔処理後の気孔率は1%以下であった。
 なお、温度100℃の大気中で1時間保持することによっても、室温大気中24時間保持の場合と同様の結果を得ている。
 500~750℃の温度域におけるセラミックス溶射皮膜の線熱膨張係数αc、および、常温から750℃までの熱膨張による伸びを下記手順で評価した。
 イットリア安定化ジルコニア(3YSZ)に、フッ化イットリウムを規定の比率で混合し、放電プラズマ焼結(SPS:Spark Plasma Sintering)法を用いて、φ20mm長さ20mmの焼結体を作製した。リガク製熱機械分析装置(TMA)にて焼結体の20~750℃の温度域における線熱膨張係数を測定し、500~750℃の温度域における線熱膨張係数αcを求めた。また、この線熱膨張係数測定時における熱膨張による伸びを、常温から750℃までの熱膨張による伸びとした。
 セラミックス溶射皮膜の線熱膨張係数αcは12×10-6/℃であり、常温から750℃までの熱膨張による伸びは0.9%であった。
 セラミックス溶射皮膜と、ロール母材と、の線熱膨張係数αc,αsの差(αs-αc)は0×10-6/℃である。
(実施例2)
 セラミックス溶射皮膜の原料に粒子径10~60μmのイットリア安定化ジルコニア(8YSZ)粉末を用いた以外は、実施例1と同様の手順を実施した。
 封孔処理後のセラミックス溶射皮膜の気孔率は1%であった。
 また、セラミックス溶射皮膜の線熱膨張係数αcは10×10-6/℃であり、常温から750℃までの熱膨張による伸びは0.75%であった。
 セラミックス溶射皮膜と、ロール母材と、の線熱膨張係数αc,αsの差(αs-αc)は2×10-6/℃であった。
(実施例3)
 溶射原料として、マグネシア(MgO)に、ジルコニア(ZrO)を12.5wt.%、シリカ(SiO)を6.5wt.%の比率で混合した焼結、粉砕した、粒子径10~60μmの焼結粉砕粉を用い、封孔処理を行わなかった以外は、実施例1と同様の手順を実施した。
 封孔処理を行わなかったセラミックス溶射皮膜の気孔率は8%であった。
 また、セラミックス溶射皮膜の線熱膨張係数αcは12×10-6/℃であり、常温から750℃までの熱膨張による伸びは0.9%であった。
 セラミックス溶射皮膜と、ロール母材と、の線熱膨張係数αc,αsの差(αs-αc)はなかった(0×10-6/℃)。
(実施例4)
 溶射原料として、マグネシア(MgO)に、ジルコニア(ZrO)を7wt.%、シリカ(SiO)の比率で混合した焼結、粉砕した、粒子径10~60μmの焼結粉砕粉を用いた以外は、実施例1と同様の手順を実施した。
 封孔処理後のセラミックス溶射皮膜の気孔率は1%であった。
 また、セラミックス溶射皮膜の線熱膨張係数αcは12×10-6/℃であり、常温から750℃までの熱膨張による伸びは0.9%であった。
 セラミックス溶射皮膜と、ロール母材と、の線熱膨張係数αc,αsの差(αs-αc)はなかった(0×10-6/℃)。
(比較例1)
 比較例は全て、25質量%程度のCrを含有するステンレス(SUS310相当、高温用)からなるロール母材を使用した。このロール母材の500~750℃の温度域における線熱膨張係数αsは、17×10-6/℃である。
 また、比較例は全て、セラミックス溶射皮膜の原料にフッ化イットリウムを添加していない、粒子径10~60μmのイットリア安定化ジルコニア(8YSZ)の粉末を使用した。
 研磨後のセラミックス溶射皮膜の気孔率が8%であり、封孔処理後のセラミックス溶射皮膜の気孔率は1%であった。
 また、セラミックス溶射皮膜の線熱膨張係数αcは10×10-6/℃であり、常温から750℃までの熱膨張による伸びは0.75%であった。
