WO2014202001A1 - 集热蓄热供热一体型太阳能干燥系统 - Google Patents

集热蓄热供热一体型太阳能干燥系统 Download PDF

Info

Publication number
WO2014202001A1
WO2014202001A1 PCT/CN2014/080110 CN2014080110W WO2014202001A1 WO 2014202001 A1 WO2014202001 A1 WO 2014202001A1 CN 2014080110 W CN2014080110 W CN 2014080110W WO 2014202001 A1 WO2014202001 A1 WO 2014202001A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
solar
heat
solar energy
heat storage
Prior art date
Application number
PCT/CN2014/080110
Other languages
English (en)
French (fr)
Inventor
陈义龙
胡书传
张岩丰
Original Assignee
中盈长江国际新能源投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020157036424A priority Critical patent/KR101788220B1/ko
Priority to DK14813419.0T priority patent/DK3012564T3/en
Priority to CA2916048A priority patent/CA2916048A1/en
Priority to RU2016101476A priority patent/RU2628247C2/ru
Priority to EP14813419.0A priority patent/EP3012564B1/en
Priority to JP2016520264A priority patent/JP6092478B2/ja
Application filed by 中盈长江国际新能源投资有限公司 filed Critical 中盈长江国际新能源投资有限公司
Priority to AU2014283908A priority patent/AU2014283908B2/en
Priority to BR112015031997A priority patent/BR112015031997A2/pt
Priority to MX2015018009A priority patent/MX2015018009A/es
Publication of WO2014202001A1 publication Critical patent/WO2014202001A1/zh
Priority to US14/975,887 priority patent/US10018415B2/en
Priority to HRP20190170TT priority patent/HRP20190170T1/hr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/283Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun in combination with convection
    • F26B3/286Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun in combination with convection by solar radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/06Chambers, containers, or receptacles
    • F26B25/08Parts thereof
    • F26B25/10Floors, roofs, or bottoms; False bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/06Chambers, containers, or receptacles
    • F26B25/08Parts thereof
    • F26B25/12Walls or sides; Doors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B20/00Combinations of machines or apparatus covered by two or more of groups F26B9/00 - F26B19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • Y02B40/18Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers using renewables, e.g. solar cooking stoves, furnaces or solar heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the invention belongs to a drying technology using solar energy, in particular to a solar energy drying system integrating heat storage and heat storage.
  • Solar energy also has a vast world in the countryside, and the quality of life of farmers needs to be greatly improved. farmers also need to get rich quickly.
  • products in the countryside that need to be dried, such as dried mangoes, dried fruit and other fruits, rice, wheat, corn, soybeans, rapeseed, candied fruit, seaweed, agar, tea, broccoli and other agricultural products, all kinds of fresh fish water.
  • Products, dried duck meat, dried meat, etc. also include agricultural waste biomass fuel such as straw, branches, firewood, bark, and roots. Drying these agricultural products, aquatic products, and wastes in the production process of agroforestry can reduce the cost of storage and transportation of these materials and commodities.
  • the technical problem to be solved by the present invention is to provide a solar energy drying system integrating heat storage and heat storage, which can utilize solar energy in a more comprehensive way by combining radiation and convection, and has higher thermal efficiency and drying rate than ordinary solar greenhouses. It can be applied to the dehydration of fruits and vegetables and the drying of other agricultural and sideline products and biomass fuels with a drying temperature of 40 ⁇ 70 °C, and has the function of night work.
  • the present invention provides a heat collecting and heat storage integrated solar drying system, which comprises a solar greenhouse, a solar energy storage bed, an air condenser, a water bath dust collector, and pipes and pipes connecting the devices. Set valves and fans;
  • the solar greenhouse is a sealed structure
  • the building structure is a frame structure
  • the top surface and the three sun-facing surfaces are composed of PC sunlight board, tempered glass, plexiglass or FRP lighting board
  • the non-sun surface is an energy storage wall
  • the solar greenhouse floor For the concrete perforated plate, the concrete perforated plate is arranged above the ground, above which is used for placing the material to be dried, and below for ventilation;
  • the solar energy storage bed comprises an upper and lower wind box, a plurality of solar heat collecting and heat storage tubes and a sealed chamber
  • the solar heat collecting and heat storage tube comprises an air guiding tube with a vent hole in the tube wall, and the two ends of the air guiding tube are respectively connected with the upper and lower wind boxes.
  • the heat storage material is externally applied to the wall of the air guiding tube, and the sealed chamber is formed by the upper and lower bellows, the front transparent panel, the rear opaque bottom plate and the side plates, and the solar heat collecting and heat storage tubes are both Located in the sealed chamber;
  • the air condenser has a cylindrical structure, and the air inlet and outlet are opened on the side of the cylinder for air in and out, and the upper and lower nozzles are respectively provided with air boxes, and the two air boxes are connected through the air tube bundle for being used for cooling. gas;
  • the solar greenhouse has an air inlet under the floor, two air outlets above the floor, an air inlet of the solar greenhouse, an air outlet of the solar greenhouse, an upper bellows of the solar energy storage bed, and an air above the air condenser.
  • the air outlets of the tank and the air condenser are respectively connected through a pipeline, and another air outlet of the solar greenhouse, a lower air box of the solar energy storage bed and an air outlet of the air condenser are connected through a pipeline, and a gas box below the air condenser and the water bath
  • the dust collector is connected.
  • the heat storage material laid outside the wall of the air guiding tube is a mixture of artificial zeolite and metal powder, and the weight content of the artificial zeolite in the mixture is not less than 70%.
  • the artificial zeolite has a particle size of not more than 3 mm.
  • the panel is a glass plate
  • the bottom plate and the side plate are composite plates composed of a plastic plate and a heat insulation plate.
  • the energy storage wall of the solar greenhouse is composed of aerated concrete and rock wool insulation layer masonry plus energy storage mixed mortar, or hollow brick masonry filled with energy storage mixed mortar, the energy storage mixing
  • the phase change heat of the mortar is not less than 60kj/kg.
  • the top surface of the solar greenhouse is a single-sided large sloped slope, but is not limited to the shape, and may be an arched or triangular roof.
  • the air condenser and the air tube bundle therein are made of Nd steel.
  • the solar greenhouse is a micro-pressure chamber, and the pressure is 30,000 to 70,000 Pa, preferably 50,000 Pa.
  • the invention has the beneficial effects that the arrangement of the structurally optimized solar greenhouse and the solar energy storage bed can be combined by radiation and convective heat exchange, which is high in thermal efficiency and energy saving; the entire drying system completely utilizes solar energy.
  • the utility model has the advantages of low operating cost, energy saving and environmental protection; the use of the solar energy storage bed also solves the problem that the existing solar energy greenhouse can not use solar energy at night; the invention can be applied to other agricultural and sideline products with dehydration and drying temperature of fruits and vegetables at 40 ⁇ 70 ° C and The drying of biomass fuels has a positive effect on improving agricultural economic benefits and reducing industrial transportation costs.
  • FIG. 1 is a schematic view showing the structure and working principle of an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of the solar thermal storage bed of FIG. 1.
  • Fig. 3 is a cross-sectional view taken along line A-A of Fig. 2;
  • FIG. 4 is a cross-sectional view of the solar heat collecting heat storage tube of FIG. 2.
  • Figure 5 is a schematic view showing the structure of the air condenser of Figure 1.
  • Fig. 6 is a cross-sectional view taken along line B-B of Fig. 5;
  • 1 - solar energy storage bed including: 1.1 - bellows, 1.2 - air duct, 1.3 - solar collector heat storage tube, 1.4 - panel, 1.5 - floor
  • 2.1, 2.2, 2.3 - fan 3 - air condensation (where: 3.1 - gas box, 3.2 - trachea, 3.3 - condenser shell), 4 - water bath dust collector, 5 - PC sunlight board, 6 - energy storage wall, 7 - concrete perforated board, 8 - material, 9.1 ⁇ 9.12—Valves.
  • a heat collecting and heat-storing integrated solar drying system of the present invention comprises a solar greenhouse, a solar energy storage bed 1, an air condenser 3, a water bath dust collector 4, and a pipe connecting the devices.
  • Valves 9.1 ⁇ 9.12 and fans 2.1 ⁇ 2.3 are installed on the pipeline. details as follows.
  • the solar greenhouses have different orientations.
  • the front should be facing the strongest direction of solar radiation. In the northern hemisphere, it is generally facing south.
  • the building structure of the solar greenhouse is a frame structure, and the top surface and the east, west and south sides of the sun are composed of PC solar panels 5.
  • the physical characteristics of PC Sunshine Board 5 are: high strength (the impact resistance is 40 times that of glass, 20 times that of FRP), the light transmittance is up to 90%, the heat preservation performance is good (two times that of glass), and the weight is light ( It is 1/5) of glass, flame retardant and not easy to dew.
  • the north side is the non-receiving side of the energy storage wall 6, and the energy storage wall 6 is composed of aerated concrete and rock wool insulation layer masonry plus energy storage mixed mortar, or hollow brick masonry filled with energy storage mortar.
  • the energy storage mixed mortar here can be made by mixing graphite powder, biomass power plant ash, cement mortar and water at the construction site, and the phase change heat is not less than 60kj/kg.
  • a typical solar building or structure is generally a triangular roof. This embodiment is preferably a single-sided, large-slope top surface that increases the solar heated area.
  • the floor of the solar greenhouse is a concrete perforated plate 7, which is arranged about one meter above the ground, above which is used for placing the material 8 to be dried, and below is a ventilation duct for ventilation.
  • the inner surface of the energy storage wall 6 and the surface of the concrete perforated plate 7 may be smeared with a storage mixing mortar of about 20 mm thick.
  • the east and west sides of the solar greenhouse (parallel to the sides of the paper in Figure 1) each open a sealed door for the placement and removal of material 8, the solar greenhouse does not open the window, and its steel structure and PC sunlight board 5 Sealing is required at the seams to ensure the tightness of the entire solar greenhouse.
  • the indoor surface of the solar greenhouse is coated with far-infrared reflective paint to make the indoor heat storage effect good and the temperature uniform.
  • the solar energy storage bed 1 includes an upper and lower wind box 1.1, a plurality of solar heat collecting heat storage tubes 1.3, and a sealed chamber.
  • Each of the solar heat collecting and accumulating pipes 1.3 includes an air guiding pipe 1.2 having a vent hole in the pipe wall, and two ends of the air guiding pipe 1.2 are respectively connected with the upper and lower wind boxes 1.1, and a heat storage material is externally applied to the pipe wall of the air guiding pipe 1.2, and the sealing chamber is sealed.
  • the upper and lower bellows 1.1, the front transparent panel 1.4, the rear opaque bottom plate 1.5 and the side panels are enclosed, and the solar heat collecting and heat storage tubes 1.3 are all located in the sealed chamber.
  • the heat storage material of the present embodiment is a mixture of an artificial zeolite and a metal powder, and the weight content of the artificial zeolite in the mixture is not less than 70%, which acts as a heat storage function, and the metal powder mainly serves as a heat conduction.
  • the panel 1.4 of the embodiment is made of a glass plate, which can transmit sunlight and is kept warm; the bottom plate 1.5 and the side plate are made of a composite plate composed of a plastic plate and a heat insulation plate, and the thermal conductivity is poor and the strength is good, and the heat insulation and support are provided.
  • the heat storage method of the invention adopts solid adsorption type heat storage, which has long-term heat storage compared with the sensible heat storage mode, the heat storage device does not need special heat preservation, and the initial investment is low, and the relative latent heat storage has energy storage density.
  • Solid heat storage materials should have the following characteristics: 1.) high energy storage density; 2) sufficient supply and low price; 3) non-toxic and non-corrosive materials; 4) renewable and reusable; 5) large adsorption capacity, at 30 It is sensitive to temperature between ⁇ 100 °C; 6) the adsorption force is small, the regeneration temperature is low, and the residual amount of the adsorbate after desorption is small.
  • zeolite, activated carbon, silica gel, activated alumina, and activated carbon fiber are met.
  • Corresponding adsorbates are water, methanol, ethanol, ammonia, and chlorofluorocarbons.
  • artificial zeolite particles having a particle size of not more than 3 mm are preferred.
  • the effective heat storage density of the artificial zeolite is generally 600 to 700 kj/kg, so that the solar heat collecting heat storage tube 1.3 has a high thermal efficiency, and a small particle size is selected to ensure gas and gas. Adequate contact of the artificial zeolite particles.
  • the length and diameter of the solar collector heat storage tube 1.3 are determined according to the load of the solar greenhouse described above. If the load of the solar greenhouse is large, the longer or larger diameter solar heat storage tube 1.3 is used, and vice versa.
  • the air condenser 3 is as shown in FIG. 5 and FIG. 6.
  • the condenser casing 3.3 has a cylindrical structure, and the air inlet and outlet are opened on the cylinder side for air in and out, and the upper and lower nozzles are respectively provided with a gas box 3.1, two
  • the gas box 3.1 is connected by a bundle of gas pipes 3.2 for introducing gas to be cooled.
  • the air condenser 3 and the gas pipe 3.2 therein are made of steel. In this embodiment, Nd steel is preferred, and the surface of the gas pipe 3.2 is coated with three layers of anticorrosive paint.
  • the high-temperature and high-humidity gas flows at a high speed in the bundle of the gas pipe 3.2, and the normal-temperature air flows outside the bundle of the gas pipe 3.2.
  • the condensed water is discharged, and the air is heated at room temperature and then used for drying in the solar greenhouse.
  • the water bath dust remover 4 is used for removing dust in the gas, and the efficiency can reach more than 99%.
  • the connection of the whole drying chamber is also shown in Figure 1.
  • the solar greenhouse has an air inlet under the floor and two air outlets above the floor, so that the airflow direction in the solar greenhouse conforms to the law of rising hot air flow.
  • the air inlet, an air outlet of the solar greenhouse, the upper air box 1.1 of the solar energy storage bed 1, the upper air box 3.1 of the air condenser 3, and the air outlet of the air condenser 3 are respectively connected by a pipe.
  • the other air outlet of the solar greenhouse, the lower air box 1.1 of the solar energy storage bed 1 and the air outlet of the air condenser 3 are connected by a pipeline, and the necessary places on the pipeline are valves 9.1 ⁇ 9.12 and fans 2.1 ⁇ 2.3 for different The working condition; the corresponding position of the solar greenhouse can also be set up with a temperature meter, a pressure gauge and other detection instruments, and the special person can monitor and operate the working state in the control room.
  • the lower air box 3.1 of the air condenser 3 is connected to the water bath precipitator 4.
  • the operation mode of the solar energy storage bed 1 is as follows:
  • the energy storage process of the solar energy storage bed 1 is roughly as follows: during the day, the artificial zeolite particles absorb solar energy and the temperature rises, the moisture begins to desorb from the artificial zeolite particles, and the solar energy storage bed 1 starts to store heat, in order to accelerate this
  • the valves 9.1 and 9.4 are opened, the fan 2.2 is turned on, and a part of the air heated by the air condenser 3 is sent to the solar energy storage bed 1 to desorb the water vapor.
  • the high temperature and high humidity gas generated is taken away and sent to the air condenser 3.
  • the valves 9.1, 9.4, 9.5 and the fan 2.1 can be closed, so that the normal temperature air is heated by the air condenser 3 and sent to the solar greenhouse;
  • the core of the invention lies in the arrangement of the solar greenhouse and the solar energy storage bed 1, which integrates heat supply, heat collection and heat storage, has high thermal efficiency, and can utilize solar energy at night, and further improves the technology by using solar micro-pressure drying.
  • the drying dehydration rate is also rationally designed in terms of dry air flow organization. Therefore, the scope of protection is not limited to the above embodiment. It is apparent that those skilled in the art can make various modifications and variations to the present invention without departing from the scope and spirit of the present invention. For example, the use of a PC solar panel 5 for the top surface and the three sun-facing surfaces is a preferred embodiment of the present invention.
  • the material of the panel 1.4 and the bottom plate 1.5, the top shape of the solar greenhouse, the energy storage wall can also be adjusted according to the site conditions; the air condenser 3 is not limited to Nd steel, and can be made by other materials with good heat transfer and corrosion resistance; the normal working pressure in the solar greenhouse is controlled at 50000Pa. Taking into account the choice of operability, technical effects and cost factors, the pressure control has a good effect at 30,000 ⁇ 70000Pa. . It is intended that the present invention cover the modifications and variations of the invention, and the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Drying Of Solid Materials (AREA)
  • Central Heating Systems (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种集热蓄热供热一体型太阳能干燥系统,包括太阳能温室、太阳能蓄热床(1)、空气冷凝器(3)、水浴除尘器(4)以及连接各装置的管道和阀门(9.1~9.12)、风机(2.1~2.3)。太阳能温室的建筑结构为框架结构,其地板为混凝土多孔板(7)。太阳能蓄能床(1)包括上、下方的风箱(1.1)、若干太阳能集热蓄热管(1.3)和密封腔室。空气冷凝器(3)为圆筒形结构,筒侧开有空气进、出口,上、下筒口设有通过气管(3.2)束连通的气箱(3.1);太阳能温室的地板下方开有进气口、地板上方开有两出气口。太阳能温室的进气口、一个出气口、太阳能蓄能床(1)的上方风箱、空气冷凝器(3)的上方气箱和空气冷凝器(3)的空气出口分别经管道连通,太阳能温室的另一个出气口、太阳能蓄能床(1)的下方风箱和空气冷凝器(3)的空气出口经管道连通,空气冷凝器(3)的下方气箱与水浴除尘器(4)相连。

