WO2014196796A1 - Semiconductor light-emitting device and method for manufacturing same - Google Patents

Semiconductor light-emitting device and method for manufacturing same Download PDF

Info

Publication number
WO2014196796A1
WO2014196796A1 PCT/KR2014/004950 KR2014004950W WO2014196796A1 WO 2014196796 A1 WO2014196796 A1 WO 2014196796A1 KR 2014004950 W KR2014004950 W KR 2014004950W WO 2014196796 A1 WO2014196796 A1 WO 2014196796A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
contact
semiconductor layer
semiconductor
forming
Prior art date
Application number
PCT/KR2014/004950
Other languages
French (fr)
Korean (ko)
Inventor
김태근
윤민주
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2014196796A1 publication Critical patent/WO2014196796A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Definitions

  • the present invention relates to a semiconductor light emitting device and a method of manufacturing the same.
  • LED Light Emitting Diode
  • LED is a semiconductor device that uses the property that the current applied by the pn junction is emitted as light.
  • the device features high energy conversion efficiency of 43%, long life of 100,000 hours, fast response time, low heat generation and no harmful substances.
  • LEDs of various structures such as horizontal type, vertical type, and flip chip have been studied to increase the efficiency of the LED device.
  • the horizontal type LED since the loss of the active layer occurs due to the etching process in the n-electrode formation process, the light emitting area is reduced and the light emitting efficiency is lowered.
  • the n-electrode and the p-electrode have the active layer formed horizontally with the bottom surface, loss of one part of the light generated vertically in the active layer occurs.
  • An example of such a conventional LED device is disclosed in Korean Patent No. 10-0905442.
  • the vertical type LED has been actively studied.
  • the vertical structure does not require a separate etching process because the p-electrode is formed on the upper portion of the LED and the lower n-electrode is formed on the lower portion of the LED.
  • the thin film is damaged by the laser in the process of forming the n-electrode after removing the substrate through a laser lift off process, which causes the ohmic between the electrode and the semiconductor layer.
  • a transparent electrode is inserted between the metal electrode and the semiconductor layer to smoothly inject and disperse the LED elements.
  • the transparent electrode has a high transmittance and good ohmic characteristics because it is inversely related to the transmittance and electrical characteristics (ohmic characteristics).
  • FIG. 1 An example of a conventional LED chip package structure is shown in FIG. 1. Referring to the vertical LED device illustrated in FIG. 1, since heat generated in the LED device is mainly emitted only through the lead frame in contact with the lower electrode, the heat emission of the LED device is not efficient, resulting in a shortening of the lifespan of the light emitting device. . Therefore, an efficient heat dissipation structure is needed to implement high efficiency LED devices.
  • An object of the present invention is to provide a semiconductor light emitting device having a high light transmittance and having a good ohmic contact, and having a structure capable of releasing heat generated therein to the outside, and a manufacturing method thereof.
  • a semiconductor light emitting device for solving the above problems, the active layer formed long in the vertical direction; First and second semiconductor layers each formed in a vertical direction on both sides of the active layer to contact the active layer; And a pair of side reflecting layers elongated in the vertical direction to contact a surface of the first semiconductor layer and the second semiconductor layer that is not in contact with the active layer.
  • the pair of side reflection layers of the semiconductor light emitting device according to the preferred embodiment of the present invention may be formed to contact the entire region of the semiconductor layer.
  • the semiconductor light emitting device may further include a pair of electrodes each formed to contact a surface that is not in contact with the semiconductor layer of the pair of side reflection layers.
  • the pair of electrodes of the semiconductor light emitting device according to the preferred embodiment of the present invention may be formed in contact with the entire area of the side reflective layer, respectively.
  • the semiconductor light emitting device the insulating layer formed to contact the lower surface of the active layer, the first semiconductor layer, the second semiconductor layer, and the pair of reflective layers; And a lower reflective layer formed to contact the other surface of the insulating layer.
  • the lower reflective layer of the semiconductor light emitting device may be in contact with the heat slug, and may radiate heat to the outside through the heat slug.
  • the pair of side reflective layers of the semiconductor light emitting device is implemented as a reflective electrode in ohmic contact with the lead frame, the pair of reflective electrodes emit heat through the lead frame can do.
  • the semiconductor light emitting device manufacturing method for solving the above problems, (a) a plurality of first insulating film formed on the support substrate spaced apart from each other in the first reflective layer, Forming a substrate in which a first semiconductor layer, an active layer, and a second semiconductor layer are sequentially stacked; (b) forming a plurality of light emitting structures by etching the second semiconductor layer, the active layer and the first semiconductor layer formed on the first insulating layer so that the first insulating layer is exposed; (c) forming a second insulating layer and a lower reflective layer to contact only one side (first side) of the plurality of light emitting structures, and forming a second reflective layer on the second semiconductor layer; And (d) cutting the first reflective layer region between the lower reflective layer and the adjacent light emitting structure to separate the light emitting device.
  • the step (a) includes (a1) sequentially forming the second semiconductor layer, the active layer, and the first semiconductor layer on a temporary substrate. Forming the plurality of first insulating layers spaced apart from each other on the second semiconductor layer; (a2) forming the first reflective layer on the second semiconductor layer and the plurality of first insulating layers; And (a3) bonding the first reflective layer to the support substrate and separating the temporary substrate.
  • the step (c) covers (c1) another side (second side) of the light emitting structure and an upper portion of the second semiconductor layer.
  • Forming a photoresist pattern to expose a portion of the first insulating film (c2) forming a second insulating film on the first insulating film so as to contact the first side surface and removing the photoresist pattern; (c3) forming a photoresist pattern covering the second side surface of the light emitting structure, the upper portion of the second semiconductor layer, and the second insulating film, and exposing a portion of the first insulating film; (c5) forming a lower reflective layer on the first insulating film so as to contact the second insulating film, and removing the photoresist pattern; And (c6) forming the second reflective layer on the second semiconductor layer.
  • step (c4) includes covering the second side surface of the light emitting structure, the second semiconductor layer, the second insulating film, and an upper portion of the adhesive layer.
  • the photoresist pattern may be formed to expose a portion of the first insulating layer, the lower reflective layer may be formed on the first insulating layer to contact the adhesive layer, and the photoresist pattern may be removed.
  • the active layer is formed in the vertical direction on the lower reflective layer and the insulating layer, and the first semiconductor layer and the second semiconductor layer are formed on both sides of the active layer in the vertical direction so as to contact the active layer.
  • the semiconductor light emitting device does not remove a part of the active layer, it can generate a greater amount of light than the conventional horizontal light emitting device, and emits light directly without passing through the transparent electrode. Compared with the conventional horizontal light emitting device and the vertical light emitting device, the light extraction efficiency is excellent.
  • the semiconductor light emitting device forms n-type and p-type electrodes in regions corresponding to the entire region of the semiconductor layer, and supplies current through the entire area of the side reflecting layer having excellent conductivity.
  • Improves light efficiency by preventing current crowding that is concentrated in some areas, and the total area of n-type and p-type electrodes (when the n-type and p-type electrodes are formed by integrating with the side reflective layer,
  • the heat dissipation efficiency is excellent by connecting the lead frame so as to be in contact with the) and heat slug to the lower reflective layer to dissipate heat to the outside.
  • FIG. 1 is a view showing a package structure of a semiconductor light emitting device according to the prior art.
  • FIG. 2 is a view showing the structure of a semiconductor light emitting device according to a preferred embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example in which a semiconductor light emitting device is packaged according to an exemplary embodiment of the present invention.
  • 4A and 4B are diagrams illustrating the flow of current and the path of light in the semiconductor light emitting device according to the preferred embodiment of the present invention, respectively.
  • 5A to 5D are diagrams illustrating a method of manufacturing a semiconductor light emitting device according to a preferred embodiment of the present invention.
  • FIG. 2 is a view showing the structure of a semiconductor light emitting device according to a preferred embodiment of the present invention.
  • an insulating film 600 is formed on the lower reflective layer 700, and the insulating film 600 and the lower reflective layer 700 are disposed on the insulating film 600.
  • the active layer 300 is disposed to extend in the vertical direction.
  • the active layer 300 may be formed in a multi quantum well structure similarly to a general semiconductor light emitting device.
  • first semiconductor layer 200 and the second semiconductor layer 400 are disposed on the insulating layer 600 in a direction perpendicular to both sides of the active layer 300 so as to contact the active layer 300.
  • One of the first semiconductor layer 200 and the second semiconductor layer 400 is formed of a p-type semiconductor layer, and the other is formed of an n-type semiconductor layer.
  • the first semiconductor layer 200 is formed of a p-GaN layer
  • the second semiconductor layer 400 is formed of an n-GaN layer, but if the material can be applied to a semiconductor light emitting device There is no limit.
  • a pair of side reflective layers 110 and 510 formed long in the vertical direction to contact a surface of the first semiconductor layer 200 and the second semiconductor layer 400 that is not in contact with the active layer 300 is formed on the insulating film 600.
  • the reflective layer may be formed of Al, Ag, Au, Rh, Pd, Pt, Cu, Ru, or the like, or an alloy containing them, or a multilayered structure thereof, and may include the entire first semiconductor layer 200 and the second semiconductor layer 400. It is formed to contact the area.
  • the p-type electrode 120 and the n-type electrode 520 may be further disposed on the insulating layer 600 to contact the entire regions of the pair of side reflective layers 110 and 510, respectively. Since the light generated in the active layer 300 is not emitted to the outside through the electrode, the p-type electrode 120 and the n-type electrode 520 need not be transparent electrodes. Accordingly, the p-type electrode 120 and the n-type electrode 520 may be selected as materials having good electrical characteristics.
  • the pair of side reflective layers 110 and 510, the p-type electrode 120, and the n-type electrode 520 may be integrated into one.
  • Ni, Pt, Au, Ag, Cr, AgAl, AgCu, etc. which have good properties of reflecting light well and have good ohmic contact, or if they are formed in a multilayer structure, the reflective layer and the electrode are not formed separately. Instead, it can be formed by integrating into one reflective electrode (100, 500), in this case, the manufacturing process can be further simplified.
  • FIG. 3 is a diagram illustrating an example in which a semiconductor light emitting device 10 is packaged according to a preferred embodiment of the present invention.
  • a semiconductor light emitting device 10 according to a preferred embodiment of the present invention when packaged, each of a p-type electrode and an n-type electrode (a pair of side reflection layers when the electrode and the side reflection layer are integrally formed), respectively.
  • the entire area is connected to the lead frame 20, and the lower reflective layer 700 is connected to a heat slug 30. Therefore, the semiconductor light emitting device 10 of the present invention emits heat generated in the semiconductor light emitting device 10 in three directions of the lead frame 20 and the heat slug 30 connected to each electrode, and thus has excellent heat dissipation effect. .
  • 4A and 4B are diagrams illustrating the flow of current and the path of light in the semiconductor light emitting device according to the preferred embodiment of the present invention, respectively.
  • FIG. 4A is a diagram illustrating a current flow in a semiconductor light emitting device according to a preferred embodiment of the present invention.
  • the semiconductor light emitting device 10 may have a p-type electrode in a region corresponding to the entire region of the first semiconductor layer 200 and the second semiconductor layer 400.
  • 120 and the n-type electrode 520 are formed, and the entire area of the highly conductive electrodes 120 and 520 and the side reflecting layers 110 and 510 is formed.
  • current crowding which concentrates current in some areas, can be avoided, improving light efficiency.
  • FIG. 4B is a diagram illustrating a path of light in a semiconductor light emitting device according to a preferred embodiment of the present invention.
  • the light generated in the active layer 300 is reflected by the lower reflective layer 700 and the side reflective layers 110 and 510 and is emitted upward.
  • the light extraction efficiency is superior to the prior art.
  • FIGS. 5A to 5D are diagrams illustrating a method of manufacturing a semiconductor light emitting device according to a preferred embodiment of the present invention.
  • a method of manufacturing a semiconductor light emitting device according to a preferred embodiment of the present invention will be described with reference to FIGS. 5A to 5D.
  • the second semiconductor layer 400, the active layer 300 of the multi-quantum well structure, and the p-type doped semiconductor layer (the first semiconductor layer 200) are sequentially formed and formed on the first semiconductor layer 200.
  • the plurality of first insulating layers 800 are formed to be spaced apart from each other by a predetermined distance
  • the first reflective electrode 100 is formed on the first semiconductor layer 200 and the plurality of first insulating layers 800.
  • the reflective layers 110 and 510 and the electrodes 120 and 520 may be implemented as separate layers, and the reflective layer and the electrode may be formed as one by forming a reflective layer having a good ohmic contact. Integration may be as described above. Since the example in which the reflective layer and the electrode are formed separately has been described with reference to FIGS. 2 to 4, the following describes an example in which the reflective layer and the electrode are integrated to form the reflective electrode.
  • the supporting substrate 900 is bonded onto the first reflective electrode 100, the substrate is turned upside down, and then (c) of FIG.
  • the sapphire substrate which is the temporary substrate 51
  • the sapphire substrate is separated by irradiating a laser through the temporary substrate 51 and performing a laser lift off process.
  • it may be further formed on the first reflective electrode 100 of the adhesive layer 52 to facilitate the bonding of the support substrate 900.
  • the second semiconductor layer 400 is formed on the second semiconductor layer 400 so that the first insulating film 800 is exposed by forming a photoresist pattern (not shown).
  • the active layer 300 and the first semiconductor layer 200 are etched to separate regions of the semiconductor light emitting devices, thereby forming a plurality of semiconductor layers including the second semiconductor layer 400, the active layer 300, and the first semiconductor layer 200. To generate the light emitting structures.
  • the light emission A second insulating film 600 (corresponding to the insulating film 600 of FIG. 2) is formed by depositing the second insulating film 600 in contact with the other side of the structure and the first insulating film 800, as shown in (f) of FIG. 5B.
  • the photoresist pattern 61 is removed.
  • a photo is formed on the first insulating film 800, the second semiconductor layer 400, and the second insulating film 600 so as to contact only one side of the light emitting structure.
  • an adhesive layer 610 is deposited by contacting the second insulating film 600 and the first insulating film 800 (see (g) of FIG. 5C), and (h) of FIG. 5C. As shown in Fig. 11), the photoresist pattern is removed.
  • the adhesive layer 610 has been described with the configuration included in the second insulating film 600 in the above-described example with reference to FIG. 2.
  • the lower reflective layer 700 is formed by depositing the adhesive layer 610 and the first insulating layer 800 (see (i) of FIG. 5C), and as shown in (j) of FIG. 5D, the photoresist pattern is formed.
  • the photoresist pattern 64 is formed on the lower reflective layer 700, the adhesive layer 610, and the second insulating layer 600 so as to contact only one side of the light emitting structure, and then, on the second semiconductor layer 400, 2 reflecting electrode 500 is formed (see (k) of FIG. 5D).
  • the second reflective electrode 500 is configured to integrate the n-type electrode 520 and the reflective layer 510 of FIG. 2 in the same manner as the first reflective electrode 100.
  • the first insulating layer 800 between one side of the light emitting structure and the lower reflective layer 700 is formed. And the semiconductor light emitting devices are separated from each other by performing a laser scribing process by irradiating a laser on the first reflective electrode 100 (see (l) of FIG. 5D).
  • the lower reflective layer 700 is disposed horizontally, and the light emitting structure including the first reflective electrode 100 to the second reflective layer 500 is vertical. It is mounted to be arranged in the direction.

Abstract

Disclosed are a semiconductor light-emitting device and a method for manufacturing the same. According to the present invention, an active layer is formed to be elongated in the vertical direction on a lower reflection layer and an insulation film, a first semiconductor layer and a second semiconductor layer are formed to be elongated in the vertical direction on both sides of the active layer, and a pair of side reflection layers are formed to be elongated in the vertical direction so as to contact surfaces of the first and second semiconductor layers, which do not contact the active layer, such that light is directly emitted towards the upper portion, which corresponds to the longitudinal direction of the active layer, and currents are supplied through the pair of side reflection layers formed on the side surfaces. Therefore, according to the present invention, no part of the active layer is removed, thereby generating a larger amount of light than a conventional horizontal light-emitting device, and light is directly emitted, not through a transparent electrode, thereby providing better light extraction efficiency than conventional horizontal and vertical light-emitting devices. In addition, a semiconductor light-emitting device according to a preferred embodiment of the present invention has n-type and p-type electrodes formed in a region corresponding to the entire region of the semiconductor layer, and currents are supplied through the entire area of side reflection layers, which have excellent conductivity, thereby preventing a current crowding phenomenon, i.e. concentration of currents in a partial region, and improving optical efficiency. And a lead frame is connected to contact the entire area of the n-type and p-type electrodes (the entire area of a pair of side reflection layers when the n-type and p-type electrodes are integrally formed with the side reflection layers), and a heat slug is connected to the lower reflection layer to discharge heat to the outside, thereby providing excellent heat discharge efficiency.

Description

반도체 발광 소자 및 이를 제조하는 방법Semiconductor light emitting device and method for manufacturing same
본 발명은 반도체 발광 소자 및 이를 제조하는 방법에 관한 것이다.The present invention relates to a semiconductor light emitting device and a method of manufacturing the same.
최근 LED가 차세대 조명 광원으로 자리잡고 있다. LED(Light Emitting Diode)는 p-n 접합에 의해 인가된 전류가 빛으로 방출되는 성질을 이용하는 반도체 소자이다. 이 소자의 장점은 43% 의 높은 에너지 변환 효율, 100,000시간 정도의 장수명, 빠른 응답속도, 낮은 발열, 유해물질이 없는 특징을 가진다. Recently, LED is becoming the next generation lighting source. LED (Light Emitting Diode) is a semiconductor device that uses the property that the current applied by the pn junction is emitted as light. The device features high energy conversion efficiency of 43%, long life of 100,000 hours, fast response time, low heat generation and no harmful substances.
현재 LED 소자의 효율을 높이기 위하여 수평형, 수직형, 플립칩 등 다양한 구조의 LED가 연구되고 있다. 하지만, 수평형 구조의 LED는 n-전극 형성 과정에서 식각 공정으로 인하여 활성 층의 손실이 발생하므로 발광 면적이 감소하여 발광효율이 저하된다. 또한 n-전극과 p-전극이 활성층이 바닥면과 수평으로 형성되므로, 활성층에서 수직으로 발생하는 광 중 한쪽 부분의 손실이 발생하게 된다. 이러한 종래의 LED 소자의 일 예가 한국 특허 제 10-0905442 호에 공개되어 있다.At present, LEDs of various structures such as horizontal type, vertical type, and flip chip have been studied to increase the efficiency of the LED device. However, in the horizontal type LED, since the loss of the active layer occurs due to the etching process in the n-electrode formation process, the light emitting area is reduced and the light emitting efficiency is lowered. In addition, since the n-electrode and the p-electrode have the active layer formed horizontally with the bottom surface, loss of one part of the light generated vertically in the active layer occurs. An example of such a conventional LED device is disclosed in Korean Patent No. 10-0905442.
이러한 문제점을 해결하기 위하여 최근 수직형 구조의 LED가 활발히 연구되고 있다. 수직형 구조는 LED의 상부에 p-전극, 하부에 n-전극이 형성되므로 별도의 식각 공정이 필요하지 않으며, 수평형 구조의 LED에 비해 발광 면적이 증가함으로써 발광 효율이 증가한다는 장점이 있다. 하지만 수직형 구조의 LED는 레이저 리프트 오프(Laser lift off) 공정을 통하여 기판을 제거한 후 n-전극을 형성하는 과정에서 레이저로 인한 박막의 손상이 발생하게 되고, 이로 인하여 전극과 반도체 층과의 오믹 특성이 저하되는 문제가 있다. 또한 LED 소자의 원활한 전류 주입 및 분산을 위해 금속 전극과 반도체 층 사이에 투명전극을 삽입하는데, 현재 투명전극은 투과도와 전기적 특성(오믹 특성)과의 서로 반비례 관계에 있어 투과도도 높으면서 양호한 오믹 특성을 나타내는 LED 소자의 개발이 필요한 실정이다.In order to solve this problem, the vertical type LED has been actively studied. The vertical structure does not require a separate etching process because the p-electrode is formed on the upper portion of the LED and the lower n-electrode is formed on the lower portion of the LED. However, in the vertical type LED, the thin film is damaged by the laser in the process of forming the n-electrode after removing the substrate through a laser lift off process, which causes the ohmic between the electrode and the semiconductor layer. There is a problem of deterioration of characteristics. In addition, a transparent electrode is inserted between the metal electrode and the semiconductor layer to smoothly inject and disperse the LED elements. Currently, the transparent electrode has a high transmittance and good ohmic characteristics because it is inversely related to the transmittance and electrical characteristics (ohmic characteristics). There is a need for the development of LED devices.
아울러, LED가 실제로 백열등과 같은 기존의 조명을 대체하기 위해서는 소자의 신뢰성에 큰 영향을 미치는 방열 문제가 해결되어야 한다. 고출력 LED의 경우 높은 소비전력으로 인하여 인가된 파워의 약 70% 이상을 열로 소비하게 되는데, 내부에서 발생한 이러한 열을 외부로 얼마나 잘 방출시킬 수 있는가 하는 것이 소자의 기본적인 전기적, 광학적 특성에 매우 중요한 요소이다. 종래의 LED 칩 패키지 구조의 일 예를 도 1에 도시하였다. 도 1에 도시된 수직형 LED 소자를 참조하면, LED 소자에서 발생된 열은 하부 전극과 접촉한 리드 프레임을 통해서만 주로 방출되므로, 효율적인 열 방출이 되지 않아 발광 소자의 수명을 단축시키는 요인이 되고 있다. 따라서, 고효율의 LED 소자 구현을 위해서는 효율적인 방열 구조가 필요한 실정이다.In addition, in order for LEDs to actually replace conventional lighting such as incandescent lamps, the heat dissipation problem that greatly affects the reliability of the device must be solved. High power LED consumes more than 70% of the applied power due to high power consumption, and how well it can dissipate this heat generated from the inside to the outside is very important for the basic electrical and optical characteristics of the device. to be. An example of a conventional LED chip package structure is shown in FIG. 1. Referring to the vertical LED device illustrated in FIG. 1, since heat generated in the LED device is mainly emitted only through the lead frame in contact with the lower electrode, the heat emission of the LED device is not efficient, resulting in a shortening of the lifespan of the light emitting device. . Therefore, an efficient heat dissipation structure is needed to implement high efficiency LED devices.
본 발명이 해결하고자 하는 과제는 광투과도가 높으면서도 양호한 오믹 접촉이 가능하고, 양호하게 내부에서 발생된 열을 외부로 방출할 수 있는 구조를 갖는 반도체 발광 소자 및 그 제조 방법을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor light emitting device having a high light transmittance and having a good ohmic contact, and having a structure capable of releasing heat generated therein to the outside, and a manufacturing method thereof.
상술한 과제를 해결하기 위한 본 발명의 바람직한 실시예에 따른 반도체 발광 소자는, 수직 방향으로 길게 형성된 활성층; 상기 활성층에 접촉하도록 상기 활성층의 양측에 수직 방향으로 길게 각각 형성된 제 1 반도체층 및 제 2 반도체층; 상기 제 1 반도체층 및 상기 제 2 반도체층 중 상기 활성층에 접촉하지 않은 면에 접촉하도록 수직 방향으로 길게 형성된 한 쌍의 측면 반사층을 포함한다.A semiconductor light emitting device according to a preferred embodiment of the present invention for solving the above problems, the active layer formed long in the vertical direction; First and second semiconductor layers each formed in a vertical direction on both sides of the active layer to contact the active layer; And a pair of side reflecting layers elongated in the vertical direction to contact a surface of the first semiconductor layer and the second semiconductor layer that is not in contact with the active layer.
또한, 상기 본 발명의 바람직한 실시예에 따른 반도체 발광 소자의 상기 한 쌍의 측면 반사층은 반도체층의 전체 영역에 접촉하도록 형성될 수 있다.In addition, the pair of side reflection layers of the semiconductor light emitting device according to the preferred embodiment of the present invention may be formed to contact the entire region of the semiconductor layer.
또한, 상기 본 발명의 바람직한 실시예에 따른 반도체 발광 소자는, 상기 한 쌍의 측면 반사층의 반도체층에 접촉하지 않은 면에 접촉하도록 각각 형성된 한 쌍의 전극을 더 포함할 수 있다.In addition, the semiconductor light emitting device according to the preferred embodiment of the present invention may further include a pair of electrodes each formed to contact a surface that is not in contact with the semiconductor layer of the pair of side reflection layers.
또한, 상기 본 발명의 바람직한 실시예에 따른 반도체 발광 소자의 상기 한 쌍의 전극은 각각 상기 측면 반사층의 전체 영역과 접촉하도록 형성될 수 있다.In addition, the pair of electrodes of the semiconductor light emitting device according to the preferred embodiment of the present invention may be formed in contact with the entire area of the side reflective layer, respectively.
또한, 상기 본 발명의 바람직한 실시예에 따른 반도체 발광 소자는, 상기 활성층, 상기 제 1 반도체층, 상기 제 2 반도체층, 및 상기 한 쌍의 반사층의 하면에 접촉하도록 형성된 절연막; 및 상기 절연막의 다른 일 면에 접촉하도록 형성된 하부 반사층을 더 포함할 수 있다.In addition, the semiconductor light emitting device according to the preferred embodiment of the present invention, the insulating layer formed to contact the lower surface of the active layer, the first semiconductor layer, the second semiconductor layer, and the pair of reflective layers; And a lower reflective layer formed to contact the other surface of the insulating layer.
또한, 상기 본 발명의 바람직한 실시예에 따른 반도체 발광 소자의 상기 하부 반사층은 히트 슬러그와 접촉하여, 상기 히트 슬러그를 통해서 열을 외부로 방출할 수 있다.In addition, the lower reflective layer of the semiconductor light emitting device according to the preferred embodiment of the present invention may be in contact with the heat slug, and may radiate heat to the outside through the heat slug.
또한, 상기 본 발명의 바람직한 실시예에 따른 반도체 발광 소자의 상기 한 쌍의 측면 반사층은 리드 프레임과 오믹 접촉을 이루는 반사 전극으로 구현되고, 상기 한 쌍의 반사 전극은 상기 리드 프레임을 통해서 열을 방출할 수 있다.In addition, the pair of side reflective layers of the semiconductor light emitting device according to the preferred embodiment of the present invention is implemented as a reflective electrode in ohmic contact with the lead frame, the pair of reflective electrodes emit heat through the lead frame can do.
한편, 상술한 과제를 해결하기 위한 본 발명의 바람직한 실시예에 따른 반도체 발광 소자 제조 방법은, (a) 지지 기판 위에 제 1 반사층, 상기 제 1 반사층 내부에 서로 이격되어 형성된 복수의 제 1 절연막, 제 1 반도체층, 활성층, 및 제 2 반도체층이 차례로 적층된 기판을 형성하는 단계; (b) 상기 제 1 절연막이 드러나도록 상기 제 1 절연막 위에 형성된 상기 제 2 반도체층, 상기 활성층 및 상기 제 1 반도체층을 식각하여 복수의 발광 구조물을 형성하는 단계; (c) 상기 복수의 발광 구조물의 일 측면(제 1 측면)에만 접촉하도록 제 2 절연막 및 하부 반사층을 형성하고, 상기 제 2 반도체층 위에 제 2 반사층을 형성하는 단계; 및 (d) 상기 하부 반사층과 인접한 발광 구조물 사이의 제 1 반사층 영역을 절단하여 발광 소자를 분리하는 단계를 포함한다.On the other hand, the semiconductor light emitting device manufacturing method according to a preferred embodiment of the present invention for solving the above problems, (a) a plurality of first insulating film formed on the support substrate spaced apart from each other in the first reflective layer, Forming a substrate in which a first semiconductor layer, an active layer, and a second semiconductor layer are sequentially stacked; (b) forming a plurality of light emitting structures by etching the second semiconductor layer, the active layer and the first semiconductor layer formed on the first insulating layer so that the first insulating layer is exposed; (c) forming a second insulating layer and a lower reflective layer to contact only one side (first side) of the plurality of light emitting structures, and forming a second reflective layer on the second semiconductor layer; And (d) cutting the first reflective layer region between the lower reflective layer and the adjacent light emitting structure to separate the light emitting device.
또한, 상기 본 발명의 바람직한 실시예에 따른 반도체 발광 소자 제조 방법에서, 상기 (a) 단계는, (a1) 임시 기판위에 상기 제 2 반도체층, 상기 활성층, 및 상기 제 1 반도체층을 순차적으로 형성하고, 상기 제 2 반도체층 위에 서로 이격된 상기 복수의 제 1 절연막을 형성하는 단계; (a2) 상기 제 2 반도체층 및 상기 복수의 제 1 절연막 위에 상기 제 1 반사층을 형성하는 단계; 및 (a3) 상기 제 1 반사층과 상기 지지 기판을 접합시키고, 상기 임시 기판을 분리하는 단계를 포함할 수 있다.In addition, in the method of manufacturing a semiconductor light emitting device according to the preferred embodiment of the present invention, the step (a) includes (a1) sequentially forming the second semiconductor layer, the active layer, and the first semiconductor layer on a temporary substrate. Forming the plurality of first insulating layers spaced apart from each other on the second semiconductor layer; (a2) forming the first reflective layer on the second semiconductor layer and the plurality of first insulating layers; And (a3) bonding the first reflective layer to the support substrate and separating the temporary substrate.
또한, 상기 본 발명의 바람직한 실시예에 따른 반도체 발광 소자 제조 방법에서, 상기 (c) 단계는, (c1) 상기 발광 구조물의 다른 일 측면(제 2 측면)과 상기 제 2 반도체층의 상부를 덮고, 상기 제 1 절연막의 일부가 노출되도록 포토레지스트 패턴을 형성하는 단계; (c2) 상기 제 1 절연막위에 상기 제 1 측면에 접촉하도록 제 2 절연막을 형성하고 포토레지스트 패턴을 제거하는 단계; (c3) 상기 발광 구조물의 상기 제 2 측면과 상기 제 2 반도체층 및 상기 제 2 절연막의 상부를 덮고, 상기 제 1 절연막의 일부가 노출되도록 포토레지스트 패턴을 형성하는 단계; (c5) 상기 제 1 절연막위에 상기 제 2 절연막과 접촉하도록 하부 반사층을 형성하고, 포토레지스트 패턴을 제거하는 단계; 및 (c6) 상기 제 2 반도체층 위에 상기 제 2 반사층을 형성하는 단계를 포함할 수 있다.In addition, in the method of manufacturing a semiconductor light emitting device according to the preferred embodiment of the present invention, the step (c) covers (c1) another side (second side) of the light emitting structure and an upper portion of the second semiconductor layer. Forming a photoresist pattern to expose a portion of the first insulating film; (c2) forming a second insulating film on the first insulating film so as to contact the first side surface and removing the photoresist pattern; (c3) forming a photoresist pattern covering the second side surface of the light emitting structure, the upper portion of the second semiconductor layer, and the second insulating film, and exposing a portion of the first insulating film; (c5) forming a lower reflective layer on the first insulating film so as to contact the second insulating film, and removing the photoresist pattern; And (c6) forming the second reflective layer on the second semiconductor layer.
또한, 상기 본 발명의 바람직한 실시예에 따른 반도체 발광 소자 제조 방법은, 상기 (c3) 단계 내지 상기 (c5) 단계 사이에, (c4) 상기 제 1 절연막 위에 상기 제 2 절연막과 접촉하도록 접착층을 형성하고, 포토레지스트 패턴을 제거하는 단계;를 더 포함하고, 상기 (c5) 단계는, 상기 발광 구조물의 상기 제 2 측면과, 상기 제 2 반도체층, 상기 제 2 절연막, 및 상기 접착층의 상부를 덮고, 상기 제 1 절연막의 일부가 노출되도록 포토레지스트 패턴을 형성하고, 상기 제 1 절연막 위에 상기 접착층과 접촉하도록 하부 반사층을 형성하고, 포토레지스트 패턴을 제거할 수 있다.In addition, in the method of manufacturing a semiconductor light emitting device according to the preferred embodiment of the present invention, between (c3) and (c5), (c4) an adhesive layer is formed on the first insulating film so as to contact the second insulating film. And removing the photoresist pattern, wherein the step (c5) includes covering the second side surface of the light emitting structure, the second semiconductor layer, the second insulating film, and an upper portion of the adhesive layer. The photoresist pattern may be formed to expose a portion of the first insulating layer, the lower reflective layer may be formed on the first insulating layer to contact the adhesive layer, and the photoresist pattern may be removed.
본 발명의 바람직한 실시예에 따른 반도체 발광 소자는 하부 반사층 및 절연막에 수직 방향으로 길게 활성층을 형성하고, 활성층에 접촉하도록 활성층의 양측에 수직 방향으로 길게 제 1 반도체층 및 제 2 반도체층을 형성하며, 제 1 반도체층 및 제 2 반도체층 중 활성층에 접촉하지 않은 면에 접촉하도록 수직 방향으로 길게 한 쌍의 측면 반사층을 형성함으로써, 활성층에서 생성된 빛이 활성층의 수직 방향으로 방출되지 않고, 활성층의 길이 방향인 상부로 직접 방출되도록 구성하고, 측면에 형성된 한 쌍의 측면 반사층을 통해서 전류를 공급하였다. In the semiconductor light emitting device according to the preferred embodiment of the present invention, the active layer is formed in the vertical direction on the lower reflective layer and the insulating layer, and the first semiconductor layer and the second semiconductor layer are formed on both sides of the active layer in the vertical direction so as to contact the active layer. By forming a pair of side reflection layers extending in the vertical direction so as to contact the surfaces of the first semiconductor layer and the second semiconductor layer which are not in contact with the active layer, light generated in the active layer is not emitted in the vertical direction of the active layer, It was configured to emit directly to the top in the longitudinal direction, and a current was supplied through a pair of side reflective layers formed on the side.
따라서, 본 발명의 바람직한 실시예에 따른 반도체 발광 소자는 활성층의 일부를 제거하지 않으므로 종래의 수평형 발광 소자에 비하여 더 많은 양의 빛을 발생시킬 수 있고, 투명 전극을 통하지 않고 직접 빛을 방출하므로 종래의 수평형 발광 소자 및 수직형 발광 소자에 비하여 광 추출 효율이 뛰어나다. Therefore, since the semiconductor light emitting device according to the preferred embodiment of the present invention does not remove a part of the active layer, it can generate a greater amount of light than the conventional horizontal light emitting device, and emits light directly without passing through the transparent electrode. Compared with the conventional horizontal light emitting device and the vertical light emitting device, the light extraction efficiency is excellent.
또한, 본 발명의 바람직한 실시예에 따른 반도체 발광 소자는 반도체층 전체 영역에 대응되는 되는 영역에 n형 및 p형 전극을 형성하고, 전도성이 뛰어난 측면 반사층의 전체 면적을 통해서 전류를 공급하므로 전류가 일부 영역에 집중되는 current crowding 현상을 방지하여 광 효율을 향상시킬 수 있으며, n형 및 p형 전극 전체 면적(n형 및 p형 전극이 측면 반사층과 통합되어 형성된 경우에는 한 쌍의 측면 반사층 전체 면적)과 접촉하도록 리드 프레임을 연결하고 하부 반사층에 히트 슬러그를 연결하여 열을 외부로 방출함으로써 열 방출 효율이 뛰어나다.In addition, the semiconductor light emitting device according to the preferred embodiment of the present invention forms n-type and p-type electrodes in regions corresponding to the entire region of the semiconductor layer, and supplies current through the entire area of the side reflecting layer having excellent conductivity. Improves light efficiency by preventing current crowding that is concentrated in some areas, and the total area of n-type and p-type electrodes (when the n-type and p-type electrodes are formed by integrating with the side reflective layer, The heat dissipation efficiency is excellent by connecting the lead frame so as to be in contact with the) and heat slug to the lower reflective layer to dissipate heat to the outside.
도 1은 종래 기술에 따른 반도체 발광 소자의 패키지 구조를 도시한 도면이다.1 is a view showing a package structure of a semiconductor light emitting device according to the prior art.
도 2는 본 발명의 바람직한 실시예에 따른 반도체 발광 소자의 구조를 도시한 도면이다.2 is a view showing the structure of a semiconductor light emitting device according to a preferred embodiment of the present invention.
도 3은 본 발명의 바람직한 실시예에 따른 반도체 발광 소자가 패키지화된 일 예를 도시한 도면이다.3 is a diagram illustrating an example in which a semiconductor light emitting device is packaged according to an exemplary embodiment of the present invention.
도 4a 및 도 4b는 본 발명의 바람직한 실시예에 따른 반도체 발광 소자에서의 전류의 흐름과 빛의 경로를 각각 도시하는 도면이다.4A and 4B are diagrams illustrating the flow of current and the path of light in the semiconductor light emitting device according to the preferred embodiment of the present invention, respectively.
도 5a 내지 도 5d는 본 발명의 바람직한 실시예에 따른 반도체 발광 소자 제조 방법을 설명하는 도면이다.5A to 5D are diagrams illustrating a method of manufacturing a semiconductor light emitting device according to a preferred embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
도 2는 본 발명의 바람직한 실시예에 따른 반도체 발광 소자의 구조를 도시한 도면이다.2 is a view showing the structure of a semiconductor light emitting device according to a preferred embodiment of the present invention.
도 2를 참조하면, 본 발명의 바람직한 실시예에 따른 반도체 발광 소자(10)는 하부 반사층(700) 위에 절연막(600)이 형성되고, 절연막(600) 위에 절연막(600) 및 하부 반사층(700)의 수직 방향으로 길게 활성층(300)이 배치된다. 활성층(300)은 일반적인 반도체 발광 소자와 마찬가지로 다중 양자 우물 구조로 형성될 수 있다.Referring to FIG. 2, in the semiconductor light emitting device 10 according to the preferred embodiment of the present invention, an insulating film 600 is formed on the lower reflective layer 700, and the insulating film 600 and the lower reflective layer 700 are disposed on the insulating film 600. The active layer 300 is disposed to extend in the vertical direction. The active layer 300 may be formed in a multi quantum well structure similarly to a general semiconductor light emitting device.
또한, 제 1 반도체층(200) 및 제 2 반도체층(400)이 활성층(300)에 접촉하도록 활성층(300)의 양측에 수직 방향으로 길게 절연막(600) 위에 배치된다. 제 1 반도체층(200)과 제 2 반도체층(400) 중 어느 하나는 p형 반도체층으로 형성되고, 다른 하나는 n형 반도체층으로 형성된다. 본 발명의 바람직한 실시예에서, 제 1 반도체층(200)은 p-GaN 층으로 형성되었고, 제 2 반도체층(400)은 n-GaN층으로 형성되었으나, 반도체 발광소자에 적용될 수 있는 것이라면 그 재질에 제한은 없다. In addition, the first semiconductor layer 200 and the second semiconductor layer 400 are disposed on the insulating layer 600 in a direction perpendicular to both sides of the active layer 300 so as to contact the active layer 300. One of the first semiconductor layer 200 and the second semiconductor layer 400 is formed of a p-type semiconductor layer, and the other is formed of an n-type semiconductor layer. In a preferred embodiment of the present invention, the first semiconductor layer 200 is formed of a p-GaN layer, the second semiconductor layer 400 is formed of an n-GaN layer, but if the material can be applied to a semiconductor light emitting device There is no limit.
한편, 제 1 반도체층(200) 및 상기 제 2 반도체층(400) 중 활성층(300)에 접촉하지 않은 면에 접촉하도록 수직 방향으로 길게 형성된 한 쌍의 측면 반사층(110,510)이 절연막(600) 위에 배치된다. 반사층은 Al, Ag, Au, Rh, Pd, Pt, Cu, Ru 등 및 이들을 포함하는 합금이나 이들의 다층 구조로 형성될 수 있고, 제 1 반도체층(200) 및 제 2 반도체층(400) 전체 영역과 접촉하도록 형성된다.Meanwhile, a pair of side reflective layers 110 and 510 formed long in the vertical direction to contact a surface of the first semiconductor layer 200 and the second semiconductor layer 400 that is not in contact with the active layer 300 is formed on the insulating film 600. Is placed. The reflective layer may be formed of Al, Ag, Au, Rh, Pd, Pt, Cu, Ru, or the like, or an alloy containing them, or a multilayered structure thereof, and may include the entire first semiconductor layer 200 and the second semiconductor layer 400. It is formed to contact the area.
또한, 한 쌍의 측면 반사층(110,510)의 전체 영역과 각각 접촉하도록 p형 전극(120) 및 n형 전극(520)이 절연막(600) 위에 추가로 배치될 수 있다. 본 발명은 활성층(300)에서 발생된 빛이 전극을 통해서 외부로 방출되는 것이 아니므로, p형 전극(120) 및 n형 전극(520)은 투명전극일 필요가 없다. 따라서, p형 전극(120) 및 n형 전극(520)은 전기적 특성이 양호한 재질로서 선택될 수 있다.In addition, the p-type electrode 120 and the n-type electrode 520 may be further disposed on the insulating layer 600 to contact the entire regions of the pair of side reflective layers 110 and 510, respectively. Since the light generated in the active layer 300 is not emitted to the outside through the electrode, the p-type electrode 120 and the n-type electrode 520 need not be transparent electrodes. Accordingly, the p-type electrode 120 and the n-type electrode 520 may be selected as materials having good electrical characteristics.
아울러, 본 발명의 바람직한 실시 예에서 한 쌍의 측면 반사층(110,510)과 p형 전극(120) 및 n형 전극(520)은 하나로 통합될 수 있다. 즉, 빛을 잘 반사하면서도 오믹 접촉이 양호한 성질을 갖는 Ni, Pt, Au, Ag, Cr, AgAl, AgCu 등과 이들을 포함하는 합금을 이용하거나, 이들을 다층 구조로 형성하면 반사층과 전극을 개별적으로 형성하지 않고, 하나의 반사전극(100,500)으로 통합하여 형성할 수 있고, 이 경우, 제조 공정은 더욱 단순화될 수 있다.In addition, in the preferred embodiment of the present invention, the pair of side reflective layers 110 and 510, the p-type electrode 120, and the n-type electrode 520 may be integrated into one. In other words, Ni, Pt, Au, Ag, Cr, AgAl, AgCu, etc., which have good properties of reflecting light well and have good ohmic contact, or if they are formed in a multilayer structure, the reflective layer and the electrode are not formed separately. Instead, it can be formed by integrating into one reflective electrode (100, 500), in this case, the manufacturing process can be further simplified.
도 3은 본 발명의 바람직한 실시예에 따른 반도체 발광 소자(10)가 패키지화된 일 예를 도시한 도면이다. 도 3을 참조하면, 본 발명의 바람직한 실시예에 따른 반도체 발광 소자(10)가 패키지화되는 경우에, p형 전극 및 n형 전극(전극과 측면 반사층이 통합 형성된 경우에는 한 쌍의 측면 반사층) 각각은 그 전체 영역이 리드 프레임(20)에 연결되고, 하부 반사층(700)은 히트 슬러그(heat slug;30)와 연결된다. 따라서, 본 발명의 반도체 발광 소자(10)는 반도체 발광 소자(10)에서 발생된 열을 각 전극에 연결된 리드 프레임(20)과 히트 슬러그(30)의 3방향으로 방출하므로, 열 방출 효과가 뛰어나다.3 is a diagram illustrating an example in which a semiconductor light emitting device 10 is packaged according to a preferred embodiment of the present invention. Referring to FIG. 3, when a semiconductor light emitting device 10 according to a preferred embodiment of the present invention is packaged, each of a p-type electrode and an n-type electrode (a pair of side reflection layers when the electrode and the side reflection layer are integrally formed), respectively. The entire area is connected to the lead frame 20, and the lower reflective layer 700 is connected to a heat slug 30. Therefore, the semiconductor light emitting device 10 of the present invention emits heat generated in the semiconductor light emitting device 10 in three directions of the lead frame 20 and the heat slug 30 connected to each electrode, and thus has excellent heat dissipation effect. .
도 4a 및 도 4b는 본 발명의 바람직한 실시예에 따른 반도체 발광 소자에서의 전류의 흐름과 빛의 경로를 각각 도시하는 도면이다.4A and 4B are diagrams illustrating the flow of current and the path of light in the semiconductor light emitting device according to the preferred embodiment of the present invention, respectively.
먼저, 도 4a는 본 발명의 바람직한 실시예에 따른 반도체 발광 소자 내부에서 전류의 흐름을 도시하는 도면이다. 도 4a에 도시된 바와 같이, 본 발명의 바람직한 실시예에 따른 반도체 발광 소자(10)는 제 1 반도체층(200) 및 제 2 반도체층(400) 전체 영역에 대응되는 되는 영역에 p형 전극(120) 및 n형 전극(520)(전극과 측면 반사층이 통합 형성된 경우에는 한 쌍의 측면 반사층(110,510))을 형성하고, 전도성이 뛰어난 전극(120,520) 및 측면 반사층(110,510)의 전체 면적을 통해서 전류를 공급하므로 전류가 일부 영역에 집중되는 current crowding 현상을 방지할 수 있어 광 효율을 향상시킬 수 있다.First, FIG. 4A is a diagram illustrating a current flow in a semiconductor light emitting device according to a preferred embodiment of the present invention. As shown in FIG. 4A, the semiconductor light emitting device 10 according to the exemplary embodiment of the present invention may have a p-type electrode in a region corresponding to the entire region of the first semiconductor layer 200 and the second semiconductor layer 400. 120 and the n-type electrode 520 (a pair of side reflecting layers 110 and 510 when the electrode and the side reflecting layer are formed integrally) are formed, and the entire area of the highly conductive electrodes 120 and 520 and the side reflecting layers 110 and 510 is formed. By supplying current, current crowding, which concentrates current in some areas, can be avoided, improving light efficiency.
도 4b 는 본 발명의 바람직한 실시예에 따른 반도체 발광 소자 내부에서 빛의 경로를 도시하는 도면이다. 도 4b에 도시된 바와 같이, 본 발명의 바람직한 실시예에 따른 반도체 발광 소자(10)는 활성층(300)에서 생성된 빛이 하부 반사층(700) 및 측면 반사층(110,510)에서 반사되어 상부로 방출되고, 특히, 투명 전극을 통과하지 않고 직접 방출되므로, 종래 기술에 비해서 광추출 효율이 뛰어나다.4B is a diagram illustrating a path of light in a semiconductor light emitting device according to a preferred embodiment of the present invention. As shown in FIG. 4B, in the semiconductor light emitting device 10 according to the preferred embodiment of the present invention, the light generated in the active layer 300 is reflected by the lower reflective layer 700 and the side reflective layers 110 and 510 and is emitted upward. In particular, since the light is directly emitted without passing through the transparent electrode, the light extraction efficiency is superior to the prior art.
도 5a 내지 도 5d는 본 발명의 바람직한 실시예에 따른 반도체 발광 소자 제조 방법을 설명하는 도면이다. 이하에서는, 도 5a 내지 도 5d를 참조하여, 본 발명의 바람직한 실시예에 따른 반도체 발광 소자의 제조 방법을 설명한다.5A to 5D are diagrams illustrating a method of manufacturing a semiconductor light emitting device according to a preferred embodiment of the present invention. Hereinafter, a method of manufacturing a semiconductor light emitting device according to a preferred embodiment of the present invention will be described with reference to FIGS. 5A to 5D.
먼저, 도 5a의 (a)에 도시된 바와 같이, 종래의 수직형 발광 소자 제조 공정과 동일한 방식으로 임시 기판(본 발명에서는 사파이어 기판을 적용함)(51)위에 n타입으로 도핑된 반도체층(제 2 반도체층(400)), 다중 양자 우물 구조의 활성층(300), 및 p타입으로 도핑된 반도체층(제 1 반도체층(200))을 순차적으로 형성하고, 제 1 반도체층(200) 위에 서로 일정한 거리만큼 이격되도록 복수의 제 1 절연막(800)을 형성한 후, 제 1 반도체층(200) 및 복수의 제 1 절연막(800) 위에 제 1 반사 전극(100)을 형성한다. First, as shown in (a) of FIG. 5A, an n-type doped semiconductor layer on a temporary substrate (the sapphire substrate is applied in the present invention) 51 in the same manner as a conventional vertical light emitting device manufacturing process ( The second semiconductor layer 400, the active layer 300 of the multi-quantum well structure, and the p-type doped semiconductor layer (the first semiconductor layer 200) are sequentially formed and formed on the first semiconductor layer 200. After the plurality of first insulating layers 800 are formed to be spaced apart from each other by a predetermined distance, the first reflective electrode 100 is formed on the first semiconductor layer 200 and the plurality of first insulating layers 800.
여기서, 본 발명의 바람직한 실시예는 도 2에 도시된 바와 같이 반사층(110,510)과 전극(120,520)을 별도의 층으로 구현할 수도 있고, 오믹 접촉이 양호한 재질의 반사층을 형성함으로써, 반사층과 전극을 하나로 통합할 수도 있음은 상술한 바와 같다. 반사층과 전극이 별개로 형성된 예는 도 2 내지 도 4를 참조하여 설명하였으므로, 이하에서는 반사층과 전극을 통합하여 반사 전극을 형성하는 예를 설명한다.Here, in the preferred embodiment of the present invention, as shown in FIG. 2, the reflective layers 110 and 510 and the electrodes 120 and 520 may be implemented as separate layers, and the reflective layer and the electrode may be formed as one by forming a reflective layer having a good ohmic contact. Integration may be as described above. Since the example in which the reflective layer and the electrode are formed separately has been described with reference to FIGS. 2 to 4, the following describes an example in which the reflective layer and the electrode are integrated to form the reflective electrode.
제 1 반사전극(100)이 형성된 후, 도 5a의 (b)에 도시된 바와 같이, 지지 기판(900)을 제 1 반사전극(100) 위에 접합하고, 기판을 뒤집은 후, 도 5a의 (c)에 도시된 바와 같이, 임시 기판(51)을 통해서 레이저를 조사하여, 레이저 리프트 오프(Laser Lift Off) 공정을 수행함으로써, 임시 기판(51)인 사파이어 기판을 분리한다. 이 때, 지지 기판(900)의 접합을 용이하게 하기 위한 접착층(52)의 제 1 반사전극(100) 위에 추가로 형성될 수 있다.After the first reflective electrode 100 is formed, as shown in (b) of FIG. 5A, the supporting substrate 900 is bonded onto the first reflective electrode 100, the substrate is turned upside down, and then (c) of FIG. As shown in FIG. 2, the sapphire substrate, which is the temporary substrate 51, is separated by irradiating a laser through the temporary substrate 51 and performing a laser lift off process. In this case, it may be further formed on the first reflective electrode 100 of the adhesive layer 52 to facilitate the bonding of the support substrate 900.
그 후, 도 5b의 (d)에 도시된 바와 같이, 제 2 반도체층(400) 위에 포토레지스트 패턴(미도시 됨)을 형성하여 제 1 절연막(800)이 드러나도록 제 2 반도체층(400), 활성층(300), 제 1 반도체층(200)을 식각하여 반도체 발광 소자들의 영역을 분리함으로써, 제 2 반도체층(400), 활성층(300), 및 제 1 반도체층(200)으로 구성되는 복수의 발광 구조물들을 생성한다.Thereafter, as shown in (d) of FIG. 5B, the second semiconductor layer 400 is formed on the second semiconductor layer 400 so that the first insulating film 800 is exposed by forming a photoresist pattern (not shown). In addition, the active layer 300 and the first semiconductor layer 200 are etched to separate regions of the semiconductor light emitting devices, thereby forming a plurality of semiconductor layers including the second semiconductor layer 400, the active layer 300, and the first semiconductor layer 200. To generate the light emitting structures.
그리고 나서, 도 5b의 (e)에 도시된 바와 같이, 발광 구조물의 일 측면에만 접촉하도록 제 1 절연막(800)과 제 2 반도체층(400) 위에 포토레지스트 패턴(61)을 형성한 후, 발광 구조물의 다른 일 측면과 제 1 절연막(800)에 접촉하도록 제 2 절연막(600)(도 2의 절연막(600)에 대응됨)을 증착하여 형성하고, 도 5b의 (f)에 도시된 바와 같이, 포토레지스트 패턴(61)을 제거한다.Then, as shown in (e) of FIG. 5B, after forming the photoresist pattern 61 on the first insulating film 800 and the second semiconductor layer 400 so as to contact only one side of the light emitting structure, the light emission A second insulating film 600 (corresponding to the insulating film 600 of FIG. 2) is formed by depositing the second insulating film 600 in contact with the other side of the structure and the first insulating film 800, as shown in (f) of FIG. 5B. The photoresist pattern 61 is removed.
그 후, 도 5b의 (e) 내지 (f)와 동일한 방식으로, 발광 구조물의 일 측면에만 접촉하도록 제 1 절연막(800), 제 2 반도체층(400), 및 제 2 절연막(600) 위에 포토레지스트 패턴(62)을 형성한 후, 제 2 절연막(600)과 제 1 절연막(800)에 접촉하도록 접착층(610)을 증착하여 형성하고(도 5c의 (g)참조), 도 5c의 (h)에 도시된 바와 같이, 포토레지스트 패턴을 제거한다. 이 때, 접착층(610)은 도 2를 참조하여 상술한 예에서는 제 2 절연막(600)에 포함된 구성으로 설명되었다.Thereafter, in the same manner as in FIGS. 5B (e) to (f), a photo is formed on the first insulating film 800, the second semiconductor layer 400, and the second insulating film 600 so as to contact only one side of the light emitting structure. After the resist pattern 62 is formed, an adhesive layer 610 is deposited by contacting the second insulating film 600 and the first insulating film 800 (see (g) of FIG. 5C), and (h) of FIG. 5C. As shown in Fig. 11), the photoresist pattern is removed. In this case, the adhesive layer 610 has been described with the configuration included in the second insulating film 600 in the above-described example with reference to FIG. 2.
마찬가지 방식으로, 발광 구조물의 일 측면에만 접촉하도록 제 1 절연막(800), 제 2 반도체층(400), 제 2 절연막(600) 및 접착층(610) 위에 포토레지스트 패턴(63)을 형성한 후, 접착층(610)과 제 1 절연막(800)에 접촉하도록 하부 반사층(700)을 증착하여 형성하고(도 5c의 (i)참조), 도 5d의 (j)에 도시된 바와 같이, 포토레지스트 패턴을 제거한다.In the same manner, after the photoresist pattern 63 is formed on the first insulating film 800, the second semiconductor layer 400, the second insulating film 600, and the adhesive layer 610 so as to contact only one side of the light emitting structure, The lower reflective layer 700 is formed by depositing the adhesive layer 610 and the first insulating layer 800 (see (i) of FIG. 5C), and as shown in (j) of FIG. 5D, the photoresist pattern is formed. Remove
그 후, 발광 구조물의 일 측면에만 접촉하도록 하부 반사층(700), 접착층(610), 및 제 2 절연막(600) 위에 포토레지스트 패턴(64)을 형성한 후, 제 2 반도체층(400) 위에 제 2 반사전극(500)을 형성한다(도 5d의 (k)참조). 여기서, 제 2 반사전극(500)은 도 2의 n형 전극(520)과 반사층(510)이 통합되도록 형성된 구성임은 제 1 반사전극(100)과 동일하다.Thereafter, the photoresist pattern 64 is formed on the lower reflective layer 700, the adhesive layer 610, and the second insulating layer 600 so as to contact only one side of the light emitting structure, and then, on the second semiconductor layer 400, 2 reflecting electrode 500 is formed (see (k) of FIG. 5D). Here, the second reflective electrode 500 is configured to integrate the n-type electrode 520 and the reflective layer 510 of FIG. 2 in the same manner as the first reflective electrode 100.
마지막으로, 포토레지스트 패턴(64)을 제거하고, 제 1 반사전극(100)으로부터 지지 기판(900)을 분리한 후, 발광 구조물의 일 측면과 하부 반사층(700) 사이의 제 1 절연막(800) 및 제 1 반사전극(100)에 레이저를 조사하여 laser scribing 공정을 수행함으로써, 반도체 발광 소자를 서로 분리한다(도 5d의 (l)참조). Finally, after removing the photoresist pattern 64 and separating the supporting substrate 900 from the first reflective electrode 100, the first insulating layer 800 between one side of the light emitting structure and the lower reflective layer 700 is formed. And the semiconductor light emitting devices are separated from each other by performing a laser scribing process by irradiating a laser on the first reflective electrode 100 (see (l) of FIG. 5D).
분리된 반도체 발광 소자는, 도 2 및 도 3에 도시된 바와 같이, 하부 반사층(700)이 수평으로 배치되고, 제 1 반사전극(100) 내지 제 2 반사층(500)을 포함하는 발광 구조물이 수직 방향으로 배치되도록 실장된다.In the separated semiconductor light emitting device, as shown in FIGS. 2 and 3, the lower reflective layer 700 is disposed horizontally, and the light emitting structure including the first reflective electrode 100 to the second reflective layer 500 is vertical. It is mounted to be arranged in the direction.
이제까지 본 발명에 대하여 그 바람직한 실시 예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far I looked at the center of the preferred embodiment for the present invention. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.

Claims (11)

  1. 수직 방향으로 길게 형성된 활성층;An active layer elongated in the vertical direction;
    상기 활성층에 접촉하도록 상기 활성층의 양측에 수직 방향으로 길게 각각 형성된 제 1 반도체층 및 제 2 반도체층;First and second semiconductor layers each formed in a vertical direction on both sides of the active layer to contact the active layer;
    상기 제 1 반도체층 및 상기 제 2 반도체층 중 상기 활성층에 접촉하지 않은 면에 접촉하도록 수직 방향으로 길게 형성된 한 쌍의 측면 반사층을 포함하는 반도체 발광 소자.And a pair of side reflecting layers elongated in the vertical direction to contact a surface of the first semiconductor layer and the second semiconductor layer that is not in contact with the active layer.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 한 쌍의 측면 반사층은 반도체층의 전체 영역에 접촉하도록 형성된 것을 특징으로 하는 반도체 발광 소자.And the pair of side reflection layers are formed to contact the entire region of the semiconductor layer.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 한 쌍의 측면 반사층의 반도체층에 접촉하지 않은 면에 접촉하도록 각각 형성된 한 쌍의 전극을 더 포함하는 것을 특징으로 하는 반도체 발광 소자.And a pair of electrodes each formed to contact a surface which is not in contact with the semiconductor layer of the pair of side reflection layers.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 한 쌍의 전극은 각각 상기 측면 반사층의 전체 영역과 접촉하도록 형성된 것을 특징으로 하는 반도체 발광 소자.And the pair of electrodes are formed in contact with the entire area of the side reflective layer, respectively.
  5. 제 1 항에 이어서,Following claim 1
    상기 활성층, 상기 제 1 반도체층, 상기 제 2 반도체층, 및 상기 한 쌍의 반사층의 하면에 접촉하도록 형성된 절연막; 및An insulating film formed to contact the bottom surface of the active layer, the first semiconductor layer, the second semiconductor layer, and the pair of reflective layers; And
    상기 절연막의 다른 일 면에 접촉하도록 형성된 하부 반사층을 더 포함하는 것을 특징으로 하는 반도체 발광 소자.And a lower reflective layer formed to contact the other surface of the insulating film.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 하부 반사층은 히트 슬러그와 접촉하여, 상기 히트 슬러그를 통해서 열을 외부로 방출하는 것을 특징으로 하는 반도체 발광 소자.The lower reflective layer is in contact with the heat slug, and emits heat to the outside through the heat slug.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 한 쌍의 측면 반사층은 리드 프레임과 오믹 접촉을 이루는 반사 전극으로 구현되고, 상기 한 쌍의 반사 전극은 상기 리드 프레임을 통해서 열을 방출하는 것을 특징으로 하는 반도체 발광 소자.And the pair of side reflective layers are implemented as reflective electrodes in ohmic contact with the lead frame, and the pair of reflective electrodes emit heat through the lead frame.
  8. (a) 지지 기판 위에 제 1 반사층, 상기 제 1 반사층 내부에 서로 이격되어 형성된 복수의 제 1 절연막, 제 1 반도체층, 활성층, 및 제 2 반도체층이 차례로 적층된 기판을 형성하는 단계;(a) forming a substrate on which a first reflective layer, a plurality of first insulating layers, a first semiconductor layer, an active layer, and a second semiconductor layer are sequentially stacked on the supporting substrate, the first insulating layer being spaced apart from each other;
    (b) 상기 제 1 절연막이 드러나도록 상기 제 1 절연막 위에 형성된 상기 제 2 반도체층, 상기 활성층 및 상기 제 1 반도체층을 식각하여 복수의 발광 구조물을 형성하는 단계;(b) forming a plurality of light emitting structures by etching the second semiconductor layer, the active layer and the first semiconductor layer formed on the first insulating layer so that the first insulating layer is exposed;
    (c) 상기 복수의 발광 구조물의 일 측면(제 1 측면)에만 접촉하도록 제 2 절연막 및 하부 반사층을 형성하고, 상기 제 2 반도체층 위에 제 2 반사층을 형성하는 단계; 및(c) forming a second insulating layer and a lower reflective layer to contact only one side (first side) of the plurality of light emitting structures, and forming a second reflective layer on the second semiconductor layer; And
    (d) 상기 하부 반사층과 인접한 발광 구조물 사이의 제 1 반사층 영역을 절단하여 발광 소자를 분리하는 단계를 포함하는 것을 특징으로 하는 반도체 발광 소자 제조 방법.(d) cutting the first reflective layer region between the lower reflective layer and the adjacent light emitting structure to separate the light emitting device.
  9. 제 8 항에 있어서, 상기 (a) 단계는The method of claim 8, wherein step (a)
    (a1) 임시 기판위에 상기 제 2 반도체층, 상기 활성층, 및 상기 제 1 반도체층을 순차적으로 형성하고, 상기 제 2 반도체층 위에 서로 이격된 상기 복수의 제 1 절연막을 형성하는 단계; (a1) sequentially forming the second semiconductor layer, the active layer, and the first semiconductor layer on a temporary substrate, and forming the plurality of first insulating layers spaced apart from each other on the second semiconductor layer;
    (a2) 상기 제 2 반도체층 및 상기 복수의 제 1 절연막 위에 상기 제 1 반사층을 형성하는 단계; 및(a2) forming the first reflective layer on the second semiconductor layer and the plurality of first insulating layers; And
    (a3) 상기 제 1 반사층과 상기 지지 기판을 접합시키고, 상기 임시 기판을 분리하는 단계를 포함하는 것을 특징으로 하는 반도체 발광 소자 제조 방법.(a3) bonding the first reflective layer and the support substrate and separating the temporary substrate.
  10. 제 8 항에 있어서, 상기 (c) 단계는The method of claim 8, wherein step (c)
    (c1) 상기 발광 구조물의 다른 일 측면(제 2 측면)과 상기 제 2 반도체층의 상부를 덮고, 상기 제 1 절연막의 일부가 노출되도록 포토레지스트 패턴을 형성하는 단계;(c1) forming a photoresist pattern covering the other side (second side) of the light emitting structure and the upper portion of the second semiconductor layer and exposing a portion of the first insulating layer;
    (c2) 상기 제 1 절연막위에 상기 제 1 측면에 접촉하도록 제 2 절연막을 형성하고 포토레지스트 패턴을 제거하는 단계;(c2) forming a second insulating film on the first insulating film so as to contact the first side surface and removing the photoresist pattern;
    (c3) 상기 발광 구조물의 상기 제 2 측면과 상기 제 2 반도체층 및 상기 제 2 절연막의 상부를 덮고, 상기 제 1 절연막의 일부가 노출되도록 포토레지스트 패턴을 형성하는 단계;(c3) forming a photoresist pattern covering the second side surface of the light emitting structure, the upper portion of the second semiconductor layer, and the second insulating film, and exposing a portion of the first insulating film;
    (c5) 상기 제 1 절연막위에 상기 제 2 절연막과 접촉하도록 하부 반사층을 형성하고, 포토레지스트 패턴을 제거하는 단계; 및(c5) forming a lower reflective layer on the first insulating film so as to contact the second insulating film, and removing the photoresist pattern; And
    (c6) 상기 제 2 반도체층 위에 상기 제 2 반사층을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 발광 소자 제조 방법.(c6) forming the second reflective layer on the second semiconductor layer.
  11. 제 10 항에 있어서, 상기 (c3) 단계 내지 상기 (c5) 단계 사이에The method of claim 10, wherein the steps (c3) to (c5)
    (c4) 상기 제 1 절연막 위에 상기 제 2 절연막과 접촉하도록 접착층을 형성하고, 포토레지스트 패턴을 제거하는 단계;를 더 포함하고, (c4) forming an adhesive layer on the first insulating film to contact the second insulating film, and removing the photoresist pattern;
    상기 (c5) 단계는 Step (c5) is
    상기 발광 구조물의 상기 제 2 측면과, 상기 제 2 반도체층, 상기 제 2 절연막, 및 상기 접착층의 상부를 덮고, 상기 제 1 절연막의 일부가 노출되도록 포토레지스트 패턴을 형성하고, 상기 제 1 절연막 위에 상기 접착층과 접촉하도록 하부 반사층을 형성하고, 포토레지스트 패턴을 제거하는 것을 특징으로 하는 반도체 발광 소자 제조 방법.A photoresist pattern is formed to cover the second side surface of the light emitting structure, the upper portion of the second semiconductor layer, the second insulating film, and the adhesive layer, and to expose a portion of the first insulating film. And forming a lower reflective layer in contact with the adhesive layer and removing the photoresist pattern.
PCT/KR2014/004950 2013-06-04 2014-06-03 Semiconductor light-emitting device and method for manufacturing same WO2014196796A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0064254 2013-06-04
KR1020130064254A KR101457036B1 (en) 2013-06-04 2013-06-04 Light emitting diode and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2014196796A1 true WO2014196796A1 (en) 2014-12-11

Family

ID=51999082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004950 WO2014196796A1 (en) 2013-06-04 2014-06-03 Semiconductor light-emitting device and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101457036B1 (en)
WO (1) WO2014196796A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113516A (en) * 2019-06-28 2021-07-13 厦门市三安光电科技有限公司 Semiconductor light-emitting device and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102432220B1 (en) * 2017-08-25 2022-08-12 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Semiconductor device and semiconductor module
KR102432217B1 (en) * 2017-11-07 2022-08-12 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device package and lighting apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321910A (en) * 1997-05-16 1998-12-04 Ricoh Co Ltd Light-emitting semiconductor element
JP2002170989A (en) * 2000-12-04 2002-06-14 Sharp Corp Nitride based compound semiconductor light emitting element
KR20050049390A (en) * 2003-11-20 2005-05-25 스미토모덴키고교가부시키가이샤 Light-emitting diode and semiconductor light-emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321910A (en) * 1997-05-16 1998-12-04 Ricoh Co Ltd Light-emitting semiconductor element
JP2002170989A (en) * 2000-12-04 2002-06-14 Sharp Corp Nitride based compound semiconductor light emitting element
KR20050049390A (en) * 2003-11-20 2005-05-25 스미토모덴키고교가부시키가이샤 Light-emitting diode and semiconductor light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113516A (en) * 2019-06-28 2021-07-13 厦门市三安光电科技有限公司 Semiconductor light-emitting device and preparation method thereof
CN113113516B (en) * 2019-06-28 2023-03-07 厦门市三安光电科技有限公司 Semiconductor light-emitting device and preparation method thereof

Also Published As

Publication number Publication date
KR101457036B1 (en) 2014-10-31

Similar Documents

Publication Publication Date Title
US9620682B2 (en) Light emitting device
JP6811715B2 (en) Light emitting element package and lighting equipment
US9165977B2 (en) Light emitting device and light emitting device package including series of light emitting regions
US9153622B2 (en) Series of light emitting regions with an intermediate pad
CN111120962B (en) Light emitting diode having a plurality of light emitting cells
EP2750193B1 (en) Light emitting diode device
KR101830719B1 (en) A light emitting device
KR20120134338A (en) A light emitting device
KR20150139194A (en) Light emitting diode and method of fabricating the same
KR20120045530A (en) Light emitting device
WO2014196796A1 (en) Semiconductor light-emitting device and method for manufacturing same
WO2014126438A1 (en) Semiconductor light-emitting element and production method therefor
KR20110069953A (en) Light emitting diode having separated electrode structures and its manufacturing method
TWI699909B (en) Light-emitting element
KR20170133758A (en) Light emitting device
KR20180074638A (en) Semiconductor light emitting device
KR20130006810A (en) Light emitting device and light emitting device package
KR20100133652A (en) Semiconductor light emitting device
JP2019145819A (en) Light emitting device and light emitting device package
TW201413915A (en) Light emitting diode array on wafer level and method of forming the same
KR101710889B1 (en) Light Emitting Device
WO2017007246A1 (en) Light-emitting diode
KR20170133746A (en) Light emitting device
KR20140092037A (en) A light emitting device package
KR20130009038A (en) Light emitting device, method of fabricating the same and light emitting device package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14808194

Country of ref document: EP

Kind code of ref document: A1