 セラミックス溶射皮膜と、ロール母材と、の線熱膨張係数αc,αsの差(αs-αc)は7×10-6/℃であった。
(比較例2)
 研磨後のセラミックス溶射皮膜の気孔率が2%であり、封孔処理後のセラミックス溶射皮膜の気孔率は1%である点以外は比較例1と同様である。
 セラミックス溶射皮膜の線熱膨張係数αcは10×10-6/℃であり、常温から750℃までの熱膨張による伸びは0.75%であった。
 セラミックス溶射皮膜と、ロール母材と、の線熱膨張係数αc,αsの差(αs-αc)は7×10-6/℃であった。
(比較例3)
 研磨後のセラミックス溶射皮膜を封孔処理しなかった以外は、比較例1と同様である。
 セラミックス溶射皮膜の線熱膨張係数αcは10×10-6/℃であり、常温から750℃までの熱膨張による伸びは0.75%であった。
 セラミックス溶射皮膜と、ロール母材と、の線熱膨張係数αc,αsの差(αs-αc)は7×10-6/℃であった。
(比較例4)
 研磨後のセラミックス溶射皮膜を封孔処理しなかった以外は、比較例2と同様である。
 セラミックス溶射皮膜の線熱膨張係数αcは10×10-6/℃であり、常温から750℃までの熱膨張による伸びは0.75%であった。
 セラミックス溶射皮膜と、ロール母材と、の線熱膨張係数αc,αsの差(αs-αc)は7×10-6/℃であった。
(比較例5)
 封孔処理後のセラミックス溶射皮膜の表面を手研磨にて20μm研磨した以外は比較例1と同様である。研磨後のセラミックス溶射皮膜の表面粗さ(Ra)は0.5μm、気孔率は1%であった。
 セラミックス溶射皮膜の線熱膨張係数αcは10×10-6/℃であり、常温から750℃までの熱膨張による伸びは0.75%であった。
 セラミックス溶射皮膜と、ロール母材と、の線熱膨張係数αc,αsの差(αs-αc)は7×10-6/℃であった。
(比較例6)
 封孔処理後のセラミックス溶射皮膜の表面を手研磨にて200μm研磨した以外は比較例1と同様である。研磨後のセラミックス溶射皮膜の表面粗さ(Ra)は0.5μm、気孔率は1%であった。
 セラミックス溶射皮膜の線熱膨張係数αcは10×10-6/℃であり、常温から750℃までの熱膨張による伸びは0.75%であった。
 セラミックス溶射皮膜と、ロール母材と、の線熱膨張係数αc,αsの差(αs-αc)は7×10-6/℃であった。
(粒子の付着性の評価)
 以上のサンプルに基づいてガラス搬送用ロールの性能を評価するため、下記の方法で、高温におけるガラス板への粒子の付着性を評価した。
 図1は該評価に用いた試験装置を説明するための概略図である。この試験装置はロール・オン・ディスク型転動摩擦試験機(以下、単に試験機ということもある。)1(高千穂精機社製)と電気炉(図示略)とを組み合わせて構成されている。
 ロール・オン・ディスク型転動摩擦試験機1は、周方向に回転する円板状のガラス板2の上面に、ガラス搬送用ロール(以下、単にロールということもある。)3の周面が接触するように設けられている。ロール3は周方向に回動自在であり、回転軸方向がガラス板2の径方向と同じであり、かつ回転軸方向に進退可能に設けられている。
 該試験機1において、ガラス板2の上面とロール3の周面とを接触させ、ロール3に対して、ロール3の中心からガラス板2へ向かう方向に一定の荷重をかけた状態で、ガラス板2を回転させると、その回転に伴ってロール3がガラス板2上を転がるように回転する。そしてガラス板2を回転させつつ、ロール3をその回転軸方向にガラス板2の中心に向かって前進させることにより、ロール3はガラス板2上面に螺旋状の摩擦痕を描きながら転がる。また上記実施例および比較例ではロールの外周面を、外方に凸状の曲面としたため、ガラス板2の上面とロール3の周面との接触は点接触となり、摩擦痕は線状となる。
