WO2014203379A1 - 遠心圧縮機 - Google Patents

遠心圧縮機 Download PDF

Info

Publication number
WO2014203379A1
WO2014203379A1 PCT/JP2013/066989 JP2013066989W WO2014203379A1 WO 2014203379 A1 WO2014203379 A1 WO 2014203379A1 JP 2013066989 W JP2013066989 W JP 2013066989W WO 2014203379 A1 WO2014203379 A1 WO 2014203379A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
side wall
path width
diffuser
fluid
Prior art date
Application number
PCT/JP2013/066989
Other languages
English (en)
French (fr)
Inventor
山下 修一
Original Assignee
三菱重工業株式会社
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱重工コンプレッサ株式会社 filed Critical 三菱重工業株式会社
Priority to CN201380075731.6A priority Critical patent/CN105121864B/zh
Priority to EP13887157.9A priority patent/EP3012461A4/en
Priority to PCT/JP2013/066989 priority patent/WO2014203379A1/ja
Priority to US14/785,024 priority patent/US20160108920A1/en
Publication of WO2014203379A1 publication Critical patent/WO2014203379A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • the present invention relates to a centrifugal compressor.
  • a centrifugal compressor is known as a compressor used in a plant or the like. And several improvement is proposed in order to enable the miniaturization of a centrifugal compressor and the operation
  • Patent Document 1 discloses a centrifugal compressor that can narrow a flow passage width of a part of a diffuser using a variable throttle mechanism in order to enable operation at a small flow rate.
  • Patent Document 2 discloses a centrifugal compressor in which the flow passage height of the diffuser flow passage is gradually increased to increase the flow passage width in order to expand the operating range to a large flow rate while achieving downsizing. Yes.
  • the diffuser of the centrifugal compressor described in Patent Document 1 and Patent Document 2 has a narrow channel width in a part of the channel, the inflow of the diffuser part into which the fluid discharged from the impeller flows The channel width at the position is not narrowed. Therefore, in the diffusers described in Patent Document 1 and Patent Document 2, the flow velocity of the fluid is not sufficiently increased at the position where the fluid flows into the diffuser, and a rotation stall may occur.
  • This invention is made in view of such a situation, and it aims at providing the centrifugal compressor which suppressed the malfunctions, such as a shaft vibration by turning stall, and suppressed the performance fall by friction loss etc. .
  • a centrifugal compressor according to the present invention is rotatable around an axis, and impellers discharge fluid flowing in an axial direction along the axis in a direction inclined from the axial direction, and a casing that houses the impeller And a diffuser portion for circulating the fluid discharged from the impeller, wherein the impeller is arranged between the hub and the shroud, and a hub and a shroud arranged along the axial direction.
  • the flow path width of the diffuser part at the inflow position where the fluid flows into the diffuser part is narrower than the flow path width of the impeller at the discharge position where the fluid is discharged from the impeller, In the downstream side of the inflow position of the diffuser portion, a channel width expanding portion wider than the channel width of the diffuser portion in the inflow position is provided.
  • the impeller that discharges the fluid flowing in along the axial direction in a direction inclined from the axial direction, the casing portion that houses the impeller, and the fluid discharged from the impeller are circulated.
  • an impeller includes a hub and a shroud arranged along the axial direction, and a plurality of blades disposed between the hub and the shroud.
  • the flow passage width of the diffuser portion at the inflow position where the fluid flows into the diffuser portion is narrower than the flow passage width of the impeller at the discharge position where the fluid is discharged from the impeller.
  • the flow passage width expanding portion wider than the flow passage width of the diffuser portion at the inflow position is provided downstream of the inflow position of the diffuser portion.
  • the diffuser portion is defined by a hub side wall provided on the hub side and a shroud side wall provided on the shroud side, and the hub in the flow path width expanding portion.
  • a side wall is disposed in a direction in which the flow passage width of the diffuser portion is larger than that of the hub side wall at the inflow position, and the shroud side wall at the flow passage width enlarged portion is larger than the shroud side wall at the inflow position. It is arranged in the direction in which the flow passage width of the diffuser part is enlarged.
  • the walls on both sides of the diffuser section flow width expanding section are arranged in the direction of expanding the diffuser section flow path width, and the same flow path width from the inflow position of the diffuser section to the downstream side. Compared with the case where it does, performance degradation, such as a friction loss resulting from the increase in the flow velocity of a fluid, can be suppressed.
  • the diffuser portion is defined by a hub side wall provided on the hub side and a shroud side wall provided on the shroud side, and the hub in the flow path width expanding portion.
  • the side wall is arranged in a direction in which the flow passage width of the diffuser portion is larger than the hub side wall at the inflow position.
  • the hub side wall in the channel width expansion part of the diffuser part is arranged in the direction in which the channel width of the diffuser part is expanded, and the same channel width is made from the inflow position of the diffuser part to the downstream side. Compared to the case, it is possible to suppress performance degradation such as friction loss due to an increase in the flow velocity of the fluid. Further, since the hub side wall is arranged in the direction of expanding the flow passage width of the diffuser portion, when the discharge direction of the fluid discharged from the impeller is directed toward the hub side wall from the direction orthogonal to the axial direction, A flow path through which the fluid flows in a stable state can be formed.
  • the diffuser portion is defined by a hub side wall provided on the hub side and a shroud side wall provided on the shroud side, and the shroud in the flow passage width expanding portion.
  • a side wall is arrange
  • the shroud side wall in the channel width expansion part of the diffuser part is arranged in the direction in which the channel width of the diffuser part is enlarged, and the same channel width is provided from the inflow position of the diffuser part to the downstream side. Compared to the case, it is possible to suppress performance degradation such as friction loss due to an increase in the flow velocity of the fluid.
  • the shape of the hub side wall is along the flow direction of the fluid at an intermediate position between the inflow position of the diffuser portion and the flow path width expanding portion. Even if the shape of the shroud side wall is a tapered shape in which the flow path width gradually increases along the flow direction of the fluid at the intermediate position of the diffuser portion. Good. By doing in this way, the flow path which distribute
  • the shape of the hub side wall is along the flow direction of the fluid at an intermediate position between the inflow position of the diffuser section and the flow path width expanding section.
  • a tapered shape in which the flow path width gradually increases may be used.
  • the shape of the shroud side wall is along the flow direction of the fluid at an intermediate position between the inflow position of the diffuser section and the flow path width expanding section.
  • a tapered shape in which the flow path width gradually increases may be used.
  • the shape of the hub side wall is along the flow direction of the fluid at an intermediate position between the inflow position of the diffuser portion and the flow path width expanding portion.
  • the shape of the shroud side wall is a step shape in which the channel width is increased stepwise along the fluid flow direction at the intermediate position of the diffuser portion. Also good. By doing in this way, the flow path which connects an inflow position and a downstream can be formed in the intermediate position of a diffuser part by a comparatively easy processing process.
  • the shape of the hub side wall is stepped along the fluid flow direction at an intermediate position between the inflow position of the diffuser portion and the flow passage width widening portion.
  • a step shape in which the channel width is enlarged may be used.
  • the shape of the shroud side wall is along the flow direction of the fluid at an intermediate position between the inflow position of the diffuser section and the flow path width expanding section.
  • a step shape in which the channel width gradually increases may be used.
  • the ratio of the flow path width of the diffuser portion at the inflow position to the flow path width of the impeller at the discharge position is 0.5 or more and less than 0.8. It is characterized by being.
  • the flow path width at the inflow position of the diffuser part is made sufficiently narrow, and the flow velocity of the fluid at the inflow position where the fluid flows into the diffuser part is sufficiently increased to suppress the occurrence of turning stall, Problems such as shaft vibration due to stall can be suppressed.
  • the ratio of the flow path width of the diffuser section in the flow path width expanding section to the flow path width of the impeller at the discharge position is 0.8 or more, and 1 0.0 or less.
  • the centrifugal compressor according to a sixth aspect of the present invention is characterized in that the impeller discharges the fluid flowing in along the axial direction in a direction orthogonal to the axial direction.
  • the centrifugal compressor that discharges the fluid flowing in along the axial direction in a direction orthogonal to the axial direction it is possible to suppress problems such as shaft vibration due to turning stall and to reduce performance due to friction loss and the like. Can be suppressed.
  • the centrifugal compressor according to the seventh aspect of the present invention has a flow coefficient of 0.01 or more and 0.05 or less.
  • centrifugal compressor that suppresses problems such as shaft vibration due to turning stall and suppresses performance degradation due to friction loss and the like.
  • FIG. 1 is a longitudinal sectional view of a centrifugal compressor 10 of the first embodiment.
