WO2014194832A1 - 坩埚用涂层结构、其制备方法及包括其的坩埚 - Google Patents

坩埚用涂层结构、其制备方法及包括其的坩埚 Download PDF

Info

Publication number
WO2014194832A1
WO2014194832A1 PCT/CN2014/079207 CN2014079207W WO2014194832A1 WO 2014194832 A1 WO2014194832 A1 WO 2014194832A1 CN 2014079207 W CN2014079207 W CN 2014079207W WO 2014194832 A1 WO2014194832 A1 WO 2014194832A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
layer
silicon
crucible
coating structure
Prior art date
Application number
PCT/CN2014/079207
Other languages
English (en)
French (fr)
Inventor
苏春阳
张运锋
孟庆超
张任远
刘磊
潘明翠
Original Assignee
英利能源(中国)有限公司
英利集团有限公司
保定嘉盛光电科技有限公司
河北流云新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英利能源(中国)有限公司, 英利集团有限公司, 保定嘉盛光电科技有限公司, 河北流云新能源科技有限公司 filed Critical 英利能源(中国)有限公司
Publication of WO2014194832A1 publication Critical patent/WO2014194832A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to the field of casting of polycrystalline silicon, and more particularly to a coating structure for a coating, a method for preparing the same, and a crucible comprising the same.
  • Polycrystalline silicon is the most important raw material for solar cells.
  • germanium is generally used as a carrier for the growth of silicon melt, and the formed polycrystalline silicon ingot is smoothly released from the crucible without being adhered to the crucible, and prevents flaws.
  • the diffusion of impurities into the ingot requires a coating on the surface of the crucible.
  • the existing tantalum coating is usually only a layer of silicon nitride.
  • the silicon melt starts to nucleate from the silicon nitride layer on the surface of the crucible, and then grows, and the growth process can be carried out in two directions, one is in the lateral direction parallel to the silicon nitride layer, It is grown in a longitudinal direction perpendicular to the silicon nitride layer.
  • the contact angle between the silicon melt and the silicon nitride coating is large, the supercooling required for nucleation is high, and the lateral growth rate of the nucleation after nucleation is high due to the lateral temperature gradient.
  • the longitudinal growth rate of the nucleus is inhibited by a large temperature gradient.
  • an aspect of the present invention provides a coating structure for coating a surface of a crucible substrate, comprising: an isolation layer covering the surface of the crucible substrate; an inducing layer, covering On the surface of the isolation layer.
  • the inducing layer comprises, by weight: 50 300 parts of the first component and 50 300 parts of the second component, the first component is different from the second component, and the first component and the second component
  • the components are all materials having different contact angles with the silicon melt.
  • the first component and the second component are respectively selected from the group consisting of silicon nitride, silicon carbide, silicon dioxide, and silicon.
  • the inducing layer further comprises not less than 10 parts by weight of the third component, and the third component is selected from one or both of silicon nitride, silicon carbide, silicon dioxide, and silicon. And different from the first component and the second component.
  • the inducing layer is composed of a first component which is a material having a contact angle with the silicon melt of less than 90° and a second component which has a contact angle with the silicon melt of more than 90. ° Material. Further, the weight ratio of the first component to the second component is 1.5 to 2:1. Further, the above induced layer includes 100 parts by weight of silicon nitride and 150 parts by weight of silica. Further, the above isolation layer is a silicon nitride layer. Meanwhile, in another aspect of the present invention, a method for preparing a coating structure is provided, comprising the following steps: Step 1.
  • Step 2 mixing a material of the separation layer with a first solvent, and stirring to form a first slurry, a slurry is sprayed or brushed on the surface of the crucible substrate, and after drying, the isolation layer is formed; Step 2.
  • the material of the inducing layer is mixed with the second solvent, and after stirring, a second slurry is formed, and the second slurry is formed.
  • the material is sprayed or brushed on the surface of the above-mentioned separator, and after drying, the above induced layer is formed.
  • the first solvent is water
  • the second solvent is anhydrous ethanol.
  • FIG. 1 is a schematic view showing a coating structure for inducing long crystal growth of a silicon melt according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments.
  • the term "material identical or similar to the silicon crystal structure" in the present invention means a material having a crystal structure of a regular tetrahedron or a tetrahedral structure.
  • a ruthenium coating structure that overlies a surface of a ruthenium substrate 100 that includes an isolation layer 210 and an inducing layer 220.
  • the isolation layer 210 is coated on the surface of the tantalum substrate 100; the inducing layer 220 is coated on the surface of the isolation layer 210.
  • the coating structure provided by the present invention includes an isolation layer 210 and an inducing layer 220.
  • the inducing layer 220 can carry the crystal growth of the silicon melt and promote the effect of the crystal growth of the silicon melt to ensure the quality of the polycrystalline silicon ingot; and the isolation layer 210 can isolate the polycrystalline silicon ingot from the body of the crucible, thereby preventing impurities in the crucible body.
  • the diffusion layer 210 can also prevent the germanium from sticking to the grown polycrystalline silicon ingot to ensure smooth demolding of the polycrystalline silicon ingot, thereby improving the quality of the prepared polycrystalline silicon ingot, so that the isolation layer 210 can be fully activated.
  • the thickness is preferably 100 to 400 um.
  • a person skilled in the art can also set a specific value of the thickness according to actual conditions.
  • the inducing layer 220 in the above-mentioned coating structure comprises 50 300 parts of the first component and 50 300 parts of the second component by weight, the first component is different from the second component, and the first component
  • the component and the second component are materials having different contact angles with the silicon melt.
  • two different materials are simultaneously contained, and the contact angles of the different materials with the silicon melt are different, and the characteristics of the subcooling required for nucleation are different, so that the silicon melt is in accordance with the degree of subcooling. From the low to the high order, a plurality of position points in the inducing layer 220 are sequentially nucleated and grown, thereby ensuring the integrity of the shape of the crystal nucleus.
  • one of the first component and the second component is silicon or a material identical or similar to the silicon crystal structure, and the other is a material different from the silicon crystal structure.
  • the first component and the second component in the inducing layer 220 of the coating structure of the present invention include, but are not limited to, silicon nitride, silicon carbide, silicon dioxide or silicon, etc., wherein the first component and the second group are preferred.
  • the fractions are each selected from the group consisting of silicon nitride, silicon carbide, silicon dioxide, and silicon. Silicon nitride, silicon carbide, silicon dioxide and silicon are common materials, and the contact angle with silicon melt is quite different.
  • the use of the inducing layer 220 formed by the two materials can effectively increase the shape of the crystal growth process.
  • the inducing layer 220 of the above-mentioned enamel coating structure further comprises not less than 10 parts of the third component, and the third component is selected from the group consisting of silicon nitride, silicon carbide, silicon dioxide, and silicon, different from the first group described above. One or two of the fraction and the second component.
  • the inducing layer 220 is composed of two materials Inductive layer 220 formed by mixing a plurality of different types of materials, further utilizing different properties of wettability of different materials and silicon melts, further providing more nucleation sites, dispersing silicon melt nucleation, and The silicon melt is nucleated and grown in different positions according to the degree of subcooling from low to high, further ensuring the shape integrity of the core crystal and improving the quality of the polycrystalline silicon ingot.
  • the inducing layer 220 is composed of a first component and a second component, and the first component is a material having a contact angle with the silicon melt of less than 90°, and the second component is silicon.
  • a material with a melt contact angle greater than 90° It also contains two different materials, which can realize the sequential nucleation and growth of silicon crystals at multiple locations, thus ensuring the integrity of the crystal nucleus shape. At the same time, only two different materials are used, avoiding multi-gradient nucleation. In the process, the number of nucleation points of the pre-nucleation due to the unsuitable proportion is small, which affects the quality of subsequent nucleation. Moreover, in the inducing layer 220 in direct contact with the silicon melt, two materials having a large difference in contact angle with the silicon melt are used, and the silicon melt is more likely to be nucleated, thereby increasing the number of nucleation points and uniformly dispersing, and a large number of shapes.
  • the weight ratio of the first component to the second component is from 1.5 to 2:1.
  • the first component is silicon nitride and the second component is one of silicon carbide, silicon dioxide and silicon.
  • the above-mentioned inducing layer 220 comprises 100 parts by weight of silicon nitride and 150 parts by weight of silica.
  • the isolation layer 210 is a silicon nitride layer. Silicon nitride has high chemical stability and does not react with molten silicon and quartz.
  • the preparation of high-purity silicon nitride is also relatively easy.
  • the coating structure provided by the present invention including but not limited to the isolation layer and the inducing layer, in addition to the isolation layer and the inducing layer, other layers may be included as long as the bottom layer of the coating structure is provided as an isolation layer, the outermost layer. It can be set as the inducing layer, and those skilled in the art can select other kinds of layers according to specific requirements, as long as the bottom layer of the coating structure is the isolation layer and the outermost layer is the inducing layer, which belongs to the protection scope of the present invention.
  • the present invention also provides a method for preparing a coating structure. In a specific embodiment, the method comprises the following steps: Step 1.
  • the separation layer 210 mixes the material of the separation layer 210 with the first solvent, and stirring to form a first slurry.
  • the first slurry is sprayed or brushed on the surface of the crucible substrate 100, and after drying, the isolation layer 210 is formed; in step 2, the material of the inducing layer 220 is mixed with the second solvent, and the second slurry is formed after stirring.
  • the second slurry is sprayed or brushed onto the surface of the separator 210, and after drying, the inducing layer 220 is formed.
  • the solvent to be used is required to ensure good dispersibility of the material therein to form a stable slurry, and more preferably a safe solvent which can be removed by a simple method and which does not introduce other impurities as much as possible, such as water, ethanol, Other volatile organic solvent or a mixed solvent thereof; wherein the first solvent is preferably water, and the second solvent is preferably anhydrous ethanol.
  • Water is the lowest cost solvent, mixed with silicon nitride layer material, can form a stable slurry after stirring; anhydrous ethanol has good volatility, low cost and is a non-toxic solvent, and the material of the induced layer The material is mixed and stirred to form a stable slurry.
  • the selected drying methods include, but are not limited to, natural drying, blast drying and heat drying.
  • natural drying refers to exposing the layers in the coating to air for 4-24 hours. Drying means that the layers in the coating are dried in a forced air oven at a wind speed of l-10 m/ s for 2-12 h, and the above heating and drying means that the layers in the coating are respectively at 30-1200 °C.
  • the coating method used for the coating includes spray coating and brushing, and other chemical or physical methods can be selected.
  • the brushing method is to apply the slurry to the surface of the crucible one or more times by using a brushing tool.
  • the spraying method is to prepare the coating by using a pneumatic spray gun or other spraying tools, and those skilled in the art can select the coating according to the materials used. Molding method and specific process parameters.
  • the present invention also provides a crucible in which the above-described coating structure 200 is disposed.
  • the crucible provided with the coating structure 200 described above induces crystallization of the silicon melt by the inducing layer 220 in the coating structure 200, promotes the long crystal effect of the silicon melt, ensures the quality of the polysilicon, and utilizes the isolation layer in the coating structure.
  • 210 isolating the crucible body from the polycrystalline silicon ingot to prevent impurities in the crucible from diffusing into the polycrystalline silicon ingot, and using the isolation layer 210 in the coating structure to prevent adhesion of the crucible to the polycrystalline silicon ingot, thereby smoothly releasing the polycrystalline silicon ingot, thereby ensuring polysilicon. The quality of the ingot.
  • the crucible is preferably a quartz crucible, which is currently the most widely used crucible in the polysilicon casting process, and its main component is silica, which can stably combine with the coating structure provided by the invention, and ensures the use of the crucible. Structural stability in the process.
  • Isolation Layer Material 375 g of silicon nitride.
  • Induction layer starting material 50 g of silicon nitride (contact angle with silicon melt greater than 90°); 300 g of silicon dioxide (contact angle with silicon melt less than 90°).
  • ⁇ base Quartz crucible.
  • the crucible is prepared using the method provided in the present invention, which comprises the following steps: Step 1. Mix the separator material with 1 liter of water, stir with a mechanical stirrer of 300-1000 W for 30 min to form a slurry of the separator, and apply the slurry to the surface of the quartz crucible substrate at 1000°.
  • Step 2 mixing the inducing layer raw material with 1 liter of absolute ethanol, stirring with a mechanical stirrer of 300-1000 W for 30 min to form a slurry of the inducing layer, and brushing the slurry It was applied to the surface of the above-mentioned separator and left to stand at room temperature for 4 hours to be air-dried to form an inducing layer provided with the crucible provided in the present invention.
  • Example 2 Isolation Layer Material: 375 g of silicon nitride. Induction layer starting material: 300 g of silicon nitride; 50 g of silicon dioxide. ⁇ base: Quartz crucible. Preparation method: The same as in Example 1.
  • Example 3 Isolation layer material: 375 g of silicon nitride. Induction layer starting material: 310 g of silicon nitride; 40 g of silicon dioxide. ⁇ base: Quartz crucible. Preparation method: Same as Example 1.
  • Example 4 Isolation layer material: 375 g of silicon nitride. Induction layer starting material: 40 g of silicon nitride; 310 g of silicon dioxide. ⁇ base: Quartz crucible. Preparation method: Same as Example 1.
  • Example 5 Isolation layer material: 375 g of silicon nitride. Induction layer starting material: 100 g of silicon nitride: 200 g of silica.
  • ⁇ base Quartz crucible.
  • Isolation layer material 375g silicon nitride
  • Induction layer starting material 200 g of silicon nitride 100 g of silica.
  • ⁇ base Quartz crucible.
  • Isolation layer material 375g silicon nitride
  • Induction layer material 100g silicon nitride 150g silica
  • ⁇ base Quartz crucible.
  • Isolation layer material 375g silicon nitride
  • Induction layer starting material 100 g of silicon nitride 150 g of silica; 50 g of silicon carbide.
  • ⁇ base Quartz crucible.
  • Isolation layer material 375g silicon nitride
  • Induction layer starting material 100 g of silicon nitride 150 g of silica; 25 g of silicon carbide; 25 g of silicon. ⁇ base: Quartz crucible.
  • Preparation method The same as in Example 1. Comparative Example 1: Coating material: 375 g of silicon nitride. ⁇ base: Quartz crucible.
  • Preparation method The coating raw material is mixed with 1 liter of water, stirred by a mechanical stirrer with a power of 300-1000 W for 30 min to form a slurry of the separation layer, and the slurry is brushed on the surface of the quartz crucible substrate at 1000°. The C was allowed to stand at a high temperature for 2 hours for drying.
  • Test materials The same batch of silicon material test method sold by Wacker Company: The same amount of raw materials were put into the crucibles prepared in Examples 1-9 and Comparative Example 1, and the polycrystalline silicon ingot was cast using the same casting process, and the silicon ingot was taken. Silicon wafer dislocation density test at the same height position at the top, middle and bottom of the intermediate silicon block. Silicon wafer dislocation density test method: The silicon wafer is acid-chemically polished with a mixed solution of hydrofluoric acid and nitric acid for 3 min.
  • the formation of an inducing layer on the layer can effectively ensure the crystal integrity in the polycrystalline silicon ingot and improve the quality of the polycrystalline silicon ingot.
  • the ratio of the materials in the inducing layer composed of two materials it is possible to obtain better crystal integrity than the polycrystalline silicon ingot prepared by using the inducing layer composed of two or more materials.
  • the enamel coating structure provided by the invention, the ruthenium comprising the same and the preparation method thereof adopts the double layer structure of the separation layer and the induction layer, and on the other hand, the silicon layer is carried by the induction layer which is mixed by different materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