 試験機1は電気炉内に収容されており試験機1の雰囲気温度が所定の温度に制御されるようになっている。
 試験条件は、雰囲気温度600℃、ロール3に対する荷重500gf、ガラス板2の半径90mm、ガラス板2の回転速度0.5rps、摩擦痕の幅(ガラス板2とロール3との点接触直径に相当する)0.12mm、ガラス板2の径方向における摩擦痕の間隔(摩擦痕の幅方向の中心間距離)0.125mmとした。
 まず、ガラス板2とロール3を試験機1にセットした。ガラス板2とロール3とが接触しない状態として、電気炉内の温度を600℃に昇温した。600℃で30分保持後、ガラス板2およびロール3の温度が充分に均一になったところで、ガラス板2の上面の端縁にロール3の周面を接触させ、ロール3に所定の荷重をかけた状態で、ガラス板2の回転とロール3の軸方向への前進(軸送り)を同時に開始した。ロール3の軸送り速度は、摩擦痕の間隔が所定の値となるように設定する。ロール3がガラス板2の中心に達したら両者の接触を解除し、ガラス板2の回転を止めた。そしてガラス板2が割れないように電気炉内の温度を徐々に降下させ、室温まで下げてからガラス板2を取り出した。
 こうして得たガラス板2の上面にどの程度のZrO2粒子が付着しているかを、以下の方法で評価した。
 得られたガラス板2の上面において、端縁から中心に向かう径方向に沿って、10mm間隔で観察点を決めた。ガラス板2から、該観察点の全部を含む適宜の大きさのガラス板片を切り出し、その上面をカーボンコートした。この後、電子顕微鏡により各観察点を中心とする反射電子像を一定倍率でそれぞれ撮影し、各撮影像(観察領域)中に存在するZrO2粒子の面積と撮影像の全面積に基づき、下式(1)により各観察領域における粒子付着率を算出した。
粒子付着率(%)=(ZrO2粒子の面積合計/撮影像の全面積)×100…(1)
 このようにして、実施例1~4および比較例1~6で得られたガラス搬送用ロールについて、ガラス板へのZrO2粒子の付着率を測定した結果を図2に示す。
 図2において、横軸はガラス板2の端縁(外周)から各観察点までの距離を示し、縦軸はガラス板への粒子付着率(単位:%)を示す。
 図2のグラフに示されるように、比較例1~6のガラス搬送用ロールは、ロールからガラス板へのZrO2粒子の付着が多く生じたのに対して、実施例1と2のガラス搬送用ロールは、かかる粒子の付着率がほぼ0%、実施例3と4も付着率は0.05%以下であり、付着が良好に抑えられた。比較例5と6は封孔処理後に研磨を行ったため、皮膜表面の研磨屑や加工応力による皮膜中のクラックにより異物が付着した。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2013年6月18日出願の日本特許出願2013-127591に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、金属製のロール母材表面がセラミックス溶射皮膜で被覆されたガラス搬送用ロールにおける、該セラミックス溶射皮膜からの粒子脱落、および、該セラミックス溶射皮膜自体の剥離を格段に抑制できる。
 また、本発明のガラス搬送用ロールにおいて、ロール母材と、セラミックス溶射皮膜と、の間に、サーメットまたは金属からなる下地膜を形成した場合、硫黄酸化物のような腐食性ガスの存在下で搬送用ロールを使用した場合に、セラミックス溶射皮膜を通過した腐食性ガスによるロール母材の腐食を抑制できる。
 本発明のガラス搬送用ロールを用いた板ガラスおよび強化板ガラスの製造方法によって、高品質の板ガラスを提供することができる。
1 ロール・オン・ディスク型転動摩擦試験機(試験機)
2 ガラス板
3 ガラス搬送用ロール(ロール)

Claims (24)

  1.  金属製のロール母材表面が、セラミックス溶射皮膜で被覆されたガラス搬送用ロールであって、
     500~750℃の温度域における、前記ロール母材の線熱膨張係数をαsとし、前記セラミックス溶射皮膜の線熱膨張係数をαcとするとき、αs-αc≦2×10-6/℃であり、8×10-6/℃≦αc≦14×10-6/℃であり、
     セラミックス溶射皮膜の常温から750℃までの熱膨張による伸びが、0.6~1.05%であり、
     前記セラミックス溶射皮膜の厚みが100~500μmであり、
     前記セラミックス溶射皮膜の断面画像解析法による気孔率が2%以下であることを特徴とするガラス搬送用ロール。
  2.  10×10-6/℃≦αs≦16×10-6/℃である、請求項1に記載のガラス搬送用ロール。
  3.  前記セラミックス溶射皮膜が、プラズマ溶射により形成されており、形成後の皮膜が封孔処理されている、請求項1または2に記載のガラス搬送用ロール。
  4.  前記封孔処理が、シリカ前駆体溶液の含浸によりなされている、請求項3に記載のガラス搬送用ロール。
  5.  前記封孔処理が、爆発溶射によりなされている、請求項3に記載のガラス搬送用ロール。
  6.  前記ロール母材と、前記セラミックス溶射皮膜と、の間に、サーメットまたは金属からなり、500~750℃の温度域における、線熱膨張係数をαbとするとき、αc≦αb≦αsを満たす下地膜が形成されている、請求項1~5のいずれか1項に記載のガラス搬送用ロール。
  7.  前記下地膜は、プラズマ溶射により形成されている、請求項6に記載のガラス搬送用ロール。
  8.  前記下地膜がサーメットからなり、該サーメットが、酸化物分散系サーメット、炭化クロム系サーメット、および硼化物系サーメットのいずれかである、請求項6または7に記載のガラス搬送用ロール。
  9.  前記下地膜がサーメットからなり、該サーメットのセラミックス相が、主としてAl23からなり、該サーメットの金属相が、MCrAlY合金(MはNi及びCoの少なくとも1種)からなる、請求項6または7に記載のガラス搬送用ロール。
  10.  前記下地膜の厚みが30~150μmであり、前記下地膜と前記セラミックス溶射皮膜の厚みの合計が100~500μmである、請求項6~9のいずれか1項に記載のガラス搬送用ロール。
  11.  前記セラミックス溶射皮膜が、フッ化イットリウムを7~23wt.%含有する安定化ジルコニアからなる、請求項1~10のいずれか1項に記載のガラス搬送用ロール。
  12.  前記セラミックス溶射皮膜が、複数の金属酸化物を含み、前記金属酸化物は線熱膨張係数が11×10-6/℃以下の金属酸化物と、線熱膨張係数が11×10-6/℃よりも大きい金属酸化物とを、それぞれひとつ以上含む請求項1~10のいずれか1項に記載のガラス搬送用ロール。
  13.  前記線熱膨張係数が11×10-6/℃以下の金属酸化物がZrOを含み、線熱膨張係数が11×10-6/℃よりも大きい金属酸化物が、MgOとCaOの少なくともいずれかを含む請求項12に記載のガラス搬送用ロール。
  14.  前記セラミックス溶射皮膜の硬度がHv600以上である、請求項1~13のいずれか1項に記載のガラス搬送用ロール。
  15.  500~750℃の温度域における線熱膨張係数αsが、10×10-6/℃≦αs≦16×10-6/℃であるロール母材の表面に、セラミックス溶射皮膜を形成する成膜工程と、
     該セラミックス溶射皮膜に、シリカ前駆体溶液を含浸させる含浸工程と、
     該シリカ前駆体溶液を硬化させてセラミックス溶射皮膜を封孔処理する硬化工程を有する、ガラス搬送用ロールの製造方法。
  16.  500~750℃の温度域における線熱膨張係数αsが、10×10-6/℃≦αs≦16×10-6/℃であるロール母材の表面に、金属またはサーメットからなる溶射下地膜を形成する第1の成膜工程と、
     該溶射下地膜上にセラミックス溶射皮膜を形成する第2の成膜工程と、
     該セラミックス溶射皮膜に、シリカ前駆体溶液を含浸させる含浸工程と、
     該シリカ前駆体溶液を硬化させてセラミックス溶射皮膜を封孔処理する硬化工程を有する、ガラス搬送用ロールの製造方法。
  17.  前記溶射下地膜のサーメットが、酸化物分散系サーメット、炭化クロム系サーメット、または硼化物系サーメットのいずれかである請求項16に記載のガラス搬送用ロールの製造方法。
  18.  前記セラミックス溶射皮膜の成膜工程と、前記含浸工程との間に、前記セラミックス溶射皮膜の表面を研磨する研磨工程を有する、請求項15~17のいずれか1項に記載のガラス搬送用ロールの製造方法。
  19.  前記セラミックス溶射皮膜の気孔率が、断面画像解析法による測定で2%以下である請求項15~18のいずれか1項に記載のガラス搬送用ロールの製造方法。
  20.  前記セラミックス溶射皮膜が、フッ化イットリウムを7~23wt.%含有する安定化ジルコニアからなる、請求項15~19のいずれか1項に記載のガラス搬送用ロールの製造方法。
  21.  前記セラミックス溶射皮膜が、複数の金属酸化物を含み、前記金属酸化物は線熱膨張係数が11×10-6/℃以下の金属酸化物と、線熱膨張係数が11×10-6/℃よりも大きい金属酸化物とを、それぞれひとつ以上含む請求項15~19のいずれか1項に記載のガラス搬送用ロールの製造方法。
  22.  前記線熱膨張係数が11×10-6/℃以下の金属酸化物がZrOを含み、線熱膨張係数が11×10-6/℃よりも大きい金属酸化物が、MgOとCaOの少なくともいずれかを含む請求項21に記載のガラス搬送用ロールの製造方法。
  23.  請求項1~14のいずれか1項に記載のガラス搬送用ロールを用いてガラスを搬送する工程を有する、板ガラスの製造方法。
  24.  前記ガラス搬送用ロールを、550~750℃の雰囲気温度下で用いる請求項23に記載の板ガラスの製造方法。
PCT/JP2014/065814 2013-06-18 2014-06-13 ガラス搬送用ロールおよびその製造方法ならびにそれを用いた板ガラスの製造方法 WO2014203834A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157035493A KR102209272B1 (ko) 2013-06-18 2014-06-13 유리 반송용 롤 및 그 제조 방법, 및 그것을 사용한 판 유리의 제조 방법
CN201480034557.5A CN105324341B (zh) 2013-06-18 2014-06-13 玻璃运送用辊及其制造方法以及使用该玻璃运送用辊的平板玻璃的制造方法
JP2015522895A JP6493840B2 (ja) 2013-06-18 2014-06-13 ガラス搬送用ロールおよびその製造方法ならびにそれを用いた板ガラスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-127591 2013-06-18
JP2013127591 2013-06-18