  • FIG. 2 is a front view of the centrifugal compressor 10 of the first embodiment.
  • a centrifugal compressor 10 shown in FIG. 1 includes an impeller 13 that can rotate around an axis A, a casing portion 11 that houses the impeller 13, a diffuser portion 15 that distributes fluid discharged from the impeller 13, and a diffuser. And a volute section 16 provided downstream of the section 15.
  • FIG. 2 is a front view of the position where the fluid flows into the impeller 13 along the axial direction of the axis A.
  • the impeller 13, the diffuser portion 15, and the casing portion are illustrated. 11 and a part of the volute unit 16 are omitted.
  • the centrifugal compressor 10 of 1st Embodiment is a comparatively small centrifugal compressor whose flow coefficient is 0.01 or more and 0.05 or less.
  • the impeller 13 is connected to a drive device such as a motor or a turbine (not shown) via a rotation axis (not shown) along the axis A, and can rotate around the axis A.
  • the impeller 13 has a hub 1 and a shroud 2 arranged along the axial direction of the axis A, and a plurality of blades 3 arranged between the hub 1 and the shroud 2. In FIG. 1, only one blade 3 is shown, but a plurality of blades 3 are arranged between the hub 1 and the shroud 2 at equal intervals in the circumferential direction around the axis A (see FIG. 1). 2).
  • the impeller 13 is provided with a space defined by the inner wall 1 a of the hub 1 and the inner wall 2 a of the shroud 2, and this space is partitioned into a plurality of spaces by a plurality of blades 3.
  • the impeller 13 applies a centrifugal force in the radial direction to the fluid flowing in the axial direction (the direction indicated by the arrow in FIG. 1), and is perpendicular to the axial direction (inclined direction; the radius of the impeller 13). Direction) and flow into the diffuser section 15.
  • the diffuser portion 15 is a fluid flow path defined by a hub side wall 15a provided on the hub 1 side and a shroud side wall 15b provided on the shroud 2 side. As shown in FIG. 2, the diffuser portion 15 is provided so as to surround a discharge position provided on the entire circumference of the impeller 13.
  • the diffuser unit 15 converts kinetic energy (dynamic pressure) applied to the fluid into pressure energy (static pressure) by decelerating the flow velocity of the fluid discharged from the discharge position of the impeller 13.
  • the fluid whose flow velocity is reduced when passing through the diffuser unit 15 is compressed and flows into a volute unit (vortex chamber) 16 communicating with the diffuser unit 15.
  • the compressed fluid that has flowed into the volute unit 16 is discharged to a discharge pipe (not shown) through a discharge port (not shown).
  • the centrifugal compressor 10 rotates the impeller 13 around the axis A by a driving device such as a motor or a turbine (not shown).
  • a driving device such as a motor or a turbine (not shown).
  • the fluid introduced into the casing portion 11 is given a centrifugal force in a direction (radial direction) perpendicular to the axis A through the blade 3 by the rotation of the impeller 13.
  • the fluid to which the centrifugal force is applied is discharged from the impeller 13 and flows into the diffuser portion 15.
  • the fluid that has flowed into the diffuser portion 15 is compressed at a reduced flow rate and is discharged to the volute portion 16.
  • the compressed fluid that has flowed into the volute unit 16 is discharged to a discharge pipe (not shown) through a discharge port (not shown).
  • the flow path width of the impeller 13 and the diffuser part 15 will be described.
  • the flow passage width W2 of the diffuser portion 15 at the inflow position where the fluid flows into the diffuser portion 15 is larger than the flow passage width W1 of the impeller 13 at the discharge position where the fluid is discharged from the impeller 13. narrow.
  • a flow path width expanding portion 15c that increases the flow path width of the diffuser portion 15 is provided on the downstream side of the inflow position where the fluid flows into the diffuser portion 15 in order to suppress loss due to friction.
  • the channel width W ⁇ b> 1 indicates the length in the direction along the axis A (axial direction).
  • the flow path width W1 is equal to the axial distance between the inner wall 1a of the hub 1 and the inner wall 2a of the shroud 2 at the discharge position where the fluid is discharged from the impeller 13.
  • the flow path width W ⁇ b> 2 indicates the length in the direction along the axis A.
  • the flow path width W2 is equal to the axial distance between the hub side wall 15a and the shroud side wall 15b at the inflow position where the fluid flows into the diffuser portion 15.
  • the flow path width of the diffuser part 15 (the distance in the axial direction between the hub side wall 15a and the shroud side wall 15b) is the distance from the inflow position where the fluid flows into the diffuser part 15 in the fluid flow direction (the direction perpendicular to the axial direction).
  • the flow path width W2 is constant until reaching L1.
  • the hub side wall 15a which demarcates the diffuser part 15 is a taper shape where a flow path width expands gradually along the flow direction of a fluid. It has become.
  • the shroud side wall 15b that defines the diffuser portion 15 also has a tapered shape in which the channel width gradually increases along the fluid flow direction. It has become.
  • the hub side wall 15a is located at a position from the inflow position where the fluid flows into the diffuser section 15 from L2 to L3, and the diffuser section is more than the hub side wall 15a at the inflow position where the fluid flows into the diffuser section 15. It arrange
  • the shroud side wall 15b is also arranged in a direction in which the flow passage width of the diffuser portion 15 is larger than the shroud side wall 15b at the inflow position where the fluid flows into the diffuser portion 15. And in the position where the distance from an inflow position reaches from L2 to L3, the flow path width of the diffuser part 15 is constant with the flow path width W3.
  • the channel width expanding portion 15c wider than the channel width of the diffuser portion 15 at the inflow position of the diffuser portion 15 is located downstream of the inflow position where the fluid flows into the diffuser portion 15 in the fluid flow direction. Is provided.
  • the shape of the hub side wall 15a and the shape of the shroud side wall 15b be symmetric with respect to the central axis of the flow path.
  • the ratio of the flow path width W2 at the inflow position of the diffuser portion 15 to the flow path width W1 at the discharge position of the impeller 13 is 0.5 or more and less than 0.8. Further, the ratio of the flow path width W3 of the diffuser portion 15 in the flow path width enlarged portion 15c to the flow path width W1 at the discharge position of the impeller 13 is set to 0.8 or more and 1.0 or less. However, as described above, the respective ratios are selected so that the flow path width W3 of the diffuser section 15 in the flow path width expanding section 15c is wider than the flow path width W2 at the inflow position of the diffuser section 15.
  • the centrifugal compressor 10 of the first embodiment includes the impeller 13 that discharges the fluid flowing in along the axial direction in a direction inclined in the axial direction (radial direction orthogonal to the axial direction), and the impeller A hub 11 and a shroud 2, and a hub 1 and a shroud, each of which includes a casing portion 11 for housing the wheel 13 and a diffuser portion 15 for circulating the fluid discharged from the impeller 13. And a plurality of blades 3 disposed between the two.
  • variety W2 of the diffuser part 15 in the inflow position where a fluid flows in into the diffuser part 15 is the impeller 13 in the discharge position where a fluid discharges from the impeller 13. It is narrower than the channel width W1.
  • the flow path width W3 wider than the flow path width W2 of the diffuser part 15 in the inflow position of the diffuser part 15 in the downstream from the inflow position of the diffuser part 15.
  • the flow path width enlarged portion 15c is provided.
  • the diffuser portion 15 is defined by a hub side wall 15a provided on the hub 1 side and a shroud side wall 15b provided on the shroud 2 side.
  • the hub side wall 15a in the flow path width expansion part 15c is arrange
  • the shroud side wall 15b in the flow path width expanding portion 15c is arranged in a direction in which the flow path width of the diffuser portion 15 is larger than the shroud side wall 15b at the inflow position.
  • the wall of the both sides in the flow-path width expansion part 15c of the diffuser part 15 is arrange
  • the flow path width W2 is set, it is possible to suppress performance degradation such as friction loss due to an increase in the flow velocity of the fluid.
  • the shape of the hub side wall 15a is such that the channel width gradually increases along the fluid flow direction at an intermediate position between the inflow position of the diffuser portion 15 and the channel width expanding portion 15c. It is a taper shape, and the shape of the shroud side wall 15 b is a taper shape in which the flow path width gradually increases along the fluid flow direction at the intermediate position of the diffuser portion 15.
  • the ratio of the flow path width W2 of the diffuser portion 15 at the inflow position to the flow path width W1 of the impeller 13 at the discharge position is 0.5 or more and less than 0.8.
  • the ratio of the channel width W3 of the diffuser portion 15 in the channel width expanding portion 15c to the channel width W1 of the impeller 13 at the discharge position is 0.8 or more and 1.0. It is as follows. By doing in this way, compared with the case where the flow path width W3 with respect to the flow path width W1 is made sufficiently wide, and the flow path width W2 is the same from the inflow position of the diffuser portion 15 to the downstream side, the fluid flow velocity is higher. It is possible to suppress performance degradation such as friction loss due to speeding up.
  • FIG. 3 is a longitudinal sectional view of the centrifugal compressor 10 of the second embodiment.
  • the walls (hub side wall 15 a and shroud side wall 15 b) on both sides of the flow passage width expanding portion 15 c of the diffuser portion 15 are arranged in the direction in which the flow passage width of the diffuser portion 15 is increased.
  • one side wall (hub side wall 15a) of the flow passage width expanding portion 15c of the diffuser portion 15 is arranged in the direction in which the flow passage width of the diffuser portion 15 is increased.
  • the second embodiment is a modification of the first embodiment, and other configurations are the same as those of the first embodiment except for the shape of the hub side wall 15a that defines the diffuser portion 15. Therefore, the following description will be given. Is omitted.
  • the hub side wall 15a in the flow path width expanding portion 15c is arranged in a direction in which the flow path width of the diffuser portion 15 is larger than the hub side wall 15a at the inflow position.
  • the shroud side wall 15b in the flow path width enlarged portion 15c and the shroud side wall 15b at the inflow position are arranged so that the positions in the axial direction are the same.
  • the centrifugal compressor 10 shown in FIG. 3 discharges the fluid flowing into the impeller 13 in a direction orthogonal to the axial direction, but is inclined to the hub side wall 15a from the direction orthogonal to the axial direction.
  • a modification of discharging in the direction is also applicable.
  • the fluid that has flowed into the diffuser portion 15 includes a velocity component in a direction that hits the hub side wall 15a perpendicularly. Therefore, since loss due to friction is more likely to occur in the hub side wall 15a than in the shroud side wall 15b, it is desirable to suppress the friction loss generated in the hub side wall 15a.
  • the hub side wall 15a is disposed in the direction in which the flow passage width of the diffuser portion 15 is increased, so that the discharge direction of the fluid discharged from the impeller 13 is greater than the direction perpendicular to the axial direction.
  • a compressor that discharges in a direction inclined to the hub side wall 15a rather than a direction orthogonal to the axial direction of the impeller 13 as in the modification of the second embodiment may be referred to as a mixed flow compressor.
  • the fluid flowing in the axial direction is converted into a fluid containing a velocity component in the direction orthogonal to the axis A (centrifugal direction), and is called a centrifugal compressor instead of a mixed flow compressor.
  • the flow path width W2 of the diffuser portion 15 at the inflow position where the fluid flows into the diffuser portion 15 is the discharge position where the fluid is discharged from the impeller 13. Is narrower than the flow path width W1 of the impeller 13.
  • the hub side wall 15a in the flow passage width expanding portion 15c is arranged in a direction in which the flow passage width of the diffuser portion 15 is larger than the hub side wall 15a at the inflow position.
  • the hub side wall 15a in the flow-path width expansion part 15c of the diffuser part 15 is arrange
  • the shape of the hub side wall 15a is such that the channel width gradually increases along the fluid flow direction at an intermediate position between the inflow position of the diffuser portion 15 and the channel width expanding portion 15c. Tapered shape.
  • FIG. 4 is a longitudinal sectional view of the centrifugal compressor 10 of the third embodiment.
  • the walls (hub side wall 15 a and shroud side wall 15 b) on both sides of the flow passage width expanding portion 15 c of the diffuser portion 15 are arranged in the direction in which the flow passage width of the diffuser portion 15 is increased.
  • one side wall (the shroud side wall 15b) of the flow passage width expanding portion 15c of the diffuser portion 15 is arranged in the direction in which the flow passage width of the diffuser portion 15 is increased.
  • the third embodiment is a modification of the first embodiment, and other configurations are the same as those of the first embodiment except for the shape of the shroud side wall 15b that defines the diffuser portion 15. Therefore, the following description will be given. Is omitted.
  • the shroud side wall 15b in the flow-path width expansion part 15c is arrange
  • the hub side wall 15a in the flow path width enlarged portion 15c and the hub side wall 15a at the inflow position are arranged so that the positions in the axial direction are the same.
  • the flow path width W2 of the diffuser portion 15 at the inflow position where the fluid flows into the diffuser portion 15 is the discharge position where the fluid is discharged from the impeller 13. Is narrower than the flow path width W1 of the impeller 13.
  • the shroud side wall 15b in the flow path width expanding portion 15c is arranged in a direction in which the flow path width of the diffuser portion 15 is larger than the shroud side wall 15b in the inflow position.
  • the shroud side wall 15b in the flow-path width expansion part 15c of the diffuser part 15 is arrange
  • the flow path width W2 it is possible to suppress performance degradation such as friction loss due to an increase in the flow velocity of the fluid.
  • the shape of the shroud side wall 15b is a tapered shape in which the flow path width gradually increases along the fluid flow direction at the intermediate position of the diffuser portion 15.
  • FIG. 5 is a longitudinal sectional view of the centrifugal compressor 10 of the fourth embodiment.
  • the first embodiment between the flow path width W2 provided at the inflow position of the diffuser portion 15 and the flow path width enlarged portion 15c of the flow path width W3 provided downstream of the diffuser portion 15 (intermediate position).
  • Both the hub side wall 15a and the shroud side wall 15b are tapered so that the flow path width gradually increases along the fluid flow direction.
  • 4th Embodiment it replaces with a taper shape and employ
  • the flow path width of the diffuser part 15 (the distance in the axial direction between the hub side wall 15a and the shroud side wall 15b) is the distance in the fluid flow direction (the direction perpendicular to the axial direction) from the inflow position where the fluid flows into the diffuser part 15. Until L4 reaches L4, the flow path width W2 remains constant. And in the position where the distance from an inflow position reaches from L4 to L3, the flow path width of the diffuser part 15 is constant with the flow path width W3.
  • the diffuser unit 15 provided with only one stage is shown, but a plurality of stages may be provided instead of only one stage.
  • a multi-stage shape having two, three, or more stages is formed, and the flow path width gradually increases. You may make it expand to.
  • the step shape is provided on both the hub side wall 15a and the shroud side wall 15b, but the step shape is provided on either the hub side wall 15a or the shroud side wall 15b.
  • the other one may not be provided with a step shape.
  • the hub side wall 15a in the flow passage width expanding portion 15c and the hub side wall 15a at the inflow position are arranged so that the positions in the axial direction are the same.
  • the shroud side wall 15b in the flow path width expanding portion 15c and the shroud side wall 15b at the inflow position are arranged so that the positions in the axial direction are the same.
  • the flow path width W2 of the diffuser portion 15 at the inflow position where the fluid flows into the diffuser portion 15 is the discharge position where the fluid is discharged from the impeller 13. Is narrower than the flow path width W1 of the impeller 13.
  • the flow path width W3 wider than the flow path width W2 of the diffuser part 15 in the inflow position of the diffuser part 15 in the downstream from the inflow position of the diffuser part 15.
  • the flow path width enlarged portion 15c is provided.
  • the shape of the hub side wall 15a is such that the flow path width gradually increases along the fluid flow direction at an intermediate position between the inflow position of the diffuser portion 15 and the flow path width expanding portion 15c.
  • the shape of the shroud side wall 15b is a step shape in which the flow path width gradually increases along the fluid flow direction at an intermediate position of the diffuser portion 15.
  • FIG. 6 is a longitudinal sectional view of the centrifugal compressor 10 of the fifth embodiment.
  • the centrifugal compressor 10 of the fifth embodiment is the first-stage centrifugal compressor. It is a multistage centrifugal compressor of the form which flows the fluid compressed by the impeller 13 and the diffuser part 15 into the next stage impeller 13 and the diffuser part 15.
  • the fifth embodiment is a modification of the first embodiment, and the other configuration is the same as that of the first embodiment except that a return bend 17 and a return vane 18 are provided instead of the volute unit 16. Therefore, the description below is omitted.
  • the compressed fluid that has flowed into the flow path width expanding portion 15c of the diffuser section 15 flows into the volute section 16 provided downstream of the flow path width expanding portion 15c.
  • the compressed fluid that has flowed into the flow path width expanding portion 15c of the diffuser section 15 flows into the return bend 17 provided downstream of the flow path width expanding portion 15c.
  • the compressed fluid flowing into the return bend 17 is guided to the next stage (second stage) impeller 13 via the return vane 18.
  • the fluid guided to the second-stage impeller 13 is discharged to the second-stage diffuser section 15.
  • the fluid further compressed by the second-stage diffuser unit 15 is guided to a volute unit 16 similar to that shown in FIG. 1 of the first embodiment.
  • the fluid guided to the second-stage impeller 13 is discharged to the second-stage diffuser unit 15.
  • the fluid further compressed by the second-stage diffuser section 15 flows into the second-stage return bend 17.
  • the compressed fluid that has flowed into the second-stage return bend 17 is guided to the next-stage (third-stage) impeller 13 via the return vane 18.
  • the fluid guided to the third stage impeller 13 is discharged to the third stage diffuser section 15.
  • the fluid further compressed by the third-stage diffuser unit 15 is guided to the volute unit 16 similar to that shown in FIG. 1 of the first embodiment.
  • the centrifugal compressor 10 when the centrifugal compressor 10 is a two-stage or three-stage centrifugal compressor 10, the compressibility of the fluid can be further increased. Moreover, the same effect as 1st Embodiment can be show
  • the shape of the diffuser portion 15 in each stage not only the shape shown in the first embodiment but also any shape shown in the second to fourth embodiments can be adopted. .
  • the two-stage and three-stage centrifugal compressors 10 have been described. However, a modification example in which four or more stages of the centrifugal compressors 10 are used may be employed.

