WO2014196677A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2014196677A1
WO2014196677A1 PCT/KR2013/005053 KR2013005053W WO2014196677A1 WO 2014196677 A1 WO2014196677 A1 WO 2014196677A1 KR 2013005053 W KR2013005053 W KR 2013005053W WO 2014196677 A1 WO2014196677 A1 WO 2014196677A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
cathode
anode
group
substituted
Prior art date
Application number
PCT/KR2013/005053
Other languages
English (en)
French (fr)
Inventor
주문규
강민수
문제민
유진아
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/768,122 priority Critical patent/US10033007B2/en
Priority to EP13840137.7A priority patent/EP2996169B1/en
Priority to PCT/KR2013/005053 priority patent/WO2014196677A1/ko
Priority to CN201380064574.9A priority patent/CN104854724B/zh
Publication of WO2014196677A1 publication Critical patent/WO2014196677A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/84Parallel electrical configurations of multiple OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to an organic light emitting device.
  • the organic light emitting device converts current into visible light by injecting electrons and holes into the organic material layer from two electrodes.
  • the organic light emitting device may have a multilayer structure including two or more organic material layers.
  • the organic light emitting device may further include an electron or hole injection layer, an electron or hole blocking layer, or an electron or hole transport layer, in addition to the light emitting layer.
  • a first light emitting unit is provided between the first cathode and the anode, a second light emitting unit is provided between the second cathode and the anode, and the first light emitting unit and the second light emitting unit are connected in parallel,
  • the first light emitting unit includes a first light emitting layer, and an organic material layer including a compound represented by the following Chemical Formula 1 between the first light emitting layer and the anode is provided,
  • the second light emitting unit includes a second light emitting layer, and provides an organic light emitting device comprising an organic material layer including a compound represented by Formula 1 between the second light emitting layer and the anode.
  • R 1 to R 6 are the same as or different from each other, and are each independently hydrogen, a halogen atom, nitrile (-CN), nitro (-NO 2 ), sulfonyl (-SO 2 R), sulfoxide (-SOR), sulfone Amide (-SO 2 NR), sulfonate (-SO 3 R), trifluoromethyl (-CF 3 ), ester (-COOR), amide (-CONHR or -CONRR '), substituted or unsubstituted straight chain or Branched C 1 -C 12 alkoxy, substituted or unsubstituted straight or branched chain C 1 -C 12 alkyl, substituted or unsubstituted straight or branched chain C 2 -C 12 alkenyl substituted or unsubstituted aromatic Or a non-aromatic hetero ring, substituted or unsubstituted aryl, substituted or unsubstituted mono- or di-arylamine,
  • the organic light emitting device according to the present invention can be applied to a double-sided light emitting organic light emitting device by connecting two light emitting units symmetrically to the upper and lower portions of the anode using the anode as a common electrode.
  • the organic light emitting device according to the present invention may include an organic material layer including the compound represented by Chemical Formula 1, thereby using an electrode material having various work functions.
  • FIG. 1 is a view schematically showing a laminated structure of an organic light emitting device according to the prior art.
  • FIG. 2 is a view schematically showing a laminated structure of an organic light emitting device according to an embodiment of the present invention.
  • FIG. 3 is a view schematically showing a laminated structure of an organic light emitting device according to an embodiment of the present invention.
  • conventional organic light emitting devices have a structure in which light is emitted only in one direction.
  • both sides of the organic light emitting device can emit light, but since light is emitted from both sides, the brightness of the device is reduced by half on one side.
  • the conventional organic light emitting device may be provided with an organic material layer including an anode, a cathode, and a light emitting layer between the anode and the cathode.
  • the conventional organic light emitting device may be provided with two light emitting layers in the organic material layer to emit white light, but because the cavity length (cavity length) according to the wavelength of each light emitting layer is different from each other the color of the light emitted from both sides It may come out differently, and thus, there is a problem that it is difficult to implement a desired color.
  • the structure of the organic light emitting device for connecting two or more light emitting units in parallel in a vertical direction has been introduced, and in particular, the organic light emitting device can be further simplified by using the anode as a common electrode. .
  • An organic light emitting diode includes a first cathode, a second cathode, and an anode provided between the first cathode and the second cathode, and a first light emission between the first cathode and the anode.
  • a unit is provided, a second light emitting unit is provided between the second cathode and the anode, the first light emitting unit and the second light emitting unit are connected in parallel, and the first light emitting unit includes a first light emitting layer,
  • An organic material layer including a compound represented by Chemical Formula 1 is provided between a first light emitting layer and an anode, and the second light emitting unit includes a second light emitting layer, and a compound represented by Chemical Formula 1 between the second light emitting layer and the anode. It characterized in that the organic material layer comprising a.
  • At least one of the organic material layer containing the compound represented by Formula 1 may be an organic material layer in contact with the anode.
  • an organic material layer including an organic material layer including a compound represented by Formula 1 provided between the first light emitting layer and an anode and an organic material layer including a compound represented by Formula 1 provided between the second light emitting layer and an anode is in contact with the anode. Can be.
  • the compound of Formula 1 may be exemplified as a compound of Formulas 1-1 to 1-6, but is not limited thereto.
  • each layer constituting the organic light emitting device will be described in detail.
  • the materials of each layer described below may be a single material or a mixture of two or more materials.
  • n-type means n-type semiconductor characteristics.
  • the n-type organic compound layer is an organic material layer having a property of receiving or transporting electrons at the LUMO energy level, which is an organic material layer having a property of a material having electron mobility greater than hole mobility.
  • p-type means p-type semiconductor characteristics.
  • the p-type organic compound layer is an organic material layer having a property of injecting or transporting holes at a high occupied molecular orbital (HOMO) energy level, which is an organic material layer having a property of a material whose hole mobility is greater than the mobility of electrons.
  • HOMO high occupied molecular orbital
  • the 'organic material layer for transporting charge at the HOMO energy level' and the p-type organic material layer may be used in the same sense.
  • the 'organic material layer for transporting charge in the LUMO energy level' and the n-type organic material layer may be used in the same sense.
  • the energy level means the magnitude of energy. Therefore, even when the energy level is displayed in the negative (-) direction from the vacuum level, the energy level is interpreted to mean an absolute value of the energy value.
  • the HOMO energy level means the distance from the vacuum level to the highest occupied molecular orbital.
  • the LUMO energy level means the distance from the vacuum level to the lowest unoccupied molecular orbital.
  • the charge means electrons or holes.
  • the anode may comprise a metal, a metal oxide or a conductive polymer.
  • the conductive polymer may include an electrically conductive polymer.
  • the anode may have a work function value of about 3.5 to 5.5 eV.
  • exemplary conductive materials include carbon, aluminum, vanadium, chromium, copper, zinc, silver, gold, other metals and alloys thereof; Zinc oxide, indium oxide, tin oxide, indium tin oxide (ITO), indium zinc oxide and other similar metal oxides; And mixtures of oxides and metals such as ZnO: Al and SnO 2 : Sb.
  • As the anode material a transparent material may be used, and an opaque material may be used. In the case of a structure that emits light in the anode direction, the anode may be formed transparently.
  • transparent means that the light emitted from the organic material layer can be transmitted, the light transmittance is not particularly limited.
  • the organic light emitting device according to the present invention can be more usefully applied to a double-sided light emitting organic light emitting device by including an anode as a common electrode.
  • a p-type organic compound layer may be provided between the first emission layer or the second emission layer and the anode, respectively.
  • the p-type organic compound layer may be a hole injection layer (HIL) or a hole transport layer (HTL).
  • An aryl amine compound may be used as the p-type organic compound material.
  • One example of the arylamine-based compound is a compound of the formula (2).
  • Ar 1 , Ar 2, and Ar 3 are each independently hydrogen or a hydrocarbon group, at least one of Ar 1 , Ar 2, and Ar 3 includes an aromatic hydrocarbon substituent, and each substituent may be the same, It may be composed of different substituents.
  • Chemical Formula 2 include the following chemical formulas, and the scope of the embodiments described herein is not necessarily limited thereto.
  • the p-type organic compound layer is distinguished from a layer having p-type semiconductor properties by doping a p-type dopant to a conventional organic material.
  • the p-type organic compound layer does not exhibit p-type semiconductor properties by the p-type dopant, and includes an organic material that itself has a p-type semiconductor property.
  • Emission Layer Emission Layer
  • the first light emitting layer and the second light emitting layer of the present invention since the hole transfer and the electron transfer occur simultaneously, the first light emitting layer and the second light emitting layer may have both n-type characteristics and p-type characteristics. For convenience, it may be defined as an n-type light emitting layer when electron transport is faster than hole transport, and a p-type light emitting layer when hole transport is faster than electron transport.
  • the n-type light emitting layer includes, but is not limited to, aluminum tris (8-hydroxyquinoline) (Alq 3 ); 8-hydroxyquinoline beryllium (BAlq); Benzoxazole compound, benzthiazole compound or benzimidazole compound; Polyfluorene-based compounds; Silacyclopentadiene (silole) compounds and the like.
  • the p-type light emitting layer is not limited thereto, but a carbazole compound; Anthracene-based compounds; Polyphenylenevinylene (PPV) -based polymers; Or spiro compounds and the like.
  • ETL Electron Transport Layer
  • EIL Electron Injection Layer
  • an n-type organic compound layer may be provided between the first emission layer or the second emission layer and the cathode, respectively.
  • the n-type organic compound layer may be an electron injection layer (EIL) or an electron transport layer (ETL).
  • the electron transport layer may include, but is not limited to, aluminum tris (8-hydroxyquinoline) (Alq 3 ); Organic compounds containing Alq 3 structures; Hydroxyflavone-metal complex compounds or silacyclopentadiene (silole) compounds.
  • the n-type organic layer material may be used as the n-type organic material layer used as the electron injection or transport material known in the art.
  • the following materials may be used, but are not limited thereto.
  • a compound having a functional group selected from an imidazole group, an oxazole group, a thiazole group, a quinoline and a phenanthrosine group can be used as an example of the n-type organic compound material.
  • the compound having a functional group selected from the imidazole group, the oxazole group and the thiazole group include a compound of the compound of formula 3 or 4:
  • R1 to R4 may be the same as or different from each other, and each independently hydrogen; Halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 30 alkyl group, C 2 ⁇ C 30 alkenyl group, C 1 ⁇ C 30 alkoxy group, C 3 ⁇ C 30 cycloalkyl group, C 3 ⁇ C 30 A C 1 -C 30 alkyl group substituted or unsubstituted with one or more groups selected from the group consisting of a heterocycloalkyl group, a C 5 -C 30 aryl group and a C 2 -C 30 heteroaryl group; Halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 30 alkyl group, C 2 ⁇ C 30 alkenyl group, C 1 ⁇ C 30 alkoxy group, C 3 ⁇ C 30 cycloalkyl group, C 3 ⁇ C 30 A C 3 -C 30 cycloalkyl group substituted or unsubstituted with at
  • Ar 1 is hydrogen, a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted aromatic hetero ring;
  • X is O, S or NR a ;
  • R a may be hydrogen, a C 1 -C 7 aliphatic hydrocarbon, an aromatic ring or an aromatic hetero ring.
  • X is O, S, NR b or a divalent hydrocarbon group of C 1 -C 7 ;
  • A, D and R b each represent a hydrogen, a nitrile group (-CN), a nitro group (-NO 2 ), an alkyl of C 1 -C 24 , an aromatic ring of C 5 -C 20 or a substituted atom comprising a hetero atom
  • Alkylene comprising an alkylene or hetero atom capable of forming a fused ring with a ring, halogen, or adjacent ring
  • a and D may be joined to form an aromatic or heteroaromatic ring
  • B is a substituted or unsubstituted alkylene or arylene that connects a plurality of hetero rings to be conjugated or unconjugated as n is 2 or more, and when n is 1, substituted or unsubstituted alkyl or aryl;
  • n is an integer from 1 to 8.
  • Examples of the compound of Formula 3 include compounds known from Korean Patent Publication No. 2003-0067773, and examples of the compound of Formula 4 include compounds described in US Pat. No. 5,645,948 and compounds described in WO05 / 097756. Include. The above documents are all incorporated herein by reference.
  • the compound of Formula 3 also includes a compound of Formula 5:
  • R 5 to R 7 are the same as or different from each other, and each independently hydrogen, C 1 -C 20 aliphatic hydrocarbon, aromatic ring, aromatic hetero ring or aliphatic or aromatic condensed ring;
  • Ar is a direct bond, an aromatic ring or an aromatic hetero ring
  • X is O, S or NR a ;
  • R a is hydrogen, C 1 -C 7 aliphatic hydrocarbon, aromatic ring or aromatic hetero ring; Except where R 5 and R 6 are hydrogen at the same time.
  • the compound of Formula 4 also includes a compound of Formula 6:
  • Z is O, S or NR b ;
  • R 8 and R b are hydrogen, alkyl of C 1 -C 24 , substituted aromatic rings comprising C 5 -C 20 aromatic rings or hetero atoms, halogens, or alkyls which can form fused rings with benzazole rings Ethylene or alkylene including hetero atoms;
  • B is an alkylene, arylene, substituted alkylene, or substituted arylene that connects a plurality of benzazoles to be conjugated or non-conjugated as a connecting unit when n is 2 or more, and when n is 1, substituted or unsubstituted Alkyl or aryl;
  • n is an integer from 1 to 8.
  • imidazole compounds having the following structure can be used:
  • Examples of the compound having a quinoline group include compounds represented by the following Chemical Formulas 7 to 13.
  • n is an integer from 0 to 9
  • m is an integer of 2 or more
  • R 9 is an alkyl group such as hydrogen, a methyl group, an ethyl group, a cycloalkyl group such as cyclohexyl, norbornyl, an aralkyl group such as benzyl group, an alkenyl group such as vinyl group or allyl group, a cyclopentadienyl group, a cyclohexenyl group, etc.
  • Alkoxy groups such as cycloalkenyl groups and methoxy groups
  • Alkylthio groups in which the oxygen atom of the ether bond of an alkoxy group is substituted by the sulfur atom
  • Aryl ether groups such as the phenoxy group, and aryl in which the oxygen atom of the ether bond of the arylether group is substituted by the sulfur atom
  • Heterocyclic groups such as aryl groups, such as a thioether group, a phenyl group, a naphthyl group, and a biphenyl group, a furyl group, a thienyl group, an oxazolyl group, a pyridyl group, a quinolyl group, and a carbazolyl group, a halogen, a cyano group, an aldehyde group, and a carbonyl group , Silyl groups such as carboxyl group, ester group, carbamoyl group, amino group,
  • Y is a divalent or higher group of the groups of R 9 .
  • Examples of the compound having a phenanthrosine group include compounds represented by the following Chemical Formulas 14 to 24, but are not limited thereto.
  • n + p is 8 or less
  • R ⁇ 10> and R ⁇ 11> are hydrogen, methyl, alkyl groups, such as an ethyl group, cycloalkyl groups, such as cyclohexyl and norbornyl, aralkyl groups, such as benzyl, alkenyl groups, such as a vinyl group and an allyl group, and cyclo Alkyl groups, such as cycloalkenyl groups, such as a pentadienyl group and a cyclohexenyl group, and a methoxy group, Alkylthio group, such as the arylether group, and the arylether group in which the oxygen atom of the ether bond of the alkoxy group was substituted by the sulfur atom, etc.
  • Heterocyclic groups such as the aryl group which the oxygen atom of a bond substituted by the sulfur atom, the aryl group, such as a phenyl group, a naphthyl group, and a biphenyl group, a furyl group, a thienyl group, an oxazolyl group, a pyridyl group, a quinolyl group, and a carbazolyl group , Silyl group such as halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group and trimethylsilyl group, siloxanyl group which is a group having silicon through ether bond And a ring structure that is formed of a group;
  • R 10 is a direct bond or a divalent or more group of the aforementioned groups, and R 11 is the same as when m is 1,
  • the substituents may be unsubstituted or substituted, and when n or p is 2 or more, the substituents may be the same or different from each other.
  • R 1a to R 8a and R 1b to R 10b each represent a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 60 nuclear atoms, a substituted or unsubstituted pyridyl group, a substituted or unsubstituted quinolyl group, a substituted or unsubstituted 1
  • d 1 , d 3 to d 10 and g 1 are each hydrogen or an aromatic or aliphatic hydrocarbon group, m and n are integers of 0 to 2, and p is an integer of 0 to 3.
  • the compounds of Formulas 22 and 23 are described in US Patent Publication 2007/0122656, which is incorporated herein by reference in its entirety.
  • R 1c to R 6c are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group or a halogen atom, and Ar 1c and Ar 2c are each the following structural formulas Is selected.
  • R 17 to R 23 in the above structural formulas each represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group or a halogen atom.
  • the compound of formula 24 is described in Japanese Patent Laid-Open No. 2004-107263, which is incorporated by reference in its entirety.
  • the cathode material may be selected from materials having various work functions.
  • a material having a small work function is generally preferred to facilitate electron injection.
  • a material having a large work function may also be applied.
  • a material having a work function equal to or greater than the HOMO of the p-type organic compound layer described above may be used as the cathode material.
  • a material having a work function of 2 eV to 5 eV may be used as the cathode material.
  • the cathode is, but is not limited to, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like.
  • the cathode may be formed of the same material as the anode.
  • the cathode or anode may comprise a transparent material.
  • the anode may be opaque, and the first cathode and the second cathode may be transparent.
  • the anode includes a metal
  • the thickness of the anode may be 50 ⁇ 200nm.
  • the first cathode and the second cathode may each independently include a metal or a metal oxide
  • the thickness of the first cathode and the second cathode may be independently 5 to 200 nm.
  • the anode, the first cathode and the second cathode may be all transparent.
  • the anode, the first cathode and the second cathode each independently include a metal or a metal oxide
  • the thickness of the anode, the first cathode and the second cathode may be independently 5 ⁇ 200nm.
  • the first light emitting unit may further include a third light emitting layer.
  • the organic light emitting layer represented by Chemical Formula 1 may be further included between the first light emitting layer and the third light emitting layer.
  • the second light emitting unit may further include a fourth light emitting layer.
  • the organic material layer represented by Formula 1 may be further included between the second light emitting layer and the fourth light emitting layer.
  • an organic light emitting device As an organic light emitting device according to one embodiment of the present invention, an organic light emitting device further comprising the third light emitting layer and the fourth light emitting layer is shown in FIG. 3.
  • the first light emitting layer, the second light emitting layer, the third light emitting layer and the fourth light emitting layer may be one that emits the same or different colors.
  • the first light emitting unit and the second light emitting unit have a symmetrical structure with respect to the anode.
  • the organic light emitting device as one of the methods of increasing the luminous efficiency, it is possible to use a method of adjusting the cavity (cavity) according to the light emission color.
  • the luminous efficiency can be further increased by adjusting the cavity of the device to suit the wavelength of the luminous color.
  • the cavity of the device means a length at which light can resonate in the device.
  • the cavity lengths can be adjusted to be equal to each other, and thus, a desired color can be realized.
  • IZO was formed on the substrate as a first cathode at a thickness of 1,500 mm 3.
  • 10 wt% of Ca was doped into the electron transporting material of the following Chemical Formula to form an electron transporting layer having a thickness of 50 kV, and then an organic material layer having a thickness of 250 kV was formed using the electron transporting material of the following Chemical Formula.
  • a hole blocking layer having a thickness of 75 kPa was formed on BCP of the following formula.
  • 20 wt% of the following formula Ir (ppy) 3 was doped into the CBP of the following formula to form a light emitting layer having a thickness of 300 ⁇ s.
  • NPB of the following formula is vacuum-deposited thereon to form a p-type hole transport layer having a thickness of 300 kPa
  • HAT of the following formula is thermally vacuum deposited to form an n-type hole injection layer having a thickness of 300 kPa, thereby forming the first light emitting part.
  • Al was formed to a thickness of 700 GPa as a common anode.
  • HAT which is an n-type hole injection layer
  • NPB which was a p-type hole transport layer
  • BCP was formed to a thickness of 50 kV as the hole blocking layer, and an organic material layer having a thickness of 250 kPa was formed using an electron transporting material of the following formula.
  • 10 wt% of Ca was doped into the electron transporting material of the following Chemical Formula to form an electron injection layer, thereby completing the second light emitting part.
  • Ag 100 ⁇ was formed to form a second cathode layer, thereby fabricating an organic light emitting device having a double-sided emission type.
  • the quantum efficiency (@ 10mA / cm 2 ) of the fabricated device is about 15% for the light emitted from the first cathode electrode surface and 12% for the light emitted to the second cathode electrode surface.
  • the light efficiency of the efficiency was obtained.
  • the difference in efficiency of light emitted from both sides was about 1.25: 1 level.
  • the device drive voltage at that time was measured at 8.5V.
  • a transparent double-sided light emitting organic light-emitting device was manufactured in the same manner as in Example 1, except that the anode, which was the middle common electrode, was formed of Ag 100 ⁇ as a transparent electrode.
  • the quantum efficiency (@ 10mA / cm 2 ) of the fabricated device was measured with 9% efficiency of light emitted to the first cathode electrode surface and 7% efficiency of light emitted to the second cathode electrode surface. It was about 1.3: 1 level of luminous efficiency of both surfaces.
  • the device drive voltage at that time was measured at 8.5V.
  • a device was fabricated in the same manner as in Example 1, except that HAT, which was a layer in contact with the common anode, which was an intermediate electrode, was not formed up and down.
  • the fabricated device did not perform hole injection from Al as an anode to NPB as a hole transport layer, and thus did not emit normal light emission.
  • IZO was formed to a thickness of 1,500 mm 3 as an anode on the substrate.
  • HAT which is an n-type hole injection layer
  • NPB which was a p-type hole transport layer
  • BCP was formed to a thickness of 50 kV as the hole blocking layer, and an organic material layer having a thickness of 250 kPa was formed using the electron transporting material of the above formula. Then, the electron transporting material of the formula was doped with Ca at 10% by weight to form an electron injection layer to complete the second light emitting part.
  • the organic light emitting device according to the present invention can be applied to a double-sided light emitting organic light emitting device by connecting two light emitting units symmetrically on the upper and lower portions of the anode using the anode as a common electrode.
  • the organic light emitting device according to the present invention may include an organic material layer including the compound represented by Chemical Formula 1, thereby using an electrode material having various work functions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 유기 발광 소자에 관한 것으로서, 제1 캐소드, 제2 캐소드, 및 상기 제1 캐소드와 제2 캐소드 사이에 구비된 애노드를 포함하고, 상기 제1 캐소드와 애노드 사이에 제1 발광유닛이 구비되며, 상기 제2 캐소드와 애노드 사이에 제2 발광유닛이 구비되고, 상기 제1 발광유닛과 제2 발광유닛은 병렬연결되며, 상기 제1 발광유닛은 제1 발광층을 포함하고, 상기 제1 발광층과 애노드 사이에 화학식 1로 표시되는 화합물을 포함하는 유기물층이 구비되며, 상기 제2 발광유닛은 제2 발광층을 포함하고, 상기 제2 발광층과 애노드 사이에 화학식 1로 표시되는 화합물을 포함하는 유기물층이 구비된다.

Description

유기 발광 소자
본 발명은 유기 발광 소자에 관한 것이다.
유기 발광 소자는 2 개의 전극으로부터 유기물층에 전자 및 정공을 주입하여 전류를 가시광으로 변환시킨다. 유기 발광 소자는 2층 이상의 유기물층을 포함하는 다층 구조를 가질 수 있다. 예컨대, 유기 발광 소자는 발광층 이외에, 필요에 따라 전자 또는 정공 주입층, 전자 또는 정공 블록킹층, 또는 전자 또는 정공 수송층을 더 포함할 수 있다.
최근 유기 발광 소자의 용도가 다양해짐에 따라, 유기 발광 소자의 성능을 개선할 수 있는 재료들에 대한 연구가 활발히 이루어지고 있다.
본 명세서에는 신규한 구조의 유기 발광 소자가 기재된다.
본 발명은,
제1 캐소드, 제2 캐소드, 및 상기 제1 캐소드와 제2 캐소드 사이에 구비된 애노드를 포함하고,
상기 제1 캐소드와 애노드 사이에 제1 발광유닛이 구비되며, 상기 제2 캐소드와 애노드 사이에 제2 발광유닛이 구비되고, 상기 제1 발광유닛과 제2 발광유닛은 병렬연결되며,
상기 제1 발광유닛은 제1 발광층을 포함하고, 상기 제1 발광층과 애노드 사이에 하기 화학식 1로 표시되는 화합물을 포함하는 유기물층이 구비되며,
상기 제2 발광유닛은 제2 발광층을 포함하고, 상기 제2 발광층과 애노드 사이에 하기 화학식 1로 표시되는 화합물을 포함하는 유기물층이 구비되는 것을 특징으로 하는 유기 발광 소자를 제공한다.
[화학식 1]
Figure PCTKR2013005053-appb-I000001
상기 화학식 1에 있어서,
R1 내지 R6은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐 원자, 니트릴(-CN), 니트로(-NO2), 술포닐(-SO2R), 술폭사이드(-SOR), 술폰아미드(-SO2NR), 술포네이트(-SO3R), 트리플루오로메틸(-CF3), 에스테르(-COOR), 아미드(-CONHR 또는 -CONRR'), 치환 또는 비치환된 직쇄 또는 분지쇄의 C1-C12 알콕시, 치환 또는 비치환된 직쇄 또는 분지쇄 C1-C12의 알킬, 치환 또는 비치환된 직쇄 또는 분지쇄 C2-C12의 알케닐 치환 또는 비치환된 방향족 또는 비방향족의 헤테로 고리, 치환 또는 비치환된 아릴, 치환 또는 비치환된 모노- 또는 디-아릴아민, 또는 치환 또는 비치환된 아랄킬아민이고, 상기 R 및 R'는 각각 독립적으로 치환 또는 비치환된 C1-C60의 알킬, 치환 또는 비치환된 아릴, 또는 치환 또는 비치환된 5-7원 헤테로 고리이다.
본 발명에 따른 유기 발광 소자는 애노드를 공통전극으로 하여 애노드 상하부에 대칭으로 2개의 발광 유닛을 연결함으로써 양면 발광형 유기 발광 소자에 적용할 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 상기 화학식 1로 표시되는 화합물을 포함하는 유기물층을 포함함으로써, 다양한 일함수를 갖는 전극 재료를 이용할 수 있다.
도 1은 종래기술에 따른 유기 발광 소자의 적층구조를 개략적으로 나타낸 도이다.
도 2는 본 발명의 일 구체예에 따른 유기 발광 소자의 적층구조를 개략적으로 나타낸 도이다.
도 3은 본 발명의 일 구체예에 따른 유기 발광 소자의 적층구조를 개략적으로 나타낸 도이다.
이하에서, 본 명세서에 예시한 실시상태들에 대하여 상세히 설명한다.
일반적으로, 종래의 유기 발광 소자는 빛이 한쪽 방향으로만 나오는 구조이다. 이러한 구조에서, 애노드 및 캐소드를 투명 전극으로 이용하는 경우에는 유기 발광 소자의 양면 발광이 가능하나, 빛이 양쪽에서 나오므로 한쪽 면에서는 소자의 밝기가 절반으로 줄어드는 현상이 발생하게 된다.
또한, 하기 도 1에 종래의 유기 발광 소자를 나타내었다. 보다 구체적으로, 종래의 유기 발광 소자는 애노드, 캐소드, 및 상기 애노드 및 캐소드 사이에 발광층을 포함하는 유기물층이 구비될 수 있다. 특히, 종래의 유기 발광 소자가 흰색을 발광하기 위하여 유기물층 내에 2개의 발광층을 구비할 수 있으나, 각각의 발광층의 파장에 따른 캐비티 길이(cavity length)가 서로 다르므로 양쪽 면에서 나오는 빛의 색상이 서로 다르게 나올 수 있고, 이에 따라 원하는 색상 구현이 어렵다는 문제점이 있다.
이에, 본 발명에서는 두 개 이상의 발광 유닛을 수직한 방향으로 병렬 연결하기 위한 유기 발광 소자의 구조를 도입하였고, 특히 애노드를 공통 전극으로 이용함으로써 전극 구조를 보다 단순화시킬 수 있는 유기 발광 소자를 개발하였다.
본 발명의 일구체예에 따른 유기 발광 소자는, 제1 캐소드, 제2 캐소드, 및 상기 제1 캐소드와 제2 캐소드 사이에 구비된 애노드를 포함하고, 상기 제1 캐소드와 애노드 사이에 제1 발광유닛이 구비되며, 상기 제2 캐소드와 애노드 사이에 제2 발광유닛이 구비되고, 상기 제1 발광유닛과 제2 발광유닛은 병렬연결되며, 상기 제1 발광유닛은 제1 발광층을 포함하고, 상기 제1 발광층과 애노드 사이에 하기 화학식 1로 표시되는 화합물을 포함하는 유기물층이 구비되며, 상기 제2 발광유닛은 제2 발광층을 포함하고, 상기 제2 발광층과 애노드 사이에 하기 화학식 1로 표시되는 화합물을 포함하는 유기물층이 구비되는 것을 특징으로 한다.
본 발명에 있어서, 상기 화학식 1로 표시되는 화합물을 포함하는 유기물층 중 적어도 하나는 상기 애노드와 접하는 유기물층일 수 있다. 또한, 상기 제1 발광층과 애노드 사이에 구비되는 화학식 1로 표시되는 화합물을 포함하는 유기물층과 상기 제2 발광층과 애노드 사이에 구비되는 화학식 1로 표시되는 화합물을 포함하는 유기물층이 모두 상기 애노드와 접하는 유기물층일 수 있다.
본 발명에 있어서, 상기 화학식 1의 화합물은 하기 화학식 1-1 내지 1-6의 화합물로 예시될 수 있으나, 이에만 한정되는 것은 아니다.
[화학식 1-1]
Figure PCTKR2013005053-appb-I000002
[화학식 1-2]
Figure PCTKR2013005053-appb-I000003
[화학식 1-3]
Figure PCTKR2013005053-appb-I000004
[화학식 1-4]
Figure PCTKR2013005053-appb-I000005
[화학식 1-5]
Figure PCTKR2013005053-appb-I000006
[화학식 1-6]
Figure PCTKR2013005053-appb-I000007
상기 화학식 1의 다른 예들이나, 합성방법 및 다양한 특징들은 미국 특허 출원 제2002-0158242호, 미국 특허 제6,436,559호 및 미국 특허 제4,780,536호에 기재되어 있으며, 이들 문헌의 내용은 모두 본 명세서에 포함된다.
이하, 본 발명의 일구체예에 따른 유기 발광 소자를 구성하는 각 층에 대하여 구체적으로 설명한다. 이하에서 설명하는 각 층의 물질들은 단일 물질 또는 2 이상의 물질의 혼합물일 수 있다.
본 명세서에 있어서, n형이란 n형 반도체 특성을 의미한다. 다시 말하면, n형 유기물층은 LUMO 에너지 준위에서 전자를 주입받거나 수송하는 특성을 갖는 유기물층이며, 이는 전자의 이동도가 정공의 이동도 보다 큰 물질의 특성을 갖는 유기물층이다. 반대로, p형이란 p형 반도체 특성을 의미한다. 다시 말하면, p형 유기물층이란 HOMO(highest occupied molecular orbital) 에너지 준위에서 정공을 주입받거나 수송하는 특성을 갖는 유기물층이며, 이는 정공의 이동도가 전자의 이동도보다 큰 물질의 특성을 갖는 유기물층이다. 본 명세서에 있어서, 'HOMO 에너지 준위에서 전하를 수송하는 유기물층'과 p형 유기물층은 서로 같은 의미로 사용될 수 있다. 또한, 'LUMO 에너지 준위에서 전하를 수송하는 유기물층'과 n형 유기물층은 서로 같은 의미로 사용될 수 있다.
본 명세서에 있어서, 에너지 준위는 에너지의 크기를 의미하는 것이다. 따라서, 진공 준위로부터 마이너스(-) 방향으로 에너지 준위가 표시되는 경우에도, 에너지 준위는 해당 에너지 값의 절대값을 의미하는 것으로 해석된다. 예컨대, HOMO 에너지 준위란 진공 준위로부터 최고 점유 분자 오비탈(highest occupied molecular orbital)까지의 거리를 의미한다. 또한, LUMO 에너지 준위란 진공 준위로부터 최저 비점유 분자 오비탈(lowest unoccupied molecular orbital)까지의 거리를 의미한다.
본 명세서에 있어서, 전하란 전자 또는 정공을 의미한다.
애노드
애노드는 금속, 금속 산화물 또는 도전성 폴리머를 포함할 수 있다. 상기 도전성 폴리머는 전기전도성 폴리머를 포함할 수 있다. 상기 애노드는 약 3.5 내지 5.5eV의 일함수 값을 가질 수 있다. 예시적인 도전성 물질의 예는 탄소, 알루미늄, 바나듐, 크롬, 구리, 아연, 은, 금, 기타 금속 및 이들의 합금; 아연 산화물, 인듐 산화물, 주석 산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물 및 기타 이와 유사한 금속 산화물; ZnO:Al 및 SnO2:Sb와 같은 산화물과 금속의 혼합물 등이 있다. 애노드 재료로는 투명 물질이 사용될 수도 있고, 불투명 물질이 사용될 수도 있다. 애노드 방향으로 발광되는 구조의 경우, 애노드는 투명하게 형성될 수 있다. 여기서, 투명이란 유기물층에서 발광된 빛이 투과할 수 있으면 되며, 빛의 투과도는 특별히 한정되지 않는다.
특히, 본 발명에 따른 유기 발광 소자는 애노드를 공통전극으로서 포함함으로써, 양면 발광형 유기 발광 소자에 보다 유용하게 적용할 수 있다.
본 발명에 있어서, 제1 발광층 또는 제2 발광층과 애노드 사이에는 각각 p형 유기물층이 구비될 수 있다. 상기 p형 유기물층은 정공 주입층(HIL) 또는 정공 수송층(HTL)일 수 있다.
상기 p형 유기물층 재료로는 아릴아민계 화합물(aryl amine compound)을 사용할 수 있다. 아릴아민계 화합물의 일 예로는 하기 화학식 2의 화합물이 있다.
[화학식 2]
Figure PCTKR2013005053-appb-I000008
상기 화학식 2에 있어서,
Ar1, Ar2 및 Ar3는 각각 독립적으로 수소 또는 탄화수소기이며, Ar1, Ar2 및 Ar3 중 적어도 하나는 방향족 하이드로카본(aromatic hydrocarbon) 치환체를 포함하며, 각 치환체는 동일한 것일 수도 있고, 각기 다른 치환체로 구성될 수도 있다.
상기 화학식 2의 구체적인 예로서 하기 화학식들이 있으며, 본 명세서에 기재된 실시형태들의 범위가 반드시 이들로만 한정되는 것은 아니다.
Figure PCTKR2013005053-appb-I000009
Figure PCTKR2013005053-appb-I000010
상기 p형 유기물층은 종래의 유기물에 p형 도펀트를 도핑시킴으로써 p형 반도체 특성을 갖는 층과는 구분된다. 상기 p형 유기물층은 p형 도펀트에 의하여 p형 반도체 특성을 나타내는 것이 아니고, 그 자체가 p형 반도체 특성을 갖는 유기물을 포함한다.
발광층(EML)
본 발명의 제1 발광층 및 제2 발광층에서는 정공 전달과 전자 전달이 동시에 일어나므로, 상기 제1 발광층 및 제2 발광층은 n형 특성과 p형 특성을 모두 가질 수 있다. 편의상 전자 수송이 정공 수송에 비하여 빠를 경우 n형 발광층, 정공 수송이 전자 수송에 비하여 빠를 경우 p형 발광층이라고 정의할 수 있다.
n형 발광층은 이에 한정되지 않지만 알루미늄 트리스(8-히드록시퀴놀린)(Alq3); 8-히드록시퀴놀린 베릴륨(BAlq); 벤즈옥사졸계 화합물, 벤즈티아졸계 화합물 또는 벤즈이미다졸계 화합물; 폴리플루오렌계 화합물; 실라사이클로펜타디엔(silole)계 화합물 등을 포함한다.
p형 발광층은 이에 한정되는 것은 아니지만 카바졸계 화합물; 안트라센계 화합물; 폴리페닐렌비닐렌(PPV)계 폴리머; 또는 스피로(spiro) 화합물 등을 포함한다.
전자 수송층(ETL) 및 전자 주입층(EIL)
본 발명에 있어서, 제1 발광층 또는 제2 발광층과 캐소드 사이에는 각각 n형 유기물층이 구비될 수 있다. 상기 n형 유기물층은 전자 주입층(EIL) 또는 전자 수송층(ETL)일 수 있다.
상기 n형 유기물층 재료로서는 전자를 잘 수송할 수 있도록 전자이동도(electron mobility)가 큰 물질이 바람직하다. 상기 전자 수송층은 이에 한정되지 않지만 알루미늄 트리스(8-히드록시퀴놀린)(Alq3); Alq3 구조를 포함하는 유기화합물; 히드록시플라본-금속 착화합물 또는 실라사이클로펜타디엔(silole)계 화합물 등을 포함한다.
그외에도, 상기 n형 유기물층 재료로는 당 기술분야에 알려져 있는 전자 주입 또는 수송 재료로 사용되는 n형 유기물층 재료가 사용될 수 있다. 구체적으로 하기와 같은 재료가 사용될 수 있으나, 이들에만 한정되는 것은 아니다. 예컨대, n형 유기물층 재료의 예로서 이미다졸기, 옥사졸기, 티아졸기, 퀴놀린 및 페난쓰롤린기로부터 선택되는 작용기를 갖는 화합물을 사용할 수 있다.
상기 이미다졸기, 옥사졸기 및 티아졸기로부터 선택되는 작용기를 갖는 화합물의 구체적인 예로는 하기 화학식 3 또는 4의 화합물의 화합물이 있다:
[화학식 3]
Figure PCTKR2013005053-appb-I000011
상기 화학식 3에 있어서,
R1 내지 R4는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 수소; 할로겐, 아미노기, 니트릴기, 니트로기, C1~C30의 알킬기, C2~C30의 알케닐기, C1~C30의 알콕시기, C3~C30의 시클로알킬기, C3~C30의 헤테로시클로알킬기, C5~C30의 아릴기 및 C2~C30의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 또는 비치환된 C1~C30의 알킬기; 할로겐, 아미노기, 니트릴기, 니트로기, C1~C30의 알킬기, C2~C30의 알케닐기, C1~C30의 알콕시기, C3~C30의 시클로알킬기, C3~C30의 헤테로시클로알킬기, C5~C30의 아릴기 및 C2~C30의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 또는 비치환된 C3~C30의 시클로알킬기; 할로겐, 아미노기, 니트릴기, 니트로기, C1~C30의 알킬기, C2~C30의 알케닐기, C1~C30의 알콕시기, C3~C30의 시클로알킬기, C3~C30의 헤테로시클로알킬기, C5~C30의 아릴기 및 C2~C30의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 또는 비치환된 C5~C30의 아릴기; 또는 할로겐, 아미노기, 니트릴기, 니트로기, C1~C30의 알킬기, C2~C30의 알케닐기, C1~C30의 알콕시기, C3~C30의 시클로알킬기, C3~C30의 헤테로시클로알킬기, C5~C30의 아릴기 및 C2~C30의 헤테로아릴기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 또는 비치환된 C2~C30의 헤테로아릴기이고, 서로 인접하는 기와 지방족, 방향족, 지방족헤테로 또는 방향족헤테로의 축합 고리를 형성하거나 스피로 결합을 이룰 수 있고;
Ar1은 수소, 치환 또는 비치환의 방향족 고리, 또는 치환 또는 비치환의 방향족 헤테로 고리이며;
X는 O, S 또는 NRa이고;
Ra는 수소, C1-C7의 지방족 탄화수소, 방향족 고리 또는 방향족 헤테로 고리일 수 있다.
[화학식 4]
Figure PCTKR2013005053-appb-I000012
상기 화학식 4에 있어서,
X는 O, S, NRb 또는 C1-C7의 2가 탄화수소기이고;
A, D및 Rb는 각각 수소, 니트릴기(-CN), 니트로기(-NO2), C1-C24의 알킬, C5-C20의 방향족 고리 또는 헤테로 원자를 포함하는 치환된 방향족 고리, 할로겐, 또는 인접 고리와 융합 고리를 형성할 수 있는 알킬렌 또는 헤테로 원자를 포함하는 알킬렌이며; A와 D는 연결되어 방향족 또는 헤테로 방향족고리를 형성할 수 있고; B는 n이 2 이상인 경우 연결 유니트로서 다수의 헤테로 고리를 공액 또는 비공액되도록 연결하는 치환 또는 비치환된 알킬렌 또는 아릴렌이며, n이 1인 경우 치환 또는 비치환된 알킬 또는 아릴이고;
n은 1 내지 8의 정수이다.
상기 화학식 3의 화합물의 예로는 한국 특허 공개 제2003-0067773호에 공지되어 있는 화합물을 포함하며, 상기 화학식 4의 화합물의 예로는 미국 특허 제5,645,948호에 기재된 화합물과 WO05/097756호에 기재된 화합물을 포함한다. 상기 문헌들은 그 내용 전부가 본 명세서에 포함된다.
구체적으로, 상기 화학식 3의 화합물에는 하기 화학식 5의 화합물도 포함된다:
[화학식 5]
Figure PCTKR2013005053-appb-I000013
상기 화학식 5에 있어서,
R5 내지 R7은 서로 같거나 상이하고, 각각 독립적으로 수소, C1-C20의 지방족 탄화수소, 방향족 고리, 방향족 헤테로 고리 또는 지방족 또는 방향족 축합고리이며;
Ar은 직접결합, 방향족 고리 또는 방향족 헤테로 고리이며;
X는 O, S 또는 NRa이며;
Ra는 수소, C1-C7의 지방족 탄화수소, 방향족 고리 또는 방향족 헤테로 고리이고; 단 R5 및 R6이 동시에 수소인 경우는 제외된다.
또한, 상기 화학식 4의 화합물에는 하기 화학식 6의 화합물도 포함된다:
[화학식 6]
Figure PCTKR2013005053-appb-I000014
상기 화학식 6에 있어서,
Z는 O, S 또는 NRb이며;
R8 및 Rb는 수소, C1-C24의 알킬, C5-C20의 방향족 고리 또는 헤테로 원자를 포함하는 치환된 방향족 고리, 할로겐, 또는 벤자졸 고리와 융합 고리를 형성할 수 있는 알킬렌 또는 헤테로 원자를 포함하는 알킬렌이고; B는 n이 2 이상인 경우 연결 유니트로서 다수의 벤자졸들을 공액 또는 비공액되도록 연결하는 알킬렌, 아릴렌, 치환된 알킬렌, 또는 치환된 아릴렌이며, n이 1인 경우 치환 또는 비치환된 알킬 또는 아릴이고;
n은 1 내지 8의 정수이다.
예를 들어, 하기 구조를 지니는 이미다졸 화합물들이 사용될 수 있다:
Figure PCTKR2013005053-appb-I000015
상기 퀴놀린기를 갖는 화합물의 예로는 하기 화학식 7 내지 13의 화합물이 있다.
[화학식 7]
Figure PCTKR2013005053-appb-I000016
[화학식 8]
Figure PCTKR2013005053-appb-I000017
[화학식 9]
Figure PCTKR2013005053-appb-I000018
[화학식 10]
Figure PCTKR2013005053-appb-I000019
[화학식 11]
Figure PCTKR2013005053-appb-I000020
[화학식 12]
Figure PCTKR2013005053-appb-I000021
[화학식 13]
Figure PCTKR2013005053-appb-I000022
상기 화학식 7 내지 13에 있어서,
n은 0 내지 9의 정수이고, m은 2 이상의 정수이며,
R9는 수소, 메틸기, 에틸기 등의 알킬기, 시클로헥실, 노르보르닐 등의 시클로알킬기, 벤질기 등의 아랄킬기, 비닐기, 알릴기 등의 알케닐기, 시클로펜타디에닐기, 시클로헥세닐기 등의 시클로알케닐기, 메톡시기 등의 알콕시기, 알콕시기의 에테르 결합의 산소 원자가 황 원자로 치환된 알킬티오기, 페녹시기 등의 아릴에테르기, 아릴에테르기의 에테르 결합의 산소 원자가 황 원자로 치환된 아릴티오에테르기, 페닐기, 나프틸기, 비페닐기 등의 아릴기, 푸릴기, 티에닐기, 옥사졸릴기, 피리딜기, 퀴놀릴기, 카르바졸릴기 등의 복소환기, 할로겐, 시아노기, 알데히드기, 카르보닐기, 카르복실기, 에스테르기, 카르바모일기, 아미노기, 니트로기, 트리메틸실릴기 등의 실릴기, 에테르 결합을 통해 규소를 갖는 기인 실록사닐기, 인접 치환기와의 사이의 환 구조로부터 선택되며; 상기 치환기들은 비치환 또는 치환될 수 있고, n이 2 이상인 경우 치환기들은 서로 동일하거나 상이할 수 있고,
Y는 상기 R9의 기들의 2가 이상의 기이다.
상기 화학식 7 내지 13의 화합물은 한국 공개특허 2007-0118711에 기재되어 있으며, 이 문헌 전부는 본 명세서에 참고로 포함된다.
상기 페난쓰롤린기를 갖는 화합물의 예로는 하기 화학식 14 내지 24의 화합물들이 있으나, 이들 예로만 한정되는 것은 아니다.
[화학식 14]
Figure PCTKR2013005053-appb-I000023
[화학식 15]
Figure PCTKR2013005053-appb-I000024
[화학식 16]
Figure PCTKR2013005053-appb-I000025
[화학식 17]
Figure PCTKR2013005053-appb-I000026
상기 화학식 14 내지 17에 있어서,
m은 1 이상의 정수이고, n 및 p는 정수이며, n+p는 8 이하이고,
m이 1인 경우, R10 및 R11은 수소, 메틸기, 에틸기 등의 알킬기, 시클로헥실, 노르보르닐 등의 시클로알킬기, 벤질기 등의 아랄킬기, 비닐기, 알릴기 등의 알케닐기, 시클로펜타디에닐기, 시클로헥세닐기 등의 시클로알케닐기, 메톡시기 등의 알콕시기, 알콕시기의 에테르 결합의 산소 원자가 황 원자로 치환된 알킬티오기, 페녹시기 등의 아릴에테르기, 아릴에테르기의 에테르 결합의 산소 원자가 황 원자로 치환된 아릴티오에테르기, 페닐기, 나프틸기, 비페닐기 등의 아릴기, 푸릴기, 티에닐기, 옥사졸릴기, 피리딜기, 퀴놀릴기, 카르바졸릴기 등의 복소환기, 할로겐, 시아노기, 알데히드기, 카르보닐기, 카르복실기, 에스테르기, 카르바모일기, 아미노기, 니트로기, 트리메틸실릴기 등의 실릴기, 에테르 결합을 통해 규소를 갖는 기인 실록사닐기, 인접 치환기와의 사이의 환 구조로부터 선택되며;
m이 2 이상인 경우, R10은 직접 결합 또는 전술한 기들의 2가 이상의 기이고, R11은 m이 1인 경우와 같으며,
상기 치환기들은 비치환 또는 치환될 수 있고, n 또는 p가 2 이상인 경우 치환기들은 서로 동일하거나 상이할 수 있다.
상기 화학식 14 내지 17의 화합물은 한국 공개특허 2007-0052764 및 2007-0118711에 기재되어 있으며, 이 문헌 전부는 본 명세서에 참고로 포함된다.
[화학식 18]
Figure PCTKR2013005053-appb-I000027
[화학식 19]
Figure PCTKR2013005053-appb-I000028
[화학식 20]
Figure PCTKR2013005053-appb-I000029
[화학식 21]
Figure PCTKR2013005053-appb-I000030
상기 화학식 18 내지 21에 있어서,
R1a 내지 R8a 및 R1b 내지 R10b는 각각 수소 원자, 치환 또는 비치환의 핵원자수 5-60의 아릴기, 치환 또는 비치환의 피리딜기, 치환 또는 비치환의 퀴놀릴기, 치환 또는 비치환의 1-50의 알킬기, 이환 또는 비치환의 탄소수 3-50의 시클로알킬기, 치환 또는 비치환의 핵원자수 6-50의 아랄킬기, 치환 또는 비치환의 탄소수 1-50의 알콕시기, 치환 또는 비치환의 핵원자수 5-50의 아릴옥시기, 치환 또는 비치환의 핵원자수 5-50의 아릴티오기, 치환 또는 비치환의 탄소수 1-50의 알콕시카르보닐기, 치환 또는 비치환의 핵원자수 5-50의 아릴기로 치환된 아미노기, 할로겐원자, 시아노기, 니트로기, 히드록실기 또는 카르복실기이고, 이들은 서로 결합하여 방향족 고리를 형성할 수 있으며, L은 치환 또는 비치환의 탄소수 6-60의 아릴렌기, 치환 또는 비치환의 피리디닐렌기, 치환 또는 비치환의 퀴놀리닐렌기 또는 치환 또는 비치환의 플루오레닐렌기이다. 상기 화학식 18 내지 21의 화합물은 일본 특허공개 2007-39405호에 기재되어 있으며, 이 문헌 전부는 본 명세서에 참고로 포함된다.
[화학식 22]
Figure PCTKR2013005053-appb-I000031
[화학식 23]
Figure PCTKR2013005053-appb-I000032
상기 화학식 22 및 23에 있어서, d1, d3 내지 d10 및 g1은 각각 수소 또는 방향족 또는 지방족 탄화수소기이고, m 및 n은 0 내지 2의 정수이고, p는 0 내지 3의 정수이다. 상기 화학식 22 및 23의 화합물은 미국 특허 공개 2007/0122656에 기재되어 있으며, 이 문헌 전부는 본 명세서에 참고로 포함된다.
[화학식 24]
Figure PCTKR2013005053-appb-I000033
상기 화학식 24에 있어서,
R1c 내지 R6c은 각각 수소원자, 치환 또는 비치환의 알킬기, 치환 또는 비치환의 아랄킬기, 치환 또는 비치환의 아릴기, 치환 또는 비치환의 복소환기 또는 할로겐 원자이고, Ar1c 및 Ar2c는 각각 하기 구조식에서 선택된다.
Figure PCTKR2013005053-appb-I000034
상기 구조식에서 R17 내지 R23은 각각 수소원자, 치환 또는 비치환의 알킬기, 치환 또는 비치환의 아랄킬기, 치환 또는 비치환의 아릴기, 치환 또는 비치환의 복소환기 또는 할로겐 원자이다. 상기 화학식 24의 화합물은 일본 특허 공개2004-107263에 기재되어 있으며, 이 문헌 전부는 본 명세서에 참고로 포함된다.
캐소드
본 명세서에서는 캐소드 물질을 다양한 일함수를 갖는 재료로부터 선택할 수 있다. 캐소드 물질로는 통상 전자주입이 용이하게 이루어지도록 일함수가 작은 물질이 바람직하다. 그러나, 본 명세서에서는 일함수가 큰 물질도 적용될 수 있다. 구체적으로, 본 명세서에서는 전술한 p형 유기물층의 HOMO 이상인 일함수를 갖는 물질을 캐소드 재료로서 사용할 수 있다. 예컨대, 본 명세서에서는 캐소드 재료로서 일함수가 2 eV 내지 5 eV인 물질이 사용될 수 있다. 상기 캐소드는 이에 한정되지 않지만 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등을 포함한다.
상기 캐소드는 상기 애노드와 동일한 물질로 형성될 수 있다. 또는, 캐소드 또는 애노드는 투명 물질을 포함할 수 있다.
본 발명에 있어서, 상기 애노드는 불투명하고, 상기 제1 캐소드 및 제2 캐소드는 투명한 것일 수 있다. 이 때, 상기 애노드는 금속을 포함하고, 상기 애노드의 두께는 50 ~ 200nm 일 수 있다. 또한, 상기 제1 캐소드 및 제2 캐소드는 각각 독립적으로 금속 또는 금속 산화물을 포함하고, 상기 제1 캐소드 및 제2 캐소드의 두께는 각각 독립적으로 5 ~ 200nm 일 수 있다.
또한, 본 발명에 있어서, 상기 애노드, 제1 캐소드 및 제2 캐소드는 모두 투명한 것일 수 있다. 이 때, 상기 애노드, 제1 캐소드 및 제2 캐소드는 각각 독립적으로 금속 또는 금속 산화물을 포함하고, 상기 애노드, 제1 캐소드 및 제2 캐소드의 두께는 각각 독립적으로 5 ~ 200nm 일 수 있다.
본 발명에 있어서, 상기 제1 발광유닛은 제3 발광층을 추가로 포함할 수 있다. 여기서, 상기 제1 발광층과 제3 발광층 사이에 상기 화학식 1로 표시되는 유기물층을 추가로 포함할 수 있다.
또한, 본 발명에 있어서, 상기 제2 발광유닛은 제4 발광층을 추가로 포함할 수 있다. 여기서, 상기 제2 발광층과 제4 발광층 사이에 상기 화학식 1로 표시되는 유기물층을 추가로 포함할 수 있다.
본 발명의 일구체예에 따른 유기 발광 소자로서, 상기 제3 발광층 및 제4 발광층을 추가로 포함하는 유기 발광 소자를 하기 도 3에 나타내었다.
본 발명에 있어서, 상기 제1 발광층, 제2 발광층, 제3 발광층 및 제4 발광층은 서로 동일하거나 상이한 색상을 발광하는 것일 수 있다.
특히, 본 발명에 따른 유기 발광 소자는 애노드를 중심으로 제1 발광유닛 및 제2 발광유닛이 서로 대칭구조를 형성하는 것이 바람직하다.
한편, 유기 발광 소자에서는, 발광 효율을 증가시키는 방법 중에 하나로서, 발광색에 따라 소자의 캐비티(cavity)를 조절하는 방법을 이용할 수 있다. 발광색의 파장에 적합하도록 소자의 캐비티를 조절함으로써 발광 효율을 더욱 증가시킬 수 있다. 여기서, 소자의 캐비티란, 소자 내에서 빛이 공진할 수 있는 길이를 의미한다.
전술한 바와 같이, 도 1과 같은 종래의 유기 발광 소자에서는 2개의 발광층을 포함하는 경우에 각각의 캐비티 길이가 서로 다르므로, 원하는 색의 구현이 어렵다는 문제점이 있었다.
그러나, 본 발명에서는 애노드를 중간전극으로 포함하고 2개의 발광 유닛을 병렬 연결함으로써, 도 1 및 2의 구조와 같이 캐비티 길이를 서로 동일하게 조절할 수 있고, 이에 따라 원하는 색을 구현할 수 있는 특징이 있다.
이하에서는 전술한 실시형태들의 구체적인 실시예를 기재한다. 그러나, 하기 실시예들은 예시일 뿐이며, 상기 실시형태들의 범위를 한정하고자 하는 것은 아니다.
<실시예>
<실시예 1>
기판 상에 제1 캐소드로써 IZO를 1,500Å의 두께로 형성하였다. 그 위에 하기 화학식의 전자 수송 재료에 Ca를 10 중량% 도핑하여 50Å 두께의 전자 수송층을 형성하고, 이어서 하기 화학식의 전자 수송 재료를 이용하여 250Å의 두께의 유기물층을 형성하였다.
그 위에, 하기 화학식의 BCP를 75Å의 두께의 정공 차단층을 형성하였다. 이어서, 하기 화학식의 CBP에 하기 화학식 Ir(ppy)3를 20 중량% 도핑하여 두께 300Å의 발광층을 형성하였다.
그 위에 하기 화학식의 NPB를 진공증착하여 두께가 300Å인 p형 정공 수송층을 형성하고, 그 위에 하기 화학식의 HAT를 열 진공 증착하여 두께가 300Å인 n형 정공 주입층을 형성하여, 제1 발광부를 완성하였다.
이어서, 공통 애노드로써 Al을 700Å의 두께로 형성하였다.
그 다음 n형 정공 주입층인 HAT를 300Å의 두께로 증착하고, p형 정공 수송층인 NPB를 300Å의 두께로 형성하였다.
그 위에, 하기 화학식 CBP에 하기 화학식 Ir(ppy)3를 10 중량% 도핑하여 두께 300Å의 발광층을 형성하였다.
그 다음 정공 차단층으로 BCP를 50Å의 두께로 형성하고, 하기 화학식의 전자 수송 재료를 이용하여 250Å 두께의 유기물층을 형성하였다. 그 다음 하기 화학식의 전자 수송 재료에 Ca을 10 중량%로 도핑하여 전자 주입층을 형성하여 제2 발광부를 완성하였다.
마지막으로 Ag 100Å을 형성하여 제2 캐소드층을 형성하여 양면 발광형인 유기 발광 소자를 제작하였다.
제작된 소자의 양자 효율(@10mA/cm2)은 제1 캐소드 전극면으로 발광하는 빛의 효율이 15%, 제2 캐소드 전극면으로 발광하는 빛의 효율이 12% 수준으로, 양면에서 다 높은 효율의 광 효율을 얻을 수 있었다. 양면에서 발광하는 빛의 효율 차이는 약 1.25 : 1 수준이였다. 그 때의 소자 구동 전압은 8.5V로 측정되었다.
Figure PCTKR2013005053-appb-I000035
<실시예 2>
중간 공통 전극인 애노드를 Ag 100Å으로 투명 전극으로 구성한 것을 제외하고는 실시예 1과 동일하게 구성하여 투명한 양면 발광형 유기 발광 소자를 제작하였다. 제작된 소자의 양자 효율(@10mA/cm2)은 제1 캐소드 전극면으로 발광하는 빛의 효율이 9%, 제2 캐소드 전극면으로 발광하는 빛의 효율이 7% 수준으로, 측정이 되었으며, 양면의 발광 효율의 약 1.3 : 1 수준 이였다. 그 때의 소자 구동 전압은 8.5V로 측정되었다.
<비교예 1>
중간 전극인 공통 애노드에 아래 위로 접해 있는 층인 HAT를 구성하지 않은 것으로 제외하고는 실시예 1과 동일한 방법으로 소자를 제작하였다. 제작된 소자는 애노드인 Al으로부터 정공 전달층인 NPB까지 정공 주입이 원활이 이루어지지 않아 정상적인 발광 동작이 이루어지지 않았다.
<비교예 2>
기판 상에 애노드로써 IZO를 1,500 Å의 두께로 형성하였다.
그 다음 n형 정공 주입층인 HAT를 300Å의 두께로 증착하고, p형 정공 수송층인 NPB를 300Å의 두께로 형성하였다.
그 위에, 상기 화학식 CBP에 하기 화학식 Ir(ppy)3를 10 중량% 도핑하여 두께 300Å의 발광층을 형성하였다.
그 다음 정공 차단층으로 BCP를 50Å의 두께로 형성하고, 상기 화학식의 전자 수송 재료를 이용하여 250Å 두께의 유기물층을 형성 하였다. 그 다음 상기 화학식의 전자 수송 재료에 Ca을 10 중량%로 도핑하여 전자 주입층을 형성하여 제2 발광부를 완성하였다.
마지막으로 Ag 100Å을 형성하여 캐소드층을 형성하여 투명한 양면 발광형인 유기 발광 소자를 제작하였다. 제작된 소자의 양자 효율(@10mA/cm2)은 제1 캐소드 전극면으로 발광하는 빛의 효율이 9%, 제2 캐소드 전극면으로 발광하는 빛의 효율이 3% 수준으로, 측정이 되었으며, 양면의 발광 효율의 비는 약 3 : 1 수준이였다.
상기 결과와 같이, 본 발명에 따른 유기 발광 소자는 애노드를 공통전극으로 하여 애노드 상하부에 대칭으로 2개의 발광 유닛을 연결함으로써 양면 발광형 유기 발광 소자에 적용할 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 상기 화학식 1로 표시되는 화합물을 포함하는 유기물층을 포함함으로써, 다양한 일함수를 갖는 전극 재료를 이용할 수 있다.

Claims (14)

  1. 제1 캐소드, 제2 캐소드, 및 상기 제1 캐소드와 제2 캐소드 사이에 구비된 애노드를 포함하고,
    상기 제1 캐소드와 애노드 사이에 제1 발광유닛이 구비되며, 상기 제2 캐소드와 애노드 사이에 제2 발광유닛이 구비되고, 상기 제1 발광유닛과 제2 발광유닛은 병렬연결되며,
    상기 제1 발광유닛은 제1 발광층을 포함하고, 상기 제1 발광층과 애노드 사이에 하기 화학식 1로 표시되는 화합물을 포함하는 유기물층이 구비되며,
    상기 제2 발광유닛은 제2 발광층을 포함하고, 상기 제2 발광층과 애노드 사이에 하기 화학식 1로 표시되는 화합물을 포함하는 유기물층이 구비되는 것을 특징으로 하는 유기 발광 소자:
    [화학식 1]
    Figure PCTKR2013005053-appb-I000036
    상기 화학식 1에 있어서,
    R1 내지 R6은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐 원자, 니트릴(-CN), 니트로(-NO2), 술포닐(-SO2R), 술폭사이드(-SOR), 술폰아미드(-SO2NR), 술포네이트(-SO3R), 트리플루오로메틸(-CF3), 에스테르(-COOR), 아미드(-CONHR 또는 -CONRR'), 치환 또는 비치환된 직쇄 또는 분지쇄의 C1-C12 알콕시, 치환 또는 비치환된 직쇄 또는 분지쇄 C1-C12의 알킬, 치환 또는 비치환된 직쇄 또는 분지쇄 C2-C12의 알케닐 치환 또는 비치환된 방향족 또는 비방향족의 헤테로 고리, 치환 또는 비치환된 아릴, 치환 또는 비치환된 모노- 또는 디-아릴아민, 또는 치환 또는 비치환된 아랄킬아민이고, 상기 R 및 R'는 각각 독립적으로 치환 또는 비치환된 C1-C60의 알킬, 치환 또는 비치환된 아릴, 또는 치환 또는 비치환된 5-7원 헤테로 고리이다.
  2. 청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물을 포함하는 유기물층 중 적어도 하나는 상기 애노드와 접하는 유기물층인 것을 특징으로 하는 유기 발광 소자.
  3. 청구항 1에 있어서, 상기 유기 발광 소자는 양면 발광형인 것을 특징으로 하는 유기 발광 소자.
  4. 청구항 1에 있어서, 상기 애노드는 불투명하고, 상기 제1 캐소드 및 제2 캐소드는 투명한 것을 특징으로 하는 유기 발광 소자.
  5. 청구항 4에 있어서, 상기 애노드는 금속을 포함하고, 상기 애노드의 두께는 50 ~ 200nm인 것을 특징으로 하는 유기 발광 소자.
  6. 청구항 4에 있어서, 상기 제1 캐소드 및 제2 캐소드는 각각 독립적으로 금속 또는 금속 산화물을 포함하고, 상기 제1 캐소드 및 제2 캐소드의 두께는 각각 독립적으로 5 ~ 200nm인 것을 특징으로 하는 유기 발광 소자.
  7. 청구항 1에 있어서, 상기 애노드, 제1 캐소드 및 제2 캐소드는 모두 투명한 것을 특징으로 하는 유기 발광 소자.
  8. 청구항 7에 있어서, 상기 애노드, 제1 캐소드 및 제2 캐소드는 각각 독립적으로 금속 또는 금속 산화물을 포함하고, 상기 애노드, 제1 캐소드 및 제2 캐소드의 두께는 각각 독립적으로 5 ~ 200nm 인 것을 특징으로 하는 유기 발광 소자.
  9. 청구항 1에 있어서, 상기 제1 발광유닛은 제3 발광층을 추가로 포함하는 것을 특징으로 하는 유기 발광 소자.
  10. 청구항 9에 있어서, 상기 제1 발광층과 제3 발광층 사이에 상기 화학식 1로 표시되는 유기물층을 추가로 포함하는 것을 특징으로 하는 유기 발광 소자.
  11. 청구항 1에 있어서, 상기 제2 발광유닛은 제4 발광층을 추가로 포함하는 것을 특징으로 하는 유기 발광 소자.
  12. 청구항 11에 있어서, 상기 제2 발광층과 제4 발광층 사이에 상기 화학식 1로 표시되는 유기물층을 추가로 포함하는 것을 특징으로 하는 유기 발광 소자.
  13. 청구항 1에 있어서, 상기 제1 발광층 및 제2 발광층은 서로 동일하거나 상이한 색상을 발광하는 것을 특징으로 하는 유기 발광 소자.
  14. 청구항 1에 있어서, 상기 유기 발광 소자는 애노드를 중심으로 제1 발광유닛 및 제2 발광유닛이 서로 대칭구조를 형성하는 것을 특징으로 하는 유기 발광 소자.
PCT/KR2013/005053 2013-06-07 2013-06-07 유기 발광 소자 WO2014196677A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/768,122 US10033007B2 (en) 2013-06-07 2013-06-07 Organic light emitting diode
EP13840137.7A EP2996169B1 (en) 2013-06-07 2013-06-07 Organic light emitting diode
PCT/KR2013/005053 WO2014196677A1 (ko) 2013-06-07 2013-06-07 유기 발광 소자
CN201380064574.9A CN104854724B (zh) 2013-06-07 2013-06-07 有机发光二极管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/005053 WO2014196677A1 (ko) 2013-06-07 2013-06-07 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2014196677A1 true WO2014196677A1 (ko) 2014-12-11

Family

ID=52008299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005053 WO2014196677A1 (ko) 2013-06-07 2013-06-07 유기 발광 소자

Country Status (4)

Country Link
US (1) US10033007B2 (ko)
EP (1) EP2996169B1 (ko)
CN (1) CN104854724B (ko)
WO (1) WO2014196677A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10388900B2 (en) * 2016-07-28 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
CN106129099B (zh) 2016-08-31 2020-02-07 深圳市华星光电技术有限公司 一种双面发光的有机发光二极管照明面板
CN107425129B (zh) * 2017-07-26 2019-12-06 上海天马有机发光显示技术有限公司 一种有机发光显示面板、其色温调节方法及显示装置
US10490458B2 (en) * 2017-09-29 2019-11-26 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of cutting metal gates and structures formed thereof
CN107910454A (zh) * 2017-11-03 2018-04-13 武汉华星光电半导体显示技术有限公司 一种oled显示面板及其制造方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780536A (en) 1986-09-05 1988-10-25 The Ohio State University Research Foundation Hexaazatriphenylene hexanitrile and its derivatives and their preparations
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
US6436559B1 (en) 1999-11-12 2002-08-20 Canon Kabushiki Kaisha Organic luminescence device
US20020158242A1 (en) 1999-12-31 2002-10-31 Se-Hwan Son Electronic device comprising organic compound having p-type semiconducting characteristics
KR20030067773A (ko) 2002-01-18 2003-08-19 주식회사 엘지화학 새로운 전자 수송용 물질 및 이를 이용한 유기 발광 소자
JP2004107263A (ja) 2002-09-19 2004-04-08 Canon Inc フェナントロリン化合物及びそれを用いた有機発光素子
KR20040065667A (ko) * 2003-01-15 2004-07-23 주식회사 엘지화학 저 전압에서 구동되는 유기 발광 소자
WO2005097756A1 (ja) 2004-04-07 2005-10-20 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子
JP2007039405A (ja) 2005-08-05 2007-02-15 Idemitsu Kosan Co Ltd 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US20070092755A1 (en) * 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
KR20070052764A (ko) 2004-08-23 2007-05-22 도레이 가부시끼가이샤 발광 소자용 재료 및 발광 소자
US20070122656A1 (en) 2005-11-30 2007-05-31 Eastman Kodak Company Electroluminescent device containing an anthracene derivative
KR20070076521A (ko) * 2006-01-18 2007-07-24 주식회사 엘지화학 적층형 유기발광소자
KR20070118711A (ko) 2000-11-24 2007-12-17 도레이 가부시끼가이샤 발광 소자 재료 및 이를 이용한 발광 소자
WO2011146915A1 (en) * 2010-05-21 2011-11-24 The Board Of Regents Of The University Of Texas System Monolithic parallel multijunction oled with independent tunable color emission
KR20130006937A (ko) * 2011-06-27 2013-01-18 삼성디스플레이 주식회사 유기 발광 소자

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058260A (ja) * 1998-08-07 2000-02-25 Mitsubishi Electric Corp 両面発光型エレクトロルミネッセンス素子および両面自発光型情報表示素子
JP2004087175A (ja) * 2002-08-23 2004-03-18 Rohm Co Ltd 有機エレクトロルミネセンスディスプレイ素子及び情報端末
JPWO2004068911A1 (ja) 2003-01-29 2006-05-25 株式会社半導体エネルギー研究所 発光装置
KR100552968B1 (ko) 2003-09-23 2006-02-15 삼성에스디아이 주식회사 액티브 매트릭스 유기전계 발광표시장치
JP4315874B2 (ja) 2004-07-30 2009-08-19 三洋電機株式会社 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
TWI382079B (zh) 2004-07-30 2013-01-11 Sanyo Electric Co 有機電場發光元件及有機電場發光顯示裝置
US7075231B1 (en) * 2005-01-03 2006-07-11 Eastman Kodak Company Tandem OLEDs having low drive voltage
KR101434359B1 (ko) 2007-10-08 2014-08-26 삼성디스플레이 주식회사 백색 유기발광소자
CN101952967A (zh) 2008-02-22 2011-01-19 皇家飞利浦电子股份有限公司 双面有机发光二极管(oled)
CN104882555B (zh) * 2008-05-16 2018-11-30 乐金显示有限公司 层叠式有机发光二极管
JP5624932B2 (ja) * 2011-04-14 2014-11-12 株式会社日立製作所 有機発光装置及びこれを用いた光源装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780536A (en) 1986-09-05 1988-10-25 The Ohio State University Research Foundation Hexaazatriphenylene hexanitrile and its derivatives and their preparations
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
US6436559B1 (en) 1999-11-12 2002-08-20 Canon Kabushiki Kaisha Organic luminescence device
US20020158242A1 (en) 1999-12-31 2002-10-31 Se-Hwan Son Electronic device comprising organic compound having p-type semiconducting characteristics
KR20070118711A (ko) 2000-11-24 2007-12-17 도레이 가부시끼가이샤 발광 소자 재료 및 이를 이용한 발광 소자
KR20030067773A (ko) 2002-01-18 2003-08-19 주식회사 엘지화학 새로운 전자 수송용 물질 및 이를 이용한 유기 발광 소자
JP2004107263A (ja) 2002-09-19 2004-04-08 Canon Inc フェナントロリン化合物及びそれを用いた有機発光素子
KR20040065667A (ko) * 2003-01-15 2004-07-23 주식회사 엘지화학 저 전압에서 구동되는 유기 발광 소자
WO2005097756A1 (ja) 2004-04-07 2005-10-20 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子
KR20070052764A (ko) 2004-08-23 2007-05-22 도레이 가부시끼가이샤 발광 소자용 재료 및 발광 소자
JP2007039405A (ja) 2005-08-05 2007-02-15 Idemitsu Kosan Co Ltd 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US20070092755A1 (en) * 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US20070122656A1 (en) 2005-11-30 2007-05-31 Eastman Kodak Company Electroluminescent device containing an anthracene derivative
KR20070076521A (ko) * 2006-01-18 2007-07-24 주식회사 엘지화학 적층형 유기발광소자
WO2011146915A1 (en) * 2010-05-21 2011-11-24 The Board Of Regents Of The University Of Texas System Monolithic parallel multijunction oled with independent tunable color emission
KR20130006937A (ko) * 2011-06-27 2013-01-18 삼성디스플레이 주식회사 유기 발광 소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2996169A4

Also Published As

Publication number Publication date
EP2996169A4 (en) 2017-03-15
EP2996169A1 (en) 2016-03-16
US20160020421A1 (en) 2016-01-21
US10033007B2 (en) 2018-07-24
CN104854724A (zh) 2015-08-19
EP2996169B1 (en) 2020-02-12
CN104854724B (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2010039009A2 (ko) 유기발광소자 및 이의 제조방법
WO2009139607A2 (ko) 적층형 유기발광소자
WO2013180503A1 (ko) 유기발광소자
WO2013180539A1 (ko) 유기전계발광소자
WO2013129836A1 (ko) 유기 발광 소자
WO2013036044A2 (ko) 유기 발광 소자 재료 및 이를 이용한 유기 발광 소자
WO2013129835A1 (ko) 유기 발광 소자
WO2010076986A4 (ko) 신규한 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자
WO2013051875A2 (ko) 유기 발광 소자 및 이의 제조방법
WO2012099376A2 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
WO2011037429A2 (ko) 아릴 고리가 축합된 복소환 5원자고리 유도체를 가지는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2013180540A1 (ko) 유기전계발광소자
WO2015099481A1 (ko) 유기 전계 발광 소자
WO2014017844A1 (ko) 아크리딘 유도체를 포함하는 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2019045252A1 (ko) 유기 전계 발광 소자
WO2014196677A1 (ko) 유기 발광 소자
WO2014123369A1 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2013176521A1 (ko) 유기발광소자 및 이의 제조방법
WO2014175627A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2017150930A1 (ko) 신규 화합물 및 이를 포함하는 유기발광소자
WO2014084612A1 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2018131877A1 (ko) 지연형광 화합물 및 이를 이용한 유기전기소자 및 그 전자 장치
WO2013180542A1 (ko) 적층형 유기전계발광소자
WO2018084681A1 (ko) 코팅 조성물, 이를 이용한 유기 전계 발광 소자의 제조방법 및 이에 의하여 제조된 유기 전계 발광 소자
WO2015041461A1 (ko) 유기 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013840137

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840137

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14768122

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE