WO2014200033A1 - 電池監視システム、半導体回路、断線検出プログラム、及び断線検出方法 - Google Patents

電池監視システム、半導体回路、断線検出プログラム、及び断線検出方法 Download PDF

Info

Publication number
WO2014200033A1
WO2014200033A1 PCT/JP2014/065505 JP2014065505W WO2014200033A1 WO 2014200033 A1 WO2014200033 A1 WO 2014200033A1 JP 2014065505 W JP2014065505 W JP 2014065505W WO 2014200033 A1 WO2014200033 A1 WO 2014200033A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
signal line
capacitor
switching element
discharge
Prior art date
Application number
PCT/JP2014/065505
Other languages
English (en)
French (fr)
Inventor
直昭 杉村
崇明 伊澤
Original Assignee
ラピスセミコンダクタ株式会社
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ラピスセミコンダクタ株式会社, 矢崎総業株式会社 filed Critical ラピスセミコンダクタ株式会社
Priority to US14/897,157 priority Critical patent/US9857432B2/en
Priority to DE112014002795.2T priority patent/DE112014002795T5/de
Publication of WO2014200033A1 publication Critical patent/WO2014200033A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries

Definitions

  • the present invention relates to a battery monitoring system, a semiconductor circuit, a disconnection detection program, and a disconnection detection method.
  • the present invention relates to a battery monitoring system for monitoring battery voltage, a semiconductor circuit, a disconnection detection program, and a disconnection detection method.
  • a battery in which a plurality of batteries (battery cells) are connected in series is used as a large-capacity and high-output battery used for driving a motor of a hybrid vehicle or an electric vehicle.
  • a specific example of such a battery is a lithium ion battery.
  • a battery monitoring system for monitoring and controlling the voltage of the battery of the battery is known.
  • a conventional battery monitoring system includes a battery cell group including a plurality of battery cells, and a semiconductor circuit that measures and controls the voltage of the battery cells included in the battery cell group.
  • the cell voltage equalization (equalizing the voltage value of each battery cell) process and charge / discharge control based on the voltage information of each battery cell obtained from the semiconductor circuit for measurement (Control of charging / discharging of each battery cell) A process etc. are performed.
  • a disconnection occurs in a signal line or the like that connects the battery cell and the semiconductor circuit for measurement, a problem may occur in the battery monitoring system.
  • Japanese Patent Laid-Open No. 2002-343445 Japanese Patent Laid-Open No. 2001-116723, Japanese Patent Laid-Open No. 2006-29923, Japanese Patent Laid-Open No. 2004-170335, Japanese Patent Laid-Open No. 2005).
  • No. -168118, JP 2004-104989 A, JP 2006-50784 A, JP 2007-225484 A, and JP 2008-175804 A JP Application Laid-Open No. 2008-175804 describes a technique for detecting disconnection of a signal line in a battery monitoring system provided with a discharge circuit for discharging the charge of a battery cell.
  • the techniques described in Japanese Unexamined Patent Application Publication No. 2006-50784, Japanese Unexamined Patent Application Publication No. 2007-225484, and Japanese Unexamined Patent Application Publication No. 2008-175804 have the following problems.
  • a resistor for detecting disconnection must always be connected between battery cells. Since a current always flows from the battery cell to the resistor, it is necessary to increase the resistance value in order to suppress a standby current (dark current). However, since the resistance value is limited, it is difficult to suppress the dark current.
  • a battery cell is used to detect disconnection.
  • the operation which short-circuits between by a switch is required.
  • the discharging operation is performed, so that the battery voltage between the battery cells may vary.
  • the techniques described in Japanese Patent Application Laid-Open Nos. 2004-170335, 2007-225484, and 2008-175804 are used to measure the battery voltage in order to determine the presence or absence of disconnection.
  • the battery voltage measurement circuit and the calculation device for calculating the measurement voltage difference are required. Since a plurality of voltages must be measured by the voltage measurement circuit and calculated by the calculation device, it takes time to detect disconnection, and it is difficult to shorten the time. Further, in a semiconductor circuit in which only one battery voltage measuring circuit is provided, it is difficult to perform a normal battery voltage cell measurement operation during the disconnection detection period.
  • An object of the present invention is to provide a battery monitoring system, a semiconductor circuit, a disconnection detection program, and a disconnection detection method capable of appropriately detecting a disconnection of a signal line related to a battery to which a discharge circuit for discharging is connected.
  • a battery monitoring system including a plurality of batteries connected in series and a first signal connected to a high potential side of each of the plurality of batteries.
  • a discharge means including a resistance element provided across the line and the second signal line connected to the low potential side of each of the plurality of batteries, and a discharge switching element connected in series to the resistance element; If the switching element for switching is provided between the resistance element and the second signal line, a potential lower than the potential of the second signal line is connected to the first signal line, and the discharging switching element is In the case where it is provided between the resistance element and the first signal line, the potential adjusting means is connected to the second signal line and supplies a potential higher than the potential of the first signal line, the resistance element and the discharge The first potential between the switching element and the first signal line Comprising a position with a threshold value which is set by the potential of the second signal line, and comparing means for comparing, and the.
  • a seventh aspect of the present invention is a battery monitoring system, wherein a plurality of batteries connected in series, a first signal line connected to a high potential side of each of the plurality of batteries, and each of the plurality of batteries
  • a discharge means including a resistance element provided across the second signal line connected to the low potential side; a discharge switching element connected in series to the resistance element; and When provided between the two signal lines, a potential lower than the potential of the second signal line is connected to the first signal line, and the discharge switching element is connected to the resistance element, the first signal line, and the second signal line. Between the first signal line and the first signal line connected to the second signal line and supplying a potential higher than the potential of the first signal line.
  • a twelfth aspect of the present invention is a semiconductor circuit, which is provided for each of a plurality of batteries connected in series, and a plurality of first signal lines connected to the high potential side of each of the plurality of batteries.
  • the discharge switching element in the discharge means including a resistance element provided across the second signal line connected to the low potential side of each of the batteries and a discharge switching element connected in series to the resistance element, When the discharge switching element is provided between the resistance element and the second signal line, the discharge switching element is connected to the first signal line and supplies a potential lower than the potential of the second signal line.
  • a thirteenth aspect of the present invention is a semiconductor circuit, provided for each of a plurality of batteries connected in series, and a plurality of first signal lines and a plurality of first signal lines connected to the high potential side of each of the plurality of batteries.
  • the discharge switching element in the discharge means including a resistance element provided across the second signal line connected to the low potential side of each of the batteries and a discharge switching element connected in series to the resistance element, When the discharge switching element is provided between the resistance element and the second signal line, the discharge switching element is connected to the first signal line and supplies a potential lower than the potential of the second signal line.
  • a fourteenth aspect of the present invention is a battery monitoring system, comprising a plurality of batteries connected in series, a first signal line connected to the high potential side of each of the plurality of batteries, and each of the plurality of batteries.
  • a discharge means including a resistance element provided across the second signal line connected to the low potential side; a discharge switching element connected in series to the resistance element; and connected to the first signal line; and
  • a first potential adjusting means having a potential lower than the potential of the second signal line; a second potential adjusting means connected to the first signal line and having a potential higher than the potential of the first signal line;
  • a first comparison means for comparing a set threshold value, a rear stage potential, a resistance element of a discharge means provided in a
  • a seventeenth aspect of the present invention is a semiconductor circuit, which is provided for each of a plurality of batteries connected in series, and a plurality of first signal lines connected to the high potential side of each of the plurality of batteries.
  • a first signal line of a discharge means including a resistance element provided across a second signal line connected to a low potential side of each of the batteries and a discharge switching element connected in series to the resistance element;
  • a first potential adjusting means connected to and lower than the potential of the second signal line; and a second potential adjustment connected to the first signal line and higher than the potential of the first signal line.
  • a battery connected to the high potential side of the battery and the first potential between the resistance element and the discharge switching element, and the rear stage potential of the rear stage part from the discharge means of the first signal line provided with the discharge means Between the resistance element of the discharge means provided in the discharge switching element and the discharge switching element.
  • a first comparison means for comparing the potential and a threshold value set from the following, a potential at the rear stage, a resistance element of the discharge means provided in the battery connected to the first potential and the low potential side of the battery, and for discharge
  • a second comparison means for comparing a third potential between the switching element and a threshold value set by the third potential.
  • An eighteenth aspect of the present invention is a disconnection detection program, and a process for detecting a disconnection of the first signal line of the battery monitoring system according to any one of the second to sixth aspects of the present invention.
  • a disconnection detection program for causing a computer to execute a step of charging a difference between a potential of a first signal line and a threshold voltage of a single inverting amplifier in a first capacitor, and a second signal line in a second capacitor Charging the difference between the potential of the first inverting amplifier and the threshold voltage of the single inverting amplifier; and inputting the first potential to the first capacitor and the second capacitor while maintaining the charges of the first capacitor and the second capacitor; Adjusting the potential of the first signal line by the potential adjusting means and outputting a comparison result from the comparing means for causing the computer to execute a process comprising: Than is.
  • a disconnection detection program for detecting a disconnection of the first signal line of the battery monitoring system according to any one of the eighth to eleventh aspects of the present invention.
  • a disconnection detection program for causing a computer to execute a step of charging a difference between a first potential and a threshold voltage of a single inverting amplifier in a first capacitor, and a third potential and a single inverting amplifier in a second capacitor.
  • a twentieth aspect of the present invention is a disconnection detection program for causing a computer to execute processing for detecting disconnection of the first signal line of the battery monitoring system according to the fifteenth aspect or the sixteenth aspect of the present invention.
  • a disconnection detection program for charging a first capacitor with a difference between a second potential and a threshold voltage of the first single inverting amplifier, and a second capacitor with a first potential and a threshold voltage of the first single inverting amplifier. Charging the difference between the first potential of the third capacitor and the threshold voltage of the second single inverting amplifier, and charging the fourth capacitor with the third potential and the threshold voltage of the second single inverting amplifier.
  • a disconnection detecting method for the first signal line of the battery monitoring system according to any one of the second to sixth aspects of the present invention.
  • the step of charging, the step of inputting the first potential to the first capacitor and the second capacitor while holding the charges of the first capacitor and the second capacitor, and the potential of the first signal line adjusted by the potential adjusting means And a step of outputting a comparison result from the comparison means.
  • a disconnection detecting method for the first signal line of the battery monitoring system according to any one of the eighth to eleventh aspects of the present invention.
  • a twenty-third aspect of the present invention is a disconnection detecting method, the disconnection detecting method of the first signal line of the battery monitoring system according to the fifteenth or sixteenth aspect of the present invention, wherein the first capacitor Charging a difference between the second potential and the threshold voltage of the first single inverting amplifier; charging a difference between the first potential and the threshold voltage of the first single inverting amplifier; and a third capacitor.
  • the potential of the first signal line is obtained by a method of inputting a post-stage potential to the first capacitor to the fourth capacitor while holding the electric charge of the capacitor to the fourth capacitor, and the first potential adjusting means or the second potential adjusting means.
  • FIG. 6 is a circuit diagram showing a state of the semiconductor circuit in the initialization operation according to the first embodiment.
  • FIG. 6 is a circuit diagram showing a state of a semiconductor circuit in a comparison operation according to the first embodiment.
  • FIG. 6 is a circuit diagram which shows an example of schematic structure of the semiconductor circuit which concerns on 2nd Embodiment.
  • FIG. 6 is a circuit diagram showing a state of a semiconductor circuit in an initialization operation according to a second embodiment.
  • FIG. 6 is a circuit diagram showing a state of a semiconductor circuit in a comparison operation according to a second embodiment. It is a circuit diagram which shows an example of schematic structure of the semiconductor circuit which concerns on 3rd Embodiment.
  • FIG. 10 is a circuit diagram showing a state of a semiconductor circuit in an initialization operation according to a third embodiment. It is a circuit diagram showing the state of the semiconductor circuit in comparison operation 1 concerning a 3rd embodiment. It is a circuit diagram showing the state of the semiconductor circuit in comparison operation 2 concerning a 3rd embodiment.
  • the battery monitoring system of the present embodiment shown in FIG. 1 includes a battery cell group 12 including a plurality of battery cells, a discharge unit 13 that discharges each battery cell in the battery cell group 12, and each battery in the battery cell group 12. And a semiconductor circuit 14 for measuring the voltage of the cell.
  • the discharge unit 13 includes a discharge circuit (see FIG. 2, discharge circuit 51, details will be described later) and LPF (low-pass filter, see FIG. 2, LPF, details will be described later).
  • the semiconductor circuit 14 includes a detection circuit 22, a storage unit 23, a switching element group 24, a comparison circuit 26, a voltage measurement cell selection switch 28, and a voltage measurement circuit 30.
  • the detection circuit 22 is a logic circuit having a function for detecting the presence or absence of disconnection of the signal lines Ln + 1 to Ln-2 based on the output OUT output from the comparison circuit 26. Upon receiving an instruction from the outside to detect the presence or absence of disconnection of the signal lines Ln + 1 to Ln-2, the detection circuit 22 outputs a control signal for controlling on / off of the switching element group 24.
  • the storage unit 23 has a function of storing the output OUT (logical values indicating H level and L level) output from the comparison circuit 26.
  • a specific example of the storage unit 23 is a register or the like.
  • the detection circuit 22 according to the present embodiment detects the presence or absence of disconnection of the signal lines Ln + 1 to Ln ⁇ 2 based on the logical value stored (stored) in the storage unit 23.
  • FIG. 2 shows an example of a schematic configuration of the discharge unit 13 and the semiconductor circuit 14 of the present embodiment.
  • the semiconductor circuit 14 of the present embodiment has a function of detecting whether or not the signal line L is disconnected between the battery cell group 12 and the discharge unit 13 (more specifically, the discharge circuit 51).
  • the battery cell group 12 includes three cells C (Cn ⁇ 1 to Cn + 1), and a semiconductor is connected via the discharge unit 13 by the signal lines Ln ⁇ 2 to Ln + 1. It is connected to the circuit 14.
  • the three cells C (Cn ⁇ 1 to Cn + 1) are collectively referred to as the cell C.
  • the signal lines Ln ⁇ 2 to Ln + 1 are collectively referred to as a signal line L.
  • the detection circuit 22 and the storage unit 23 are not shown.
  • the discharge unit 13 of the present embodiment shown in FIG. 2 includes a discharge circuit 51 and an LPF.
  • the discharge circuit 51 has a function of discharging the cell C by short-circuiting the high potential side and the low potential side of the battery cell C of the battery cell group 12.
  • the discharge circuit 51 includes a resistance element Rbal and a switching element SW (SWn ⁇ 1 to SWn + 1, generically referred to as switching element SW) connected in series with the resistance element Rbal.
  • the switching element SW uses an NMOS transistor as a specific example.
  • the switching element SW has a drain connected to the signal line L on the high potential side of the battery cell C via a resistance element Rbal for limiting the discharge amount of the cell C, and a source on the low potential side of the battery cell C. It is connected to the signal line L.
  • the switching element SW has a gate connected to the switching element SW3 and is connected to the signal line L on the low potential side via a resistance element Rcb which is a pull-down resistor.
  • a resistance element Rcb which is a pull-down resistor.
  • the gate of the switching element SW is turned on, the cells C are short-circuited and the battery cell C is discharged.
  • on / off control of the gate of the switching element SW is performed by a voltage adjustment unit IH (details will be described later) of the switching element SW3.
  • the voltage adjustment unit IH is a constant current source. When a voltage is supplied from the voltage adjustment unit IH to the signal line CB, the gate of the switching element SW is turned on.
  • the configuration of the discharge circuit 51 is not limited to this.
  • the switching element SW is a PMOS transistor, one end of the switching element SW is connected to the signal line L on the high potential side of the battery cell, and one end of the resistance element Rbal. May be connected to the signal line L on the low potential side of the battery cell C.
  • a voltage adjustment unit IL (described later in detail) of the switching element SW3.
  • the voltage adjustment unit IH supplies a higher voltage to the low potential side signal line L than to the high potential side signal line.
  • the LPF has a function of suppressing a steep voltage fluctuation generated in each cell C of the battery cell group 12 by cutting high frequency components.
  • the LPF is connected to the signal line L on the high potential side of each cell C.
  • the switching element group 24 includes a switching element SW1, switching elements SW2L and SW2H, and a switching element SW3 including voltage adjustment units IH and IL.
  • the semiconductor circuit 14 includes a signal line L, a signal line V, a signal line CB, and a signal line DV.
  • the signal line L connects the battery cell group 12 and the discharge unit 13.
  • the signal line V connects the LPF and the voltage measurement cell selection switch 28.
  • the signal line CB connects the gate of the switching element SW of the discharge circuit 51 and the switching element SW3.
  • the signal line DV connects the signal line L on the high potential side of the cell C and the switching element SW1 via the resistance element Rbal.
  • the voltage measurement cell selection switch 28 includes a plurality of internal switching elements (not shown).
  • the selection switch 28 switches the internal switching element to select the high-potential side voltage (signal line L) and the low-potential side voltage (signal line L) of the cell C to be measured / monitored. It has a function.
  • the voltage measurement circuit 30 has a function of measuring the battery voltage of the cell C based on the voltage selected by the voltage measurement cell selection switch 28.
  • the switching element SW1 has a function of connecting the signal line DV and the signal line Lc. Based on the control signal from the detection circuit 22, the switching element SW1 connects the signal line L to be subjected to disconnection detection and the signal line Lc.
  • the switching element SW1 is provided with a switching element SW1 (SW1n-2 to SW1n + 1) for each signal line L.
  • the switching elements SW1 (SW1n-2 to SW1n + 1) are collectively referred to as switching elements SW1.
  • Switching elements SW2L (SW2Ln-2 to SW2Ln + 1) and switching elements SW2H (SW2Hn-2 to SW2Hn + 1) are provided for each signal line V.
  • the switching elements SW2L (SW2Ln-2 to SW2Ln + 1) are collectively referred to as switching elements SW2L.
  • the switching elements SW2H (SW2Hn ⁇ 2 to SW2Hn + 1) are collectively referred to as switching elements SW2H.
  • the switching element SW2L has a function of connecting the signal line V and the signal line Lil based on a control signal from the detection circuit 22.
  • the switching element SW2H has a function of connecting the signal line V and the signal line Lih based on the control signal from the detection circuit 22.
  • the switching element SW3 includes switching elements SW3H (SW3Hn-1 to SW3Hn + 1), switching elements SW3L (SW3Ln-1 to SW3Ln + 1), and voltage adjustment units IH and IL which are constant current sources.
  • the switching elements SW3H (SW3Hn ⁇ 1 to SW3Hn + 1) are collectively referred to as switching elements SW3H.
  • the switching elements SW3L (SW3Ln ⁇ 1 to SW3Ln + 1) are collectively referred to as switching elements SW3L.
  • the voltage adjustment units IH and IL are described by omitting the reference numerals when referring collectively.
  • the switching elements SW3H and SW3L and the voltage adjustment units IH and IL are provided for each signal line CB.
  • the switching element SW3L has a function of connecting the signal line CB and the voltage adjusting unit IL based on a control signal from the detection circuit 22. Further, the switching element SW3L has a function of supplying the signal line L with a voltage lower than the low voltage of the signal line L supplied with a lower voltage than the signal line L. Specifically, for example, the voltage adjustment unit ILn connected to the signal line Ln by the switching element SW3Ln supplies a voltage lower than the power supply voltage supplied to the signal line Ln ⁇ 1 to the signal line Ln.
  • the switching element SW3H has a function of connecting the signal line CB and the voltage adjustment unit IH.
  • the switching element SW3H is turned on when discharging the cell C, and applies a voltage from the voltage adjustment unit IH to the gate of the switching element SW.
  • the comparison circuit (comparator) 26 of the present embodiment uses a chopper type comparator.
  • the comparison circuit 26 includes switching elements SWC1-A, SWC2-A, SWC1-B, SWC2-B, capacitors C1, C2, switching element SWC3, a single inverting amplifier NAMP having a self-threshold voltage Vx, and a latch circuit (Latch) 32. I have.
  • the switching element SWC1-A has a function of connecting the signal line Lih to the capacitor C1.
  • the switching element SWC2-A has a function of connecting the signal line Lc to the capacitor C1.
  • the switching element SWC1-B has a function of connecting the signal line Lil to the capacitor C2.
  • the switching element SWC2-B has a function of connecting the signal line Lc to the capacitor C2.
  • the latch circuit 32 has a function of determining and outputting logical values (H level and L level) from the output voltage of the single inverting amplifier NAMP.
  • the disconnection detection operation of the present embodiment is controlled by execution of a disconnection detection program in the detection circuit 22 or the like.
  • a disconnection detection program in the detection circuit 22 or the like.
  • disconnection is likely to occur at locations such as a signal line connecting a circuit such as a semiconductor circuit and a terminal (pad) for connection. Therefore, in the present embodiment, as a specific example, a case where a disconnection of the signal line Ln between the battery cell group 12 and the discharge unit 13 (see “x” marks in FIGS. 2, 4, and 5) is detected.
  • the disconnection detection operation will be described in detail.
  • the disconnection detection operation of the present embodiment is divided into an initialization operation and a comparison operation (including a diagnosis operation in the present embodiment).
  • FIG. 3 shows a flowchart of an example of the overall flow of the disconnection detection operation of the present embodiment.
  • FIG. 4 is a circuit diagram showing the state of the semiconductor circuit 14 in the initialization operation.
  • FIG. 5 is a circuit diagram showing the state of the semiconductor circuit 14 in the comparison operation.
  • the detection circuit 22 turns on the switching elements SW1 and SW2H of the signal line L for detecting disconnection and the switching element SW2L of the signal line L on the low potential side.
  • the detection circuit 22 turns on the switching elements SW1n and SW2Hn and turns on the switching element SW2Ln-1 (see FIG. 4).
  • the switching element SW1n is turned on, the signal line Ln and the signal line Lc are connected via the resistance element Rbal.
  • the switching element SW2Hn is turned on, the signal line Vn of the LPF and the signal line Lih are connected.
  • the switching element SW2Ln-1 is turned on, the signal line Vn-1 and the signal line Lil are connected.
  • the detection circuit 22 turns on the switching element SWC3 of the comparison circuit 26.
  • the voltage of the input signal line Lx of the single inverting amplifier NAMP of the comparison circuit 26 becomes the self threshold voltage Vx of the single inverting amplifier NAMP.
  • the detection circuit 22 turns on the switching element SWC1-A of the comparison circuit 26 (see FIG. 4).
  • the capacitor C1 is charged with a difference between the voltage of the signal line Vn and the self-threshold voltage Vx (voltage of the signal line Vn ⁇ self-threshold voltage Vx).
  • the switching element SWC1-B of the comparison circuit 26 is turned on (see FIG. 4).
  • the capacitor C2 is charged with the difference between the voltage of the signal line Vn-1 and the self threshold voltage Vx (the voltage of the signal line Vn-1 minus the self threshold voltage Vx).
  • steps 100 to 104 correspond to the initialization operation of the present embodiment.
  • the detection circuit 22 turns on the switching element SW3L on the high potential side of the signal line L to be detected.
  • the detection circuit 22 turns on the switching element SW3Ln + 1 (see FIG. 5).
  • the voltage adjustment unit ILn + 1 is connected to the signal line CBn + 1.
  • the gate of the switching element SWn + 1 is off.
  • the potential of the signal line Ln is pulled to the voltage adjustment unit ILn + 1 via the pull-down resistor element Rcb of the gate of the switching element SWn + 1, and the disconnection detection current is drawn.
  • the detection circuit 22 turns off the switching element SWC3 of the comparison circuit 26 (see FIG. 5).
  • the voltage at the input Lx of the single inverting amplifier NAMP is in the Hi impedance state, and the charges of the capacitors C1 and C2 charged by the above-described initialization operation are stored.
  • the detection circuit 22 turns off the switching element SWC1-A of the comparison circuit 26 and turns on the switching element SWC2-A.
  • the detection circuit 22 turns off the switching element SWC1-B and turns on the switching element SWC2-B.
  • Vx′ ⁇ Vx (Lc ⁇ V (n ⁇ 1)) ⁇ C1 / (C1 + C2) ⁇ (Vn ⁇ V (n ⁇ 1)) (4)
  • the voltage of the signal line DVn on the drain side of the switching element SWn is equal to the voltage of the signal line Ln and becomes the voltage of the signal line Lc.
  • Vnampout ⁇ Gnamp ⁇ (Vx′ ⁇ Vx) (5)
  • the output logic of the single inverting amplifier NAMP is determined by the positive / negative of the voltage Vx′ ⁇ the self threshold voltage Vx.
  • Vx′ ⁇ Vx (Lc ⁇ V (n ⁇ 1)) ⁇ C1 / (C1 + C2) ⁇ (Vn ⁇ V (n ⁇ 1))> 0 (6)
  • the signal line Lc is connected to the signal line Vn via the LPF.
  • the resistance of the LPF is Rlpf
  • the voltage of the signal line Lc from which the disconnection detection current is drawn is expressed by the equation (7) when the disconnection detection current is ILn + 1.
  • the detection circuit 22 detects the output OUT output from the comparison circuit 26.
  • the detection circuit 22 determines whether the output OUT is H level or L level. In the case of the L level, the process proceeds to step 116, and as described above, after detecting that there is no disconnection, the process proceeds to step 122. On the other hand, if it is at the H level, the process proceeds to step 118, and as described above, it is detected that there is a disconnection. If there is a disconnection, the process proceeds to step 120, for example, the operation of the battery monitoring system 10 is stopped. After the above measures are taken, the routine proceeds to step 122.
  • step 122 the detection circuit 22 determines whether or not the operation of steps 100 to 120 has been performed on all the signal lines L. If not, the detection circuit 22 returns to step 100 and repeats this operation. On the other hand, when the process is performed for all the signal lines L, the disconnection detection operation for all the signal lines L is completed, and thus this process is terminated.
  • the voltage of the signal line Vn and the self-threshold voltage Vx are applied to the capacitor C1 of the comparison circuit 26 by the initialization operation.
  • (Signal line Vn ⁇ self threshold voltage Vx) is charged.
  • the capacitor C2 is charged with a difference between the voltage of the signal line Vn ⁇ 1 and the self threshold voltage Vx (signal line Vn ⁇ 1 ⁇ self threshold voltage Vx).
  • the switching element SW1 is provided so as to connect the signal line Lc and the node between the resistance element Rbal and the switching element SWn of the discharge circuit 51.
  • the switching element SW2L is provided so as to connect the signal line Vn-1 on the rear stage side of the LPF and the signal line Lil.
  • the switching element SW2H is provided so as to connect the signal line Vn on the rear stage side of the LPF and the signal line Lih.
  • the switching element 3Ln + 1 is provided so as to connect the signal line CBn + 1 connected to the signal line Ln and the voltage adjustment unit ILn + 1 via the resistance element Rcb.
  • the disconnection of the signal line L between the battery cell group 12 and the discharge unit 13 can be appropriately detected in the semiconductor circuit 14 including the discharge unit 13, particularly the discharge circuit 51.
  • the voltage adjustment unit IL is not always connected to the signal line L (via the signal line CB and the resistance element Rcb), but is connected to the signal line L only during a period of detecting disconnection. It is possible to obtain an effect that current does not always flow from the IL and current during standby (dark current) does not occur.
  • the disconnection detection current may be set so as to satisfy the above-described equation (8), it can be made as small as possible than the discharge current when the cells C are short-circuited by the switching element SW. Accordingly, variations in battery voltage of the cell C are less likely to occur.
  • the disconnection can be appropriately detected by the comparison circuit 26, without using the voltage measurement cell selection switch 28, the voltage measurement circuit 30, or a calculation device for calculating the difference between the measured voltages, etc. Disconnection can be detected. Therefore, the disconnection detection can be performed even during the operation period of measuring the battery voltage of the cell C by using the voltage measurement cell selection switch 28 and the voltage measurement circuit 30. That is, the voltage measuring circuit 30 is one battery monitoring system 10, and the battery voltage of the normal cell C can be measured even during the period when disconnection detection is performed.
  • the voltage adjustment unit IL is provided together with the voltage adjustment unit IH for supplying a voltage to the gate of the switching element SW of the discharge circuit 51 to control on / off, and thus is provided separately. This is unnecessary, and effects such as prevention of expansion of the scale of the battery monitoring system 10 can be obtained.
  • FIG. 6 shows an example of a schematic configuration of the semiconductor circuit 40 of the present embodiment.
  • the configuration and operation substantially similar to those of the first embodiment are described as such, and detailed description thereof is omitted.
  • the switching element SW1 is provided for each signal line Vn so as to connect the signal line V and the signal line Lc in order to detect disconnection of the signal line V from the latter stage of the LPF.
  • a switching element SW3 is provided for each signal line Vn so as to draw the disconnection detection current from the signal line V.
  • the switching element SW2L is provided for each signal line DV so as to connect the signal line DV and the signal line Lil, and the switching element SW2H is configured to connect the signal line DV and the signal line Lih. It is provided for each line DV.
  • the gate of the switching element SW of the discharge circuit 51 of the discharge unit 13 is separately controlled.
  • at least the gate of the switching element SW to which each signal line used for the disconnection detection operation is connected is turned off.
  • FIG. 7 is a circuit diagram showing the state of the semiconductor circuit 40 in the initialization operation.
  • FIG. 8 is a circuit diagram showing the state of the semiconductor circuit 40 in the comparison operation.
  • the detection circuit 22 turns on the switching elements SW1 and SW2H of the signal line L for detecting disconnection and the switching element SW2L of the signal line L on the low potential side.
  • the detection circuit 22 turns on the switching elements SW1n and SW2Hn and turns on the switching element SW2Ln-1 (see FIG. 7).
  • the switching element SW1n is turned on, the signal line Vn and the signal line Lc are connected.
  • the switching element SW2Hn is turned on, the signal line DVn and the signal line Lih are connected.
  • the switching element SW2Ln-1 is turned on, the signal line DVn-1 and the signal line Lil are connected.
  • the detection circuit 22 turns on the switching element SWC3 of the comparison circuit 26.
  • the voltage of the input signal line Lx of the single inverting amplifier NAMP of the comparison circuit 26 becomes the self threshold voltage Vx of the single inverting amplifier NAMP.
  • the detection circuit 22 turns on the switching element SWC1-A of the comparison circuit 26 (see FIG. 7).
  • the capacitor C1 is charged with a difference between the voltage of the signal line DVn and the self-threshold voltage Vx (voltage of the signal line DVn ⁇ self-threshold voltage Vx).
  • the detection circuit 22 turns on the switching element SWC1-B of the comparison circuit 26 (see FIG. 7).
  • the capacitor C2 is charged with a difference between the voltage of the signal line DVn-1 and the self-threshold voltage Vx (voltage of the signal line DVn-1-self-threshold voltage Vx).
  • steps 100 to 104 correspond to the initialization operation of the present embodiment.
  • the detection circuit 22 turns on the switching element SW3L of the signal line L to be detected.
  • the detection circuit 22 turns on the switching element SW3Ln (see FIG. 8).
  • the voltage adjustment unit ILn is connected to the signal line Vn.
  • the potential of the signal line Vn is pulled by the voltage adjusting unit ILn, and the disconnection detection current is extracted.
  • the detection circuit 22 turns off the switching element SWC3 of the comparison circuit 26 (see FIG. 8).
  • the voltage at the input Lx of the single inverting amplifier NAMP is in the Hi impedance state, and the charges of the capacitors C1 and C2 charged by the above-described initialization operation are stored.
  • the detection circuit 22 turns off the switching element SWC1-A of the comparison circuit 26 and turns on the switching element SWC2-A.
  • the detection circuit 22 turns off the switching element SWC1-B and turns on the switching element SWC2-B.
  • Vx′ ⁇ Vx (Lc ⁇ DV (n ⁇ 1)) ⁇ C1 / (C1 + C2) ⁇ (DVn ⁇ DV (n ⁇ 1)) (13)
  • the voltage of the signal line DVn on the drain side of the switching element SWn becomes equal to the voltage of the signal line Ln.
  • Vx′ ⁇ Vx (Lc ⁇ DV (n ⁇ 1)) ⁇ C1 / (C1 + C2) ⁇ (DVn ⁇ DV (n ⁇ 1))> 0 (14)
  • the signal line Lc is connected to the voltage adjustment unit ILn by the switching elements SW1n and SW3Ln.
  • the voltage of the signal line Lc from which the disconnection detection current is drawn is expressed by the equation (15), where ILn is the disconnection detection current.
  • the detection circuit 22 detects the output OUT output from the comparison circuit 26.
  • the detection circuit 22 determines whether the output OUT is H level or L level. In the case of the L level, the process proceeds to step 116, and as described above, after detecting that there is no disconnection, the process proceeds to step 122. On the other hand, if it is at the H level, the process proceeds to step 118, and as described above, it is detected that there is a disconnection. If there is a disconnection, the process proceeds to step 120, and after taking a predetermined measure, the process proceeds to step 122.
  • step 122 the detection circuit 22 determines whether or not the operations of steps 100 to 120 have been performed for all the signal lines V. If not, the detection circuit 22 returns to step 100 and repeats this operation. On the other hand, when the process is performed for all the signal lines V, the disconnection detection operation for all the signal lines V is completed, and thus this process is terminated.
  • the voltage of the signal line DVn + 1 is applied to the capacitor C1 of the comparison circuit 26 by the initialization operation.
  • the difference from the self threshold voltage Vx (signal line DVn ⁇ self threshold voltage Vx) is charged.
  • the capacitor C2 is charged with a difference between the voltage of the signal line DVn ⁇ 1 and the self threshold voltage Vx (signal line DVn ⁇ 1 ⁇ self threshold voltage Vx).
  • the switching element SW1 is provided so as to connect the signal line Vn and the signal line Lc.
  • the switching element SW2Ln-1 is provided so as to connect the node between the resistance element Rbal of the discharge circuit 51 and the switching element SWn-1 and the signal line Lil.
  • the switching element SW2Hn is provided so as to connect the node between the resistance element Rbal of the discharge circuit 51 and the switching element SWn and the signal line Lih.
  • the switching element 3Ln is provided so as to connect the signal line Vn and the voltage adjustment unit ILn.
  • the semiconductor circuit 40 including the discharge unit 13, particularly the discharge circuit 51 it is possible to appropriately detect the disconnection of the signal line Vn at the subsequent stage of the discharge unit 13 (LPF).
  • the voltage adjustment unit IL (and IH) is provided in the subsequent stage of the LPF, it is not necessary to consider the influence of the LPF (resistance Rlpf) and the like when performing the disconnection detection. The disconnection detection accuracy is increased.
  • the voltage adjustment unit IL is not always connected to the signal line V, but is connected to the signal line V only during a period of detecting disconnection, so that current does not always flow from the voltage adjustment unit IL, and the standby state. The effect that no current (dark current) is generated is obtained.
  • the disconnection detection current may be set so as to satisfy the above expression (16), it can be made as small as possible than the discharge current when the cells C are short-circuited by the switching element SW. Accordingly, variations in battery voltage of the cell C are less likely to occur.
  • the disconnection can be appropriately detected by the comparison circuit 26, without using the voltage measurement cell selection switch 28, the voltage measurement circuit 30, or a calculation device for calculating the difference between the measured voltages, etc. Disconnection can be detected. Therefore, the disconnection detection can be performed even during the operation period of measuring the battery voltage of the cell C by using the voltage measurement cell selection switch 28 and the voltage measurement circuit 30. That is, the voltage measuring circuit 30 is one battery monitoring system 10, and the battery voltage of the normal cell C can be measured even during the period when disconnection detection is performed.
  • the voltage adjustment unit IL is provided together with the voltage adjustment unit IH for supplying a voltage to the gate of the switching element SW of the discharge circuit 51 to control on / off, and thus is provided separately. This is unnecessary, and effects such as prevention of expansion of the scale of the battery monitoring system 10 can be obtained.
  • the disconnection of the signal line Vn may be detected by supplying a voltage to the signal line Vn from the voltage adjustment unit IHn.
  • the disconnection detection may be performed by the disconnection detection method substantially the same as described above. Specifically, in the initialization operation, the switching element SW2Hn + 1 is turned on to charge the capacitor C1 of the comparison circuit 26 with (DVn + 1 ⁇ Vx), and the switching element SW2Ln is turned on to charge the capacitor C2 of the comparison circuit 26 with (DVn ⁇ Vx). To charge.
  • the voltage adjustment unit SW3Hn is turned on to supply a voltage to the signal line Vn.
  • the presence or absence of disconnection may be detected based on the output result output from the comparison circuit 26.
  • the other voltage adjustment unit may not be provided.
  • the configuration of the discharge circuit 51 is not limited to the above-described one, as in the first embodiment.
  • the semiconductor circuit 50 of the present embodiment includes two comparison circuits 26 (comparison circuits 26A and 26B).
  • FIG. 9 shows an example of a schematic configuration of the semiconductor circuit 50 of the present embodiment.
  • the configuration and operation that are substantially the same as those in the first embodiment and the second embodiment are described as such, and detailed description thereof is omitted.
  • the switching element SW2M is provided for each signal line DV (SW2Mn-2 to SW2LM + 1, collectively referred to as switching element SW2M).
  • the switching element SW2M has a function of connecting the signal line DVn + 1 and the signal line Lim based on a control signal from the detection circuit 22.
  • the switching element SW2H has a function of connecting the signal line V and the signal line Lih based on the control signal from the detection circuit 22.
  • the semiconductor circuit 50 includes two comparison circuits 26 (comparison circuits 26A and 26B) as described above.
  • comparison circuits 26A and 26B comparison circuits 26A and 26B
  • a chopper comparator having the same configuration is used.
  • the signal line Lih is connected to the capacitor C1 of the comparison circuit 26A by the switching element C1-A, and the signal line Lc is connected by the switching element SWC2-A. Further, the signal line Lim is connected to the capacitor C2 by the switching element C1-B, and the signal line Lc is connected by the switching element SWC2-B.
  • the signal line Lim is connected to the capacitor C1 of the comparison circuit 26B by the switching element C1-A, and the signal line Lc is connected by the switching element SWC2-A. Further, the signal line Lil is connected to the capacitor C2 by the switching element C1-B, and the signal line Lc is connected by the switching element SWC2-B.
  • FIG. 10 is a circuit diagram showing the state of the semiconductor circuit 50 in the initialization operation.
  • FIG. 11 shows the state of the semiconductor circuit 50 in the comparison operation 1.
  • FIG. 12 is a circuit diagram showing the state of the semiconductor circuit 50 in the comparison operation 2.
  • the switching element 2H of the signal line DV on the high potential side, the switching element 2M of the signal line DV corresponding to the signal line to be detected, and the switching element SW2L of the signal line DVn on the low potential side are turned on.
  • the detection circuit 22 turns on the switching elements SW2Hn + 1, SW2Mn, and SW2Ln ⁇ 1 (see FIG. 10).
  • the switching element SW2Hn + 1 is turned on, the signal line DVn + 1 and the signal line Lih are connected.
  • the switching element 2Mn is turned on, the signal line DVn and the signal line Lim are connected.
  • the switching element SW2Ln-1 is turned on, the signal line DVn-1 and the signal line Lil are connected.
  • the voltage of the input signal line Lx of the single inverting amplifier NAMP of the comparison circuit 26 becomes the self threshold voltage Vx of the single inverting amplifier NAMP.
  • the detection circuit 22 turns on the switching element SWC1-A of the comparison circuit 26A (see FIG. 10). As a result, the capacitor C1 of the comparison circuit 26A is charged with a difference between the voltage of the signal line DVn + 1 and the self threshold voltage Vx (the voltage of the signal line DVn + 1 ⁇ the self threshold voltage Vx). Further, the detection circuit 22 turns on the switching element SWC1-B of the comparison circuit 26A (see FIG. 10). As a result, the capacitor C2 is charged with the difference between the voltage of the signal line DVn and the self-threshold voltage Vx (voltage of the signal line DVn ⁇ self-threshold voltage Vx).
  • the detection circuit 22 turns on the switching element SWC1-A of the comparison circuit 26B (see FIG. 10). As a result, the capacitor C1 of the comparison circuit 26B is charged with a difference between the voltage of the signal line DVn and the self threshold voltage Vx (the voltage of the signal line DVn ⁇ the self threshold voltage Vx). Further, the detection circuit 22 turns on the switching element SWC1-B of the comparison circuit 26B (see FIG. 10). As a result, the capacitor C2 is charged with a difference between the voltage of the signal line DVn-1 and the self-threshold voltage Vx (voltage of the signal line DVn-1-self-threshold voltage Vx).
  • the detection circuit 22 turns on the switching elements SW1 and SW3L of the signal line V to be detected.
  • the detection circuit 22 turns on the switching element SW1n and the switching element SW3Ln (see FIG. 11).
  • the switching element SW1n is turned on, the signal line Vn and the signal line Lc are connected.
  • the switching element SW3Ln is turned on, the voltage adjustment unit ILn is connected to the signal line Vn.
  • the potential of the signal line Vn is pulled by the voltage adjusting unit ILn, and the disconnection detection current is extracted.
  • the detection circuit 22 turns off the switching element SWC3 of the comparison circuits 26A and 26B (see FIG. 11), sets the voltage of the input Lx of the single inverting amplifier NAMP to the Hi impedance state, and charges the capacitor C1 charged by the above-described initialization operation. C2 charge is stored.
  • the detection circuit 22 turns off the switching element SWC1-A of the comparison circuit 26A and turns on the switching element 2-A.
  • the detection circuit 22 turns off the switching element SWC1-B and turns on the switching element 2-B.
  • the signal line Lc is connected to the capacitors C1 and C2, and the voltage Vn of the signal line Vn is supplied.
  • the detection circuit 22 turns off the switching element SWC1-A of the comparison circuit 26B and turns on the switching element 2-A.
  • the detection circuit 22 turns off the switching element SWC1-B and turns on the switching element 2-B.
  • the signal line Lc is connected to the capacitors C1 and C2, and the voltage Vn of the signal line Vn is supplied.
  • the detection circuit 22 detects the output OUT1 from the comparison circuit 26A and the output OUT2 from the comparison circuit 26B, as in the first and second embodiments.
  • Vx′ ⁇ Vx ⁇ 0 and the output OUT1 H level.
  • Vx′ ⁇ Vx> 0 and the output OUT1 L level.
  • the detection circuit 22 turns on the switching elements SW1 and SW3H of the signal line V to be detected.
  • the detection circuit 22 turns on the switching element SW1n and the switching element SW3Hn (see FIG. 12).
  • the switching element SW1n is turned on, the signal line Vn and the signal line Lc are connected.
  • the switching element SW3Hn is turned on, the voltage adjustment unit IHn is connected to the signal line Vn.
  • a potential is supplied to the signal line Vn from the voltage adjustment unit ILn, and the potential of the signal voltage Vn increases.
  • the detection circuit 22 After charging the capacitors C1 and C2 in the initialization operation, the detection circuit 22 turns off the switching element SWC3 of the comparison circuits 26A and 26B (see FIG. 12), and the voltage of the input Lx of the single inverting amplifier NAMP is set to the Hi impedance. In this state, the charges of the capacitors C1 and C2 charged by the above-described initialization operation are stored.
  • the detection circuit 22 turns off the switching element SWC1-A of the comparison circuit 26A and turns on the switching element 2-A.
  • the detection circuit 22 turns off the switching element SWC1-B and turns on the switching element 2-B.
  • the signal line Lc is connected to the capacitors C1 and C2, and the voltage Vn of the signal line Vn is supplied.
  • the detection circuit 22 turns off the switching element SWC1-A of the comparison circuit 26B and turns on the switching element 2-A.
  • the detection circuit 22 turns off the switching element SWC1-B and turns on the switching element 2-B.
  • the signal line Lc is connected to the capacitors C1 and C2, and the voltage Vn of the signal line Vn is supplied.
  • the detection circuit 22 detects the output OUT1 from the comparison circuit 26A and the output OUT2 from the comparison circuit 26B, as in the first and second embodiments.
  • the signal line Vn is not disconnected, as in the comparison operation 1
  • Vx′ ⁇ Vx ⁇ 0 and the output OUT1 H level.
  • Vx′ ⁇ Vx> 0 and the output OUT1 L level.
  • the comparison operation 1 and the comparison operation 2 are performed.
  • the detection circuit 22 has the output logic (level) of the outputs OUT1 and OUT2 as H and L. If it is reverse logic, it is detected that there is no disconnection.
  • the output logic (level) of the outputs OUT1 and OUT2 is the same in both the comparison operation 1 and the comparison operation 2, but HH and LL are opposite logic in the comparison operation 1 and the comparison operation 2. If it is, it is detected that there is a disconnection.
  • the detection circuit 22 determines that the diagnosis function (comparing circuits 26A and 26B) has failed. Therefore, in the semiconductor circuit 50 including the discharge unit 13, particularly the discharge circuit 51, the disconnection of the signal line Vn at the subsequent stage of the discharge unit 13 (LPF) can be appropriately detected.
  • the disconnection detection and the disconnection detection current are supplied in the state where the disconnection detection current is drawn to the signal line Vn to be detected using the two comparison circuits 26.
  • the disconnection detection and the disconnection detection current are supplied in the state where the disconnection detection current is drawn to the signal line Vn to be detected using the two comparison circuits 26.
  • the configuration of the discharge circuit 51 is not limited to the above-described one as in the first embodiment and the second embodiment.
  • the disconnection of the signal line L is detected based on the logical value (H level, L level) of the output OUT, and the signal line
  • the logical values of the outputs OUT of all the signal lines L are obtained and stored in the storage unit 23. Based on the logical values of the outputs OUT of all the signal lines L stored in the storage unit 23, Presence / absence may be detected and a predetermined measure may be executed.
  • the output OUT is stored in the storage unit 23, and after all the comparison operations are completed, the disconnection is determined based on the logical values of all the output OUT stored in the storage unit 23. Presence / absence may be detected and a predetermined measure may be executed.
  • the detection circuit 22 and the storage unit 23 are provided in the semiconductor circuits 14, 40, and 50. It may be formed (on the chip). Also, a function for instructing the detection circuit 22 to detect a disconnection and a function for monitoring the logical value stored in the storage unit 23 and diagnosing the presence or absence of a disconnection are provided in the semiconductor circuits 14, 40, and 50. Alternatively, it may be formed outside (on another chip).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

 本発明は、放電させるための放電回路が接続された電池に関する信号線の断線を適切に検出する。すなわち、イニシャライズ動作により、比較回路(26)のコンデンサ(C1)に信号線(Vn)の電圧と、自己閾値電圧Vxとの差が充電された状態にし、かつコンデンサ(C2)に信号線(Vn-1)の電圧と、自己閾値電圧(Vx)との差が充電された状態にする。比較動作では、電圧調整部(ILn+1)により、信号線(Ln)から断線検出電流を引き抜き、信号線(Lc)とコンデンサ(C1、C2)とを接続し、コンデンサ(C1、C2)に電圧(DVn)が入力されるようにする。出力OUT=Lレベルならば、断線が無いことを検出し、出力OUT=Hレベルならば、断線が有ることを検出する。

Description

電池監視システム、半導体回路、断線検出プログラム、及び断線検出方法
 本発明は、電池監視システム、半導体回路、断線検出プログラム、及び断線検出方法に関する。特に、本発明は、電池電圧監視用の電池監視システム、半導体回路、断線検出プログラム、及び断線検出方法に関する。
 一般に、ハイブリッド自動車や電気自動車のモータ駆動等に用いられる大容量で高出力なバッテリーとして、複数の電池(電池セル)が直列に接続されたバッテリーが用いられている。このようなバッテリーの具体的一例としては、リチウムイオンバッテリー等が挙げられる。当該バッテリーの電池の電圧を監視・制御するための電池監視システムが知られている。
 従来の電池監視システムは、複数の電池セルを含む電池セル群と、当該電池セル群に含まれる電池セルの電圧を測定・制御する半導体回路と、を備えている。
 当該電池監視システムでは、測定用の半導体回路から得られた各電池セルの電圧情報を元に、電池セル群のセル電圧均等化(各電池セルの電圧値を均等にする)処理や充放電制御(各電池セルの充放電の制御)処理等を行う。このような電池監視システムでは、電池セルと測定用の半導体回路とを接続する信号線等に断線が生じていると、電池監視システムに不具合が発生する場合がある。
 そのため、信号線の断線を検出する技術が知られている(特開2002-343445号公報特開2001-116776号公報、特開2006-29923号公報、特開2004-170335号公報、特開2005-168118号公報、特開2004-104989号公報、特開2006-50784号公報、特開2007-225484号公報、及び特開2008-175804号公報参照)。特に、特開2008-175804号公報には電池セルの電荷を放電するための放電回路が設けられた電池監視システムにおいて、信号線の断線を検出する技術が記載されている。
 しかしながら、特開2002-343445号公報特開2001-116776号公報、特開2006-29923号公報、特開2004-170335号公報、特開2005-168118号公報、特開2004-104989号公報、特開2006-50784号公報、特開2007-225484号公報、及び特開2008-175804号公報に記載の技術では、以下のような問題がある。
 特開2002-343445号公報、特開2001-116776号公報、及び特開2006-29923号公報に記載の技術では、断線を検知するための抵抗を電池セル間に常時接続しなければならない。当該抵抗には、電池セルから常時電流が流れるため、待機時の電流(暗電流)を抑制するためには、抵抗値を大きくする必要がある。しかしながら、抵抗値には限界があるため、暗電流を抑制することは困難である。
 また、特開2004-170335号公報、特開2005-168118号公報、特開2004-104989号公報、及び特開2006-50784号公報に記載の技術では、断線を検知するためには、電池セル間をスイッチで短絡させる動作を必要とする。短絡させることにより、電池セルが過充電状態にない場合であっても放電動作をさせることになるため、電池セル同士の電池電圧をばらつかせる可能性がある。
 またさらに、特開2004-170335号公報、特開2007-225484号公報、及び特開2008-175804号公報記載の技術では、断線の有無を判定するために、電池電圧を測定するために用いられる、電池電圧計測回路及び計測電圧差を演算するための演算装置を必要とする。複数の電圧を電圧計測回路で測定して演算装置で演算しなければならないため、断線検知に時間を要してしまい、当該時間を短縮することが困難である。また、電池電圧計測回路が1つしか設けられていない半導体回路では、断線検知期間中は、通常の電池電圧セルの測定動作を行うことが困難である。
 本発明は、放電させるための放電回路が接続された電池に関する信号線の断線を適切に検出することができる、電池監視システム、半導体回路、断線検出プログラム、及び断線検出方法を提供することを目的とする。
 上記目的を達成するために、本発明の第1の態様は、電池監視システムであって、直列に接続された複数の電池と、複数の電池の各々の高電位側に接続された第1信号線と複数の電池の各々の低電位側に接続された第2信号線とに跨って設けられた抵抗素子と、抵抗素子に直列に接続された放電用スイッチング素子とを含む放電手段と、放電用スイッチング素子が抵抗素子と第2信号線との間に設けられている場合は、第1信号線に接続され、かつ第2信号線の電位よりも低い電位を供給し、放電用スイッチング素子が抵抗素子と第1信号線との間に設けられている場合は、第2信号線に接続され、かつ第1信号線の電位よりも高い電位を供給する、電位調整手段と、抵抗素子と放電用スイッチング素子との間の第1電位と、第1信号線の電位と第2信号線の電位とから設定される閾値と、を比較する比較手段と、を備える。
 本発明の第7の態様は、電池監視システムであって、直列に接続された複数の電池と、複数の電池の各々の高電位側に接続された第1信号線と複数の電池の各々の低電位側に接続された第2信号線とに跨って設けられた抵抗素子と、抵抗素子に直列に接続された放電用スイッチング素子とを含む放電手段と、放電用スイッチング素子が抵抗素子と第2信号線との間に設けられている場合は、第1信号線に接続され、かつ第2信号線の電位よりも低い電位を供給し、放電用スイッチング素子が抵抗素子と第1信号線との間に設けられている場合は、第2信号線に接続され、かつ第1信号線の電位よりも高い電位を供給する、電位調整手段と、放電手段が設けられた第1信号線の放電手段より後段部の後段部電位と、抵抗素子と放電用スイッチング素子との間の第1電位と電池の低電位側に接続された電池に設けられた放電手段の前記抵抗素子と前記放電用スイッチング素子との間の第3電位とから設定される閾値と、を比較する比較手段と、を備える。
 本発明の第12の態様は、半導体回路であって、直列に接続された複数の電池の各々に対して設けられ、複数の電池の各々の高電位側に接続された第1信号線と複数の電池の各々の低電位側に接続された第2信号線とに跨って設けられた抵抗素子と抵抗素子に直列に接続された放電用スイッチング素子とを含む放電手段における放電用スイッチング素子について、放電用スイッチング素子が抵抗素子と第2信号線との間に設けられている場合には、第1信号線に接続されて第2信号線の電位よりも低い電位を供給し、放電用スイッチング素子が前記抵抗素子と第1信号線との間に設けられている場合には、第2信号線に接続されて第1信号線の電位よりも高い電位を供給する電位調整手段と、抵抗素子と放電用スイッチング素子との間の第1電位と、第1信号線の電位と第2信号線の電位とから設定される閾値と、を比較する比較手段と、を備える。
 本発明の第13の態様は、半導体回路であって、直列に接続された複数の電池の各々に対して設けられ、複数の電池の各々の高電位側に接続された第1信号線と複数の電池の各々の低電位側に接続された第2信号線とに跨って設けられた抵抗素子と抵抗素子に直列に接続された放電用スイッチング素子とを含む放電手段における放電用スイッチング素子について、放電用スイッチング素子が抵抗素子と第2信号線との間に設けられている場合には、第1信号線に接続されて第2信号線の電位よりも低い電位を供給し、放電用スイッチング素子が抵抗素子と第1信号線との間に設けられている場合には、第2信号線に接続されて第1信号線の電位よりも高い電位を供給する電位調整手段と、放電手段が設けられた第1信号線の放電手段より後段部の後段部電位と、抵抗素子と放電用スイッチング素子との間の第1電位と電池の低電位側に接続された電池に設けられた放電手段の抵抗素子と放電用スイッチング素子との間の第3電位とから設定される閾値と、を比較する比較手段と、を備える。
 本発明の第14の態様は、電池監視システムであって、直列に接続された複数の電池と、複数の電池の各々の高電位側に接続された第1信号線と複数の電池の各々の低電位側に接続された第2信号線とに跨って設けられた抵抗素子と、抵抗素子に直列に接続された放電用スイッチング素子とを含む放電手段と、第1信号線に接続され、かつ、第2信号線の電位よりも低電位である第1電位調整手段と、第1信号線に接続され、かつ、第1信号線の電位よりも高電位である第2電位調整手段と、放電手段が設けられた第1信号線の放電手段より後段部の後段部電位と、抵抗素子と放電用スイッチング素子との間の第1電位と電池の高電位側に接続された電池に設けられた放電手段の抵抗素子と放電用スイッチング素子との間の第2電位と、から設定される閾値と、を比較する第1比較手段と、後段部電位と、第1電位と電池の低電位側に接続された電池に設けられた放電手段の抵抗素子と放電用スイッチング素子との間の第3電位と、から設定される閾値と、を比較する第2比較手段と、を備える。
 本発明の第17の態様は、半導体回路であって、直列に接続された複数の電池の各々に対して設けられ、複数の電池の各々の高電位側に接続された第1信号線と複数の電池の各々の低電位側に接続された第2信号線とに跨って設けられた抵抗素子と抵抗素子に直列に接続された放電用スイッチング素子とを含む放電手段の、第1信号線に接続され、かつ、第2信号線の電位よりも低電位である第1電位調整手段と、第1信号線に接続され、かつ、第1信号線の電位よりも高電位である第2電位調整手段と、放電手段が設けられた第1信号線の放電手段より後段部の後段部電位と、抵抗素子と放電用スイッチング素子との間の第1電位と電池の高電位側に接続された電池に設けられた放電手段の抵抗素子と放電用スイッチング素子との間の第2電位と、から設定される閾値と、を比較する第1比較手段と、後段部電位と、第1電位と電池の低電位側に接続された電池に設けられた放電手段の抵抗素子と放電用スイッチング素子との間の第3電位と、から設定される閾値と、を比較する第2比較手段と、を備える。
 本発明の第18の態様は、断線検出プログラムであって、本発明の第2の態様から第6の態様のいずれか1つに記載の電池監視システムの第1信号線の断線を検出する処理をコンピュータに実行させるための断線検出プログラムであって、第1コンデンサに、第1信号線の電位とシングル反転増幅器の閾値電圧との差を充電するステップと、第2コンデンサに、第2信号線の電位とシングル反転増幅器の閾値電圧との差を充電するステップと、第1コンデンサ及び第2コンデンサの電荷を保持した状態で、第1コンデンサ及び第2コンデンサに第1電位を入力させるステップと、電位調整手段により、第1信号線の電位を調整するステップと、比較手段から比較結果を出力するステップと、を備えた処理をコンピュータに実行させるためのものである。
 本発明の第19の態様は、断線検出プログラムであって、本発明の第8の態様から第11の態様のいずれか1つに記載の電池監視システムの第1信号線の断線を検出する処理をコンピュータに実行させるための断線検出プログラムであって、第1コンデンサに、第1電位とシングル反転増幅器の閾値電圧との差を充電するステップと、第2コンデンサに、第3電位とシングル反転増幅器の閾値電圧との差を充電するステップと、第1コンデンサ及び第2コンデンサの電荷を保持した状態で、第1コンデンサ及び第2コンデンサに後段部電位を入力させるステップと、電位調整手段により、第1信号線の電位を調整するステップと、比較手段から比較結果を出力するステップと、を備えた処理をコンピュータに実行させるためのものである。
 本発明の第20の態様は、断線検出プログラムであって、本発明の第15の態様または第16の態様に記載の電池監視システムの第1信号線の断線を検出する処理をコンピュータに実行させるための断線検出プログラムであって、第1コンデンサに第2電位と第1シングル反転増幅器の閾値電圧との差を充電するステップと、第2コンデンサに第1電位と第1シングル反転増幅器の閾値電圧との差を充電するステップと、第3コンデンサに第1電位と第2シングル反転増幅器の閾値電圧との差を充電するステップと、第4コンデンサに第3電位と第2シングル反転増幅器の閾値電圧との差を充電するステップと、第1コンデンサ乃至第4コンデンサの電荷を保持した状態で、第1コンデンサ乃至第4コンデンサに後段部電位を入力させるステップと、第1電位調整手段または第2電位調整手段により、第1信号線の電位を調整するステップと、第1比較手段及び第2比較手段から比較結果を出力するステップと、を備えた処理をコンピュータに実行させるためのものである。
 本発明の第21の態様は、断線検出方法であって、本発明の第2の態様から第6の態様のいずれか1つに記載の電池監視システムの第1信号線の断線検出方法あって、第1コンデンサに、第1信号線の電位とシングル反転増幅器の閾値電圧との差を充電する工程と、第2コンデンサに、第2信号線の電位とシングル反転増幅器の閾値電圧との差を充電する工程と、第1コンデンサ及び第2コンデンサの電荷を保持した状態で、第1コンデンサ及び第2コンデンサに第1電位を入力させる工程と、電位調整手段により、第1信号線の電位を調整する工程と、比較手段から比較結果を出力する工程と、を備える。
 本発明の第22の態様は、断線検出方法であって、本発明の第8の態様から第11の態様のいずれか1つに記載の電池監視システムの第1信号線の断線検出方法であって、第1コンデンサに、第1電位とシングル反転増幅器の閾値電圧との差を充電する工程と、第2コンデンサに、第3電位とシングル反転増幅器の閾値電圧との差を充電する工程と、第1コンデンサ及び第2コンデンサの電荷を保持した状態で、第1コンデンサ及び第2コンデンサに後段部電位を入力させる工程と、電位調整手段により、第1信号線の電位を調整する工程と、比較手段から比較結果を出力する工程と、を備える。
 本発明の第23の態様は、断線検出方法であって、本発明の第15の態様または第16の態様に記載の電池監視システムの第1信号線の断線検出方法であって、第1コンデンサに第2電位と第1シングル反転増幅器の閾値電圧との差を充電する方法と、第2コンデンサに第1電位と第1シングル反転増幅器の閾値電圧との差を充電する方法と、第3コンデンサに第1電位と第2シングル反転増幅器の閾値電圧との差を充電する方法と、第4コンデンサに第3電位と前記第2シングル反転増幅器の閾値電圧との差を充電する方法と、第1コンデンサ乃至第4コンデンサの電荷を保持した状態で、第1コンデンサ乃至第4コンデンサに後段部電位を入力させる方法と、第1電位調整手段または第2電位調整手段により、前記第1信号線の電位を調整する方法と、第1比較手段及び第2比較手段から比較結果を出力する方法と、を備える。
 本発明の上記態様によれば、放電させるための放電回路が接続された電池に関する信号線の断線を適切に検出することができる、という効果を奏する。
第1の実施の形態に係る電池監視システムの概略構成の一例を示す回路図である。 第1の実施の形態に係る半導体回路の概略構成の一例を示す回路図である。 第1の実施の形態に係る断線検出動作の流れの一例を示すフローチャートである。 第1の実施の形態に係るイニシャライズ動作における半導体回路の状態を示した回路図である。 第1の実施の形態に係る比較動作における半導体回路の状態を示した回路図である。 第2の実施の形態に係る半導体回路の概略構成の一例を示す回路図である。 第2の実施の形態に係るイニシャライズ動作における半導体回路の状態を示した回路図である。 第2の実施の形態に係る比較動作における半導体回路の状態を示した回路図である。 第3の実施の形態に係る半導体回路の概略構成の一例を示す回路図である。 第3の実施の形態に係るイニシャライズ動作における半導体回路の状態を示した回路図である。 第3の実施の形態に係る比較動作1における半導体回路の状態を示した回路図である。 第3の実施の形態に係る比較動作2における半導体回路の状態を示した回路図である。
 [第1の実施の形態]
 以下、図面を参照して、第1の実施の形態の電池監視システムについて詳細に説明する。
 まず、本実施の形態の電池監視システムの構成について説明する。本実施の形態の電池監視システムの概略構成の一例を図1に示す。図1に示した本実施の形態の電池監視システムは、複数の電池セルを含む電池セル群12と、電池セル群12の各電池セルを放電させる放電部13と、電池セル群12の各電池セルの電圧を測定する半導体回路14と、を備えている。
 放電部13は、放電回路(図2、放電回路51参照、詳細後述)と、LPF(ローパスフィルタ、図2、LPF参照、詳細後述)と、を備えている。
 半導体回路14は、検出回路22、記憶部23、スイッチング素子群24、比較回路26、電圧計測セル選択スイッチ28、及び電圧計測回路30を備えている。
 検出回路22は、比較回路26から出力される出力OUTに基づいて信号線Ln+1~Ln-2の断線の有無を検出するための機能を有する論理回路である。検出回路22は、外部から信号線Ln+1~Ln-2の断線の有無の検出を実行するよう指示を受けると、スイッチング素子群24のオン、オフを制御する制御信号を出力する。
 記憶部23は、比較回路26から出力された出力OUT(Hレベル、Lレベルを示す論理値)を記憶する機能を有する。記憶部23の具体的一例としては、レジスタ等が挙げられる。本実施の形態の検出回路22は、記憶部23に記憶(格納)される論理値に基づいて、信号線Ln+1~Ln-2の断線の有無を検出する。
 図2に本実施の形態の放電部13及び半導体回路14の概略構成の一例を示す。本実施の形態の半導体回路14は、電池セル群12と放電部13(より具体的には放電回路51)との間の信号線Lの断線の有無を検知する機能を有している。なお、本実施の形態では、具体的一例として、電池セル群12は、3つのセルC(Cn-1~Cn+1)を含んでおり、信号線Ln-2~Ln+1により放電部13を介して半導体回路14に接続されている。なお、以下では、3つのセルC(Cn-1~Cn+1)を総称する場合は、セルCという。また、信号線Ln-2~Ln+1を総称する場合は、信号線Lという。また、図2では、検出回路22及び記憶部23の記載を省略している。
 図2に示した本実施の形態の放電部13は、放電回路51及びLPFを備えている。
 放電回路51は、電池セル群12の電池セルCの高電位側と低電位側との間を短絡させて、セルCを放電させる機能を有する。放電回路51は、抵抗素子Rbal、及び抵抗素子Rbalと直列に接続されたスイッチング素子SW(SWn-1~SWn+1、総称する場合は、スイッチング素子SWという)を有している。本実施の形態では、スイッチング素子SWは、具体的一例としてNMOSトランジスタを用いている。スイッチング素子SWは、ドレインがセルCの放電量を制限するための抵抗素子Rbalを介して電池セルCの高電位側の信号線Lに接続されると共に、ソースが電池セルCの低電位側の信号線Lに接続されている。また、スイッチング素子SWは、ゲートが、スイッチング素子SW3に接続されると共に、プルダウン抵抗である抵抗素子Rcbを介して低電位側の信号線Lに接続されている。スイッチング素子SWのゲートがオンすると、セルC間が短絡して電池セルCの電荷が放電される。本実施の形態では、スイッチング素子SWのゲートのオン、オフの制御は、スイッチング素子SW3の電圧調整部IH(詳細後述)により行われている。電圧調整部IHは定電流源であり、電圧調整部IHから電圧が信号線CBに供給されると、スイッチング素子SWのゲートがオンになる。
 なお、放電回路51の構成はこれに限らず例えば、スイッチング素子SWをPMOSトランジスタとし、スイッチング素子SWの一端が当該電池セルの高電位側の信号線Lに接続され、また、抵抗素子Rbalの一端が電池セルCの低電位側の信号線Lに接続されていてもよい。なおこの場合、スイッチング素子のゲートのオン、オフの制御は、スイッチング素子SW3の電圧調整部IL(詳細後述)により行われる。また、詳細を後述する比較動作では、電圧調整部IHにより、低電位側の信号線Lに高電位側の信号線よりも高い電圧を供給する。
 LPFは、高周波成分をカットすることにより、電池セル群12の各セルCで発生した急峻な電圧変動を抑制する機能を有する。LPFは各セルCの高電位側の信号線Lに接続されている。
 図2に示した半導体回路14は、スイッチング素子群24、比較回路26、電圧計測セル選択スイッチ28、及び電圧計測回路30を備えている。スイッチング素子群24は、スイッチング素子SW1、スイッチング素子SW2L、SW2H、及び電圧調整部IH、ILを含むスイッチング素子SW3、を備えている。
 半導体回路14は、信号線L、信号線V、信号線CB、及び信号線DVを有している。信号線Lは、電池セル群12と放電部13とを接続する。信号線Vは、LPFと電圧計測セル選択スイッチ28とを接続する。信号線CBは、放電回路51のスイッチング素子SWのゲートとスイッチング素子SW3とを接続する。信号線DVは、セルCの高電位側の信号線Lとスイッチング素子SW1とを抵抗素子Rbalを介して接続する。
 電圧計測セル選択スイッチ28は、複数の内部スイッチング素子(図示省略)を備えている。選択スイッチ28は、内部スイッチング素子を切り替えて、電池電圧の測定・監視を行う対象のセルCの高電位側の電圧(信号線L)と低電位側の電圧(信号線L)とを選択する機能を有する。電圧計測回路30は、電圧計測セル選択スイッチ28により選択された電圧に基づいて、セルCの電池電圧を計測する機能を有する。
 スイッチング素子SW1は、信号線DVと信号線Lcとを接続する機能を有する。スイッチング素子SW1は、検出回路22からの制御信号に基づいて、断線検出を行う対象の信号線Lと信号線Lcとを接続する。スイッチング素子SW1は、各信号線L毎にスイッチング素子SW1(SW1n-2~SW1n+1)が設けられている。なお、以下では、スイッチング素子SW1(SW1n-2~SW1n+1)を総称する場合は、スイッチング素子SW1という。
 スイッチング素子SW2L(SW2Ln-2~SW2Ln+1)、及びスイッチング素子SW2H(SW2Hn-2~SW2Hn+1)は、各信号線V毎に設けられている。なお、以下では、スイッチング素子SW2L(SW2Ln-2~SW2Ln+1)を総称する場合は、スイッチング素子SW2Lという。また、スイッチング素子SW2H(SW2Hn-2~SW2Hn+1)を総称する場合は、スイッチング素子SW2Hという。スイッチング素子SW2Lは、検出回路22からの制御信号に基づいて、信号線Vと信号線Lilとを接続する機能を有する。また、スイッチング素子SW2Hは、検出回路22からの制御信号に基づいて、信号線Vと信号線Lihとを接続する機能を有する。
 スイッチング素子SW3は、スイッチング素子SW3H(SW3Hn-1~SW3Hn+1)、スイッチング素子SW3L(SW3Ln-1~SW3Ln+1)、及び定電流源である電圧調整部IH、ILを備えている。なお、以下では、スイッチング素子SW3H(SW3Hn-1~SW3Hn+1)を総称する場合は、スイッチング素子SW3Hという。また、スイッチング素子SW3L(SW3Ln-1~SW3Ln+1)を総称する場合は、スイッチング素子SW3Lという。また、電圧調整部IH、ILも同様に、総称する場合は、個々を示す符号を省略して記載する。スイッチング素子SW3H、SW3L、及び電圧調整部IH、ILは、各信号線CB毎に設けられている。
 スイッチング素子SW3Lは、検出回路22からの制御信号に基づいて、信号線CBと電圧調整部ILとを接続する機能を有している。また、スイッチング素子SW3Lは、信号線Lよりも低電圧が供給される信号線Lの当該低電圧よりも低い電圧を信号線Lに供給する機能を有している。具体的には、例えば、信号線Lnにスイッチング素子SW3Lnにより接続される電圧調整部ILnは、信号線Ln-1に供給される電源電圧よりも低電圧を信号線Lnに供給する。
 スイッチング素子SW3Hは、信号線CBと電圧調整部IHとを接続する機能を有している。スイッチング素子SW3Hは、セルCの放電を行う場合に、オンされ、電圧調整部IHからスイッチング素子SWのゲートに電圧を印加させる。
 また、本実施の形態の比較回路(コンパレータ)26は、チョッパ型コンパレータを用いている。比較回路26は、スイッチング素子SWC1-A、SWC2-A、SWC1-B、SWC2-B、コンデンサC1、C2、スイッチング素子SWC3、自己閾値電圧Vxのシングル反転増幅器NAMP、及びラッチ回路(Latch)32を備えている。
 スイッチング素子SWC1-Aは、信号線LihをコンデンサC1に接続する機能を有している。スイッチング素子SWC2-Aは、信号線LcをコンデンサC1に接続する機能を有している。また、スイッチング素子SWC1-Bは、信号線LilをコンデンサC2に接続する機能を有している。スイッチング素子SWC2-Bは、信号線LcをコンデンサC2に接続する機能を有している。
 ラッチ回路32は、シングル反転増幅器NAMPの出力電圧から論理値(Hレベル及びLレベル)を確定して出力する機能を有している。
 次に、本実施の形態の断線検出動作について説明する。本実施の形態の断線検出動作は、検出回路22における断線検出プログラムの実行等により制御される。一般に、このような電池監視システム10等では、半導体回路等の回路と回路とを接続する信号線や、接続のための端子(パッド)等の箇所で断線が生じやすくなっている。そこで、本実施の形態では、具体的一例として、電池セル群12と放電部13との間の信号線Lnの断線(図2、4、及び5の「×」印参照)を検出する場合の断線検出動作について詳細に説明する。本実施の形態の断線検出動作は、イニシャライズ動作と、比較動作(本実施の形態では、診断動作を含む)と、にわけられる。
 本実施の形態の断線検出動作全体の流れの一例のフローチャートを図3に示す。また、図4には、イニシャライズ動作における半導体回路14の状態を示した回路図を示す。図5には、比較動作における半導体回路14の状態を示した回路図を示す。
 ステップ100では、検出回路22は、断線を検出する信号線Lのスイッチング素子SW1、SW2H、低電位側の信号線Lのスイッチング素子SW2Lをオンにする。具体的一例として、検出回路22は、スイッチング素子SW1n、SW2Hnをオンにすると共に、スイッチング素子SW2Ln-1をオンにする(図4参照)。スイッチング素子SW1nがオンになることにより、抵抗素子Rbalを介して、信号線Lnと信号線Lcとが接続される。また、スイッチング素子SW2Hnがオンになることにより、LPFの信号線Vnと信号線Lihとが接続される。また、スイッチング素子SW2Ln-1がオンになることにより、信号線Vn-1と信号線Lilとが接続される。
 次のステップ102では、検出回路22は、比較回路26のスイッチング素子SWC3をオンにする。これにより、比較回路26のシングル反転増幅器NAMPの入力信号線Lxの電圧は、シングル反転増幅器NAMPの自己閾値電圧Vxになる。
 次のステップ104では、検出回路22は、比較回路26のスイッチング素子SWC1-Aをオンにする(図4参照)。これにより、コンデンサC1には、信号線Vnの電圧と、自己閾値電圧Vxとの差(信号線Vnの電圧-自己閾値電圧Vx)が充電された状態になる。また、比較回路26のスイッチング素子SWC1-Bをオンにする(図4参照)。これにより、コンデンサC2には、信号線Vn-1の電圧と、自己閾値電圧Vxとの差(信号線Vn-1の電圧-自己閾値電圧Vx)が充電された状態になる。
 なお、当該ステップ100~104が本実施の形態のイニシャライズ動作に該当する。
 イニシャライズ動作が終了すると次のステップ106では、検出回路22は、検出する信号線Lの高電位側のスイッチング素子SW3Lをオンにする。具体的一例として、検出回路22は、スイッチング素子SW3Ln+1をオンにする(図5参照)。これにより、電圧調整部ILn+1が信号線CBn+1に接続される。なお、この際、スイッチング素子SW3Hn+1はオフであるため、スイッチング素子SWn+1のゲートはオフになっている。これにより、スイッチング素子SWn+1のゲートのプルダウン抵抗素子Rcbを介して信号線Lnの電位が、電圧調整部ILn+1に引っ張られ、断線検出電流が引き抜かれる。
 次のステップ108では、検出回路22は、比較回路26のスイッチング素子SWC3をオフにする(図5参照)。これにより、シングル反転増幅器NAMPの入力Lxの電圧は、Hiインピーダンス状態になり、上述のイニシャライズ動作で充電されたコンデンサC1、C2の電荷が保存された状態になる。
 次のステップ110では、検出回路22は、比較回路26のスイッチング素子SWC1-Aをオフにすると共に、スイッチング素子SWC2-Aをオンにする。また、検出回路22は、スイッチング素子SWC1-Bをオフにすると共に、スイッチング素子SWC2-Bをオンにする。このときのコンデンサC1の電荷を電荷Q1、静電容量を静電容量C1、コンデンサC2の電荷を電荷Q2、及び静電容量を静電容量C2とすると、電荷Q1、Q2は、以下の(1)、(2)式で表される。
 Q1=C1(Vn-Vx) ・・・(1)
 Q2=C2(V(n-1)-Vx) ・・・(2)
 さらに、入力信号線Lxの電圧を電圧Vx’とすると、コンデンサC1、C2の合成容量から、以下の(3)式のようになる。
 (C1+C2)(Lc-Vx’)=C1(Vn-Vx)+C2(V(n-1)-Vx) ・・・(3)
 従って、以下の(4)式のようになる。
 Vx’-Vx=(Lc-V(n-1))-C1/(C1+C2)×(Vn-V(n-1)) ・・・(4)
 スイッチング素子SWnが上述のようにオフ状態であるため、スイッチング素子SWnのドレイン側の信号線DVnの電圧は、信号線Lnの電圧と等しく、信号線Lcの電圧となる。
 ここで、シングル反転増幅器NAMPの出力電圧をVnampout、利得をGnampとすると、以下の(5)式となる。
 Vnampout=-Gnamp×(Vx’-Vx) ・・・(5)
 利得Gnampが充分に高い場合、シングル反転増幅器NAMPの出力論理は、電圧Vx’-自己閾値電圧Vxの正負で決定する。
 信号線Lnが断線していない場合は、信号線Lnから電圧調整部ILn+1により引き抜かれる断線検出電流(電圧)は、セルCから供給されるため、信号線Lcの電圧は、信号線Lnの電圧のまま、変化しない。従って、(6)式のようになる。
 Vx’-Vx=(Lc-V(n-1))-C1/(C1+C2)×(Vn-V(n-1))>0 ・・・(6)
 これにより、比較回路26の出力OUT=Lレベルになる。
 一方、信号線Lnが断線している場合は、信号線LcはLPFを介して、信号線Vnと接続された状態になる。LPFの抵抗をRlpfとすると、断線検出電流が引き抜かれている信号線Lcの電圧は、断線検出電流をILn+1とすると、(7)式のようになる。
 Lc=Vn-IL(n+1)×Rlpf ・・・(7)
 ここで、以下の(8)式の関係を満たすように、断線検出電流を設定しておけば、以下の(9)式のようになり、比較回路26の出力OUT=Hレベルになる。
 ILn+1×Rlpf>(Lc-V(n-1))-C1/(C1+C2)×(Vn-V(n-1))(=セルCnの電池電圧×C2/(C1+C2)) ・・・(8)
 Vx’-Vx=(Lc-V(n-1))-C1/(C1+C2)×(Vn-V(n-1))<0 ・・・(9)
 次のステップ112では、検出回路22は、比較回路26より出力された出力OUTを検出する。次のステップ114では、検出回路22は、出力OUTがHレベルか、Lレベルかを判断する。Lレベルの場合は、ステップ116へ進み、上述の通り、断線が無いことを検出した後、ステップ122へ進む。一方、Hレベルの場合は、ステップ118へ進み、上述の通り、断線が有ることを検出し、断線が有る場合は、ステップ120へ進み、例えば、電池監視システム10の動作を停止する等、所定の措置を行った後、ステップ122へ進む。
 ステップ122では、検出回路22は、全部の信号線Lに対して、ステップ100~120の動作を行ったか否か判断し、行っていなければ、ステップ100に戻り、本動作を繰り返す。一方、全部の信号線Lに対して行った場合は、全部の信号線Lの断線検出動作が終了したため、本処理を終了する。
 本実施の形態では、出力OUTの結果が、表1のようになる。
Figure JPOXMLDOC01-appb-T000001
 
 以上説明したように、本実施の形態の半導体回路14では、信号線Lnの断線検出を行う場合は、イニシャライズ動作により、比較回路26のコンデンサC1に信号線Vnの電圧と、自己閾値電圧Vxとの差(信号線Vn-自己閾値電圧Vx)が充電された状態にする。また、半導体回路14では、コンデンサC2に信号線Vn-1の電圧と、自己閾値電圧Vxとの差(信号線Vn-1-自己閾値電圧Vx)が充電された状態にする。比較動作では、電圧調整部ILn+1により、信号線Lnから断線検出電流を引き抜き、信号線LcとコンデンサC1、C2とを接続することにより、コンデンサC1、C2に電圧DVnが入力されるようにして、出力OUT=Lレベルならば、断線が無いことを検出し、出力OUT=Hレベルならば、断線が有ることを検出する。
 このように本実施の形態の半導体回路14では、スイッチング素子SW1が、放電回路51の抵抗素子Rbalとスイッチング素子SWnとの間のノードと、信号線Lcとを接続するように設けられている。スイッチング素子SW2Lが、LPFの後段側の信号線Vn-1と信号線Lilとを接続するように設けられている。スイッチング素子SW2Hが、LPFの後段側の信号線Vnと信号線Lihとを接続するように設けられている。さらに、スイッチング素子3Ln+1が、抵抗素子Rcbを介して信号線Lnに接続された信号線CBn+1と電圧調整部ILn+1とを接続するように設けられている。
 従って、放電部13、特に放電回路51を備えた半導体回路14において、電池セル群12と放電部13(放電回路51)との間の信号線Lの断線の検出を適切に行える。
 また、電圧調整部ILは、常時、信号線L(信号線CB、抵抗素子Rcbを介して)に接続されるのではなく、断線を検出する期間のみ信号線Lに接続するため、電圧調整部ILから電流が常時流れ込むことがなく、待機時の電流(暗電流)が発生することがない、という効果が得られる。
 また、断線検出電流は、上述の(8)式を満たすように設定すればよいため、セルC間をスイッチング素子SWで短絡させた場合の放電電流よりも極力小さくすることができる。従って、セルCの電池電圧のばらつきが生じにくくなる。
 また、比較回路26により、適切に断線の検出を行うことができるため、電圧計測セル選択スイッチ28及び電圧計測回路30や計測した電圧の差を演算するための演算装置等を使用することなく、断線の検出が行える。従って、電圧計測セル選択スイッチ28及び電圧計測回路30を使用して、セルCの電池電圧を測定する動作の期間中であっても、断線検出を行うことができる、という効果が得られる。すなわち、電圧計測回路30が1つの電池監視システム10であり、断線検知を行っている期間中であっても、通常のセルCの電池電圧を測定することができる。
 また、本実施の形態では、電圧調整部ILが放電回路51のスイッチング素子SWのゲートに電圧を供給してオン、オフを制御するための電圧調整部IHと共に設けられているため、別途に設ける必要がなく、電池監視システム10の規模の拡大の防止等の効果が得られる。
 [第2の実施の形態]
 以下、図面を参照して本発明の第2の実施の形態の電池監視システムにおける半導体回路について説明する。第1の実施の形態では、電池セル群12とLPFとの間の信号線L(LPFの前段)の断線の検出を行う場合の半導体回路14について詳細に説明したが、本実施の形態では、放電部13(LPF)と、半導体回路40との間(LPFの後段)の信号線Vの断線(図6~8の「×」印参照)の検出を行う場合の半導体回路40及びその動作について詳細に説明する。
 図6に、本実施の形態の半導体回路40の概略構成の一例を示す。なお、本実施の形態において、第1の実施の形態と略同様の構成、及び動作については、その旨を記載し、詳細な説明を省略する。
 本実施の形態の半導体回路40は、LPFの後段との信号線Vの断線を検出するため、スイッチング素子SW1が、信号線Vと信号線Lcとを接続するように信号線Vn毎に設けられていると共に、信号線Vから断線検出電流を引き抜くように、スイッチング素子SW3が、信号線Vn毎に設けられている。また、スイッチング素子SW2Lが、信号線DVと信号線Lilとを接続するように信号線DV毎に設けられていると共に、スイッチング素子SW2Hが、信号線DVと信号線Lihとを接続するように信号線DV毎に設けられている。
 本実施の形態では、放電部13の放電回路51のスイッチング素子SWのゲートは、別途、制御されるようになっている。断線検出動作を行う際には、少なくとも、断線検出動作に使用する各信号線が接続されているスイッチング素子SWのゲートはオフになっている。
 次に本実施の形態における断線検出動作全体について説明する。断線検出動作全体の流れは、第1の実施の形態と略同様のため、ここでは、第1の実施の形態で示したフローチャート(図3)を参照して説明する。なお、図7には、イニシャライズ動作における半導体回路40の状態を示した回路図を示す。図8には、比較動作における半導体回路40の状態を示した回路図を示す。
 ステップ100では、検出回路22は、断線を検出する信号線Lのスイッチング素子SW1、SW2H、低電位側の信号線Lのスイッチング素子SW2Lをオンにする。具体的一例として、検出回路22は、スイッチング素子SW1n、SW2Hnをオンにすると共に、スイッチング素子SW2Ln-1をオンにする(図7参照)。スイッチング素子SW1nがオンになることにより、信号線Vnと信号線Lcとが接続される。また、スイッチング素子SW2Hnがオンになることにより、信号線DVnと信号線Lihとが接続される。また、スイッチング素子SW2Ln-1がオンになることにより、信号線DVn-1と信号線Lilとが接続される。
 次のステップ102では、検出回路22は、比較回路26のスイッチング素子SWC3をオンにする。これにより、比較回路26のシングル反転増幅器NAMPの入力信号線Lxの電圧は、シングル反転増幅器NAMPの自己閾値電圧Vxになる。
 次のステップ104では、検出回路22は、比較回路26のスイッチング素子SWC1-Aをオンにする(図7参照)。これにより、コンデンサC1には、信号線DVnの電圧と、自己閾値電圧Vxとの差(信号線DVnの電圧-自己閾値電圧Vx)が充電された状態になる。また、検出回路22は、比較回路26のスイッチング素子SWC1-Bをオンにする(図7参照)。これにより、コンデンサC2には、信号線DVn-1の電圧と、自己閾値電圧Vxとの差(信号線DVn-1の電圧-自己閾値電圧Vx)が充電された状態になる。
 なお、当該ステップ100~104が本実施の形態のイニシャライズ動作に該当する。
 イニシャライズ動作が終了すると次のステップ106では、検出回路22は、検出する信号線Lのスイッチング素子SW3Lをオンにする。具体的一例として、検出回路22は、スイッチング素子SW3Lnをオンにする(図8参照)。これにより、電圧調整部ILnが信号線Vnに接続される。これにより、信号線Vnの電位が、電圧調整部ILnに引っ張られ、断線検出電流が引き抜かれる。
 次のステップ108では、検出回路22は、比較回路26のスイッチング素子SWC3をオフにする(図8参照)。これにより、シングル反転増幅器NAMPの入力Lxの電圧は、Hiインピーダンス状態になり、上述のイニシャライズ動作で充電されたコンデンサC1、C2の電荷が保存された状態になる。
 次のステップ110では、検出回路22は、比較回路26のスイッチング素子SWC1-Aをオフにすると共に、スイッチング素子SWC2-Aをオンにする。また、検出回路22は、スイッチング素子SWC1-Bをオフにすると共に、スイッチング素子SWC2-Bをオンにする。このときのコンデンサC1の電荷を電荷Q1、静電容量を静電容量C1、コンデンサC2の電荷を電荷Q2、及び静電容量を静電容量C2とすると、電荷Q1、Q2は、以下の(10)、(11)式で表される。
 Q1=C1(DVn-Vx) ・・・(10)
 Q2=C2(DV(n-1)-Vx) ・・・(11)
 さらに、入力信号線Lxの電圧を電圧Vx’とすると、コンデンサC1、C2の合成容量から、以下の(12)式のようになる。
 (C1+C2)(Lc-Vx’)=C1(DVn-Vx)+C2(DV(n-1)-Vx) ・・・(12)
 従って、以下の(13)式のようになる。
 Vx’-Vx=(Lc-DV(n-1))-C1/(C1+C2)×(DVn-DV(n-1)) ・・・(13)
 スイッチング素子SWnはオフ状態であるため、スイッチング素子SWnのドレイン側の信号線DVnの電圧は、信号線Lnの電圧と等しくなる。
 ここで、シングル反転増幅器NAMPの出力電圧をVnampout、利得をGnampとすると、上述の(5)式となるため、利得Gnampが充分に高い場合、シングル反転増幅器NAMPの出力論理は、電圧Vx’-自己閾値電圧Vxの正負で決定する。
 信号線Vnが断線していない場合は、信号線Vnから電圧調整部ILnにより引き抜かれる断線検出電流(電圧)は、セルCから供給されるため、信号線Lcの電圧は、信号線Vnの電圧のまま、変化しない。従って、(14)式のようになる。
 Vx’-Vx=(Lc-DV(n-1))-C1/(C1+C2)×(DVn-DV(n-1))>0 ・・・(14)
 これにより、比較回路26の出力OUT=Lレベルになる。
 一方、信号線Vnが断線している場合は、信号線Lcはスイッチング素子SW1n、SW3Lnにより、電圧調整部ILnと接続された状態になる。断線検出電流が引き抜かれている信号線Lcの電圧は、断線検出電流をILnとすると、(15)式のようになる。
 Lc=Vn-ILn ・・・(15)
 ここで、以下の(16)式の関係を満たすように、断線検出電流を設定しておけば、以下の(17)式のようになり、比較回路26の出力OUT=Hレベルになる。
 ILn>(Lc-DV(n-1))-C1/(C1+C2)×(DVn-DV(n-1))(=セルCnの電池電圧×C2/(C1+C2)) ・・・(16)
 Vx’-Vx=(Lc-DV(n-1))-C1/(C1+C2)×(DVn-DV(n-1))<0 ・・・(17)
 次のステップ112では、検出回路22は、比較回路26より出力された出力OUTを検出する。次のステップ114では、検出回路22は、出力OUTがHレベルか、Lレベルかを判断する。Lレベルの場合は、ステップ116へ進み、上述の通り、断線が無いことを検出した後、ステップ122へ進む。一方、Hレベルの場合は、ステップ118へ進み、上述の通り、断線が有ることを検出し、断線が有る場合は、ステップ120へ進み、所定の措置を行った後、ステップ122へ進む。
 ステップ122では、検出回路22は、全部の信号線Vに対して、ステップ100~120の動作を行ったか否か判断し、行っていなければ、ステップ100に戻り、本動作を繰り返す。一方、全部の信号線Vに対して行った場合は、全部の信号線Vの断線検出動作が終了したため、本処理を終了する。
 本実施の形態では、出力OUTの結果が、表2のようになる。
Figure JPOXMLDOC01-appb-T000002
 
 以上説明したように、本実施の形態の半導体回路40では、LPFの後段側である信号線Vnの断線検出を行う場合は、イニシャライズ動作により、比較回路26のコンデンサC1に信号線DVn+1の電圧と、自己閾値電圧Vxとの差(信号線DVn-自己閾値電圧Vx)が充電された状態にする。また、コンデンサC2に信号線DVn-1の電圧と、自己閾値電圧Vxとの差(信号線DVn-1-自己閾値電圧Vx)が充電された状態にする。比較動作では、電圧調整部ILnにより、信号線Vnから断線検出電流を引き抜き、信号線LcとコンデンサC1、C2とを接続することにより、コンデンサC1、C2に電圧DVnが入力されるようにして、出力OUT=Lレベルならば、断線が無いことを検出し、出力OUT=Hレベルならば、断線が有ることを検出する。
 このように本実施の形態の半導体回路14では、スイッチング素子SW1が、信号線Vnと信号線Lcとを接続するように設けられている。スイッチング素子SW2Ln-1が、放電回路51の抵抗素子Rbalとスイッチング素子SWn-1との間のノードと、信号線Lilとを接続するように設けられている。スイッチング素子SW2Hnが、放電回路51の抵抗素子Rbalとスイッチング素子SWnとの間のノードと信号線Lihとを接続するように設けられている。さらに、スイッチング素子3Lnが、信号線Vnと電圧調整部ILnとを接続するように設けられている。
 従って、放電部13、特に放電回路51を備えた半導体回路40において、放電部13(LPF)の後段の信号線Vnの断線の検出を適切に行える。
 なお、本実施の形態では、電圧調整部IL(及びIH)がLPFの後段に設けられているため、断線検出を行う際に、LPFの影響(抵抗Rlpf)等を考慮する必要がないため、断線検出精度が高められる。
 また、第1の実施の形態と同様の効果が得られることは言うまでもない。
 すなわち、電圧調整部ILは、常時、信号線Vに接続されるのではなく、断線を検出する期間のみ信号線Vに接続するため、電圧調整部ILから電流が常時流れ込むことがなく、待機時の電流(暗電流)が発生することがない、という効果が得られる。
 断線検出電流は、上述の(16)式を満たすように設定すればよいため、セルC間をスイッチング素子SWで短絡させた場合の放電電流よりも極力小さくすることができる。従って、セルCの電池電圧のばらつきが生じにくくなる。
 また、比較回路26により、適切に断線の検出を行うことができるため、電圧計測セル選択スイッチ28及び電圧計測回路30や計測した電圧の差を演算するための演算装置等を使用することなく、断線の検出が行える。従って、電圧計測セル選択スイッチ28及び電圧計測回路30を使用して、セルCの電池電圧を測定する動作の期間中であっても、断線検出を行うことができる、という効果が得られる。すなわち、電圧計測回路30が1つの電池監視システム10であり、断線検知を行っている期間中であっても、通常のセルCの電池電圧を測定することができる。
 また、本実施の形態では、電圧調整部ILが放電回路51のスイッチング素子SWのゲートに電圧を供給してオン、オフを制御するための電圧調整部IHと共に設けられているため、別途に設ける必要がなく、電池監視システム10の規模の拡大の防止等の効果が得られる。
 なお、本実施の形態では、スイッチング素子SW3の電圧調整部ILnにより信号線Vnの電位を引き抜くことにより断線の検出を行う場合を説明したがこれに限らない。例えば、電圧調整部IHnより信号線Vnに電圧を供給することにより、信号線Vnの断線の検出を行うようにしてもよい。この場合、上述と略同様の断線検出方法により断線検出を行えばよい。具体的には、イニシャライズ動作でスイッチング素子SW2Hn+1をオンにして比較回路26のコンデンサC1に(DVn+1-Vx)を充電し、スイッチング素子SW2Lnをオンにして比較回路26のコンデンサC2に(DVn-Vx)を充電する。さらに、比較動作では、スイッチング素子SW1nをオンにし、信号線Lcと信号線Vnとが接続された状態で、電圧調整部SW3Hnをオンにして信号線Vnに電圧を供給する。このようにして比較回路26から出力された出力結果に基づいて断線の有無を検出すればよい。なお、電圧調整部IL及び電圧調整部IHの両者を使用して信号線Vの断線の有無を検出することにより、より精度が高い断線検出を行うことができるが、一方のみを使用する場合は、他方の電圧調整部を設けないようにしてもよい。
 なお、本実施の形態においても、第1の実施の形態と同様に、放電回路51の構成は上述のものに限定されない。
 [第3の実施の形態]
 以下、図面を参照して本発明の第3の実施の形態の電池監視システムにおける半導体回路について説明する。本実施の形態は、第2の実施の形態と同様に、放電部13(LPF)と、半導体回路50との間(LPFの後段)の信号線Vの断線(図9~12の「×」印参照)の検出を行うものである。しかしながら、本実施の形態の半導体回路50は、第1の実施の形態及び第2の実施の形態と異なり、比較回路26を2つ(比較回路26A、26B)備えている。
 図9に、本実施の形態の半導体回路50の概略構成の一例を示す。なお、本実施の形態において、第1の実施の形態及び第2の実施の形態と略同様の構成、及び動作については、その旨を記載し、詳細な説明を省略する。
 本実施の形態の半導体回路50は、スイッチング素子SW2Mが信号線DV毎に設けられている(SW2Mn-2~SW2LM+1、総称する場合は、スイッチング素子SW2Mという。)。スイッチング素子SW2Mは、検出回路22からの制御信号に基づいて、信号線DVn+1と信号線Limとを接続する機能を有する。また、スイッチング素子SW2Hは、検出回路22からの制御信号に基づいて、信号線Vと信号線Lihとを接続する機能を有する。
 また、半導体回路50は、上述のように、比較回路26を2つ(比較回路26A、26B)備えている。なお、本実施の形態では、一例として、構成が同様のチョッパ型コンパレータを用いている。
 比較回路26AのコンデンサC1には、信号線Lihがスイッチング素子C1-Aにより接続されると共に、信号線Lcがスイッチング素子SWC2-Aにより接続される。また、コンデンサC2には、信号線Limがスイッチング素子C1-Bにより接続されると共に、信号線Lcがスイッチング素子SWC2-Bにより接続される。
 一方、比較回路26BのコンデンサC1には、信号線Limがスイッチング素子C1-Aにより接続されると共に、信号線Lcがスイッチング素子SWC2-Aにより接続される。また、コンデンサC2には、信号線Lilがスイッチング素子C1-Bにより接続されると共に、信号線Lcがスイッチング素子SWC2-Bにより接続される。
 次に本実施の形態における断線検出動作全体について説明する。断線検出動作の流れは、第2の実施の形態と略同様であるが、本実施の形態では、1種類のイニシャライズ動作と、2種類の比較動作(比較動作1及び比較動作2)がある。基本動作は、第1の実施の形態及び第2の実施の形態と略同様なため、ここでは、フローチャートの記載を省略する。なお、図10には、イニシャライズ動作における半導体回路50の状態を示した回路図を示す。図11には、比較動作1における半導体回路50の状態を示す。図12には、比較動作2における半導体回路50の状態を示した回路図を示す。
 イニシャライズ動作では、高電位側の信号線DVのスイッチング素子2H、検出する信号線に応じた信号線DVのスイッチング素子2M、及び低電位側の信号線DVnのスイッチング素子SW2Lを、オンにする。具体的一例として、検出回路22は、スイッチング素子SW2Hn+1、SW2Mn、SW2Ln-1をオンにする(図10参照)。スイッチング素子SW2Hn+1がオンになることにより、信号線DVn+1と信号線Lihとが接続される。また、スイッチング素子2Mnがオンになることにより、信号線DVnと信号線Limとが接続される。スイッチング素子SW2Ln-1がオンになることにより、信号線DVn-1と信号線Lilとが接続される。
 さらに比較回路26A、26Bのスイッチング素子SWC3をオンにすることにより、比較回路26のシングル反転増幅器NAMPの入力信号線Lxの電圧は、シングル反転増幅器NAMPの自己閾値電圧Vxになる。
 検出回路22は、比較回路26Aのスイッチング素子SWC1-Aをオンにする(図10参照)。これにより、比較回路26AのコンデンサC1には、信号線DVn+1の電圧と、自己閾値電圧Vxとの差(信号線DVn+1の電圧-自己閾値電圧Vx)が充電された状態になる。また、検出回路22は、比較回路26Aのスイッチング素子SWC1-Bをオンにする(図10参照)。これにより、コンデンサC2には、信号線DVnの電圧と、自己閾値電圧Vxとの差(信号線DVnの電圧-自己閾値電圧Vx)が充電された状態になる。
 一方、検出回路22は、比較回路26Bのスイッチング素子SWC1-Aをオンにする(図10参照)。これにより、比較回路26BのコンデンサC1には、信号線DVnの電圧と、自己閾値電圧Vxとの差(信号線DVnの電圧-自己閾値電圧Vx)が充電された状態になる。また、検出回路22は、比較回路26Bのスイッチング素子SWC1-Bをオンにする(図10参照)。これにより、コンデンサC2には、信号線DVn-1の電圧と、自己閾値電圧Vxとの差(信号線DVn-1の電圧-自己閾値電圧Vx)が充電された状態になる。
 このようにしてイニシャライズ動作が終了すると比較動作に移行する。まず、比較動作1について説明する。
 検出回路22は、検出する信号線Vのスイッチング素子SW1及びSW3Lをオンにする。具体的一例として、検出回路22は、スイッチング素子SW1n及びスイッチング素子SW3Lnをオンにする(図11参照)。スイッチング素子SW1nがオンになることにより、信号線Vnと信号線Lcとが接続される。また、スイッチング素子SW3Lnがオンになることにより、電圧調整部ILnが信号線Vnに接続される。これにより、信号線Vnの電位が、電圧調整部ILnに引っ張られ、断線検出電流が引き抜かれる。
 検出回路22は、比較回路26A、26Bのスイッチング素子SWC3をオフにし(図11参照)、シングル反転増幅器NAMPの入力Lxの電圧をHiインピーダンス状態にして、上述のイニシャライズ動作で充電されたコンデンサC1、C2の電荷が保存された状態にする。
 検出回路22は、比較回路26Aのスイッチング素子SWC1-Aをオフにすると共に、スイッチング素子2-Aをオンにする。また、検出回路22は、スイッチング素子SWC1-Bをオフにすると共に、スイッチング素子2-Bをオンにする。これにより、コンデンサC1及びC2には、信号線Lcが接続され、信号線Vnの電圧Vnが供給される。
 同様に検出回路22は、比較回路26Bのスイッチング素子SWC1-Aをオフにすると共に、スイッチング素子2-Aをオンにする。また、検出回路22は、スイッチング素子SWC1-Bをオフにすると共に、スイッチング素子2-Bをオンにする。これにより、コンデンサC1及びC2には信号線Lcが接続され、信号線Vnの電圧Vnが供給される。
 この状態で、検出回路22は、第1の実施の形態及び第2の実施の形態と同様に、比較回路26Aからの出力OUT1と、比較回路26Bからの出力OUT2とを検出する。信号線Vnに断線が生じていない場合、比較回路26Aでは、Vx’-Vx<0となり、出力OUT1=Hレベルになる。また、比較回路26Bでは、Vx’-Vx>0となり、出力OUT1=Lレベルになる。
 一方、断線が生じている場合は、比較回路26A、26BいずれもVx’-Vx<0となり、出力OUT1=Hレベルになる。
 さらに、比較動作2について説明する。
 検出回路22は、検出する信号線Vのスイッチング素子SW1及びSW3Hをオンにする。具体的一例として、検出回路22は、スイッチング素子SW1n及びスイッチング素子SW3Hnをオンにする(図12参照)。スイッチング素子SW1nがオンになることにより、信号線Vnと信号線Lcとが接続される。また、スイッチング素子SW3Hnがオンになることにより、電圧調整部IHnが信号線Vnに接続される。これにより、信号線Vnに、電圧調整部ILnから電位が供給され、信号電Vnの電位が上昇する。
 イニシャライズ動作において各コンデンサC1、C2の充電を行った後、検出回路22は、比較回路26A、26Bのスイッチング素子SWC3をオフにし(図12参照)、シングル反転増幅器NAMPの入力Lxの電圧をHiインピーダンス状態にして、上述のイニシャライズ動作で充電されたコンデンサC1、C2の電荷が保存された状態にする。
 検出回路22は、比較回路26Aのスイッチング素子SWC1-Aをオフにすると共に、スイッチング素子2-Aをオンにする。また、検出回路22は、スイッチング素子SWC1-Bをオフにすると共に、スイッチング素子2-Bをオンにする。これにより、コンデンサC1及びC2には、信号線Lcが接続され、信号線Vnの電圧Vnが供給される。
 同様に検出回路22は、比較回路26Bのスイッチング素子SWC1-Aをオフにすると共に、スイッチング素子2-Aをオンにする。また、検出回路22は、スイッチング素子SWC1-Bをオフにすると共に、スイッチング素子2-Bをオンにする。これにより、コンデンサC1及びC2には信号線Lcが接続され、信号線Vnの電圧Vnが供給される。
 この状態で、検出回路22は、第1の実施の形態及び第2の実施の形態と同様に、比較回路26Aからの出力OUT1と、比較回路26Bからの出力OUT2とを検出する。信号線Vnに断線が生じていない場合、比較動作1と同様に、比較回路26Aでは、Vx’-Vx<0となり、出力OUT1=Hレベルになる。また、比較回路26Bでは、Vx’-Vx>0となり、出力OUT1=Lレベルになる。
 一方、断線が生じている場合は、比較回路26A、26BいずれもVx’-Vx>0となり、出力OUT1=Lレベルになる。
 本実施の形態では、出力OUT1、OUT2の結果が、表3のようになる。
Figure JPOXMLDOC01-appb-T000003
 
 このように本実施の形態では、比較動作1及び比較動作2を行うが、検出回路22は、比較動作1及び比較動作2共に、出力OUT1とOUT2との出力論理(レベル)がHとLとで逆論理であれば断線が無いと検出する。また、検出回路22は、比較動作1及び比較動作2共に、出力OUT1とOUT2との出力論理(レベル)は等しいが、比較動作1と比較動作2とで、HHと、LLとが逆論理となっている場合は、断線が有ることを検出する。また、検出回路22は、出力OUT1と出力OUT2とがこれら以外の論理値を示した場合は、診断機能(比較回路26A、26B)の故障と判断する。従って、放電部13、特に放電回路51を備えた半導体回路50において、放電部13(LPF)の後段の信号線Vnの断線の検出を適切に行える。
 本実施の形態においても上述の第1の実施の形態及び第2の実施の形態と同様の効果が得られことは言うまでもない。
 また、このように本実施の形態の半導体回路50では、2つの比較回路26を用いて断線検出を行いたい信号線Vnに断線検出電流を引き抜きした状態での断線検出と、断線検出電流を供給した状態での断線検出とを冗長に実行することが可能になる、という効果が得られる。
 なお、本実施の形態においても、第1の実施の形態及び第2の実施の形態と同様に、放電回路51の構成は上述のものに限定されない。
 なお、上述の第1の実施の形態~第3の実施の形態では、各々比較動作において、出力OUTの論理値(Hレベル、Lレベル)に基づいて信号線Lの断線を検出し、信号線Lの断線が検出される毎に、所定の措置を実行する場合について説明したがこれに限らない。例えば、全ての信号線Lの出力OUTの論理値を得て、記憶部23に格納しておき、記憶部23に格納されている全信号線Lの出力OUTの論理値に基づいて、断線の有無を検出し、所定の措置を実行するようにしてもよい。また例えば、各比較動作では、出力OUTを記憶部23に格納しておき、全ての比較動作が終了した後に、記憶部23に格納されている全ての出力OUTの論理値に基づいて、断線の有無を検出し、所定の措置を実行するようにしてもよい。
 なお、上述の第1の実施の形態~第3の実施の形態では検出回路22及び記憶部23は、半導体回路14、40、50内部に備えられているが、これに限らず、別の回路(チップ上)に形成するようにしてもよい。また、検出回路22への断線検出指示を行う機能や記憶部23に格納されている論理値をモニタし断線の有無の診断を行う機能は、半導体回路14、40、50内部に備えられていてもよいし、外部(別のチップ上)に形成するようにしてもよい。
 日本出願2013-126002の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (23)

  1.  直列に接続された複数の電池と、
     前記複数の電池の各々の高電位側に接続された第1信号線と前記複数の電池の各々の低電位側に接続された第2信号線とに跨って設けられた抵抗素子と、前記抵抗素子に直列に接続された放電用スイッチング素子とを含む放電手段と、
     前記放電用スイッチング素子が前記抵抗素子と前記第2信号線との間に設けられている場合は、前記第1信号線に接続され、かつ前記第2信号線の電位よりも低い電位を供給し、前記放電用スイッチング素子が前記抵抗素子と前記第1信号線との間に設けられている場合は、前記第2信号線に接続され、かつ前記第1信号線の電位よりも高い電位を供給する、電位調整手段と、
     前記抵抗素子と前記放電用スイッチング素子との間の第1電位と、前記第1信号線の電位と前記第2信号線の電位とから設定される閾値と、を比較する比較手段と、
     を備えた電池監視システム。
  2.  前記比較手段は、シングル反転増幅器と、前記シングル反転増幅器の入力に接続され、かつ前記第1電位または前記第1信号線の電位が入力される第1コンデンサと、前記第1コンデンサと並列に接続され、かつ前記第1電位または前記第2信号線の電位が入力される第2コンデンサと、を含む、請求項1に記載の電池監視システム。
  3.  前記放電用スイッチング素子は、放電制御線を介して電圧供給手段からゲート電圧が印加されるトランジスタであり、前記電位調整手段は、前記放電制御線を介して前記第1信号線または前記第2信号線に接続されている、請求項1または請求項2に記載の電池監視システム。
  4.  前記抵抗素子及び前記放電用スイッチング素子の間と第1コンデンサ及び第2コンデンサに接続された第3信号線とを接続する第1スイッチング素子と、前記第1信号線と前記第1コンデンサに接続された第4信号線とを接続する第2スイッチング素子と、前記第2信号線と前記第2コンデンサに接続された第5信号線とを接続する第3スイッチング素子と、を含む接続手段を備えた、請求項1から請求項3のいずれか1項に記載の電池監視システム。
  5.  前記放電手段と、前記接続手段との間に設けられた高周波遮断手段を備え、前記第2スイッチング素子は、前記高周波遮断手段を介して、前記第4信号線と前記第1信号線とを接続し、かつ前記第3スイッチング素子は、前記高周波遮断手段を介して、前記第5信号線と前記第2信号線とを接続する、請求項4に記載の電池監視システム。
  6.  前記比較手段の比較結果に基づいて前記第1信号線の断線を検出する検出手段を備えた、請求項1から請求項5のいずれか1項に記載の電池監視システム。
  7.  直列に接続された複数の電池と、
     前記複数の電池の各々の高電位側に接続された第1信号線と前記複数の電池の各々の低電位側に接続された第2信号線とに跨って設けられた抵抗素子と、前記抵抗素子に直列に接続された放電用スイッチング素子とを含む放電手段と、
     前記放電用スイッチング素子が前記抵抗素子と前記第2信号線との間に設けられている場合は、前記第1信号線に接続され、かつ前記第2信号線の電位よりも低い電位を供給し、前記放電用スイッチング素子が前記抵抗素子と前記第1信号線との間に設けられている場合は、前記第2信号線に接続され、かつ前記第1信号線の電位よりも高い電位を供給する、電位調整手段と、
     前記放電手段が設けられた前記第1信号線の前記放電手段より後段部の後段部電位と、前記抵抗素子と前記放電用スイッチング素子との間の第1電位と前記電池の低電位側に接続された電池に設けられた前記放電手段の前記抵抗素子と前記放電用スイッチング素子との間の第3電位とから設定される閾値と、を比較する比較手段と、
     を備えた電池監視システム。
  8.  前記比較手段は、シングル反転増幅器と、前記シングル反転増幅器の入力に接続され、かつ前記第1電位または前記後段部電位が入力される第1コンデンサと、前記第1コンデンサと並列に接続され、かつ前記第3電位または前記後段部電位が入力される第2コンデンサと、を含む、請求項7に記載の電池監視システム。
  9.  前記第1信号線と第1コンデンサ及び第2コンデンサに接続された第3信号線とを接続する第1スイッチング素子と、前記放電用スイッチング素子及び前記抵抗素子の間と前記第1コンデンサに接続された第4信号線とを接続する第2スイッチング素子と、前記電池の低電位側に接続された電池に設けられた前記放電手段の前記抵抗素子を介して前記第2信号線と前記第2コンデンサに接続された第5信号線とを接続する第3スイッチング素子と、を含む接続手段を備えた、請求項7または請求項8に記載の電池監視システム。
  10.  前記放電手段と前記接続手段との間に設けられた高周波遮断手段を備え、前記第1スイッチング素子は、前記高周波遮断手段を介して、前記第3信号線と前記第1信号線とを接続する、請求項9に記載の電池監視システム。
  11.  前記比較手段の比較結果に基づいて前記第1信号線の断線を検出する検出手段を備えた、請求項7から請求項10のいずれか1項に記載の電池監視システム。
  12.  直列に接続された複数の電池の各々に対して設けられ、前記複数の電池の各々の高電位側に接続された第1信号線と前記複数の電池の各々の低電位側に接続された第2信号線とに跨って設けられた抵抗素子と前記抵抗素子に直列に接続された放電用スイッチング素子とを含む放電手段における前記放電用スイッチング素子について、前記放電用スイッチング素子が前記抵抗素子と前記第2信号線との間に設けられている場合には、前記第1信号線に接続されて前記第2信号線の電位よりも低い電位を供給し、前記放電用スイッチング素子が前記抵抗素子と前記第1信号線との間に設けられている場合には、前記第2信号線に接続されて前記第1信号線の電位よりも高い電位を供給する電位調整手段と、
     前記抵抗素子と前記放電用スイッチング素子との間の第1電位と、前記第1信号線の電位と前記第2信号線の電位とから設定される閾値と、を比較する比較手段と、
     を備えた半導体回路。
  13.  直列に接続された複数の電池の各々に対して設けられ、前記複数の電池の各々の高電位側に接続された第1信号線と前記複数の電池の各々の低電位側に接続された第2信号線とに跨って設けられた抵抗素子と前記抵抗素子に直列に接続された放電用スイッチング素子とを含む放電手段における前記放電用スイッチング素子について、前記放電用スイッチング素子が前記抵抗素子と前記第2信号線との間に設けられている場合には、前記第1信号線に接続されて前記第2信号線の電位よりも低い電位を供給し、前記放電用スイッチング素子が前記抵抗素子と前記第1信号線との間に設けられている場合には、前記第2信号線に接続されて前記第1信号線の電位よりも高い電位を供給する電位調整手段と、
     前記放電手段が設けられた前記第1信号線の前記放電手段より後段部の後段部電位と、前記抵抗素子と前記放電用スイッチング素子との間の第1電位と前記電池の低電位側に接続された電池に設けられた前記放電手段の前記抵抗素子と前記放電用スイッチング素子との間の第3電位とから設定される閾値と、を比較する比較手段と、
     を備えた半導体回路。
  14.  直列に接続された複数の電池と、
     前記複数の電池の各々の高電位側に接続された第1信号線と前記複数の電池の各々の低電位側に接続された第2信号線とに跨って設けられた抵抗素子と、前記抵抗素子に直列に接続された放電用スイッチング素子とを含む放電手段と、
     前記第1信号線に接続され、かつ、前記第2信号線の電位よりも低電位である第1電位調整手段と、
     前記第1信号線に接続され、かつ、前記第1信号線の電位よりも高電位である第2電位調整手段と、
     前記放電手段が設けられた前記第1信号線の前記放電手段より後段部の後段部電位と、前記抵抗素子と前記放電用スイッチング素子との間の第1電位と前記電池の高電位側に接続された電池に設けられた前記放電手段の前記抵抗素子と前記放電用スイッチング素子との間の第2電位と、から設定される閾値と、を比較する第1比較手段と、
     前記後段部電位と、前記第1電位と前記電池の低電位側に接続された電池に設けられた前記放電手段の前記抵抗素子と前記放電用スイッチング素子との間の第3電位と、から設定される閾値と、を比較する第2比較手段と、
     を備えた電池監視システム。
  15.  前記第1比較手段は、第1シングル反転増幅器と、前記第1シングル反転増幅器の入力に接続され、かつ、前記後段部電位または前記第2電位が入力される第1コンデンサと、前記第1コンデンサと並列に接続され、かつ前記後段部電位または前記第1電位が入力される第2コンデンサと、を含み、
     前記第2比較手段は、第2シングル反転増幅器と、前記第2シングル反転増幅器の入力に接続され、かつ、前記後段部電位または前記第1電位が入力される第3コンデンサと、前記第3コンデンサと並列に接続され、かつ前記後段部電位または前記第3電位が入力される第4コンデンサと、を含む、請求項14に記載の電池監視システム。
  16.  前記第1比較手段の比較結果及び前記第2比較手段の比較結果に基づいて前記第1信号線の断線を検出する検出手段を備えた、請求項14または請求項15に記載の電池監視システム。
  17.  直列に接続された複数の電池の各々に対して設けられ、前記複数の電池の各々の高電位側に接続された第1信号線と前記複数の電池の各々の低電位側に接続された第2信号線とに跨って設けられた抵抗素子と前記抵抗素子に直列に接続された放電用スイッチング素子とを含む放電手段の、前記第1信号線に接続され、かつ、前記第2信号線の電位よりも低電位である第1電位調整手段と、
     前記第1信号線に接続され、かつ、前記第1信号線の電位よりも高電位である第2電位調整手段と、
     前記放電手段が設けられた前記第1信号線の前記放電手段より後段部の後段部電位と、前記抵抗素子と前記放電用スイッチング素子との間の第1電位と前記電池の高電位側に接続された電池に設けられた前記放電手段の前記抵抗素子と前記放電用スイッチング素子との間の第2電位と、から設定される閾値と、を比較する第1比較手段と、
     前記後段部電位と、前記第1電位と前記電池の低電位側に接続された電池に設けられた前記放電手段の前記抵抗素子と前記放電用スイッチング素子との間の第3電位と、から設定される閾値と、を比較する第2比較手段と、
     を備えた半導体回路。
  18.  請求項2から請求項6のいずれか1項に記載の電池監視システムの前記第1信号線の断線を検出する処理をコンピュータに実行させるための断線検出プログラムであって、
     第1コンデンサに、前記第1信号線の電位とシングル反転増幅器の閾値電圧との差を充電するステップと、
     第2コンデンサに、前記第2信号線の電位と前記シングル反転増幅器の閾値電圧との差を充電するステップと、
     前記第1コンデンサ及び前記第2コンデンサの電荷を保持した状態で、前記第1コンデンサ及び前記第2コンデンサに前記第1電位を入力させるステップと、
     前記電位調整手段により、前記第1信号線の電位を調整するステップと、
     前記比較手段から比較結果を出力するステップと、
     を備えた処理をコンピュータに実行させるための断線検出プログラム。
  19.  請求項8から請求項11のいずれか1項に記載の電池監視システムの前記第1信号線の断線を検出する処理をコンピュータに実行させるための断線検出プログラムであって、
     第1コンデンサに、前記第1電位とシングル反転増幅器の閾値電圧との差を充電するステップと、
     第2コンデンサに、前記第3電位と前記シングル反転増幅器の閾値電圧との差を充電するステップと、
     前記第1コンデンサ及び前記第2コンデンサの電荷を保持した状態で、前記第1コンデンサ及び前記第2コンデンサに前記後段部電位を入力させるステップと、
     前記電位調整手段により、前記第1信号線の電位を調整するステップと、
     前記比較手段から比較結果を出力するステップと、
     を備えた処理をコンピュータに実行させるための断線検出プログラム。
  20.  請求項15または請求項16に記載の電池監視システムの前記第1信号線の断線を検出する処理をコンピュータに実行させるための断線検出プログラムであって、
     第1コンデンサに前記第2電位と第1シングル反転増幅器の閾値電圧との差を充電するステップと、
     第2コンデンサに前記第1電位と前記第1シングル反転増幅器の閾値電圧との差を充電するステップと、
     第3コンデンサに前記第1電位と第2シングル反転増幅器の閾値電圧との差を充電するステップと、
     第4コンデンサに前記第3電位と前記第2シングル反転増幅器の閾値電圧との差を充電するステップと、
     前記第1コンデンサ乃至前記第4コンデンサの電荷を保持した状態で、前記第1コンデンサ乃至前記第4コンデンサに前記後段部電位を入力させるステップと、
     前記第1電位調整手段または前記第2電位調整手段により、前記第1信号線の電位を調整するステップと、
     前記第1比較手段及び前記第2比較手段から比較結果を出力するステップと、
     を備えた処理をコンピュータに実行させるための断線検出プログラム。
  21.  請求項2から請求項6のいずれか1項に記載の電池監視システムの前記第1信号線の断線検出方法あって、
     第1コンデンサに、前記第1信号線の電位とシングル反転増幅器の閾値電圧との差を充電する工程と、
     第2コンデンサに、前記第2信号線の電位と前記シングル反転増幅器の閾値電圧との差を充電する工程と、
     前記第1コンデンサ及び前記第2コンデンサの電荷を保持した状態で、前記第1コンデンサ及び前記第2コンデンサに前記第1電位を入力させる工程と、
     前記電位調整手段により、前記第1信号線の電位を調整する工程と、
     前記比較手段から比較結果を出力する工程と、
     を備えた断線検出方法。
  22.  請求項8から請求項11のいずれか1項に記載の電池監視システムの前記第1信号線の断線検出方法であって、
     第1コンデンサに、前記第1電位とシングル反転増幅器の閾値電圧との差を充電する工程と、
     第2コンデンサに、前記第3電位と前記シングル反転増幅器の閾値電圧との差を充電する工程と、
     前記第1コンデンサ及び前記第2コンデンサの電荷を保持した状態で、前記第1コンデンサ及び前記第2コンデンサに前記後段部電位を入力させる工程と、
     前記電位調整手段により、前記第1信号線の電位を調整する工程と、
     前記比較手段から比較結果を出力する工程と、
     を備えた断線検出方法。
  23.  請求項15または請求項16に記載の電池監視システムの前記第1信号線の断線検出方法であって、
     第1コンデンサに前記第2電位と第1シングル反転増幅器の閾値電圧との差を充電する方法と、
     第2コンデンサに前記第1電位と前記第1シングル反転増幅器の閾値電圧との差を充電する方法と、
     第3コンデンサに前記第1電位と第2シングル反転増幅器の閾値電圧との差を充電する方法と、
     第4コンデンサに前記第3電位と前記第2シングル反転増幅器の閾値電圧との差を充電する方法と、
     前記第1コンデンサ乃至前記第4コンデンサの電荷を保持した状態で、前記第1コンデンサ乃至前記第4コンデンサに前記後段部電位を入力させる方法と、
     前記第1電位調整手段または前記第2電位調整手段により、前記第1信号線の電位を調整する方法と、
     前記第1比較手段及び前記第2比較手段から比較結果を出力する方法と、
     を備えた断線検出方法。
PCT/JP2014/065505 2013-06-14 2014-06-11 電池監視システム、半導体回路、断線検出プログラム、及び断線検出方法 WO2014200033A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/897,157 US9857432B2 (en) 2013-06-14 2014-06-11 Battery monitoring system, semiconductor circuit, line-breakage detection program, and line-breakage detection method
DE112014002795.2T DE112014002795T5 (de) 2013-06-14 2014-06-11 Batterieüberwachungssystem, Halbleiterschaltung, Leitungsbruch-Detektionsprogramm und Leitungsbruch-Detektionsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-126002 2013-06-14
JP2013126002A JP6253270B2 (ja) 2013-06-14 2013-06-14 電池監視システム、半導体回路、断線検出プログラム、及び断線検出方法

Publications (1)

Publication Number Publication Date
WO2014200033A1 true WO2014200033A1 (ja) 2014-12-18

Family

ID=52022323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065505 WO2014200033A1 (ja) 2013-06-14 2014-06-11 電池監視システム、半導体回路、断線検出プログラム、及び断線検出方法

Country Status (4)

Country Link
US (1) US9857432B2 (ja)
JP (1) JP6253270B2 (ja)
DE (1) DE112014002795T5 (ja)
WO (1) WO2014200033A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289939A (zh) * 2020-03-13 2020-06-16 深圳市创芯微微电子有限公司 电池断线检测电路

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949793B (zh) * 2015-09-17 2022-06-28 新唐科技日本株式会社 电压检测电路、异常检测装置、以及电池系统
JP6539618B2 (ja) * 2016-07-21 2019-07-03 矢崎総業株式会社 電池監視システム
JP6753730B2 (ja) * 2016-08-26 2020-09-09 矢崎総業株式会社 電池監視システム、断線検出機能の自己診断方法
JP6603695B2 (ja) * 2017-09-15 2019-11-06 矢崎総業株式会社 異常検出装置
TWI737022B (zh) * 2019-10-23 2021-08-21 國立中山大學 電池組之斷線偵測器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168928A (ja) * 2000-12-01 2002-06-14 Nissan Motor Co Ltd 組電池の診断装置
JP2008175804A (ja) * 2006-12-18 2008-07-31 Nissan Motor Co Ltd 異常診断装置
JP2012147587A (ja) * 2011-01-12 2012-08-02 Lapis Semiconductor Co Ltd 半導体回路、電池監視システム、診断プログラム、及び診断方法
JP2012145418A (ja) * 2011-01-11 2012-08-02 Lapis Semiconductor Co Ltd 半導体回路、半導体装置、断線検出方法、及び断線検出プログラム
JP2013070481A (ja) * 2011-09-21 2013-04-18 Lapis Semiconductor Co Ltd 半導体回路、電池監視システム、制御プログラム、及び制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3300309B2 (ja) 1999-10-19 2002-07-08 本田技研工業株式会社 電池電圧測定装置
JP3696124B2 (ja) 2001-05-17 2005-09-14 三洋電機株式会社 組電池の電圧検出回路
JP4569756B2 (ja) 2002-04-19 2010-10-27 新日本理化株式会社 液状植物性不飽和アルコール及びその製造方法
JP4254209B2 (ja) 2002-11-22 2009-04-15 新神戸電機株式会社 電池電圧検出線の検査方法、検査回路及び電池モジュール
JP4075785B2 (ja) 2003-12-01 2008-04-16 日産自動車株式会社 組電池の異常検出装置
JP4247681B2 (ja) 2004-07-14 2009-04-02 株式会社デンソー 組電池充電状態検出装置
JP4069455B2 (ja) 2004-08-04 2008-04-02 株式会社デンソー 組電池充電状態制御装置
JP4605047B2 (ja) 2006-02-24 2011-01-05 パナソニック株式会社 積層電圧計測装置
JP2012021867A (ja) * 2010-07-14 2012-02-02 Ricoh Co Ltd 二次電池を複数個直列に接続した組電池の保護用半導体装置、該保護用半導体装置を内蔵した電池パックおよび電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168928A (ja) * 2000-12-01 2002-06-14 Nissan Motor Co Ltd 組電池の診断装置
JP2008175804A (ja) * 2006-12-18 2008-07-31 Nissan Motor Co Ltd 異常診断装置
JP2012145418A (ja) * 2011-01-11 2012-08-02 Lapis Semiconductor Co Ltd 半導体回路、半導体装置、断線検出方法、及び断線検出プログラム
JP2012147587A (ja) * 2011-01-12 2012-08-02 Lapis Semiconductor Co Ltd 半導体回路、電池監視システム、診断プログラム、及び診断方法
JP2013070481A (ja) * 2011-09-21 2013-04-18 Lapis Semiconductor Co Ltd 半導体回路、電池監視システム、制御プログラム、及び制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289939A (zh) * 2020-03-13 2020-06-16 深圳市创芯微微电子有限公司 电池断线检测电路

Also Published As

Publication number Publication date
US9857432B2 (en) 2018-01-02
US20160131718A1 (en) 2016-05-12
DE112014002795T5 (de) 2016-03-24
JP6253270B2 (ja) 2017-12-27
JP2015001446A (ja) 2015-01-05

Similar Documents

Publication Publication Date Title
JP5698004B2 (ja) 半導体回路、電池監視システム、診断プログラム、及び診断方法
WO2014200033A1 (ja) 電池監視システム、半導体回路、断線検出プログラム、及び断線検出方法
JP5705556B2 (ja) 半導体回路、半導体装置、断線検出方法、及び断線検出プログラム
JP5606997B2 (ja) 電池セル監視回路、電池セルモジュール、電池セルモジュールを備えた自動車
US20230266395A1 (en) Voltage detecting circuit, abnormality detector, and battery system
US20130057294A1 (en) Voltage monitoring device
JP6156689B2 (ja) スイッチ故障診断装置、スイッチ故障診断方法
US8508279B2 (en) Semiconductor device, and method of diagnosing abnormality of boosting circuit of semiconductor device
JP2018013415A (ja) 電池監視システム
US10330736B2 (en) Semiconductor device, battery monitoring system, and diagnostic method for semiconductor device
JP2009216448A (ja) 組電池の異常検出装置
US10215810B2 (en) Battery monitoring system
EP2595275A1 (en) Assembled-battery voltage equalization apparatus
CN102270867B (zh) 电池状态监视电路以及电池装置
JP2015070653A (ja) 電池電圧均等化制御装置及び方法
JP2013070481A (ja) 半導体回路、電池監視システム、制御プログラム、及び制御方法
JP2012018037A (ja) 電圧測定回路及び方法
JP6474188B2 (ja) スイッチ故障判定装置、蓄電装置およびスイッチ故障判定方法
JP2015001446A5 (ja)
JP5891417B2 (ja) 電圧計測器
TWI499160B (zh) Battery status monitoring circuit and battery device
JP6787705B2 (ja) 異常検出装置、および組電池システム
JP2015070681A (ja) 電池監視装置、蓄電装置および電池監視方法
JP7273961B2 (ja) バッテリーパックの欠陥検出装置及び方法
JP5870899B2 (ja) 電池監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14897157

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014002795

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811043

Country of ref document: EP

Kind code of ref document: A1