Abstract

旋回失速による軸振動等の不具合を抑制するとともに、摩擦損失等による性能低下を抑制した遠心圧縮機を提供する。羽根車(13)から吐出した流体を流通させるディフューザ部(15)を備える遠心圧縮機(10)において、ディフューザ部(15)に流体が流入する流入位置におけるディフューザ部(15)の流路幅W2が、羽根車(13)から流体が吐出する吐出位置における羽根車(13)の流路幅W1よりも狭く、ディフューザ部(15)の流入位置よりも下流側には、流入位置におけるディフューザ部(15)の流路幅W1よりも広い流路幅拡大部(15c)が設けられている。

Description

遠心圧縮機
 本発明は、遠心圧縮機に関する。
 従来から、プラント等に用いられる圧縮機として、遠心圧縮機が知られている。そして、遠心圧縮機の小型化や、小流量での運転を可能とするために、いくつかの改良が提案されている。
 例えば、特許文献1には、小流量での運転を可能とするため、可変絞り機構を用いてディフューザの一部の流路幅を狭くすることを可能にした遠心圧縮機が開示されている。
 また、特許文献2には、小型化を図りつつ作動域を大流量側に拡大するため、ディフューザ流路の流路高さを漸次高くして流路幅を拡大した遠心圧縮機が開示されている。
特開2003-120594号公報 特開2010-144698号公報
 遠心圧縮機においては、一般的に、流れ角(羽根車からの流体の吐出方向と羽根車の半径方向とがなす角)が大きくなると、損失が大きくなるほか、周方向の流れが不均一となる旋回失速を生じ、それが原因と考えられる軸振動等の不具合が発生することが知られている。軸振動等の不具合を防止するには、流れ角を小さくする、すなわち羽根車からの流体の吐出方向を羽根車の半径方向に近づけることが有効である。そして、例えば、特許文献1および特許文献2に記載されるように、ディフューザの流路幅を狭くすることにより、流体の流速を増加させ、流れ角を小さくすることができる。
 しかしながら、特許文献1および特許文献2に記載された遠心圧縮機のディフューザは、流路の一部における流路幅を狭くしているものの、羽根車から吐出された流体が流入するディフューザ部の流入位置における流路幅は狭くなっていない。従って、特許文献1および特許文献2に記載されたディフューザでは、ディフューザへの流体の流入位置において流体の流速が十分に増加されず、旋回失速が生じる場合がある。
 本発明は、このような事情を鑑みてなされたものであり、旋回失速による軸振動等の不具合を抑制するとともに、摩擦損失等による性能低下を抑制した遠心圧縮機を提供することを目的とする。
 本発明に係る遠心圧縮機は、軸線周りに回転可能であり、該軸線に沿った軸線方向に流入する流体を該軸線方向から傾斜した方向に吐出する羽根車と、該羽根車を収容するケーシング部と、前記羽根車から吐出した前記流体を流通させるディフューザ部と、を備え、前記羽根車が、前記軸線方向に沿って並ぶハブおよびシュラウドと、該ハブおよび該シュラウドの間に配置される複数のブレードを有し、前記ディフューザ部に前記流体が流入する流入位置における該ディフューザ部の流路幅が、前記羽根車から前記流体が吐出する吐出位置における前記羽根車の流路幅よりも狭く、前記ディフューザ部の前記流入位置よりも下流側には、該流入位置における前記ディフューザ部の流路幅よりも広い流路幅拡大部が設けられていることを特徴とする。
 本発明に係る遠心圧縮機によれば、軸線方向に沿って流入する流体を軸線方向から傾斜した方向に吐出する羽根車と、羽根車を収容するケーシング部と、羽根車から吐出した流体を流通させるディフューザ部と、を備え、羽根車が、軸線方向に沿って並ぶハブおよびシュラウドと、ハブおよびシュラウドの間に配置される複数のブレードを有する。
 そして、本発明に係る遠心圧縮機によれば、ディフューザ部に流体が流入する流入位置におけるディフューザ部の流路幅が、羽根車から流体が吐出する吐出位置における羽根車の流路幅よりも狭い。このようにすることで、ディフューザ部に流体が流入する流入位置における流体の流速を十分に増加させて旋回失速の発生を抑制し、旋回失速による軸振動等の不具合を抑制することができる。
 また、本発明に係る遠心圧縮機によれば、ディフューザ部の流入位置よりも下流側には、流入位置におけるディフューザ部の流路幅よりも広い流路幅拡大部が設けられている。このようにすることで、ディフューザ部の流入位置から下流側に至るまで同じ流路幅とする場合に比べ、ディフューザ部を流通する流体の流速が速くなることに起因する摩擦損失等の性能低下を抑制することができる。
 本発明の第1態様の遠心圧縮機は、前記ディフューザ部が、前記ハブ側に設けられるハブ側壁と前記シュラウド側に設けられるシュラウド側壁とにより画定されており、前記流路幅拡大部における前記ハブ側壁が、前記流入位置における前記ハブ側壁よりも前記ディフューザ部の流路幅を拡大する方向に配置されており、前記流路幅拡大部における前記シュラウド側壁が、前記流入位置における前記シュラウド側壁よりも前記ディフューザ部の流路幅を拡大する方向に配置されていることを特徴とする。
 このようにすることで、ディフューザ部の流路幅拡大部における両側の壁がディフューザ部の流路幅を拡大する方向に配置され、ディフューザ部の流入位置から下流側に至るまで同じ流路幅とする場合に比べて、流体の流速が速くなることに起因する摩擦損失等の性能低下を抑制することができる。
 本発明の第2態様の遠心圧縮機は、前記ディフューザ部が、前記ハブ側に設けられるハブ側壁と前記シュラウド側に設けられるシュラウド側壁とにより画定されており、前記流路幅拡大部における前記ハブ側壁が、前記流入位置における前記ハブ側壁よりも前記ディフューザ部の流路幅を拡大する方向に配置されていることを特徴とする。
 このようにすることで、ディフューザ部の流路幅拡大部におけるハブ側壁をディフューザ部の流路幅を拡大する方向に配置し、ディフューザ部の流入位置から下流側に至るまで同じ流路幅とする場合に比べて、流体の流速が速くなることに起因する摩擦損失等の性能低下を抑制することができる。また、ハブ側壁をディフューザ部の流路幅を拡大する方向に配置するので、羽根車から吐出される流体の吐出方向が軸線方向に直交した方向よりもハブ側壁の方向に向いている場合に、流体が安定した状態で流通する流路を形成することができる。
 本発明の第3態様の遠心圧縮機は、前記ディフューザ部が、前記ハブ側に設けられるハブ側壁と前記シュラウド側に設けられるシュラウド側壁とにより画定されており、前記流路幅拡大部における前記シュラウド側壁が、前記流入位置における前記シュラウド側壁よりも前記ディフューザ部の流路幅を拡大する方向に配置されていることを特徴とする。
 このようにすることで、ディフューザ部の流路幅拡大部におけるシュラウド側壁をディフューザ部の流路幅を拡大する方向に配置し、ディフューザ部の流入位置から下流側に至るまで同じ流路幅とする場合に比べて、流体の流速が速くなることに起因する摩擦損失等の性能低下を抑制することができる。
 前述した本発明の第1態様の遠心圧縮機においては、前記ハブ側壁の形状が、前記ディフューザ部の前記流入位置と前記流路幅拡大部の間の中間位置において前記流体の流通方向に沿って徐々に流路幅が拡大するテーパ形状であり、前記シュラウド側壁の形状が、前記ディフューザ部の前記中間位置において前記流体の流通方向に沿って徐々に流路幅が拡大するテーパ形状であってもよい。
 このようにすることで、ディフューザ部の中間位置の流路において安定した状態で流体を流通させる流路を形成することができる。
 前述した本発明の第2態様の遠心圧縮機においては、前記ハブ側壁の形状が、前記ディフューザ部の前記流入位置と前記流路幅拡大部の間の中間位置において前記流体の流通方向に沿って徐々に流路幅が拡大するテーパ形状であってもよい。
 このようにすることで、ディフューザ部の中間位置の流路において安定した状態で流体を流通させる流路を形成することができる。
 前述した本発明の第3態様の遠心圧縮機においては、前記シュラウド側壁の形状が、前記ディフューザ部の前記流入位置と前記流路幅拡大部の間の中間位置において前記流体の流通方向に沿って徐々に流路幅が拡大するテーパ形状であってもよい。
 このようにすることで、ディフューザ部の中間位置の流路において安定した状態で流体を流通させる流路を形成することができる。
 前述した本発明の第1態様の遠心圧縮機においては、前記ハブ側壁の形状が、前記ディフューザ部の前記流入位置と前記流路幅拡大部の間の中間位置において前記流体の流通方向に沿って段階的に流路幅が拡大する段形状であり、前記シュラウド側壁の形状が、前記ディフューザ部の前記中間位置において流体の流通方向に沿って段階的に流路幅が拡大する段形状であってもよい。
 このようにすることで、比較的容易な加工工程により、ディフューザ部の中間位置に流入位置と下流側を接続する流路を形成することができる。
 前述した本発明の第2態様の遠心圧縮機においては、前記ハブ側壁の形状が、前記ディフューザ部の前記流入位置と前記流路幅拡大部の間の中間位置において流体の流通方向に沿って段階的に流路幅が拡大する段形状であってもよい。
 このようにすることで、比較的容易な加工工程により、ディフューザ部の中間位置に流入位置と下流側を接続する流路を形成することができる。
 前述した本発明の第3態様の遠心圧縮機においては、前記シュラウド側壁の形状が、前記ディフューザ部の前記流入位置と前記流路幅拡大部の間の中間位置において前記流体の流通方向に沿って段階的に流路幅が拡大する段形状であってもよい。
 このようにすることで、比較的容易な加工工程により、ディフューザ部の中間位置に流入位置と下流側を接続する流路を形成することができる。
 本発明の第4態様の遠心圧縮機は、前記吐出位置における前記羽根車の流路幅に対する前記流入位置における前記ディフューザ部の流路幅の比率が、0.5以上、かつ、0.8未満であることを特徴とする。
 このようにすることで、ディフューザ部の流入位置における流路幅を十分狭い幅とし、ディフューザ部に流体が流入する流入位置における流体の流速を十分に増加させて旋回失速の発生を抑制し、旋回失速による軸振動等の不具合を抑制することができる。
 本発明の第5態様の遠心圧縮機は、前記吐出位置における前記羽根車の流路幅に対する前記流路幅拡大部における前記ディフューザ部の流路幅の比率が、0.8以上、かつ、1.0以下であることを特徴とする。
 このようにすることで、ディフューザ部の流路幅拡大部における流路幅を十分広い幅とし、ディフューザ部の流入位置から下流側に至るまで同じ流路幅とする場合に比べて、流体の流速が速くなることに起因する摩擦損失等の性能低下を抑制することができる。
 本発明の第6態様の遠心圧縮機は、前記羽根車が、前記軸線方向に沿って流入する前記流体を前記軸線方向に直交した方向に吐出することを特徴とする。
 このようにすることで、軸線方向に沿って流入する流体を軸線方向に直交した方向に吐出する遠心圧縮機において、旋回失速による軸振動等の不具合を抑制するとともに、摩擦損失等による性能低下を抑制することができる。
 本発明の第7態様の遠心圧縮機は、流量係数が、0.01以上、かつ、0.05以下であることを特徴とする。
 このようにすることで、流量係数が比較的小さい遠心圧縮機において、旋回失速による軸振動等の不具合を抑制するとともに、摩擦損失等による性能低下を抑制することができる。
 本発明によれば、旋回失速による軸振動等の不具合を抑制するとともに、摩擦損失等による性能低下を抑制した遠心圧縮機を提供することができる。
第1実施形態の遠心圧縮機の縦断面図である。 第1実施形態の遠心圧縮機の正面図である。 第2実施形態の遠心圧縮機の縦断面図である。 第3実施形態の遠心圧縮機の縦断面図である。 第4実施形態の遠心圧縮機の縦断面図である。 第5実施形態の遠心圧縮機の縦断面図である。
〔第1実施形態〕
 以下、第1実施形態の遠心圧縮機10について、図1および図2を用いて説明する。図1は、第1実施形態の遠心圧縮機10の縦断面図である。また、図2は、第1実施形態の遠心圧縮機10の正面図である。
 図1に示される遠心圧縮機10は、軸線A周りに回転可能な羽根車13と、羽根車13を収容するケーシング部11と、羽根車13から吐出した流体を流通させるディフューザ部15と、ディフューザ部15の下流に設けられたボリュート部16とを備える。
 なお、図2は、軸線Aの軸線方向に沿って羽根車13へ流体が流入する位置を見た正面図であるが、説明を容易にするために、羽根車13、ディフューザ部15、ケーシング部11、およびボリュート部16の一部を省略してある。
 また、第1実施形態の遠心圧縮機10は、流量係数が、0.01以上、かつ、0.05以下の流量係数の比較的小さな遠心圧縮機である。
 羽根車13は、図示しないモータまたはタービンなどの駆動装置と軸線Aに沿った回転軸(不図示)を介して接続されており、軸線A周りに回転可能である。羽根車13は、軸線Aの軸線方向に沿って並ぶハブ1およびシュラウド2と、ハブ1およびシュラウド2の間に配置される複数のブレード3を有する。図1では、ブレード3が1枚のみ示されているが、ハブ1およびシュラウド2の間には、軸線Aを中心とした円周方向に等間隔で複数枚のブレード3が配置される(図2)。
 羽根車13には、ハブ1の内壁1aとシュラウド2の内壁2aとにより画定される空間が設けられており、この空間が複数枚のブレード3により複数の空間に仕切られている。そして、羽根車13は、軸線方向(図1中の矢印で示す方向)に沿って流入する流体に半径方向の遠心力を与えて軸線方向に直交した方向(傾斜した方向;羽根車13の半径方向)に吐出し、ディフューザ部15に流入させる。
 ディフューザ部15は、ハブ1側に設けられるハブ側壁15aとシュラウド2側に設けられるシュラウド側壁15bとにより画定される流体の流路である。図2に示されるように、ディフューザ部15は、羽根車13の全周に設けられる吐出位置を囲むように設けられている。ディフューザ部15は、羽根車13の吐出位置から吐出された流体の流速を減速させることにより、流体に付与された運動エネルギー(動圧)を圧力エネルギー(静圧)に変換する。
 ディフューザ部15を通過する際に流速が減速された流体は、圧縮され、ディフューザ部15と連通したボリュート部(渦形室)16に流入する。ボリュート部16に流入した圧縮流体は、吐出口(不図示)を介して吐出配管(不図示)へと吐出される。
 ここで、遠心圧縮機10の動作について説明する。
 遠心圧縮機10は、図示しないモータまたはタービン等の駆動装置によって、羽根車13を軸線A周りに回転させる。羽根車13が回転することにより、図示しない吸気口から取り込まれた流体がケーシング部11内に導入される。ケーシング部11内に導入された流体は、羽根車13の回転によってブレード3を介して軸線Aに直交した方向(半径方向)の遠心力が与えられる。遠心力が与えられた流体は、羽根車13から吐出されるとともにディフューザ部15へ流入する。ディフューザ部15に流入した流体は、流速が減速して圧縮された流体となり、ボリュート部16へ吐出される。ボリュート部16に流入した圧縮流体は、吐出口(不図示)を介して吐出配管(不図示)へと吐出される。
 次に、羽根車13およびディフューザ部15の流路幅について説明する。
 図1に示されるように、ディフューザ部15に流体が流入する流入位置におけるディフューザ部15の流路幅W2は、羽根車13から流体が吐出する吐出位置における羽根車13の流路幅W1よりも狭い。このように狭くことで、ディフューザ部15に流体が流入する流入位置における流体の流速を十分に増加させて旋回失速の発生を抑制し、旋回失速による軸振動等の不具合を抑制することができる。
 このように、ディフューザ部15に流体が流入する流入位置における流体の流速を十分に増加させることにより、旋回失速の発生が抑制される。その一方で、流体の流速が増加すると、流体とハブ側壁15aおよびシュラウド側壁15bとの間の摩擦による損失が増加する。そこで、第1実施形態では、ディフューザ部15に流体が流入する流入位置の下流側において、摩擦による損失を抑制するためにディフューザ部15の流路幅を拡大した流路幅拡大部15cを設ける。
 図1に示されるように、流路幅W1とは、軸線Aに沿った方向(軸線方向)における長さを示す。流路幅W1は、羽根車13から流体が吐出する吐出位置における、ハブ1の内壁1aとシュラウド2の内壁2aとの軸線方向の距離に等しい。
 また、図1に示されるように、流路幅W2とは、軸線Aに沿った方向における長さを示す。流路幅W2は、ディフューザ部15に流体が流入する流入位置における、ハブ側壁15aとシュラウド側壁15bとの軸線方向の距離に等しい。
 ディフューザ部15の流路幅(ハブ側壁15aとシュラウド側壁15bとの軸線方向の距離)は、ディフューザ部15に流体が流入する流入位置から流体の流通方向(軸線方向に直交した方向)の距離がL1に至るまでは、流路幅W2のまま一定である。そして、流入位置からの距離がL1からL2に至るまでの位置(中間位置)において、ディフューザ部15を画定するハブ側壁15aは、流体の流通方向に沿って徐々に流路幅が拡大するテーパ形状となっている。また、流入位置からの距離がL1からL2に至るまでの位置(中間位置)において、ディフューザ部15を画定するシュラウド側壁15bも、流体の流通方向に沿って徐々に流路幅が拡大するテーパ形状となっている。
 また、ディフューザ部15に流体が流入する流入位置からの距離が、L2からL3に至るまでの位置において、ハブ側壁15aが、ディフューザ部15に流体が流入する流入位置におけるハブ側壁15aよりもディフューザ部15の流路幅を拡大する方向に配置されている。同様に、シュラウド側壁15bも、ディフューザ部15に流体が流入する流入位置におけるシュラウド側壁15bよりもディフューザ部15の流路幅を拡大する方向に配置されている。そして、流入位置からの距離がL2からL3に至るまでの位置において、ディフューザ部15の流路幅が流路幅W3で一定となっている。
 以上のように、ディフューザ部15に流体が流入する流入位置よりも流体の流通方向の下流側には、ディフューザ部15の流入位置におけるディフューザ部15の流路幅よりも広い流路幅拡大部15cが設けられている。
 なお、流路幅拡大部15cにおいて、ハブ側壁15aの形状とシュラウド側壁15bの形状とは、流路の中心軸に対して左右対称とするのが望ましい。
 第1実施形態では、羽根車13の吐出位置における流路幅W1に対するディフューザ部15の流入位置における流路幅W2の比率は、0.5以上、かつ0.8未満とされる。また、羽根車13の吐出位置における流路幅W1に対する流路幅拡大部15cにおけるディフューザ部15の流路幅W3の比率は、0.8以上、かつ、1.0以下とされる。ただし、前述したように、ディフューザ部15の流入位置における流路幅W2よりも、流路幅拡大部15cにおけるディフューザ部15の流路幅W3の方が広くなるように、それぞれの比率が選定される。
 以上説明したように、第1実施形態の遠心圧縮機10は、軸線方向に沿って流入する流体を軸線方向から傾斜した方向(軸線方向に直交する半径方向)に吐出する羽根車13と、羽根車13を収容するケーシング部11と、羽根車13から吐出した流体を流通させるディフューザ部15と、を備え、羽根車13が、軸線方向に沿って並ぶハブ1およびシュラウド2と、ハブ1およびシュラウド2の間に配置される複数のブレード3とを有する。
 そして、第1実施形態の遠心圧縮機10によれば、ディフューザ部15に流体が流入する流入位置におけるディフューザ部15の流路幅W2が、羽根車13から流体が吐出する吐出位置における羽根車13の流路幅W1よりも狭い。このようにすることで、ディフューザ部15に流体が流入する流入位置における流体の流速を十分に増加させて旋回失速の発生を抑制し、旋回失速による軸振動等の不具合を抑制することができる。
 また、第1実施形態の遠心圧縮機10によれば、ディフューザ部15の流入位置よりも下流側には、ディフューザ部15の流入位置におけるディフューザ部15の流路幅W2よりも広い流路幅W3の流路幅拡大部15cが設けられている。このようにすることで、ディフューザ部15の流入位置から下流側に至るまで同じ流路幅W2とする場合に比べ、ディフューザ部15を流通する流体の流速が速くなることに起因する摩擦損失等の性能低下を抑制することができる。
 また、第1実施形態においては、ディフューザ部15が、ハブ1側に設けられるハブ側壁15aとシュラウド2側に設けられるシュラウド側壁15bとにより画定されている。そして、流路幅拡大部15cにおけるハブ側壁15aが、流入位置におけるハブ側壁15aよりもディフューザ部15の流路幅を拡大する方向に配置されている。また、流路幅拡大部15cにおけるシュラウド側壁15bが、流入位置におけるシュラウド側壁15bよりもディフューザ部15の流路幅を拡大する方向に配置されている。
 このようにすることで、ディフューザ部15の流路幅拡大部15cにおける両側の壁がディフューザ部15の流路幅を拡大する方向に配置され、ディフューザ部15の流入位置から下流側に至るまで同じ流路幅W2とする場合に比べて、流体の流速が速くなることに起因する摩擦損失等の性能低下を抑制することができる。
 また、第1実施形態においては、ハブ側壁15aの形状が、ディフューザ部15の流入位置と流路幅拡大部15cの間の中間位置において流体の流通方向に沿って徐々に流路幅が拡大するテーパ形状であり、シュラウド側壁15bの形状が、ディフューザ部15の中間位置において流体の流通方向に沿って徐々に流路幅が拡大するテーパ形状である。このようにすることで、ディフューザ部15の中間位置の流路において安定した状態で流体を流通させる流路を形成することができる。
 また、第1実施形態においては、吐出位置における羽根車13の流路幅W1に対する流入位置におけるディフューザ部15の流路幅W2の比率が、0.5以上、かつ、0.8未満である。このようにすることで、流路幅W1に対する流路幅W2を十分狭い幅とし、ディフューザ部15に流体が流入する流入位置における流体の流速を十分に増加させて旋回失速の発生を抑制し、旋回失速による軸振動等の不具合を抑制することができる。
 また、第1実施形態においては、吐出位置における羽根車13の流路幅W1に対する流路幅拡大部15cにおけるディフューザ部15の流路幅W3の比率が、0.8以上、かつ、1.0以下である。このようにすることで、流路幅W1に対する流路幅W3を十分広い幅とし、ディフューザ部15の流入位置から下流側に至るまで同じ流路幅W2とする場合に比べて、流体の流速が速くなることに起因する摩擦損失等の性能低下を抑制することができる。
〔第2実施形態〕
 次に、第2実施形態の遠心圧縮機10について、図3を用いて説明する。図3は、第2実施形態の遠心圧縮機10の縦断面図である。
 第1実施形態は、ディフューザ部15の流路幅拡大部15cにおける両側の壁(ハブ側壁15aおよびシュラウド側壁15b)を、ディフューザ部15の流路幅を拡大する方向に配置したものであった。それに対して、第2実施形態は、ディフューザ部15の流路幅拡大部15cにおける片側の壁(ハブ側壁15a)を、ディフューザ部15の流路幅を拡大する方向に配置したものである。
 なお、第2実施形態は、第1実施形態の変形例であり、ディフューザ部15を画定するハブ側壁15aの形状を除き、他の構成は第1実施形態と同様であるので、以下での説明を省略する。
 第2実施形態においては、図3に示されるように、流路幅拡大部15cにおけるハブ側壁15aが、流入位置におけるハブ側壁15aよりもディフューザ部15の流路幅を拡大する方向に配置されている。一方、流路幅拡大部15cにおけるシュラウド側壁15bと、流入位置におけるシュラウド側壁15bとは、軸線方向の位置が同じになるように配置されている。
