WO2017121261A1 - 利用太阳能和生物质能的中低温生物质燃料干燥系统 - Google Patents

利用太阳能和生物质能的中低温生物质燃料干燥系统 Download PDF

Info

Publication number
WO2017121261A1
WO2017121261A1 PCT/CN2016/113999 CN2016113999W WO2017121261A1 WO 2017121261 A1 WO2017121261 A1 WO 2017121261A1 CN 2016113999 W CN2016113999 W CN 2016113999W WO 2017121261 A1 WO2017121261 A1 WO 2017121261A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
solar
biomass
energy
solar energy
Prior art date
Application number
PCT/CN2016/113999
Other languages
English (en)
French (fr)
Inventor
陈义龙
胡书传
张岩丰
Original Assignee
中盈长江国际新能源投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中盈长江国际新能源投资有限公司 filed Critical 中盈长江国际新能源投资有限公司
Publication of WO2017121261A1 publication Critical patent/WO2017121261A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B9/00Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards
    • F26B9/06Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards in stationary drums or chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating
    • F26B23/028Heating arrangements using combustion heating using solid fuel; burning the dried product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the invention belongs to a drying technology using solar energy, in particular to a medium and low temperature biomass fuel drying system utilizing solar energy and biomass energy.
  • biomass power generation is one of the effective methods currently, because the biomass fuel of biomass power plants is straw, etc., which is rural waste. If it is not fully utilized, it will cause great environmental impact. Pollution.
  • biomass power plants have extremely high requirements for biomass fuels, not only in terms of particle size, but also in moisture levels below 25%. Statistics show that the water content of general biomass fuels is above 40%. In the south of China, especially in areas with long rain and long humidity in Hunan, Guangxi, Hainan, etc., the moisture of biomass fuels is generally above 60%.
  • the technical problem to be solved by the present invention is to provide a medium-low temperature biomass fuel drying system utilizing solar energy and biomass energy, which can be combined by means of combining high and low energy, fully and efficiently utilize solar energy, and can The drying process is ensured smoothly with a large amount of material humidity.
  • the present invention provides a medium and low temperature biomass fuel drying system utilizing solar energy and biomass energy, including a solar greenhouse, a solar energy storage bed, an air condenser, a water bath dust collector, a heat source, and an air heater. And valves and fans disposed on pipes and pipes connecting the devices;
  • the solar greenhouse is a sealed structure
  • the building structure is a frame structure
  • the top surface and the three sun-facing surfaces are composed of PC sunlight board, tempered glass, plexiglass or FRP lighting board
  • the non-sun surface is an energy storage wall
  • the solar greenhouse floor For the concrete perforated plate, the concrete perforated plate is arranged above the ground, above which is used for placing the material to be dried, and below for ventilation;
  • the solar energy storage bed comprises an upper and lower wind box, a plurality of solar heat collecting and heat storage tubes and a sealed chamber
  • the solar heat collecting and heat storage tube comprises an air guiding tube with a vent hole in the tube wall, and the two ends of the air guiding tube are respectively connected with the upper and lower wind boxes.
  • the heat storage material is externally applied to the wall of the air guiding tube, and the sealed chamber is formed by the upper and lower bellows, the front transparent panel, the rear and side opaque bottom plates and the side plates, and the solar heat collecting storage.
  • the heat pipes are located in the sealed chamber;
  • the air condenser has a cylindrical structure, and the air inlet and outlet are opened on the side of the cylinder for air in and out, and the upper and lower nozzles are respectively provided with air boxes, and the two air boxes are connected through the air tube bundle for being used for cooling. gas;
  • the heat source is connected to the air heater for heating the gas introduced in the air heater
  • the solar greenhouse has an air inlet under the floor, two air outlets above the floor, an air inlet of the solar greenhouse, an air outlet of the solar greenhouse, an upper bellows of the solar energy storage bed, an outlet of the air heater, and
  • the upper air box of the air condenser is connected through a pipeline, and another air outlet of the solar greenhouse, a lower air box of the solar energy storage bed and an outlet of the air heater are connected through a pipeline, and a lower air tank of the air condenser is connected to the water bath dust collector .
  • the heat storage material laid outside the wall of the air guiding tube is a mixture of artificial zeolite and metal powder, and the weight content of the artificial zeolite in the mixture is not less than 70%.
  • the artificial zeolite has a particle size of not more than 3 mm.
  • the panel is a glass plate
  • the bottom plate and the side plate are composite plates composed of a plastic plate and a heat insulation plate.
  • the heat source is a biomass hot blast stove.
  • the energy storage wall of the solar greenhouse is composed of aerated concrete and rock wool insulation layer masonry plus energy storage mixed mortar, or hollow brick masonry filled with energy storage mixed mortar, the energy storage mixing
  • the phase change heat of the mortar is not less than 60kj/kg.
  • the top surface of the solar greenhouse is a single-sided large sloped slope, but is not limited to the shape, and may be an arched or triangular roof.
  • the indoor surface of the solar greenhouse is coated with a far infrared reflective coating.
  • the air condenser and the air tube bundle therein are made of steel, and the surface of the air pipe is coated with an anticorrosive paint.
  • the solar greenhouse is a micro-pressure chamber, and the pressure is 30,000 to 70,000 Pa, preferably 50,000 Pa.
  • the invention has the beneficial effects of: structurally optimized solar greenhouse and solar energy storage bed
  • the combination of radiation and convective heat exchange can make full use of solar energy, and also solve the problem that the existing solar greenhouse can not use solar energy at night;
  • the use of biomass heat source and air heater can utilize high energy Perform high temperature forced drying to improve drying efficiency.
  • the results of high temperature forced drying test using bark as material show that the air supply temperature of forced drying at high temperature can be higher than 200 °C, but should not exceed 250 °C. It is recommended to test and analyze other biomass fuels.
  • the high temperature forced drying air temperature of the fuel is 180-200 °C, and the wind speed is generally 2.0-2.5 m/s.
  • FIG. 1 is a schematic view showing the structure and working principle of an embodiment of the present invention
  • FIG. 2 is a schematic structural view of the solar thermal storage bed of FIG. 1;
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 2;
  • Figure 4 is a cross-sectional view of the solar heat collecting heat storage tube of Figure 2;
  • Figure 5 is a schematic structural view of the air condenser of Figure 1;
  • Figure 6 is a cross-sectional view taken along line B-B of Figure 5;
  • 1 - solar energy storage bed including: 1.1 - bellows, 1.2 - air duct, 1.3 - solar collector heat storage tube, 1.4 - panel, 1.5 - floor), 2.1, 2.2, 2.3, 2.4, 2.5 - fan, 3—Air condenser (where: 3.1—air box, 3.2—air tube, 3.3—condenser shell), 4-water bath dust collector, 5-PC solar panel, 6—energy storage wall, 7—concrete porous plate, 8- Materials, 9.1 ⁇ 9.14 - valve, 10 - biomass hot blast stove, 11 - air heater.
  • a medium and low temperature biomass fuel drying system utilizing solar energy and biomass energy, comprising a solar greenhouse, a solar energy storage bed 1, an air condenser 3, a water bath dust collector 4, a heat source, and air heating.
  • the solar greenhouses have different orientations.
  • the front should be facing the strongest direction of solar radiation. In the northern hemisphere, it is generally facing south.
  • the building structure of the solar greenhouse is a frame structure, and the top surface and the east, west and south sides of the sun are composed of PC solar panels 5.
  • the physical characteristics of PC Sunshine Board 5 are: high strength (the impact resistance is 40 times that of glass, 20 times that of FRP), the light transmittance is up to 90%, the heat preservation performance is good (two times that of glass), and the weight is light ( Is glass 1/5 of the glass, flame retardant, not easy to dew.
  • the north side is the non-receiving side of the energy storage wall 6, and the energy storage wall 6 is composed of aerated concrete and rock wool insulation layer masonry plus energy storage mixed mortar, or hollow brick masonry filled with energy storage mortar.
  • the energy storage mixed mortar here can be made by mixing graphite powder, biomass power plant ash, cement mortar and water at the construction site, and the phase change heat is not less than 60kj/kg.
  • a typical solar building or structure is generally a triangular roof or arch. This embodiment is preferably a single-sided, large-slope top surface that increases the solar heated area.
  • the floor of the solar greenhouse is a concrete perforated plate 7, which is arranged about one meter above the ground, above which is used for placing the material 8 to be dried, and below is a ventilation duct for ventilation.
  • the inner surface of the energy storage wall 6 and the surface of the concrete perforated plate 7 may be smeared with a storage mixing mortar of about 20 mm thick.
  • the east and west sides of the solar greenhouse (parallel to the sides of the paper in Figure 1) each open a sealed door for the placement and removal of material 8, the solar greenhouse does not open the window, and its steel structure and PC sunlight board 5 Sealing is required at the seams to ensure the tightness of the entire solar greenhouse.
  • the indoor surface of the solar greenhouse is coated with far-infrared reflective paint to make the indoor heat storage effect good and the temperature uniform.
  • the solar energy storage bed 1 includes an upper and lower wind box 1.1, a plurality of solar heat collecting heat storage tubes 1.3, and a sealed chamber.
  • Each of the solar heat collecting and accumulating pipes 1.3 includes an air guiding pipe 1.2 having a vent hole in the pipe wall, and two ends of the air guiding pipe 1.2 are respectively connected with the upper and lower wind boxes 1.1, and a heat storage material is externally applied to the pipe wall of the air guiding pipe 1.2, and the sealing chamber is sealed.
  • the upper and lower bellows 1.1, the front transparent panel 1.4, the rear and side opaque bottom plates 1.5 and the side panels are enclosed, and the solar heat collecting and heat storage tubes 1.3 are all located in the sealed chamber.
  • the heat storage material of the present embodiment is a mixture of an artificial zeolite and a metal powder, and the weight content of the artificial zeolite in the mixture is not less than 70%, which acts as a heat storage function, and the metal powder mainly serves as a heat conduction.
  • the panel 1.4 of the embodiment is made of a glass plate, which can transmit sunlight and is kept warm; the bottom plate 1.5 and the side plate are made of a composite plate composed of a plastic plate and a heat insulation plate, and the thermal conductivity is poor and the strength is good, and the heat insulation and support are provided.
  • the heat storage method of the invention adopts solid adsorption type heat storage, which has the advantages of long-term heat storage relative to the sensible heat storage mode, heat storage device does not need heat insulation, low initial investment, and relatively high latent heat storage, and has high energy storage density.
  • Solid heat storage materials should have the following characteristics: 1.) high energy storage density; 2) sufficient supply and low price; 3) non-toxic and non-corrosive materials; 4) renewable and reusable; 5) large adsorption capacity, at 30 It is sensitive to temperature between ⁇ 100 °C; 6) the adsorption force is small, the regeneration temperature is low, and the residual amount of the adsorbate is small after desorption.
  • zeolite, activated carbon, silica gel, activated alumina, and activated carbon fiber are met.
  • Corresponding adsorbates are water, methanol, ethanol, ammonia, and chlorofluorocarbons.
  • artificial zeolite particles having a particle size of not more than 3 mm are preferred.
  • the effective heat storage density of the artificial zeolite is generally 600 to 700 kj/kg, so that the thermal efficiency of the solar energy storage heat pipe 1.3 is high, and a small particle size is selected to ensure gas and gas. Adequate contact of the artificial zeolite particles.
  • the length and diameter of the solar collector heat storage tube 1.3 are determined according to the load of the solar greenhouse described above. If the load of the solar greenhouse is large, the longer or larger diameter solar heat storage tube 1.3 is used, and vice versa.
  • the air condenser 3 is as shown in Fig. 5 and Fig. 6.
  • the condenser casing 3.3 has a cylindrical structure, and air is introduced into the cylinder side.
  • the port is used for the ingress and egress of air.
  • the upper and lower nozzles are respectively provided with a gas box 3.1, and the two gas boxes 3.1 are connected through a bundle of gas pipes 3.2 for introducing gas to be cooled.
  • the air condenser 3 and the gas pipe 3.2 therein are made of steel, and the surface of the gas pipe 3.2 is coated with three layers of anticorrosive paint.
  • the high-temperature and high-humidity gas flows at a high speed in the tracheal bundle 3.2, and the normal-temperature air flows outside the bundle of the trachea 3.2.
  • the condensed water is discharged, and the air is heated at room temperature and then used for drying in the solar greenhouse.
  • the water bath dust remover 4 is used for removing dust in the gas, and the efficiency can reach more than 99%.
  • the heat source can be a conventional boiler or the like, or a hot blast stove.
  • the fuel can be taken locally, so the heat source is preferably a biomass hot blast stove 10, because
  • the biomass hot blast stove 10 has a simple structure, low fuel requirements, and low cost of use, and its flue gas temperature can reach 700-800 ° C, and the heated air temperature can exceed 200 ° C, which is very suitable for the application of the present invention.
  • the biomass hot blast stove 10 and the air heater 11 are integrated into one body, which can save land occupation.
  • the connection of the whole drying chamber is also shown in Figure 1.
  • the air inlet of the solar greenhouse has a venting valve under the floor, and the air outlet on the side wall above the floor is provided with two air outlets to make the airflow in the solar greenhouse.
  • the direction conforms to the law of rising hot air flow, the air inlet of the solar greenhouse, one air outlet of the solar greenhouse, the upper bellows 1.1 of the solar energy storage bed 1, the outlet of the air heater 11, and the upper air box 3.1 of the air condenser 3 through the pipeline
  • Connected, another outlet of the solar greenhouse, the lower bellows 1.1 of the solar energy storage bed 1 and the outlet of the air heater 11 are connected by pipes, and the necessary places on the pipeline are valves 9.1 to 9.14 and fans 2.2 to 2.5 for realizing Different working conditions; the corresponding position of the solar greenhouse can also be set up with measuring instruments such as thermometers and pressure gauges, and the monitoring and operation of the working state can be carried out by the special person in the control room.
  • valves 9.7, 9.8, 9.10, 9.13, 9.14 Open, valves 9.1, 9.2, 9.5 and fan 2.1 are closed, the solar greenhouse is in forced convection heating and drying state, and the wind speed is controlled at 2 ⁇ 2.5m/s;
  • the operation mode of the solar energy storage bed 1 is as follows:
  • the energy storage process of the solar energy storage bed 1 is roughly as follows: during the day, the artificial zeolite particles absorb solar energy and the temperature rises, the moisture begins to desorb from the artificial zeolite particles, and the solar energy storage bed 1 starts to store heat, in order to accelerate this
  • the valves 9.1 and 9.4 are opened, and a part of the air splitted by the air condenser 3 and sent to the solar greenhouse is branched into the solar energy storage bed 1 to take away the artificial zeolite particles for desorption.
  • the moisture generated by the high temperature and high humidity gas is sent to the air condenser 3.
  • the valves 9.1, 9.4, 9.5 and the fan 2.1 can be closed, so that the normal temperature air is heated by the air condenser 3 and sent to the solar greenhouse;
  • the medium temperature forced drying is used as follows:
  • the startup fan 2.2 sends the normal temperature air to the air condenser 3 to cool the high temperature and high humidity gas, and the cooled gas and the condensed water are sent to the outer row of the water bath dust remover 4.
  • the core of the invention lies in the arrangement of the structurally optimized solar greenhouse, and the arrangement of the solar energy storage bed 1, the high efficiency of utilizing solar energy, and the use of an inexpensive biomass hot air furnace 10 heat source and air heater 11 so that the drying system can
  • the forced intermediate temperature convection drying is used to effectively combine the two convection methods, forced convection and radiation drying, to make up for each other, effectively improve the drying efficiency and reduce the cost.
  • the advantages and practicalities of micro-pressure drying are found.
  • Sexuality provides a practical recommended dry micro-pressure value.
  • the relationship between the supply air temperature and the dehydration rate of forced convection drying is also found through experiments.
  • the air supply temperature and air supply speed of convective drying of biomass fuel with more wood fiber are recommended.
  • the invention is particularly suitable for the drying of biomass fuel for biomass fuel distribution, which will greatly reduce the transportation cost of the biomass power plant fuel and provide a guarantee for the power generation efficiency of the power plant, and also for the investors of the biomass fuel distribution drying room. Come to good economic benefits.
  • the invention has the advantages of low cost and high efficiency, and is a dry room with low cost and good environmental protection. Therefore, the scope of protection is not limited to the above embodiment. It is apparent that those skilled in the art can make various modifications and variations to the present invention without departing from the scope and spirit of the present invention. For example, the use of a PC solar panel 5 for the top surface and the three sun-facing surfaces is a preferred embodiment of the present invention.
  • the heat source is preferred in the present invention, but the technical solution of the present invention can also be realized by using other existing equipment such as a boiler as a heat source; the material of the panel 1.4 and the bottom plate 1.5, the top shape of the solar greenhouse, and the material of the energy storage wall 6 can also be
  • the site conditions are adjusted; the air condenser 3 is not limited to steel, and can be made using other corrosion-resistant materials;
  • the normal working pressure in the solar greenhouse is controlled at 50,000 Pa, which is a choice after taking into account the operability, technical effects and cost factors.
  • the pressure control has a good effect at 30,000 to 70,000 Pa. It is intended that the present invention cover the modifications and variations of the invention, and the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

一种利用太阳能和生物质能的中低温生物质燃料干燥系统,包括太阳能温室、太阳能蓄能床(1)、空气冷凝器(3)、水浴除尘器(4)、热源、空气加热器(11),以及连接各装置的管道和管道上设置的阀门、风机;太阳能蓄能床(1)包括上、下方的风箱(1.1)、若干太阳能集热蓄热管(1.3)和密封腔室,太阳能集热蓄热管(1.3)的导气管(1.2)的管壁外敷设有蓄热材料,密封腔室由上、下方的风箱(1.1)、前部透明的面板(1.4)、后部和侧面不透光的底板(1.5)及侧板围合而成,太阳能集热蓄热管(1.3)均位于密封腔室内。该系统能够采用高低位能相结合的方式进行干燥,既充分、高效地利用了太阳能,又能够在物料湿度大且数量多的情况下保证干燥过程的顺利进行。

Description

利用太阳能和生物质能的中低温生物质燃料干燥系统 技术领域
本发明属于利用太阳能的干燥技术,具体地指一种利用太阳能和生物质能的中低温生物质燃料干燥系统。
背景技术
近年来全球范围内的能源危机及由此引发的能源“争夺战”在逐渐升级,同时目前能源利用结构还是以煤、石油、天然气等常规能源为主,这些矿物质燃料燃烧时所释放出的CO2、烟尘、硫化物或氮氧化物等有害物质,对人类的生存环境也造成了严重威胁,为此,新能源的开发,近几年得到了蓬勃的发展,但是重点都集中在工业项目和城市中,农业方面仅在太阳能暖棚上得到应用,其它方面的进展不大。
太阳能在农村也有广阔的天地,农民生活质量也需要大幅度提高,农民也需要迅速富起来。太阳能的利用方式中,利用生物质发电是目前行之有效的方式之一,因为生物质电厂的生物质燃料都是秸秆等,是农村的废弃物,不充分利用,将对环境造成很大的污染。然而,生物质电厂对生物质燃料的要求极高,不但粒度有要求,而且水分必须低于25%。统计资料表明,一般生物质燃料的水分都在40%以上,在我国南方,特别在湖南、广西、海南等雨季长、湿度大的地区,生物质燃料的水分一般都在60%以上,可见对生物质燃料的干燥就是一个很重要的工艺过程,而这个过程目前大都是去电厂完成,导致运输成本大幅度增加,以水分是70%的100吨生物质燃料计算,如果要将其水分降到25%,其中就含有45吨的水,而湿料运输增加的成本是电厂不能承受的。
对于某些物料,如果蔬等农产品的脱水,以及部分低湿度生物质燃料的干燥,单独使用太阳能干燥就足够。但是对于相当一部分物料,例如湿度≥70%、干燥温度需要80℃以上的生物质燃料和类似的高湿度物料,单独使用太阳能干燥已不能够满足要求。
发明内容
本发明所要解决的技术问题就是提供一种利用太阳能和生物质能的中低温生物质燃料干燥系统,能够采用高低位能相结合的方式进行干燥,既充分、高效地利用了太阳能,又能够在物料湿度大数量多的情况下保证干燥过程的顺利进行。
为解决上述技术问题,本发明提供的一种利用太阳能和生物质能的中低温生物质燃料干燥系统,包括太阳能温室、太阳能蓄能床、空气冷凝器、水浴除尘器、热源、空气加热器,以及连接各装置的管道和管道上设置的阀门、风机;
所述太阳能温室为密封结构,其建筑结构为框架结构,顶面和三个受阳面由PC阳光板、钢化玻璃、有机玻璃或者FRP采光板构成,非受阳面为蓄能墙,太阳能温室的地板为混凝土多孔板,混凝土多孔板高出地面设置,其上方用于放置待干燥的物料、下方用于通风;
所述太阳能蓄能床包括上、下方的风箱、若干太阳能集热蓄热管和密封腔室,太阳能集热蓄热管包括管壁开有通气孔的导气管,导气管的两端分别与上下风箱连通,导气管的管壁外敷设有蓄热材料,密封腔室由上、下方的风箱、前部透明的面板、后部和侧面不透光的底板及侧板围合而成,太阳能集热蓄热管均位于密封腔室内;
所述空气冷凝器为圆筒形结构,筒侧开有空气进、出口、用于空气的进出,上、下筒口分别设有气箱,两气箱通过气管束连通、用于通入待冷却气体;
所述热源与空气加热器连接,用于对空气加热器内通入的气体进行加热;
所述太阳能温室的地板下方开有进气口、地板上方开有两个出气口,太阳能温室的进气口、太阳能温室的一个出气口、太阳能蓄能床的上方风箱、空气加热器的出口和空气冷凝器的上方气箱经管道连通,太阳能温室的另一个出气口、太阳能蓄能床的下方风箱和空气加热器的出口经管道连通,空气冷凝器的下方气箱与所述水浴除尘器相连。
上述技术方案中,所述导气管管壁外敷设的蓄热材料为人造沸石与金属粉末的混合物,混合物中人造沸石的重量含量不低于70%。
进一步地,所述人造沸石的粒度不大于3mm。
上述技术方案中,所述面板为玻璃板,所述底板和侧板为塑料板与保温板构成的复合板。
上述技术方案中,所述热源为生物质热风炉。
上述技术方案中,所述太阳能温室的蓄能墙由加气混凝土和岩棉保温层砌筑外加蓄能混合砂浆构成,或者为内填蓄能混合砂浆的空心砖砌筑构成,所述蓄能混合砂浆的相变热不小于60kj/kg。
上述技术方案中,所述太阳能温室的顶面为单面大坡形斜面,但不限于该形状,拱形或者三角形屋面等亦可。
上述技术方案中,所述太阳能温室的室内表面涂有远红外反射涂料。
上述技术方案中,所述空气冷凝器及其内的气管束由钢材制成,且气管表面涂有防腐涂料。
上述技术方案中,所述太阳能温室为微压室,压力为30000~70000Pa,优选50000Pa。
与现有技术相比,本发明的有益效果在于:结构优化的太阳能温室和太阳能蓄能床的设 置,可采用辐射和对流热交换相结合的方式,更充分的利用了太阳能,同时还解决了现有太阳能暖房夜间不能使用太阳能的问题;生物质热源及空气加热器的使用,能够利用高位能进行高温强制干燥,提高干燥效率。以树皮为物料,进行高温强制干燥试验的结果表明;高温强制干燥的送风温度可高于200℃,但不宜超过250℃,通过对其他大量生物质燃料的试验和分析,建议一般生物质燃料的高温强制干燥送风温度采用180~200℃,风速一般在2.0~2.5m/s比较合适,在此工况下,生物质燃料的脱水速率大幅度加快,干燥周期明显缩短,经济效益可以得到显著提高,且试验表明,在上述范围内送风温度越高生物质燃料脱水率越高,热风的风速越大,生物质燃料的相对湿度也越低;此外,热源及空气加热器在太阳能不足的情况下,确保了干燥过程的顺利进行。
附图说明
图1为本发明一个实施例的结构暨工作原理示意图;
图2为图1中太阳能蓄热床的结构示意图;
图3为图2的A-A剖视图;
图4为图2中太阳能集热蓄热管的横截面图;
图5为图1中空气冷凝器的结构示意图;
图6图5的B-B剖视图;
图中:1—太阳能蓄能床(其中:1.1—风箱、1.2—导气管、1.3—太阳能集热蓄热管、1.4—面板、1.5—底板),2.1、2.2、2.3、2.4、2.5—风机,3—空气冷凝器(其中:3.1—气箱、3.2—气管、3.3—冷凝器外壳),4—水浴除尘器,5—PC阳光板,6—蓄能墙,7—混凝土多孔板,8—物料,9.1~9.14—阀门,10—生物质热风炉,11—空气加热器。
具体实施方式
以下结合附图对本发明的具体实施例作进一步的详细描述:
如图1所示,本发明的一种利用太阳能和生物质能的中低温生物质燃料干燥系统,包括太阳能温室、太阳能蓄能床1、空气冷凝器3、水浴除尘器4、热源、空气加热器11,以及连接各装置的管道和管道上设置的阀门9.1~9.14、风机2.1~2.5。具体如下:
太阳能温室根据所在地区的不同,布置的方位有区别,原则上其正面应正对太阳辐射最强的方向,在北半球一般是坐北朝南。太阳能温室的建筑结构为框架结构,顶面和东、西、南三个受阳面由PC阳光板5构成。PC阳光板5的物理特性为:强度高(抗冲击力是玻璃的40倍,是玻璃钢的20倍),透光率可达90%,保温性能好(是玻璃的2倍),重量轻(是玻 璃的1/5),阻燃,不易结露。北面即非受阳面为蓄能墙6,蓄能墙6由加气混凝土和岩棉保温层砌筑外加蓄能混合砂浆构成,或者为内填蓄能混合砂浆的空心砖砌筑构成。这里的蓄能混合砂浆可由施工现场的石墨粉、生物质电厂灰渣、水泥砂浆和水混合而成,相变热不小于60kj/kg。通常的太阳能建筑物或构筑物一般是三角形屋面或拱形,本实施例优选单面大坡形顶面,能够增加太阳能受热面积。太阳能温室的地板为混凝土多孔板7,混凝土多孔板7高出地面约一米设置,其上方用于放置待干燥的物料8,下方为通风道、用于通风。为增强蓄热效果,蓄能墙6内表面和混凝土多孔板7表面可抹一层约20mm厚的蓄能混合砂浆。太阳能温室的东、西侧(图1中平行于纸面的两侧)各开一扇密封门,用于物料8的放置和取出,太阳能温室不开窗,且其钢结构与PC阳光板5的接缝处要求密封,以保证整个太阳能温室的密封性。太阳能温室的室内表面涂有远红外反射涂料,使室内蓄热效果好,且温度均匀。
太阳能蓄能床1如图2至图4所示,包括上、下方的风箱1.1、若干太阳能集热蓄热管1.3和密封腔室。每一太阳能集热蓄热管1.3均包括管壁开有通气孔的导气管1.2,导气管1.2的两端分别与上下风箱1.1连通,导气管1.2的管壁外敷设有蓄热材料,密封腔室由上、下方的风箱1.1、前部透明的面板1.4、后部和侧面不透光的底板1.5及侧板围合而成,太阳能集热蓄热管1.3均位于密封腔室内。本实施例的蓄热材料为人造沸石与金属粉末的混合物,混合物中人造沸石的重量含量不低于70%,起蓄热作用,金属粉末则主要起导热作用。本实施例的面板1.4选用玻璃板,能够透射太阳光并保温;底板1.5和侧板选用塑料板与保温板构成的复合板,其导热性差而强度较好,起到保温和支撑作用。本发明储热方式选用固体吸附式储热,它相对于显热储热方式具有长期储热、储热装置不需要绝热、初始投资低等优点,而相对潜热储热,则具有储能密度大的优点。固体蓄热材料应具有如下特性:1.)储能密度高;2)货源充足,价格便宜;3)材料无毒、无腐蚀作用;4)能再生重复使用;5)吸附容量大,在30~100℃之间对温度比较敏感;6)吸附力小、再生温度低、脱附后吸附质的残余量小。目前符合上述要求的有沸石、活性炭、硅胶、活性氧化铝、活性炭纤维。相对应的吸附质有水、甲醇、乙醇、氨、氯氟烃类。本实施例优选粒度不大于3mm的人造沸石颗粒,人造沸石的有效储热密度一般为600~700kj/kg,使得太阳能集蓄热热管1.3的热效率较高,选择较小的粒度,能确保气体与人造沸石颗粒的充分接触。太阳能集热蓄热管1.3的长度和直径则需根据前述太阳能温室的负荷确定,太阳能温室的负荷大,则选用较长或者直径较大的太阳能集热蓄热管1.3,反之亦然。
空气冷凝器3如图5和图6所示,冷凝器外壳3.3为圆筒形结构,筒侧开有空气进、出 口、用于空气的进出,上、下筒口分别设有气箱3.1,两气箱3.1通过气管3.2束连通、用于通入待冷却气体。考虑到高温高湿气体具有一定腐蚀性,空气冷凝器3及其内的气管3.2束由钢材制成,且气管3.2表面涂有三层防腐涂料。这样,高温高湿气体在气管束3.2内高速流动,常温空气则在气管3.2束外流动,经热交换后,冷凝水排出,常温空气加热后再用于太阳能温室中的干燥。
水浴除尘器4用于清除气体中的粉尘,效率可达99%以上。
热源可以采用常规的锅炉等,也可采用热风炉,本实施例由于主要是针对农村的农产品、农副产品和生物质燃料的干燥,燃料可就地取材,所以热源优选生物质热风炉10,因生物质热风炉10结构简单、对燃料的要求低,且使用成本低,其烟气温度可达700~800℃,加热后的空气温度最高可超过200℃,所以非常适合本发明的应用。同时,本实施例中将生物质热风炉10和空气加热器11连为一体,可节省占地。
整个干燥室的装置连接也如图1所示,太阳能温室的地板下方开有带风阀的进气口、地板上方侧墙上开有两个带风阀的出气口,使太阳能温室内的气流方向符合热气流上升的规律,太阳能温室的进气口、太阳能温室的一个出气口、太阳能蓄能床1的上方风箱1.1、空气加热器11的出口和空气冷凝器3的上方气箱3.1经管道连通,太阳能温室的另一个出气口、太阳能蓄能床1的下方风箱1.1和空气加热器11的出口经管道连通,管道上必要的地方设有阀门9.1~9.14和风机2.2~2.5,用于实现不同的工况;太阳能温室相应的位置还可设置温度表、压力计等检测仪表,由专人在控制室进行工作状态的监控和操作。空气冷凝器3的下方气箱3.1与水浴除尘器4相连。
本发明的工作原理如下:
一)太阳能干燥原理:
1.1)白天,在太阳能温室内装好待干燥的物料8后关闭密封门,使太阳能温室处于密闭状态;
1.2)启动风机2.3,开启阀门9.11、9.12,其它阀门和风机都处于关闭状态。连续不断抽气,将太阳能温室内的气压抽至50000Pa左右,我们以树皮作为物料8进行的干燥试验表明,在此气压状态下,物料8的脱水率比在常压下增加约15~20%,这样能够更有效地提高物料8的干燥效率,而且太阳能温室内的气压控制在50000Pa左右在技术上是完全可以实现的,成本也能控制在较低的范围;
1.3)当控制室的压力仪表显示太阳能温室的室内压力为50000Pa时则关闭风机2.3,并 关闭所有阀门,使室内处于密闭状态。如果室外空气渗透至室内,使室内压力有所升高,则当压力≥60000Pa时,重复1.2)至1.3)的操作,确保室内压力≤50000Pa;
1.4)随着太阳能温室室温的上升,当温度大于30℃时,物料8表面的水分开始蒸发。当控制室湿度仪表显示室内相对湿度≥90%时,开启风机2.3和阀门9.11、9.9,关闭其它阀门和风机,使太阳能温室内的高温高湿气体进入空气冷凝器3,与此同时开启风机2.2抽常温空气冷却高温高湿气体,被冷却的高温高湿气体和冷凝水排入水浴除尘器4,被加热的常温空气送入太阳能温室干燥物品,此时阀门9.7、9.8、9.10、9.13、9.14开启,阀门9.1、9.2、9.5和风机2.1关闭,太阳能温室处于强制对流加热干燥状态,风速控制在2~2.5m/s左右;
1.5)当控制室的湿度仪表显示太阳能温室的室内相对湿度≤40%时,关闭所有的风机和阀门,使太阳能温室处于密闭状态,重复1.1)至1.4)操作,不断利用太阳能干燥物品。
晚上无太阳能辐射,太阳能温室仅靠蓄能墙6和混凝土多孔板7上的蓄能材料等反馈的热量,与白天相比明显不足。因此,晚上要维持良好的干燥工况,需要依靠白天太阳能蓄能床1收集和储藏的能量,太阳能蓄能床1的操作方式如下:
2.1)白天太阳能蓄能床1的蓄能过程大致为:白天,人造沸石颗粒吸收太阳能且温度升高,水分开始从人造沸石颗粒中脱附,太阳能蓄能床1开始蓄热,为了加速这种过程,在太阳能温室处于强制对流加热干燥状态的同时,开启阀门9.1、9.4,将经空气冷凝器3加热后送至太阳能温室的空气分流一部分进入太阳能蓄能床1,带走人造沸石颗粒脱附的水分,产生的高温高湿气体送入空气冷凝器3。当太阳能蓄能床1出口气体的湿度小于50%时,可关闭阀门9.1、9.4、9.5和风机2.1,使常温空气经空气冷凝器3加热后全部送至太阳能温室;
2.2)晚上当太阳能温室气温下降到28℃以下时,则利用太阳能蓄能床1的蓄热干燥物料8.。此时,阀门9.1、9.4、9.6、9.12关闭,其它阀门和风机均处于开启状态,直至太阳能蓄能床1的温度低于太阳能温室的温度,停止该过程。
二)中温强制干燥原理:
当物料8湿度大、数量多等情况下,单纯依靠太阳能已不能够满足干燥要求时,采用中温强制干燥,操作如下:
3.1)太阳能温室和太阳能蓄能床1的相关阀门和风机全部关闭。开启风机2.4,启动生物质热风炉10,同时开启风机2.5、阀门9.14,将常温空气送入空气加热器11,使生物质热风炉10加热的烟气送入空气加热器11,常温空气在空气加热器11中被烟气加热成120~200℃的高温低湿空气,将该高温低湿空气送入太阳能温室中干燥物料8,干燥后形成的高温高 湿气体,由风机2.3送入空气冷凝器3。此时,阀门9.8、9.10、9.7、9.11、9.9、9.13、9.14开启,其它阀门关闭;
3.2)高温高湿气体进入空气冷凝器3后,启动风机2.2将常温空气送入空气冷凝器3以冷却高温高湿气体,被冷却的气体和冷凝水送至水浴除尘器4外排。
本发明的核心在于结构优化的太阳能温室的设置,以及太阳能蓄能床1的设置,高效率的利用了太阳能,同时采用了廉价的生物质热风炉10热源和空气加热器11,使干燥系统可以采用强制中温对流干燥,将强制对流和辐射干燥两种干燥方式有效的结合在一起,互相弥补不足,有效地提高了干燥效率和降低了成本,并通过试验,发现了微压干燥的优点和实用性,提供了实用的推荐干燥微压值,还通过试验寻找出了强制对流干燥的送风温度与脱水速率的关系,推荐了木质纤维多的生物质燃料对流干燥的送风温度和送风速度,对实际运用起到了指导作用。本发明特别适合用于生物质燃料集散地生物质燃料干燥用,这样将大幅度降低生物质电厂燃料的运输成本并为电厂发电效率提供了保证,同时也为生物质燃料集散地干燥室的投资者带来了良好的经济效益。本发明成本低、效率高,不失为一种价廉物美环保型的干燥室。所以其保护范围并不限于上述实施例。显然,本领域的技术人员可以对本发明进行各种改动和变形而不脱离本发明的范围和精神,例如:顶面和三个受阳面采用PC阳光板5是本发明的一个优选方案,采用性能接近的钢化玻璃、有机玻璃、FRP采光板也是可行的;太阳能集热蓄热管1.3内的蓄热材料选择人造沸石也是本发明蓄热材料的最优选方案,其储热密度高,且储热稳定,成本极低,但采用其他合适的常规固体蓄能材料,如活性炭、硅胶、活性氧化铝、活性炭纤维等也是可行的;生物质热风炉10由于其在结构和使用成本等方面的优势,也是本发明中热源的首选,但采用锅炉等其它现有设备作为热源也能够实现本发明技术方案;面板1.4和底板1.5的材质、太阳能温室的顶面形状、蓄能墙6的材质等也可根据现场情况进行调整;空气冷凝器3也不限于采用钢材质,利用其他耐腐蚀材料也能够制作;太阳能温室内的正常工作压力控制在50000Pa是兼顾了操作性、技术效果和成本因素后的选择,该压力控制在30000~70000Pa也都具有较好的效果等。倘若这些改动和变形属于本发明权利要求及其等同技术的范围内,则本发明也意图包含这些改动和变形在内。

Claims (11)

  1. 一种利用太阳能和生物质能的中低温生物质燃料干燥系统,其特征在于:包括太阳能温室、太阳能蓄能床(1)、空气冷凝器(3)、水浴除尘器(4)、热源、空气加热器(11),以及连接各装置的管道和管道上设置的阀门、风机;
    所述太阳能温室为密封结构,其建筑结构为框架结构,顶面和三个受阳面由PC阳光板(5)、钢化玻璃、有机玻璃或者FRP采光板构成,非受阳面为蓄能墙(6),太阳能温室的地板为混凝土多孔板(7),混凝土多孔板(7)高出地面设置,其上方用于放置待干燥的物料(8)、下方用于通风;
    所述太阳能蓄能床(1)包括上、下方的风箱(1.1)、若干太阳能集热蓄热管(1.3)和密封腔室,太阳能集热蓄热管(1.3)包括管壁开有通气孔的导气管(1.2),导气管(1.2)的两端分别与上下风箱(1.1)连通,导气管(1.2)的管壁外敷设有蓄热材料,密封腔室由上、下方的风箱(1.1)、前部透明的面板(1.4)、后部和侧面不透光的底板(1.5)及侧板围合而成,太阳能集热蓄热管(1.3)均位于密封腔室内;
    所述空气冷凝器(3)为圆筒形结构,筒侧开有空气进、出口、用于空气的进出,上、下筒口分别设有气箱(3.1),两气箱(3.1)通过气管(3.2)束连通、用于通入待冷却气体;
    所述热源与空气加热器(11)连接,用于对空气加热器(11)内通入的气体进行加热;
    所述太阳能温室的地板下方开有进气口、地板上方开有两个出气口,太阳能温室的进气口、太阳能温室的一个出气口、太阳能蓄能床(1)的上方风箱(1.1)、空气加热器(11)的出口和空气冷凝器(3)的上方气箱(3.1)经管道连通,太阳能温室的另一个出气口、太阳能蓄能床(1)的下方风箱(1.1)和空气加热器(11)的出口经管道连通,空气冷凝器(3)的下方气箱(3.1)与所述水浴除尘器(4)相连。
  2. 根据权利要求1所述的利用太阳能和生物质能的中低温生物质燃料干燥系统,其特征在于:所述导气管(1.2)管壁外敷设的蓄热材料为人造沸石与金属粉末的混合物,混合物中人造沸石的重量含量不低于70%。
  3. 根据权利要求2所述的利用太阳能和生物质能的中低温生物质燃料干燥 系统,其特征在于:所述人造沸石的粒度不大于3mm。
  4. 根据权利要求1至3中任意一项所述的利用太阳能和生物质能的中低温生物质燃料干燥系统,其特征在于:所述面板(1.4)为玻璃板,所述底板(1.5)和侧板为塑料板与保温板构成的复合板。
  5. 根据权利要求1至3中任意一项所述的利用太阳能和生物质能的中低温生物质燃料干燥系统,其特征在于:所述热源为生物质热风炉(10)。
  6. 根据权利要求1至3中任意一项所述的利用太阳能和生物质能的中低温生物质燃料干燥系统,其特征在于:所述太阳能温室的蓄能墙(6)由加气混凝土和岩棉保温层砌筑外加蓄能混合砂浆构成,或者为内填蓄能混合砂浆的空心砖砌筑构成,所述蓄能混合砂浆的相变热不小于60kj/kg。
  7. 根据权利要求1至3中任意一项所述的利用太阳能和生物质能的中低温生物质燃料干燥系统,其特征在于:所述太阳能温室的顶面为单面大坡形斜面。
  8. 根据权利要求1至3中任意一项所述的利用太阳能和生物质能的中低温生物质燃料干燥系统,其特征在于:所述太阳能温室的室内表面涂有远红外反射涂料。
  9. 根据权利要求1至3中任意一项所述的利用太阳能和生物质能的中低温生物质燃料干燥系统,其特征在于:所述空气冷凝器(3)及其内的气管(3.2)束由钢材制成,且气管(3.2)表面涂有防腐涂料。
  10. 根据权利要求1至3中任意一项所述的利用太阳能和生物质能的中低温生物质燃料干燥系统,其特征在于:所述太阳能温室为微压室,压力为30000~70000Pa。
  11. 根据权利要求10所述的利用太阳能和生物质能的中低温生物质燃料干燥系统,其特征在于:所述太阳能温室为微压室,压力为50000Pa。
PCT/CN2016/113999 2016-01-14 2016-12-31 利用太阳能和生物质能的中低温生物质燃料干燥系统 WO2017121261A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610024233.4 2016-01-14
CN201610024233.4A CN105571280A (zh) 2016-01-14 2016-01-14 利用太阳能和生物质能的中低温生物质燃料干燥系统

Publications (1)

Publication Number Publication Date
WO2017121261A1 true WO2017121261A1 (zh) 2017-07-20

Family

ID=55881695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113999 WO2017121261A1 (zh) 2016-01-14 2016-12-31 利用太阳能和生物质能的中低温生物质燃料干燥系统

Country Status (2)

Country Link
CN (1) CN105571280A (zh)
WO (1) WO2017121261A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108195151A (zh) * 2018-01-09 2018-06-22 深圳职业技术学院 蓄热型太阳能烘干机
CN108753264A (zh) * 2018-07-16 2018-11-06 东南大学 相变储能型太阳能干燥器及其相变储能层制备方法
CN109084538A (zh) * 2018-09-05 2018-12-25 河南龙马食品有限公司 一种挂面节能烘干室
CN109373710A (zh) * 2018-11-23 2019-02-22 西安乐民反刍动物研究所 一种干燥设备及利用该干燥设备干燥中药渣的方法
CN113154821A (zh) * 2021-05-07 2021-07-23 郏松筠 一种非致密物料的匀风阻穿透式的干燥装置
CN113465316A (zh) * 2021-07-20 2021-10-01 武汉恒阳聚创信息技术有限公司 一种农产品干燥用太阳能辅助干燥箱及干燥方法
CN115355674A (zh) * 2022-07-21 2022-11-18 郑敏 一种利用光伏驱动的草料烘干装置
CN115654874A (zh) * 2022-11-09 2023-01-31 山东华燚工程技术有限公司 一种氢氧化锂回转干燥设备及回转干燥系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105571280A (zh) * 2016-01-14 2016-05-11 中盈长江国际新能源投资有限公司 利用太阳能和生物质能的中低温生物质燃料干燥系统
CN105953542A (zh) * 2016-06-28 2016-09-21 杨阿林 热风源太阳能两用烘干房
CN110715541B (zh) * 2019-10-14 2024-05-28 南京航空航天大学 基于超临界二氧化碳储能的高温农产品干燥设备及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2457456A1 (fr) * 1979-05-23 1980-12-19 Commissariat Energie Atomique Procede de sechage de produits, notamment de produits agricoles, a l'aide du pouvoir calorifique du rayonnement solaire et dispositif pour la mise en oeuvre de ce procede
CN201277795Y (zh) * 2008-08-20 2009-07-22 中国科学院广州能源研究所 多热源农副产品干燥设备
CN203586683U (zh) * 2013-11-20 2014-05-07 刘芳 一种利用太阳能和生物质能联合驱动的干燥房
CN104236261A (zh) * 2013-06-21 2014-12-24 中盈长江国际新能源投资有限公司 集热蓄热供热一体型太阳能干燥系统
CN105571280A (zh) * 2016-01-14 2016-05-11 中盈长江国际新能源投资有限公司 利用太阳能和生物质能的中低温生物质燃料干燥系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2457456A1 (fr) * 1979-05-23 1980-12-19 Commissariat Energie Atomique Procede de sechage de produits, notamment de produits agricoles, a l'aide du pouvoir calorifique du rayonnement solaire et dispositif pour la mise en oeuvre de ce procede
CN201277795Y (zh) * 2008-08-20 2009-07-22 中国科学院广州能源研究所 多热源农副产品干燥设备
CN104236261A (zh) * 2013-06-21 2014-12-24 中盈长江国际新能源投资有限公司 集热蓄热供热一体型太阳能干燥系统
CN203586683U (zh) * 2013-11-20 2014-05-07 刘芳 一种利用太阳能和生物质能联合驱动的干燥房
CN105571280A (zh) * 2016-01-14 2016-05-11 中盈长江国际新能源投资有限公司 利用太阳能和生物质能的中低温生物质燃料干燥系统

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108195151B (zh) * 2018-01-09 2023-08-29 深圳职业技术学院 蓄热型太阳能烘干机
CN108195151A (zh) * 2018-01-09 2018-06-22 深圳职业技术学院 蓄热型太阳能烘干机
CN108753264A (zh) * 2018-07-16 2018-11-06 东南大学 相变储能型太阳能干燥器及其相变储能层制备方法
CN108753264B (zh) * 2018-07-16 2024-04-05 东南大学 相变储能型太阳能干燥器及其相变储能层制备方法
CN109084538A (zh) * 2018-09-05 2018-12-25 河南龙马食品有限公司 一种挂面节能烘干室
CN109084538B (zh) * 2018-09-05 2024-02-02 河南龙马食品有限公司 一种挂面节能烘干室
CN109373710A (zh) * 2018-11-23 2019-02-22 西安乐民反刍动物研究所 一种干燥设备及利用该干燥设备干燥中药渣的方法
CN113154821A (zh) * 2021-05-07 2021-07-23 郏松筠 一种非致密物料的匀风阻穿透式的干燥装置
CN113465316A (zh) * 2021-07-20 2021-10-01 武汉恒阳聚创信息技术有限公司 一种农产品干燥用太阳能辅助干燥箱及干燥方法
CN115355674B (zh) * 2022-07-21 2023-08-15 英利新能源(宁夏)有限公司 一种利用光伏驱动的草料烘干装置
CN115355674A (zh) * 2022-07-21 2022-11-18 郑敏 一种利用光伏驱动的草料烘干装置
CN115654874A (zh) * 2022-11-09 2023-01-31 山东华燚工程技术有限公司 一种氢氧化锂回转干燥设备及回转干燥系统
CN115654874B (zh) * 2022-11-09 2023-12-01 山东华燚工程技术有限公司 一种氢氧化锂回转干燥设备及回转干燥系统

Also Published As

Publication number Publication date
CN105571280A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2017121261A1 (zh) 利用太阳能和生物质能的中低温生物质燃料干燥系统
JP6092478B2 (ja) 熱の回収・蓄積・供給一体型太陽エネルギ乾燥システム
Ahamed et al. Energy saving techniques for reducing the heating cost of conventional greenhouses
CN101144683B (zh) 使用无动力方式产生的太阳能热气流加热、干燥物料的方法
WO2017121260A1 (zh) 热风和冷风干燥相结合的干燥系统
CN104746647A (zh) 主动式与被动式相结合的全年性利用相变储能房
CN101705751B (zh) 太阳能集成房屋
CN101907384B (zh) 一种太阳能干燥装置
CN102531322B (zh) 一种节能型污泥干燥系统
CN101354169B (zh) 无动力、主动式调温系统及方法
CN201059849Y (zh) 太阳能辅助加热烤房
CN102155758B (zh) 基于燃池利用热水采暖综合系统
CN109737486B (zh) 一种集热蓄热墙和空气水集热器的组合供暖系统
CN207999874U (zh) 一种太阳能热风机
Wang et al. Study on the thermal performance of a new type of latent heat storage unit (LHSU)
CN201567806U (zh) 太阳能集成房屋
CN203561022U (zh) 适用于轻钢厂房的太阳能通风装置
Wen et al. An Automatic Drying System Combining Photovoltaic, Photothermal, and Energy Storage
CN203797777U (zh) 基于燃池烟气梯级利用日光温室耦合采暖装置
CN103968448A (zh) 基于燃池烟气梯级利用日光温室耦合采暖系统
CN207863327U (zh) 一种绿色建筑集成屋顶
CN208901500U (zh) 一种厂房用空气置换装置
CN101963816A (zh) 无动力、主动式智能调温系统及方法
CN116034784A (zh) 一种用于农业温室大棚除湿供暖的吸附储热系统
CN116951791A (zh) 一种蓄热型太阳能空气集热器供暖通风系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884812

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08/04/2019)