Description

集热蓄热供热一体型太阳能干燥系统 技术领域
本发明属于利用太阳能的干燥技术,具体是指一种集热蓄热供热一体型太阳能干燥系统。
背景技术
近年来全球范围内的能源危机及由此引发的能源“争夺战”在逐渐升级,同时目前能源利用结构还是以煤、石油、天然气等常规能源为主,这些矿物质燃料燃烧时所释放出的CO2、烟尘、硫化物或氮氧化物等有害物质,对人类的生存环境也造成了严重威胁,为此,新能源的开发,近几年得到了蓬勃的发展,但是重点都集中在工业项目和城市中,农业方面仅在太阳能暖棚上得到应用,其它方面的进展不大 。
太阳能在农村也有广阔的天地,农民生活质量也需要大幅度提高,农民也需要迅速富起来。农村还有很多需干燥的产品,如芒果干、圣女果干等各种果脯,水稻、小麦、玉米、黄豆、油菜、蜜饯、海藻,琼脂、茶叶、甘兰菜等农产品,各类鲜鱼水产品,板鸭、肉干等风干肉食,还包括秸秆、枝桠柴、树皮、树根等农业废弃物生物质燃料。干燥这些农产品、水产品以及农林业生产过程中的废弃物等,能够降低这些物资和商品的储运成本,通过跨季销售可以大幅度提高农村的经济效益,但如果利用传统能源,不仅成本高,而且热效率低、污染环境,而使用太阳能干燥室将明显降低干燥成本,将为改善民生作出贡献。
技术问题
本发明所要解决的技术问题就是提供一种集热蓄热供热一体型太阳能干燥系统,能够利用辐射和对流相结合的方式更完善地利用太阳能,较普通太阳能暖房的热效率和干燥速率更高,可适用于果蔬脱水和干燥温度在40~70℃的其他农副产品和生物质燃料的干燥,且具备夜间作业的功能。
技术解决方案
为解决上述技术问题,本发明提供的一种集热蓄热供热一体型太阳能干燥系统,包括太阳能温室、太阳能蓄能床、空气冷凝器、水浴除尘器,以及连接各装置的管道和管道上设置的阀门、风机;
所述太阳能温室为密封结构,其建筑结构为框架结构,顶面和三个受阳面由PC阳光板、钢化玻璃、有机玻璃或者FRP采光板构成,非受阳面为蓄能墙,太阳能温室的地板为混凝土多孔板,混凝土多孔板高出地面设置,其上方用于放置待干燥的物料、下方用于通风;
所述太阳能蓄能床包括上、下方的风箱、若干太阳能集热蓄热管和密封腔室,太阳能集热蓄热管包括管壁开有通气孔的导气管,导气管的两端分别与上下风箱连通,导气管的管壁外敷设有蓄热材料,密封腔室由上、下方的风箱、前部透明的面板、后部不透光的底板及侧板围合而成,太阳能集热蓄热管均位于密封腔室内;
所述空气冷凝器为圆筒形结构,筒侧开有空气进、出口、用于空气的进出,上、下筒口分别设有气箱,两气箱通过气管束连通、用于通入待冷却气体;
所述太阳能温室的地板下方开有进气口、地板上方开有两个出气口,太阳能温室的进气口、太阳能温室的一个出气口、太阳能蓄能床的上方风箱、空气冷凝器的上方气箱和空气冷凝器的空气出口分别经管道连通,太阳能温室的另一个出气口、太阳能蓄能床的下方风箱和空气冷凝器的空气出口经管道连通,空气冷凝器的下方气箱与所述水浴除尘器相连。
上述技术方案中,所述导气管管壁外敷设的蓄热材料为人造沸石与金属粉末的混合物,混合物中人造沸石的重量含量不低于70%。
进一步地,所述人造沸石的粒度不大于3mm。
上述技术方案中,所述面板为玻璃板,所述底板和侧板为塑料板与保温板构成的复合板。
上述技术方案中,所述太阳能温室的蓄能墙由加气混凝土和岩棉保温层砌筑外加蓄能混合砂浆构成,或者为内填蓄能混合砂浆的空心砖砌筑构成,所述蓄能混合砂浆的相变热不小于60kj/kg。
上述技术方案中,所述太阳能温室的顶面为单面大坡形斜面,但不限于该形状,拱形或者三角形屋面等亦可。
上述技术方案中,所述空气冷凝器及其内的气管束由Nd钢制成。
上述技术方案中,所述太阳能温室为微压室,压力为30000~70000Pa,优选50000Pa。
有益效果
与现有技术相比,本发明的有益效果在于:结构优化的太阳能温室和太阳能蓄能床的设置,可采用辐射和对流热交换相结合的方式,热效率高并且节能;整个干燥系统完全利用太阳能,运行费用低,且节能环保;太阳能蓄能床的使用,还解决了现有太阳能暖房夜间不能使用太阳能的问题;本发明可适用于果蔬脱水和干燥温度在40~70℃的其他农副产品和生物质燃料的干燥,对于提高农业经济效益和降低工业运输成本都具有积极作用。
附图说明
图1为本发明一个实施例的结构暨工作原理示意图。
图2为图1中太阳能蓄热床的结构示意图。
图3为图2的A-A剖视图。
图4为图2中太阳能集热蓄热管的横截面图。
图5为图1中空气冷凝器的结构示意图。
图6为图5的B-B剖视图。
图中:1—太阳能蓄能床(其中:1.1—风箱、1.2—导气管、1.3—太阳能集热蓄热管、1.4—面板、1.5—底板),2.1、2.2、2.3—风机,3—空气冷凝器(其中:3.1—气箱、3.2—气管、3.3—冷凝器外壳),4—水浴除尘器,5—PC阳光板,6—蓄能墙,7—混凝土多孔板,8—物料,9.1~9.12—阀门。
本发明的实施方式
以下结合附图对本发明的具体实施例作进一步的详细描述。
如图1所示,本发明的一种集热蓄热供热一体型太阳能干燥系统,包括太阳能温室、太阳能蓄能床1、空气冷凝器3、水浴除尘器4,以及连接各装置的管道和管道上设置的阀门9.1~9.12、风机2.1~2.3。具体如下。
太阳能温室根据所在地区的不同,布置的方位有区别,原则上其正面应正对太阳辐射最强的方向,在北半球一般是坐北朝南。太阳能温室的建筑结构为框架结构,顶面和东、西、南三个受阳面由PC阳光板5构成。PC阳光板5的物理特性为:强度高(抗冲击力是玻璃的40倍,是玻璃钢的20倍),透光率可达90%,保温性能好(是玻璃的2倍),重量轻(是玻璃的1/5),阻燃,不易结露。北面即非受阳面为蓄能墙6,蓄能墙6由加气混凝土和岩棉保温层砌筑外加蓄能混合砂浆构成,或者为内填蓄能混合砂浆的空心砖砌筑构成。这里的蓄能混合砂浆可由施工现场的石墨粉、生物质电厂灰渣、水泥砂浆和水混合而成,相变热不小于60kj/kg。通常的太阳能建筑物或构筑物一般是三角形屋面,本实施例优选单面大坡形顶面,能够增加太阳能受热面积。太阳能温室的地板为混凝土多孔板7,混凝土多孔板7高出地面约一米设置,其上方用于放置待干燥的物料8,下方为通风道、用于通风。为增强蓄热效果,蓄能墙6内表面和混凝土多孔板7表面可抹一层约20mm厚的蓄能混合砂浆。太阳能温室的东、西侧(图1中平行于纸面的两侧)各开一扇密封门,用于物料8的放置和取出,太阳能温室不开窗,且其钢结构与PC阳光板5的接缝处要求密封,以保证整个太阳能温室的密封性。太阳能温室的室内表面涂有远红外反射涂料,使室内蓄热效果好,且温度均匀。
太阳能蓄能床1如图2至图4所示,包括上、下方的风箱1.1、若干太阳能集热蓄热管1.3和密封腔室。每一太阳能集热蓄热管1.3均包括管壁开有通气孔的导气管1.2,导气管1.2的两端分别与上下风箱1.1连通,导气管1.2的管壁外敷设有蓄热材料,密封腔室由上、下方的风箱1.1、前部透明的面板1.4、后部不透光的底板1.5及侧板围合而成,太阳能集热蓄热管1.3均位于密封腔室内。本实施例的蓄热材料为人造沸石与金属粉末的混合物,混合物中人造沸石的重量含量不低于70%,起蓄热作用,金属粉末则主要起导热作用。本实施例的面板1.4选用玻璃板,能够透射太阳光并保温;底板1.5和侧板选用塑料板与保温板构成的复合板,其导热性差而强度较好,起到保温和支撑作用。本发明储热方式选用固体吸附式储热,它相对于显热储热方式具有长期储热、储热装置不需要特殊保温、初始投资低等优点,而相对潜热储热,则具有储能密度大的优点。固体蓄热材料应具有如下特性:1.)储能密度高;2)货源充足,价格便宜;3)材料无毒、无腐蚀作用;4)能再生重复使用;5)吸附容量大,在30~100℃之间对温度比较敏感;6)吸附力小、再生温度低、脱附后吸附质的残余量小。目前符合上述要求的有沸石、活性炭、硅胶、活性氧化铝、活性炭纤维。相对应的吸附质有水、甲醇、乙醇、氨、氯氟烃类。本实施例优选粒度不大于3mm的人造沸石颗粒,人造沸石的有效储热密度一般为600~700kj/kg,使得太阳能集热蓄热管1.3的热效率较高,选择较小的粒度,能确保气体与人造沸石颗粒的充分接触。太阳能集热蓄热管1.3的长度和直径则需根据前述太阳能温室的负荷确定,太阳能温室的负荷大,则选用较长或者直径较大的太阳能集热蓄热管1.3,反之亦然。
空气冷凝器3如图5和图6所示,冷凝器外壳3.3为圆筒形结构,筒侧开有空气进、出口、用于空气的进出,上、下筒口分别设有气箱3.1,两气箱3.1通过气管3.2束连通、用于通入待冷却气体。考虑到高温高湿气体具有一定腐蚀性,空气冷凝器3及其内的气管3.2束由钢材制成,本实施例优选Nd钢,且气管3.2表面涂有三层防腐涂料。这样,高温高湿气体在气管3.2束内高速流动,常温空气则在气管3.2束外流动,经热交换后,冷凝水排出,常温空气加热后再用于太阳能温室中的干燥。
水浴除尘器4用于清除气体中的粉尘,效率可达99%以上。
整个干燥室的装置连接也如图1所示,太阳能温室的地板下方开有进气口、地板上方开有两个出气口,使太阳能温室内的气流方向符合热气流上升的规律,太阳能温室的进气口、太阳能温室的一个出气口、太阳能蓄能床1的上方风箱1.1、空气冷凝器3的上方气箱3.1和空气冷凝器3的空气出口分别经管道连通。太阳能温室的另一个出气口、太阳能蓄能床1的下方风箱1.1和空气冷凝器3的空气出口经管道连通,管道上必要的地方设有阀门9.1~9.12和风机2.1~2.3,用于实现不同的工况;太阳能温室相应的位置还可设置温度表、压力计等检测仪表,由专人在控制室进行工作状态的监控和操作。空气冷凝器3的下方气箱3.1与水浴除尘器4相连。
本发明的工作原理如下:
1.1)白天,在太阳能温室内装好待干燥的物料8后关闭密封门,使太阳能温室处于密闭状态;
1.2)启动风机2.3,开启阀门9.11、9.12,其它阀门和风机都处于关闭状态。连续不断抽气,将太阳能温室内的气压抽至50000Pa左右,我们以树皮作为物料8进行的干燥试验表明,在此气压状态下,物料8的脱水率比在常压下增加约15~20%,这样能够更有效地提高物料8的干燥效率,而且太阳能温室内的气压控制在50000Pa左右在技术上是完全可以实现的,成本也能控制在较低的范围;
1.3)当控制室的压力仪表显示太阳能温室的室内压力为50000Pa时则关闭风机2.3,并关闭所有阀门,使室内处于密闭状态。如果室外空气渗透至室内,使室内压力有所升高,则当压力≥60000Pa时,重复1.2)至1.3)的操作,确保室内压力≤50000Pa;
1.4)随着太阳能温室室温的上升,当温度大于30℃时,物料8表面的水分开始蒸发。当控制室湿度仪表显示室内相对湿度≥90%时,开启风机2.3和阀门9.11、9.9,关闭其它阀门和风机,使太阳能温室内的高温高湿气体进入空气冷凝器3,与此同时开启风机2.2抽常温空气冷却高温高湿气体,被冷却的高温高湿气体和冷凝水排入水浴除尘器4,被加热的常温空气送入太阳能温室干燥物品,此时阀门9.7、9.8、9.10开启,阀门9.1、9.2、9.5和风机2.1关闭,太阳能温室处于强制对流加热干燥状态,风速控制在2~2.5m/s左右;
1.5)当控制室的湿度仪表显示太阳能温室的室内相对湿度≤40%时,关闭所有的风机和阀门,使太阳能温室处于密闭状态,重复1.1)至1.4)操作,不断利用太阳能干燥物品。
晚上太阳下山后,太阳能温室仅靠蓄能墙6和混凝土多孔板7上的蓄能材料等反馈的热量,与白天相比明显不足。因此,晚上要维持良好的干燥工况,需要依靠白天太阳能蓄能床1收集和储藏的能量,太阳能蓄能床1的操作方式如下:
2.1)白天太阳能蓄能床1的蓄能过程大致为:白天,人造沸石颗粒吸收太阳能且温度升高,水分开始从人造沸石颗粒中脱附,太阳能蓄能床1开始蓄热,为了加速这种过程,在太阳能温室处于强制对流加热干燥状态的同时,开启阀门9.1、9.4,开启风机2.2,将经空气冷凝器3加热后的一部分空气送入太阳能蓄能床1将其脱附出来的水蒸气带走,产生的高温高湿气体送入空气冷凝器3。当太阳能蓄能床1出口气体的湿度小于50%时,可关闭阀门9.1、9.4、9.5和风机2.1,使常温空气经空气冷凝器3加热后全部送至太阳能温室;
2.2)晚上当太阳能温室气温下降到28℃以下时,则利用太阳能蓄能床1的蓄热干燥物料8.。此时,阀门9.1、9.4、9.6、9.12关闭,其它阀门和风机均处于开启状态,直至太阳能蓄能床1的温度低于太阳能温室的温度,停止该过程。
本发明的核心在于太阳能温室以及太阳能蓄能床1的设置,集供热、集热、蓄热为一体,热效率高,且夜间也能够利用太阳能,进一步地,利用太阳能微压干燥的技术提高了干燥脱水率,同时在干燥气流组织方面也进行了合理设计。所以其保护范围并不限于上述实施例。显然,本领域的技术人员可以对本发明进行各种改动和变形而不脱离本发明的范围和精神,例如:顶面和三个受阳面采用PC阳光板5是本发明的一个优选方案,采用性能接近的钢化玻璃、有机玻璃、FRP采光板也是可行的;太阳能集热蓄热管1.3内的蓄热材料选择人造沸石也是本发明蓄热材料的最优选方案,其储热密度高,且储热稳定,成本极低,但采用其他合适的常规固体蓄能材料,如活性炭、硅胶、活性氧化铝、活性炭纤维等也是可行的;面板1.4和底板1.5的材质、太阳能温室的顶面形状、蓄能墙6的材质等也可根据现场情况进行调整;空气冷凝器3也不限于采用Nd钢材质,利用其他传热性好、耐腐蚀的材料也能够制作;太阳能温室内的正常工作压力控制在50000Pa是兼顾了操作性、技术效果和成本因素后的选择,该压力控制在30000~70000Pa也都具有较好的效果等。倘若这些改动和变形属于本发明权利要求及其等同技术的范围内,则本发明也意图包含这些改动和变形在内。