 なお、図3に示される遠心圧縮機10は、羽根車13に流入した流体を、軸線方向に直交した方向に吐出するものであるが、軸線方向に直交した方向よりもハブ側壁15aに傾斜した方向に吐出するという変形例も適用可能である。この場合、ディフューザ部15に流入した流体は、ハブ側壁15aに垂直に突き当たる方向の速度成分を含んだものとなる。従って、シュラウド側壁15bよりもハブ側壁15aにおいて、摩擦による損失が生じやすいので、ハブ側壁15aにて発生する摩擦損失を抑制することが望ましい。
 第2実施形態の変形例では、ハブ側壁15aをディフューザ部15の流路幅を拡大する方向に配置するので、羽根車13から吐出される流体の吐出方向が軸線方向に直交した方向よりもハブ側壁15aの方向に向いている(傾斜している)場合に、流体が安定した状態で流通しハブ側壁15aにて発生する摩擦損失を抑制した流路を形成することができる。
 なお、第2実施形態の変形例のように、羽根車13の軸線方向に直交した方向よりもハブ側壁15aに傾斜した方向に吐出する形式の圧縮機は、斜流圧縮機と呼ばれることがある。第2実施形態においては、軸線方向に流入した流体を軸線Aに直交する方向(遠心方向)の速度成分を含んだ流体に変換するという意味で、斜流圧縮機ではなく、遠心圧縮機と呼ぶものとする。
 以上説明したように、第2実施形態の遠心圧縮機10によれば、ディフューザ部15に流体が流入する流入位置におけるディフューザ部15の流路幅W2が、羽根車13から流体が吐出する吐出位置における羽根車13の流路幅W1よりも狭い。このようにすることで、ディフューザ部15に流体が流入する流入位置における流体の流速を十分に増加させて旋回失速の発生を抑制し、旋回失速による軸振動等の不具合を抑制することができる。
 また、第2実施形態においては、流路幅拡大部15cにおけるハブ側壁15aが、流入位置におけるハブ側壁15aよりもディフューザ部15の流路幅を拡大する方向に配置されている。このようにすることで、ディフューザ部15の流路幅拡大部15cにおけるハブ側壁15aがディフューザ部15の流路幅を拡大する方向に配置され、ディフューザ部15の流入位置から下流側に至るまで同じ流路幅W2とする場合に比べて、流体の流速が速くなることに起因する摩擦損失等の性能低下を抑制することができる。
 また、第2実施形態においては、ハブ側壁15aの形状が、ディフューザ部15の流入位置と流路幅拡大部15cの間の中間位置において流体の流通方向に沿って徐々に流路幅が拡大するテーパ形状である。このようにすることで、ディフューザ部15の中間位置の流路において安定した状態で流体を流通させる流路を形成することができる。
〔第3実施形態〕
 次に、第3実施形態の遠心圧縮機10について、図4を用いて説明する。図4は、第3実施形態の遠心圧縮機10の縦断面図である。
 第1実施形態は、ディフューザ部15の流路幅拡大部15cにおける両側の壁(ハブ側壁15aおよびシュラウド側壁15b)を、ディフューザ部15の流路幅を拡大する方向に配置したものであった。それに対して、第3実施形態は、ディフューザ部15の流路幅拡大部15cにおける片側の壁(シュラウド側壁15b)を、ディフューザ部15の流路幅を拡大する方向に配置したものである。
 なお、第3実施形態は、第1実施形態の変形例であり、ディフューザ部15を画定するシュラウド側壁15bの形状を除き、他の構成は第1実施形態と同様であるので、以下での説明を省略する。
 第3実施形態においては、図4に示されるように、流路幅拡大部15cにおけるシュラウド側壁15bが、流入位置におけるシュラウド側壁15bよりもディフューザ部15の流路幅を拡大する方向に配置されている。一方、流路幅拡大部15cにおけるハブ側壁15aと、流入位置におけるハブ側壁15aとは、軸線方向の位置が同じになるように配置されている。
 以上説明したように、第3実施形態の遠心圧縮機10によれば、ディフューザ部15に流体が流入する流入位置におけるディフューザ部15の流路幅W2が、羽根車13から流体が吐出する吐出位置における羽根車13の流路幅W1よりも狭い。このようにすることで、ディフューザ部15に流体が流入する流入位置における流体の流速を十分に増加させて旋回失速の発生を抑制し、旋回失速による軸振動等の不具合を抑制することができる。
 また、第3実施形態においては、流路幅拡大部15cにおけるシュラウド側壁15bが、流入位置におけるシュラウド側壁15bよりもディフューザ部15の流路幅を拡大する方向に配置されている。このようにすることで、ディフューザ部15の流路幅拡大部15cにおけるシュラウド側壁15bがディフューザ部15の流路幅を拡大する方向に配置され、ディフューザ部15の流入位置から下流側に至るまで同じ流路幅W2とする場合に比べて、流体の流速が速くなることに起因する摩擦損失等の性能低下を抑制することができる。
 また、第3実施形態においては、シュラウド側壁15bの形状が、ディフューザ部15の中間位置において流体の流通方向に沿って徐々に流路幅が拡大するテーパ形状である。このようにすることで、ディフューザ部15の中間位置の流路において安定した状態で流体を流通させる流路を形成することができる。
〔第4実施形態〕
 次に、第4実施形態の遠心圧縮機10について、図5を用いて説明する。図5は、第4実施形態の遠心圧縮機10の縦断面図である。
 第1実施形態は、ディフューザ部15の流入位置に設けられる流路幅W2の流路と、ディフューザ部15の下流に設けられる流路幅W3の流路幅拡大部15cの間(中間位置)において、ハブ側壁15aおよびシュラウド側壁15bの双方を、流体の流通方向に沿って徐々に流路幅が拡大するテーパ形状としたものであった。
 それに対して第4実施形態では、テーパ形状に替えて、流体の流通方向に沿って段階的に流路幅が拡大する段形状を採用する。
 ディフューザ部15の流路幅(ハブ側壁15aとシュラウド側壁15bとの軸線方向の距離)は、ディフューザ部15に流体が流入する流入位置からの流体の流通方向(軸線方向に直交した方向)の距離がL4に至るまでは、流路幅W2のまま一定である。そして、流入位置からの距離がL4からL3に至るまでの位置において、ディフューザ部15の流路幅が流路幅W3で一定となっている。
 なお、図5に示される第4実施形態においては、段が1段だけ設けられるディフューザ部15を示したが、段を1段だけでなく複数段設けるようにしてもよい。例えば、第1実施形態の図1に示されるテーパ形状の部分(ディフューザ部15の中間位置)に替えて、2段、3段、あるいはそれ以上の複数段の段形状とし、流路幅が徐々に拡大するようにしてもよい。
 また、図5に示される第4実施形態においては、段形状をハブ側壁15aとシュラウド側壁15bの双方に設けることとしたが、ハブ側壁15aおよびシュラウド側壁15bのいずれか一方に段形状を設け、他の一方には段形状を設けないようにしてもよい。例えば、ハブ側壁15aに段形状を設けない場合、流路幅拡大部15cにおけるハブ側壁15aと、流入位置におけるハブ側壁15aとは、軸線方向の位置が同じになるように配置される。また、例えば、シュラウド側壁15bに段形状を設けない場合、流路幅拡大部15cにおけるシュラウド側壁15bと、流入位置におけるシュラウド側壁15bとは、軸線方向の位置が同じになるように配置される。
 以上説明したように、第4実施形態の遠心圧縮機10によれば、ディフューザ部15に流体が流入する流入位置におけるディフューザ部15の流路幅W2が、羽根車13から流体が吐出する吐出位置における羽根車13の流路幅W1よりも狭い。このようにすることで、ディフューザ部15に流体が流入する流入位置における流体の流速を十分に増加させて旋回失速の発生を抑制し、旋回失速による軸振動等の不具合を抑制することができる。
 また、第4実施形態の遠心圧縮機10によれば、ディフューザ部15の流入位置よりも下流側には、ディフューザ部15の流入位置におけるディフューザ部15の流路幅W2よりも広い流路幅W3の流路幅拡大部15cが設けられている。このようにすることで、ディフューザ部15の流入位置から下流側に至るまで同じ流路幅W2とする場合に比べ、ディフューザ部15を流通する流体の流速が速くなることに起因する摩擦損失等の性能低下を抑制することができる。
 また、第4実施形態においては、ハブ側壁15aの形状が、ディフューザ部15の流入位置と流路幅拡大部15cの間の中間位置において流体の流通方向に沿って段階的に流路幅が拡大する段形状であり、シュラウド側壁15bの形状が、ディフューザ部15の中間位置において流体の流通方向に沿って徐々に流路幅が拡大する段形状である。このようにすることで、比較的容易な加工工程により、ディフューザ部15の中間位置に流入位置と下流側とを接続する流路を形成することができる。
〔第5実施形態〕
 次に、第5実施形態の遠心圧縮機10について、図6を用いて説明する。図6は、第5実施形態の遠心圧縮機10の縦断面図である。
 第1実施形態乃至第4実施形態においては、ディフューザ部15の下流にボリュート部16が設けられた1段の遠心圧縮機について説明したが、第5実施形態の遠心圧縮機10は、1段目の羽根車13およびディフューザ部15により圧縮された流体を、次段の羽根車13およびディフューザ部15に流入させる形態の多段の遠心圧縮機である。
 なお、第5実施形態は、第1実施形態の変形例であり、ボリュート部16に替えてリターンベンド17およびリターンベーン18が設けられている点を除き、他の構成は第1実施形態と同様であるので、以下での説明を省略する。
 第1実施形態では、ディフューザ部15の流路幅拡大部15cに流入した圧縮流体は、流路幅拡大部15cの下流に設けられたボリュート部16に流入するものであった。それに対して、第5実施形態では、ディフューザ部15の流路幅拡大部15cに流入した圧縮流体は、流路幅拡大部15cの下流に設けられたリターンベンド17に流入する。リターンベンド17に流入した圧縮流体は、リターンベーン18を経由して、次段(2段目)の羽根車13に導かれる。
 第5実施形態の遠心圧縮機10として2段の遠心圧縮機を採用した場合、2段目の羽根車13に導かれた流体は、2段目のディフューザ部15に吐出される。2段目のディフューザ部15にて更に圧縮された流体は、第1実施形態の図1にて示されたものと同様のボリュート部16に導かれる。
 また、第5実施形態の遠心圧縮機10として3段の遠心圧縮機を採用した場合、2段目の羽根車13に導かれた流体は、2段目のディフューザ部15に吐出される。2段目のディフューザ部15にて更に圧縮された流体は、2段目のリターンベンド17に流入する。2段目のリターンベンド17に流入した圧縮流体は、リターンベーン18を経由して、次段(3段目)の羽根車13に導かれる。3段目の羽根車13に導かれた流体は、3段目のディフューザ部15に吐出される。3段目のディフューザ部15にて更に圧縮された流体は、第1実施形態の図1にて示されたものと同様のボリュート部16に導かれる。
 以上のように、遠心圧縮機10を2段あるいは3段の遠心圧縮機10とすることで、流体の圧縮率を更に高めることができる。また、各段の羽根車13およびディフューザ部15の形状により、第1実施形態と同様の効果を奏することができる。
 なお、各段のディフューザ部15の形状として、第1実施形態に示されたものだけでなく、第2実施形態乃至第4実施形態に示されたいずれかの形状を採用することが可能である。
 また、第5実施形態では、2段および3段の遠心圧縮機10について説明したが、4段以上の複数段の遠心圧縮機10とする変形例を採用してもよい。
1   ハブ
2   シュラウド
3   ブレード
10  遠心圧縮機
11  ケーシング部
13  羽根車
15  ディフューザ部
15a ハブ側壁
15b シュラウド側壁
15c 流路幅拡大部
16  ボリュート部
A   軸線
W1  羽根車の吐出位置における流路幅
W2  ディフューザ部の流入位置における流路幅
W3  ディフューザ部の流路幅拡大部における流路幅
 