Publications (1)

Publication Number Publication Date
WO2014203834A1 true WO2014203834A1 (ja) 2014-12-24

Family

ID=52104569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065814 WO2014203834A1 (ja) 2013-06-18 2014-06-13 ガラス搬送用ロールおよびその製造方法ならびにそれを用いた板ガラスの製造方法

Country Status (4)

Country Link
JP (1) JP6493840B2 (ja)
KR (1) KR102209272B1 (ja)
CN (1) CN105324341B (ja)
WO (1) WO2014203834A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022058893A (ja) * 2018-12-27 2022-04-12 株式会社巴川製紙所 静電チャック装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026358A (ja) * 2018-08-09 2020-02-20 Agc株式会社 冷却構造体、フロートガラス製造装置およびフロートガラス製造方法
CN112876267B (zh) * 2021-03-24 2022-08-05 福建安溪马斯特陶瓷有限公司 一种钢化玻璃窑炉用陶瓷辊及其制造工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290254A (ja) * 1987-05-21 1988-11-28 Babcock Hitachi Kk 耐熱・耐摩耗性溶射被膜
JP2000273614A (ja) * 1999-03-26 2000-10-03 Tocalo Co Ltd 溶融ガラス製造設備用ロールおよびその製造方法
JP2003166043A (ja) * 2001-12-03 2003-06-13 Toshiba Ceramics Co Ltd 耐プラズマ性部材の製造方法
WO2009113638A1 (ja) * 2008-03-13 2009-09-17 旭硝子株式会社 ガラス搬送用ロールおよびその製造方法ならびにそれを用いた板ガラスの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3092820B2 (ja) 1991-02-13 2000-09-25 日本板硝子株式会社 フロートガラス製造用ロール
JP2004277828A (ja) 2003-03-17 2004-10-07 Asahi Glass Co Ltd サーメット被覆金属部品、その製造方法および搬送用ロール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290254A (ja) * 1987-05-21 1988-11-28 Babcock Hitachi Kk 耐熱・耐摩耗性溶射被膜
JP2000273614A (ja) * 1999-03-26 2000-10-03 Tocalo Co Ltd 溶融ガラス製造設備用ロールおよびその製造方法
JP2003166043A (ja) * 2001-12-03 2003-06-13 Toshiba Ceramics Co Ltd 耐プラズマ性部材の製造方法
WO2009113638A1 (ja) * 2008-03-13 2009-09-17 旭硝子株式会社 ガラス搬送用ロールおよびその製造方法ならびにそれを用いた板ガラスの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022058893A (ja) * 2018-12-27 2022-04-12 株式会社巴川製紙所 静電チャック装置
JP2022058894A (ja) * 2018-12-27 2022-04-12 株式会社巴川製紙所 静電チャック装置
JP7256311B2 (ja) 2018-12-27 2023-04-11 株式会社巴川製紙所 静電チャック装置
JP7335371B2 (ja) 2018-12-27 2023-08-29 株式会社巴川製紙所 静電チャック装置

Also Published As

Publication number Publication date
JP6493840B2 (ja) 2019-04-03
JPWO2014203834A1 (ja) 2017-02-23
KR102209272B1 (ko) 2021-01-29
KR20160020438A (ko) 2016-02-23
CN105324341A (zh) 2016-02-10
CN105324341B (zh) 2018-04-24

Similar Documents

Publication Publication Date Title
JP5474760B2 (ja) ガラス搬送用ロールおよびその製造方法ならびにそれを用いた板ガラスの製造方法
JP5296421B2 (ja) 金属製基礎材のための溶射された気密な保護層、保護層を製造するための噴射粉末、保護層の製造方法及び保護層の適用
JP2011012287A (ja) 耐熱部材およびガスタービン用高温部品
KR20130113941A (ko) 피용사체 및 피용사체의 용사 방법
JP6493840B2 (ja) ガラス搬送用ロールおよびその製造方法ならびにそれを用いた板ガラスの製造方法
US11485687B2 (en) Ceramic coating film-provided member and glass article manufacturing apparatus using it
JP2845144B2 (ja) 溶融金属めっき浴浸漬部材とその製造方法
JP6343161B2 (ja) 遠心噴霧法粉末製造用ディスク
TW200416294A (en) Corrosion-resistant member and method for producing same
Sainz et al. Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying
CN106756795B (zh) 一种碳化硅复合材料高温防护涂层的制备方法
JP2004277828A (ja) サーメット被覆金属部品、その製造方法および搬送用ロール
JP2008174787A (ja) 溶射皮膜形成方法
JPH04260623A (ja) フロートガラス製造用ロール
CN109437974B (zh) 一种具有Mo-Si-B-O高温抗氧化涂层的C/SiC复合材料及其制备方法
CN110818229A (zh) 冷却结构体、浮法玻璃制造装置和浮法玻璃制造方法
JP6461507B2 (ja) 複層コート部材及び複層コート部材の製造方法
TW202342817A (zh) 鋼板之輸送用輥
JP2010540778A (ja) 改良された金属保護
JP2006037168A (ja) ガラス製造設備用被覆部品およびその製造方法
Wang Penetration Treatment of Spray Stainless Steel Coating by Molten Multi-component Oxides
Lü et al. Properties of plasma sprayed NiCrAlY+ (ZrO2+ Y2O3) coating on refractory steel surface
JPH06158263A (ja) 熱処理炉用ロ−ル
JP2006124825A (ja) 耐蝕性部材およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034557.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522895

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157035493

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14814066

Country of ref document: EP

Kind code of ref document: A1