Claims (9)

  1. 一种集热蓄热供热一体型太阳能干燥系统,其特征在于:包括太阳能温室、太阳能蓄能床(1)、空气冷凝器(3)、水浴除尘器(4),以及连接各装置的管道和管道上设置的阀门、风机;
    所述太阳能温室为密封结构,其建筑结构为框架结构,顶面和三个受阳面由PC阳光板(5)、钢化玻璃、有机玻璃或者FRP采光板构成,非受阳面为蓄能墙(6),太阳能温室的地板为混凝土多孔板(7),混凝土多孔板(7)高出地面设置,其上方用于放置待干燥的物料(8)、下方用于通风;
    所述太阳能蓄能床(1)包括上、下方的风箱(1.1)、若干太阳能集热蓄热管(1.3)和密封腔室,太阳能集热蓄热管(1.3)包括管壁开有通气孔的导气管(1.2),导气管(1.2)的两端分别与上下风箱(1.1)连通,导气管(1.2)的管壁外敷设有蓄热材料,密封腔室由上、下方的风箱(1.1)、前部透明的面板(1.4)、后部不透光的底板(1.5)及侧板围合而成,太阳能集热蓄热管(1.3)均位于密封腔室内;
    所述空气冷凝器(3)为圆筒形结构,筒侧开有空气进、出口、用于空气的进出,上、下筒口分别设有气箱(3.1),两气箱(3.1)通过气管(3.2)束连通、用于通入待冷却气体;
    所述太阳能温室的地板下方开有进气口、地板上方开有两个出气口,太阳能温室的进气口、太阳能温室的一个出气口、太阳能蓄能床(1)的上方风箱(1.1)、空气冷凝器(3)的上方气箱(3.1)和空气冷凝器(3)的空气出口分别经管道连通,太阳能温室的另一个出气口、太阳能蓄能床(1)的下方风箱(1.1)和空气冷凝器(3)的空气出口经管道连通,空气冷凝器(3)的下方气箱(3.1)与所述水浴除尘器(4)相连。
  2. 根据权利要求1所述的集热蓄热供热一体型太阳能干燥系统,其特征在于:所述导气管(1.2)管壁外敷设的蓄热材料为人造沸石与金属粉末的混合物,混合物中人造沸石的重量含量不低于70%。
  3. 根据权利要求2所述的集热蓄热供热一体型太阳能干燥系统,其特征在于:所述人造沸石的粒度不大于3mm。
  4. 根据权利要求1至3中任一权利要求所述的集热蓄热供热一体型太阳能干燥系统,其特征在于:所述面板(1.4)为玻璃板,所述底板(1.5)和侧板为塑料板与保温板构成的复合板。
  5. 根据权利要求1至3中任一权利要求所述的集热蓄热供热一体型太阳能干燥系统,其特征在于:所述太阳能温室的蓄能墙(6)由加气混凝土和岩棉保温层砌筑外加蓄能混合砂浆构成,或者为内填蓄能混合砂浆的空心砖砌筑构成,所述蓄能混合砂浆的相变热不小于60kj/kg。
  6. 根据权利要求1至3中任一权利要求所述的集热蓄热供热一体型太阳能干燥系统,其特征在于:所述太阳能温室的顶面为单面大坡形斜面。
  7. 根据权利要求1至3中任一权利要求所述的集热蓄热供热一体型太阳能干燥系统,其特征在于:所述空气冷凝器(3)及其内的气管(3.2)束由Nd钢制成。
  8. 根据权利要求1至3中任一权利要求所述的集热蓄热供热一体型太阳能干燥系统,其特征在于:所述太阳能温室为微压室,压力为30000~70000Pa。
  9. 根据权利要求9所述的集热蓄热供热一体型太阳能干燥系统,其特征在于:所述太阳能温室为微压室,压力为50000Pa。
PCT/CN2014/080110 2013-06-21 2014-06-17 集热蓄热供热一体型太阳能干燥系统 WO2014202001A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DK14813419.0T DK3012564T3 (en) 2013-06-21 2014-06-17 Integrated solar drying system for the collection, storage and supply of heat
CA2916048A CA2916048A1 (en) 2013-06-21 2014-06-17 Integrated solar energy drying system collecting, storing and supplying heat
RU2016101476A RU2628247C2 (ru) 2013-06-21 2014-06-17 Комплексная система сушки на солнечной энергии, собирающая, аккумулирующая и подающая тепло
EP14813419.0A EP3012564B1 (en) 2013-06-21 2014-06-17 Integrated solar energy drying system collecting, storing and supplying heat
JP2016520264A JP6092478B2 (ja) 2013-06-21 2014-06-17 熱の回収・蓄積・供給一体型太陽エネルギ乾燥システム
KR1020157036424A KR101788220B1 (ko) 2013-06-21 2014-06-17 태양 에너지를 이용한 열의 수거, 저장 및 공급이 통합된 건조 시스템
AU2014283908A AU2014283908B2 (en) 2013-06-21 2014-06-17 Integrated solar energy drying system collecting, storing and supplying heat
BR112015031997A BR112015031997A2 (pt) 2013-06-21 2014-06-17 sistema integrado de secagem com energia solar para coleta, armazenamento e suprimento de calor
MX2015018009A MX2015018009A (es) 2013-06-21 2014-06-17 Sistema integrado de secado por energía solar que recolecta, almacena y suministra calor.
US14/975,887 US10018415B2 (en) 2013-06-21 2015-12-21 Integrated solar energy drying system
HRP20190170TT HRP20190170T1 (hr) 2013-06-21 2019-01-24 Integrirani sustav sušenja sa solarnom energijom za prikupljanje, skladištenje i raspodjelu toplinu

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310248978.5A CN104236261B (zh) 2013-06-21 2013-06-21 集热蓄热供热一体型太阳能干燥系统
CN201310248978.5 2013-06-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/975,887 Continuation-In-Part US10018415B2 (en) 2013-06-21 2015-12-21 Integrated solar energy drying system

Publications (1)

Publication Number Publication Date
WO2014202001A1 true WO2014202001A1 (zh) 2014-12-24

Family

ID=52103964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080110 WO2014202001A1 (zh) 2013-06-21 2014-06-17 集热蓄热供热一体型太阳能干燥系统

Country Status (13)

Country Link
US (1) US10018415B2 (zh)
EP (1) EP3012564B1 (zh)
JP (1) JP6092478B2 (zh)
KR (1) KR101788220B1 (zh)
CN (1) CN104236261B (zh)
AU (1) AU2014283908B2 (zh)
BR (1) BR112015031997A2 (zh)
CA (1) CA2916048A1 (zh)
DK (1) DK3012564T3 (zh)
HR (1) HRP20190170T1 (zh)
MX (1) MX2015018009A (zh)
RU (1) RU2628247C2 (zh)
WO (1) WO2014202001A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107289443A (zh) * 2017-06-02 2017-10-24 清华大学 用于温室的供热系统
CN111678304A (zh) * 2020-07-14 2020-09-18 农业农村部规划设计研究院 一种太阳能相变异路蓄放热干燥农产品加热系统
CN112999973A (zh) * 2021-03-31 2021-06-22 哈尔滨理工大学 一种基于太阳能供热的生物质烘焙耦合造粒装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2721238C (en) * 2008-03-17 2015-10-06 Battelle Memorial Institute Rebound control material
US10533776B2 (en) * 2011-05-13 2020-01-14 Tseng-Tung Hung Heat storage device
EP3184932B1 (en) * 2014-08-22 2020-02-12 Zhongying Changjiang International New Energy Investment Co., Ltd Solar heat collection adsorption composite tube, solar heat collection adsorption composite bed composed of solar heat collection adsorption composite tubes, and cooling and heating system formed of solar heat collection adsorption composite bed
CN104807293A (zh) * 2015-05-19 2015-07-29 长沙市跃奇节能电气设备贸易有限公司 一种烟火药干燥系统
CN104964552B (zh) * 2015-07-22 2017-09-26 宋开泉 可再生能源恒温干燥炉
CN105466163B (zh) * 2015-12-17 2018-06-01 安徽省临泉县金鼎食品有限公司 一种蔬菜低温分子脱水节能干燥装备
CN105571280A (zh) * 2016-01-14 2016-05-11 中盈长江国际新能源投资有限公司 利用太阳能和生物质能的中低温生物质燃料干燥系统
CN105627700B (zh) * 2016-01-14 2018-08-07 中盈长江国际新能源投资有限公司 热风和冷风干燥相结合的干燥系统
CN107750750A (zh) * 2017-11-02 2018-03-06 中国农业科学院农业环境与可持续发展研究所 一种后墙蓄放热一体的日光温室
CN108955106A (zh) * 2018-05-27 2018-12-07 浙江泰昌新能源有限公司 一种用于木材的储热干燥系统与方法
CN109357422A (zh) * 2018-10-25 2019-02-19 山东仲基新能源科技有限公司 太阳能空调墙系统及其安装施工方法
US11703229B2 (en) * 2018-12-05 2023-07-18 Yi-Ming Hung Temperature adjustment apparatus for high temperature oven
CN109328768A (zh) * 2018-12-21 2019-02-15 山东农业大学 一种日光温室北墙
CN110425840B (zh) * 2019-08-27 2021-04-16 潍坊晨禾信息科技有限公司 一种中药光纤磁力晾晒装置
CN110547130A (zh) * 2019-08-28 2019-12-10 北京农业智能装备技术研究中心 温室蓄热补温系统及方法
CN112304053A (zh) * 2020-10-28 2021-02-02 西安热工研究院有限公司 一种利用中低温太阳能热耦合褐煤预干燥的节能系统
CN112728927A (zh) * 2021-01-29 2021-04-30 深圳市维特欣达科技有限公司 一种基于相变储能的节能干燥设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370049A (ja) * 1986-09-11 1988-03-30 Sumitomo Metal Ind Ltd 空気集熱方式による木材乾燥装置
EP0965264A1 (de) * 1998-06-18 1999-12-22 Martin Buchholz Anlage und Verfahren zum Überführen und Nutzen von Wärme und/oder Wasserdampf aus Gewächshäusern und Solid-State-Fermentationsanlagen
CN201413009Y (zh) * 2009-06-22 2010-02-24 郑州金土地能源科技有限公司 集热器-温室型太阳能干燥器
CN101839616A (zh) * 2009-03-20 2010-09-22 沈晓莉 一种回收式太阳能烘干装置
CN101755635B (zh) * 2009-11-06 2011-07-27 北京华丽联合高科技有限公司 一种太阳能集热蓄能温室大棚
CN102177964B (zh) * 2011-03-01 2012-12-26 康树人 温室储热型太阳能热风谷物干燥装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2625072A1 (de) * 1976-06-04 1977-12-15 Heinrich Ing Grad Peters Anlage zur trocknung von heu, getreide und anderen guetern im dauerbetrieb durch sammeln und speichern der sonnenenergie zur erwaermung der trocknungsluft
FR2501347A1 (fr) * 1981-03-04 1982-09-10 Thomson Csf Dispositif de captation d'energie photothermique et son application aux installations de refrigeration
US4432147A (en) * 1981-06-24 1984-02-21 The United States Of America As Represented By The Secretary Of Agriculture Energy efficient lumber dry kiln using solar collectors and refrigeration system
SU1370396A1 (ru) * 1986-08-11 1988-01-30 Грузинский политехнический институт им.В.И.Ленина Гелиосушилка
JPH0712872Y2 (ja) * 1987-05-07 1995-03-29 富洋木材販売株式会社 木材乾燥装置
US5065528A (en) * 1989-08-08 1991-11-19 Kaneko Agricultural Machinery Co., Ltd. Drying apparatus utilizing solar heat
DE10023833C1 (de) * 2000-05-15 2002-01-03 Thomas Schwertmann Solarflachkollektor zur Erhitzung von gasförmigen Fluiden
US7135332B2 (en) * 2001-07-12 2006-11-14 Ouellette Joseph P Biomass heating system
KR100604438B1 (ko) * 2005-01-11 2006-07-25 전석영 태양열을 이용한 농수산물 건조장치
JP2007071440A (ja) * 2005-09-06 2007-03-22 Marushou Giken Kk 太陽熱利用木材及びおが粉乾燥装置
KR100996238B1 (ko) * 2008-04-22 2010-11-23 주식회사 에네트 태양열을 이용한 유기성 폐기물 건조장치
US20110146939A1 (en) * 2008-06-16 2011-06-23 Carbon Zero Limited Energy absorption and release devices and systems
JP5302284B2 (ja) 2010-10-28 2013-10-02 株式会社 エコファクトリー 乾燥装置
CN202050849U (zh) * 2011-03-01 2011-11-30 康树人 温室储热型太阳能热风谷物干燥装置
DE102011018279B4 (de) * 2011-04-20 2015-02-19 Uwe Härtfelder Klärschlammtrocknungsanlage
CN102200375B (zh) * 2011-04-28 2013-04-17 山东力诺新材料有限公司 太阳能水泥制品干燥装置
CN102381826A (zh) * 2011-07-27 2012-03-21 江苏龙腾工程设计有限公司 温室-集热器型太阳能干燥污泥的系统及方法
CN202209791U (zh) * 2011-08-30 2012-05-02 海南省农业科学院农产品加工设计研究所 一种太阳能干燥器
CN102393136B (zh) * 2011-09-05 2014-08-13 中国科学院兰州化学物理研究所 一种利用温室型双集热双保温太阳能热泵烘干装置进行物料烘干的方法
US9714790B2 (en) * 2013-06-06 2017-07-25 Instituto Nacional De Techologia Argopecuaria Procedure and facility for grain moisture control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370049A (ja) * 1986-09-11 1988-03-30 Sumitomo Metal Ind Ltd 空気集熱方式による木材乾燥装置
EP0965264A1 (de) * 1998-06-18 1999-12-22 Martin Buchholz Anlage und Verfahren zum Überführen und Nutzen von Wärme und/oder Wasserdampf aus Gewächshäusern und Solid-State-Fermentationsanlagen
CN101839616A (zh) * 2009-03-20 2010-09-22 沈晓莉 一种回收式太阳能烘干装置
CN201413009Y (zh) * 2009-06-22 2010-02-24 郑州金土地能源科技有限公司 集热器-温室型太阳能干燥器
CN101755635B (zh) * 2009-11-06 2011-07-27 北京华丽联合高科技有限公司 一种太阳能集热蓄能温室大棚
CN102177964B (zh) * 2011-03-01 2012-12-26 康树人 温室储热型太阳能热风谷物干燥装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107289443A (zh) * 2017-06-02 2017-10-24 清华大学 用于温室的供热系统
CN111678304A (zh) * 2020-07-14 2020-09-18 农业农村部规划设计研究院 一种太阳能相变异路蓄放热干燥农产品加热系统
CN112999973A (zh) * 2021-03-31 2021-06-22 哈尔滨理工大学 一种基于太阳能供热的生物质烘焙耦合造粒装置

Also Published As

Publication number Publication date
JP6092478B2 (ja) 2017-03-08
CN104236261B (zh) 2017-05-31
RU2628247C2 (ru) 2017-08-15
EP3012564A4 (en) 2017-01-25
KR20160012208A (ko) 2016-02-02
DK3012564T3 (en) 2019-01-28
KR101788220B1 (ko) 2017-10-19
BR112015031997A2 (pt) 2017-07-25
JP2016525201A (ja) 2016-08-22
AU2014283908B2 (en) 2017-01-05
AU2014283908A1 (en) 2016-01-28
RU2016101476A (ru) 2017-07-26
HRP20190170T1 (hr) 2019-04-05
US20160102910A1 (en) 2016-04-14
CA2916048A1 (en) 2014-12-24
US10018415B2 (en) 2018-07-10
CN104236261A (zh) 2014-12-24
EP3012564B1 (en) 2018-10-24
EP3012564A1 (en) 2016-04-27
MX2015018009A (es) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2014202001A1 (zh) 集热蓄热供热一体型太阳能干燥系统
WO2017121261A1 (zh) 利用太阳能和生物质能的中低温生物质燃料干燥系统
CN101144683B (zh) 使用无动力方式产生的太阳能热气流加热、干燥物料的方法
WO2017121260A1 (zh) 热风和冷风干燥相结合的干燥系统
CN104746647A (zh) 主动式与被动式相结合的全年性利用相变储能房
CN101705751B (zh) 太阳能集成房屋
CN101907384B (zh) 一种太阳能干燥装置
CN102531322B (zh) 一种节能型污泥干燥系统
CN101354169B (zh) 无动力、主动式调温系统及方法
CN109737486B (zh) 一种集热蓄热墙和空气水集热器的组合供暖系统
CN207999874U (zh) 一种太阳能热风机
CN209179237U (zh) 零煤耗农宅结构
CN201857330U (zh) 一种污泥干化处理系统
Wang et al. Study on the thermal performance of a new type of latent heat storage unit (LHSU)
CN206487173U (zh) 一种绿色建筑
CN201567806U (zh) 太阳能集成房屋
CN109869852B (zh) 一种用于鸡舍的光伏光热被动式空调系统
CN207988278U (zh) 一种主动式通风光伏墙面结构
CN208901500U (zh) 一种厂房用空气置换装置
CN201591119U (zh) 设有太阳能集热装置的密集烟叶烤房
CN201443889U (zh) 双吸热复合式太阳能空气加热器
CN207999873U (zh) 一种适用于西北农村民居的太阳能辅助供暖系统
CN101963816A (zh) 无动力、主动式智能调温系统及方法
CN205161863U (zh) 一种设保温墙体的沼气加热烤烟房
CN202030630U (zh) 一种大型湿沼渣干燥装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2916048

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016520264

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/018009

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20157036424

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014813419

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015031997

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016101476

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201600410

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2014283908

Country of ref document: AU

Date of ref document: 20140617

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015031997

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151218