Claims (14)

  1.  軸線周りに回転可能であり、該軸線に沿った軸線方向に流入する流体を該軸線方向から傾斜した方向に吐出する羽根車と、
     該羽根車を収容するケーシング部と、
     前記羽根車から吐出した前記流体を流通させるディフューザ部と、を備え、
     前記羽根車が、前記軸線方向に沿って並ぶハブおよびシュラウドと、該ハブおよび該シュラウドの間に配置される複数のブレードを有し、
     前記ディフューザ部に前記流体が流入する流入位置における該ディフューザ部の流路幅が、前記羽根車から前記流体が吐出する吐出位置における前記羽根車の流路幅よりも狭く、
     前記ディフューザ部の前記流入位置よりも下流側には、該流入位置における前記ディフューザ部の流路幅よりも広い流路幅拡大部が設けられている遠心圧縮機。
  2.  前記ディフューザ部が、前記ハブ側に設けられるハブ側壁と前記シュラウド側に設けられるシュラウド側壁とにより画定されており、
     前記流路幅拡大部における前記ハブ側壁が、前記流入位置における前記ハブ側壁よりも前記ディフューザ部の流路幅を拡大する方向に配置されており、
     前記流路幅拡大部における前記シュラウド側壁が、前記流入位置における前記シュラウド側壁よりも前記ディフューザ部の流路幅を拡大する方向に配置されている請求項1に記載の遠心圧縮機。
  3.  前記ディフューザ部が、前記ハブ側に設けられるハブ側壁と前記シュラウド側に設けられるシュラウド側壁とにより画定されており、
     前記流路幅拡大部における前記ハブ側壁が、前記流入位置における前記ハブ側壁よりも前記ディフューザ部の流路幅を拡大する方向に配置されている請求項1に記載の遠心圧縮機。
  4.  前記ディフューザ部が、前記ハブ側に設けられるハブ側壁と前記シュラウド側に設けられるシュラウド側壁とにより画定されており、
     前記流路幅拡大部における前記シュラウド側壁が、前記流入位置における前記シュラウド側壁よりも前記ディフューザ部の流路幅を拡大する方向に配置されている請求項1に記載の遠心圧縮機。
  5.  前記ハブ側壁の形状が、前記ディフューザ部の前記流入位置と前記流路幅拡大部の間の中間位置において前記流体の流通方向に沿って徐々に流路幅が拡大するテーパ形状であり、
     前記シュラウド側壁の形状が、前記ディフューザ部の前記中間位置において前記流体の流通方向に沿って徐々に流路幅が拡大するテーパ形状である請求項2に記載の遠心圧縮機。
  6.  前記ハブ側壁の形状が、前記ディフューザ部の前記流入位置と前記流路幅拡大部の間の中間位置において前記流体の流通方向に沿って徐々に流路幅が拡大するテーパ形状である請求項3に記載の遠心圧縮機。
  7.  前記シュラウド側壁の形状が、前記ディフューザ部の前記流入位置と前記流路幅拡大部の間の中間位置において前記流体の流通方向に沿って徐々に流路幅が拡大するテーパ形状である請求項4に記載の遠心圧縮機。
  8.  前記ハブ側壁の形状が、前記ディフューザ部の前記流入位置と前記流路幅拡大部の間の中間位置において前記流体の流通方向に沿って段階的に流路幅が拡大する段形状であり、
     前記シュラウド側壁の形状が、前記ディフューザ部の前記中間位置において前記流体の流通方向に沿って段階的に流路幅が拡大する段形状である請求項2に記載の遠心圧縮機。
  9.  前記ハブ側壁の形状が、前記ディフューザ部の前記流入位置と前記流路幅拡大部の間の中間位置において前記流体の流通方向に沿って段階的に流路幅が拡大する段形状である請求項3に記載の遠心圧縮機。
  10.  前記シュラウド側壁の形状が、前記ディフューザ部の前記流入位置と前記流路幅拡大部の間の中間位置において前記流体の流通方向に沿って段階的に流路幅が拡大する段形状である請求項4に記載の遠心圧縮機。
  11.  前記吐出位置における前記羽根車の流路幅に対する前記流入位置における前記ディフューザ部の流路幅の比率が、0.5以上、かつ、0.8未満である請求項1から請求項10のいずれか1項に記載の遠心圧縮機。
  12.  前記吐出位置における前記羽根車の流路幅に対する前記流路幅拡大部における前記ディフューザ部の流路幅の比率が、0.8以上、かつ、1.0以下である請求項1から請求項11のいずれか1項に記載の遠心圧縮機。
  13.  前記羽根車が、前記軸線方向に沿って流入する前記流体を該軸線方向に直交した方向に吐出する請求項1から請求項12のいずれか1項に記載の遠心圧縮機。
  14.  流量係数が、0.01以上、かつ、0.05以下である請求項1から請求項13のいずれか1項に記載の遠心圧縮機。
     
     
     
PCT/JP2013/066989 2013-06-20 2013-06-20 遠心圧縮機 WO2014203379A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380075731.6A CN105121864B (zh) 2013-06-20 2013-06-20 离心式压缩机
EP13887157.9A EP3012461A4 (en) 2013-06-20 2013-06-20 Centrifugal compressor
PCT/JP2013/066989 WO2014203379A1 (ja) 2013-06-20 2013-06-20 遠心圧縮機
US14/785,024 US20160108920A1 (en) 2013-06-20 2013-06-20 Centrifugal compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066989 WO2014203379A1 (ja) 2013-06-20 2013-06-20 遠心圧縮機

Publications (1)

Publication Number Publication Date
WO2014203379A1 true WO2014203379A1 (ja) 2014-12-24

Family

ID=52104141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066989 WO2014203379A1 (ja) 2013-06-20 2013-06-20 遠心圧縮機

Country Status (4)

Country Link
US (1) US20160108920A1 (ja)
EP (1) EP3012461A4 (ja)
CN (1) CN105121864B (ja)
WO (1) WO2014203379A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015103615A1 (de) * 2014-10-24 2016-04-28 Volkswagen Aktiengesellschaft Radialverdichter

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104415B1 (ko) * 2015-02-05 2020-04-24 한화파워시스템 주식회사 압축기
JP6594019B2 (ja) * 2015-04-14 2019-10-23 三菱重工サーマルシステムズ株式会社 入口案内羽根及び遠心圧縮機
US10837297B2 (en) 2015-12-25 2020-11-17 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger
CN109707665B (zh) * 2017-10-26 2022-04-29 韩华压缩机株式会社 具有自行再循环机匣处理的闭式叶轮
US10935035B2 (en) * 2017-10-26 2021-03-02 Hanwha Power Systems Co., Ltd Closed impeller with self-recirculation casing treatment
DE102017127758A1 (de) * 2017-11-24 2019-05-29 Man Diesel & Turbo Se Radialverdichter und Turbolader
US10851801B2 (en) * 2018-03-02 2020-12-01 Ingersoll-Rand Industrial U.S., Inc. Centrifugal compressor system and diffuser
US20200378303A1 (en) 2019-06-03 2020-12-03 Pratt & Whitney Canada Corp. Diffuser pipe exit flare

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138410A (ja) * 1974-04-23 1975-11-05
GB1574942A (en) * 1977-04-20 1980-09-10 Komatsu Mfg Co Ltd Centrifugal compressor combines with a turbine
JPH078597U (ja) * 1993-07-06 1995-02-07 三菱重工業株式会社 遠心圧縮機
JP2003120594A (ja) 2001-10-12 2003-04-23 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JP2008138626A (ja) * 2006-12-04 2008-06-19 Ihi Corp 遠心圧縮機におけるディフューザの構造
JP2010144698A (ja) 2008-12-22 2010-07-01 Ihi Corp 遠心圧縮機
WO2011034044A1 (ja) * 2009-09-16 2011-03-24 三菱重工業株式会社 排出スクロール及びターボ機械

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3289921A (en) * 1965-10-08 1966-12-06 Caterpillar Tractor Co Vaneless diffuser
SU688705A1 (ru) * 1978-04-20 1979-09-30 Ленинградский Ордена Ленина Политехнический Институт Им. М.И.Калинина Ступень центробежного компрессора
ITMI20012414A1 (it) * 2001-11-15 2003-05-15 Nuovo Pignone Spa Pala per girante di compressore centrifugo a medio-alto coefficiente di flusso
JP5233436B2 (ja) * 2008-06-23 2013-07-10 株式会社日立プラントテクノロジー 羽根無しディフューザを備えた遠心圧縮機および羽根無しディフューザ
GB0821089D0 (en) * 2008-11-19 2008-12-24 Ford Global Tech Llc A method for improving the performance of a radial compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138410A (ja) * 1974-04-23 1975-11-05
GB1574942A (en) * 1977-04-20 1980-09-10 Komatsu Mfg Co Ltd Centrifugal compressor combines with a turbine
JPH078597U (ja) * 1993-07-06 1995-02-07 三菱重工業株式会社 遠心圧縮機
JP2003120594A (ja) 2001-10-12 2003-04-23 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JP2008138626A (ja) * 2006-12-04 2008-06-19 Ihi Corp 遠心圧縮機におけるディフューザの構造
JP2010144698A (ja) 2008-12-22 2010-07-01 Ihi Corp 遠心圧縮機
WO2011034044A1 (ja) * 2009-09-16 2011-03-24 三菱重工業株式会社 排出スクロール及びターボ機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3012461A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015103615A1 (de) * 2014-10-24 2016-04-28 Volkswagen Aktiengesellschaft Radialverdichter

Also Published As

Publication number Publication date
EP3012461A1 (en) 2016-04-27
EP3012461A4 (en) 2017-02-08
CN105121864A (zh) 2015-12-02
CN105121864B (zh) 2017-06-09
US20160108920A1 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
WO2014203379A1 (ja) 遠心圧縮機
JP5905315B2 (ja) 遠心圧縮機
US8313290B2 (en) Centrifugal compressor having vaneless diffuser and vaneless diffuser thereof
JPH0278788A (ja) 多段遠心圧縮機
KR101743376B1 (ko) 원심 압축기
JP4924984B2 (ja) 軸流圧縮機の翼列
JP5029024B2 (ja) 遠心圧縮機
JP6242775B2 (ja) 遠心圧縮機
EP2154380B1 (en) Seal device for rotary fluid machine and rotary fluid machine
JP5705839B2 (ja) 圧縮機用遠心インペラ
JP5104624B2 (ja) 多段遠心圧縮機
US10138898B2 (en) Centrifugal compressor and turbocharger
JP2011122516A (ja) 遠心圧縮機
JP2009068372A (ja) 遠心圧縮機
JP2007247622A (ja) 遠心形ターボ機械
WO2018155546A1 (ja) 遠心圧縮機
JP5722673B2 (ja) 多段遠心圧縮機およびこれを用いたターボ冷凍機
CN105518309A (zh) 旋转机械
JP3720217B2 (ja) 遠心圧縮機
JP4146371B2 (ja) 遠心圧縮機
WO2018101021A1 (ja) ディフューザ、吐出流路、および遠心ターボ機械
WO2022270274A1 (ja) 多段遠心流体機械
JP2019007383A (ja) 遠心式流体機械
JP5875429B2 (ja) 多段遠心送風機
WO2017170285A1 (ja) 遠心羽根車、およびこれを備える遠心式流体機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887157

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14785024

Country of ref document: US

Ref document number: 2013887157

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP