WO2014199534A1 - 蒸気弁 - Google Patents

蒸気弁 Download PDF

Info

Publication number
WO2014199534A1
WO2014199534A1 PCT/JP2013/085238 JP2013085238W WO2014199534A1 WO 2014199534 A1 WO2014199534 A1 WO 2014199534A1 JP 2013085238 W JP2013085238 W JP 2013085238W WO 2014199534 A1 WO2014199534 A1 WO 2014199534A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
valve
curved surface
flow direction
seat
Prior art date
Application number
PCT/JP2013/085238
Other languages
English (en)
French (fr)
Inventor
雄久 ▲濱▼田
二橋 謙介
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP13886825.2A priority Critical patent/EP2985423B1/en
Priority to CN201380076486.0A priority patent/CN105339598B/zh
Priority to US14/890,282 priority patent/US9416678B2/en
Priority to KR1020157031789A priority patent/KR101643517B1/ko
Publication of WO2014199534A1 publication Critical patent/WO2014199534A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/18Final actuators arranged in stator parts varying effective number of nozzles or guide conduits, e.g. sequentially operable valves for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • F01D17/22Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical
    • F01D17/26Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical fluid, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/54Arrangements for modifying the way in which the rate of flow varies during the actuation of the valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/24Three-dimensional ellipsoidal
    • F05D2250/241Three-dimensional ellipsoidal spherical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/27Three-dimensional hyperboloid

Definitions

  • the present invention relates to a steam valve provided in a steam line such as a steam turbine.
  • a steam valve provided in a steam line such as a steam turbine.
  • a steam line such as a steam turbine provided in a power generation facility or the like is provided with a steam valve that adjusts the flow rate of steam to be supplied and stops the supply of steam.
  • the steam valve includes a casing in which a steam channel is formed, and a valve body that is movably provided in the channel.
  • a valve seat that can be closed by a valve body is formed in the flow path of the casing. When driven, the valve body approaches and separates from the valve seat. As a result, the flow area of the gap between the valve body and the valve seat is changed to adjust the steam flow rate.
  • the radius of curvature of the valve body is set to 0.52 to 0.6 times the diameter (seat diameter) of the portion where the valve body and the valve seat are in contact, and the curvature radius of the valve seat is 0 times the seat diameter.
  • a steam valve larger than 6 times is disclosed. According to this steam valve, the streamline of the steam is relatively in the moving direction of the valve body, the steam flow is stable, and vibration and noise of each part of the steam valve can be reduced.
  • Patent Document 2 discloses a steam valve having a tapered surface that is inclined on the upstream side of the valve head from the valve head toward the relative movement direction side with respect to the valve seat of the valve body. According to this steam valve, since the tapered surface inclined to the valve body moving direction side from the valve head is provided on the upstream side of the valve head, the steam passes through the flow path between the valve seat and the valve body. Before passing, it rectifies
  • An object of the present invention is to provide a steam valve that can further reduce noise and vibration.
  • the steam valve includes a casing in which a steam channel is formed, a valve body disposed in the steam channel and provided to be relatively movable with respect to the steam channel, It is a steam valve provided with.
  • the steam valve is formed in the valve body, having a valve seat-side convex curved surface formed in the steam flow path and having a cross-sectional area gradually increasing toward the downstream side of the steam flow direction in the steam flow path.
  • a seat portion having a seat-side convex curved surface whose outer diameter gradually increases from the upstream side to the downstream side in the steam flow direction at a portion facing the valve seat portion.
  • the seat-side convex curved surface has an average curvature radius Rv in the steam flow direction from the start end portion on the upstream side in the steam flow direction to the end portion on the downstream side in the steam flow direction.
  • Rv the radius of curvature radius
  • the seat-side convex curved surface includes an upstream curved surface on the upstream side in the flow direction of the steam and a downstream curved surface on the downstream side in the flow direction.
  • the downstream curved surface has an abutting portion that abuts against the valve seat portion.
  • the curvature radius R1 of the downstream curved surface in the steam flow direction is smaller than the curvature radius Rs of the steam flow direction.
  • the valve body in the steam valve of the first aspect is formed downstream of the end portion of the seat portion on the downstream side in the flow direction, and the outer diameter gradually increases. You may make it provide the umbrella-shaped part to reduce.
  • the steam valve in the steam valve of the first aspect or the second aspect, has a curvature radius R2 in the steam flow direction of the upstream curved surface, and a curvature radius of the downstream curved surface.
  • R1 and the average curvature radius Rv of the seat portion are relative to the curvature radius Rs of the valve seat portion.
  • R2 ⁇ Rv ⁇ Rs ⁇ R1 It is good also as a relationship.
  • the seat portion has a diameter Ds of the abutting portion with respect to the center of the valve body, and the seat The diameter Dout of the terminal end of the part is 1.02 ⁇ Dout / Ds ⁇ 1.03
  • the relationship may be as follows.
  • the seat portion in any one of the first to fourth aspects is configured such that the seat portion has a diameter Ds of the abutting portion and the start end portion of the seat portion.
  • the diameter Din is Din / Ds ⁇ 0.75
  • the relationship may be as follows.
  • the seat portion in any one of the first to fifth aspects has a diameter Ds of the abutting portion with respect to the valve seat portion.
  • Ds diameter of the abutting portion with respect to the valve seat portion.
  • FIG. 1 is a cross-sectional view showing the overall configuration of the steam valve.
  • FIG. 2 is an enlarged cross-sectional view showing the shapes of the valve head portion 31 and the valve seat portion 26 of the valve body 30, and
  • FIG. 3 is an enlarged cross-sectional view of the seat portion 35 of the valve body 30.
  • the steam valve 10 is provided on a steam line of a steam turbine provided in a power generation facility or the like.
  • the steam valve 10 mainly includes a casing 20, a valve body 30, and a valve shaft 40.
  • the casing 20 includes a valve chamber 21, an inlet 22 and an outlet 23, and an opening 24.
  • the valve chamber 21 accommodates the valve body 30 therein.
  • the inflow port 22 and the outflow port 23 communicate with the valve chamber 21.
  • the opening 24 faces the inlet 22 with the valve chamber 21 in between. As shown by the arrows in FIG. 1, the steam flows in from the inflow port 22 and flows out from the outflow port 23.
  • the inner circumferential surface 21a of the valve chamber 21 has a substantially concave spherical shape.
  • the valve body 30 is provided so as to reciprocate in one direction within the valve chamber 21.
  • the inflow port 22 has a circular cross section.
  • the inflow port 22 has an inner diameter that is smaller than the inner diameter of the valve chamber 21.
  • a steam pipe (not shown) is connected to the inflow port 22.
  • a valve seat portion 26 is formed from the inlet 22 to the inner peripheral surface 21 a of the valve chamber 21.
  • the valve seat portion 26 gradually increases in inner diameter (cross-sectional area) toward the downstream side in the steam flow direction.
  • the valve seat portion 26 has a curved surface (valve seat side convex curved surface) 26 a that is convex toward the inside of the valve chamber 21.
  • the outlet 23 is formed so as to open laterally with respect to the direction connecting the inlet 22 and the opening 24.
  • the outlet 23 has an inner diameter smaller than the inner diameter of the valve chamber 21.
  • a steam pipe (not shown) is connected to the outlet 23. In this way, a steam flow path 29 is formed in the casing 20 so as to continue from the inlet 22 to the outlet 23 through the valve chamber 21.
  • a holding member 25 is attached to the opening 24.
  • the holding member 25 closes the opening 24 and holds the valve body 30.
  • the holding member 25 includes a base portion 25a, a valve shaft insertion hole 25b, a valve shaft holding tube 25c, and a valve body holding tube 25d.
  • the base portion 25a closes the opening 24.
  • the valve shaft insertion hole 25b is formed at the center of the base portion 25a.
  • the valve shaft holding cylinder 25c is formed in a cylindrical shape provided on the outer peripheral side of the valve shaft insertion hole 25b and extending from the base portion 25a toward the inflow port 22.
  • the valve body holding cylinder 25d is formed in a cylindrical shape provided on the outer peripheral side of the valve shaft holding cylinder 25c and extending from the base portion 25a toward the inflow port 22.
  • the valve body 30 includes a valve head portion 31 and a skirt portion 32.
  • the valve head part 31 is provided so that the valve seat part 26 can be obstruct
  • the skirt portion 32 extends from the outer peripheral portion of the valve head portion 31 toward the opening 24 side.
  • the skirt portion 32 is formed in a cylindrical shape inserted into the valve body holding cylinder 25 d of the holding member 25.
  • the tip 40a of the valve shaft 40 is fixed to the central portion of the valve head 31.
  • the valve shaft 40 has an axis in the direction connecting the inlet 22 and the opening 24.
  • the valve shaft 40 is inserted into the valve shaft holding cylinder 25c.
  • the rear end portion 40 b of the valve shaft 40 protrudes outside the steam valve 10 through the valve shaft insertion hole 25 b of the holding member 25.
  • An actuator (not shown) is connected to the rear end portion 40b of the valve shaft 40. With this actuator, the valve shaft 40 can be moved in the axial direction. Due to the movement of the valve shaft 40 by the actuator, the valve body 30 is relatively moved in the direction of approaching and separating from the valve seat portion 26 in the steam flow path 29.
  • the valve body 30 can be switched between a fully closed state, a slightly open state, and an open state.
  • the fully closed state is a state in which the valve head 31 closes the valve seat portion 26 by abutting the seat portion 35 of the outer peripheral portion against the valve seat portion 26.
  • the slightly open state is a state in which the valve head portion 31 moves from the valve seat portion 26 to the opening portion 24 side and an annular flow path is formed between the valve seat portion 26 and the seat portion 35.
  • the open state is a state in which the valve head 31 is further moved from the slightly open state to the opening 24 side.
  • the steam valve 10 can appropriately adjust the steam flow rate by increasing or decreasing the cross-sectional area of the annular flow path according to the movement amount (lift amount) of the valve body 30 from the fully closed state.
  • the valve head portion 31 includes a recess 33 on the side facing the inlet 22 (upstream side in the steam flow direction).
  • the concave portion 33 has a tapered surface 33a on the outer peripheral portion thereof whose inner diameter gradually decreases as the distance from the inlet 22 side increases.
  • a seat portion 35 is formed on the outer peripheral side of the outer peripheral edge portion 33b of the tapered surface 33a. The seat portion 35 gradually increases in outer diameter from the upstream side toward the downstream side in the steam flow direction at a portion facing the valve seat portion 26.
  • An umbrella-shaped portion 38 is formed on the valve head portion 31 downstream of the outer peripheral side end portion (terminal portion) 35 a of the seat portion 35 on the downstream side in the steam flow direction.
  • the umbrella-shaped portion 38 is substantially orthogonal to the seat portion 35, and its outer diameter gradually decreases as it is separated from the inlet 22 side.
  • a diameter-expanded portion 39 is formed continuously with the inner peripheral end 38 a of the umbrella-shaped portion 38.
  • the outer diameter of the enlarged diameter portion 39 gradually increases as the diameter of the enlarged diameter portion 39 increases from the inlet 22 side until the outer diameter is equal to that of the outer peripheral side end portion 35a of the seat portion 35.
  • the seat portion 35 includes a curved surface (seat-side convex curved surface) 35b that is convex toward the valve seat portion 26 side.
  • the curved surface 35b includes an upstream curved surface 36 and a downstream curved surface 37 having different radii of curvature.
  • the curved surface 35b is provided with an intermediate portion 35d at a predetermined position between the inner peripheral end portion (start end portion) 35c and the outer peripheral end portion 35a.
  • the upstream curved surface 36 is a curved surface from the inner peripheral side end portion 35c to the intermediate portion 35d.
  • a cross section along the flow direction of the steam in the upstream curved surface 36 is formed with a curvature radius R2.
  • the downstream curved surface 37 is a curved surface from the intermediate portion 35d to the outer peripheral end portion 35a.
  • a section of the downstream curved surface 37 along the steam flow direction is formed with a curvature radius R1.
  • An abutting portion 35 s that abuts against the valve seat portion 26 is set in the seat portion 35 within the range of the downstream curved surface 37.
  • the steam valve 10 of the present embodiment has a structure that can further reduce the occurrence of self-excited vibration and noise.
  • this structure in order to prevent the occurrence of cracks in the sheet portion, it is set so as to satisfy the following relational expressions (1) to (9).
  • an upstream curved surface 36 having a radius of curvature R2 and a downstream curved surface 37 having a radius of curvature R1 are formed on the curved surface 35b of the seat portion 35.
  • an average curvature radius Rv
  • the curvature radius of the valve seat portion 26 is Rs
  • Rv ⁇ Rs The average curvature radius Rv and the curvature radius Rs are set so as to satisfy the relationship.
  • the average radius of curvature Rv and the radius of curvature Rs are: 1.20 ⁇ Rs / Rv ⁇ 1.25 (2) It is preferable to be within the range.
  • the curvature radius R1 of the downstream curved surface 37 including the abutting portion 35s is larger than the curvature radius Rs of the valve seat portion 26.
  • Rs ⁇ R1 (3) Set to satisfy the relationship.
  • the radius of curvature R1 is 0.65 ⁇ Rs / R1 ⁇ 0.70 (4) It is preferable to be within the range.
  • the curvature radius R1 of the downstream curved surface 37 is larger than the curvature radius R2 of the upstream curved surface 36.
  • R2 ⁇ R1 (5) Set to satisfy the relationship.
  • the steam valve 10 of the present embodiment forms the upstream curved surface 36 and the downstream curved surface 37 having different curvature radii so that the average curvature radius Rv satisfies the relational expressions (1) and (2).
  • the radius of curvature Rs of the valve seat portion 26 can be set.
  • the steam valve 10 of this embodiment can set a curvature radius by forming the upstream curved surface 36 and the downstream curved surface 37, respectively. Furthermore, by setting the curvature radius R1 of the downstream curved surface 37 so as to satisfy the relational expression (3) and the relational expression (4), the Hertz surface pressure (stress) is applied to the seat portion 35 when the steam valve 10 is fully closed. ) Can be reduced. For this reason, the steam valve 10 of the present embodiment can suppress the occurrence of cracks in the seat portion 35 (the downstream curved surface 37 in which the abutting portion 35 s that abuts against the valve seat portion 26 is set).
  • the average curvature of the seat portion 35 is set.
  • the radius Rv can be reduced.
  • the steam flowing from the annular flow path formed between the seat portion 35 and the valve seat portion 26 becomes an annular flow, and the effect of reducing the self-excited vibration and noise of the valve body 30 is remarkable.
  • the curvature radius R2 of the upstream curved surface 36, the curvature radius R1 of the downstream curved surface 37, the average curvature radius Rv, and the curvature radius Rs of the valve seat portion 26 are: R2 ⁇ Rv ⁇ Rs ⁇ R1 (6) It is preferable to set so as to satisfy this relationship. In this way, noise and vibration can be further reduced in the steam valve 10.
  • the diameter Ds at the contact portion 35s of the seat portion 35 is 1.15 ⁇ Ds / Dt ⁇ 1.25 (8) To satisfy the relationship.
  • the region A1 upstream of the abutting portion 35s in the steam flow direction can be regarded as a Laval nozzle whose flow path cross-sectional area gradually decreases in the steam flow direction, and in this region A1, the steam is sufficiently In addition, the pressure can be reduced smoothly.
  • the diameter Ds of the contact portion 35s of the seat portion 35 is: 1.02 ⁇ Dout / Ds ⁇ 1.03 (9) Set to be.
  • the value of Dout / Ds needs to be 1 or more.
  • the value of Dout / Ds is about 1.01 which is smaller than the above range, the flow path of the steam between the seat part 35 and the valve seat part 26 after the abutting part 35s is too short, so Before it becomes stable, it reaches the outer peripheral side end portion 35a. For this reason, when the cross-sectional area of the flow path suddenly expands at the outer peripheral side end 35a, the flow of steam adheres to the valve head 31 side and peels off from the valve seat portion 26, which may become unstable. is there.
  • the umbrella-shaped portion 38 is formed on the downstream side of the outer peripheral side end portion 35 a of the seat portion 35, the flow-path cross-sectional area is rapidly expanded by the umbrella-shaped portion 38. Also by this, the flow of steam is well separated from the valve body 30 side, and an annular flow along the valve seat portion 26 is obtained.
  • the steam valve of the present invention is not limited to the above-described embodiment described with reference to the drawings, and various modifications are conceivable within the technical scope.
  • the overall configuration of the steam valve 10, the position and use of the steam valve 10 in the steam line of the steam turbine may be anything within the scope of the present invention.
  • the positional relationship between the inlet 22 and the outlet 23 in the steam valve 10, the mechanism for driving the valve body 30 with an actuator, the shape of the valve body 30 other than the valve head 31, and the like are appropriately configured as other configurations. Also good.
  • the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.
  • the present invention can be widely applied to a steam valve including a casing in which a steam channel is formed and a valve body that is disposed in the steam channel and is relatively movable with respect to the steam channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lift Valve (AREA)
  • Details Of Valves (AREA)
  • Control Of Turbines (AREA)

Abstract

 蒸気弁において、弁体(30)のシート側凸曲面(35b)は、蒸気の流れ方向上流側の始端部(35c)から終端部(35a)までの平均曲率半径Rvが、弁座側凸曲面(26a)の曲率半径Rsに対し、Rv<Rsの関係とされるとともに、シート側凸曲面(35b)は、上流側湾曲面(36)と下流側湾曲面(37)とから形成されて、シート側凸曲面(35b)は、弁座部(26)に対して突き当たる突き当たり部位(35s)を有し、下流側湾曲面(37)の曲率半径R1が、前記蒸気の流れ方向の曲率半径Rsに対し、Rs<R1の関係とされている。

Description

蒸気弁
 本発明は、蒸気タービン等の蒸気管路に設けられる蒸気弁に関する。
 本願は、2013年6月13日に、日本に出願された特願2013-124835号に基づき優先権を主張し、その内容をここに援用する。
 発電設備等に備えられる蒸気タービン等の蒸気管路には、供給する蒸気の流量の調整や蒸気の供給を止める蒸気弁が備えられている。
 蒸気弁は、蒸気の流路が形成されたケーシングと、流路内で移動可能に設けられた弁体と、を備えている。ケーシングの流路には、弁体によって閉塞可能な弁座が形成されている。弁体は、駆動されることで弁座に対して接近・離間する。これによって、弁体と弁座との隙間の流路面積を変化させ蒸気流量が調整される。
 ところで、このような蒸気弁では、高圧の蒸気の偏流や渦流等により振動や騒音が発生する。このため、発生する振動や騒音を低減するために、蒸気弁の弁体や弁座の形状を改良することが行われている。
 例えば、特許文献1には、弁体の曲率半径を弁体と弁座が接触する部分の径(シート径)の0.52~0.6倍とし、弁座の曲率半径をシート径の0.6倍よりも大きくした蒸気弁が開示されている。この蒸気弁によれば、蒸気の流線が弁体の移動方向に比較的沿った状態となり蒸気流が安定、蒸気弁各部の振動や騒音を低減させることができる。
 また、特許文献2には、弁頭部の上流側において、弁頭部よりも弁体の弁座に対する相対移動方向側に傾斜したテーパ面を有する蒸気弁が開示されている。この蒸気弁によれば、弁頭部よりも弁体移動方向側に傾斜したテーパ面が弁頭部の上流側に設けられているので、蒸気は弁座と弁体との間の流路を通過する前に、テーパ面によって弁座移動方向に向かうように整流される。そのため、蒸気弁各部の振動を低減させることができる。
日本国特許第4185029号公報 特開2011-252437号公報
 ところで、弁体と弁座の間が狭い微開状態では、蒸気が弁体に沿う流れとなり蒸気流の乱れが直接弁体に伝わる。そのため、弁体に自励振動が発生し、また、騒音も発生する。上述したように、従来技術において振動や騒音の低減を実現しているものの、特に、蒸気弁が微開状態であっても振動や騒音を低減できるような更なる改善が必要となる。
 本発明は、騒音や振動を更に低減できる蒸気弁を提供することを目的とする。
 本発明の第一態様によれば、蒸気弁は、蒸気流路が形成されたケーシングと、前記蒸気流路内に配され前記蒸気流路に対して相対移動可能に設けられた弁体と、を備える蒸気弁である。蒸気弁は、前記蒸気流路に形成され、該蒸気流路における蒸気の流れ方向下流側に向かって断面積が漸次増加する弁座側凸曲面を具備する弁座部と、前記弁体に形成され、前記弁座部に対向する部位に前記蒸気の流れ方向上流側から下流側に向けて外径が漸次増加するシート側凸曲面を具備するシート部と、を備えている。前記シート側凸曲面は、前記蒸気の流れ方向上流側の始端部から前記蒸気の流れ方向下流側の終端部までの前記蒸気の流れ方向の平均曲率半径Rvが、前記弁座側凸曲面の前記流れ方向の曲率半径Rsに対し、
  Rv<Rs
の関係とされている。前記シート側凸曲面は、互いに曲率半径の異なる前記蒸気の流れ方向上流側の上流側湾曲面と、前記流れ方向下流側の下流側湾曲面と、を備えている。前記下流側湾曲面は、前記弁座部に対して突き当たる突き当たり部位を有している。前記下流側湾曲面の前記蒸気の流れ方向の曲率半径R1は、前記蒸気の流れ方向の曲率半径Rsに対し、
  Rs<R1
の関係とされている。
 本発明の第二態様によれば、蒸気弁は、第一態様の蒸気弁における前記弁体は、前記シート部の前記終端部に連続して前記流れ方向下流側に形成され、外径が漸次縮小する傘状部を備えているようにしてもよい。
 本発明の第三態様によれば、蒸気弁は、第一態様又は第二態様の蒸気弁において、前記上流側湾曲面の前記蒸気の流れ方向の曲率半径R2、前記下流側湾曲面の曲率半径R1、および、前記シート部の平均曲率半径Rvは、前記弁座部の曲率半径Rsに対し、
  R2<Rv<Rs<R1
の関係としてもよい。
 本発明の第四態様によれば、蒸気弁は、第一態様から第三態様の何れか一つの蒸気弁における前記シート部は、前記弁体の中心に対する前記突き当たり部位の直径Dsと、前記シート部の終端部の直径Doutとが、
  1.02≦Dout/Ds≦1.03
の関係とされているようにしてもよい。
 本発明の第五態様によれば、蒸気弁は、第一態様から第四態様の何れか一つの蒸気弁における前記シート部は、前記突き当たり部位の直径Dsと、前記シート部の前記始端部の直径Dinとが、
  Din/Ds≦0.75
の関係とされているようにしてもよい。
 本発明の第六態様によれば、蒸気弁は、第一態様から第五態様の何れか一つの蒸気弁における前記シート部は、前記突き当たり部位の直径Dsが、前記弁座部に対して前記流れ方向上流側における前記蒸気流路の内径Dtに対し、
  1.15≦Ds/Dt≦1.25
の関係とされているようにしてもよい。
 本発明の蒸気弁によれば、騒音や振動を更に低減することが可能となる。
蒸気弁の全体構成を示す断面図である。 弁体の弁頭部および弁座部の形状を示す拡大断面図である。 弁体のシート部の拡大断面図である。
 以下、添付図面を参照して、本発明による蒸気弁を実施するための形態を説明する。
 図1は、蒸気弁の全体構成を示す断面図である。図2は、弁体30の弁頭部31および弁座部26の形状を示す拡大断面図、図3は、弁体30のシート部35の拡大断面図である。
 図1に示すように、蒸気弁10は、発電設備等に備えられる蒸気タービンの蒸気管路上に設けられる。蒸気弁10は、ケーシング20と、弁体30と、弁軸40と、を主として備えている。
 ケーシング20は、弁室21と、流入口22および流出口23と、開口部24と、を備えている。
 弁室21は、内部に弁体30を収容する。流入口22および流出口23は、弁室21に連通する。開口部24は、弁室21を挟んで流入口22と対向している。
 図1に示す矢印のように、蒸気は、流入口22から流入し、流出口23から流出する。
 弁室21は、その内周面21aが略凹球面状をなしている。弁体30は、弁室21内で一方向に往復動可能に設けられている。
 流入口22は、断面円形に形成されている。流入口22は、弁室21の内径よりも小さな内径を有している。流入口22には、不図示の蒸気配管等が接続されている。流入口22から弁室21の内周面21aにかけて、弁座部26が形成されている。弁座部26は、蒸気の流れ方向の下流側に向かってその内径(断面積)が漸次拡大する。弁座部26は、弁室21の内方に向けて凸となる湾曲面(弁座側凸曲面)26aを有している。
 流出口23は、流入口22と開口部24とを結ぶ方向に対して側方に開口して形成されている。流出口23は、弁室21の内径よりも小さな内径を有して形成されている。この流出口23には、不図示の蒸気配管が接続されている。
 このようにして、ケーシング20には、流入口22から弁室21を経て流出口23へと連続する蒸気流路29が形成されている。
 開口部24には、保持部材25が装着されている。保持部材25は、開口部24を閉塞するとともに、弁体30を保持する。保持部材25は、ベース部25aと、弁軸挿通孔25bと、弁軸保持筒25cと、弁体保持筒25dと、を備えている。
 ベース部25aは、開口部24を閉塞する。弁軸挿通孔25bは、ベース部25aの中央部に形成されている。弁軸保持筒25cは、弁軸挿通孔25bの外周側に設けられてベース部25aから流入口22に向けて延びる円筒状に形成されている。弁体保持筒25dは、弁軸保持筒25cの外周側に設けられてベース部25aから流入口22に向けて延びる円筒状に形成されている。
 弁体30は、弁頭部31と、スカート部32と、を備えている。弁頭部31は、弁座部26を閉塞可能に設けられる。スカート部32は、弁頭部31の外周部から開口部24側に向けて延びている。スカート部32は、保持部材25の弁体保持筒25d内に挿入された円筒状に形成されている。
 弁軸40は、その先端部40aが、弁頭部31の中央部に固定されている。この弁軸40は、流入口22と開口部24とを結ぶ方向に軸線を有している。弁軸40は、弁軸保持筒25c内に挿通されている。この弁軸40の後端部40bは、保持部材25の弁軸挿通孔25bを通して蒸気弁10の外部に突出している。弁軸40の後端部40bには、不図示のアクチュエータが連結されている。このアクチュエータにより、弁軸40をその軸線方向に移動させることが可能となっている。アクチュエータによる弁軸40の移動によって、弁体30は、蒸気流路29内で弁座部26に対して接近離間する方向に相対移動される。
 弁体30は、全閉状態と、微開状態と、開状態との間で切り替えられるようになっている。ここで、全閉状態は、弁頭部31がその外周部のシート部35を弁座部26に突き当てて弁座部26を閉塞した状態である。微開状態は、弁頭部31が弁座部26から開口部24側に移動して、弁座部26とシート部35との間に環状の流路が形成された状態である。開状態は、弁頭部31が微開状態から更に開口部24側に移動した状態である。
 弁体30を微開状態や開状態とした場合、蒸気弁10の流入口22から環状の流路を通って弁室21内に導入された蒸気は、流出口23を通して弁室21から流れ出て、蒸気弁10の後段に配設された蒸気タービン等(不図示)に供給される。
 このように、蒸気弁10は、全閉状態からの弁体30の移動量(リフト量)に応じて、環状の流路の断面積を増減させて、蒸気流量を適宜調整することができる。
 次に、上述した本実施形態の蒸気弁10における弁頭部31の形状について説明する。
 図2、図3に示すように、弁頭部31は、流入口22に臨む側(蒸気の流れ方向上流側)に、凹部33を備えている。凹部33は、その外周部に、流入口22側から離間するにしたがって内径が漸次縮小するテーパ面33aを有している。
 弁頭部31には、テーパ面33aの外周縁部33bの外周側に、シート部35が形成されている。シート部35は、弁座部26に対向する部位に、蒸気の流れ方向上流側から下流側に向けて外径が漸次拡大する。弁頭部31には、シート部35の外周側端部(終端部)35aに連続して蒸気の流れ方向下流側に、傘状部38が形成されている。傘状部38は、シート部35にほぼ直交して、流入口22側から離間するにしたがってその外径が漸次縮小する。この傘状部38の内周側端部38aに連続して、拡径部39が形成されている。拡径部39は、シート部35の外周側端部35aと同等の外径となるまで、流入口22側から離間するにしたがってその外径が漸次拡大する。
 ここで、シート部35は、弁座部26側に向けて凸となる湾曲面(シート側凸曲面)35bを備えている。湾曲面35bは、曲率半径が異なる上流側湾曲面36と下流側湾曲面37を備えている。湾曲面35bには、内周側端部(始端部)35cと外周側端部35aの間の所定の位置に中間部35dが設けられている。
 上流側湾曲面36は、内周側端部35cから中間部35dまでの曲面である。この上流側湾曲面36における蒸気の流れ方向に沿った断面は、曲率半径R2で形成されている。下流側湾曲面37は、中間部35dから外周側端部35aまでの曲面である。この下流側湾曲面37における蒸気の流れ方向に沿った断面は、曲率半径R1で形成されている。
 シート部35には、下流側湾曲面37の範囲内に、弁座部26に対して突き当たる突き当たり部位35sが設定されている。
 蒸気弁では、シート部の湾曲面の曲率半径が弁座部の曲率半径より小さい構造である場合、蒸気が弁座部から弁室の内周面に沿って安定して流れるアニュラーフロー(環状流れ)となる。アニュラーフローでは、蒸気流の乱れが直接弁体に伝わらないため、自励振動や騒音の発生が低減する。しかしながら、シート部の湾曲面の曲率半径が弁座部の曲率半径より小さい構造であるため、全閉状態時にシート部においてヘルツ面圧(応力)が大きくなり、シート部にクラックが発生するおそれがある。
 そこで、本実施形態の蒸気弁10では、自励振動や騒音の発生を更に低減させることが可能な構造としている。この構造においては、シート部のクラックの発生を防ぐことを可能とするために、後述する(1)~(9)の関係式を満足するように設定する。
 本実施形態の蒸気弁10は、シート部35の湾曲面35bに曲率半径R2の上流側湾曲面36と曲率半径R1の下流側湾曲面37とが形成されている。内周側端部35cと外周側端部35aとの2点を通る曲率円の曲率半径(以下、平均曲率半径という)をRvとし、弁座部26の曲率半径をRsとすると、
  Rv<Rs   ・・・(1)
の関係を満足するように平均曲率半径Rvと曲率半径Rsを設定する。
 特に、平均曲率半径Rvと曲率半径Rsとは、
  1.20≦Rs/Rv≦1.25   ・・・(2)
の範囲内とするのが好ましい。
 シート部35の湾曲面35bにおいて、突き当たり部位35sを含む下流側湾曲面37の曲率半径R1が、弁座部26の曲率半径Rsに対し、
  Rs<R1   ・・・(3)
の関係を満足するように設定する。
 特に、曲率半径R1は、
  0.65≦Rs/R1≦0.70   ・・・(4)
の範囲内とするのが好ましい。
 更に、シート部35の湾曲面35bにおいて、下流側湾曲面37の曲率半径R1が、上流側湾曲面36の曲率半径R2に対し、
  R2<R1   ・・・(5)
の関係を満足するように設定する。
 本実施形態の蒸気弁10は、曲率半径が異なる上流側湾曲面36と下流側湾曲面37を形成することで、平均曲率半径Rvが関係式(1)や関係式(2)を満足するように弁座部26の曲率半径Rsを設定することができる。関係式(1)や関係式(2)を満足することにより、シート部35と弁座部26の間に形成される環状流路から流れる蒸気が、弁座部26側から内周面21aに沿って安定して流れるアニュラーフローとなる。特に、蒸気弁10が微開状態時であってもアニュラーフローとなり、弁体30に沿う流れを少なくすることができる。このため、本実施形態の蒸気弁10は、蒸気流れの乱れが直接弁体30に伝わることを防ぐことができるため、弁体30の自励振動や騒音をより確実に低減させることができる。
 また、本実施形態の蒸気弁10は、上流側湾曲面36と下流側湾曲面37とを形成することで、曲率半径を各々設定することができる。さらに、関係式(3)や関係式(4)を満足するように下流側湾曲面37の曲率半径R1を設定することで、蒸気弁10が全閉状態時にシート部35においてヘルツ面圧(応力)を小さくできる。このため、本実施例の蒸気弁10は、シート部35(弁座部26に対して突き当たる突き当たり部位35sが設定された下流側湾曲面37)のクラックの発生を抑えることができる。
 また、関係式(1)や関係式(2)を満足するように下流側湾曲面37の曲率半径R1と上流側湾曲面36の曲率半径R2とを設定することによって、シート部35の平均曲率半径Rvを小さくすることができる。
 ここで、シート部35と弁座部26との間に形成される環状流路から流れる蒸気がアニュラーフローとなり、弁体30の自励振動や騒音を低減させる効果を顕著なものとするため、シート部35の湾曲面35bにおける、上流側湾曲面36の曲率半径R2、下流側湾曲面37の曲率半径R1、平均曲率半径Rv及び弁座部26の曲率半径Rsは、
  R2<Rv<Rs<R1   ・・・(6)
の関係を満足するよう設定するのが好ましい。
 このようにして、蒸気弁10において、騒音や振動を更に低減させることが可能となる。
 次に、本実施形態の蒸気弁10の寸法関係について説明する。
 弁体30の弁頭部31において、シート部35の内周側端部35cにおける直径をDinとし、下流側湾曲面37に設定された突き当たり部位35sにおける直径をDsとすると、
  Din/Ds≦0.75   ・・・(7)
の関係を満足するように形成する。
 また、流入口22の内径(スロート径)をDtとすると、シート部35の突き当たり部位35sにおける直径Dsは、
  1.15≦Ds/Dt≦1.25   ・・・(8)
の関係を満足するように形成する。
 このようにすると、突き当たり部位35sに対して蒸気流れ方向上流側の領域A1を、蒸気の流れ方向に流路断面積が漸次縮小するラバールノズルに見立てることができるとともに、この領域A1において蒸気を十分にかつ滑らかに減圧させることが可能となる。
 また、弁体30の弁頭部31において、外周側端部35aにおける直径をDoutとすると、シート部35の突き当たり部位35sの直径Dsは、
 1.02≦Dout/Ds≦1.03   ・・・(9)
となるように設定する。
 ここで、Dout/Dsの値は1以上にする必要がある。しかし、例えばDout/Dsの値が上記範囲より小さい1.01程度である場合、突き当たり部位35s以降のシート部35と弁座部26との間の流路長が短すぎるために蒸気の流れが安定しないうちに外周側端部35aに到達してしまう。このため、外周側端部35aで流路断面積が急激に拡大したときに、蒸気の流れが弁頭部31側に付着して弁座部26から剥離してしまい、不安定となることがある。また、Dout/Dsの値が上記範囲より大きい1.10程度である場合、シート部35と弁座部26との間で圧縮される蒸気の流れの差圧が臨界差圧に近いときに、突き当たり部位35sで発生した衝撃波がシート部35に付着し、蒸気の流れが不安定となることがある。
 これに対し、上記関係式(9)の関係を満足させると、突き当たり部位35s、すなわち弁体30が開状態時に、シート部35と弁座部26との間の環状の流路の断面積が最も小さくなる位置から、傘状部38が形成された外周側端部35aまでの距離を、蒸気の流れを安定させつつも極力短くすることができる。これにより、本実施形態の蒸気弁10では、微開状態にしても、蒸気の流れが外周側端部35aに到達したときに弁体30側から良好に切り離され、弁座部26に沿ったアニュラーフローとなる。
 ここで、シート部35の外周側端部35aの下流側には傘状部38が形成されているため、この傘状部38によって流路断面積が急激に拡大する。これによっても、蒸気の流れが弁体30側から良好に切り離され、弁座部26に沿ったアニュラーフローとなる。
(その他の実施形態)
 なお、本発明の蒸気弁は、図面を参照して説明した上述の実施形態に限定されるものではなく、その技術的範囲において様々な変形例が考えられる。
 例えば、蒸気弁10の全体的な構成、蒸気タービンの蒸気管路中における蒸気弁10の位置および用途については、本発明の範囲内であればいかなるものとしてもよい。
 また、例えば、蒸気弁10における流入口22と流出口23の位置関係、弁体30をアクチュエータで駆動するための機構、弁体30の弁頭部31以外の形状等も、適宜他の構成としてもよい。
 これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
 本発明は、蒸気流路が形成されたケーシングと、蒸気流路内に配され蒸気流路に対して相対移動可能に設けられた弁体と、を備える蒸気弁に広く適用可能である。
10 蒸気弁
20 ケーシング
21 弁室
22 流入口
23 流出口
24 開口部
25 保持部材
26 弁座部
26a 湾曲面(弁座側凸曲面)
29 蒸気流路
30 弁体
31 弁頭部
35 シート部
35a 外周側端部(終端部)
35b 湾曲面(シート側凸曲面)
35c 内周側端部(始端部)
35d 中間部
35s 突き当たり部位
36 上流側湾曲面
37 下流側湾曲面
38 傘状部
39 拡径部
40 弁軸

Claims (6)

  1.  蒸気流路が形成されたケーシングと、前記蒸気流路内に配され前記蒸気流路に対して相対移動可能に設けられた弁体と、を備える蒸気弁であって、
     前記蒸気流路に形成され、該蒸気流路における蒸気の流れ方向下流側に向かって断面積が漸次増加する弁座側凸曲面を具備する弁座部と、
     前記弁体に形成され、前記弁座部に対向する部位に前記蒸気の流れ方向上流側から下流側に向けて外径が漸次増加するシート側凸曲面を具備するシート部と、を備え、
     前記シート側凸曲面は、前記蒸気の流れ方向上流側の始端部から前記蒸気の流れ方向下流側の終端部までの前記流れ方向の平均曲率半径Rvが、前記弁座側凸曲面の前記蒸気の流れ方向の曲率半径Rsに対し、
      Rv<Rs
    の関係とされ、
     前記シート側凸曲面は、互いに曲率半径の異なる前記蒸気の流れ方向上流側の上流側湾曲面と、前記流れ方向下流側の下流側湾曲面と、を備え、
     前記下流側湾曲面は、前記弁座部に対して突き当たる突き当たり部位を有し、
     前記下流側湾曲面の前記蒸気の流れ方向の曲率半径R1が、前記蒸気の流れ方向の曲率半径Rsに対し、
      Rs<R1
    の関係とされている蒸気弁。
  2.  前記弁体は、前記シート部の前記終端部に連続して前記流れ方向下流側に形成され、外径が漸次縮小する傘状部を備えている請求項1に記載の蒸気弁。
  3.  前記上流側湾曲面の前記蒸気の流れ方向の曲率半径R2、前記下流側湾曲面の曲率半径R1、および、前記シート部の平均曲率半径Rvは、前記弁座部の曲率半径Rsに対し、
      R2<Rv<Rs<R1
    の関係とされている請求項1または請求項2に記載の蒸気弁。
  4.  前記シート部は、前記弁体の中心に対する前記突き当たり部位の直径Dsと、前記シート部の終端部の直径Doutとが、
      1.02≦Dout/Ds≦1.03
    の関係とされている請求項1から請求項3のいずれか一項に記載の蒸気弁。
  5.  前記シート部は、前記突き当たり部位の直径Dsと、前記シート部の前記始端部の直径Dinとが、
      Din/Ds≦0.75
    の関係とされている請求項1から請求項4のいずれか一項に記載の蒸気弁。
  6.  前記シート部は、前記突き当たり部位の直径Dsが、前記弁座部に対して前記流れ方向上流側における前記蒸気流路の内径Dtに対し、
      1.15≦Ds/Dt≦1.25
    の関係とされている請求項1から請求項5のいずれか一項に記載の蒸気弁。
PCT/JP2013/085238 2013-06-13 2013-12-27 蒸気弁 WO2014199534A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13886825.2A EP2985423B1 (en) 2013-06-13 2013-12-27 Steam valve
CN201380076486.0A CN105339598B (zh) 2013-06-13 2013-12-27 蒸汽阀
US14/890,282 US9416678B2 (en) 2013-06-13 2013-12-27 Steam valve
KR1020157031789A KR101643517B1 (ko) 2013-06-13 2013-12-27 증기 밸브

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013124835A JP5951557B2 (ja) 2013-06-13 2013-06-13 蒸気弁
JP2013-124835 2013-06-13

Publications (1)

Publication Number Publication Date
WO2014199534A1 true WO2014199534A1 (ja) 2014-12-18

Family

ID=52021861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085238 WO2014199534A1 (ja) 2013-06-13 2013-12-27 蒸気弁

Country Status (6)

Country Link
US (1) US9416678B2 (ja)
EP (1) EP2985423B1 (ja)
JP (1) JP5951557B2 (ja)
KR (1) KR101643517B1 (ja)
CN (1) CN105339598B (ja)
WO (1) WO2014199534A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6092062B2 (ja) * 2013-09-24 2017-03-08 株式会社東芝 蒸気弁装置及び発電設備
CN106090269B (zh) * 2016-08-30 2018-05-22 东方电气集团东方汽轮机有限公司 一种球形调节阀阀碟型线结构及其设计方法
JP6228336B1 (ja) * 2017-04-17 2017-11-08 三井造船株式会社 環状弁
JP7337666B2 (ja) * 2019-11-07 2023-09-04 愛三工業株式会社 弁装置
CN114658498B (zh) * 2020-12-23 2024-03-19 上海电气电站设备有限公司 汽轮机联合阀门及其设计方法
JP2022158044A (ja) * 2021-04-01 2022-10-14 株式会社東芝 蒸気弁および蒸気タービン
DE102022114296A1 (de) * 2022-06-07 2023-12-07 Bürkert Werke GmbH & Co. KG Ventil mit optimierter Sitzgeometrie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296869A (ja) * 1996-05-07 1997-11-18 Mitsubishi Heavy Ind Ltd 大口径制御弁
JP4185029B2 (ja) 2004-08-30 2008-11-19 株式会社東芝 蒸気弁装置
JP2011252437A (ja) 2010-06-02 2011-12-15 Mitsubishi Heavy Ind Ltd 蒸気弁

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2333455A (en) * 1942-04-04 1943-11-02 Gen Electric Valve arrangement
US3773085A (en) * 1971-01-14 1973-11-20 Westinghouse Electric Corp Noise suppressing throttling valve
JPS5485422A (en) * 1977-12-21 1979-07-07 Tokyo Shibaura Electric Co Valve
FR2560648B1 (fr) * 1984-03-01 1986-09-19 Centre Techn Ind Mecanique Procede pour stabiliser l'ecoulement de fluides lors de detente accompagnee de degradation d'energie cinetique, soupape et detendeur mettant en oeuvre ce procede
IN165869B (ja) * 1985-04-25 1990-02-03 Westinghouse Electric Corp
FR2683852B1 (fr) 1991-11-19 1995-05-19 Gec Alsthom Sa Soupape avec siege crenele.
GB2295659B (en) * 1994-12-02 1998-03-18 Gec Alsthom Ltd Sequential steam valve
US5533548A (en) * 1995-05-18 1996-07-09 Caterpillar Inc. Valving interface for a poppet valve
JPH09210244A (ja) 1996-02-05 1997-08-12 Hitachi Ltd 蒸気加減弁
JP3512979B2 (ja) 1997-04-21 2004-03-31 株式会社日立製作所 蒸気加減弁
JPH10299909A (ja) * 1997-04-25 1998-11-13 Hitachi Ltd 蒸気加減弁
WO2002036999A2 (en) * 2000-11-01 2002-05-10 Elliott Turbomachinery Co., Inc. High-stability valve arrangement for a governor valve
JP5022853B2 (ja) 2007-10-03 2012-09-12 株式会社東芝 蒸気弁および発電設備
JP5535524B2 (ja) * 2009-05-25 2014-07-02 三菱重工業株式会社 弁装置
US20110297867A1 (en) 2010-06-07 2011-12-08 General Electric Company Flow guided valve seat for steam turbine valves

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296869A (ja) * 1996-05-07 1997-11-18 Mitsubishi Heavy Ind Ltd 大口径制御弁
JP4185029B2 (ja) 2004-08-30 2008-11-19 株式会社東芝 蒸気弁装置
JP2011252437A (ja) 2010-06-02 2011-12-15 Mitsubishi Heavy Ind Ltd 蒸気弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2985423A4

Also Published As

Publication number Publication date
KR20150139936A (ko) 2015-12-14
EP2985423B1 (en) 2017-02-01
JP5951557B2 (ja) 2016-07-13
KR101643517B1 (ko) 2016-07-27
JP2015001171A (ja) 2015-01-05
US9416678B2 (en) 2016-08-16
EP2985423A4 (en) 2016-06-08
CN105339598A (zh) 2016-02-17
CN105339598B (zh) 2017-03-08
EP2985423A1 (en) 2016-02-17
US20160102575A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
WO2014199534A1 (ja) 蒸気弁
US9903488B2 (en) Control valve
US10208711B2 (en) Gas injector including an outwardly opening valve closure element
JP2004526111A (ja) 高性能流体制御弁
JP5535770B2 (ja) 蒸気弁
JP5976065B2 (ja) 燃料噴射弁
CN106670001B (zh) 喷嘴组件
JP4418267B2 (ja) チェックバルブ
WO2014119473A1 (ja) 燃料噴射弁
JP6510940B2 (ja) 燃料噴射弁
JP6268185B2 (ja) 燃料噴射弁
JP5701360B2 (ja) 弁装置
JP6269855B2 (ja) 主蒸気弁、及び蒸気タービン
US20110297867A1 (en) Flow guided valve seat for steam turbine valves
CN208951413U (zh) 用于燃气热水器的集流装置和燃气热水器
WO2016076007A1 (ja) 燃料噴射弁
JP4027862B2 (ja) 燃料噴射弁
JP2018204557A5 (ja)
JPWO2022123813A5 (ja)
JP6201907B2 (ja) ノズルボディの製造方法
JP2016003628A (ja) 燃料噴射弁
JP2010025056A (ja) 内燃機関の燃料噴射弁
JP2016075236A (ja) 吸気音低減装置
JP2015036531A (ja) 推力制御バルブ及び飛翔体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076486.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157031789

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013886825

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14890282

Country of ref document: US

Ref document number: 2013886825

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE