WO2014199719A1 - 遠心送風機、空気調和機、及び遠心送風機の製造方法 - Google Patents

遠心送風機、空気調和機、及び遠心送風機の製造方法 Download PDF

Info

Publication number
WO2014199719A1
WO2014199719A1 PCT/JP2014/060774 JP2014060774W WO2014199719A1 WO 2014199719 A1 WO2014199719 A1 WO 2014199719A1 JP 2014060774 W JP2014060774 W JP 2014060774W WO 2014199719 A1 WO2014199719 A1 WO 2014199719A1
Authority
WO
WIPO (PCT)
Prior art keywords
shroud
main plate
blade
centrifugal blower
wing
Prior art date
Application number
PCT/JP2014/060774
Other languages
English (en)
French (fr)
Inventor
栗原 誠
功平 恒友
毅浩 林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/889,963 priority Critical patent/US10309412B2/en
Priority to AU2014279400A priority patent/AU2014279400B2/en
Priority to MX2015017140A priority patent/MX367947B/es
Priority to EP14811463.0A priority patent/EP3009687B1/en
Publication of WO2014199719A1 publication Critical patent/WO2014199719A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1246Tongue and groove joints characterised by the female part, i.e. the part comprising the groove
    • B29C66/12469Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being asymmetric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/302Particular design of joint configurations the area to be joined comprising melt initiators
    • B29C66/3022Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined
    • B29C66/30223Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined said melt initiators being rib-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/543Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining more than two hollow-preforms to form said hollow articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/626Mounting or removal of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/234Laser welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise

Definitions

  • the present invention relates to a centrifugal blower, an air conditioner, and a method for manufacturing a centrifugal blower.
  • the centrifugal blower includes a main plate that is rotationally driven by a fan motor, a shroud having an air suction port, and a plurality of blades provided between the main plate and the shroud.
  • a blade of a centrifugal blower it has been a mainstream to use a two-dimensional blade having no twist in the rotation axis direction. For this reason, the main plate and the blades can be integrally formed of resin.
  • Patent Document 1 describes an impeller of a centrifugal blower including a resin main plate, a plurality of hollow blades, and a resin side plate.
  • the hollow blade includes a resin-made first surface portion fixed to the main plate and a resin-made second surface portion that is attached to the first surface portion and forms a hollow space between the first surface portion.
  • the hollow blade is composed of the first surface portion and the second surface portion, even if the hollow blade is a three-dimensional blade extending in the axial direction while twisting between the main plate and the side plate, The hollowing of the blades can be promoted, and the weight of the impeller can be reduced.
  • Patent Document 1 The hollow blade of Patent Document 1 is fixed to the side plate by laser welding.
  • it is necessary to uniformly press and weld the welding surfaces of the members when performing laser welding.
  • it since it may be difficult to press the weld surfaces uniformly and make them adhere to each other, there is a problem that it may be difficult to obtain a stable weld strength between the members.
  • An object of the present invention is to provide a centrifugal blower, an air conditioner, and a method for manufacturing a centrifugal blower that can provide stable welding strength.
  • a centrifugal blower includes a main plate that is rotationally driven by a fan motor, a shroud disposed to face the main plate, and a plurality of blades installed between the main plate and the shroud, A centrifugal blower that blows out gas sucked in from a rotation axis direction in a direction intersecting the rotation axis, wherein the blade is in contact with a contact surface formed on at least one of the main plate and the shroud.
  • the contact surface is formed with a protrusion extending linearly or curvedly, and the contact surface and the contacted surface are irradiated onto the protrusion and scanned along the protrusion.
  • the laser beams are welded to each other.
  • the contact is made by irradiating the laser beam on the protrusion and scanning along the protrusion. A stable welding strength can be obtained between the surface and the contacted surface.
  • FIG. 1 It is a perspective view which shows schematic structure of the centrifugal blower 1 which concerns on Embodiment 1 of this invention. It is a schematic diagram which shows the general
  • FIG. 1 is a perspective view showing a schematic configuration of a centrifugal blower 1 according to the present embodiment.
  • FIG. 2 is a schematic diagram illustrating a schematic cross-sectional configuration of the centrifugal blower 1 according to the present embodiment cut in the axial direction.
  • the dimensional relationship and shape of each component may differ from the actual ones.
  • the centrifugal blower 1 includes a main plate 10 that is rotationally driven by a fan motor 85 (see FIG. 11), a shroud 20 that is disposed to face the main plate 10, and the main plate 10 and the shroud 20. And a plurality of (seven in this example) blades 30 arranged in an annular shape around the rotation axis.
  • the centrifugal blower 1 sucks gas (for example, air) from the rotation axis direction and blows out the sucked gas in the outer circumferential direction intersecting the rotation axis.
  • the main plate 10 is formed of a resin material (for example, a transparent or white resin material) having a relatively high transmittance for laser light and a relatively low absorption rate for the laser light.
  • the main plate 10 has a substantially disc shape.
  • a boss 11 serving as a rotation shaft of the centrifugal blower 1 is attached to the center of the main plate 10. The boss 11 is fixed to the output shaft of the fan motor 85.
  • the shroud 20 is formed of a resin material (for example, a transparent or white resin material) that has a relatively high transmittance for laser light and a relatively low absorption rate for the laser light.
  • the shroud 20 has an air suction port 21 for sucking gas from the outside in the rotation axis direction at the center.
  • the shroud 20 has a bell shape that protrudes toward the air suction port 21 side (the side opposite to the main plate 10) as it goes from the outer peripheral portion toward the air suction port 21.
  • the blade 30 has a three-dimensional blade shape twisted between the main plate 10 and the shroud 20 in order to reduce noise and power consumption. Since the wing 30 having a three-dimensional wing shape is difficult to be integrally formed with the main plate 10 or the shroud 20, the wing 30 is formed separately from the main plate 10 and the shroud 20.
  • the wing 30 has a resin material (for example, black) having a lower transmittance for the laser light than the resin material forming the main plate 10 and the shroud 20 and a higher absorptance for the laser light than the resin material forming the main plate 10 and the shroud 20. Resin material).
  • the blade 30 has a pressure surface 30a that is a blade surface far from the rotation axis, and a suction surface 30b that is a blade surface closer to the rotation axis.
  • each constituent member of the centrifugal blower 1 As a forming material of each constituent member of the centrifugal blower 1, a thermoplastic resin material is used because of ease of molding, light weight, and low cost.
  • the wing 30 is composed of a plurality of parts in order to realize a complicated three-dimensional wing shape. As a result, the shape of the wing 30 is less likely to be restricted by the mold structure (for example, restriction due to the direction in which the mold is removed), and the inside of the wing 30 can have a hollow structure, and thus the weight of the wing 30 can be reduced.
  • FIG. 3 is a perspective view showing the configuration of the blade 30 as viewed from the pressure surface 30a side.
  • FIG. 4 is a cross-sectional view showing a schematic cross-sectional configuration of the blade 30 cut along a plane parallel to the rotation axis. 4 and FIGS. 5 to 8 to be described later, a simplified rectangular cross section is shown so that the structure of the wing 30 can be easily understood.
  • the wing 30 has a complicated three-dimensional wing shape. Therefore, in practice, there may be no rectangular cross section as shown in FIG. 3 and 4, the blade 30 forms the entire suction surface 30b and a part of the pressure surface 30a (in this example, a part of the pressure surface 30a on the trailing edge side of the blade 30).
  • the main wing 31 an example of the second member
  • a wing cover 32 an example of the first member
  • the wing cover 32 has a curved plate-like shape with twist (the flat wing cover 32 is shown in FIG. 4).
  • the main wing 31 is disposed so as to face the wing cover 32, forms the entire surface of the suction surface 30b, and has a curved surface plate shape with a twist (in FIG. 4, a flat surface portion 31a is shown).
  • a peripheral edge portion extending from the end portion of the surface portion 31a toward the end portion of the blade cover 32 (in FIG. 4, the upper edge portion 31b and the lower edge portion 31c are shown as a part of the peripheral edge portion.
  • a hollow space 33 is formed between the main wing 31 and the wing cover 32.
  • At least a part of the lower surface of the lower edge portion 31c is formed with an abutment surface 34 that substantially abuts against an abutted surface 12a (see FIG. 5 described later) formed on the main plate 10.
  • the contact surface 34 in this example is formed across the lower surface of the lower edge portion 31 c and the lower end surface of the blade cover 32.
  • the contact surface 34 has a shape that is long in one direction along the longitudinal direction of the lower edge portion 31c.
  • the wing 30 and the main plate 10 are in contact with each other via the contact surface 34 and the contacted surface 12a.
  • the abutting surface 34 and the abutted surface 12a serve as welding surfaces for welding and fixing the blade 30 and the main plate 10.
  • At least a part of the upper surface of the upper edge portion 31b has two contact surfaces 22a formed on the shroud 20 (see FIG. 5 and the like to be described later. In FIG. 5 and the like, of the two contact surfaces) Only the abutted surface 22a is shown, and the abutting surfaces 35a and 35b substantially abutting each other are formed.
  • Each of the contact surfaces 35 a and 35 b in this example is formed across the upper surface of the upper edge portion 31 b and the upper end surface of the blade cover 32.
  • Each of the contact surfaces 35a and 35b has a shape that is long in one direction along the longitudinal direction of the upper edge portion 31b.
  • the blade 30 and the shroud 20 are in contact with each other via contact surfaces 35a and 35b, two contacted surfaces 22a of the shroud 20, and the like. These contact surfaces 35a and 35b, the contacted surface 22a, and the like serve as welding surfaces for welding and fixing the blade 30 and the shroud 20.
  • the upper edge portion 31b of the blade 30 (main wing 31) of this example is formed with contact surfaces 35a and 35b having different heights from each other.
  • the contact surfaces 35a and 35b are also contacted on the shroud 20 side. Two contacted surfaces 22a and the like that are in contact with each other are formed.
  • the contact surface 34 is formed with a linear protrusion 36 extending linearly or curvedly (substantially linear in this example) along the longitudinal direction of the contact surface 34.
  • the protrusion 36 is formed in the vicinity of the center portion of the contact surface 34 in the extending direction of the lower edge portion 31c (short direction, left-right direction in FIG. 4).
  • the protrusion 36 has an arc-like (in this example, semicircular) cross-sectional shape.
  • the abutting surface 34 of the blade 30 and the abutted surface 12a of the main plate 10 are welded to each other by a laser beam irradiated onto the projection 36 and scanned along the projection 36.
  • linear protrusions 37a extending linearly or curvedly (substantially linear in this example) along the longitudinal direction of the contact surfaces 35a and 35b. 37b is formed.
  • the protrusions 37a and 37b are formed in the vicinity of the center of each of the contact surfaces 35a and 35b in the extending direction of the upper edge portion 31b (short direction, left and right direction in FIG. 4).
  • the protrusions 37a and 37b have a cross-sectional shape that is arcuate (in this example, semicircular).
  • the abutting surface 35a of the blade 30 and the abutted surface 22a of the shroud 20 are welded to each other by laser light irradiated onto the projection 37a and scanned along the projection 37a. Further, the abutting surface 35b of the blade 30 and the corresponding abutted surface of the shroud 20 are welded to each other by laser light irradiated onto the projection 37b and scanned along the projection 37b.
  • the main plate 10, the shroud 20, the main wing 31 of the wing 30, the wing cover 32, and the like are formed by injection molding using a thermoplastic resin (component molding process).
  • a projection 36 having an arcuate cross-sectional shape is formed on the lower surface of the lower edge portion 31c of the main wing 31 serving as the contact surface 34, and is formed on the upper surface of the upper edge portion 31b of the main wing 31 serving as the contact surfaces 35a and 35b.
  • protrusions 37a and 37b having an arcuate cross-sectional shape.
  • the main plate 10 and the shroud 20 are formed using a thermoplastic resin having a high transmittance with respect to laser light, and the main wing 31 and the wing cover 32 of the wing 30 are formed using a thermoplastic resin having a high absorption rate with respect to the laser light. Formed.
  • the wing 30 is produced by combining the main wing 31 and the wing cover 32 (wing production process).
  • the main wing 31 and the wing cover 32 may be fixed only by fitting, or may be bonded and fixed using an adhesive or the like as necessary.
  • a linear protrusion 36 is formed on the lower edge 31 c (contact surface 34) of the wing 30 that is linearly or curvedly extended along the longitudinal direction of the contact surface 34.
  • linear protrusions 37a and 37b extending linearly or curvedly along the longitudinal direction of the contact surfaces 35a and 35b are formed on the upper edge portion 31b (contact surfaces 35a and 35b) of the wing 30. Is done.
  • FIG. 5 is an explanatory diagram for explaining an assembly manufacturing process.
  • a concave portion 12 into which the lower edge portion 31 c of the wing 30 is fitted is formed on the upper surface of the main plate 10.
  • a contacted surface 12 a that contacts the contact surface 34 of the blade 30 is formed on the bottom surface of the recess 12.
  • a recess 22 into which the upper edge portion 31 b of the wing 30 is fitted is formed on the lower surface of the shroud 20.
  • a contacted surface 22 a that contacts the contact surface 35 a of the blade 30 is formed on the bottom surface of the recess 22.
  • a bottom surface portion of the recess 22 is also provided with a contact surface that is in contact with the contact surface 35b of the blade 30 and is different from the contact surface 22a.
  • the projection 36 formed on the contact surface 34 of the blade 30 contacts the contacted surface 12a of the main plate 10, and the protrusion 37a formed on the contact surface 35a of the blade 30 receives the contact of the shroud 20.
  • the protrusions 37b that are in contact with the contact surface 22a and formed on the contact surface 35b of the blade 30 are in contact with the corresponding contacted surface of the shroud 20.
  • FIG. 6 is an explanatory diagram for explaining the laser welding process.
  • the main plate 10 and the shroud 20 are pressed against each other across the blade 30 (thick arrows in FIG. 6 indicate the pressing direction). Represent). By this pressurization, the blade 30 and the main plate 10 and the blade 30 and the shroud 20 are in close contact with each other.
  • the contact portion between the wing 30 and the main plate 10 is almost limited to the tip portion of the protrusion 36, so that the protrusion 36 and the contacted surface 12a of the main plate 10 are in close contact with each other with high surface pressure.
  • the laser beam 40 is irradiated onto the projection 36 from the main plate 10 side via the contacted surface 12 a, and the laser beam 40 is scanned along the projection 36.
  • the protrusion 36 and the periphery thereof in the contact surface 34 of the blade 30 generate heat and melt, and the contact surface 34 of the blade 30 and the contacted surface 12a of the main plate 10 are welded.
  • the protrusion 36 and the contacted surface 12a are in close contact with each other at a high surface pressure in the region irradiated with the laser light 40, the adhesion between the welding surfaces is improved, and the contact surface 34 of the blade 30 is improved. And a stable welding strength between the contacted surface 12a of the main plate 10 can be obtained.
  • the contact portion between the blade 30 and the shroud 20 is almost limited to the tip portions of the protrusions 37a and 37b, the contact surfaces (the contact surface 22a and the protrusions) of the protrusions 37a and 37b and the shroud 20 are substantially the same.
  • the contacted surface corresponding to 37b is in close contact with a high surface pressure. While maintaining this state, the laser beam 41 is irradiated onto the projections 37a and 37b from the shroud 20 via the contacted surfaces 22a and the like, and the laser beam 41 is scanned along the projections 37a and 37b. .
  • the protrusion 37a and the periphery of the contact surface 35a of the blade 30 generate heat and melt, and the contact surface 35a of the blade 30 and the contacted surface 22a of the shroud 20 are welded.
  • the protrusion 37b and the periphery of the contact surface 35b of the blade 30 generate heat and melt, and the contact surface 35b of the blade 30 and the corresponding contacted surface of the shroud 20 are welded.
  • the projections 37a and 37b and the respective contact surfaces 22a of the shroud 20 are in close contact with each other in a region irradiated with the laser light 41, the adhesion between the weld surfaces is improved. Stable welding strength can be obtained between the contact surfaces 35a, 35b of the blade 30 and each contacted surface 22a of the shroud 20.
  • the centrifugal blower 1 includes the main plate 10 that is rotationally driven by the fan motor 85, the shroud 20 that is disposed to face the main plate 10, and the main plate 10 and the shroud 20.
  • a centrifugal blower that blows out gas sucked in from the direction of the rotation axis in a direction intersecting the rotation axis, and the wing 30 is attached to at least one of the main plate 10 and the shroud 20.
  • contact surfaces 34, 35a, 35b that contact the formed contacted surfaces 12a, 22a, etc., and the contact surfaces 34, 35a, 35b have protrusions 36, 37a, 37b is formed, and the contact surfaces 34, 35a, 35b and the contacted surfaces 12a, 22a are irradiated onto the projections 36, 37a, 37b and scanned along the projections 36, 37a, 37b.
  • laser beam 40, 41 is characterized in that it is welded together.
  • the manufacturing method of the centrifugal blower 1 includes the main plate 10 that is rotationally driven by the fan motor 85, the shroud 20 that is disposed to face the main plate 10, and the main plate 10 and the shroud 20.
  • a plurality of blades 30 installed, and a method of manufacturing a centrifugal blower that blows out gas sucked in from the direction of the rotation axis in a direction intersecting the rotation axis, of which the main plate 10 and the shroud 20 Protrusions 36, 37a, and 37b extending linearly or curvedly are formed on the contact surfaces 34, 35a, and 35b that contact the contacted surfaces 12a and 22a formed on at least one of the contact surfaces 34a and 22a.
  • Both projections 36,37A, by scanning along 37b, is characterized in that the abutment surface 34,35a, 35b and the abutment surface 12a, and 22a or the like welding.
  • the weld surfaces are in close contact with each other in a region not irradiated with laser light, and are not in close contact with each other in a region irradiated with laser light.
  • the fact that the welding surfaces of the respective members do not sufficiently adhere to each other in the region irradiated with laser light is a major factor that hinders the welding of the welding surfaces.
  • the contact surfaces 35a and 35b formed on the upper edge portion 31b and the contact surface 34 formed on the lower edge portion 31c are usually in the pressurizing direction. It is often arranged on parallel straight lines. For this reason, when pressurizing the main plate 10 and the shroud 20 with the blade 30 in between, the action line of the force acting on the upper edge portion 31b side of the blade 30 and the force acting on the lower edge portion 31c side of the blade 30 are shown. The action line can be positioned on a straight line.
  • the contact surfaces 35a and 35b and the contact surface 34 are often shifted in the pressurizing direction.
  • the protrusions 36, 37a, and 37b are provided on the contact surfaces 34, 35a, and 35b of the blade 30, respectively.
  • the positions where the surface 12a, the contact surface 35a and the contacted surface 22a, the contact surface 35b and the corresponding contacted surface) are brought into close contact with each other by pressing are substantially limited to the protrusions 36, 37a, and 37b. For this reason, since the contact area of welding surfaces can be made small, even if it pressurizes the main board 10 and the shroud 20 with a comparatively weak pressurization force, welding surfaces can be closely_contact
  • the position where the welding surfaces are in close contact with each other can be fixed on the protrusions 36, 37a, and 37b. Therefore, by irradiating the laser beams 40 and 41 onto the projections 36, 37a, and 37b and scanning along the projections 36, 37a, and 37b, a stable welding strength can be obtained between the welding surfaces. As a result, even if it is difficult to press the welded surfaces uniformly and make close contact with each other (for example, when the blade 30 having a three-dimensional blade shape is used), the welded surfaces are stably and firmly welded. can do.
  • centrifugal blower 1 with low noise and low power consumption by using the blade 30 having the three-dimensional blade shape, and the welding surfaces are stably and firmly established.
  • a welded high-strength centrifugal blower 1 can be obtained.
  • the protrusions 36, 37a, 37b all have an arcuate cross-sectional shape.
  • the contact surfaces 34, 35a, 35b and the contacted surfaces 12a, 22a are inclined slightly in a direction not parallel to the extending direction of the protrusions 36, 37a, 37b, the protrusions 36, 37a,
  • the contact area between 37b and the contact surfaces 12a, 22a, etc. can be made substantially constant. Therefore, it is possible to pressurize between the protrusions 36, 37a, 37b and the abutted surfaces 12a, 22a and the like with a substantially constant surface pressure, and to weld the welding surfaces with a constant welding strength.
  • FIG. A centrifugal blower according to Embodiment 2 of the present invention will be described.
  • FIGS. 7A and 7B are cross-sectional views showing a schematic cross-sectional configuration of the blade 50 of the centrifugal blower according to the present embodiment, and correspond to FIG. 4 of the first embodiment.
  • This embodiment is characterized in that the cross-sectional shapes of the protrusions 51, 52a and the like are different from those of the first embodiment.
  • symbol is attached
  • the protrusion 51 formed on the contact surface 34 of the blade 50 and the protrusion 52a formed on the contact surface 35a of the blade 50 are both rectangular (in this example, horizontally long). (Rectangular shape).
  • the protrusion formed on the contact surface 35b also has a square cross-sectional shape, similar to the protrusions 51 and 52a.
  • the protrusions 51 and 52a have a triangular shape (in this example, an isosceles triangular shape having an obtuse angle at the tip).
  • the protrusion formed on the contact surface 35b also has a triangular cross-sectional shape, like the protrusions 51 and 52a.
  • the optimum shape of the protrusions 51, 52a, etc. is selected based on the shape of the welding surface, the diameter of the laser beam (spot diameter), the jig used to press the welding surfaces together, and the like. can do.
  • FIG. 8 is a cross-sectional view illustrating a schematic cross-sectional configuration of the blade 60 of the centrifugal blower according to the present embodiment, and corresponds to FIG. 4 of the first embodiment.
  • the present embodiment is characterized by the arrangement positions of the protrusions 36, 37a and the like.
  • symbol is attached
  • the protrusion 36 formed on the abutment surface 34 of the wing 60 is in the extending direction of the lower edge portion 31c (short direction, left-right direction in FIG. 8). It is formed closer to the surface portion 31a than the center portion of the contact surface 34 (that is, closer to the corner portion between the surface portion 31a and the lower edge portion 31c). For example, the entire protrusion 36 is disposed only in a region closer to the surface portion 31 a than the center portion of the contact surface 34.
  • the protrusion 37a formed on the contact surface 35a of the blade 60 has a surface portion that is more than the center portion of the contact surface 35a in the extending direction of the upper edge portion 31b (short direction, left-right direction in FIG. 8). It is formed closer to 31a (closer to the corner between the surface portion 31a and the upper edge portion 31b). For example, the entire protrusion 37a is disposed only in a region closer to the surface portion 31a than the center portion of the contact surface 35a.
  • the protrusion 37b formed on the contact surface 35b (see FIG. 3) of the blade 60 is also more surface than the center of the contact surface 35b in the extending direction of the upper edge portion 31b. It is formed closer to the portion 31a. That is, the protrusions 36, 37a, and 37b are disposed at positions closer to the opposite side (opposite wing cover side) of the blade cover 32 than the center portions of the contact surfaces 34, 35a, and 35b, respectively.
  • the blade 30 has the blade cover 32 (first member) constituting at least a part of one blade surface (the positive pressure surface 30a in this example) of the blade 30.
  • the main wing 31 (the second member of the second member) is provided with an upper edge portion 31b and a lower edge portion 31c (an example of a peripheral edge portion) extending toward the end portion of one member, and forms a hollow space 33 between the wing cover 32.
  • the contact surfaces 34, 35a, 35b are formed on the upper edge portion 31b and the lower edge portion 31c, and the protrusions 36, 37a, 37b are formed on the upper edge portion 31b and the lower edge portion 31c.
  • the contact surface 34, 35a, 35b In the extending direction of the contact surface 34, 35a, 35b than the center of the surface. And it is characterized in that it is formed in the part 31a closer (Hantsubasa cover side).
  • FIG. 9 is a graph showing the relationship between the positions of the protrusions 36, 37a, and 37b and the welding strength. As shown in FIG.
  • the welding strength is about three times that in the configuration in which the position of the projections 36, 37a, and 37b is in the center. was gotten.
  • FIG. 4 A centrifugal blower according to Embodiment 4 of the present invention will be described.
  • the present embodiment is characterized in that the widths of the protrusions 36, 37a, 37b, 51, 52a and the like in the first and second embodiments are optimized.
  • five types of wings having the same configuration except for the widths of the projections 36, 37a, and 37b having an arcuate cross-sectional shape are manufactured, and each of the wings is combined with the main plate 10 and the shroud 20 to provide five types.
  • An assembly was prepared.
  • the widths of the protrusions 36, 37a, and 37b on each blade were 25%, 50%, 100%, 150%, and 175% of the laser diameter (spot diameter of laser light), respectively.
  • laser welding was performed between the welding surfaces while pressurizing between the main plate 10 and the shroud 20 with the same load, and the welding strength between each blade, the main plate 10 and the shroud 20 was evaluated.
  • FIG. 10 is a graph showing the relationship between the widths of the protrusions 36, 37a, and 37b and the welding strength. As shown in FIG. 10, it was found that the maximum welding strength can be obtained when the width of the protrusions 36, 37a, and 37b is 100% of the laser diameter. In addition, when the width of the protrusions 36, 37a, and 37b is smaller than 50% of the laser diameter, the influence of the protrusions 36, 37a, and 37b is reduced, so that the welding strength is reduced (the welding strength is maximized). It was found that it was less than 90% of the welding strength).
  • the widths of the protrusions 36, 37a, and 37b are larger than 150% of the laser diameter, the protrusions 36, 37a, and 37b approach the plane, and the influence of the protrusions 36, 37a, and 37b is reduced. It has been found that the welding strength decreases (the welding strength is less than 90% of the maximum welding strength). It was also found that the same tendency was observed in the relationship between the width of the protrusion and the welding strength even when the cross-sectional shape of the protrusion was changed from an arc shape to a square shape or a triangular shape. As a result, it was found that the widths of the protrusions 36, 37a, 37b, 51, 52a and the like are desirably 50% or more and 150% or less of the laser diameter, and most desirably 100% of the laser diameter.
  • FIG. 11 is a partial cross-sectional view showing a schematic configuration of the air conditioner according to the present embodiment.
  • the air conditioner according to the present embodiment includes the centrifugal blower according to any of the first to fourth embodiments (for example, the centrifugal blower 1 according to the first embodiment).
  • a ceiling-embedded indoor unit 100 will be described as an example of an air conditioner.
  • symbol is attached
  • the ceiling-embedded indoor unit 100 is embedded and installed on the back side of the ceiling 70.
  • the lower surface opening of the indoor unit 100 is exposed from the opening 71 of the ceiling 70.
  • a decorative panel 83 having a suction port 81 and a blower port 82 is attached from the lower surface opening of the main body shell 80 to the periphery of the opening 71 of the ceiling 70.
  • a filter 84 is disposed on the downstream side of the suction port 81.
  • a fan motor 85 is attached to the top plate of the main body outer shell 80.
  • the boss 11 of the centrifugal blower 1 is fixed to the output shaft of the fan motor 85.
  • the centrifugal blower 1 is attached such that the air suction port 21 of the shroud 20 is located on the suction port 81 side of the decorative panel 83.
  • a bell mouth 86 is installed between the suction port 81 of the decorative panel 83 and the air suction port 21 of the shroud 20.
  • a heat exchanger 87 is disposed on the outer periphery on the downstream side of the centrifugal blower 1 in the air path from the inlet 81 to the outlet 82.
  • the fan motor 85 is driven to rotate, and the centrifugal blower 1 fixed to the output shaft of the fan motor 85 rotates.
  • the indoor air is sucked from the suction port 81 and cleaned by the filter 84, flows into the centrifugal blower 1 from the bell mouth 86, and flows out from between the blades 30 toward the outer periphery.
  • the air that has flowed out of the centrifugal blower 1 passes through the heat exchanger 87, is cooled or heated by heat exchange with the refrigerant circulating in the heat exchanger 87, and is blown into the room from the outlet 82 as conditioned air. .
  • the air conditioner of this embodiment includes the centrifugal blower according to any of Embodiments 1 to 4, an air conditioner with high strength, low noise, and low power consumption can be obtained.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the wing 30 having the three-dimensional wing shape is taken as an example, but the wing 30 may have a two-dimensional wing shape.
  • blade 30 welded to both the main board 10 and the shroud 20 was mentioned as an example, the wing
  • the ceiling embedded type indoor unit 100 was mentioned as an example as an air conditioning apparatus provided with the centrifugal blower 1
  • the air conditioning apparatus provided with the centrifugal blower 1 is a room of another structure. It may be an air conditioner outdoor unit, an air purifier, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

 遠心送風機1は、主板10と、シュラウド20と、主板10とシュラウド20との間に設置された複数の翼30と、を備え、翼30は、主板10及びシュラウド20のうち少なくとも一方に形成された被当接面12a、22a等に当接する当接面34、35a、35bを有し、当接面34、35a、35bには、直線状又は曲線状に延伸した突起36、37a、37bが形成されており、当接面34、35a、35b及び被当接面12a、22a等は、突起36、37a、37b上に照射され突起36、37a、37bに沿って走査されたレーザー光40、41によって互いに溶着されている。

Description

遠心送風機、空気調和機、及び遠心送風機の製造方法
 本発明は、遠心送風機、空気調和機、及び遠心送風機の製造方法に関するものである。
 遠心送風機は、ファンモーターにより回転駆動される主板と、空気吸込口を有するシュラウドと、主板とシュラウドとの間に設けられた複数の翼と、を備えている。従来、遠心送風機の翼としては、回転軸方向でねじれのない2次元翼を用いるのが主流であった。このため、主板と翼とは樹脂により一体成形することが可能であった。ところが、近年、遠心送風機のさらなる低騒音化や低消費電力化のため、回転軸方向にねじれ形状を有する3次元翼を用いることが必要となってきている。
 特許文献1には、樹脂製の主板と、複数の中空羽根と、樹脂製の側板とを備えた遠心送風機の羽根車が記載されている。中空羽根は、主板に固定された樹脂製の第1面部と、第1面部に装着され第1面部との間に中空の空間を形成する樹脂製の第2面部と、からなっている。この遠心送風機の羽根車では、中空羽根を第1面部と第2面部とから構成しているため、中空羽根が主板と側板との間をねじれながら軸方向に延びる3次元翼であっても、羽根の中空化を促進し、羽根車の軽量化を図ることができる。
特許第4432474号公報
 特許文献1の中空羽根は、側板にレーザー溶着により固定されている。複数の部材をレーザー溶着により安定した溶着強度で固定するためには、レーザー溶着を行う際に各部材の溶着面同士を均一に加圧して密着させる必要がある。しかしながら、溶着面同士を均一に加圧して密着させることは困難な場合があるため、部材同士の安定した溶着強度を得るのが困難な場合があるという問題点があった。
 本発明は、上述のような問題点を解決するためになされたものであり、翼に形成された当接面と、主板及びシュラウドのうち少なくとも一方に形成された被当接面との間において、安定した溶着強度が得られる遠心送風機、空気調和機、及び遠心送風機の製造方法を提供することを目的とする。
 本発明に係る遠心送風機は、ファンモーターにより回転駆動される主板と、前記主板に対向して配置されたシュラウドと、前記主板と前記シュラウドとの間に設置された複数の翼と、を備え、回転軸方向から吸入した気体を当該回転軸に交差する方向に吹き出す遠心送風機であって、前記翼は、前記主板及び前記シュラウドのうち少なくとも一方に形成された被当接面に当接する当接面を有し、前記当接面には、直線状又は曲線状に延伸した突起が形成されており、前記当接面及び前記被当接面は、前記突起上に照射され前記突起に沿って走査されたレーザー光によって互いに溶着されていることを特徴とするものである。
 本発明によれば、当接面に形成された突起と被当接面とを高い面圧で密着させることができるため、レーザー光を突起上に照射し突起に沿って走査することにより当接面と被当接面との間において安定した溶着強度を得ることができる。
本発明の実施の形態1に係る遠心送風機1の概略構成を示す斜視図である。 本発明の実施の形態1に係る遠心送風機1を軸方向に切断した概略の断面構成を示す模式図である。 本発明の実施の形態1に係る遠心送風機1の翼30の概略構成を示す斜視図である。 本発明の実施の形態1に係る遠心送風機1の翼30の概略の断面構成を示す断面図である。 本発明の実施の形態1に係る遠心送風機1の製造工程のうち組立体作製工程を説明するための説明図である。 本発明の実施の形態1に係る遠心送風機1の製造工程のうちレーザー溶着工程を説明するための説明図である。 本発明の実施の形態2に係る遠心送風機の翼50の概略の断面構成を示す断面図である。 本発明の実施の形態3に係る遠心送風機の翼60の概略の断面構成を示す断面図である。 本発明の実施の形態3に係る遠心送風機における突起36、37a、37bの位置と溶着強度との関係を示すグラフである。 本発明の実施の形態4に係る遠心送風機における突起36、37a、37bの幅と溶着強度との関係を示すグラフである。 本発明の実施の形態5に係る空気調和機の概略構成を示す部分断面図である。
実施の形態1.
 本発明の実施の形態1に係る遠心送風機及びその製造方法について説明する。図1は、本実施の形態に係る遠心送風機1の概略構成を示す斜視図である。図2は、本実施の形態に係る遠心送風機1を軸方向に切断した概略の断面構成を示す模式図である。なお、図1及び図2を含む以下の図面では、各構成部材の寸法の関係や形状等が実際のものとは異なる場合がある。
 図1及び図2に示すように、遠心送風機1は、ファンモーター85(図11参照)により回転駆動される主板10と、主板10に対向して配置されたシュラウド20と、主板10とシュラウド20との間に設置され、かつ回転軸を中心として環状に配置された複数(本例では7つ)の翼30と、を有している。遠心送風機1は、回転軸方向から気体(例えば、空気)を吸入し、吸入した気体を当該回転軸に交差する外周方向に吹き出すものである。
 主板10は、レーザー光に対する透過率が比較的高く、当該レーザー光に対する吸収率が比較的低い樹脂材料(例えば、透明又は白色の樹脂材料)により形成されている。主板10は、略円板状の形状を有している。主板10の中心部には、遠心送風機1の回転軸となるボス11が取り付けられている。ボス11は、ファンモーター85の出力軸に対して固定されている。
 シュラウド20は、主板10と同様に、レーザー光に対する透過率が比較的高く、当該レーザー光に対する吸収率が比較的低い樹脂材料(例えば、透明又は白色の樹脂材料)により形成されている。シュラウド20は、回転軸方向の外側から気体を吸入する空気吸込口21を中央部に有している。シュラウド20は、外周部から空気吸込口21に向かうほど空気吸込口21側(主板10とは逆側)に突出するベル形状を有している。
 翼30は、低騒音化や低消費電力化のため、主板10とシュラウド20との間でねじれた3次元翼形状を有している。3次元翼形状を有する翼30は主板10又はシュラウド20と一体成形するのが困難であることから、翼30は、主板10及びシュラウド20とは別体として形成されている。翼30は、レーザー光に対する透過率が主板10及びシュラウド20を形成する樹脂材料よりも低く、当該レーザー光に対する吸収率が主板10及びシュラウド20を形成する樹脂材料よりも高い樹脂材料(例えば、黒色の樹脂材料)により形成されている。これにより、主板10側又はシュラウド20側からレーザー光を照射することによって、翼30と主板10との間、及び翼30とシュラウド20との間を溶着することができる。翼30の下端は主板10に対してレーザー溶着により固定されており、翼30の上端はシュラウド20に対してレーザー溶着により固定されている。翼30は、回転軸から遠い方の翼面である正圧面30aと、回転軸に近い方の翼面である負圧面30bとを有している。
 遠心送風機1の各構成部材の形成材料としては、成形容易性、軽量性、低コストを理由として熱可塑性樹脂材料が用いられている。また、翼30は、複雑な3次元翼形状を実現するため、複数部品で構成されている。これにより、翼30の形状が型構造による制約(例えば、型の抜き方向による制約)を受け難くなり、翼30の内部を中空構造とすることができるため、翼30の軽量化も実現できる。
 図3は、翼30を正圧面30a側から見た構成を示す斜視図である。図4は、翼30を回転軸に平行な平面で切断した概略の断面構成を示す断面図である。なお、図4及び後述する図5~図8では、翼30の構造を容易に理解できるように単純化した長方形状の断面を示しているが、翼30は複雑な3次元翼形状を有しているため、実際には図4等に示すような長方形状の断面が存在しない場合がある。図3及び図4に示すように、翼30は、負圧面30bの全面と正圧面30aの一部(本例では、正圧面30aのうち翼30の後縁部側の一部)とを形成する主翼31(第2部材の一例)と、正圧面30aの他部を形成する翼カバー32(第1部材の一例)と、を含む複数部品が組み合わされた構成を有している。
 翼カバー32は、ねじれを伴った曲面板状の形状を有している(図4では、平板状の翼カバー32を示している)。主翼31は、翼カバー32に対向して配置され、負圧面30bの全面を形成し、ねじれを伴った曲面板状の形状を有する表面部31a(図4では、平板状の表面部31aを示している)と、表面部31aの端部から翼カバー32の端部に向かって延出した周縁部(図4では、周縁部の一部として上縁部31b及び下縁部31cを示している)と、を備えている。主翼31と翼カバー32との間には、中空空間33が形成されている。
 下縁部31cの下面のうち少なくとも一部には、主板10に形成された被当接面12a(後述する図5等参照)に実質的に当接する当接面34が形成されている。本例の当接面34は、下縁部31cの下面と翼カバー32の下端面とに跨って形成されている。当接面34は、下縁部31cの長手方向に沿って一方向に長い形状を有している。翼30と主板10とは、当接面34及び被当接面12aを介して当接している。当接面34及び被当接面12aは、翼30と主板10とを溶着固定するための溶着面となるものである。
 上縁部31bの上面のうち少なくとも一部には、シュラウド20に形成された2つの被当接面22a等(後述する図5等参照。なお、図5等では2つの被当接面のうち被当接面22aのみを示しており、もう1つの被当接面の図示は省略している)にそれぞれ実質的に当接する当接面35a、35bが形成されている。本例の当接面35a、35bのそれぞれは、上縁部31bの上面と翼カバー32の上端面とに跨って形成されている。当接面35a、35bのそれぞれは、上縁部31bの長手方向に沿って一方向に長い形状を有している。翼30とシュラウド20とは、当接面35a、35b及びシュラウド20の2つの被当接面22a等を介して当接している。これらの当接面35a、35b及び被当接面22a等は、翼30とシュラウド20とを溶着固定するための溶着面となるものである。本例の翼30(主翼31)の上縁部31bには、互いに高さが異なる段違いの当接面35a、35bが形成されており、シュラウド20側にも当接面35a、35bにそれぞれ当接する段違いの2つの被当接面22a等が形成されている。
 当接面34には、当該当接面34の長手方向に沿って直線状又は曲線状(本例では、ほぼ直線状)に延伸した線状の突起36が形成されている。突起36は、下縁部31cの延出方向(短手方向。図4中の左右方向)において、当接面34の中心部近傍に形成されている。突起36は、円弧状(本例では、半円状)の断面形状を有している。翼30の当接面34と主板10の被当接面12aとは、突起36上に照射されかつ突起36に沿って走査されたレーザー光によって互いに溶着されている。
 同様に、当接面35a、35bのそれぞれには、当該当接面35a、35bの長手方向に沿って直線状又は曲線状(本例では、ほぼ直線状)に延伸した線状の突起37a、37bが形成されている。突起37a、37bは、上縁部31bの延出方向(短手方向。図4中の左右方向)において、当接面35a、35bのそれぞれ中心部近傍に形成されている。突起37a、37bは、円弧状(本例では、半円状)の断面形状を有している。翼30の当接面35aとシュラウド20の被当接面22aとは、突起37a上に照射されかつ突起37aに沿って走査されたレーザー光によって互いに溶着されている。また、翼30の当接面35bとシュラウド20の対応する被当接面とは、突起37b上に照射されかつ突起37bに沿って走査されたレーザー光によって互いに溶着されている。
 次に、本実施の形態に係る遠心送風機1の製造方法について説明する。
 遠心送風機1を製造する工程では、まず、熱可塑性樹脂を用いた射出成形等により、主板10、シュラウド20、翼30の主翼31及び翼カバー32等を成形する(部品成形工程)。このとき、当接面34となる主翼31の下縁部31c下面には、円弧状の断面形状を有する突起36が形成され、当接面35a、35bとなる主翼31の上縁部31b上面には、円弧状の断面形状を有する突起37a、37bが形成される。主板10及びシュラウド20は、レーザー光に対して透過率の高い熱可塑性樹脂を用いて形成され、翼30の主翼31及び翼カバー32は、レーザー光に対して吸収率の高い熱可塑性樹脂を用いて形成される。
 次に、主翼31と翼カバー32とを組み合わせ、翼30を作製する(翼作製工程)。主翼31と翼カバー32との間は、嵌合のみによって固定してもよいし、必要に応じて接着剤等を用いて接着固定してもよい。作製された翼30の下縁部31c(当接面34)には、当接面34の長手方向に沿って直線状又は曲線状に延伸した線状の突起36が形成される。また、翼30の上縁部31b(当接面35a、35b)には、当接面35a、35bのそれぞれ長手方向に沿って直線状又は曲線状に延伸した線状の突起37a、37bが形成される。
 次に、作製した翼30と主板10及びシュラウド20とを組み合わせ、遠心送風機1の組立体を作製する(組立体作製工程)。図5は、組立体作製工程を説明するための説明図である。図5に示すように、主板10の上面には、翼30の下縁部31cが嵌入される凹部12が形成されている。凹部12の底面部には、翼30の当接面34に当接される被当接面12aが形成されている。また、シュラウド20の下面には、翼30の上縁部31bが嵌入される凹部22が形成されている。凹部22の底面部には、翼30の当接面35aに当接される被当接面22aが形成されている。なお、図示を省略しているが、凹部22の底面部には、翼30の当接面35bに当接される、被当接面22aとは段違いの被当接面も形成されている。組立体作製工程では、主板10の凹部12内に翼30の下縁部31cが嵌入されるとともに、シュラウド20の凹部22内に翼30の上縁部31bが嵌入される。これにより、翼30の当接面34に形成された突起36は、主板10の被当接面12aに当接し、翼30の当接面35aに形成された突起37aは、シュラウド20の被当接面22aに当接し、翼30の当接面35bに形成された突起37bは、シュラウド20の対応する被当接面に当接する。この組立体作製工程によって、主板10、シュラウド20及び複数の翼30が互いに位置決めされるようになっている。
 次に、遠心送風機1の組立体において、レーザー溶着を行う(レーザー溶着工程)。レーザー溶着工程では、翼30の当接面34と主板10の被当接面12aとの間、翼30の当接面35aとシュラウド20の被当接面22aとの間、及び、翼30の当接面35bとシュラウド20の対応する被当接面との間、が順次又は同時に溶着される。図6は、レーザー溶着工程を説明するための説明図である。図6に示すように、レーザー溶着工程においてレーザー溶着を行う際には、翼30を挟んで主板10とシュラウド20とを互いに押し付け合う方向に加圧する(図6中の太矢印は加圧方向を表している)。この加圧により、翼30と主板10との間、及び翼30とシュラウド20との間、がそれぞれ密着される。
 このとき、翼30と主板10との間における接触部分は突起36の先端部分にほぼ限定されるため、突起36と主板10の被当接面12aとの間は高い面圧で密着する。この状態を維持したまま、主板10側から被当接面12aを介してレーザー光40を突起36上に照射し、当該レーザー光40を突起36に沿って走査する。これにより、翼30の当接面34のうち突起36及びその周囲が発熱して溶融し、翼30の当接面34と主板10の被当接面12aとが溶着される。本例では、レーザー光40が照射される領域において突起36と被当接面12aとが高い面圧で密着しているため、溶着面同士の密着性が向上し、翼30の当接面34と主板10の被当接面12aとの間で安定した溶着強度が得られる。
 同様に、翼30とシュラウド20との間における接触部分は突起37a、37bの先端部分にほぼ限定されるため、突起37a、37bとシュラウド20の各被当接面(被当接面22a及び突起37bに対応する被当接面)との間は高い面圧で密着する。この状態を維持したまま、シュラウド20側から各被当接面22a等を介してレーザー光41を突起37a、37b上に照射し、当該レーザー光41を突起37a、37bのそれぞれに沿って走査する。これにより、翼30の当接面35aのうち突起37a及びその周囲が発熱して溶融し、翼30の当接面35aとシュラウド20の被当接面22aとが溶着される。また、翼30の当接面35bのうち突起37b及びその周囲が発熱して溶融し、翼30の当接面35bとシュラウド20の対応する被当接面とが溶着される。本例では、レーザー光41が照射される領域において突起37a、37bとシュラウド20の各被当接面22a等とが高い面圧で密着しているため、溶着面同士の密着性が向上し、翼30の当接面35a、35bとシュラウド20の各被当接面22a等との間で安定した溶着強度が得られる。
 以上説明したように、本実施の形態に係る遠心送風機1は、ファンモーター85により回転駆動される主板10と、主板10に対向して配置されたシュラウド20と、主板10とシュラウド20との間に設置された複数の翼30と、を備え、回転軸方向から吸入した気体を当該回転軸に交差する方向に吹き出す遠心送風機であって、翼30は、主板10及びシュラウド20のうち少なくとも一方に形成された被当接面12a、22a等に当接する当接面34、35a、35bを有し、当接面34、35a、35bには、直線状又は曲線状に延伸した突起36、37a、37bが形成されており、当接面34、35a、35b及び被当接面12a、22a等は、突起36、37a、37b上に照射され突起36、37a、37bに沿って走査されたレーザー光40、41によって互いに溶着されていることを特徴とするものである。
 また、本実施の形態に係る遠心送風機1の製造方法は、ファンモーター85により回転駆動される主板10と、主板10に対向して配置されたシュラウド20と、主板10とシュラウド20との間に設置された複数の翼30と、を備え、回転軸方向から吸入した気体を当該回転軸に交差する方向に吹き出す遠心送風機を製造する方法であって、翼30のうち、主板10及びシュラウド20のうち少なくとも一方に形成された被当接面12a、22a等に当接する当接面34、35a、35bに、直線状又は曲線状に延伸した突起36、37a、37bを形成し、当接面34、35a、35bに形成された突起36、37a、37bと被当接面12a、22a等とを当接させ、レーザー光40、41を突起36、37a、37b上に照射するとともに突起36、37a、37bに沿って走査して、当接面34、35a、35bと被当接面12a、22a等とを溶着することを特徴とするものである。
 一般に、部材同士をレーザー溶着する際、各部材の溶着面の一方又は双方が樹脂成形により低い平面度に形成されていたり、溶着面同士の加圧が不均一になっていたりすると、各部材の溶着面同士が、レーザー光の照射されない領域で密着してしまい、レーザー光の照射される領域では密着しなくなってしまう場合がある。各部材の溶着面同士がレーザー光の照射される領域で十分に密着しないことは、溶着面同士の溶着を阻害する大きな要因となる。
 また、通常、翼30が2次元翼形状を有する場合、上縁部31bに形成された当接面35a、35bと、下縁部31cに形成された当接面34とは、加圧方向に平行な一直線上に配置されることが多い。このため、翼30を挟んで主板10とシュラウド20とを加圧する際に、翼30の上縁部31b側に作用する力の作用線と、翼30の下縁部31c側に作用する力の作用線とを一直線上に位置させることができる。これに対し、翼30が3次元翼形状を有する場合、当接面35a、35bと当接面34とが加圧方向においてずれて配置されることが多い。このため、翼30を挟んで主板10とシュラウド20とを加圧する際に、翼30の上縁部31b側に作用する力の作用線と、翼30の下縁部31c側に作用する力の作用線とを、一直線上に位置させるのが困難な場合がある。これらの作用線同士が一直線上にない場合、主板10とシュラウド20とが強い加圧力で加圧されると、翼30には回転力が作用してしまう。したがって、特に翼30が3次元翼形状を有する場合には、各部材の溶着面同士を均一に加圧するのが困難であるため、溶着面同士の間で安定した溶着強度を得るのが困難であった。
 これに対し、本実施の形態では、翼30の当接面34、35a、35bのそれぞれに突起36、37a、37bが設けられていることにより、溶着面同士(当接面34と被当接面12a、当接面35aと被当接面22a、当接面35bとそれに対応する被当接面)が加圧によって密着する位置は、突起36、37a、37b上にほぼ限定される。このため、溶着面同士の接触面積を小さくすることができるため、主板10とシュラウド20とを比較的弱い加圧力で加圧しても、溶着面同士を高い面圧で密着させることができる。また、溶着面同士が密着する位置を突起36、37a、37b上に固定することができる。したがって、レーザー光40、41を突起36、37a、37b上に照射し、突起36、37a、37bに沿って走査することにより、溶着面同士の間で安定した溶着強度を得ることができる。これにより、溶着面同士を均一に加圧して密着させることが困難な場合(例えば、3次元翼形状を有する翼30を用いた場合)であっても、溶着面同士を安定して強固に溶着することができる。このため、本実施の形態によれば、3次元翼形状を有する翼30を用いることによって低騒音で低消費電力の遠心送風機1を得ることができることに加え、溶着面同士が安定して強固に溶着された高強度の遠心送風機1を得ることができる。
 また、本実施の形態では、突起36、37a、37bがいずれも円弧状の断面形状を有している。これにより、当接面34、35a、35bと被当接面12a、22a等とが突起36、37a、37bの延伸方向に平行でない方向に相対的に若干傾いたとしても、突起36、37a、37bと被当接面12a、22a等との接触面積をほぼ一定にすることができる。したがって、突起36、37a、37bと被当接面12a、22a等との間をほぼ一定の面圧で加圧することができ、溶着面同士を一定の溶着強度で溶着することができる。
実施の形態2.
 本発明の実施の形態2に係る遠心送風機について説明する。図7(a)、(b)は、本実施の形態に係る遠心送風機の翼50の概略の断面構成を示す断面図であり、実施の形態1の図4に対応する図である。本実施の形態は、実施の形態1と比較すると、突起51、52a等の断面形状が異なっている点に特徴を有している。なお、実施の形態1に係る翼30と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 図7(a)に示す構成では、翼50の当接面34に形成された突起51、及び翼50の当接面35aに形成された突起52aは、いずれも四角形状(本例では、横長長方形状)の断面形状を有している。図示していないが、当接面35b(図3参照)に形成された突起も、突起51、52aと同様に四角形状の断面形状を有している。
 また、図7(b)に示す構成では、突起51、52aは三角形状(本例では、先端に位置する頂角が鈍角である二等辺三角形状)の断面形状を有している。図示していないが、当接面35bに形成された突起も、突起51、52aと同様に三角形状の断面形状を有している。
 本実施の形態によれば、実施の形態1と概ね同様の効果が得られる。また、本実施の形態では、溶着面の形状、レーザー光の直径(スポット径)や、溶着面同士を加圧する際に用いられる治具等に基づき、突起51、52a等の最適な形状を選択することができる。
実施の形態3.
 本発明の実施の形態3に係る遠心送風機について説明する。図8は、本実施の形態に係る遠心送風機の翼60の概略の断面構成を示す断面図であり、実施の形態1の図4に対応する図である。本実施の形態は、実施の形態1と比較すると、突起36、37a等の配置位置に特徴を有している。なお、実施の形態1に係る翼30と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 図8に示すように、本実施の形態では、翼60の当接面34に形成された突起36は、下縁部31cの延出方向(短手方向。図8中の左右方向)において、当接面34の中心部よりも表面部31a寄り(すなわち、表面部31aと下縁部31cとの間の角部寄り)に形成されている。例えば、突起36の全体は、当接面34の中心部よりも表面部31a寄りの領域のみに配置されている。また、翼60の当接面35aに形成された突起37aは、上縁部31bの延出方向(短手方向。図8中の左右方向)において、当接面35aの中心部よりも表面部31a寄り(表面部31aと上縁部31bとの間の角部寄り)に形成されている。例えば、突起37aの全体は、当接面35aの中心部よりも表面部31a寄りの領域のみに配置されている。図示を省略しているが、翼60の当接面35b(図3参照)に形成された突起37bも同様に、上縁部31bの延出方向において、当接面35bの中心部よりも表面部31a寄りに形成されている。すなわち、突起36、37a、37bはそれぞれ、各当接面34、35a、35bの中心部よりも翼カバー32の反対側(反翼カバー側)に寄った位置に配置されている。
 以上説明したように、本実施の形態に係る遠心送風機は、翼30は、翼30の一方の翼面(本例では、正圧面30a)の少なくとも一部を構成する翼カバー32(第1部材の一例)と、翼カバー32に対向して配置され翼30の他方の翼面(本例では、負圧面30b)の少なくとも一部を構成する表面部31aと、表面部31aの端部から第1部材の端部に向かって延出した上縁部31b及び下縁部31c(周縁部の一例)とを備え、翼カバー32との間に中空空間33を形成する主翼31(第2部材の一例)と、を有し、当接面34、35a、35bは、上縁部31b及び下縁部31cに形成されており、突起36、37a、37bは、上縁部31b及び下縁部31cの延出方向において、当接面34、35a、35bの中心部よりも表面部31a寄り(反翼カバー側)に形成されていることを特徴とするものである。
 この構成によれば、突起36、37a、37bを反翼カバー側に配置することによって、レーザー溶着を行う際に上下から加えられる荷重が突起36、37a、37bにかかりやすくなる。これにより、レーザー溶着を行う際の溶着面同士の密着性が向上するため、翼60と主板10及びシュラウド20との間の溶着強度をより向上させることができる。
 ここで、突起36、37a、37bの位置(当接面34、35a、35bの中央部又は当接面34、35a、35bの反翼カバー側)を除いて同一の構成を有する2種類の翼を作製し、各翼のそれぞれを主板10及びシュラウド20と組み合わせ、2種類の組立体を作製した。各組立体において、主板10とシュラウド20との間をそれぞれ同等の荷重で加圧しながら溶着面同士のレーザー溶着を行い、各翼と主板10及びシュラウド20との間の溶着強度をそれぞれ評価した。図9は、突起36、37a、37bの位置と溶着強度との関係を示すグラフである。図9に示すように、突起36、37a、37bの位置を反翼カバー側とした構成では、突起36、37a、37bの位置を中央部とした構成と比較して、約3倍の溶着強度が得られた。
実施の形態4.
 本発明の実施の形態4に係る遠心送風機について説明する。本実施の形態は、実施の形態1及び実施の形態2における突起36、37a、37b、51、52a等の幅を最適化したことを特徴としている。本例では、円弧状の断面形状を有する突起36、37a、37bの幅を除いて同一の構成を有する5種類の翼を作製し、各翼のそれぞれを主板10及びシュラウド20と組み合わせ、5種類の組立体を作製した。各翼における突起36、37a、37bの幅は、それぞれレーザー径(レーザー光のスポット径)の25%、50%、100%、150%、175%とした。各組立体において、主板10とシュラウド20との間をそれぞれ同等の荷重で加圧しながら溶着面同士のレーザー溶着を行い、各翼と主板10及びシュラウド20との間の溶着強度をそれぞれ評価した。
 図10は、突起36、37a、37bの幅と溶着強度との関係を示すグラフである。図10に示すように、突起36、37a、37bの幅をレーザー径の100%とした場合に、最大の溶着強度が得られることが分かった。また、突起36、37a、37bの幅をレーザー径の50%よりも小さくした場合には、突起36、37a、37bの影響が小さくなるため、溶着強度が低下してしまう(溶着強度が最大の溶着強度の90%未満となってしまう)ことが分かった。一方、突起36、37a、37bの幅をレーザー径の150%よりも大きくした場合には、突起36、37a、37bが平面に近づき、突起36、37a、37bの影響が小さくなるため、溶着強度が低下してしまう(溶着強度が最大の溶着強度の90%未満となってしまう)ことが分かった。また、突起の断面形状を円弧状から四角形状又は三角形状に変えても、突起の幅と溶着強度との関係には同様の傾向が見られることが分かった。以上の結果、突起36、37a、37b、51、52a等の幅は、レーザー径の50%以上150%以下であることが望ましく、レーザー径の100%であることが最も望ましいことが分かった。
実施の形態5.
 本発明の実施の形態5に係る空気調和機について説明する。図11は、本実施の形態に係る空気調和機の概略構成を示す部分断面図である。本実施の形態に係る空気調和機は、実施の形態1~4のいずれかに係る遠心送風機(例えば、実施の形態1に係る遠心送風機1)を備えている。本実施の形態では、空気調和機の例として、天井埋込型の室内機100を例に挙げて説明する。なお、実施の形態1の遠心送風機1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
 図11に示すように、天井埋込型の室内機100は、天井70の裏側に埋設設置されている。室内機100の下面開口部は、天井70の開口部71から露出している。本体外郭80の下面開口部から天井70の開口部71の周縁にかけて、吸込口81及び吹出口82を有する化粧パネル83が取り付けられている。吸込口81の下流側にはフィルター84が配設されている。
 本体外郭80の天板には、ファンモーター85が取り付けられている。ファンモーター85の出力軸には、遠心送風機1のボス11が固定されている。遠心送風機1は、シュラウド20の空気吸込口21が化粧パネル83の吸込口81側に位置するように取り付けられている。化粧パネル83の吸込口81と、シュラウド20の空気吸込口21との間には、ベルマウス86が設置されている。吸込口81から吹出口82に至る風路のうち遠心送風機1の下流側外周には、熱交換器87が配置されている。
 上記のような天井埋込型の室内機100を有する空気調和機において、運転が開始されるとファンモーター85が回転駆動され、ファンモーター85の出力軸に固定された遠心送風機1が回転する。遠心送風機1の回転により室内の空気が吸込口81から吸込まれてフィルター84により清浄化され、ベルマウス86から遠心送風機1に流入し、翼30の間から外周に向かって流出する。遠心送風機1から流出した空気は、熱交換器87を通過し、熱交換器87内を流通する冷媒との熱交換により冷却又は加熱され、空調空気となって吹出口82から室内に吹き出される。
 本実施の形態の空気調和機は、実施の形態1~4のいずれかに係る遠心送風機を備えているため、高強度、低騒音かつ低消費電力の空気調和機が得られる。
その他の実施の形態.
 本発明は、上記実施の形態に限らず種々の変形が可能である。
 例えば、上記実施の形態では、3次元翼形状を有する翼30を例に挙げたが、翼30は2次元翼形状を有していてもよい。
 また、上記実施の形態では、主板10及びシュラウド20の双方に溶着される翼30を例に挙げたが、翼30は、主板10又はシュラウド20のいずれか一方のみに溶着されるものであってもよい。
 また、上記実施の形態5では、遠心送風機1を備えた空気調和装置として天井埋込型の室内機100を例に挙げたが、遠心送風機1を備えた空気調和装置は、他の構造の室内機、空気調和機の室外機、空気清浄器等であってもよい。
 また、上記の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。
 1 遠心送風機、10 主板、11 ボス、12 凹部、12a 被当接面、20 シュラウド、21 空気吸込口、22 凹部、22a 被当接面、30、50、60 翼、30a 正圧面、30b 負圧面、31 主翼、31a 表面部、31b 上縁部、31c 下縁部、32 翼カバー、33 中空空間、34、35a、35b 当接面、36、37a、37b、51、52a 突起、40、41 レーザー光、70 天井、71 開口部、80 本体外郭、81 吸込口、82 吹出口、83 化粧パネル、84 フィルター、85 ファンモーター、86 ベルマウス、87 熱交換器、100 室内機。

Claims (8)

  1.  ファンモーターにより回転駆動される主板と、前記主板に対向して配置されたシュラウドと、前記主板と前記シュラウドとの間に設置された複数の翼と、を備え、回転軸方向から吸入した気体を当該回転軸に交差する方向に吹き出す遠心送風機であって、
     前記翼は、前記主板及び前記シュラウドのうち少なくとも一方に形成された被当接面に当接する当接面を有し、
     前記当接面には、直線状又は曲線状に延伸した突起が形成されており、
     前記当接面及び前記被当接面は、前記突起上に照射され前記突起に沿って走査されたレーザー光によって互いに溶着されていることを特徴とする遠心送風機。
  2.  前記翼は、
     前記翼の一方の翼面の少なくとも一部を構成する第1部材と、
     前記第1部材に対向して配置され前記翼の他方の翼面の少なくとも一部を構成する表面部と、前記表面部の端部から前記第1部材の端部に向かって延出した周縁部とを備え、前記第1部材との間に中空空間を形成する第2部材と、を有し、
     前記当接面は、前記周縁部に形成されており、
     前記突起は、前記周縁部の延出方向において、前記当接面の中心部よりも前記表面部寄りに形成されていることを特徴とする請求項1に記載の遠心送風機。
  3.  前記突起の断面形状は、三角形状、四角形状又は円弧状のいずれかであり、
     前記突起の幅は、前記レーザー光のスポット径の50%以上150%以下であることを特徴とする請求項1又は請求項2に記載の遠心送風機。
  4.  前記翼は、第1の樹脂材料で形成されており、
     前記被当接面が形成された前記主板及び前記シュラウドのうち少なくとも一方は、第2の樹脂材料で形成されており、
     前記第1の樹脂材料の前記レーザー光に対する吸収率は、前記第2の樹脂材料の前記レーザー光に対する吸収率よりも高く、
     前記第2の樹脂材料の前記レーザー光に対する透過率は、前記第1の樹脂材料の前記レーザー光に対する透過率よりも高いことを特徴とする請求項1~請求項3のいずれか一項に記載の遠心送風機。
  5.  前記翼は、前記主板と前記シュラウドとの間でねじれた3次元翼形状を有していることを特徴とする請求項1~請求項4のいずれか一項に記載の遠心送風機。
  6.  請求項1~請求項5のいずれか一項に記載の遠心送風機を備えたことを特徴とする空気調和機。
  7.  ファンモーターにより回転駆動される主板と、前記主板に対向して配置されたシュラウドと、前記主板と前記シュラウドとの間に設置された複数の翼と、を備え、回転軸方向から吸入した気体を当該回転軸に交差する方向に吹き出す遠心送風機を製造する方法であって、
     前記翼のうち、前記主板及び前記シュラウドのうち少なくとも一方に形成された被当接面に当接する当接面に、直線状又は曲線状に延伸した突起を形成し、
     前記当接面に形成された前記突起と前記被当接面とを当接させ、
     レーザー光を前記突起上に照射するとともに前記突起に沿って走査して、前記当接面と前記被当接面とを溶着することを特徴とする遠心送風機の製造方法。
  8.  前記当接面と前記被当接面とを溶着する際には、前記翼を挟んで前記主板と前記シュラウドとを互いに押し付け合う方向に加圧し、前記当接面と前記被当接面とを密着させることを特徴とする請求項7に記載の遠心送風機の製造方法。
PCT/JP2014/060774 2013-06-14 2014-04-16 遠心送風機、空気調和機、及び遠心送風機の製造方法 WO2014199719A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/889,963 US10309412B2 (en) 2013-06-14 2014-04-16 Centrifugal fan, air-conditioning apparatus, and method of manufacturing centrifugal fan
AU2014279400A AU2014279400B2 (en) 2013-06-14 2014-04-16 Centrifugal fan, air-conditioning apparatus, and method of manufacturing centrifugal fan
MX2015017140A MX367947B (es) 2013-06-14 2014-04-16 Ventilador centrífugo, aparato de aire acondicionado y método de fabricación del ventilador centrífugo.
EP14811463.0A EP3009687B1 (en) 2013-06-14 2014-04-16 Centrifugal fan, air conditioner, and method for manufacturing centrifugal fan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-126039 2013-06-14
JP2013126039A JP6341637B2 (ja) 2013-06-14 2013-06-14 遠心送風機の製造方法

Publications (1)

Publication Number Publication Date
WO2014199719A1 true WO2014199719A1 (ja) 2014-12-18

Family

ID=51718663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060774 WO2014199719A1 (ja) 2013-06-14 2014-04-16 遠心送風機、空気調和機、及び遠心送風機の製造方法

Country Status (7)

Country Link
US (1) US10309412B2 (ja)
EP (1) EP3009687B1 (ja)
JP (1) JP6341637B2 (ja)
CN (2) CN104235063B (ja)
AU (1) AU2014279400B2 (ja)
MX (1) MX367947B (ja)
WO (1) WO2014199719A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6341637B2 (ja) * 2013-06-14 2018-06-13 三菱電機株式会社 遠心送風機の製造方法
JP6581361B2 (ja) * 2015-01-13 2019-09-25 日立グローバルライフソリューションズ株式会社 電動送風機及びそれを搭載した電気掃除機
CN104763659A (zh) * 2015-04-07 2015-07-08 马卓娅 一种轴流风机扇叶
ES2792034T3 (es) * 2015-12-28 2020-11-06 Daikin Ind Ltd Procedimiento y aparato de fabricación de un impulsor de un ventilador centrífugo
JP6314998B2 (ja) * 2016-01-18 2018-04-25 ダイキン工業株式会社 遠心ファンの羽根車
CN105546661B (zh) * 2016-02-19 2018-11-06 珠海格力电器股份有限公司 空调器
USD821561S1 (en) * 2016-03-21 2018-06-26 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan wheel
WO2018075635A1 (en) 2016-10-18 2018-04-26 Carrier Corporation Asymmetric double inlet backward curved blower
EP3324052A1 (en) * 2016-11-18 2018-05-23 Sogefi Air & Cooling (SAS) Impeller for a fluid pump
JP2018119515A (ja) * 2017-01-27 2018-08-02 日立オートモティブシステムズ株式会社 流体ポンプ
WO2018220808A1 (ja) * 2017-06-02 2018-12-06 三菱電機株式会社 遠心送風機、空気調和機、及び遠心送風機の製造方法
USD903085S1 (en) * 2017-12-13 2020-11-24 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan
US11041502B2 (en) 2018-01-30 2021-06-22 Carrier Corporation Double inlet backward curved blower
KR20210115303A (ko) * 2020-03-12 2021-09-27 엘지전자 주식회사 임펠러
ES2877768A1 (es) * 2020-05-14 2021-11-17 Soler & Palau Res S L U Proceso de fabricacion de un rodete de movimiento de aire, rodete asi obtenido y conjunto extractor que comprende dicho rodete
JP7526950B2 (ja) * 2020-09-18 2024-08-02 パナソニックIpマネジメント株式会社 遠心ファン

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239567A (ja) * 2006-03-08 2007-09-20 Daikin Ind Ltd 遠心送風機用羽根車のブレード、ブレード支持回転体、遠心送風機用羽根車、及び遠心送風機用羽根車の製造方法
JP2007261076A (ja) * 2006-03-28 2007-10-11 Daikin Ind Ltd レーザー溶着方法、レーザー溶着装置、及び送風機用羽根車の製造方法
JP2008075626A (ja) * 2006-09-25 2008-04-03 Fujitsu General Ltd ターボファン及びこれを備えた空気調和機
JP2008111393A (ja) * 2006-10-31 2008-05-15 Nippon Kobunshi Kk 遠心ファン及びその製造方法
JP4432474B2 (ja) 2003-11-27 2010-03-17 ダイキン工業株式会社 遠心送風機の羽根車及びそれを備えた遠心送風機
JP2010236495A (ja) * 2009-03-31 2010-10-21 Yamada Seisakusho Co Ltd インペラの高精度製造法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296301A (ja) * 1972-08-31 1972-11-15
FR2525795A1 (fr) * 1982-04-27 1983-10-28 Thomson Csf Procede de fabrication d'un disque optique protege et disque obtenu par ce procede
FR2567674B1 (fr) * 1984-07-10 1987-01-16 Thomson Alcatel Gigadisc Disque optique protege a elements soudes
US4618516A (en) * 1985-09-12 1986-10-21 Branson Ultrasonics Corporation Ultrasonic welding of thermoplastic workpieces
FR2703111B1 (fr) * 1993-03-25 1995-06-30 Ozen Sa Rotor pour pompe comportant deux pieces assemblees par soudure, obtenues par moulage par injection de materiaux thermoplastiques, et procede de fabrication d'un tel rotor .
JP2828587B2 (ja) * 1993-12-28 1998-11-25 三菱電機株式会社 車両用交流発電機の冷却用ファン
DE4446193C2 (de) 1994-12-23 1997-01-09 Grundfos As Einbauten für Kreiselpumpen und Verfahren zu deren Herstellung
JP3675115B2 (ja) 1997-07-11 2005-07-27 株式会社日立製作所 電動送風機及びこの電動送風機に用いる羽根車の製造方法
US6054072A (en) * 1998-12-29 2000-04-25 Ford Motor Company Infrared bonding of transparent plastics articles
US6712593B2 (en) * 2000-11-02 2004-03-30 Kioritz Corporation Combination of split bodies for use in assembling blower fan by hollow article molding process
DE10131430A1 (de) * 2001-06-29 2003-01-16 Bosch Gmbh Robert Verfahren zum Verschweißen
DE10201543A1 (de) * 2002-01-17 2003-07-31 Bayer Ag Verfahren zum Verbinden von Kunststoffteilen
JP2003232294A (ja) * 2002-02-08 2003-08-22 Kioritz Corp 中空品成形法によって組立てるためのブロワファン分割体
FR2846898B1 (fr) * 2002-11-07 2005-07-15 Snecma Moteurs Procede de soudage laser en une passe d'un assemblage en t de pieces metalliques
US6974207B2 (en) * 2002-11-19 2005-12-13 Lexmark International, Inc. Laser welding methods and structures and control therefor including welded inkjet printheads
JP4267378B2 (ja) * 2003-06-11 2009-05-27 トヨタ自動車株式会社 樹脂部材のレーザ溶着方法及びその装置およびレーザ溶着部材
US20050071998A1 (en) * 2003-10-02 2005-04-07 Rocky Drew M. Method of molding centrifugal impeller
JP2005288934A (ja) * 2004-04-01 2005-10-20 Denso Corp 樹脂材のレーザ溶着方法
JP4256320B2 (ja) * 2004-09-28 2009-04-22 ダイキョーニシカワ株式会社 樹脂成形体の接合構造および接合方法
US7934877B2 (en) 2007-02-23 2011-05-03 Canon Kabushiki Kaisha Diaphragm blade, method of manufacturing the same, and light quantity controller having the same
JP5282376B2 (ja) * 2007-06-29 2013-09-04 日本精工株式会社 電動パワーステアリング装置
JP4678021B2 (ja) * 2007-11-06 2011-04-27 株式会社デンソー 樹脂材のレーザー溶着方法
US8080749B2 (en) * 2009-03-04 2011-12-20 Niles America Wintech, Inc. Switch and welding method of same
JP5378857B2 (ja) * 2009-03-27 2013-12-25 株式会社山田製作所 クローズドインペラの製造法
JP6341637B2 (ja) * 2013-06-14 2018-06-13 三菱電機株式会社 遠心送風機の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4432474B2 (ja) 2003-11-27 2010-03-17 ダイキン工業株式会社 遠心送風機の羽根車及びそれを備えた遠心送風機
JP2007239567A (ja) * 2006-03-08 2007-09-20 Daikin Ind Ltd 遠心送風機用羽根車のブレード、ブレード支持回転体、遠心送風機用羽根車、及び遠心送風機用羽根車の製造方法
JP2007261076A (ja) * 2006-03-28 2007-10-11 Daikin Ind Ltd レーザー溶着方法、レーザー溶着装置、及び送風機用羽根車の製造方法
JP2008075626A (ja) * 2006-09-25 2008-04-03 Fujitsu General Ltd ターボファン及びこれを備えた空気調和機
JP2008111393A (ja) * 2006-10-31 2008-05-15 Nippon Kobunshi Kk 遠心ファン及びその製造方法
JP2010236495A (ja) * 2009-03-31 2010-10-21 Yamada Seisakusho Co Ltd インペラの高精度製造法

Also Published As

Publication number Publication date
JP2015001192A (ja) 2015-01-05
AU2014279400A1 (en) 2016-02-04
CN203892252U (zh) 2014-10-22
EP3009687B1 (en) 2020-10-21
CN104235063B (zh) 2018-06-22
US10309412B2 (en) 2019-06-04
EP3009687A4 (en) 2017-03-08
MX367947B (es) 2019-09-11
EP3009687A1 (en) 2016-04-20
CN104235063A (zh) 2014-12-24
JP6341637B2 (ja) 2018-06-13
MX2015017140A (es) 2016-04-21
AU2014279400B2 (en) 2017-01-05
US20160115967A1 (en) 2016-04-28

Similar Documents

Publication Publication Date Title
JP6341637B2 (ja) 遠心送風機の製造方法
KR102212652B1 (ko) 원심팬
US8732948B2 (en) Method of manufacturing impeller for centrifugal blower
JP5988776B2 (ja) 遠心送風機及びこの遠心送風機を備えた空気調和機
WO2017115490A1 (ja) 遠心ファンの羽根車、その製造方法及び製造装置
JP5984767B2 (ja) 遠心送風機及び空気調和機
EP2829732A1 (en) Centrifugal fan and method for manufacturing same
WO2017126444A1 (ja) 遠心ファンの羽根車
JP2017120056A (ja) 遠心ファンの羽根車及びその製造方法
WO2018220808A1 (ja) 遠心送風機、空気調和機、及び遠心送風機の製造方法
JP2017120057A (ja) 遠心ファンの羽根車の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811463

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14889963

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/017140

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014811463

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014279400

Country of ref document: AU

Date of ref document: 20140416

Kind code of ref document: A