WO2014199942A1 - ハイブリッド電池システム - Google Patents

ハイブリッド電池システム Download PDF

Info

Publication number
WO2014199942A1
WO2014199942A1 PCT/JP2014/065207 JP2014065207W WO2014199942A1 WO 2014199942 A1 WO2014199942 A1 WO 2014199942A1 JP 2014065207 W JP2014065207 W JP 2014065207W WO 2014199942 A1 WO2014199942 A1 WO 2014199942A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
density
output
current
conductive polymer
Prior art date
Application number
PCT/JP2014/065207
Other languages
English (en)
French (fr)
Inventor
瀬和 信吾
大西 和夫
Original Assignee
イーメックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーメックス株式会社 filed Critical イーメックス株式会社
Publication of WO2014199942A1 publication Critical patent/WO2014199942A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a hybrid battery system having a first battery with medium energy density and high output density and a second battery with high energy density and low output density.
  • Patent Document 1 describes a hybrid battery system of a high-power battery and a high-capacity battery.
  • hard carbon is used as the negative electrode active material of the high-power battery
  • lithium manganese composite oxide is used as the positive electrode active material
  • graphite is used as the negative electrode active material of the high capacity battery
  • lithium nickel composite is used as the positive electrode active material.
  • Embodiments using oxides are described. However, since this system uses two different types of lithium batteries, the balance of performance is poor, the size is large, the weight, and the cost is high. Further improvements were necessary when using.
  • Patent Document 2 describes that an optimum output is calculated with reference to the remaining capacity of a plurality of batteries to efficiently use the batteries.
  • Patent Document 3 describes that the optimum output of a plurality of batteries is controlled with reference to a voltage applied to a load or a supplied current. However, all of them only disclose output control for efficiently using a conventional battery.
  • Li-ion batteries used in battery cars increase energy density by lowering energy density.
  • medium energy density of 80 to 150 Wh / kg and medium power density of 2000 W / kg are adopted. ing. This is a setting of medium energy density and medium power density because one kind of Li ion battery is mounted from the viewpoint of cost and battery performance.
  • the travel distance is short (for example, 160 km or less), the charging time is also long (for example, 30 minutes or more), and further improvement is required.
  • an object of the present invention is to provide a practical hybrid battery system that has a longer output, a shorter charge, and a lower cost than conventional ones.
  • the present invention has a structure in which a positive electrode contains a conductive polymer, a first battery having a medium energy density and a high output density, a second battery having a high energy density and a low output density, and a case of using a high current output. And a control unit that controls to supply current from the first battery and supply current from the second battery when using a low current output.
  • the terms “high current output” and “low current output” have different output values depending on the purpose of use.
  • the control unit uses the first battery at a preset high current output (for example, a predetermined value or more or a predetermined range), and uses the second battery at a preset low current output (for example, less than a predetermined value or a predetermined range).
  • a preset high current output for example, a predetermined value or more or a predetermined range
  • a preset low current output for example, less than a predetermined value or a predetermined range.
  • the first battery includes a positive electrode substrate (current collector), a positive electrode active material of a conductive polymer formed on the positive electrode substrate, a separator, and a negative electrode active material.
  • a positive electrode substrate current collector
  • a positive electrode active material of a conductive polymer formed on the positive electrode substrate a separator
  • a negative electrode active material a substance and a negative electrode substrate (current collector) are formed in this order.
  • the first battery has characteristics of a medium energy density of 60 to 100 Wh / kg and a high output density of 7000 to 9000 W / kg. Further, the second battery has a high energy density of 150 to 350 Wh / kg and a low output density of 200 to 400 W / kg.
  • the first battery has a high charge density characteristic and can be charged with a high current.
  • short-time charging for example, within 10 minutes, preferably within 8 minutes, more preferably 5 minutes.
  • a first detection unit that detects a remaining charge of the first battery
  • a second detector for detecting the remaining charge of the second battery, When the remaining charge of the second battery detected by the second detector is equal to or less than a threshold and the remaining charge of the first battery detected by the first detector is greater than or equal to a specified value, Control is performed to charge the second battery using the first battery.
  • the second battery when the charge capacity of the second battery decreases below the threshold value, the second battery can be charged using the first battery if the charge capacity of the first battery is equal to or greater than a specified value.
  • the second battery is a Li ion battery.
  • the entire system can be configured at low cost, and there is no need to newly manufacture a Li ion battery having specific battery characteristics.
  • FIG. 1 shows a laminated structure of the first battery 1.
  • a positive electrode base material 11 a conductive polymer positive electrode active material 12 formed on the positive electrode base material 11, a separator 13, a negative electrode active material 15, and a negative electrode base material 14 are arranged in this order. Is formed.
  • the positive electrode base material 11 is made of, for example, aluminum, an aluminum alloy, copper, or nickel.
  • the positive electrode active material 12 is a conductive polymer (film) formed on the positive electrode substrate 11 by electrolytic polymerization.
  • the separator 13 is configured to hold the electrolytic solution and prevent a short circuit between the positive electrode and the negative electrode, and is, for example, a cellulose or a polyolefin-based microporous film.
  • the negative electrode base material 14 is made of, for example, copper, nickel, stainless steel, or iron.
  • the negative electrode active material 15 is, for example, graphite, amorphous carbon, hard carbon, or graphitizable carbon formed on the negative electrode base material 14.
  • the electrolytic solution is preferably a non-aqueous electrolytic solution containing an electrolyte dissolved in an organic solvent.
  • the organic solvent is composed of a high dielectric constant solvent and / or a low viscosity solvent.
  • the high dielectric constant solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate. (VC).
  • low viscosity solvent examples include chain carbonates such as ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC), tetrahydrofuran, 2-methyltetrahydrofuran, Ethers such as 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane, lactones such as ⁇ -butyrolactone, nitriles such as acetonitrile, methyl propionate, etc. And amides such as dimethylformamide.
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • MEC methyl ethyl carbonate
  • DEC diethyl carbonate
  • tetrahydrofuran 2-methyltetrahydrofuran
  • Ethers such as 1,4-dioxane, 1,2-dimethoxy
  • a high dielectric constant solvent may be used by 1 type, and may be used in combination of 2 or more types.
  • One low viscosity solvent may be used, or two or more low viscosity solvents may be used in combination.
  • a high dielectric constant solvent and a low viscosity solvent may be arbitrarily selected and used in combination.
  • the high-dielectric solvent and low-viscosity solvent are 1: 1 to 1: 9 or 9: 1 to 1: 1, preferably 1: 1 to 1 in volume ratio (high dielectric constant solvent: low viscosity solvent). : 5 or 5: 1 to 1: 1 ratio.
  • electrolyte examples include LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 , LiPF 3 (CF 3 ). 3 , LiPF 3 (C 2 F 5 ) 3 , LiPF 4 (C 2 F 5 ) 2 , LiPF 3 (iso-C 3 F 7 ) 3 , LiPF 5 (iso-C 3 F 7 ) and the like. These electrolytes may be used alone or in combination of two or more. These electrolytes are used after being dissolved in the organic solvent at a concentration of usually 0.1 to 3M, preferably 0.5 to 2M, more preferably 0.7 to 1.5M.
  • the electrolyte of the electrolytic solution is LiBF 4
  • Li + in the electrolytic solution is doped to the negative electrode active material (for example, graphite) at the time of charging, and BF 4 ⁇ (tetrafluoroborate anion) is The conductive polymer of the positive electrode is doped.
  • Li + is dedoped from the negative electrode active material (eg, graphite)
  • BF 4 ⁇ is dedoped from the positive electrode conductive polymer.
  • a lead, a terminal, a gasket, a case, packing, a sealing agent etc. can be illustrated, for example.
  • the first battery 1 has a medium energy density of 60 to 100 Wh / kg and a high output density of 7000 to 9000 W / kg. Further, as an example, the first battery 1 has characteristics of a medium energy density of 80 Wh / kg and a high output density of 8000 W / kg.
  • the second battery 2 has a high energy density of 150 to 350 Wh / kg and a low output density of 200 to 400 W / kg. As an example, the second battery 2 has a high energy density of 250 Wh / kg and a low output density of 300 W / kg.
  • the second battery 2 is preferably a Li ion battery.
  • the function of the control unit 3 will be described with reference to FIG.
  • the controller 3 supplies current from the first battery 1 to the load 4 when using a high current output (arrows A1 and A2 in FIG. 2).
  • the control part 3 supplies an electric current to the load 4 from the 2nd battery 2 in the case of low-current output utilization (B1, B2 arrow of FIG. 2).
  • the control unit 3 uses the first battery 1 when starting and accelerating travel, and the second battery 2 during low speed operation and / or constant speed operation. It is preferable to control to use. Moreover, the control part 3 supplies the high current from the load 4 to the 1st battery 1 at the time of the regenerative charge from the load 4, and a high-speed charge (short-time charge) is attained (C1, C2 arrow of FIG. 2). .
  • the hybrid battery system of the present embodiment includes a first detector that detects the remaining charge of the first battery 1, and a second detector that detects the remaining charge of the second battery 2. It has further.
  • the control unit 3 charges the first battery detected by the first detection unit when the remaining charge amount of the second battery detected by the second detection unit is equal to or less than a threshold value (for example, the threshold value is 20% or less of full charge). Control is performed so that the second battery 2 is charged using the first battery 1 when the remaining amount is equal to or more than a specified value (for example, the specified value is 70% or more of full charge).
  • the control unit 3 may be configured to function by the cooperative action of a computer and a software program, or may be configured by a dedicated circuit, firmware, or a combination thereof.
  • the monomer (conductive polymer monomer) constituting the conductive polymer (layer) used in the present invention is included in the electrolytic solution used in the electrolytic polymerization method, and is oxidized by the electrolytic polymerization method. Therefore, the compound is not particularly limited as long as it is a compound that is polymerized and exhibits conductivity.
  • the monomer include cyclic compounds such as pyrrole, thiophene, aniline, and phenylene, and derivatives such as alkyl groups and oxyalkyl groups thereof. Among them, hetero five-membered cyclic compounds such as aniline, pyrrole, and thiophene and derivatives thereof are preferable. Particularly, in the case of a conductive polymer containing aniline, pyrrole, or a derivative thereof, the production is easy and the conductive polymer is a chemical compound. It is preferable because it is stable.
  • the electrolyte anion (dopant) blended in the electrolytic solution together with the monomer in the electrolytic polymerization method is not particularly limited as long as it is a compound that dissolves in a solvent used for electrolytic polymerization.
  • the electrolyte anion include derivatives such as halogen, halogen acid, nitric acid, sulfuric acid, arsenic acid, antimonic acid, boric acid, phosphoric acid, carboxylic acid, sulfonic acid, sulfoimide, sulfomethide, and dye compounds. It is done.
  • the constituent of the electrolyte anion specifically, perchloric acid, tetrafluoroboric acid, hexafluorophosphoric acid, hexafluoroarsenic acid, hexafluoroantimonic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, bis (trifluoromethanesulfonyl) imide, tris (trifluoromethanesulfonyl) methide, benzylethyl- [4 ′-(4 ′′-(benzylethylamino) -diphenylmethylene) -2 ′, 5-cyclohex Sadenylidene] ammonium-2 ′ ′′, 3,3 ′ ′′-trisulfonic acid, 3-hydroxy-4- [2-sulfo-4- (4-sulfophenylazo) phenylazo] -2,7-naphthalene
  • examples of the salt with a counter ion include derivatives such as alkali metal salts, ammonium salts, phosphonium salts, imidazolium salts, and iodonium salts. More specifically, examples of the salt include lithium salt, sodium salt, tetrabutylammonium salt, tetrabutylphosphonium salt, 1,3-dimethylimidazolium salt, and 4-isopropyl 4′-methyldiphenyliodonium salt. .
  • constituents of the electrolyte anion those containing a fluorine atom (supporting electrolyte) are preferably used, compounds having an alkylated sulfonyl group and derivatives thereof are more preferable, and trifluoromethanesulfonate ions (or bis) (Trifluoromethanesulfonyl) imide ion) or a supporting electrolyte containing an anion containing a plurality of fluorine atoms with respect to the central atom is more preferred. Two or more of the supporting electrolytes can be used in combination.
  • the said supporting electrolyte ionizes, the said electrolyte anion can be produced
  • an ionic liquid or the like can also be blended.
  • the content of the electrolyte anion in the electrolytic solution is not particularly limited, but it is preferably 0.1 to 35% by weight, more preferably 1 to 20% by weight in the electrolytic solution. Within the above range, by conducting electropolymerization using the supporting electrolyte, a conductive polymer (layer) having an excellent capacity density can be obtained in the electricity storage device.
  • the electrolyte solution used in the electrolytic polymerization method may further contain other known additives such as polyethylene glycol and polyacrylamide. it can.
  • Electrode solvent Although it does not specifically limit as a solvent contained in the electrolyte solution at the time of the said electropolymerization, Water or a polar organic solvent can be used.
  • the polar organic solvent is not particularly limited as long as it is chemically stable and can be used as a reaction field for an electrochemical reaction, and is an ether bond, an ester bond, a carbonate bond, a hydroxyl group, a nitro group.
  • an organic compound and / or a halogenated hydrocarbon containing at least one bond or functional group of a sulfone group and a nitrile group are contained as a solvent for the electrolytic solution. Two or more of these solvents can be used in combination.
  • organic compound examples include 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane (an organic compound containing an ether bond), ⁇ -butyrolactone, and ethyl acetate.
  • the organic compound may have any two or more bonds or functional groups among the ether bond, ester bond, carbonate bond, hydroxyl group, nitro group, sulfone group and nitrile group in the molecule. It may be an organic compound contained in combination. They are, for example, methyl 3-methoxypropionate, 2-phenoxyethanol and the like.
  • a conductive polymer layer (film) is produced on the working electrode by using a working electrode for polymerization together with the conductive polymer monomer. be able to.
  • a metal electrode using metal, a non-metal electrode, or the like can be used as the type of the polymerization electrode.
  • a single metal element selected from the group consisting of Au, Pt, Al, Ti, Ni, Pd, Ta, Mo, Cr and W, or an alloy electrode (such as SUS), a carbon electrode, an ITO glass electrode, etc.
  • a non-metallic electrode, or an electrode obtained by combining these dissimilar metals or non-metals such as carbon with a treatment such as plating, sputtering, or coating can be suitably used.
  • a metal electrode containing a metal element such as Al, Ni, Ti, etc.
  • a material having a small specific gravity such as Al or an Al alloy, can be applied not only as a working electrode for polymerization but also directly to a current collector (collector electrode). This is a preferred embodiment.
  • the conductive polymer (layer) used in the present invention can be obtained by using a known electropolymerization method for a conductive polymer monomer, for example, a constant potential method, a constant current method, and an electric sweep method. Either can be used.
  • the electrolytic polymerization method can be carried out at a current density of 0.01 to 20 mA / cm 2 , a polymerization time of 0.4 to 100 hours, and a reaction temperature of ⁇ 70 to 80 ° C.
  • the conductive polymer composite structure can be used as an electricity storage device.
  • a high capacity density as a battery can be obtained by using the electrode as either the positive electrode or the negative electrode.
  • the electricity storage device includes an electrolyte, but the electrolyte can be a known electrolyte and is not particularly limited, and the solvent contained in the electrolyte is not particularly limited.
  • a polar organic solvent can be used.
  • the polar organic solvent is not particularly limited as long as it is chemically stable and can be used as a reaction field for electrochemical reaction.
  • a cellulose-based separator (Nippon Advanced Paper Industries Co., Ltd., 30 ⁇ m) was used as the separator.
  • a copper foil having a thickness of 5 ⁇ m was used as the negative electrode substrate, and graphite (manufactured by Elexcel) having a capacity density of 1.1 mAh / cm 2 and a thickness of 30 ⁇ m was used as the negative electrode active material.
  • the electrolytic solution is obtained by dissolving 1 mol / L LiPF6 in propylene carbonate (PC). After laminating the positive electrode, the separator, and the negative electrode, they were sealed in a sealed container and infiltrated with an electrolytic solution to prepare a measurement cell.
  • Example 2 was the same as Example 1 except that the monomer was changed from aniline to pyrrole.
  • the method for assembling the battery is not particularly limited.
  • the battery was assembled in a glove box in a dry Ar gas atmosphere.
  • “HJ1001SD8” manufactured by Hokuto Denko Corporation was used.
  • performance evaluation was performed with a constant current of 10 CA (1000 mA / g @ PAn).
  • Table 1 shows the discharge rates of Examples 1 and 2 and the discharge electric capacity as the battery cell.
  • Example 1 when the C rate is 0.1, the capacity density is 77.8 Wh / kg, when the C rate is 1, the capacity density is 62.2 Wh / kg, and when the C rate is 10, the capacity density is When the C rate was 20 at 41.8 Wh / kg, the capacity density was 27.5 Wh / kg.
  • Example 2 when the C rate is 0.1, the capacity density is 70.3 Wh / kg, when the C rate is 1, the capacity density is 56.6 Wh / kg, and when the C rate is 10, the capacity density is When the C rate was 20 at 36.5 Wh / kg, the capacity density was 25.2 Wh / kg.
  • the conventional battery it becomes impossible to discharge at about 3 to 5 C at the C rate, which is a limit of use, and it can be seen that the present invention is extremely significant.
  • the first battery is very effective when the hybrid battery system of the present invention is applied to an electric vehicle.
  • the battery weight of the electric vehicle is set to 150 kg
  • the first battery conductive polymer battery
  • the second battery Li ion battery
  • the weight of the first battery 35 kg can be calculated as follows.
  • the use of 35 kg of the first battery (conductive polymer battery) and 115 kg of the second battery (Li ion battery) has the following effects.
  • the high power density and high charge density performance of the first battery enables high output of 8000 W / kg, high current during acceleration and high current during regenerative charging. Is possible. This eliminates a high current load on the Li-ion battery, and as a result, deterioration of the Li-ion battery is suppressed, and the life is greatly extended.
  • the charging time of the first battery can be reduced to, for example, 5 minutes or less, and traveling of 25 km is possible by charging the first battery for a short time charging.
  • the cost can be greatly reduced (for example, 50%) compared with the current electric vehicle battery.
  • the hybrid battery system of the present invention can be used in electric vehicles, electric scooters, electric assist bicycles, forklifts, power shovels, and electric tools.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 本発明の目的は、従来よりも長時間出力、短時間充電、低コストの実用的なハイブリッド電池システムを提供する。ハイブリッド電池システムは、正極に導電性高分子を含む構造であり、かつ中エネルギー密度かつ高出力密度の第1電池と、高エネルギー密度かつ低出力密度の第2電池と、高電流出力利用の場合に、前記第1電池から電流を供給させ、低電流出力利用の場合に前記第2電池から電流を供給させるように制御する制御部とを有する。

Description

ハイブリッド電池システム
 本発明は、中エネルギー密度かつ高出力密度の第1電池と、高エネルギー密度かつ低出力密度の第2電池とを有するハイブリッド電池システムに関する。
 特許文献1は、高出力型電池と高容量型電池のハイブリッド電池システムを記載している。特許文献1では、高出力型電池の負極活物質にハードカーボン、正極活物質にリチウムマンガン系複合酸化物を使用し、高容量型電池の負極活物質にグラファイト、正極活物質にリチウムニッケル系複合酸化物を使用した実施形態を記載している。しかしながら、このシステムは、2種類の異なるリチウム電池を用いていたため、性能のバランスが悪く、大型かつ大重量、コスト高になっており、実用的なハイブリッド電池とはいえず、例えば、電気自動車への使用に際してはさらなる改善が必要であった。
 特許文献2は、複数電池の残容量を参照して最適出力を演算し電池の効率的利用を図ることを記載している。特許文献3は負荷に印加される電圧または供給される電流を参照して複数電池の最適出力を制御すること記載している。しかしながら、いずれも従来の電池を効率的に用いるための出力制御を開示しているにすぎない。
 一般的に、電池自動車に使用されているLiイオン電池は、エネルギー密度を落として出力密度を上げており、電池性能としては中エネルギー密度80~150Wh/kg、中出力密度2000W/kgを採用している。これは、コストや電池性能の関係から一種類のLiイオン電池を搭載しているため、中エネルギー密度と中出力密度という設定になっている。しかしながら、このような電池性能では、走行距離が短く(例えば160km以下)さらに充電時間も長く(例えば30分以上)、さらなる改善が要求されていた。
特開2006-79987号公報 特開2010-246211号公報 特開2010-257829号公報
 上記実情に鑑みて、本発明の目的は、従来よりも長時間出力、短時間充電、低コストの実用的なハイブリッド電池システムを提供する。
 本発明は、正極に導電性高分子を含む構造であり、かつ中エネルギー密度かつ高出力密度の第1電池と、高エネルギー密度かつ低出力密度の第2電池と、高電流出力利用の場合に、前記第1電池から電流を供給させ、低電流出力利用の場合に前記第2電池から電流を供給させるように制御する制御部と、を有するハイブリッド電池システムである。
 この構成によって、高電流出力利用の場合に、第1電池から電流を供給させ、低電流出力利用の場合に第2電池から電流を供給させることができ、全体的にバランスのよい実用的なハイブリッド電池を提供できる。また、正極に導電性高分子を含む構造の第1電池は、その発熱が他の電池よりも大幅に低減されるため、他の大型電池に必要な冷却システムの必要がない。また、導電性高分子が活物質として機能するので、活物質が金属酸化物の場合に必要なバインダーや導電材などを省略できる。
 本発明において「高電流出力」、「低電流出力」という用語は、使用目的に応じて出力値は異なる設定である。制御部は予め設定された高電流出力(例えば所定値以上あるいは所定範囲)の時に第1電池を利用し、予め設定された低電流出力(例えば所定値未満あるいは所定範囲)の時に第2電池を利用する。「高電流出力」は「低電流出力」よりも大きい値である。
 また、本発明の実施系形態の一例として、第1電池は、正極基材(集電体)と、正極基材上に形成された導電性高分子の正極活物質と、セパレータと、負極活物質と、負極基材(集電体)とがこの順番に形成された構造である。
 上記発明の実施形態の一例として、前記第1電池は、60~100Wh/kgの中エネルギー密度かつ7000~9000W/kgの高出力密度の特性を有する。さらに、前記第2電池は、150~350Wh/kgの高エネルギー密度かつ200~400W/kgの低出力密度の特性を有する。
 上記発明の実施形態の一例として、前記第1電池は、高充電密度の特性を有し高電流による充電が可能である。
 この構成によれば、短時間充電(例えば10分以内、好ましくは8分以内、より好ましくは5分)が可能である。
 上記発明の実施形態の一例として、前記第1電池の充電残量を検出する第1検出部と、
 前記第2電池の充電残量を検出する第2検出部と、をさらに有し、
 前記制御部は、前記第2検出部で検出された第2電池の充電残量が閾値以下、かつ前記第1検出部で検出された第1電池の充電残量が規定値以上の場合に、前記第1電池を用いて前記第2電池を充電するように制御する。
 この構成によれば、第2電池の充電容量が閾値より減少したときに、第1電池の充電容量が規定値以上あれば第1電池を利用して第2電池を充電することができる。
 上記発明の実施形態の一例として、前記第2電池は、Liイオン電池である。
 この構成によれば、一般的に安価なLiイオン電池を利用することができるため、システム全体を低コストで構成でき、特定の電池特性のLiイオン電池を新しく製造する必要がない。
第1電池の構造の一例を説明する図 実施形態1の機能ブロックを説明する図
 以下、本発明の実施の形態について図1,2を参照しながら詳細に説明する。図1は、第1電池1の積層構造を示す。第1電池1は、正極基材11と、正極基材11上に形成された導電性高分子の正極活物質12と、セパレータ13と、負極活物質15と、負極基材14とがこの順番に形成されている。
 正極基材11は、例えば、アルミニウム、アルミニウム合金、銅、ニッケルで構成される。正極活物質12は、正極基材11上に電解重合で形成された導電性高分子(膜)である。
 セパレータ13は、電解液を保持し、正極と負極の短絡を防止する構成であって、例えば、セルロース、ポリオレフィン系の微多孔性膜である。
 負極基材14は、例えば、銅、ニッケル、ステンレス、鉄で構成される。負極活物質15は、例えば、負極基材14上に形成されたグラファイト、非晶質炭素、ハードカーボン、易黒鉛化炭素である。
 電解液は、有機溶媒に溶解された電解質を含む非水電解液が好ましい。有機溶媒は、高誘電率溶媒および/または低粘度溶媒で構成されている、高誘電率溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボレート(VC)などが挙げられる。また、低粘度溶媒としては、例えば、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)などの鎖状カーボネート類、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンなどのエーテル類、γ-ブチロラクトンなどのラクトン類、アセトニトリルなどのニトリル類、プロピオン酸メチルなどのエステル類、ジメチルホルムアミドなどのアミド類が挙げられる。高誘電率溶媒は、1種類で使用してもよく、また2種類以上を組み合わせて使用してもよい。低粘度溶媒は1種類で使用してもよく、また2種類以上を組み合わせて使用してもよい。高誘電率溶媒と低粘度溶媒とをそれぞれ任意に選択し、組み合わせて使用してもよい。なお、前記の高誘電率溶媒および低粘度溶媒は、容量比(高誘電率溶媒:低粘度溶媒)で1:1~1:9または9:1~1:1、好ましくは1:1~1:5または5:1~1:1の割合である。
 電解質としては、例えば、LiPF6、LiBF4、LiClO4、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33、LiPF3(CF33、LiPF3(C253、LiPF4(C252、LiPF3(iso-C373、LiPF5(iso-C37)などが挙げられる。これらの電解質は、1種類で使用してもよく、2種類以上を組み合わせて使用してもよい。これら電解質は、前記の有機溶媒に通常0.1~3M、好ましくは0.5~2M、より好ましくは0.7~1.5Mの濃度で溶解されて使用される。
 上記第1電池の構成において、電解液の電解質がLiBF4であれば、充電時に電解液中のLiが負極活物質(例えばグラファイト)にドープされ、BF (テトラフルオロホウ酸アニオン)が正極の導電性高分子にドープされる。一方、放電時に負極活物質(例えばグラファイト)からLiが脱ドープされ、正極の導電性高分子からBF が脱ドープする。
 また、電極、電解質、セパレータ以外においても、公知の電池の構成部品を用いることがでる。前記構成部品としては、例えば、リード、ターミナル、ガスケット、ケース、パッキン、封止剤などを例示することができる。
 第1電池1は、60~100Wh/kgの中エネルギー密度かつ7000~9000W/kgの高出力密度の特性を有する。また、実施例として、第1電池1は、80Wh/kgの中エネルギー密度かつ8000W/kgの高出力密度の特性を有する。
 第2電池2は、150~350Wh/kgの高エネルギー密度かつ200~400W/kgの低出力密度の特性を有する。また、実施例として、第2電池2は、250Wh/kgの高エネルギー密度かつ300W/kgの低出力密度の特性を有する。第2電池2は、Liイオン電池が好ましい。
 図2を参照しながら制御部3の機能を説明する。制御部3は、高電流出力利用の場合に、第1電池1から電流を負荷4へ供給させる(図2のA1、A2の矢印)。また、制御部3は、低電流出力利用の場合に、第2電池2から電流を負荷4へ供給させる(図2のB1、B2の矢印)。
 例えば、本実施形態のハイブリッド電池システムを電気自動車に使用した場合には、制御部3が発進時、走行加速時に第1電池1を使用し、低速運転および/または一定速度運転時に第2電池2を使用するように制御することが好ましい。また、制御部3は、負荷4からの回生充電時に、負荷4からの高電流を第1電池1へ供給し高速充電(短時間充電)が可能になる(図2のC1、C2の矢印)。
 また、図示していないが、本実施形態のハイブリッド電池システムは、第1電池1の充電残量を検出する第1検出部と、第2電池2の充電残量を検出する第2検出部とをさらに有する。制御部3は、第2検出部で検出された第2電池の充電残量が閾値以下(例えば、閾値が満充電の20%以下)、かつ第1検出部で検出された第1電池の充電残量が規定値以上(例えば、規定値が満充電の70%以上)の場合に、第1電池1を用いて第2電池2を充電するように制御する。
 制御部3は、コンピュータとソフトウエアプログラムの協働作用で機能する構成でもよく、専用回路、ファームウエア、それらの組み合わせで構成されていてもよい。
 (導電性高分子の説明)
 本発明に用いられる導電性高分子(層)を構成する単量体(導電性高分子単量体)としては、電解重合法に用いられる電解液に含まれるものであり、電解重合法による酸化により、高分子化して導電性を示す化合物であれば特に限定されるものではない。例えば、単量体としては、ピロール、チオフェン、アニリン、フェニレン等の環式化合物、及びそのアルキル基、オキシアルキル基等の誘導体が挙げられる。その中でもアニリン、ピロール、チオフェン等の複素五員環式化合物及びその誘導体が好ましく、特にアニリン、ピロールやその誘導体を含む導電性高分子の場合、製造が容易であり、導電性高分子として化学的に安定であるため好ましい。
(電解質アニオン(ドーパント))
 前記電解重合法の際に前記単量体と共に電解液に配合される電解質アニオン(ドーパント)としては、電解重合に用いられる溶媒中で溶解する化合物であれば特に限定されるものではない。前記電解質アニオンを構成するものとしては、例えば、ハロゲン、ハロゲン酸、硝酸、硫酸、ヒ酸、アンチモン酸、ホウ酸、リン酸、カルボン酸、スルホン酸、スルホイミド、スルホメチド等の誘導体や色素化合物が挙げられる。また、前記電解質アニオンを構成するものとしては、具体的には、過塩素酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、ヘキサフルオロヒ酸、ヘキサフルオロアンチモン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸、ビス(トリフルオロメタンスルホニル)イミド、トリス(トリフルオロメタンスルホニル)メチド、ベンジルエチル-[4'-(4''-(ベンジルエチルアミノ)-ジフェニルメチレン)-2',5-シクロヘキサジエニリデン]アンモニウム-2'''、3、3'''-トリスルホン酸、3-ヒドロキシ-4-[2-スルホ-4-(4-スルホフェニルアゾ)フェニルアゾ]-2,7-ナフタレンジスルホン酸を例示することができる。これらと共に、対イオンを伴う塩としては、アルカリ金属塩、アンモニウム塩、ホスホニウム塩、イミダゾリウム塩、ヨードニウム塩等の誘導体が挙げられる。更に詳しくは、前記塩としては、リチウム塩、ナトリウム塩、テトラブチルアンモニウム塩、テトラブチルホスホニウム塩、1,3-ジメチルイミダゾリウム塩、4-イソプロピル4’-メチルジフェニルヨードニウム塩を例示することができる。前記電解質アニオンを構成するものの中でも、フッ素原子を含有するもの(支持電解質)を使用することが好ましく、アルキル化されたスルホニル基を有する化合物及びその誘導体がより好ましく、トリフルオロメタンスルホン酸イオン(もしくはビス(トリフルオメタンスルホニル)イミドイオン)や、中心原子に対してフッ素原子を複数含むアニオンを含む支持電解質を用いることが更に好ましい。また、上記支持電解質は2種以上併用することができる。なお、前記支持電解質が電離することにより、前記電解質アニオンを生成することができ、前記電解質アニオンが、本発明で使用される導電性高分子層中に、ドーパントとして、作用することになる。また、前記電解質に加えて、イオン性液体等も配合することができる。
 前記電解質アニオンは、電解液中の含有量が特に限定されるものではないが、電解液中に0.1~35重量%含まれるのが好ましく、1~20重量%含まれるのがより好ましい。前記範囲内において、前記支持電解質を用いて電解重合を行うことにより、蓄電デバイスにおいて、容量密度に優れた導電性高分子(層)を得ることができる。
(その他の添加剤)
 前記電解重合法に用いられる電解液には、前記単量体や電解質アニオン(ドーパント)(もしくは支持電解質)のほかに、さらにポリエチレングリコールやポリアクリルアミドなどの公知のその他の添加剤を配合することができる。
(電解液の溶媒)
 前記電解重合時の電解液に含まれる溶媒としては、特に限定されるものではないが、水、若しくは極性有機溶媒を用いることができる。前記極性有機溶媒は、化学的に安定であり、電気化学反応の反応場として用いることができるものであれば、特に限定されるものではなくエーテル結合、エステル結合、カーボネート結合、ヒドロキシル基、ニトロ基、スルホン基及びニトリル基のうち少なくとも1つ以上の結合あるいは官能基を含む有機化合物及び/またはハロゲン化炭化水素を電解液の溶媒として含む。これらの溶媒を2種以上併用することもできる。
 前記有機化合物としては、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン(以上、エーテル結合を含む有機化合物)、γ-ブチロラクトン、酢酸エチル、酢酸nブチル、酢酸-t-ブチル、1,2-ジアセトキシエタン、3-メチル-2-オキサゾリジノン、安息香酸メチル、安息香酸エチル、安息香酸ブチル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ベンジル-2-エチルへキシル(以上、エステル結合を含む有機化合物)、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート(以上、カーボネート結合を含む有機化合物)、エチレングリコール、1-ブタノール、1-ヘキサノール、シクロヘキサノール、1-オクタノール、1-デカノール、1-ドデカノール、1-オクタデカノール(以上、ヒドロキシル基を含む有機化合物)、ニトロメタン、ニトロベンゼン(以上、ニトロ基を含む有機化合物)、スルホラン、ジメチルスルホン(以上、スルホン基を含む有機化合物)、及びアセトニトリル、ブチロニトリル、ベンゾニトリル(以上、ニトリル基を含む有機化合物)、1,3-ジメチル-2-イミダゾリジノンを例示することができる。なお、前記有機化合物は、前記の例示以外にも、分子中にエーテル結合、エステル結合、カーボネート結合、ヒドロキシル基、ニトロ基、スルホン基及びニトリル基のうち、2つ以上の結合あるいは官能基を任意の組み合わせで含む有機化合物であってもよい。それらは、例えば、3-メトキシプロピオン酸メチル、2-フェノキシエタノールなどである。
(作用電極、集電体)
 本発明における導電性高分子層を得るためには、前記導電性高分子単量体と共に、重合用作用電極を用いることにより、前記作用電極上に、導電性高分子層(膜)を製造することができる。
 前記重合作用電極の種類としては、金属を用いた金属電極や、非金属電極などを用いることができる。例えば、Au、Pt、Al、Ti、Ni、Pd、Ta、Mo、Cr及びWからなる群より選択される金属元素の単体、もしくは合金の電極(SUSなど)や、カーボン電極やITOガラス電極といった非金属電極、これら異種金属またはカーボンなどの非金属をメッキやスパッタリング、被覆する等の処理で組み合わせた電極を好適に用いることができる。前記得られる導電性高分子の伸縮率及び発生力が大きく、且つ、電極を容易に入手できることから、Al、NiやTiなどの金属元素を含む金属電極を用いることが特に好ましい。また、蓄電デバイスとして使用する場合には、AlやAl合金等のように、比重の小さいものは、重合用作用電極としてだけではなく、直接、集電体(集電極)に適用することができ、好ましい態様である。
(電解重合条件)
 本発明で使用する導電性高分子(層)は、導電性高分子単量体を公知の電解重合法を用いることにより得ることができ、例えば、定電位法、定電流法及び電気掃引法のいずれをも用いることができる。例えば、前記電解重合法は、電流密度0.01~20mA/cm2、重合時間0.4~100時間、反応温度-70~80℃で行うことができ、良好な膜質の導電性高分子を得るために、電流密度0.1~2mA/cm、重合時間4~20時間、反応温度-40~40℃の条件下で行うことが好ましく、反応温度が-30~30℃の条件であることがより好ましい。
(第1電池として使用する蓄電デバイス)
 前記導電性高分子複合構造体を蓄電デバイスとして、使用することができる。前記蓄電デバイスには、前記電極を正極または負極のどちらか一方に用い電池として高い容量密度を得ることができる。
 前記蓄電デバイスは、電解質を含むことになるが、前記電解質は、公知の電解質を使用することができ特に限定されるものではなく、前記電解液に含まれる溶媒は、特に限定されるものではなく、極性有機溶媒を用いることができる。前記極性有機溶媒は、化学的に安定であり、電気化学反応の反応場として用いることができるものであれば、特に限定されるものではない。
 以下に、本発明の実施例を示すが、本発明は以下に限定されるものではない。
(1)水溶媒を用いて、モノマーであるアニリン(東京化成工業株式会社製)を0.2mol/L、パラトルエンスルホン酸(関東化学社製)0.2mol/Lになるように溶解し、重合電解液とした。
(2)続いて、厚さ30μmのアルミニウム箔(重合作用電極:集電体)に、電流密度1mA/cmで、1時間、20℃、定電流電解重合した。これにより、集電体とポリアニリン(層)が一体化した導電性高分子複合体を得た。ポリアニリン(層)の厚さは394μmであった。これを正極(正極基材、正極活物質)とした。
 セパレータにセルロース系セパレータ(ニッポン高度紙工業社製、30μm)を使用した。負極基材に厚さ5μmの銅箔を、負極活物質に容量密度1.1mAh/cm、厚さ30μmのグラファイト(エレクセル社製)を使用した。電解液は、1mol/LのLiPF6をプロピレンカーボネート(PC)に溶解したものである。上記正極、セパレータ、負極を積層した後、密閉容器中に封入し、電解液を浸透させて測定セルを作製した。
 実施例2は、モノマーをアニリンからピロールとした以外は実施例1と同様とした。
 電池の組み立て方法は、特に限定されないが、ここでは、乾燥Arガス雰囲気のグローブボックス内で行った。充放電評価は、北斗電工株式会社製「HJ1001SD8」を使用した。充電条件は、10CA(1000mA/g@PAn)の一定電流によって性能評価を行った。実施例1,2の各放電レートと電池セルとしての放電電気容量を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1では、Cレートが0.1のときに、容量密度が77.8Wh/kg、Cレートが1のときに容量密度が62.2Wh/kg、Cレートが10のときに容量密度が41.8Wh/kg、Cレートが20のときに容量密度が27.5Wh/kgであった。実施例2では、Cレートが0.1のときに、容量密度が70.3Wh/kg、Cレートが1のときに容量密度が56.6Wh/kg、Cレートが10のときに容量密度が36.5Wh/kg、Cレートが20のときに容量密度が25.2Wh/kgであった。これに対し、従来の電池では、Cレートで3から5C程度で放電ができなくなり、使用の限界であり、本発明が極めて有意であることが分かる。
 また、この結果から、第1電池は本発明のハイブリッド電池システムを電気自動車へ応用する場合に非常に有効であることが分かった。例えば、電気自動車の電池重量を150kgと設定したときに、第1電池(導電性高分子の電池)を35kg、第2電池(Liイオン電池)を115kg使用するとした場合、上記第1電池の重量35kgは以下のように算出できる。電気自動車の発進時に必要な出力は、出力密度3000W/kgを30秒間維持するものとして、3000×30/3600=25Wh/kgとなる。電池重量が150kgとして25Wh/kg×150kg=3.75kWhとなり、その70%(2.8kWh)を、第1電池を用いると設定した。第1電池のエネルギー密度は80Wh/kgとして、2800÷80=35kgとなる。
 上記の通り、第1電池(導電性高分子の電池)を35kg、第2電池(Liイオン電池)を115kg使用することで以下の効果がある。第1に、高容量のLiイオン電池を使用することができるため走行距離が70%向上する。
 第2に、第1電池(導電性高分子の電池)の高出力密度、高充電密度の性能により、8000W/kgの高出力が可能となり、走行加速時の高電流および回生充電時の高電流が可能となる。このことにより、Liイオン電池への高電流の負荷がなくなり、結果としてLiイオン電池の劣化が抑えられ、寿命が大幅に伸びる。
 第3に、第1電池の充電時間を例えば5分以下にでき、短時間充電の第1電池分の充電で25kmの走行が可能である。
 第4に、第2電池を汎用品のものを使用できるため、現在の電気自動車用電池よりも大幅に(例えば50%)コストダウンできる。
 第5に、第1電池(導電性高分子の電池)は、ほとんど発熱しないため他の大型電池に必要な冷却システムを必要としない。
 本発明のハイブリッド電池システムを電気自動車、電動スクーター、電動アシスト自転車、フォークリフト、パワーショベル、電動工具に採用できる。
1   第1電池
11  正極基材
12  導電性高分子膜
13  セパレータ
14  負極基材
15  グラファイト
2   第2電池
3   制御部
4   負荷

Claims (5)

  1.  正極に導電性高分子を含む構造であり、かつ中エネルギー密度かつ高出力密度の第1電池と、
     高エネルギー密度かつ低出力密度の第2電池と、
     高電流出力利用の場合に、前記第1電池から電流を供給させ、低電流出力利用の場合に前記第2電池から電流を供給させるように制御する制御部と、を有するハイブリッド電池システム。
  2.  前記第1電池は、60~100Wh/kgの中エネルギー密度かつ7000~9000W/kgの高出力密度の特性を有し、
     前記第2電池は、150~350Wh/kgの高エネルギー密度かつ200~400W/kgの低出力密度の特性を有する、請求項1に記載のハイブリッド電池システム。
  3.  前記第1電池は、高充電密度の特性を有し高電流による充電が可能である、請求項1または2に記載のハイブリッド電池システム。
  4.  前記第1電池の充電残量を検出する第1検出部と、
     前記第2電池の充電残量を検出する第2検出部と、をさらに有し、
     前記制御部は、前記第2検出部で検出された第2電池の充電残量が閾値以下、かつ前記第1検出部で検出された第1電池の充電残量が規定値以上の場合に、前記第1電池を用いて前記第2電池を充電するように制御する、請求項1~3のいずれか1項に記載のハイブリッド電池システム。
  5.  前記第2電池は、Liイオン電池である、請求項1~4のいずれか1項に記載のハイブリッド電池システム。
PCT/JP2014/065207 2013-06-11 2014-06-09 ハイブリッド電池システム WO2014199942A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013123024A JP2014241224A (ja) 2013-06-11 2013-06-11 ハイブリッド電池システム
JP2013-123024 2013-06-11

Publications (1)

Publication Number Publication Date
WO2014199942A1 true WO2014199942A1 (ja) 2014-12-18

Family

ID=52022237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065207 WO2014199942A1 (ja) 2013-06-11 2014-06-09 ハイブリッド電池システム

Country Status (2)

Country Link
JP (1) JP2014241224A (ja)
WO (1) WO2014199942A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110678393A (zh) * 2017-05-26 2020-01-10 小鹰公司 电动交通工具混合电池系统
US11097839B2 (en) 2019-10-09 2021-08-24 Kitty Hawk Corporation Hybrid power systems for different modes of flight
US11655024B1 (en) 2022-05-25 2023-05-23 Kitty Hawk Corporation Battery systems with power optimized energy source and energy storage optimized source

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6713284B2 (ja) * 2016-01-12 2020-06-24 本田技研工業株式会社 駆動装置、輸送機器及び制御方法
KR20180137560A (ko) * 2016-08-09 2018-12-27 가부시끼가이샤 도시바 축전 시스템, 차량, 및 기계 설비

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332023A (ja) * 1998-05-14 1999-11-30 Nissan Motor Co Ltd 電気自動車用バッテリー
JP2007037291A (ja) * 2005-07-27 2007-02-08 Nec Corp 自動車用蓄電システム
JP2012070609A (ja) * 2010-09-24 2012-04-05 Lite On Clean Energy Technology Corp ハイブリッドバッテリーモジュール及びバッテリーの管理方法
JP2013030350A (ja) * 2011-07-28 2013-02-07 Sony Corp 活物質およびその製造方法、電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具ならびに電子機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302316A (ja) * 1993-04-15 1994-10-28 Hitachi Ltd ポリマー二次電池
JP2000340225A (ja) * 1999-05-26 2000-12-08 Matsushita Electric Ind Co Ltd 複合電極組成物およびこれを用いたリチウム電池
JP2008258031A (ja) * 2007-04-05 2008-10-23 Denso Corp ポリマー二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332023A (ja) * 1998-05-14 1999-11-30 Nissan Motor Co Ltd 電気自動車用バッテリー
JP2007037291A (ja) * 2005-07-27 2007-02-08 Nec Corp 自動車用蓄電システム
JP2012070609A (ja) * 2010-09-24 2012-04-05 Lite On Clean Energy Technology Corp ハイブリッドバッテリーモジュール及びバッテリーの管理方法
JP2013030350A (ja) * 2011-07-28 2013-02-07 Sony Corp 活物質およびその製造方法、電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具ならびに電子機器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110678393A (zh) * 2017-05-26 2020-01-10 小鹰公司 电动交通工具混合电池系统
JP2020522841A (ja) * 2017-05-26 2020-07-30 キティー・ホーク・コーポレーションKitty Hawk Corporation 電動輸送機器ハイブリッドバッテリシステム
CN110678393B (zh) * 2017-05-26 2023-08-18 小鹰公司 电动交通工具混合电池系统
US11097839B2 (en) 2019-10-09 2021-08-24 Kitty Hawk Corporation Hybrid power systems for different modes of flight
US11787537B2 (en) 2019-10-09 2023-10-17 Kitty Hawk Corporation Hybrid power systems for different modes of flight
US12071234B2 (en) 2019-10-09 2024-08-27 Kitty Hawk Corporation Hybrid power systems for different modes of flight
US11655024B1 (en) 2022-05-25 2023-05-23 Kitty Hawk Corporation Battery systems with power optimized energy source and energy storage optimized source
US12071233B2 (en) 2022-05-25 2024-08-27 Kitty Hawk Corporation Battery systems with power optimized energy source and energy storage optimized source

Also Published As

Publication number Publication date
JP2014241224A (ja) 2014-12-25

Similar Documents

Publication Publication Date Title
KR101636427B1 (ko) 비수 전해액 전지용 전해액 및 비수 전해액 전지
KR101445283B1 (ko) 비수전해액 전지용 전해액 및 이것을 사용하는 비수전해액 전지
KR101363442B1 (ko) 전기 화학 디바이스용 전해질, 이것을 사용하는 전해액 및 비수 전해액 전지
JP4972922B2 (ja) 非水電解液電池用電解液及び非水電解液電池
US20060124973A1 (en) Energy storage device, module thereof and electric vehicle using the same
WO2021015264A1 (ja) 非水電解液、非水電解液電池、及び化合物
WO2014199942A1 (ja) ハイブリッド電池システム
WO2012176871A1 (ja) 非水電解液電池用電解液及び非水電解液電池
JP2016062820A (ja) 非水電解液、電池用添加剤、電極およびリチウムイオン二次電池
JP6341195B2 (ja) 二次電池用電解液およびそれを用いた二次電池
JP4239537B2 (ja) 常温溶融塩型電解質およびそれを用いた電気化学デバイス
JP2003036849A (ja) 二次電池
EP3373378B1 (en) Nonaqueous electrolyte solution for secondary batteries, and secondary battery
JP6603014B2 (ja) 非水電解液及びこれを備えたリチウムイオン二次電池
JP6278758B2 (ja) 非水電解液及びこれを含む蓄電デバイス
JP5727985B2 (ja) 電池用電極及びこれを用いた電池
JP2018200893A (ja) 非水電解液及びこれを備えたリチウムイオン二次電池
JP6592228B2 (ja) 過充電防止剤及びこれを含む電解液、並びにリチウムイオン二次電池
WO2024071253A1 (ja) 非水電解質二次電池
WO2020262440A1 (ja) 電気化学デバイス
WO2024071254A1 (ja) 非水電解質二次電池
JP2013114934A (ja) 金属塩、電極保護膜形成剤、それを用いた二次電池用電解質、及び二次電池
WO2021200778A1 (ja) 電気化学デバイス
JP2009105028A (ja) アンモニウム塩、並びにそれを用いた電解質、電解液、添加剤及び蓄電デバイス
JP5008298B2 (ja) リチウム二次電池用電解質およびそれを用いたリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811329

Country of ref document: EP

Kind code of ref document: A1