一种坩埚用涂层结构、其制备方法及包括其的坩埚,该涂层结构(200)包括隔离层(210)和诱导层(220),其中隔离层(210)覆于坩埚基材(100)的表面上,诱导层(220)覆于隔离层(210)的表面上。该涂层结构采用隔离层(210)和诱导层(220)的双层结构,通过设置诱导层(220)以承载硅熔体长晶,并促进硅熔体长晶的效果,保证多晶硅锭的质量,通过设置隔离层(210)将所形成的多晶硅锭与坩埚本体进行隔离以防止坩埚本体内的杂质向多晶硅锭扩散,并防止坩埚与所生长的多晶硅锭粘连,使多晶硅锭顺利脱模,进而保证所制备的多晶硅锭的质量。

Description

坩埚用涂层结构、 其制备方法及包括其的坩埚 技术领域 本发明涉及多晶硅的铸造领域, 具体而言, 涉及一种坩埚用涂层结构、 其制备方 法及包括其的坩埚。 背景技术 多晶硅是太阳能电池最主要的原材料, 在多晶硅的铸造过程中, 通常采用坩埚作 为硅熔体长晶的载体, 为了保证所形成的多晶硅锭不与坩埚发生粘连而顺利脱模, 并 防止坩埚内的杂质向硅锭扩散, 需要在坩埚表面设置涂层, 现有的坩埚涂层通常仅为 一层氮化硅层。 多晶硅的铸造过程中, 硅熔体从坩埚表面的氮化硅层上开始形核, 进而长晶, 长 晶过程可以沿两个方向进行, 一是沿平行于氮化硅层的横向生长, 二是沿垂直于氮化 硅层的纵向生长。 硅熔体与氮化硅涂层的接触角较大, 形核所需过冷度高, 同时由于 存在横向温度梯度, 会导致形核后晶核的横向生长速率较高。 而晶核的纵向生长速率 则受到较大温度梯度的抑制。 这就使得在这种氮化硅涂层上形成的多晶硅锭, 晶粒形 状差异明显、 大小不均并以枝晶居多, 最终影响了所铸造的多晶硅的质量。 发明内容 本发明旨在提供一种坩埚用涂层结构、 其制备方法及包括其的坩埚, 以提高用其 所生长的多晶硅锭的质量。 为了实现上述目的, 本发明的一个方面, 提供了一种坩埚用涂层结构, 该涂层结 构覆于坩埚基材表面, 包括: 隔离层, 覆于坩埚基材的表面上; 诱导层, 覆于隔离层 的表面上。 进一步地, 所述诱导层按重量份计包括: 50 300份的第一组分和 50 300份的第 二组分, 第一组分不同于第二组分, 且第一组分与第二组分均为与硅熔体的接触角不 同的材料。 进一步地, 上述第一组分与第二组分分别选自由氮化硅、 碳化硅、 二氧化硅和硅 所组成的组。 进一步地, 上述诱导层按重量份计还包括不低于 10份的第三组分,所述第三组分 选自氮化硅、 碳化硅、 二氧化硅、 硅中的一种或两种, 且不同于所述第一组分和所述 第二组分。 进一步地, 上述诱导层由第一组分和第二组分组成, 第一组分为与硅熔体的接触 角小于 90° 的材料, 第二组分为与硅熔体的接触角大于 90° 的材料。 进一步地, 上述第一组分和所述第二组分的重量比为 1.5~2: 1。 进一步地, 上述诱导层按重量份计包括 100份的氮化硅与 150份的二氧化硅。 进一步地, 上述隔离层为氮化硅层。 同时, 本发明的另一方面, 提供了一种涂层结构的制备方法, 包括以下步骤: 步 骤 1、 将隔离层的材料与第一溶剂进行混合, 搅拌后形成第一浆料, 将上述第一浆料 喷涂或刷涂于坩埚基材表面上, 干燥后, 形成上述隔离层; 步骤 2、 将诱导层的材料 与第二溶剂进行混合, 搅拌后形成第二浆料, 将上述第二浆料喷涂或刷涂于上述隔离 层表面上, 干燥后, 形成上述诱导层。 进一步地, 上述第一溶剂为水, 上述第二溶剂为无水乙醇。 同时, 本发明的另一方面, 还提供了一种坩埚, 设置有上述涂层结构。 本发明的有益效果: 本发明所提供的坩埚用涂层结构、 其制备方法及包括其的坩 埚, 采用隔离层和诱导层的双层结构, 通过设置诱导层以承载硅熔体长晶, 并促进硅 熔体长晶的效果, 保证多晶硅锭的质量, 通过设置隔离层将所形成的多晶硅锭与坩埚 本体进行隔离以防止坩埚本体内的杂质向多晶硅锭扩散, 通过利用隔离层的设置防止 坩埚与所生长的多晶硅锭粘连, 使多晶硅锭顺利脱模, 进而保证所制备的多晶硅锭的 质量。 附图说明 构成本申请的一部分的说明书附图用来提供对本发明的进一步理解, 本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1示出了根据本发明实施例的一种诱导硅熔体长晶的涂层结构的示意图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 在本发明中术语 "与硅晶体结构相同或相似的材料"是指晶体结构为正四面体或 四面体结构的材料。 在本发明的一种典型的实施方式中,提供了一种坩埚用涂层结构,该涂层结构 200 覆于坩埚基材 100的表面, 其包括隔离层 210和诱导层 220。 隔离层 210覆于坩埚基 材 100的表面上; 诱导层 220, 覆于隔离层 210的表面上。 本发明所提供的这种涂层结构包括了隔离层 210和诱导层 220。 其中诱导层 220 可以承载硅熔体长晶, 并促进硅熔体长晶的效果,保证多晶硅锭的质量; 而隔离层 210 可以将多晶硅锭与坩埚本体隔离,这样便能够防止坩埚本体内的杂质向多晶硅锭扩散, 此外, 隔离层 210还可以防止坩埚与所生长的多晶硅锭发生粘连, 以保证多晶硅锭的 顺利脱模, 进而提高所制备的多晶硅锭的质量, 为使隔离层 210能够充分起到隔离杂 质和保证脱模的作用, 需要其具有一定的厚度, 优选该厚度为 100~400um, 本领域技 术人员也可以根据实际情况设定该厚度的具体值。 优选地,上述坩埚用涂层结构中诱导层 220按重量份计包括 50 300份的第一组分 和 50 300份的第二组分,第一组分不同于第二组分,且第一组分与第二组分为与硅熔 体的接触角不同的材料。 在这种诱导层 220结构中, 同时含有两种不同的材料, 利用 不同的材料与硅熔体的接触角不同, 形核所需的过冷度不同的特性, 使得硅熔体按照 过冷度由低到高的顺序, 诱导层 220中的多个位置点依次形核并长大, 进而保证了晶 核形状的完整性。 更为优选地, 第一组分和第二组分中一个为硅或与硅晶体结构相同 或相似的材料, 另一个为与硅晶体结构不同的材料。 在本发明坩埚用涂层结构的诱导层 220中第一组分与第二组分包括但不限于氮化 硅、 碳化硅、 二氧化硅或硅等, 其中优选第一组分与第二组分分别选自由氮化硅、 碳 化硅、 二氧化硅和硅所组成的组。 氮化硅、 碳化硅、 二氧化硅和硅均是常见的材料, 且与硅熔体接触角差异较大, 使用其中两种材料所形成的诱导层 220能够有效的增加 长晶过程中的形核点, 且保证晶核形状的完整性, 进而提高多晶硅锭的质量。 上述坩埚用涂层结构的诱导层 220中还包括不低于 10份的第三组分,上述第三组 分选自氮化硅、 碳化硅、 二氧化硅、 硅中不同于上述第一组分和第二组分的一种或两 种。 在两种材料组成的诱导层 220中进一步加入不同于第一组分和第二组分的其他材 料, 多种不同类型的材料混合后形成的诱导层 220, 利用不同材料与硅熔体的润湿性 不同的性质, 进一步提供了更多的形核位置, 使硅熔体形核分散, 且硅熔体在不同的 位置按照过冷度由低到高的顺序依次形核长大, 进一步保证了核晶的形状完整性, 提 高多晶硅锭的质量。 在本发明坩埚用涂层结构中诱导层 220由第一组分和第二组分组成, 且第一组分 为与硅熔体的接触角小于 90° 的材料, 第二组分为与硅熔体的接触角大于 90° 的材 料。 同时含有两种不同的材料, 能够实现硅晶体在多个位置点依次形核并长大, 进而 保证了晶核形状的完整性, 同时, 仅采用两种不同的材料, 避免了多梯度形核过程中 因比例不适合所产生的先形核的形核点数量少, 影响后续成型形核质量的问题。 而且 在与硅熔体直接接触的诱导层 220中采用与硅熔体接触角相差较大的两种材料, 硅熔 体更容易形核, 进而增加形核点的数量且均匀分散, 大量的形核点迅速长大, 这就使 得所生成的多晶硅锭中晶核数量多、 尺寸小, 进而保证了所生成的多晶硅锭的质量。 优选地第一组分和所述第二组分的重量比为 1.5~2: 1。 更优选地, 第一组分为氮化硅, 第二组分为碳化硅、 二氧化硅和硅中的一种。 更优选地, 上述诱导层 220按重量份计 包括 100份的氮化硅与 150份的二氧化硅。 优选地, 上述隔离层 210为氮化硅层。 氮化硅具有很高的化学稳定性, 不与熔融 硅和石英发生反应, 高纯度氮化硅的制备也较为容易。 在本发明提供的坩埚用涂层结构中包括但不限于隔离层与诱导层, 除隔离层与诱 导层外, 还可以包括其他层, 只要涂层结构的最底层设置为隔离层, 最外层设置为诱 导层即可, 本领域技术人员可以根据具体的需求选择其他各层的种类, 只要涂层结构 的最底层为隔离层, 最外层为诱导层, 均属于本发明的保护范围。 本发明还提供了一种涂层结构的制备方法, 在一个具体的实施方式中, 该方法包 括以下步骤: 步骤 1、 将隔离层 210的材料与第一溶剂进行混合, 搅拌后形成第一浆 料,将第一浆料喷涂或刷涂于坩埚基材 100表面上,干燥后,形成隔离层 210;步骤 2、 将诱导层 220的材料与第二溶剂进行混合, 搅拌后形成第二浆料, 将第二浆料喷涂或 刷涂于所述隔离层 210表面上, 干燥后, 形成所述诱导层 220。 在上述制备过程中, 所使用的溶剂需保证材料在其中良好的分散性, 以便形成稳 定的浆料, 更优选为可以通过简易方法去除且尽量不引入其它杂质的安全溶剂, 例如 水、 乙醇、 其他易挥发分解的有机溶剂或者它们的混合溶剂; 其中, 第一溶剂优选为 水, 第二溶剂优选为无水乙醇。 水是成本最低的溶剂, 与氮化硅层材料混合、 经搅拌 后能够形成稳定的浆料; 无水乙醇挥发性好、 成本较低且为无毒溶剂, 与诱导层的材 料混合、 经搅拌后能够形成稳定的浆料。 此外, 在浆料的配置过程中, 还可以加入其 他添加剂, 例如用于提高涂层强度硅溶胶, 本领域技术人员能够根据本发明提供的制 备方法合理的选择添加剂的种类。 在上述制备过程中, 所选用的干燥方式包括但不限于自然晾干、 鼓风干燥和加热 干燥,上述自然晾干是指将涂层中的各层暴露于空气中 4-24h,上述鼓风干燥是指将涂 层中的各层分别在风速为 l-10m/S的鼓风干燥箱中干燥 2-12h,及上述加热干燥是指将 涂层中的各层分别在 30-1200°C的温度下干燥 l-8h; 所采用的涂层的成型方法包括喷 涂法和刷涂法, 还可以选择其他化学或物理方法。 刷涂法是使用刷涂工具分一次或多次将浆料涂覆于坩埚表面, 喷涂法是使用气压 喷枪或其它喷涂工具进行涂层制备, 本领域技术人员能够根据用料的不同选择涂层成 型方法及具体的工艺参数。 本发明还提供了一种坩埚, 该坩埚中设置有上述涂层结构 200。 这种设置有上述 涂层结构 200的坩埚, 利用涂层结构 200中的诱导层 220诱导硅熔体结晶, 促进硅熔 体的长晶效果, 保证多晶硅的质量, 利用涂层结构中的隔离层 210将坩埚本体与多晶 硅锭隔离开来, 防止坩埚中的杂质向多晶硅锭扩散, 并利用涂层结构中的隔离层 210 防止坩埚与多晶硅锭的粘连, 使多晶硅锭顺利脱模, 进而保证了多晶硅锭的质量。 该 坩埚优选为石英坩埚,石英坩埚是目前在多晶硅铸造过程中应用最为广泛的一种坩埚, 其主要成分为二氧化硅, 与本发明中提供的涂层结构能够稳定结合, 保证了坩埚在使 用过程中的结构稳定性。 以下将结合具体实施例 1-9以及对比为例 1进一步说明本申请的有益效果: 实施例 1 隔离层原料: 375g的氮化硅。 诱导层原料: 50g的氮化硅 (与硅熔体接触角大于 90° ); 300g的二氧化硅 (与 硅熔体接触角小于 90° )。 坩埚基体: 石英坩埚。 使用本发明中提供的方法制备坩埚, 它包括以下步骤: 步骤 1、 将隔离层原料与 1升水进行混合, 用功率为 300-1000W的机械搅拌器搅 拌 30min后形成隔离层的浆料, 将该浆料刷涂于石英坩埚基材表面上, 在 1000°C的高 温下搁置 2h进行干燥; 步骤 2、 将诱导层原料与 1升无水乙醇进行混合, 用功率为 300-1000W的机械搅 拌器搅拌 30min后形成诱导层的浆料, 将该浆料刷涂于上述隔离层表面上, 在室温下 搁置 4h自然晾干, 形成诱导层设置有本发明中提供的坩埚。 实施例 2 隔离层原料: 375g的氮化硅。 诱导层原料: 300g的氮化硅; 50g的二氧化硅。 坩埚基体: 石英坩埚。 制备方法: 同实施例 1相同。 实施例 3 : 隔离层原料: 375g的氮化硅。 诱导层原料: 310g的氮化硅; 40g的二氧化硅。 坩埚基体: 石英坩埚。 制备方法: 同实施例 1。 实施例 4: 隔离层原料: 375g的氮化硅。 诱导层原料: 40g的氮化硅; 310g的二氧化硅。 坩埚基体: 石英坩埚。 制备方法: 同实施例 1。 实施例 5 : 隔离层原料: 375g的氮化硅。 诱导层原料: 100g的氮化硅: 200g的二氧化硅。
坩埚基体: 石英坩埚。
制备方法: 同实施例 1。
实施例 6:
隔离层原料: 375g的氮化硅
诱导层原料: 200g的氮化硅 100g的二氧化硅。
坩埚基体: 石英坩埚。
制备方法: 同实施例 1。
实施例 7
隔离层原料: 375g的氮化硅
诱导层原料: 100g的氮化硅 150g的二氧化硅
坩埚基体: 石英坩埚。
制备方法: 同实施例 1相同。
实施例 8
隔离层原料: 375g的氮化硅
诱导层原料: 100g的氮化硅 150g的二氧化硅; 50g碳化硅。
坩埚基体: 石英坩埚。
制备方法: 同实施例 1相同。
实施例 9
隔离层原料: 375g的氮化硅
诱导层原料: 100g的氮化硅 150g的二氧化硅; 25g碳化硅; 25g硅。 坩埚基体: 石英坩埚。 制备方法: 同实施例 1相同。 对比例 1 : 涂层原料: 375g氮化硅。 坩埚基体: 石英坩埚。 制备方法: 将涂层原料与 1升水进行混合, 用功率为 300-1000W的机械搅拌器搅 拌 30min后形成隔离层的浆料, 将该浆料刷涂于石英坩埚基材表面上, 在 1000°C的高 温下搁置 2h进行干燥。
测试原料: Wacker公司所出售的同一批次硅料 测试方法: 在实施例 1-9及对比例 1中所制备的坩埚中投入等量原料, 使用完全 相同铸造工艺铸造多晶硅锭, 并取硅锭中间硅块顶部、 中部、 底部相同高度位置硅片 进行硅片位错密度测试, 硅片位错密度测试方法: 将硅片采用氢氟酸和硝酸的混合溶液进行酸化学抛光 3min, 抛光液成分配比为: V (HF (49%)): V (HN03 ( 68%) ) =1 :3, 抛光后硅片 3-5 次去离子水清洗,采用 Secco腐蚀液蚀刻 15min, Secco腐蚀液成分配比为 V (K2Cr207 溶液 (0.15mol/L) ) : V (HF ( 49%) ): V (冰乙酸) =25:50: 1, 然后用光学显微镜在
500倍的放大倍数下对硅片表面按照九宫格排列方式选取 9个相同位置的点进行观测 和拍照, 采用计算机图像处理技术分析计算这些照片上的位错密度, 然后取其平均值 作为该硅片的位错密度。 测试结果如表 1所示: 表 1
顶部平均 AD值 中部平均 AD值 底部平均 AD值 整棒平均 AD值 实施例 1 8.37E+05 9.46E+05 1.26E+06 1.01E+06 实施例 2 1.10E+06 1.01E+06 9.94E+05 1.03E+06 实施例 3 1.23E+06 1.41E+06 1.01E+06 1.22E+06 实施例 4 1.16E+06 1.11E+06 5.04E+05 9.25E+05 实施例 5 3.62E+05 7.01E+05 8.25E+05 6.29E+05 实施例 6 6.12E+05 8.18E+05 9.30E+05 7.87E+05 实施例 7 3.37E+05 6.37E+05 7.71E+05 5.82E+05 实施例 8 4.27E+05 6.94E+05 9.13E+05 6.78E+05 实施例 9 6.23E+05 8.92E+05 9.18E+05 8.11E+05 对比例 1 1.25E+06 1.60E+06 1.48E+06 1.44E+06 如表 1所示数据可知, 采用本发明提供的坩埚涂层结构, 所制备的多晶硅锭的缺 陷密度要远小于采用单一氮化硅层的坩埚所制备的多晶硅锭的缺陷密度, 表明通过在 隔离层上设置诱导层, 能够有效保证多晶硅锭中晶体的完整性, 改善多晶硅锭的质量。 与此同时, 当控制两种材料组成的诱导层中材料的比例, 能够获得比采用两种以上材 料组成的诱导层所制备的多晶硅锭更好的晶体完整性。 本发明所提供的坩埚用涂层结构、 包括其的坩埚及其制备方法, 采用隔离层和诱 导层的双层结构,一方面,通过设置由不同材料混合而成的诱导层以承载硅熔体长晶, 并促进硅熔体长晶的效果, 使所形成的晶核数量多、 分布广、 尺寸小且形状完整, 以 等轴晶居多, 保证了多晶硅锭的质量, 另一方面, 通过设置隔离层将所形成的多晶硅 锭与坩埚本体进行隔离以防止坩埚本体内的杂质向多晶硅锭扩散, 通过利用隔离层的 设置防止坩埚与所生长的多晶硅锭粘连, 使多晶硅锭顺利脱模, 进而保证所制备的多 晶硅锭的质量。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书 一种坩埚用涂层结构, 所述涂层结构 (200) 覆于坩埚基材 (100) 表面, 其特 征在于, 包括:
隔离层 (210), 覆于所述坩埚基材 (100) 的表面上;
诱导层 (220), 覆于所述隔离层 (210) 的表面上。 根据权利要求 1所述的涂层结构, 其特征在于, 所述诱导层(220)按重量份计 包括: 50 300份的第一组分和 50 300份的第二组分, 所述第一组分不同于所 述第二组分, 且所述第一组分与所述第二组分均为与硅熔体的接触角不同的材 料; 优选地, 所述第一组分与所述第二组分分别选自由氮化硅、 碳化硅、 二氧 化硅和硅所组成的组。 根据权利要求 2所述的涂层结构, 其特征在于, 所述诱导层(220)按重量份计 还包括不低于 10份的第三组分,所述第三组分选自氮化硅、碳化硅、二氧化硅、 硅中的一种或两种, 且不同于所述第一组分和所述第二组分。 根据权利要求 2所述的涂层结构, 其特征在于, 所述诱导层(220) 由第一组分 和第二组分组成, 所述第一组分为与硅熔体的接触角小于 90° 的材料, 所述第 二组分为与硅熔体的接触角大于 90° 的材料。 根据权利要求 4所述的涂层结构, 其特征在于, 所述第一组分和所述第二组分 的重量比为 1.5~2: 1。 根据权利要求 5所述的涂层结构, 其特征在于, 所述诱导层(220)按重量份计 包括 100份的氮化硅与 150份的二氧化硅。 根据权利要求 1至 6中任一项所述的涂层结构,其特征在于,所述隔离层(210) 为氮化硅层。 一种权利要求 1至 7中任一项所述涂层结构的制备方法, 其特征在于, 包括以 下步骤:
步骤 1、 将隔离层 (210) 的材料与第一溶剂进行混合, 搅拌后形成第一浆 料, 将所述第一浆料喷涂或刷涂于坩埚基材(100)表面上, 干燥后, 形成所述 隔离层 (210); 步骤 2、 将诱导层 (220) 的材料与第二溶剂进行混合, 搅拌后形成第二浆 料, 将所述第二浆料喷涂或刷涂于所述隔离层(210)表面上, 干燥后, 形成所 述诱导层 (220)。 根据权利要求 8所述的制备方法, 其特征在于, 所述第一溶剂为水, 所述第二 溶剂为无水乙醇。 一种坩埚, 其特征在于, 所述坩埚中设置有权利要求 1至 7中任一项所述的涂 层结构 (200)。
PCT/CN2014/079207 2013-06-07 2014-06-05 坩埚用涂层结构、其制备方法及包括其的坩埚 WO2014194832A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310226208.0A CN103320854B (zh) 2013-06-07 2013-06-07 坩埚用涂层结构、其制备方法及包括其的坩埚
CN201310226208.0 2013-06-07

Publications (1)

Publication Number Publication Date
WO2014194832A1 true WO2014194832A1 (zh) 2014-12-11

Family

ID=49189884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079207 WO2014194832A1 (zh) 2013-06-07 2014-06-05 坩埚用涂层结构、其制备方法及包括其的坩埚

Country Status (2)

Country Link
CN (1) CN103320854B (zh)
WO (1) WO2014194832A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320854B (zh) * 2013-06-07 2016-03-02 英利集团有限公司 坩埚用涂层结构、其制备方法及包括其的坩埚
CN104711671B (zh) * 2013-12-11 2017-08-25 徐州协鑫太阳能材料有限公司 坩埚涂层结构、制备方法及坩埚
CN103628128B (zh) * 2013-12-12 2016-06-15 英利集团有限公司 坩埚及其制作方法、多晶硅锭的铸造方法
CN104630884B (zh) * 2015-01-23 2017-06-23 东海晶澳太阳能科技有限公司 一种全熔高效多晶硅铸锭用籽晶及其制备方法和应用
CN104962991B (zh) * 2015-05-26 2018-04-17 江苏润弛太阳能材料科技有限公司 一种石英坩埚及其制备方法
GB2550415A (en) * 2016-05-18 2017-11-22 Rec Solar Pte Ltd Silicon ingot growth crucible with patterned protrusion structured layer
CN107916451B (zh) * 2017-12-15 2019-04-02 江苏润弛太阳能材料科技有限公司 一种铸造多晶硅免喷坩埚

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070089642A1 (en) * 2005-10-21 2007-04-26 Esk Ceramics Gmbh & Co. Kg Durable hard coating containing silicon nitride
CN102400214A (zh) * 2010-09-16 2012-04-04 扬州华尔光电子材料有限公司 一种用于多晶硅锭制备的复合涂层石英坩埚
CN202717875U (zh) * 2012-03-15 2013-02-06 阿特斯(中国)投资有限公司 硅铸锭用坩埚及其内侧涂层的制备方法
CN103102170A (zh) * 2011-11-11 2013-05-15 浙江昱辉阳光能源有限公司 一种坩埚及其制备方法
CN103122479A (zh) * 2011-11-21 2013-05-29 常州市万阳光伏有限公司 用于多晶硅锭制备的组合坩埚
CN103132141A (zh) * 2011-12-05 2013-06-05 江苏协鑫硅材料科技发展有限公司 用于多晶硅铸锭炉的石墨器材的涂层组合物
CN103130512A (zh) * 2011-11-25 2013-06-05 浙江昱辉阳光能源有限公司 一种氮化硅坩埚及其制备方法
CN103320854A (zh) * 2013-06-07 2013-09-25 英利集团有限公司 坩埚用涂层结构、其制备方法及包括其的坩埚

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1739209A1 (en) * 2005-07-01 2007-01-03 Vesuvius Crucible Company Crucible for the crystallization of silicon
NO327122B1 (no) * 2007-03-26 2009-04-27 Elkem Solar As Beleggingssystem
TW200914371A (en) * 2007-06-01 2009-04-01 Gt Solar Inc Processing of fine silicon powder to produce bulk silicon
CN201842894U (zh) * 2010-09-16 2011-05-25 扬州华尔光电子材料有限公司 一种用于多晶硅锭制备的复合涂层石英坩埚
CN201857440U (zh) * 2010-11-02 2011-06-08 上海普罗新能源有限公司 太阳能级多晶硅提纯铸锭用的坩埚
US20120167817A1 (en) * 2010-12-30 2012-07-05 Bernhard Freudenberg Method and device for producing silicon blocks
CN202671713U (zh) * 2012-04-01 2013-01-16 江西赛维Ldk太阳能高科技有限公司 一种多晶硅铸锭用坩埚
CN102776561B (zh) * 2012-04-01 2017-12-15 江西赛维Ldk太阳能高科技有限公司 多晶硅锭及其制备方法、多晶硅片和多晶硅铸锭用坩埚
CN103014852B (zh) * 2013-01-10 2016-03-02 韩华新能源科技有限公司 一种用于铸造高效多晶硅锭的方法
CN103088417B (zh) * 2013-01-22 2016-08-03 晶海洋半导体材料(东海)有限公司 一种多晶铸锭用高效坩埚及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070089642A1 (en) * 2005-10-21 2007-04-26 Esk Ceramics Gmbh & Co. Kg Durable hard coating containing silicon nitride
CN102400214A (zh) * 2010-09-16 2012-04-04 扬州华尔光电子材料有限公司 一种用于多晶硅锭制备的复合涂层石英坩埚
CN103102170A (zh) * 2011-11-11 2013-05-15 浙江昱辉阳光能源有限公司 一种坩埚及其制备方法
CN103122479A (zh) * 2011-11-21 2013-05-29 常州市万阳光伏有限公司 用于多晶硅锭制备的组合坩埚
CN103130512A (zh) * 2011-11-25 2013-06-05 浙江昱辉阳光能源有限公司 一种氮化硅坩埚及其制备方法
CN103132141A (zh) * 2011-12-05 2013-06-05 江苏协鑫硅材料科技发展有限公司 用于多晶硅铸锭炉的石墨器材的涂层组合物
CN202717875U (zh) * 2012-03-15 2013-02-06 阿特斯(中国)投资有限公司 硅铸锭用坩埚及其内侧涂层的制备方法
CN103320854A (zh) * 2013-06-07 2013-09-25 英利集团有限公司 坩埚用涂层结构、其制备方法及包括其的坩埚

Also Published As

Publication number Publication date
CN103320854A (zh) 2013-09-25
CN103320854B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
WO2014194832A1 (zh) 坩埚用涂层结构、其制备方法及包括其的坩埚
CN104018219B (zh) 一种窄黑边高效多晶硅片的制备方法
CN104328490B (zh) 一种无黑边高效多晶硅锭的制备方法
CN102776561B (zh) 多晶硅锭及其制备方法、多晶硅片和多晶硅铸锭用坩埚
JP5676900B2 (ja) 多結晶シリコンインゴットの製造方法
US20080078207A1 (en) Reinforcing method of silica glass substance and reinforced silica glass crucible
CN101696514A (zh) 一种多晶锭的生产方法
CN202671713U (zh) 一种多晶硅铸锭用坩埚
CN107573101A (zh) 一种坩埚及其制备方法
CN104711673A (zh) 一种多晶硅铸锭的制备方法
CN104047048A (zh) 一种新型铸锭坩埚及其制备方法
KR20150060962A (ko) 다결정 실리콘 잉곳, 다결정 실리콘 잉곳을 제조하는 방법, 및 도가니
CN109154102A (zh) 用于石英玻璃坩埚晶体生长工艺的失透剂
CN102367572B (zh) 多晶硅铸锭坩埚喷涂免烧结方法
CN105063748B (zh) 一种多晶铸锭用高效坩埚及其制备方法
CN106986554A (zh) 一种超高纯涂层石英坩埚的制作方法
CN102061515B (zh) 一种石英玻璃坩埚及其制备方法
JP2010280529A (ja) 多結晶シリコン製造用ルツボの製造方法
JP4358555B2 (ja) シリコン単結晶引上用石英ガラスルツボとその引上方法
CN109385665A (zh) 一种适合铸造单晶使用的坩埚制备方法
CN205803636U (zh) 一种新型结构多晶铸锭炉用的坩埚
CN102453956B (zh) 一种石英玻璃坩埚及其制备方法
CN112064112A (zh) 坩埚及其制备方法和用于制备硅晶体的装置
TW201204651A (en) Vitreous silica crucible and method of manufacturing silicon ingot
CN209890760U (zh) 一种多晶硅制备坩埚

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14808379

Country of ref document: EP

Kind code of ref document: A1