WO2014192478A1 - Infrared heating unit, infrared heating device and drying device - Google Patents

Infrared heating unit, infrared heating device and drying device Download PDF

Info

Publication number
WO2014192478A1
WO2014192478A1 PCT/JP2014/061720 JP2014061720W WO2014192478A1 WO 2014192478 A1 WO2014192478 A1 WO 2014192478A1 JP 2014061720 W JP2014061720 W JP 2014061720W WO 2014192478 A1 WO2014192478 A1 WO 2014192478A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
infrared
radiation
rotation axis
heating
Prior art date
Application number
PCT/JP2014/061720
Other languages
French (fr)
Japanese (ja)
Inventor
雄樹 藤田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2014536809A priority Critical patent/JP5775224B2/en
Publication of WO2014192478A1 publication Critical patent/WO2014192478A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the present invention relates to an infrared heating unit, an infrared heating device, and a drying device.
  • Patent Document 1 discloses a rod-shaped heating element made of carbon or silicon carbide that emits infrared rays when heated, and a cylindrical protective tube made of translucent alumina ceramic in which the heating element is hermetically accommodated. Infrared heaters equipped are known.
  • This protective tube has a total transmittance of electromagnetic waves having a wavelength of 0.4 to 6 ⁇ m of 80% or more.
  • the radiation wavelength of the electromagnetic wave radiated to the object to be heated and the object to be heated with the difference in the kind of the object to be heated and the time passage during the heating process of the object to be heated
  • the radiant energy to be input separately there are cases where it is desired to adjust the radiation wavelength while keeping the radiation energy to the object to be heated constant, or to adjust the radiation energy while keeping the radiation wavelength to the object to be heated constant.
  • the temperature of the heating element is changed in order to adjust the radiation wavelength of the electromagnetic wave from the heating element, the radiation energy from the heating element also changes, and it is difficult to separately adjust the two.
  • the present invention has been made to solve such problems, and has as its main purpose to make it possible to separately adjust the radiation wavelength and radiation energy to the object to be heated.
  • the infrared heating unit of the present invention is When heated, it emits electromagnetic waves including infrared rays and can rotate around a predetermined rotation axis, and the apparent radiation area of the electromagnetic waves when viewed from a predetermined direction perpendicular to the rotation axis changes due to the rotation.
  • Shape heating element It is equipped with.
  • the apparent radiation area of the electromagnetic wave when the heating element is viewed from a predetermined direction perpendicular to the rotation axis changes. That is, for example, the apparent radiation area of the heating element can be changed independently of the change in the radiation wavelength from the heating element due to the temperature change of the heating element.
  • the apparent radiation area changes, the radiant energy of the electromagnetic wave radiated from the heating element in a predetermined direction changes. Therefore, for example, while adjusting the radiation wavelength (for example, the peak wavelength of the electromagnetic wave or the wavelength region of the electromagnetic wave) while keeping the radiation energy to the object to be heated arranged in a predetermined direction constant, the radiation wavelength to the object to be heated is constant.
  • the radiation wavelength and radiation energy to the object to be heated can be adjusted separately, for example, by adjusting the radiation energy.
  • the infrared heating unit of the present invention may include a tubular member that transmits at least part of infrared rays and surrounds the heating element.
  • the “predetermined direction perpendicular to the rotation axis” may be referred to as a “first direction”.
  • the heating element may have an elliptical shape or a polygonal shape in which a radiation surface of the electromagnetic wave has a longitudinal direction and a lateral direction when viewed in a cross section perpendicular to the rotation axis.
  • the heating element can have a relatively simple shape and “a shape in which the apparent radiation area of the electromagnetic wave changes by rotation when viewed from a predetermined direction perpendicular to the rotation axis”.
  • the infrared heating unit of the present invention may include an infrared absorber capable of absorbing at least a part of infrared rays emitted from the heating element in a direction perpendicular to the rotation axis and in a direction other than the predetermined direction. Good. In this way, infrared rays traveling in a direction other than the predetermined direction from the heating element are indirectly reflected on the object to be heated, for example, reflected from another object and reaching the object to be heated arranged in the predetermined direction from the heating element. Giving radiant energy to can be suppressed by the infrared absorber.
  • infrared rays radiated to can be absorbed, but also the case where the infrared rays radiated from the heating element in a part of the direction perpendicular to the rotation axis and other than the predetermined direction can be absorbed.
  • “can absorb at least part of infrared rays emitted from the heating element in a direction perpendicular to the rotation axis and in a direction other than the predetermined direction” is not limited to the case where all infrared rays can be absorbed. This includes the case where a part of the wavelength region can be absorbed, and the case where a part of infrared light having a certain wavelength is absorbed and partly transmitted.
  • the infrared absorber includes at least infrared rays emitted from the heating element in a direction perpendicular to the rotation axis and perpendicular to the predetermined direction. Some may be absorbable.
  • the apparent radiation area from the predetermined direction is reduced by the rotation of the heating element, the apparent radiation area from the direction perpendicular to the rotation axis and perpendicular to the predetermined direction tends to increase. Therefore, since the infrared absorber can absorb the infrared rays radiated in this direction, the effect of suppressing radiant energy from being indirectly applied to the object to be heated arranged in the predetermined direction is enhanced.
  • a direction perpendicular to the rotation axis and perpendicular to the predetermined direction may be referred to as a “second direction”.
  • the infrared absorber has an infrared absorption surface that absorbs at least part of infrared rays emitted from the heating element in a direction perpendicular to the rotation axis and perpendicular to the predetermined direction.
  • the vertical range of the infrared absorption surface may include the vertical range of the heating element. If it carries out like this, the effect which suppresses giving a radiant energy indirectly to the to-be-heated material arrange
  • the vertical range of the infrared absorption surface includes the vertical range of the heating element
  • the vertical range of the infrared absorption surface and the vertical direction of the heating element means that the vertical range of the infrared absorption surface and the vertical direction of the heating element. This includes cases where the range is equal.
  • upward direction and “downward direction” are names for distinguishing directions. For example, “upward” is not limited to the vertically upward direction, and “downward” is not limited to the vertically downward direction.
  • the infrared absorber is an infrared ray radiated from the heating element in one direction perpendicular to the rotation axis and perpendicular to the predetermined direction. It is possible to absorb at least a part of the infrared rays and at least a part of the infrared rays emitted in the other direction. If it carries out like this, the effect which suppresses giving a radiant energy indirectly to the to-be-heated material arrange
  • the infrared heating unit includes an infrared absorber disposed in one direction perpendicular to the rotation axis and a predetermined direction from the heating element, and a vertical direction from the heating element to the rotation axis and perpendicular to the predetermined direction.
  • the infrared absorber disposed in the other direction may be provided as separate members, or may be provided as an integral member.
  • the infrared absorber may have a fluid flow path through which a fluid can flow. If it carries out like this, an infrared rays absorber can be cooled by distribute
  • the heat of the fluid is used for other purposes (for example, preheating of hot air used in a drying apparatus equipped with an infrared heating unit) to effectively use energy that is not used for heating from the heating element to the object to be heated. Can be used.
  • the infrared heating unit may include fluid supply means for supplying a fluid having a temperature lower than that of the infrared absorber to the fluid flow path.
  • an infrared reflector capable of reflecting at least a part of infrared rays emitted from the electromagnetic wave in a direction opposite to the predetermined direction when viewed from the heating element.
  • the infrared reflector reflects the infrared rays, so that the object to be heated arranged in a predetermined direction as viewed from the heating element radiates in the opposite direction to the infrared ray emitted from the heating element in the predetermined direction. Together with the transmitted infrared light. Therefore, the radiant energy from the heating element can efficiently reach the object to be heated.
  • the heating element changes from the heat generation element to the predetermined direction.
  • the heating element rotates about the rotation axis, an apparent radiation area of the electromagnetic wave when the heating element is viewed from the predetermined direction, and the heating element is viewed from a direction opposite to the predetermined direction.
  • the apparent radiation area of the electromagnetic wave may change in the same tendency (the direction of increase / decrease of the radiation area accompanying the rotation is the same).
  • the heating element may have a shape in which the electromagnetic wave radiation surface is symmetrical twice with respect to the rotation axis.
  • the heating element may have a plane-symmetric shape in which the plane of radiation of the electromagnetic wave is a plane that passes through the rotation axis.
  • the infrared heating unit of the present invention may include a plurality of the heating elements arranged such that their rotation axes are parallel to each other and are aligned in a direction perpendicular to the rotation axis and perpendicular to the predetermined direction. Also in this aspect, by changing the sum of the apparent radiation areas of the electromagnetic waves when the plurality of heating elements are viewed from a predetermined direction by the rotation of the heating elements, the radiation wavelength and radiation energy to the object to be heated are separated. Can be adjusted.
  • the plurality of heating elements are arranged side by side in a direction perpendicular to the rotation axis and perpendicular to the predetermined direction, adjacent heating elements can heat each other with infrared rays from themselves. Thereby, for example, the energy required for heating the heating element can be reduced as compared with the case where two infrared heating units each having one heating element are separately arranged.
  • the infrared heating unit of the present invention may include a tubular member that absorbs infrared rays having a wavelength exceeding 3.5 ⁇ m and covers the heating element. If it carries out like this, the ratio of the infrared rays whose wavelength is 3.5 micrometers or less can be increased among the electromagnetic waves which arrive at a to-be-heated object, adjusting the radiation wavelength of the electromagnetic waves which a heat generating body radiates
  • the tubular member may cover not only the heating element but also at least one of the infrared absorber and the infrared reflector, or the infrared absorber and the infrared ray.
  • the reflector may be disposed outside the tubular member (it may not be covered with the tubular member).
  • the tubular member may transmit infrared rays of 3.5 ⁇ m or less.
  • the infrared heating unit of the present invention may include a plurality of tubular members arranged concentrically.
  • the tubular member may include an inner tubular member that covers the heating element, and an outer tubular member that covers the heating element and the inner tubular member.
  • the infrared heating device of the present invention is The infrared heating unit of the present invention according to any one of the aspects described above; Rotating means for rotating the heating element about the rotation axis; Power supply means for supplying power to the heating element; A value relating to the radiation wavelength of the heating element, a value relating to the rotational position of the heating element, and a value relating to the radiation energy from the heating element that reaches the object to be heated arranged in the predetermined direction when viewed from the heating element.
  • Correspondence storage means for storing the correspondence, Input means capable of inputting information on the radiation wavelength and information on the radiation energy; Based on the information regarding the input radiation wavelength, the information regarding the input radiation energy, and the correspondence, a value regarding the rotational position of the heating element corresponding to the input radiation wavelength and radiation energy is obtained.
  • Rotational position acquisition means for acquiring; The rotating means and the power supply means are controlled to rotate the heating element by the rotating means so that the heating element is positioned at the rotation position represented by the acquired value, and the input radiation wavelength Control means for supplying power to the heating element by the power supply means so that the heating element radiates electromagnetic waves; It is equipped with.
  • the infrared heating device of the present invention includes the infrared heating unit of the present invention according to any one of the above-described aspects, the effects of the infrared heating unit of the present invention, for example, the radiation wavelength and radiation energy to the object to be heated Can be adjusted separately.
  • the infrared heating device of the present invention includes a value relating to the radiation wavelength of the heating element, a value relating to the rotational position, and a value relating to the radiant energy from the heating element that reaches the object to be heated arranged in a predetermined direction as viewed from the heating element Is stored. And first, the value regarding the rotation position of a heat generating body is acquired based on this correspondence and the information regarding the input radiation wavelength and radiation energy.
  • the heating element is positioned at the rotation position represented by the acquired value, and the electric power supplied to the heating element and the rotation of the heating element are controlled so that the heating element radiates electromagnetic waves of the input radiation wavelength. . Therefore, the supply power and rotational position for obtaining the desired radiation wavelength and radiant energy can be appropriately adjusted simply by inputting information on the desired radiation wavelength and radiant energy.
  • the “value relating to the radiation wavelength” may be a value of the radiation wavelength itself (for example, a value of a peak wavelength or a range of the wavelength region), and is not limited to this, and the temperature of the heating element, the power supplied to the heating element , It is good also as a value which can derive radiation wavelengths, such as an output (power consumption) of a heating element.
  • the “value related to the rotational position” is not limited to the rotational position value of the heating element itself (for example, the rotation angle), but the rotational position such as the apparent radiation area of the electromagnetic wave when the heating element is viewed from a predetermined direction can be derived. A good value may be used.
  • the “value relating to the radiant energy” is not limited to the value of the radiant energy itself, and may be a value from which the radiant energy can be derived.
  • the “value relating to the radiation wavelength” and the “information relating to the radiation wavelength” may be the same or different.
  • the “value relating to the emission wavelength” may be the temperature of the heating element, and the “information relating to the emission wavelength” may be the power supplied to the heating element.
  • the input means may be capable of inputting information on the radiation wavelength and information on the radiation energy from a user.
  • the drying apparatus of the present invention includes any one of the above-described infrared heating unit of the present invention and the above-described infrared heating apparatus, and an object to be heated positioned in the predetermined direction as viewed from the heating element. It is what is dried.
  • the drying apparatus of the present invention includes the infrared heating unit of the present invention or the infrared heating apparatus of the present invention according to any one of the above-described aspects, these effects, for example, the radiation wavelength and radiation energy to the heated object Can be adjusted separately.
  • the drying apparatus of this invention is good also as what is dried, conveying a to-be-heated material, and good also as what is dried in the state which stopped the to-be-heated material.
  • FIG. 1 is a longitudinal sectional view of a drying device 10.
  • FIG. FIG. 2 is an AA cross-sectional view showing a cross section of the infrared heating unit 30 of FIG. 4 is an explanatory diagram of a heating element 32.
  • FIG. 6 is an explanatory diagram showing a relationship among a peak wavelength of an electromagnetic wave from the heating element 32, a rotation angle of the heating element 32, and a radiation energy to the coating film 82.
  • FIG. It is a conceptual diagram of correspondence data 93. It is a flowchart which shows an example of a heat generating body control routine. It is sectional drawing of the infrared heating unit 130 of a modification. It is a perspective view of the heat generating body 232 of a modification.
  • FIG. 1 is a longitudinal sectional view of a drying apparatus 10 according to an embodiment of the present invention.
  • the drying apparatus 10 performs drying of the coating film 82 as a drying target applied on the sheet 80 by using infrared rays, and the furnace body 12, the air supply device 20, the exhaust device 25, and the infrared heating unit. 30 and a controller 90.
  • the drying device 10 includes a roll 17 provided in front of the furnace body 12 (left side in FIG. 1) and a roll 18 provided in the rear of the furnace body 12 (right side in FIG. 1).
  • the drying apparatus 10 is configured as a roll-to-roll type drying furnace in which a sheet 80 having a coating film 82 formed on the upper surface is continuously conveyed by rolls 17 and 18 and dried.
  • the furnace body 12 is for drying the coating film 82.
  • the furnace body 12 is a heat insulating structure formed in a substantially rectangular parallelepiped, and is formed in the space 12a that is an internal space, and the front end face 13 and the rear end face 14 of the furnace body, and openings that serve as entrances to the space 12a from the outside. 15 and 16.
  • the furnace body 12 has a length from the front end face 13 to the rear end face 14 of, for example, 2 to 10 m.
  • the furnace body 12 includes a transfer passage 19 that is a passage from the opening 15 to the opening 16.
  • the conveyance passage 19 penetrates the furnace body 12 in the horizontal direction.
  • the sheet 80 on which the coating film 82 is applied on one side passes through the conveyance path 19.
  • the air supply device 20 is a device that supplies (blows) hot air to the surface side of the sheet 80 to dry the coating film 82 that passes through the furnace body 12.
  • the air supply device 20 includes an air supply fan 21, a pipe structure 22, and an air supply port 23.
  • the air supply fan 21 is attached to the pipe structure 22, and heats a fluid such as air to form hot air and supplies it to the inside of the pipe structure 22.
  • the air supply fan 21 supplies a second fluid described later to the inside of the pipe structure 22.
  • the supply fan 21 can adjust the flow rate and temperature of hot air.
  • the temperature of the hot air can be adjusted within a range of 40 ° C. to 200 ° C., for example.
  • the pipe structure 22 serves as a passage for hot air from the air supply fan 21.
  • the pipe structure 22 forms a passage from the air supply fan 21 through the ceiling of the furnace body 12 to the inside of the furnace body 12.
  • the air supply port 23 serves as a supply port of hot air from the air supply fan 21 to the furnace body 12.
  • the air supply port 23 is provided at an end of the furnace body 12 on the opening 16 side that is the carry-out side of the sheet 80, and opens horizontally toward the opening 15 side that is the carry-in side.
  • the air supply device 20 supplies hot air in the direction opposite to the conveyance direction of the sheet 80 (in the left direction in FIG. 1).
  • the exhaust device 25 is a device that discharges the atmospheric gas in the furnace body 12.
  • the exhaust device 25 includes an exhaust fan 26, a pipe structure 27, and an exhaust port 28.
  • the exhaust port 28 is provided at an end of the furnace body 12 on the opening 15 side that is the carry-in side of the sheet 80, and opens horizontally toward the opening 16 side that is the carry-out side.
  • the exhaust port 28 is attached to the pipe structure 27, and sucks atmospheric gas in the furnace body 12 (mainly hot air from the air supply device 20 after flowing along the surface of the coating film 82) to form the pipe structure. Guide into the body 27.
  • the pipe structure 27 serves as a flow path for the atmospheric gas from the exhaust port 28 to the exhaust fan 26.
  • the pipe structure 27 forms a passage from the exhaust port 28 through the ceiling of the furnace body 12 to the exhaust fan 26.
  • the exhaust fan 26 is attached to the pipe structure 27 and exhausts the atmospheric gas inside the pipe structure 27.
  • the infrared heating unit 30 is a device that irradiates infrared rays onto the coating film 82 passing through the furnace body 12, and a plurality of infrared heating units 30 are attached near the ceiling of the space 12 a in the furnace body 12.
  • a plurality of infrared heating units 30 (six in this embodiment) are arranged substantially evenly from the front end face 13 side to the rear end face 14 side.
  • the plurality of infrared heating units 30 have the same configuration, and are attached so that the longitudinal direction thereof is orthogonal to the transport direction of the coating film 82.
  • the configuration of one infrared heating unit 30 will be described.
  • FIG. 2 is an AA cross-sectional view showing a cross section of the infrared heating unit 30 of FIG.
  • the infrared heating unit 30 includes an infrared heater 31, infrared absorption plates 70 and 75, and a reflection plate 60 (shown only in FIG. 1).
  • the infrared heater 31 includes a Ni—Cr alloy heating element 32, an inner tube 37 provided outside the heating element 32 so as to surround the heating element 32, and an inner tube 37 provided outside the inner tube 37. And an outer tube 38 formed so as to surround the cap, and caps 40 are attached to both ends thereof (FIG. 2).
  • the infrared heater 31 includes a temperature sensor 49 that detects the surface temperature of the outer tube 38 (FIG. 2).
  • the inner tube 37 and the outer tube 38 are concentrically arranged, and the heating element 32 is located at the center of the circle.
  • FIG. 3 is an explanatory diagram of the heating element 32.
  • 3A is an explanatory view showing a state in which the heating element 32 is viewed from the rear (downward in FIG. 2)
  • FIG. 3B is a perspective view of the vicinity of the left end of the heating element 32.
  • FIG. It is.
  • the heating element 32 emits electromagnetic waves including infrared rays when heated, and is formed by spirally winding a band-shaped Ni—Cr alloy plate as shown in FIG.
  • the heating element 32 is configured to be rotatable about the rotation axis R by a driving force from the motor 56 (FIG. 2).
  • the heating element 32 is formed so that the electromagnetic wave radiation surface (the surface of the heating element 32) has an elliptical shape when viewed in a cross section perpendicular to the rotation axis R (FIGS. 1 and 3).
  • the rotation axis R is an axis parallel to the left-right direction (left-right direction in FIG. 2), and is located at the center of the ellipse of the cross section of the heating element 32. Therefore, the shape of the electromagnetic wave radiation surface of the heating element 32 is two-fold symmetric about the rotation axis R as the central axis.
  • the shape of the electromagnetic wave radiation surface of the heating element 32 is a plane-symmetric shape with a plane passing through the rotation axis R (for example, a plane in the front-rear direction or a plane in the vertical direction) as a symmetry plane.
  • the heat generating body 32 becomes a shape from which the apparent radiation area of the electromagnetic wave changes by rotation when it sees from the predetermined direction (this embodiment downward direction) perpendicular
  • connecting terminals 33 are inserted at both ends of the heating element 32 in the rotation axis direction. Further, the connection terminals 33 at both ends are respectively connected to the cylindrical shaft body 34.
  • the connection terminals 33 at both ends are made of a conductive material such as metal.
  • the shaft bodies 34 at both ends are made of, for example, an insulating material and are supported by bearings 35, respectively.
  • the bearings 35 are configured as ball bearings and are respectively supported by holders 45 disposed inside the cap 40 (FIG. 2), and rotatably support the shaft body 34.
  • the bearing 35 is not limited to a ball bearing, and may be any bearing that can support the shaft body 34 rotatably.
  • connection terminals 33 at both ends are respectively connected to a power supply source 50 disposed outside the furnace body 12 via an electrical wiring 32a, and power is supplied from the power supply source 50 to the heating element 32 to generate the heating element.
  • the heating element 32 emits electromagnetic waves including infrared rays.
  • the shaft body 34 is connected to a motor 56 that is disposed inside the furnace body 12 and configured as a servo motor such as a stepping motor, via a drive shaft 57 that penetrates the cap 40 in the rotation axis direction.
  • the motor 56 and the drive shaft 57, or the drive shaft 57 and the shaft body 34 may be connected by a cylindrical coupling (not shown).
  • the heat generating body 32, the connection terminal 33, and the shaft body 34 are integrally rotated about the rotation axis R.
  • the electric wiring 32a is bendable and has a margin in the length of the wiring in the cap 40. Therefore, even when the connection terminal 33 rotates, the electric wiring 32a and the connection terminal 33 are electrically connected. It can be maintained. Therefore, it is possible to supply power from the power supply source 50 to the heating element 32 while rotating the heating element 32 with the driving force from the motor 56.
  • the electrical wiring 32 a connected to the connection terminal 33 is drawn out to the outside airtightly via a wiring lead-out portion 47 provided in the cap 40, and is connected to the power supply source 50.
  • the cap 40 is formed by integrally molding a disc-shaped lid 44 and cylindrical portions 42 and 43 erected on the lid 44. The left and right ends of the inner tube 37 and the outer tube 38 are fixed to cylindrical portions 42 and 43, respectively.
  • the inner tube 37 and the outer tube 38 are circular tubes having a circular cross section surrounding the heating element 32, and are formed of an infrared transmitting material that transmits at least infrared rays among electromagnetic waves radiated from the heating element 32.
  • infrared transmitting materials used for the inner tube 37 and the outer tube 38 include germanium, silicon, sapphire, calcium fluoride, barium fluoride, zinc selenide, zinc sulfide, chalcogenide glass, and transmissive alumina ceramics.
  • Other examples include quartz glass that can transmit infrared rays.
  • the inner tube 37 and the outer tube 38 are made of permeable alumina ceramics.
  • the space between the inner tube 37 and the outer tube 38 is a fluid flow path 39 through which a first fluid that is a fluid such as air can be circulated.
  • the inner tube 37 and the outer tube 38 can be cooled to a predetermined upper limit (for example, 200 ° C.) or less by the first fluid flowing through the fluid flow path 39.
  • the fluid flow path 39 is a space between the inner tube 37 and the outer tube 38, and the first fluid can flow through the fluid inlet / outlet 48 provided in the cap 40.
  • the fluid inlet / outlet port 48 is connected to a first fluid supply source 52 disposed outside the furnace body 12.
  • the first fluid supplied from the first fluid supply source 52 flows into the fluid channel 39 from one fluid inlet / outlet 48, flows through the fluid channel 39, and flows out from the other fluid inlet / outlet 48.
  • the first fluid flowing through the fluid flow path 39 serves as a refrigerant that lowers the temperature of the outer tube 38 that is the outer surface of the infrared heater 31 and the temperature of the inner tube 37 or adjusts the temperature to an arbitrary temperature.
  • the reflection plate 60 is a plate-like member disposed on the upper side when viewed from the heating element 32.
  • the reflector 60 is formed so that the length in the front-rear direction (left-right direction in FIG. 1) is longer than the outer diameter of the outer tube 38 and covers the region directly above the outer tube 38 in a cross-sectional view as shown in FIG. Has been.
  • the existence range in the front-rear direction of the reflection plate 60 includes the existence range in the front-rear direction of the heating element 32 and the outer tube 38.
  • the existence range in the left-right direction of the reflection plate 60 (the front side and the back direction in FIG. 1 includes the existence range in the left-right direction of the heating element 32 and the outer tube 38.
  • This reflection plate 60 Is formed of a material capable of reflecting at least a part of infrared rays of the electromagnetic waves radiated upward from the heating element 32.
  • Examples of the material of the reflection plate 60 include metals such as SUS304 and aluminum. .
  • the infrared absorbing plates 70 and 75 are substantially rectangular parallelepiped members disposed on the front side and the rear side of the infrared heater 31 so as to sandwich the infrared heater 31 from the front-rear direction.
  • the rear (right side in FIG. 1) surface becomes an infrared absorbing surface, and absorbs at least a part of infrared rays of electromagnetic waves from the heating element 32.
  • the infrared absorption surface has a length in the vertical direction longer than the outer diameter of the outer tube 38 and is formed so as to cover a region in front of the outer tube 38 in a sectional view as shown in FIG.
  • the vertical range of the infrared absorption surface includes the vertical range of the heating element 32 and the outer tube 38.
  • the existence range in the left-right direction of the infrared absorbing plate 70 includes the existence range in the left-right direction of the heating element 32 and the outer tube 38.
  • the infrared absorbing plate 70 is formed of an infrared absorbing material capable of absorbing at least a part of infrared rays among electromagnetic waves from the heating element 32. Examples of such an infrared absorbing material used for the infrared absorbing plate 70 include a Si—SiC composite material (silicon-impregnated SiC) obtained by impregnating a porous body containing SiC with molten Si.
  • the infrared absorbing plate 70 is made of a material that absorbs most (for example, 80% or more) of electromagnetic waves in the infrared region (wavelength region of 0.7 ⁇ m to 8 ⁇ m).
  • the infrared absorption plate 70 is hollow inside, and the space inside this is a fluid flow path 72.
  • the fluid flow path 72 allows the second fluid to flow through the two fluid inlets / outlets 71 provided in the infrared absorption plate 70.
  • the second fluid may be a gas such as air or a liquid such as water. In the present embodiment, the second fluid is air.
  • the fluid inlet / outlet port 71 is connected to a second fluid supply source 54 disposed outside the furnace body 12.
  • the second fluid supplied from the second fluid supply source 54 flows into the fluid channel 72 from one fluid inlet / outlet 71, flows through the fluid channel 72, and flows out from the other fluid inlet / outlet 71.
  • circulates the fluid flow path 72 plays the role of a refrigerant
  • coolant which lowers the temperature of the infrared rays absorption plate 70 which absorbs infrared rays and is heated.
  • the infrared absorbing plate 70 can be cooled to, for example, 200 ° C. or less by the second fluid flowing in the fluid flow path 72.
  • the other fluid inlet / outlet 71 is connected to the air supply fan 21. Therefore, the air supply fan 21 uses the second fluid heated through the fluid flow path 72 as it is or further heats it and supplies it as hot air into the furnace body 12.
  • the infrared absorbing plate 75 includes a fluid inlet / outlet 76 and a fluid channel 77 formed inside.
  • the infrared absorption plate 75 is disposed on the opposite side of the infrared absorption plate 70 with the infrared heater 31 in between, and is symmetrical with the infrared absorption plate 70 with a virtual plane parallel to the vertical direction including the rotation axis R as a symmetry plane. It is configured. Since the other points are the same as the configuration of the infrared ray absorbing plate 70, detailed description thereof is omitted.
  • the sheet 80 is not particularly limited, but is a metal sheet such as aluminum or copper, for example.
  • the sheet 80 is not particularly limited, but has a thickness of 10 to 100 ⁇ m and a width of 200 to 1000 mm, for example.
  • the coating film 82 on the sheet 80 is used as an electrode for a battery after drying, for example, and is not particularly limited, but is a coating film that becomes an electrode for a lithium ion secondary battery, for example.
  • Examples of the coating film 82 include an electrode material paste obtained by kneading an electrode material (positive electrode active material or negative electrode active material), a binder, a conductive material, and a solvent together on the sheet 80.
  • the thickness of the coating film 82 is not particularly limited, but is, for example, 20 to 1000 ⁇ m.
  • the controller 90 is configured as a microprocessor centered on a CPU 91, and communicates with a flash memory 92 that stores various processing programs and various data, a RAM 94 that temporarily stores data, an operation panel 98, and the like. Internal communication interface (I / F).
  • the flash memory 92 stores correspondence data 93.
  • the correspondence data 93 includes a value relating to the radiation wavelength of the heating element 32, a value relating to the rotational position of the heating element 32, and a coating film that is an object to be heated as viewed from the heating element 32. This is data representing a correspondence relationship with a value related to radiant energy from the heating element 32 reaching 82.
  • the controller 90 outputs a control signal to the air supply fan 21 and the exhaust fan 26 to control the temperature and air volume of the hot air blown from the air supply port 23, or to exhaust the air from the exhaust port 28 in the atmosphere of the space 12a. Control the amount.
  • the controller 90 inputs the temperature of the outer tube 38 detected by the temperature sensor 49 that is a thermocouple, or outputs a control signal to an on-off valve or a flow rate adjustment valve (not shown) of the first fluid supply source 52.
  • the flow rate of the first fluid flowing through the fluid flow path 39 of the infrared heating unit 30 is controlled so that the outer tube 38 does not exceed a predetermined upper limit value.
  • the controller 90 outputs a control signal to an on-off valve and a flow rate adjustment valve (not shown) of the second fluid supply source 54 to individually control the flow rate of the second fluid flowing through the fluid flow paths 72 and 77 of the infrared absorption plates 70 and 75. Control. Further, the controller 90 outputs a control signal for adjusting the magnitude of the power supplied from the power supply source 50 to the heating element 32 to the power supply source 50, and thereby the heating element temperature and output of the infrared heating unit 30. Control individually. The controller 90 outputs a control signal to the motor 56 to control the rotational position of the heating element 32.
  • the controller 90 adjusts the passing time of the sheet 80 and the coating film 82 in the furnace body 12 and the tension applied to the sheet 80 and the coating film 82 by controlling the rotation speed of the rolls 17 and 18.
  • the controller 90 inputs an operation signal generated in response to an operation on the operation panel 98 and outputs a display command to the operation panel 98.
  • the controller 90 includes a rotational position acquisition unit 95, a control unit 96, and the like as functional blocks.
  • the rotational position acquisition unit 95 calculates the input radiation wavelength and radiation energy based on the information on the radiation wavelength and radiation energy of the heating element 32 input from the user via the operation panel 98 and the correspondence data 93. It has a function of acquiring a value related to the rotational position of the corresponding heating element 32.
  • the control unit 96 controls the motor 56 and the power supply source 50 to rotate the heating element 32 by the motor 56 so that the heating element 32 is positioned at the rotation position represented by the value acquired by the rotation position acquisition unit 95.
  • the power supply source 50 supplies power to the heating element 32 so that the heating element 32 radiates electromagnetic waves having a radiation wavelength input via the operation panel 98.
  • the rotational position acquisition unit 95 and the control unit 96 may be configured as hardware, or may be configured as software that exhibits functions by the CPU 91 executing a program stored in the flash memory 92. .
  • the operation panel 28 includes a display unit and an operation unit configured to include the display unit.
  • the display unit is configured as a touch panel type liquid crystal display, a selection / setting button for selecting menus and items, numeric buttons for inputting various numerical values such as the radiation wavelength and radiation energy of the heating element 32, and a drying process.
  • a start button or the like to be started is displayed to accept a touch operation, and an operation signal based on the touch operation is transmitted to the controller 90. Further, when a display command is received from the controller 90, an image, a character, a numerical value, or the like based on the display command is displayed on the display unit.
  • FIG. 4 is an explanatory diagram showing the relationship between the radiation wavelength (peak wavelength) of the electromagnetic wave from the heating element 32, the rotational position (rotation angle) of the heating element 32, and the radiation energy to the coating film 82.
  • 4A is an explanatory view showing a state when the rotation angle of the heating element 32 is 0 °
  • FIG. 4B is an explanation showing a state when the rotation angle of the heating element 32 is 90 °.
  • the apparent radiation area of the electromagnetic wave when the heating element 32 is viewed from below changes as the heating element 32 rotates.
  • the rotation angle of the heating element 32 is 90 °
  • the shape factor F is also reduced.
  • the radiant energy reaching the coating film 82 from the heating element 32 is smaller than when the rotation angle is 0 ° (see the lower graph of FIG. 4B). (See solid line).
  • the apparent radiation area of the heating element 32 can be changed so as to suppress a change in radiant energy caused by changing the output of the heating element 32.
  • the electromagnetic wave from the heating element 32 when the output is 25% and the rotation angle is 0 ° (the broken line in the lower graph of FIG. 4B) and the heat generation when the output is 100% and the rotation angle is 90 °.
  • the radiant energy reaching the coating film 82 is almost the same as the electromagnetic wave from the body 32 (solid line in the lower graph of FIG. 4B), and both shifted the peak wavelength and the wavelength region of the electromagnetic wave by 1 ⁇ m. It has become a relationship.
  • the infrared heating unit 30 includes the infrared absorbing plates 70 and 75, the value of the form factor F corresponding to the rotational position of the heating element 32 includes the arrangement and size of the infrared absorbing plates 70 and 75, and the like. Also affects. Further, since the infrared heating unit 30 includes the inner tube 37, the outer tube 38, the reflection plate 60, and the infrared absorption plates 70 and 75, the radiant energy reaching the coating film 82 from the heating element 32 is arranged and sized in these. It is also affected by the reflected wavelength region and the absorbing wavelength region.
  • Data representing the correspondence relationship between the value relating to the radiant energy from the heating element 32 reaching the coating film 82 is stored in the flash memory 92 in advance as correspondence relationship data 93.
  • FIG. 5 is a conceptual diagram of the correspondence data 93.
  • the output of the heating element 32 is used as a value related to the radiation wavelength of the heating element 32
  • the rotation angle of the heating element 32 is used as a value related to the rotational position of the heating element 32.
  • a correspondence relationship with the radiant energy reaching the coating film 82 is stored as a map. As can be seen from FIG. 5, when the rotation angle of the heating element 32 changes between ⁇ 90 ° and 90 °, the radiant energy reaching the coating film 82 becomes maximum when the rotation angle is 0 °, and the rotation angle is The minimum is at 90 ° and -90 °.
  • FIG. 5 shows the correspondence when the output of the heating element 32 is 25%, 50%, 75%, and 100%, but the correspondence data 93 corresponds to the case where the output of the heating element 32 is other than this. Relationships are also included. In the present embodiment, it is assumed that the correspondence data 93 stores the correspondence in increments of 1% over the range of 10 to 100% of the output of the heating element 32. Such correspondence data 93 may be obtained in advance by experiments, for example, or may be derived in advance by calculation using simulation or the like.
  • the rotation angle is changed between ⁇ 90 ° and 90 °, but the rotation angle is ⁇ It may be changed between 180 ° and 180 °.
  • the radiant energy that reaches the coating film 82 (vertical axis in FIG. 5) reaches the coating film 82 via the radiation energy that directly reaches the coating film 82 from the heating element 32 and the reflection on the reflection plate 60. Radiant energy to be included.
  • the shape of the radiation surface of the electromagnetic wave of the heating element 32 is two-fold symmetric about the rotation axis R, the apparent radiation area when the heating element 32 is viewed from above, and the downward direction Is equal to the apparent radiation area when viewed from above, and changes in the same way as the rotation angle changes.
  • the rotation angle is 0 °
  • the radiant energy that directly reaches the coating film 82 from the heating element 32 is maximized, and the radiant energy that directly reaches the coating film 82 from the heating element 32 is reflected on the reflection plate 60.
  • the sum of the radiant energy that reaches and reaches the maximum is also maximized when the rotation angle is 0 °.
  • the various setting values input from the user by the operation panel 98 include information on the radiation wavelength from the heating element 32 and the radiation energy to the coating film 82 for each of the five infrared heating units 30.
  • the various set values include the temperature and amount of hot air from the air supply device 20, the exhaust amount of the atmosphere in the space 12a by the exhaust device 25, the upper limit value of the surface temperature of the outer pipe 38, and the fluid flow paths 72 and 77. Values such as the flow rate of the second fluid and the passage time of the coating film 82 in the furnace body 12 are included.
  • the controller 90 inputs various setting values from the user in response to an operation signal from the operation panel 98, stores them in the RAM 94, and starts a drying process based on the stored various setting values. Specifically, first, the rolls 17 and 18 are rotated at a speed based on the passing time input by the controller 90, and the conveyance of the sheet 80 is started. As a result, the sheet 80 is unwound from the roll 17 disposed at the left end of the drying apparatus 10. The sheet 80 is coated with a coating film 82 on the upper surface by a coater (not shown) immediately before being brought into the furnace body 12 from the opening 15. And the sheet
  • the controller 90 controls the air supply fan 21, the exhaust fan 26, the first fluid supply source 52, and the second fluid supply source 54 based on the input set values.
  • the controller 90 controls the power supply source 50 and the motor 56 based on the input information on the radiation wavelength from the heating element 32 and the radiation energy to the coating film 82 to control the output and rotation position of the heating element 32.
  • a heating element control routine (described later) to be controlled is executed.
  • the hot air from the air supply device 20 heats the coating film 82 and the sheet 80 or removes the solvent evaporated from the coating film 82.
  • the hot air containing the solvent evaporated from the coating film 82 is discharged by the exhaust device 25.
  • the coating film 82 is dried while passing through the furnace body 12 to become the electrode described above, and is carried out from the opening 16. And this electrode (coating film 82) is wound up with the sheet
  • FIG. 6 is a flowchart illustrating an example of the heating element control routine.
  • the controller 90 receives information on the radiation wavelength from the heating element 32 and the radiation energy to the coating film 82 via the operation panel 98 from the user, and an operation signal indicating that the start button has been pressed. Executed when entered. This routine is executed by the CPU 91 using the functions of the rotational position acquisition unit 95 and the control unit 96.
  • the heating element control routine of FIG. 6 is executed for each of the five infrared heating units 30 of FIG. 1, but since the processing contents are the same, here, for one infrared heating unit 30. Processing will be described.
  • the CPU 91 When this heating element control routine is executed, the CPU 91 first stores in the RAM 94 information regarding the input radiation wavelength from the heating element 32 and radiation energy to the coating film 82 (step S100). In the present embodiment, a value representing the peak wavelength of the electromagnetic wave from the heating element 32 is input from the user via the operation panel 98 as information regarding the emission wavelength. Further, as the information on the radiant energy, the value of the radiant energy that reaches the coating film 82 from the heating element 32 itself is input. Subsequently, the CPU 91 derives the output of the heating element 32 based on the peak wavelength value stored in step S100 (step S110).
  • the CPU 91 acquires the rotation angle corresponding to the value of the radiant energy stored in step S100 and the output of the heating element 32 derived in step S110 based on the correspondence relationship data 93 (step S120).
  • the correspondence data 93 is data representing the correspondence of three parameters of the output of the heating element 32, the rotation angle of the heating element 32, and the radiant energy reaching the coating film 82.
  • step S130 power is supplied from the power supply source 50 so that the output of the heating element 32 becomes the output derived in step S110. Further, the driving force is output from the motor 56 so that the rotation angle of the heating element 32 becomes the rotation angle derived in step S120.
  • the heating element 32 When the heating element 32 generates heat in the state of the rotation angle and output, the peak wavelength of the electromagnetic wave of the heating element 32 in the drying process of the coating film 82 and the radiant energy reaching the coating film 82 from the heating element 32 are Becomes the input value, that is, the desired value.
  • the peak wavelength of electromagnetic waves and the radiation energy reaching the coating film 82 from the heating element 32 can be individually adjusted.
  • the output of the heating element 32 is 100% (peak wavelength is 3 ⁇ m)
  • the rotation angle is 90 °
  • the two on the rear side are
  • the peak wavelength of the electromagnetic wave radiated to the coating film 82 between the front side and the rear side of the furnace body 12 by setting the output of the heating element 32 to 25% (peak wavelength is 4 ⁇ m) and the rotation angle to 0 °,
  • the radiant energy from the five infrared heating units 30 to the coating film 82 can be made substantially equal.
  • the radiant energy from the three front infrared heating units 30 with relatively high outputs is prevented from becoming too large while changing the peak wavelength of the electromagnetic wave radiated to the coating film 82 in accordance with the drying state of the coating film 82.
  • temperature unevenness or overheating of the coating film 82 in the furnace body 12 can be suppressed.
  • the infrared heating unit 30 of the present embodiment corresponds to the infrared heating unit of the present invention
  • the heating element 32 corresponds to the heating element.
  • the infrared absorbing plates 70 and 75 correspond to an infrared absorber
  • the fluid flow paths 72 and 77 correspond to a fluid flow path
  • the reflector 60 corresponds to an infrared reflector.
  • the motor 56 corresponds to the rotation means
  • the power supply source 50 corresponds to the power supply means
  • the flash memory 92 that stores the correspondence data 93 corresponds to the correspondence storage means
  • the operation panel 98 corresponds to the input means
  • the rotational position acquisition unit 95 corresponds to a rotational position acquisition unit
  • the control unit 96 corresponds to a control unit.
  • the infrared heating unit 30, the motor 56, the power supply source 50, the controller 90 including the flash memory 92, the rotational position acquisition unit 95 and the control unit 96, and the operation panel 98 correspond to the infrared heating device of the present invention.
  • the drying device 10 corresponds to the drying device of the present invention.
  • the infrared heating unit 30 of the present embodiment described above radiates electromagnetic waves including infrared rays when heated, can rotate around the rotation axis R, and is viewed from the lower direction perpendicular to the rotation axis R.
  • the heating element 32 has a shape in which the apparent radiation area changes with rotation. Therefore, for example, the apparent radiation area of the heating element 32 can be changed independently of the change in the radiation wavelength from the heating element 32 due to the temperature change of the heating element 32. When the apparent radiation area changes, the radiation energy of the electromagnetic wave radiated downward from the heating element 32 changes.
  • the radiation wavelength (for example, the peak wavelength of the electromagnetic wave or the wavelength region of the electromagnetic wave) is adjusted while the radiation energy to the coating film 82 arranged in the downward direction is constant, or the radiation wavelength to the coating film 82 is constant.
  • the radiation wavelength and radiation energy to the coating film 82 can be adjusted separately, for example, by adjusting the radiation energy.
  • the heating element 32 when the heating element 32 is viewed in a cross section perpendicular to the rotation axis R, the radiation surface of the electromagnetic wave has an elliptical shape. Therefore, it is possible to make the heating element 32 “a shape in which the apparent radiation area of the electromagnetic wave when viewed from below changes by rotation” with a relatively simple shape.
  • the infrared heating unit 30 includes infrared absorbing plates 70 and 75 capable of absorbing at least a part of infrared rays emitted from the heating element 32 in a direction perpendicular to the rotation axis R and other than the lower direction among the electromagnetic waves. .
  • infrared rays traveling in a direction other than the downward direction from the heating element 32 are reflected on other objects such as the wall of the furnace body 12 and reach the coating film 82 indirectly. It can suppress giving energy.
  • the infrared absorbing plates 70 and 75 such a situation can be suppressed, and the adjustment of the radiation energy by the rotation of the heating element 32 can be made more sufficient.
  • the apparent radiation area from the lower direction is reduced by the rotation of the heating element 32, the apparent radiation area from the front-rear direction perpendicular to the rotation axis R and perpendicular to the lower direction is likely to increase. Therefore, the infrared absorbing plates 70 and 75 can absorb the infrared rays radiated in the front-rear direction, so that the effect of suppressing the application of radiant energy indirectly to the coating film 82 arranged in the downward direction is enhanced.
  • the infrared absorbing plates 70 and 75 have an infrared absorbing surface that absorbs at least a part of infrared rays emitted from the heating element 32 in the front-rear direction, and the existence range in the vertical direction of the infrared absorbing surface is the heating element 32.
  • the range of the vertical direction is included. Therefore, the effect which suppresses giving a radiant energy indirectly to the coating film 82 further increases.
  • the infrared heating unit 30 includes an infrared absorbing plate 70 capable of absorbing at least a part of infrared rays radiated from the heating element 32 in the front-rear direction among the electromagnetic waves, and the rear direction in the front-rear direction. And an infrared ray absorbing plate 75 capable of absorbing at least a part of the infrared ray radiated to the surface. Therefore, the effect which suppresses giving a radiant energy indirectly to the coating film 82 further increases.
  • the infrared absorption plates 70 and 75 have fluid flow paths 72 and 77 through which the second fluid can flow. Therefore, the infrared absorbing plates 70 and 75 can be cooled by allowing the second fluid to flow through the fluid flow paths 72 and 77. Thereby, it can suppress that the infrared rays absorption plates 70 and 75 itself become an infrared radiation source. Moreover, the heat which is not used for the heating from the heat generating body 32 to the coating film 82 can be effectively utilized by using the heat of the second fluid for preheating of hot air supplied by the air supply device 20.
  • the infrared heating unit 30 includes a reflector 60 capable of reflecting at least a part of infrared rays radiated upward as viewed from the heating element 32 among the electromagnetic waves.
  • the sum of the apparent radiation area of the electromagnetic wave when viewed from the direction and the apparent radiation area of the electromagnetic wave when viewed from above is a shape that changes by rotation.
  • the reflecting plate 60 reflects the infrared rays, so that both the infrared rays emitted downward from the heating element 32 and the infrared rays emitted upward can reach the coating film 82. Therefore, the radiant energy from the heating element 32 can efficiently reach the coating film 82.
  • the heating element 32 changes from the heating element 32 to the coating film 82.
  • the sum of the radiant energy that reaches directly and the radiant energy that arrives after being reflected by the reflector 60 also changes by rotation. Therefore, even if the reflection plate 60 exists, the radiant energy can be adjusted by the rotation of the heating element 32.
  • the flash memory 92 of the controller 90 includes a value relating to the radiation wavelength of the heating element 32, a value relating to the rotational position, and a value relating to the radiation energy from the heating element 32 reaching the coating film 82.
  • Correspondence relation data 93 representing the correspondence relation is stored.
  • a value related to the rotational position of the heating element 32 is acquired based on this correspondence and information on the radiation wavelength and radiation energy input to the operation panel 98.
  • the rotation of the heating element 32 by the motor 56 is controlled. Therefore, the supply power and rotational position for obtaining the desired radiation wavelength and radiant energy can be appropriately adjusted only by the user inputting information regarding the desired radiation wavelength and radiant energy.
  • the infrared heating unit 30 includes one heating element 32.
  • the present invention is not limited thereto, and may include a plurality of heating elements 32.
  • FIG. 7 is a cross-sectional view of an infrared heating unit 130 of a modified example in this case.
  • the infrared heating unit 130 further includes an infrared heater 131 in addition to the components of the infrared heating unit 30.
  • the infrared heater 131 includes a heating element 132, an inner tube 137, an outer tube 138, and the like.
  • the configuration of the infrared heater 131 is the same as that of the infrared heater 31.
  • the infrared heater 131 has a rotation axis R2 parallel to the rotation axis R of the infrared heating unit 30, and the heating element 132 can rotate around the rotation axis R2.
  • the heating element 32 and the heating element 132 are arranged so as to be aligned in the front-rear direction perpendicular to the rotation axes R and R2 and perpendicular to the predetermined direction (downward direction).
  • the infrared absorbing plate 75 is disposed behind the infrared heater 131, and the infrared absorbing plates 70 and 75 are positioned so as to sandwich the infrared heaters 31 and 131 from the front and rear.
  • One reflector 160 is provided as a common reflector for the infrared heater 31 and the infrared heater 131.
  • the existence range in the front-rear direction of the reflecting plate 160 includes the existence range in the front-rear direction of the heating elements 32 and 132 and the outer tubes 38 and 138.
  • this infrared heating unit 130 for example, by making the heating element 32 and the heating element 132 have the same rotation angle after rotation, the apparent radiation area of electromagnetic waves when the heating elements 32, 132 are viewed from below. Can be changed by the rotation of the heating elements 32 and 132.
  • the form factor of the surface of the coating film 82 with respect to the radiation surface of the heat generating elements 32 and 132 can be changed, and the radiation wavelength and radiation energy to the coating film 82 are adjusted separately similarly to the infrared heating unit 30. be able to.
  • the adjacent heating elements 32 and 132 can heat each other with infrared rays from themselves. Thereby, for example, the energy required for heating the heating elements 32 and 132 can be reduced as compared with the case where two infrared heating units 30 each having one heating element 32 are separately arranged.
  • the infrared heating unit may have three or more heating elements.
  • the infrared heating unit 130 may not include the inner tube 137 and the outer tube 138, and the heating element 32 and the heating element 132 may be arranged in the same inner tube 37 and outer tube 38. .
  • the heating element 32 has an elliptical shape perpendicular to the rotation axis R.
  • the shape is not limited to this as long as the apparent radiation area of the electromagnetic wave changes.
  • the electromagnetic wave radiation surface may have a polygonal shape having a longitudinal direction and a lateral direction.
  • the shape of the heating element 32 may be a flat plate shape, and the cross section perpendicular to the rotation axis R may be a rectangle.
  • the heating element 32 has a shape of an electromagnetic wave radiation surface that is twice symmetrical about the rotation axis R as a central axis, the present invention is not limited thereto.
  • the heating element 32 has a plane-symmetric shape in which the plane of the radiation surface of the electromagnetic wave passes through the rotation axis R is a plane of symmetry, the present invention is not limited to this.
  • the shape of a several heat generating body may be the same, and may differ.
  • FIG. 8 is a perspective view of a heating element 232 according to a modification.
  • the heating element 232 is, for example, a carbon heating element (carbon filament), and is formed in a flat plate shape whose longitudinal direction is along the rotation axis R. Further, the heating element 232 is directed from one surface (upper surface in FIG. 8) to the other surface (lower surface in FIG. 8) surrounded by the longest side and the shortest side of the flat plate (cuboid). A plurality of first grooves 236 a formed in this way and second grooves 236 b formed from the other surface toward one surface are alternately formed along the longitudinal direction of the heating element 232. By forming the first groove 236a and the second groove 236b, the heating element 232 is formed in a zigzag shape.
  • the reason why such a shape is used is to increase the resistance value of the heating element 232 to an appropriate value.
  • Electrical wirings 32a are respectively connected to both ends of the zigzag path of the heating element 232 (the lower right end and the lower left end of the heating element 232 in FIG. 8).
  • shafts 34 are connected to both ends of the heating element 232 in the longitudinal direction.
  • the heating element 232 has a rectangular electromagnetic wave radiation surface (surface of the heating element 232) when viewed in a cross section perpendicular to the rotation axis R, and the rotation axis R is located at the center of the rectangle.
  • the shape of the electromagnetic wave radiation surface of the heating element 232 is two-fold symmetric about the rotation axis R as a central axis. Similar to the heating element 32 of the present embodiment, this heating element 232 also has an apparent radiation area of electromagnetic waves when the heating element 232 is viewed from a direction perpendicular to the rotation axis R by rotating about the rotation axis R. Change.
  • the rotation axis R is located at the center of the ellipse of the cross section of the heating element 32, but is not limited thereto.
  • the rotation axis R may be located other than the center of the ellipse of the cross section of the heating element 32. That is, the rotation axis R may be eccentric.
  • the infrared heating unit 30 includes the infrared absorbing plates 70 and 75, but is not limited thereto.
  • any one of the infrared absorption plates 70 and 75 may be provided, or none may be provided.
  • an infrared absorbing plate may be disposed at a position other than the downward direction when viewed from the heating element 32.
  • an infrared absorbing plate may be disposed above the heating element 32 instead of providing the reflecting plate 60.
  • the infrared absorbing plate may be disposed above the heating element 32.
  • the infrared absorption plates 70 and 75 have the vertical range of the infrared absorption surface including the vertical range of the heating element 32, the present invention is not limited to this.
  • any one or more of the infrared absorbing plates 70 and 75 may have a vertical length that is less than the vertical length of the heating element 32.
  • the infrared absorption plates 70 and 75 are provided with the fluid flow paths 72 and 77, but the present invention is not limited thereto.
  • any one or more of the infrared absorbing plates 70 and 75 may not include a fluid flow path.
  • the second fluid flowing through the fluid flow paths 72 and 77 is air, but it may be another gas, for example, a liquid such as water.
  • the air supply fan 21 supplies the second fluid preheated through the fluid flow paths 72 and 77 as hot air into the furnace body 12, but is not limited thereto.
  • heat exchange is performed between the second fluid preheated through the fluid flow paths 72 and 77 and the other fluid, and the other fluid preheated thereby is supplied to the inside of the furnace body 12 by the supply fan 21 as hot air. It is good also as what supplies to. Or it is good also as what does not utilize the heat
  • the correspondence relationship data 93 is data representing the correspondence relationship between the output of the heating element 32, the rotation angle of the heating element 32, and the radiant energy reaching the coating film 82.
  • a value relating to the radiation wavelength, a value relating to the rotational position of the heating element 32, and a value relating to the radiation energy from the heating element 32 that reaches the coating film 82, which is an object to be heated as viewed from the heating element 32 It only needs to indicate a correspondence relationship.
  • the “value relating to the radiation wavelength” is not limited to the output of the heating element 32 but may be a peak wavelength or a range of a wavelength region.
  • the radiant energy in the wavelength range of 3 ⁇ m to 5 ⁇ m out of the total radiant energy of the electromagnetic wave from the heating element 32 may be 90% or more. Or it is good also as a value which can derive radiation wavelengths, such as the temperature of the heat generating body 32, and the electric power supplied to the heat generating body 32.
  • the “information regarding the radiation wavelength” input via the operation panel 98 may be not limited to the peak wavelength but may be in the range of the wavelength region, or may be a value from which the radiation wavelength can be derived.
  • the “value relating to the rotational position” is not limited to the rotation angle of the heat generating element 32, and may be a value from which the rotational position can be derived, such as an apparent radiation area of electromagnetic waves when the heat generating element 32 is viewed from below.
  • the “value relating to the radiant energy” is not limited to the value of the radiant energy, but may be any value that can derive the radiant energy.
  • the “value relating to the radiation wavelength” used in the correspondence data 93 and the “information relating to the radiation wavelength” input via the operation panel 98 may be the same or different. The same applies to “value regarding radiant energy” and “information regarding radiant energy”.
  • the motor 56 adjusts the rotation angle of the heating element 32, but is not limited thereto. Any device or mechanism other than a motor may be used as long as the heating element 32 rotates about the rotation axis R.
  • the controller 90 and the motor 56 of the present embodiment are not limited to the case where the heating element 32 is automatically rotated, and the user manually adjusts the rotation angle of the heating element 32 assuming that the motor 56 is not provided. Also good.
  • the peak wavelength when the output of the heating element 32 changes between 25% and 100%, the peak wavelength changes between 4 ⁇ m and 3 ⁇ m.
  • the peak wavelength of the electromagnetic wave from the heating element 32 may be changed in the infrared region (wavelength of 0.7 ⁇ m to 8 ⁇ m) as the output of the heating element 32 changes.
  • the Ni—Cr alloy is exemplified as the material of the heating element 32, but it is not particularly limited as long as it emits infrared rays when heated.
  • any of W (tungsten), Mo, Ta, and Fe—Cr—Al alloy may be used.
  • the heating element 32 may be a heating element made of carbon such as carbon fiber.
  • a material that does not require airtightness is preferable, for example, it is not necessary to maintain the periphery of the heating element in a nitrogen atmosphere.
  • the inner tube 37 and the outer tube 38 transmit at least infrared rays among the electromagnetic waves radiated from the heating element 32.
  • the inner tube 37 and the outer tube 38 only need to transmit at least part of infrared rays.
  • the inner tube 37 and the outer tube 38 may be formed of a material (for example, quartz glass) that absorbs infrared light having a wavelength exceeding 4 ⁇ m and transmits infrared light having a wavelength of 4 ⁇ m or less.
  • the inner tube 37 and the outer tube 38 may be formed of a material (for example, quartz glass) that absorbs infrared light having a wavelength exceeding 3.5 ⁇ m and transmits infrared light having a wavelength of 3.5 ⁇ m or less.
  • the heating element 32 is rotated without rotating the inner tube 37 and the outer tube 38 of the infrared heater 31.
  • the present invention is not limited to this, and at least the heating element 32 can be rotated.
  • the entire infrared heater 31 including the inner tube 37 and the outer tube 38 may be configured to be rotatable.
  • the coating film 82 that is an object to be heated is exemplified as a coating film serving as an electrode for a lithium ion secondary battery, but the heating target is not limited thereto.
  • the sheet 80 may be made of a PET film, and the coating film 82 may be used as a thin film for MLCC (multilayer ceramic capacitor) after drying.
  • the coating film 82 in this case contains, for example, ceramic powder or metal powder, an organic binder, and an organic solvent.
  • the coating film 82 may be used as a thin film for LTCC (low temperature fired ceramics) or other green sheets.
  • the drying apparatus 10 is a roll-to-roll type drying furnace that continuously transports the coating film 82 and performs drying, but is not limited thereto.
  • the drying apparatus 10 may be configured as a continuous furnace other than the roll-to-roll method, or may be configured as a batch furnace that performs drying while the coating film 82 is stopped in the furnace body 12.
  • the operation panel 98 inputs information on the radiation wavelength from the heating element 32 and the radiation energy to the coating film 82, but the present invention is not limited to this.
  • information on the radiation wavelength from the heating element 32 and the radiation energy to the coating film 82 may be stored in the flash memory 92 in advance, and the CPU 91 may input (read) this information from the flash memory 92.
  • the CPU 91 corresponds to input means in the infrared heating unit of the present invention.
  • the present invention can be used in industries that require heating and drying using infrared rays, such as the battery industry for producing electrode coatings for lithium ion secondary batteries, and the ceramics industry for producing MLCC or LTCC.

Abstract

An infrared heating unit (30) is provided with a heating element (32) radiating an electromagnetic wave containing infrared when heated, rotatable around a rotation axis (R) and shaped in such a way that, when viewed from underneath in a direction orthogonal to the rotation axis (R), the apparent radiation surface area of the electromagnetic wave varies according to the rotation. In addition, when the heating element (32) is viewed in a cross-section orthogonal to the rotation axis (R), the electromagnetic wave radiation surface is elliptically shaped. In addition, the infrared heating unit (30) is provided with infrared-absorbing plates (70,75) capable of absorbing, among the electromagnetic wave, at least a portion of the infrared radiated from the heating element (32) in a direction other than a direction orthogonal to the rotation axis (R) and downward. Further, the infrared-absorbing plates (70,75) are capable of absorbing, among the electromagnetic wave, at least a portion of the infrared radiated from the heating element (32) in an orthogonal direction (= front-back direction) to the direction orthogonal to the rotation axis (R) and downward.

Description

赤外線加熱ユニット,赤外線加熱装置及び乾燥装置Infrared heating unit, infrared heating device and drying device
 本発明は、赤外線加熱ユニット,赤外線加熱装置及び乾燥装置に関する。 The present invention relates to an infrared heating unit, an infrared heating device, and a drying device.
 従来、赤外線を放射して塗膜などの被加熱対象を加熱する赤外線加熱ユニットが知られている。例えば、特許文献1には、加熱すると赤外線を放出するカーボン又は炭化珪素からなるロッド状の発熱体と、この発熱体が気密的に収容された透光性アルミナセラミックス製筒形状の保護管とを備えた赤外線ヒーターが知られている。この保護管は、0.4~6μmの波長の電磁波の全透過率が80%以上である。 Conventionally, an infrared heating unit that heats an object to be heated such as a coating film by emitting infrared rays is known. For example, Patent Document 1 discloses a rod-shaped heating element made of carbon or silicon carbide that emits infrared rays when heated, and a cylindrical protective tube made of translucent alumina ceramic in which the heating element is hermetically accommodated. Infrared heaters equipped are known. This protective tube has a total transmittance of electromagnetic waves having a wavelength of 0.4 to 6 μm of 80% or more.
特開2006-294337号公報JP 2006-294337 A
 ところで、このような赤外線加熱ユニットにおいて、被加熱物の種類の違いや、被加熱物の加熱工程中の時間経過などに伴って、被加熱物に放射する電磁波の放射波長と、被加熱物に投入する放射エネルギーと、を別々に調整したいという要望があった。例えば、被加熱物への放射エネルギーを一定にしつつ放射波長を調整したい場合や、被加熱物への放射波長を一定にしつつ放射エネルギーを調整したい場合があった。しかし、例えば発熱体からの電磁波の放射波長を調整するために発熱体の温度を変化させると、発熱体からの放射エネルギーも変化してしまい、両者を別々に調整することは困難であった。 By the way, in such an infrared heating unit, the radiation wavelength of the electromagnetic wave radiated to the object to be heated and the object to be heated with the difference in the kind of the object to be heated and the time passage during the heating process of the object to be heated There was a desire to adjust the radiant energy to be input separately. For example, there are cases where it is desired to adjust the radiation wavelength while keeping the radiation energy to the object to be heated constant, or to adjust the radiation energy while keeping the radiation wavelength to the object to be heated constant. However, for example, if the temperature of the heating element is changed in order to adjust the radiation wavelength of the electromagnetic wave from the heating element, the radiation energy from the heating element also changes, and it is difficult to separately adjust the two.
 本発明はこのような課題を解決するためになされたものであり、被加熱物への放射波長と放射エネルギーとを別々に調整可能にすることを主目的とする。 The present invention has been made to solve such problems, and has as its main purpose to make it possible to separately adjust the radiation wavelength and radiation energy to the object to be heated.
 本発明の赤外線加熱ユニットは、
 加熱されると赤外線を含む電磁波を放射し、所定の回転軸を中心に回転可能であり、該回転軸と垂直な所定方向から見た際の前記電磁波の見かけの放射面積が該回転により変化する形状の発熱体、
 を備えたものである。
The infrared heating unit of the present invention is
When heated, it emits electromagnetic waves including infrared rays and can rotate around a predetermined rotation axis, and the apparent radiation area of the electromagnetic waves when viewed from a predetermined direction perpendicular to the rotation axis changes due to the rotation. Shape heating element,
It is equipped with.
 この本発明の赤外線加熱ユニットでは、発熱体が回転することで、回転軸と垂直な所定方向から発熱体を見た際の前記電磁波の見かけの放射面積が変化する。すなわち、例えば発熱体の温度変化による発熱体からの放射波長の変化とは独立して、発熱体の見かけの放射面積を変化させることができる。そして、見かけの放射面積が変化すると、発熱体から所定方向に放射される電磁波の放射エネルギーが変化する。そのため、例えば、所定方向に配置された被加熱物への放射エネルギーを一定にしつつ放射波長(例えば電磁波のピーク波長や電磁波の波長領域など)を調整したり、被加熱物への放射波長を一定にしつつ放射エネルギーを調整したりするなど、被加熱物への放射波長と放射エネルギーとを別々に調整することができる。本発明の赤外線加熱ユニットは、赤外線の少なくとも一部を透過し前記発熱体を囲む管状部材、を有していてもよい。ここで、「該回転軸と垂直な所定方向」は、「第1方向」と称してもよい。 In the infrared heating unit of the present invention, when the heating element rotates, the apparent radiation area of the electromagnetic wave when the heating element is viewed from a predetermined direction perpendicular to the rotation axis changes. That is, for example, the apparent radiation area of the heating element can be changed independently of the change in the radiation wavelength from the heating element due to the temperature change of the heating element. When the apparent radiation area changes, the radiant energy of the electromagnetic wave radiated from the heating element in a predetermined direction changes. Therefore, for example, while adjusting the radiation wavelength (for example, the peak wavelength of the electromagnetic wave or the wavelength region of the electromagnetic wave) while keeping the radiation energy to the object to be heated arranged in a predetermined direction constant, the radiation wavelength to the object to be heated is constant. The radiation wavelength and radiation energy to the object to be heated can be adjusted separately, for example, by adjusting the radiation energy. The infrared heating unit of the present invention may include a tubular member that transmits at least part of infrared rays and surrounds the heating element. Here, the “predetermined direction perpendicular to the rotation axis” may be referred to as a “first direction”.
 本発明の赤外線加熱ユニットにおいて、前記発熱体は、前記回転軸に垂直な断面で見たときに、前記電磁波の放射面が楕円形状又は長手方向と短手方向とを有する多角形状としてもよい。こうすれば、比較的単純な形状で、発熱体を「回転軸と垂直な所定方向から見た際の電磁波の見かけの放射面積が回転により変化する形状」とすることができる。 In the infrared heating unit of the present invention, the heating element may have an elliptical shape or a polygonal shape in which a radiation surface of the electromagnetic wave has a longitudinal direction and a lateral direction when viewed in a cross section perpendicular to the rotation axis. In this way, the heating element can have a relatively simple shape and “a shape in which the apparent radiation area of the electromagnetic wave changes by rotation when viewed from a predetermined direction perpendicular to the rotation axis”.
 本発明の赤外線加熱ユニットは、前記電磁波のうち、前記発熱体から前記回転軸と垂直且つ前記所定方向以外の方向に放射される赤外線の少なくとも一部を吸収可能な赤外線吸収体を備えていてもよい。こうすれば、発熱体から所定方向以外の方向へ向かう赤外線が、例えば他の物体に反射して発熱体から所定方向に配置された被加熱物に到達してしまうなど、被加熱物に間接的に放射エネルギーを与えることを赤外線吸収体により抑制できる。なお、発熱体の見かけの放射面積を減少させて被加熱物への放射エネルギーを減少させたい場合に、被加熱物に間接的に与えられる放射エネルギーが存在すると、放射エネルギーの減少が不十分となる場合がある。赤外線吸収体を備えることで、このようなことを抑制し、発熱体の回転による放射エネルギーの調整をより十分なものとすることができる。ここで、「前記発熱体から前記回転軸と垂直且つ前記所定方向以外の方向に放射される赤外線の少なくとも一部を吸収可能」とは、発熱体から回転軸と垂直且つ所定方向以外の全方向に放射される赤外線を吸収可能な場合に限らず、発熱体から回転軸と垂直且つ所定方向以外の方向のうち一部の方向に放射される赤外線を吸収可能な場合も含む。また、「前記発熱体から前記回転軸と垂直且つ前記所定方向以外の方向に放射される赤外線の少なくとも一部を吸収可能」とは、赤外線の全てを吸収可能である場合に限らず、赤外線の波長領域うち一部の領域を吸収可能である場合や、ある波長の赤外線の一部を吸収し一部を透過する場合を含む。 The infrared heating unit of the present invention may include an infrared absorber capable of absorbing at least a part of infrared rays emitted from the heating element in a direction perpendicular to the rotation axis and in a direction other than the predetermined direction. Good. In this way, infrared rays traveling in a direction other than the predetermined direction from the heating element are indirectly reflected on the object to be heated, for example, reflected from another object and reaching the object to be heated arranged in the predetermined direction from the heating element. Giving radiant energy to can be suppressed by the infrared absorber. In addition, when it is desired to reduce the radiant energy to the heated object by reducing the apparent radiant area of the heating element, if there is radiant energy given indirectly to the heated object, the reduction of the radiant energy is insufficient. There is a case. By providing the infrared absorber, such a situation can be suppressed, and the radiation energy can be adjusted more sufficiently by the rotation of the heating element. Here, “at least a part of infrared rays emitted from the heating element perpendicular to the rotation axis and in a direction other than the predetermined direction can be absorbed” means that the heating element is perpendicular to the rotation axis and other than the predetermined direction in all directions. This includes not only the case where the infrared rays radiated to can be absorbed, but also the case where the infrared rays radiated from the heating element in a part of the direction perpendicular to the rotation axis and other than the predetermined direction can be absorbed. In addition, “can absorb at least part of infrared rays emitted from the heating element in a direction perpendicular to the rotation axis and in a direction other than the predetermined direction” is not limited to the case where all infrared rays can be absorbed. This includes the case where a part of the wavelength region can be absorbed, and the case where a part of infrared light having a certain wavelength is absorbed and partly transmitted.
 赤外線吸収体を備える態様の本発明の赤外線加熱ユニットにおいて、前記赤外線吸収体は、前記電磁波のうち、前記発熱体から前記回転軸と垂直且つ前記所定方向と垂直な方向に放射される赤外線の少なくとも一部を吸収可能としてもよい。発熱体の回転により所定方向からの見かけの放射面積を減少させる場合、回転軸と垂直且つ前記所定方向と垂直な方向からの見かけの放射面積は増大しやすい。そのため、赤外線吸収体がこの方向に放射される赤外線を吸収可能にすることで、所定方向に配置された被加熱物に間接的に放射エネルギーを与えることを抑制する効果が高まる。ここで、「前記回転軸と垂直且つ前記所定方向と垂直な方向」は、「第2方向」と称してもよい。 In the infrared heating unit of the present invention including an infrared absorber, the infrared absorber includes at least infrared rays emitted from the heating element in a direction perpendicular to the rotation axis and perpendicular to the predetermined direction. Some may be absorbable. When the apparent radiation area from the predetermined direction is reduced by the rotation of the heating element, the apparent radiation area from the direction perpendicular to the rotation axis and perpendicular to the predetermined direction tends to increase. Therefore, since the infrared absorber can absorb the infrared rays radiated in this direction, the effect of suppressing radiant energy from being indirectly applied to the object to be heated arranged in the predetermined direction is enhanced. Here, “a direction perpendicular to the rotation axis and perpendicular to the predetermined direction” may be referred to as a “second direction”.
 この場合において、前記赤外線吸収体は、前記発熱体から前記回転軸と垂直且つ前記所定方向と垂直な方向に放射される赤外線の少なくとも一部を吸収する赤外線吸収面を有しており、前記所定方向を下方向とし前記所定方向とは反対方向を上方向としたときに、該赤外線吸収面の上下方向の存在範囲は前記発熱体の上下方向の存在範囲を含んでいてもよい。こうすれば、所定方向に配置された被加熱物に間接的に放射エネルギーを与えることを抑制する効果がさらに高まる。ここで、「該赤外線吸収面の上下方向の存在範囲は前記発熱体の上下方向の存在範囲を含んでい」るとは、赤外線吸収面の上下方向の存在範囲と発熱体の上下方向の存在範囲とが等しい場合も含む。なお、ここでいう「上方向」や「下方向」は、方向を区別するための名称である。例えば「上方向」は鉛直上方向に限られず、「下方向」は鉛直下方向に限られない。 In this case, the infrared absorber has an infrared absorption surface that absorbs at least part of infrared rays emitted from the heating element in a direction perpendicular to the rotation axis and perpendicular to the predetermined direction. When the direction is the downward direction and the direction opposite to the predetermined direction is the upward direction, the vertical range of the infrared absorption surface may include the vertical range of the heating element. If it carries out like this, the effect which suppresses giving a radiant energy indirectly to the to-be-heated material arrange | positioned in the predetermined direction further increases. Here, “the vertical range of the infrared absorption surface includes the vertical range of the heating element” means that the vertical range of the infrared absorption surface and the vertical direction of the heating element. This includes cases where the range is equal. Here, “upward direction” and “downward direction” are names for distinguishing directions. For example, “upward” is not limited to the vertically upward direction, and “downward” is not limited to the vertically downward direction.
 赤外線吸収体を備える態様の本発明の赤外線加熱ユニットにおいて、前記赤外線吸収体は、前記電磁波のうち、前記発熱体から前記回転軸と垂直且つ前記所定方向と垂直な一方の方向に放射される赤外線の少なくとも一部と他方の方向に放射される赤外線の少なくとも一部とを吸収可能としてもよい。こうすれば、所定方向に配置された被加熱物に間接的に放射エネルギーを与えることを抑制する効果がさらに高まる。この場合において、本発明の赤外線加熱ユニットは、発熱体から回転軸と垂直且つ所定方向と垂直な一方の方向に配置された赤外線吸収体と、発熱体から回転軸と垂直且つ所定方向と垂直な他方の方向に配置された赤外線吸収体と、を別々の部材として有していてもよいし、一体の部材として有していてもよい。 In the infrared heating unit of the present invention having an infrared absorber, the infrared absorber is an infrared ray radiated from the heating element in one direction perpendicular to the rotation axis and perpendicular to the predetermined direction. It is possible to absorb at least a part of the infrared rays and at least a part of the infrared rays emitted in the other direction. If it carries out like this, the effect which suppresses giving a radiant energy indirectly to the to-be-heated material arrange | positioned in the predetermined direction further increases. In this case, the infrared heating unit according to the present invention includes an infrared absorber disposed in one direction perpendicular to the rotation axis and a predetermined direction from the heating element, and a vertical direction from the heating element to the rotation axis and perpendicular to the predetermined direction. The infrared absorber disposed in the other direction may be provided as separate members, or may be provided as an integral member.
 赤外線吸収体を備える態様の本発明の赤外線加熱ユニットにおいて、前記赤外線吸収体は、流体が流通可能な流体流路を内部に有していてもよい。こうすれば、流体流路に流体を流通させることによって、赤外線吸収体を冷却することができる。これにより、例えば赤外線吸収体自身が赤外線の輻射源となるのを抑制できる。また、例えば、流体の熱を他の用途(例えば赤外線加熱ユニットを備えた乾燥装置で用いる熱風の予熱など)に利用して、発熱体から被加熱物への加熱に用いられないエネルギーを有効に活用することができる。この場合において、前記赤外線加熱ユニットは、前記赤外線吸収体よりも低温の流体を前記流体流路に供給する流体供給手段を備えていてもよい。 In the infrared heating unit of the present invention having an infrared absorber, the infrared absorber may have a fluid flow path through which a fluid can flow. If it carries out like this, an infrared rays absorber can be cooled by distribute | circulating a fluid to a fluid flow path. Thereby, it can suppress that infrared absorber itself becomes an infrared radiation source, for example. In addition, for example, the heat of the fluid is used for other purposes (for example, preheating of hot air used in a drying apparatus equipped with an infrared heating unit) to effectively use energy that is not used for heating from the heating element to the object to be heated. Can be used. In this case, the infrared heating unit may include fluid supply means for supplying a fluid having a temperature lower than that of the infrared absorber to the fluid flow path.
 本発明の赤外線加熱ユニットにおいて、前記電磁波のうち、前記発熱体からみて前記所定方向とは反対方向に放射される赤外線の少なくとも一部を反射可能な赤外線反射体、を備え、前記発熱体は、前記発熱体を前記所定方向から見た際の前記電磁波の見かけの放射面積と、前記発熱体を該所定方向とは反対方向から見た際の前記電磁波の見かけの放射面積との和が、前記回転により変化する形状としてもよい。こうすれば、赤外線反射体が赤外線を反射することで、発熱体からみて所定方向に配置された被加熱物には、発熱体から所定方向に放射される赤外線と所定方向とは反対方向に放射された赤外線とが共に到達可能になる。そのため、発熱体から放射エネルギーを効率よく被加熱物に到達させることができる。なお、発熱体は、所定方向から見た際の見かけの放射面積と、所定方向とは反対方向から見た際の見かけの放射面積との和が、回転により変化するため、発熱体から所定方向の被加熱物に直接到達する放射エネルギーと、赤外線反射体に反射されて到達する放射エネルギーとの和も回転により変化する。そのため、赤外線反射体が存在しても、発熱体の回転による放射エネルギーの調整を行うことができる。なお、前記発熱体は、前記回転軸を中心に回転すると、前記発熱体を前記所定方向から見た際の前記電磁波の見かけの放射面積と、前記発熱体を該所定方向とは反対方向から見た際の前記電磁波の見かけの放射面積とが、同じ傾向に変化する(回転に伴う放射面積の増減の方向が同じである)形状としてもよい。また、前記発熱体は、前記電磁波の放射面の形状が前記回転軸を中心軸として2回対称な形状としてもよい。あるいは、前記発熱体は、前記電磁波の放射面の形状が前記回転軸を通る平面を対称面として面対称な形状としてもよい。 In the infrared heating unit of the present invention, an infrared reflector capable of reflecting at least a part of infrared rays emitted from the electromagnetic wave in a direction opposite to the predetermined direction when viewed from the heating element. The sum of the apparent radiation area of the electromagnetic wave when the heating element is viewed from the predetermined direction and the apparent radiation area of the electromagnetic wave when the heating element is viewed from a direction opposite to the predetermined direction is It is good also as a shape which changes with rotation. In this way, the infrared reflector reflects the infrared rays, so that the object to be heated arranged in a predetermined direction as viewed from the heating element radiates in the opposite direction to the infrared ray emitted from the heating element in the predetermined direction. Together with the transmitted infrared light. Therefore, the radiant energy from the heating element can efficiently reach the object to be heated. In addition, since the sum of the apparent radiation area when viewed from the predetermined direction and the apparent radiation area when viewed from the direction opposite to the predetermined direction is changed by rotation, the heating element changes from the heat generation element to the predetermined direction. The sum of the radiant energy that directly reaches the object to be heated and the radiant energy that is reflected by the infrared reflector and changes also by rotation. Therefore, even if an infrared reflector exists, the radiation energy can be adjusted by the rotation of the heating element. When the heating element rotates about the rotation axis, an apparent radiation area of the electromagnetic wave when the heating element is viewed from the predetermined direction, and the heating element is viewed from a direction opposite to the predetermined direction. In this case, the apparent radiation area of the electromagnetic wave may change in the same tendency (the direction of increase / decrease of the radiation area accompanying the rotation is the same). Further, the heating element may have a shape in which the electromagnetic wave radiation surface is symmetrical twice with respect to the rotation axis. Alternatively, the heating element may have a plane-symmetric shape in which the plane of radiation of the electromagnetic wave is a plane that passes through the rotation axis.
 本発明の赤外線加熱ユニットは、互いの回転軸が平行となり該回転軸と垂直且つ前記所定方向と垂直な方向に並ぶように配置された複数の前記発熱体を有していてもよい。この態様においても、複数の発熱体を所定方向から見た際の前記電磁波の見かけの放射面積の和を発熱体の回転により変化させることで、被加熱物への放射波長と放射エネルギーとを別々に調整することができる。しかも、複数の発熱体が回転軸と垂直且つ前記所定方向と垂直な方向に並べて配置されているため、隣り合う発熱体同士が自身からの赤外線で互いを加熱することができる。これにより、例えば発熱体を1つ備えた赤外線加熱ユニットを別々に2つ配置する場合と比べて、発熱体の加熱に要するエネルギーを少なくすることができる。 The infrared heating unit of the present invention may include a plurality of the heating elements arranged such that their rotation axes are parallel to each other and are aligned in a direction perpendicular to the rotation axis and perpendicular to the predetermined direction. Also in this aspect, by changing the sum of the apparent radiation areas of the electromagnetic waves when the plurality of heating elements are viewed from a predetermined direction by the rotation of the heating elements, the radiation wavelength and radiation energy to the object to be heated are separated. Can be adjusted. In addition, since the plurality of heating elements are arranged side by side in a direction perpendicular to the rotation axis and perpendicular to the predetermined direction, adjacent heating elements can heat each other with infrared rays from themselves. Thereby, for example, the energy required for heating the heating element can be reduced as compared with the case where two infrared heating units each having one heating element are separately arranged.
 本発明の赤外線加熱ユニットは、3.5μmを超える波長の赤外線を吸収し前記発熱体を覆う管状部材を備えていてもよい。こうすれば、発熱体が放射する電磁波の放射波長を調整しつつ、被加熱物に到達する電磁波のうち波長が3.5μm以下の赤外線の割合を増大させることができる。なお、赤外線加熱ユニットが赤外線吸収体と赤外線反射体とを備える場合、管状部材が発熱体だけでなく赤外線吸収体と赤外線反射体との少なくとも一方も覆っていてもよいし、赤外線吸収体と赤外線反射体とが管状部材の外側に配置されていてもよい(管状部材に覆われていなくてもよい)。なお、前記管状部材は、3.5μm以下の赤外線を透過するものとしてもよい。また、本発明の赤外線加熱ユニットは、同心円状に配置された複数の管状部材を備えていてもよい。例えば、前記管状部材として、前記発熱体を覆う内側管状部材と、該発熱体及び該内側管状部材を覆う外側管状部材と、を備えていてもよい。 The infrared heating unit of the present invention may include a tubular member that absorbs infrared rays having a wavelength exceeding 3.5 μm and covers the heating element. If it carries out like this, the ratio of the infrared rays whose wavelength is 3.5 micrometers or less can be increased among the electromagnetic waves which arrive at a to-be-heated object, adjusting the radiation wavelength of the electromagnetic waves which a heat generating body radiates | emits. When the infrared heating unit includes an infrared absorber and an infrared reflector, the tubular member may cover not only the heating element but also at least one of the infrared absorber and the infrared reflector, or the infrared absorber and the infrared ray. The reflector may be disposed outside the tubular member (it may not be covered with the tubular member). Note that the tubular member may transmit infrared rays of 3.5 μm or less. The infrared heating unit of the present invention may include a plurality of tubular members arranged concentrically. For example, the tubular member may include an inner tubular member that covers the heating element, and an outer tubular member that covers the heating element and the inner tubular member.
 本発明の赤外線加熱装置は、
 上述したいずれかの態様の本発明の赤外線加熱ユニットと、
 前記発熱体を前記回転軸を中心に回転させる回転手段と、
 前記発熱体に電力を供給する電力供給手段と、
 前記発熱体の放射波長に関する値と、前記発熱体の回転位置に関する値と、前記発熱体からみて前記所定方向に配置された被加熱物に到達する前記発熱体からの放射エネルギーに関する値と、の対応関係を記憶する対応関係記憶手段と、
 前記放射波長に関する情報及び前記放射エネルギーに関する情報を入力可能な入力手段と、
 前記入力された放射波長に関する情報と、前記入力された放射エネルギーに関する情報と、前記対応関係と、に基づいて、該入力された放射波長及び放射エネルギーに対応する前記発熱体の回転位置に関する値を取得する回転位置取得手段と、
 前記回転手段及び前記電力供給手段を制御して、前記取得された値で表される回転位置に前記発熱体が位置するよう前記回転手段により前記発熱体を回転させ、前記入力された放射波長の電磁波を前記発熱体が放射するよう前記電力供給手段により前記発熱体に電力を供給させる制御手段と、
 を備えたものである。
The infrared heating device of the present invention is
The infrared heating unit of the present invention according to any one of the aspects described above;
Rotating means for rotating the heating element about the rotation axis;
Power supply means for supplying power to the heating element;
A value relating to the radiation wavelength of the heating element, a value relating to the rotational position of the heating element, and a value relating to the radiation energy from the heating element that reaches the object to be heated arranged in the predetermined direction when viewed from the heating element. Correspondence storage means for storing the correspondence,
Input means capable of inputting information on the radiation wavelength and information on the radiation energy;
Based on the information regarding the input radiation wavelength, the information regarding the input radiation energy, and the correspondence, a value regarding the rotational position of the heating element corresponding to the input radiation wavelength and radiation energy is obtained. Rotational position acquisition means for acquiring;
The rotating means and the power supply means are controlled to rotate the heating element by the rotating means so that the heating element is positioned at the rotation position represented by the acquired value, and the input radiation wavelength Control means for supplying power to the heating element by the power supply means so that the heating element radiates electromagnetic waves;
It is equipped with.
 この本発明の赤外線加熱装置は、上述したいずれかの態様の本発明の赤外線加熱ユニットを備えているため、本発明の赤外線加熱ユニットの効果、例えば、被加熱物への放射波長と放射エネルギーとを別々に調整することができる効果が得られる。また、本発明の赤外線加熱装置は、発熱体の放射波長に関する値と、回転位置に関する値と、発熱体からみて所定方向に配置された被加熱物に到達する発熱体からの放射エネルギーに関する値と、の対応関係を記憶している。そして、まず、この対応関係と、入力された放射波長及び放射エネルギーに関する情報と、に基づいて発熱体の回転位置に関する値を取得する。続いて、取得された値で表される回転位置に発熱体が位置し、入力された放射波長の電磁波を発熱体が放射するように、発熱体に供給する電力や発熱体の回転を制御する。そのため、所望の放射波長及び放射エネルギーに関する情報を入力するだけで、所望の放射波長及び放射エネルギーを得るための供給電力や回転位置を適切に調整することができる。ここで、「放射波長に関する値」とは、放射波長自体の値(例えばピーク波長の値や波長領域の範囲など)としてもよいし、これに限らず発熱体の温度,発熱体への供給電力,発熱体の出力(消費電力)など、放射波長を導出可能な値としてもよい。「放射波長に関する情報」についても同様である。「回転位置に関する値」とは、発熱体の回転位置の値自体(例えば回転角など)に限らず、発熱体を所定方向から見た際の電磁波の見かけの放射面積など、回転位置を導出可能な値としてもよい。「放射エネルギーに関する値」とは、放射エネルギーの値自体に限らず、放射エネルギーを導出可能な値としてもよい。「放射エネルギーに関する情報」についても同様である。なお、「放射波長に関する値」と「放射波長に関する情報」とは同じものであっても異なるものであってもよい。例えば、「放射波長に関する値」が発熱体の温度であり、「放射波長に関する情報」が発熱体への供給電力であってもよい。「放射エネルギーに関する値」と「放射エネルギーに関する情報」とについても同様である。また、前記入力手段は、前記放射波長に関する情報及び前記放射エネルギーに関する情報をユーザーから入力可能であってもよい。 Since the infrared heating device of the present invention includes the infrared heating unit of the present invention according to any one of the above-described aspects, the effects of the infrared heating unit of the present invention, for example, the radiation wavelength and radiation energy to the object to be heated Can be adjusted separately. Further, the infrared heating device of the present invention includes a value relating to the radiation wavelength of the heating element, a value relating to the rotational position, and a value relating to the radiant energy from the heating element that reaches the object to be heated arranged in a predetermined direction as viewed from the heating element Is stored. And first, the value regarding the rotation position of a heat generating body is acquired based on this correspondence and the information regarding the input radiation wavelength and radiation energy. Subsequently, the heating element is positioned at the rotation position represented by the acquired value, and the electric power supplied to the heating element and the rotation of the heating element are controlled so that the heating element radiates electromagnetic waves of the input radiation wavelength. . Therefore, the supply power and rotational position for obtaining the desired radiation wavelength and radiant energy can be appropriately adjusted simply by inputting information on the desired radiation wavelength and radiant energy. Here, the “value relating to the radiation wavelength” may be a value of the radiation wavelength itself (for example, a value of a peak wavelength or a range of the wavelength region), and is not limited to this, and the temperature of the heating element, the power supplied to the heating element , It is good also as a value which can derive radiation wavelengths, such as an output (power consumption) of a heating element. The same applies to “information on radiation wavelength”. The “value related to the rotational position” is not limited to the rotational position value of the heating element itself (for example, the rotation angle), but the rotational position such as the apparent radiation area of the electromagnetic wave when the heating element is viewed from a predetermined direction can be derived. A good value may be used. The “value relating to the radiant energy” is not limited to the value of the radiant energy itself, and may be a value from which the radiant energy can be derived. The same applies to “information on radiant energy”. The “value relating to the radiation wavelength” and the “information relating to the radiation wavelength” may be the same or different. For example, the “value relating to the emission wavelength” may be the temperature of the heating element, and the “information relating to the emission wavelength” may be the power supplied to the heating element. The same applies to “value regarding radiant energy” and “information regarding radiant energy”. The input means may be capable of inputting information on the radiation wavelength and information on the radiation energy from a user.
 本発明の乾燥装置は、上述したいずれかの態様の本発明の赤外線加熱ユニットと、上述した赤外線加熱装置と、のいずれかを備え、前記発熱体からみて前記所定方向に位置する被加熱物を乾燥させるものである。 The drying apparatus of the present invention includes any one of the above-described infrared heating unit of the present invention and the above-described infrared heating apparatus, and an object to be heated positioned in the predetermined direction as viewed from the heating element. It is what is dried.
 この本発明の乾燥装置は、上述したいずれかの態様の本発明の赤外線加熱ユニット又は本発明の赤外線加熱装置を備えているため、これらの効果、例えば、被加熱物への放射波長と放射エネルギーとを別々に調整することができる効果が得られる。なお、本発明の乾燥装置は、被加熱物を搬送しながら乾燥させるものとしてもよいし、被加熱物を停止した状態で乾燥させるものとしてもよい。 Since the drying apparatus of the present invention includes the infrared heating unit of the present invention or the infrared heating apparatus of the present invention according to any one of the above-described aspects, these effects, for example, the radiation wavelength and radiation energy to the heated object Can be adjusted separately. In addition, the drying apparatus of this invention is good also as what is dried, conveying a to-be-heated material, and good also as what is dried in the state which stopped the to-be-heated material.
乾燥装置10の縦断面図である。1 is a longitudinal sectional view of a drying device 10. FIG. 図1の赤外線加熱ユニット30の断面を示すA-A断面図である。FIG. 2 is an AA cross-sectional view showing a cross section of the infrared heating unit 30 of FIG. 発熱体32の説明図である。4 is an explanatory diagram of a heating element 32. FIG. 発熱体32からの電磁波のピーク波長と、発熱体32の回転角と、塗膜82への放射エネルギーと、の関係を示す説明図である。6 is an explanatory diagram showing a relationship among a peak wavelength of an electromagnetic wave from the heating element 32, a rotation angle of the heating element 32, and a radiation energy to the coating film 82. FIG. 対応関係データ93の概念図である。It is a conceptual diagram of correspondence data 93. 発熱体制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of a heat generating body control routine. 変形例の赤外線加熱ユニット130の断面図である。It is sectional drawing of the infrared heating unit 130 of a modification. 変形例の発熱体232の斜視図である。It is a perspective view of the heat generating body 232 of a modification.
 次に、本発明の実施形態について、図面を用いて説明する。図1は、本発明の一実施形態である乾燥装置10の縦断面図である。乾燥装置10は、シート80上に塗布された乾燥対象としての塗膜82の乾燥を赤外線を用いて行うものであり、炉体12と、給気装置20と、排気装置25と、赤外線加熱ユニット30と、コントローラー90と、を備えている。また、乾燥装置10は、炉体12の前方(図1の左側)に設けられたロール17と、炉体12の後方(図1の右側)に設けられたロール18と、を備えている。この乾燥装置10は、塗膜82が上面に形成されたシート80を、ロール17,18により連続的に搬送して乾燥を行う、ロールトゥロール方式の乾燥炉として構成されている。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a drying apparatus 10 according to an embodiment of the present invention. The drying apparatus 10 performs drying of the coating film 82 as a drying target applied on the sheet 80 by using infrared rays, and the furnace body 12, the air supply device 20, the exhaust device 25, and the infrared heating unit. 30 and a controller 90. The drying device 10 includes a roll 17 provided in front of the furnace body 12 (left side in FIG. 1) and a roll 18 provided in the rear of the furnace body 12 (right side in FIG. 1). The drying apparatus 10 is configured as a roll-to-roll type drying furnace in which a sheet 80 having a coating film 82 formed on the upper surface is continuously conveyed by rolls 17 and 18 and dried.
 炉体12は、塗膜82の乾燥を行うためのものである。炉体12は、略直方体に形成された断熱構造体であり、内部の空間である空間12aと、炉体の前端面13及び後端面14にそれぞれ形成され外部から空間12aへの出入口となる開口15,16を有している。この炉体12は、前端面13から後端面14までの長さが例えば2~10mである。炉体12は、開口15から開口16に至る通路である搬送通路19を備えている。搬送通路19は、炉体12を水平方向に貫通している。片面に塗膜82が塗布されたシート80は、この搬送通路19を通過していく。 The furnace body 12 is for drying the coating film 82. The furnace body 12 is a heat insulating structure formed in a substantially rectangular parallelepiped, and is formed in the space 12a that is an internal space, and the front end face 13 and the rear end face 14 of the furnace body, and openings that serve as entrances to the space 12a from the outside. 15 and 16. The furnace body 12 has a length from the front end face 13 to the rear end face 14 of, for example, 2 to 10 m. The furnace body 12 includes a transfer passage 19 that is a passage from the opening 15 to the opening 16. The conveyance passage 19 penetrates the furnace body 12 in the horizontal direction. The sheet 80 on which the coating film 82 is applied on one side passes through the conveyance path 19.
 給気装置20は、熱風をシート80の表面側に供給(送風)して炉体12内を通過する塗膜82を乾燥させる装置である。給気装置20は、給気ファン21と、パイプ構造体22と、給気口23と、を備えている。給気ファン21は、パイプ構造体22に取り付けられており、例えば空気などの流体を加熱して熱風とし、パイプ構造体22の内部へ供給するものである。なお、本実施形態では、給気ファン21は後述する第2流体をパイプ構造体22の内部へ供給するものとした。給気ファン21は、熱風の流量や温度の調節が可能となっている。熱風の温度は、例えば40℃~200℃の範囲で調整可能である。パイプ構造体22は、給気ファン21からの熱風の通路となるものである。パイプ構造体22は、給気ファン21から炉体12の天井を貫通して炉体12の内部までの通路を形成している。給気口23は、給気ファン21からの熱風の炉体12への供給口となるものである。この給気口23は、炉体12のうちシート80の搬出側である開口16側の端部に設けられ、搬入側である開口15側に向けて水平に開口している。これにより、給気装置20は、シート80の搬送方向とは反対方向に(図1の左方向に)熱風を供給する。 The air supply device 20 is a device that supplies (blows) hot air to the surface side of the sheet 80 to dry the coating film 82 that passes through the furnace body 12. The air supply device 20 includes an air supply fan 21, a pipe structure 22, and an air supply port 23. The air supply fan 21 is attached to the pipe structure 22, and heats a fluid such as air to form hot air and supplies it to the inside of the pipe structure 22. In the present embodiment, the air supply fan 21 supplies a second fluid described later to the inside of the pipe structure 22. The supply fan 21 can adjust the flow rate and temperature of hot air. The temperature of the hot air can be adjusted within a range of 40 ° C. to 200 ° C., for example. The pipe structure 22 serves as a passage for hot air from the air supply fan 21. The pipe structure 22 forms a passage from the air supply fan 21 through the ceiling of the furnace body 12 to the inside of the furnace body 12. The air supply port 23 serves as a supply port of hot air from the air supply fan 21 to the furnace body 12. The air supply port 23 is provided at an end of the furnace body 12 on the opening 16 side that is the carry-out side of the sheet 80, and opens horizontally toward the opening 15 side that is the carry-in side. As a result, the air supply device 20 supplies hot air in the direction opposite to the conveyance direction of the sheet 80 (in the left direction in FIG. 1).
 排気装置25は、炉体12内の雰囲気ガスを排出する装置である。排気装置25は、排気ファン26と、パイプ構造体27と、排気口28と、を備えている。排気口28は、炉体12のうちシート80の搬入側である開口15側の端部に設けられ、搬出側である開口16側に向けて水平に開口している。排気口28はパイプ構造体27に取り付けられており、炉体12内の雰囲気ガス(主に塗膜82の表面に沿って流れた後の給気装置20からの熱風)を吸気してパイプ構造体27内に導く。パイプ構造体27は、排気口28から排気ファン26への雰囲気ガスの流路となるものである。パイプ構造体27は、排気口28から炉体12の天井を貫通して排気ファン26までの通路を形成している。排気ファン26は、パイプ構造体27に取り付けられており、パイプ構造体27内部の雰囲気ガスを排気する。 The exhaust device 25 is a device that discharges the atmospheric gas in the furnace body 12. The exhaust device 25 includes an exhaust fan 26, a pipe structure 27, and an exhaust port 28. The exhaust port 28 is provided at an end of the furnace body 12 on the opening 15 side that is the carry-in side of the sheet 80, and opens horizontally toward the opening 16 side that is the carry-out side. The exhaust port 28 is attached to the pipe structure 27, and sucks atmospheric gas in the furnace body 12 (mainly hot air from the air supply device 20 after flowing along the surface of the coating film 82) to form the pipe structure. Guide into the body 27. The pipe structure 27 serves as a flow path for the atmospheric gas from the exhaust port 28 to the exhaust fan 26. The pipe structure 27 forms a passage from the exhaust port 28 through the ceiling of the furnace body 12 to the exhaust fan 26. The exhaust fan 26 is attached to the pipe structure 27 and exhausts the atmospheric gas inside the pipe structure 27.
 赤外線加熱ユニット30は、炉体12内を通過する塗膜82に赤外線を照射する装置であり、炉体12内の空間12aの天井近くに複数取り付けられている。本実施形態では、赤外線加熱ユニット30は前端面13側から後端面14側にわたって略均等に複数個(本実施形態では6個)配置されている。この複数の赤外線加熱ユニット30は、いずれも同様の構成をしており、その長手方向と塗膜82の搬送方向とが直交するように取り付けられている。以下、1つの赤外線加熱ユニット30の構成について説明する。 The infrared heating unit 30 is a device that irradiates infrared rays onto the coating film 82 passing through the furnace body 12, and a plurality of infrared heating units 30 are attached near the ceiling of the space 12 a in the furnace body 12. In the present embodiment, a plurality of infrared heating units 30 (six in this embodiment) are arranged substantially evenly from the front end face 13 side to the rear end face 14 side. The plurality of infrared heating units 30 have the same configuration, and are attached so that the longitudinal direction thereof is orthogonal to the transport direction of the coating film 82. Hereinafter, the configuration of one infrared heating unit 30 will be described.
 図2は図1の赤外線加熱ユニット30の断面を示すA-A断面図である。図1,図2に示すように、赤外線加熱ユニット30は、赤外線ヒーター31と、赤外線吸収プレート70,75と、反射板60(図1にのみ図示)と、を備えている。 FIG. 2 is an AA cross-sectional view showing a cross section of the infrared heating unit 30 of FIG. As shown in FIGS. 1 and 2, the infrared heating unit 30 includes an infrared heater 31, infrared absorption plates 70 and 75, and a reflection plate 60 (shown only in FIG. 1).
 赤外線ヒーター31は、Ni-Cr合金製の発熱体32と、発熱体32の外側に設けられ発熱体32を囲むように形成された内管37と、内管37の外側に設けられ内管37を囲むように形成された外管38と、を備えており、これらの両端にはキャップ40が取り付けられている(図2)。また、赤外線ヒーター31は、外管38の表面温度を検出する温度センサ49を備えている(図2)。なお、内管37,外管38は同心円状に配置されており、その円の中心に発熱体32が位置するようになっている。 The infrared heater 31 includes a Ni—Cr alloy heating element 32, an inner tube 37 provided outside the heating element 32 so as to surround the heating element 32, and an inner tube 37 provided outside the inner tube 37. And an outer tube 38 formed so as to surround the cap, and caps 40 are attached to both ends thereof (FIG. 2). The infrared heater 31 includes a temperature sensor 49 that detects the surface temperature of the outer tube 38 (FIG. 2). The inner tube 37 and the outer tube 38 are concentrically arranged, and the heating element 32 is located at the center of the circle.
 図3は、発熱体32の説明図である。なお、図3(a)は、発熱体32を後方向(図2の下方向)から見た様子を示す説明図であり、図3(b)は、発熱体32の左端部付近の斜視図である。発熱体32は、加熱されると赤外線を含む電磁波を放射するものであり、図3に示すように、帯状のNi-Cr合金板を螺旋状に巻いたものである。発熱体32は、モーター56(図2)からの駆動力で回転軸Rを中心に回転可能に構成されている。発熱体32は、回転軸Rに垂直な断面で見たときに電磁波の放射面(発熱体32の表面)が楕円形状になるように形成されている(図1,3)。なお、回転軸Rは、左右方向(図2の左右方向)と平行な軸であり、発熱体32の断面の楕円の中心に位置している。そのため、発熱体32の電磁波の放射面の形状は、回転軸Rを中心軸として2回対称となっている。また、発熱体32の電磁波の放射面の形状は、回転軸Rを通る平面(例えば前後方向の平面や上下方向の平面)を対称面として面対称な形状となっている。このような形状とすることで、発熱体32は、回転軸Rと垂直な所定方向(本実施形態では下方向)から見た際の電磁波の見かけの放射面積が回転により変化する形状となっている。 FIG. 3 is an explanatory diagram of the heating element 32. 3A is an explanatory view showing a state in which the heating element 32 is viewed from the rear (downward in FIG. 2), and FIG. 3B is a perspective view of the vicinity of the left end of the heating element 32. FIG. It is. The heating element 32 emits electromagnetic waves including infrared rays when heated, and is formed by spirally winding a band-shaped Ni—Cr alloy plate as shown in FIG. The heating element 32 is configured to be rotatable about the rotation axis R by a driving force from the motor 56 (FIG. 2). The heating element 32 is formed so that the electromagnetic wave radiation surface (the surface of the heating element 32) has an elliptical shape when viewed in a cross section perpendicular to the rotation axis R (FIGS. 1 and 3). The rotation axis R is an axis parallel to the left-right direction (left-right direction in FIG. 2), and is located at the center of the ellipse of the cross section of the heating element 32. Therefore, the shape of the electromagnetic wave radiation surface of the heating element 32 is two-fold symmetric about the rotation axis R as the central axis. The shape of the electromagnetic wave radiation surface of the heating element 32 is a plane-symmetric shape with a plane passing through the rotation axis R (for example, a plane in the front-rear direction or a plane in the vertical direction) as a symmetry plane. By setting it as such a shape, the heat generating body 32 becomes a shape from which the apparent radiation area of the electromagnetic wave changes by rotation when it sees from the predetermined direction (this embodiment downward direction) perpendicular | vertical to the rotating shaft R. Yes.
 図2,3に示すように、発熱体32の回転軸方向の両端には、接続端子33が挿入されている。また、両端の接続端子33は、それぞれ円柱状の軸体34と接続されている。両端の接続端子33は、例えば金属などの導電性材料からなる。両端の軸体34は、例えば絶縁材料からなり、それぞれ軸受35により支持されている。軸受35は、ボールベアリングとして構成され、キャップ40の内部に配置されたホルダー45にそれぞれ支持されており(図2)、軸体34を回転可能に支持している。なお、軸受35は、ボールベアリングに限らず、軸体34を回転可能に支持できるものであればよい。両端の接続端子33は、それぞれ電気配線32aを介して炉体12の外部に配置された電力供給源50と接続されており、この電力供給源50から発熱体32へ電力が供給されて発熱体32が加熱されると、発熱体32は赤外線を含む電磁波を放射する。また、軸体34は、キャップ40を回転軸方向に貫通する駆動軸57を介して、炉体12の内部に配置されステッピングモーターなどのサーボモーターとして構成されたモーター56と接続されている。モーター56と駆動軸57と間や、駆動軸57と軸体34との間は、図示しない円筒状のカップリングにより接続されていてもよい。モーター56から回転駆動力が出力されると、発熱体32,接続端子33,軸体34は一体となって回転軸Rを中心に回転する。なお、電気配線32aは湾曲可能であり、キャップ40内の配線の長さに余裕を持たせてあるため、接続端子33が回転しても電気配線32aと接続端子33とは電気的な導通を維持可能である。そのため、モーター56からの駆動力で発熱体32を回転させつつ電力供給源50から発熱体32に電力を供給することができる。なお、接続端子33に接続された電気配線32aは、キャップ40に設けられた配線引出部47を介して気密に外部へ引き出され、電力供給源50に接続されている。キャップ40は、図2に示すように、円盤状の蓋44と、その蓋44に立設された円筒部42,43とを一体成形したものである。内管37及び外管38の左右両端は、それぞれ円筒部42,43に固定されている。 As shown in FIGS. 2 and 3, connecting terminals 33 are inserted at both ends of the heating element 32 in the rotation axis direction. Further, the connection terminals 33 at both ends are respectively connected to the cylindrical shaft body 34. The connection terminals 33 at both ends are made of a conductive material such as metal. The shaft bodies 34 at both ends are made of, for example, an insulating material and are supported by bearings 35, respectively. The bearings 35 are configured as ball bearings and are respectively supported by holders 45 disposed inside the cap 40 (FIG. 2), and rotatably support the shaft body 34. The bearing 35 is not limited to a ball bearing, and may be any bearing that can support the shaft body 34 rotatably. The connection terminals 33 at both ends are respectively connected to a power supply source 50 disposed outside the furnace body 12 via an electrical wiring 32a, and power is supplied from the power supply source 50 to the heating element 32 to generate the heating element. When 32 is heated, the heating element 32 emits electromagnetic waves including infrared rays. The shaft body 34 is connected to a motor 56 that is disposed inside the furnace body 12 and configured as a servo motor such as a stepping motor, via a drive shaft 57 that penetrates the cap 40 in the rotation axis direction. The motor 56 and the drive shaft 57, or the drive shaft 57 and the shaft body 34 may be connected by a cylindrical coupling (not shown). When a rotational driving force is output from the motor 56, the heat generating body 32, the connection terminal 33, and the shaft body 34 are integrally rotated about the rotation axis R. The electric wiring 32a is bendable and has a margin in the length of the wiring in the cap 40. Therefore, even when the connection terminal 33 rotates, the electric wiring 32a and the connection terminal 33 are electrically connected. It can be maintained. Therefore, it is possible to supply power from the power supply source 50 to the heating element 32 while rotating the heating element 32 with the driving force from the motor 56. The electrical wiring 32 a connected to the connection terminal 33 is drawn out to the outside airtightly via a wiring lead-out portion 47 provided in the cap 40, and is connected to the power supply source 50. As shown in FIG. 2, the cap 40 is formed by integrally molding a disc-shaped lid 44 and cylindrical portions 42 and 43 erected on the lid 44. The left and right ends of the inner tube 37 and the outer tube 38 are fixed to cylindrical portions 42 and 43, respectively.
 内管37及び外管38は、発熱体32を囲む断面円形の管であり、発熱体32から放射された電磁波のうち少なくとも赤外線を透過する赤外線透過材料で形成されている。内管37,外管38に用いるこのような赤外線透過材料としては、例えば、ゲルマニウム、シリコン、サファイア、フッ化カルシウム、フッ化バリウム、セレン化亜鉛、硫化亜鉛、カルコゲナイドガラス、透過性アルミナセラミックスなどのほか、赤外線を透過可能な石英ガラスなどが挙げられる。本実施形態では、内管37,外管38は、透過性アルミナセラミックスで形成されているものとした。なお、内管37と外管38との間の空間は、例えば空気などの流体である第1流体を流通可能な流体流路39となっている。内管37,外管38は、流体流路39を流れる第1流体によって、所定の上限値(例えば200℃)以下に冷却可能になっている。 The inner tube 37 and the outer tube 38 are circular tubes having a circular cross section surrounding the heating element 32, and are formed of an infrared transmitting material that transmits at least infrared rays among electromagnetic waves radiated from the heating element 32. Examples of such infrared transmitting materials used for the inner tube 37 and the outer tube 38 include germanium, silicon, sapphire, calcium fluoride, barium fluoride, zinc selenide, zinc sulfide, chalcogenide glass, and transmissive alumina ceramics. Other examples include quartz glass that can transmit infrared rays. In the present embodiment, the inner tube 37 and the outer tube 38 are made of permeable alumina ceramics. The space between the inner tube 37 and the outer tube 38 is a fluid flow path 39 through which a first fluid that is a fluid such as air can be circulated. The inner tube 37 and the outer tube 38 can be cooled to a predetermined upper limit (for example, 200 ° C.) or less by the first fluid flowing through the fluid flow path 39.
 流体流路39は、内管37と外管38との間の空間であり、キャップ40に設けられた流体出入口48を通じて第1流体が流通可能となっている。流体出入口48は、炉体12の外部に配置された第1流体供給源52と接続されている。この第1流体供給源52から供給された第1流体は、一方の流体出入口48から流体流路39内に流入し、流体流路39内を流通して他方の流体出入口48から流出する。流体流路39を流通する第1流体は、赤外線ヒーター31の外面である外管38の温度や内管37の温度を下げたり、任意の温度に調整したりする冷媒としての役割を果たす。 The fluid flow path 39 is a space between the inner tube 37 and the outer tube 38, and the first fluid can flow through the fluid inlet / outlet 48 provided in the cap 40. The fluid inlet / outlet port 48 is connected to a first fluid supply source 52 disposed outside the furnace body 12. The first fluid supplied from the first fluid supply source 52 flows into the fluid channel 39 from one fluid inlet / outlet 48, flows through the fluid channel 39, and flows out from the other fluid inlet / outlet 48. The first fluid flowing through the fluid flow path 39 serves as a refrigerant that lowers the temperature of the outer tube 38 that is the outer surface of the infrared heater 31 and the temperature of the inner tube 37 or adjusts the temperature to an arbitrary temperature.
 反射板60は、図1に示すように、発熱体32からみて上側に配置された板状の部材である。反射板60は、前後方向(図1の左右方向)の長さが外管38の外径よりも長く、図1に示すように断面視で外管38の真上の領域を覆うように形成されている。換言すると、反射板60の前後方向の存在範囲は、発熱体32や外管38の前後方向の存在範囲を含んでいる。また、図示は省略するが、反射板60の左右方向(図1の紙面手前,奥方向の存在範囲は、発熱体32や外管38の左右方向の存在範囲を含んでいる。この反射板60は、発熱体32から上方向に放射される電磁波のうち、赤外線の少なくとも一部を反射可能な材料で形成されている。反射版60の材料としては、例えばSUS304やアルミニウムなどの金属が挙げられる。 As shown in FIG. 1, the reflection plate 60 is a plate-like member disposed on the upper side when viewed from the heating element 32. The reflector 60 is formed so that the length in the front-rear direction (left-right direction in FIG. 1) is longer than the outer diameter of the outer tube 38 and covers the region directly above the outer tube 38 in a cross-sectional view as shown in FIG. Has been. In other words, the existence range in the front-rear direction of the reflection plate 60 includes the existence range in the front-rear direction of the heating element 32 and the outer tube 38. Although not shown in the drawing, the existence range in the left-right direction of the reflection plate 60 (the front side and the back direction in FIG. 1 includes the existence range in the left-right direction of the heating element 32 and the outer tube 38. This reflection plate 60. Is formed of a material capable of reflecting at least a part of infrared rays of the electromagnetic waves radiated upward from the heating element 32. Examples of the material of the reflection plate 60 include metals such as SUS304 and aluminum. .
 赤外線吸収プレート70,75は、赤外線ヒーター31を前後方向から挟むように赤外線ヒーター31の前側及び後側にそれぞれ配置された略直方体の部材である。赤外線吸収プレート70は、後方(図1の右側)の面が赤外線吸収面となり、発熱体32からの電磁波のうち赤外線の少なくとも一部を吸収する。この赤外線吸収面は、上下方向の長さが外管38の外径より長く、図1に示すように断面視で外管38の前方の領域を覆うように形成されている。換言すると、赤外線吸収面の上下方向の存在範囲は、発熱体32や外管38の上下方向の存在範囲を含んでいる。また、図2に示すように、赤外線吸収プレート70の左右方向の存在範囲は、発熱体32や外管38の左右方向の存在範囲を含んでいる。この赤外線吸収プレート70は、発熱体32からの電磁波のうち赤外線の少なくとも一部を吸収可能な赤外線吸収材料で形成されている。赤外線吸収プレート70に用いるこのような赤外線吸収材料としては、例えば、SiCを含む多孔質体に溶融Siを含浸させてなるSi-SiC系複合材料(シリコン含浸SiC)などが挙げられる。本実施形態では、赤外線吸収プレート70は、赤外線領域(波長が0.7μm~8μmの領域)の電磁波のほとんど(例えば80%以上)を吸収する材料で形成されているものとした。赤外線吸収プレート70は、内部が中空になっており、この内部の空間が流体流路72となっている。この流体流路72は赤外線吸収プレート70に設けられた2箇所の流体出入口71を通じて第2流体が流通可能となっている。第2流体は、例えば空気などの気体としてもよいし、水などの液体としてもよい。本実施形態では、第2流体は空気とした。流体出入口71は、炉体12の外部に配置された第2流体供給源54と接続されている。この第2流体供給源54から供給された第2流体は、一方の流体出入口71から流体流路72内に流入し、流体流路72内を流通して他方の流体出入口71から流出する。流体流路72を流通する第2流体は、赤外線を吸収して加熱される赤外線吸収プレート70の温度を下げる冷媒としての役割を果たす。なお、赤外線吸収プレート70は、流体流路72を流れる第2流体によって、例えば200℃以下に冷却可能になっている。また、他方の流体出入口71は、給気ファン21に接続されている。そのため、給気ファン21は、流体流路72を通過して加熱された第2流体をそのまま用いるか又はさらに加熱して、熱風として炉体12内に供給する。 The infrared absorbing plates 70 and 75 are substantially rectangular parallelepiped members disposed on the front side and the rear side of the infrared heater 31 so as to sandwich the infrared heater 31 from the front-rear direction. In the infrared absorbing plate 70, the rear (right side in FIG. 1) surface becomes an infrared absorbing surface, and absorbs at least a part of infrared rays of electromagnetic waves from the heating element 32. The infrared absorption surface has a length in the vertical direction longer than the outer diameter of the outer tube 38 and is formed so as to cover a region in front of the outer tube 38 in a sectional view as shown in FIG. In other words, the vertical range of the infrared absorption surface includes the vertical range of the heating element 32 and the outer tube 38. Further, as shown in FIG. 2, the existence range in the left-right direction of the infrared absorbing plate 70 includes the existence range in the left-right direction of the heating element 32 and the outer tube 38. The infrared absorbing plate 70 is formed of an infrared absorbing material capable of absorbing at least a part of infrared rays among electromagnetic waves from the heating element 32. Examples of such an infrared absorbing material used for the infrared absorbing plate 70 include a Si—SiC composite material (silicon-impregnated SiC) obtained by impregnating a porous body containing SiC with molten Si. In the present embodiment, the infrared absorbing plate 70 is made of a material that absorbs most (for example, 80% or more) of electromagnetic waves in the infrared region (wavelength region of 0.7 μm to 8 μm). The infrared absorption plate 70 is hollow inside, and the space inside this is a fluid flow path 72. The fluid flow path 72 allows the second fluid to flow through the two fluid inlets / outlets 71 provided in the infrared absorption plate 70. The second fluid may be a gas such as air or a liquid such as water. In the present embodiment, the second fluid is air. The fluid inlet / outlet port 71 is connected to a second fluid supply source 54 disposed outside the furnace body 12. The second fluid supplied from the second fluid supply source 54 flows into the fluid channel 72 from one fluid inlet / outlet 71, flows through the fluid channel 72, and flows out from the other fluid inlet / outlet 71. The 2nd fluid which distribute | circulates the fluid flow path 72 plays the role of a refrigerant | coolant which lowers the temperature of the infrared rays absorption plate 70 which absorbs infrared rays and is heated. The infrared absorbing plate 70 can be cooled to, for example, 200 ° C. or less by the second fluid flowing in the fluid flow path 72. The other fluid inlet / outlet 71 is connected to the air supply fan 21. Therefore, the air supply fan 21 uses the second fluid heated through the fluid flow path 72 as it is or further heats it and supplies it as hot air into the furnace body 12.
 赤外線吸収プレート75は、流体出入口76と、内部に形成された流体流路77と、を備えている。この赤外線吸収プレート75は、赤外線ヒーター31を挟んで赤外線吸収プレート70とは反対側に配置されており、回転軸Rを含む上下方向に平行な仮想平面を対称面として赤外線吸収プレート70と面対称に構成されている。それ以外の点は、赤外線吸収プレート70と同様の構成であるため、詳細な説明を省略する。 The infrared absorbing plate 75 includes a fluid inlet / outlet 76 and a fluid channel 77 formed inside. The infrared absorption plate 75 is disposed on the opposite side of the infrared absorption plate 70 with the infrared heater 31 in between, and is symmetrical with the infrared absorption plate 70 with a virtual plane parallel to the vertical direction including the rotation axis R as a symmetry plane. It is configured. Since the other points are the same as the configuration of the infrared ray absorbing plate 70, detailed description thereof is omitted.
 シート80は、特に限定するものではないが、例えば、アルミニウムや銅等の金属シートである。シート80は、特に限定するものではないが、例えば厚さ10~100μm,幅200~1000mmである。また、シート80上の塗膜82は、例えば乾燥後に電池用の電極として用いられるものであり、特に限定するものではないが、例えばリチウムイオン二次電池用の電極となる塗膜である。塗膜82としては、例えば、電極材(正極活物質又は負極活物質)とバインダーと導電材と溶剤とを共に混練した電極材ペーストを、シート80上に塗布したもの等が挙げられる。塗膜82の厚みは、特に限定するものではないが、例えば20~1000μmである。 The sheet 80 is not particularly limited, but is a metal sheet such as aluminum or copper, for example. The sheet 80 is not particularly limited, but has a thickness of 10 to 100 μm and a width of 200 to 1000 mm, for example. The coating film 82 on the sheet 80 is used as an electrode for a battery after drying, for example, and is not particularly limited, but is a coating film that becomes an electrode for a lithium ion secondary battery, for example. Examples of the coating film 82 include an electrode material paste obtained by kneading an electrode material (positive electrode active material or negative electrode active material), a binder, a conductive material, and a solvent together on the sheet 80. The thickness of the coating film 82 is not particularly limited, but is, for example, 20 to 1000 μm.
 コントローラー90は、CPU91を中心とするマイクロプロセッサーとして構成されており、各種処理プログラムや各種データなどを記憶したフラッシュメモリー92と、一時的にデータを記憶するRAM94と、操作パネル98などと通信する図示しない内部通信インタフェース(I/F)と、を備えている。フラッシュメモリー92は、対応関係データ93を記憶している。詳しくは後述するが、対応関係データ93は、発熱体32の放射波長に関する値と、発熱体32の回転位置に関する値と、発熱体32からみて下方向に配置された被加熱物である塗膜82に到達する発熱体32からの放射エネルギーに関する値と、の対応関係を表すデータである。 The controller 90 is configured as a microprocessor centered on a CPU 91, and communicates with a flash memory 92 that stores various processing programs and various data, a RAM 94 that temporarily stores data, an operation panel 98, and the like. Internal communication interface (I / F). The flash memory 92 stores correspondence data 93. As will be described in detail later, the correspondence data 93 includes a value relating to the radiation wavelength of the heating element 32, a value relating to the rotational position of the heating element 32, and a coating film that is an object to be heated as viewed from the heating element 32. This is data representing a correspondence relationship with a value related to radiant energy from the heating element 32 reaching 82.
 このコントローラー90は、給気ファン21や排気ファン26に制御信号を出力して、給気口23から送風される熱風の温度及び風量を制御したり、空間12aの雰囲気の排気口28からの排気量を制御したりする。また、コントローラー90は、熱電対である温度センサ49が検出した外管38の温度を入力したり、第1流体供給源52の図示しない開閉弁や流量調整弁に制御信号を出力したりして、外管38が所定の上限値を超えないように赤外線加熱ユニット30の流体流路39を流れる第1流体の流量を制御する。コントローラー90は、第2流体供給源54の図示しない開閉弁や流量調整弁に制御信号を出力して、赤外線吸収プレート70,75の流体流路72,77を流れる第2流体の流量を個別に制御する。更に、コントローラー90は、電力供給源50から発熱体32へ供給される電力の大きさを調整するための制御信号を電力供給源50へ出力して、赤外線加熱ユニット30の発熱体温度や出力を個別に制御する。コントローラー90は、モーター56に制御信号を出力して、発熱体32の回転位置を制御する。また、コントローラー90は、ロール17,ロール18の回転速度を制御することで、炉体12内のシート80及び塗膜82の通過時間やシート80及び塗膜82にかかる張力を調整する。コントローラー90は、操作パネル98の操作に応じて発生する操作信号を入力したり、操作パネル98に表示指令を出力したりする。 The controller 90 outputs a control signal to the air supply fan 21 and the exhaust fan 26 to control the temperature and air volume of the hot air blown from the air supply port 23, or to exhaust the air from the exhaust port 28 in the atmosphere of the space 12a. Control the amount. In addition, the controller 90 inputs the temperature of the outer tube 38 detected by the temperature sensor 49 that is a thermocouple, or outputs a control signal to an on-off valve or a flow rate adjustment valve (not shown) of the first fluid supply source 52. The flow rate of the first fluid flowing through the fluid flow path 39 of the infrared heating unit 30 is controlled so that the outer tube 38 does not exceed a predetermined upper limit value. The controller 90 outputs a control signal to an on-off valve and a flow rate adjustment valve (not shown) of the second fluid supply source 54 to individually control the flow rate of the second fluid flowing through the fluid flow paths 72 and 77 of the infrared absorption plates 70 and 75. Control. Further, the controller 90 outputs a control signal for adjusting the magnitude of the power supplied from the power supply source 50 to the heating element 32 to the power supply source 50, and thereby the heating element temperature and output of the infrared heating unit 30. Control individually. The controller 90 outputs a control signal to the motor 56 to control the rotational position of the heating element 32. Further, the controller 90 adjusts the passing time of the sheet 80 and the coating film 82 in the furnace body 12 and the tension applied to the sheet 80 and the coating film 82 by controlling the rotation speed of the rolls 17 and 18. The controller 90 inputs an operation signal generated in response to an operation on the operation panel 98 and outputs a display command to the operation panel 98.
 また、コントローラー90は、図1に示すように、機能ブロックとして、回転位置取得部95、制御部96などを備えている。回転位置取得部95は、ユーザーから操作パネル98を介して入力された発熱体32の放射波長及び放射エネルギーに関する情報と、対応関係データ93と、に基づいて、入力された放射波長及び放射エネルギーに対応する発熱体32の回転位置に関する値を取得する機能を有する。制御部96は、モーター56及び電力供給源50を制御して、回転位置取得部95により取得された値で表される回転位置に発熱体32が位置するようモーター56により発熱体32を回転させる機能や、操作パネル98を介して入力された放射波長の電磁波を発熱体32が放射するよう電力供給源50により発熱体32に電力を供給させる機能を有する。なお、回転位置取得部95、制御部96は、ハードウエアとして構成してもよいし、CPU91がフラッシュメモリー92に記憶されたプログラムを実行することにより機能を発現するソフトウエアとして構成してもよい。 Further, as shown in FIG. 1, the controller 90 includes a rotational position acquisition unit 95, a control unit 96, and the like as functional blocks. The rotational position acquisition unit 95 calculates the input radiation wavelength and radiation energy based on the information on the radiation wavelength and radiation energy of the heating element 32 input from the user via the operation panel 98 and the correspondence data 93. It has a function of acquiring a value related to the rotational position of the corresponding heating element 32. The control unit 96 controls the motor 56 and the power supply source 50 to rotate the heating element 32 by the motor 56 so that the heating element 32 is positioned at the rotation position represented by the value acquired by the rotation position acquisition unit 95. The power supply source 50 supplies power to the heating element 32 so that the heating element 32 radiates electromagnetic waves having a radiation wavelength input via the operation panel 98. The rotational position acquisition unit 95 and the control unit 96 may be configured as hardware, or may be configured as software that exhibits functions by the CPU 91 executing a program stored in the flash memory 92. .
 操作パネル28は、表示部と、この表示部を含んで構成された操作部とを備える。表示部は、タッチパネル式の液晶ディスプレイとして構成されており、メニューや項目を選択する選択/設定ボタン、発熱体32の放射波長及び放射エネルギーなどの各種数値を入力するための数字ボタン、乾燥処理を開始するスタートボタンなどを表示してタッチ操作を受け付け、タッチ操作に基づく操作信号をコントローラー90に送信する。また、コントローラー90からの表示指令を受信すると、表示指令に基づく画像や文字,数値などを表示部に表示する。 The operation panel 28 includes a display unit and an operation unit configured to include the display unit. The display unit is configured as a touch panel type liquid crystal display, a selection / setting button for selecting menus and items, numeric buttons for inputting various numerical values such as the radiation wavelength and radiation energy of the heating element 32, and a drying process. A start button or the like to be started is displayed to accept a touch operation, and an operation signal based on the touch operation is transmitted to the controller 90. Further, when a display command is received from the controller 90, an image, a character, a numerical value, or the like based on the display command is displayed on the display unit.
 次に、こうして構成された乾燥装置10の動作について説明する。まず、赤外線加熱ユニット30の動作について説明する。図4は、発熱体32からの電磁波の放射波長(ピーク波長)と、発熱体32の回転位置(回転角)と、塗膜82への放射エネルギーと、の関係を示す説明図である。図4(a)は、発熱体32の回転角が0°のときの様子を示す説明図であり、図4(b)は、発熱体32の回転角が90°のときの様子を示す説明図である。なお、本実施形態では、発熱体32の断面(回転軸Rに垂直な断面)の長手方向が水平(上下方向に垂直)となる位置を回転角の基準(回転角=0°)とした。 Next, the operation of the drying apparatus 10 thus configured will be described. First, the operation of the infrared heating unit 30 will be described. FIG. 4 is an explanatory diagram showing the relationship between the radiation wavelength (peak wavelength) of the electromagnetic wave from the heating element 32, the rotational position (rotation angle) of the heating element 32, and the radiation energy to the coating film 82. 4A is an explanatory view showing a state when the rotation angle of the heating element 32 is 0 °, and FIG. 4B is an explanation showing a state when the rotation angle of the heating element 32 is 90 °. FIG. In the present embodiment, the position where the longitudinal direction of the cross section of the heat generating element 32 (the cross section perpendicular to the rotation axis R) is horizontal (perpendicular to the vertical direction) is defined as the reference for the rotation angle (rotation angle = 0 °).
 まず、回転角=0°の場合のピーク波長と放射エネルギーとの関係について説明する。発熱体32は、電力供給源50から供給される電力により出力が変化し、発熱体32自身の温度が変化するため、発熱体32が放射する電磁波のピーク波長もそれに伴い変化する。具体的には発熱体32の出力が大きいほど、すなわち発熱体32の温度が高いほど、放射される電磁波のピーク波長は小さい値になる。また、発熱体32の出力が大きいほど、発熱体32から塗膜82に到達する放射エネルギーが大きくなる。例えば、図4(a)に示すように、発熱体32の出力が最大時の25%のときには、ピーク波長が約4μmの電磁波が放射され、発熱体32の出力が最大時(100%)のときには、ピーク波長が約3μmの電磁波が放射される。そして、発熱体32の出力が100%のときには、発熱体32の出力が25%のときと比べて発熱体32から塗膜82への放射エネルギーが大きくなる。このように、発熱体32の回転角を調整せず出力のみを調整する場合、ピーク波長と放射エネルギーとの一方を変化させると他方も変化することになる。 First, the relationship between the peak wavelength and the radiant energy when the rotation angle = 0 ° will be described. Since the output of the heating element 32 is changed by the electric power supplied from the power supply source 50 and the temperature of the heating element 32 itself is changed, the peak wavelength of the electromagnetic wave radiated from the heating element 32 is changed accordingly. Specifically, the higher the output of the heating element 32, that is, the higher the temperature of the heating element 32, the smaller the peak wavelength of the emitted electromagnetic wave. In addition, as the output of the heating element 32 increases, the radiant energy reaching the coating film 82 from the heating element 32 increases. For example, as shown in FIG. 4A, when the output of the heating element 32 is 25% of the maximum, an electromagnetic wave having a peak wavelength of about 4 μm is radiated, and the output of the heating element 32 is maximum (100%). Sometimes, an electromagnetic wave having a peak wavelength of about 3 μm is emitted. When the output of the heating element 32 is 100%, the radiant energy from the heating element 32 to the coating film 82 is greater than when the output of the heating element 32 is 25%. As described above, when only the output is adjusted without adjusting the rotation angle of the heating element 32, if one of the peak wavelength and the radiant energy is changed, the other is also changed.
 しかし、本実施形態の赤外線加熱ユニット30は、発熱体32が回転することで、下方向から発熱体32を見た際の電磁波の見かけの放射面積が変化する。これにより、発熱体32の放射面に対する、発熱体32の下方向に配置された塗膜82の表面(特に、炉体12内の塗膜82の表面)の形態係数(以下、形態係数Fと称する)が変化する。例えば、図4(b)に示すように、発熱体32の回転角が90°のときには、回転角が0°のときと比べて下方向から発熱体32を見た際の見かけの放射面積が小さくなり、形態係数Fも小さくなる。そのため、発熱体32の出力が同じ100%であっても、発熱体32から塗膜82に到達する放射エネルギーは回転角が0°のときと比べて小さくなる(図4(b)下段グラフの実線を参照)。このように、赤外線加熱ユニット30では、発熱体32を回転させて見かけの放射面積を変える(形態係数Fを変える)ことで、例えば発熱体32の出力を変えずに(=発熱体32の温度,ピーク波長などを変えずに)、塗膜82に到達する放射エネルギーを変化させることができる。また、発熱体32の出力を変えたことに伴う放射エネルギーの変化を抑制するように、発熱体32の見かけの放射面積を変化させることができる。例えば本実施形態では、出力25%で回転角が0°のときの発熱体32からの電磁波(図4(b)下段グラフの破線)と、出力100%で回転角が90°のときの発熱体32からの電磁波(図4(b)下段グラフの実線)と、で塗膜82に到達する放射エネルギーがほぼ同じになっており、両者はピーク波長や電磁波の波長領域を1μmだけシフトさせた関係となっている。 However, in the infrared heating unit 30 of the present embodiment, the apparent radiation area of the electromagnetic wave when the heating element 32 is viewed from below changes as the heating element 32 rotates. Thereby, the form factor (hereinafter referred to as the form factor F) of the surface of the coating film 82 (particularly, the surface of the coating film 82 in the furnace body 12) disposed below the heating element 32 with respect to the radiation surface of the heating element 32. Change). For example, as shown in FIG. 4B, when the rotation angle of the heating element 32 is 90 °, the apparent radiation area when the heating element 32 is viewed from the lower direction compared to when the rotation angle is 0 °. The shape factor F is also reduced. Therefore, even if the output of the heating element 32 is the same 100%, the radiant energy reaching the coating film 82 from the heating element 32 is smaller than when the rotation angle is 0 ° (see the lower graph of FIG. 4B). (See solid line). As described above, in the infrared heating unit 30, by changing the apparent radiation area by changing the heating element 32 (changing the form factor F), for example, without changing the output of the heating element 32 (= temperature of the heating element 32). The radiant energy reaching the coating film 82 can be changed without changing the peak wavelength or the like. In addition, the apparent radiation area of the heating element 32 can be changed so as to suppress a change in radiant energy caused by changing the output of the heating element 32. For example, in the present embodiment, the electromagnetic wave from the heating element 32 when the output is 25% and the rotation angle is 0 ° (the broken line in the lower graph of FIG. 4B) and the heat generation when the output is 100% and the rotation angle is 90 °. The radiant energy reaching the coating film 82 is almost the same as the electromagnetic wave from the body 32 (solid line in the lower graph of FIG. 4B), and both shifted the peak wavelength and the wavelength region of the electromagnetic wave by 1 μm. It has become a relationship.
 なお、赤外線加熱ユニット30は、赤外線吸収プレート70,75を備えているため、発熱体32の回転位置に対応する形態係数Fの値には、この赤外線吸収プレート70,75の配置や大きさなども影響する。また、赤外線加熱ユニット30は内管37,外管38,反射板60,赤外線吸収プレート70,75を備えているため、発熱体32から塗膜82に到達する放射エネルギーはこれらの配置,大きさ,反射する波長領域,吸収する波長領域などの影響も受ける。例えば、発熱体32からの電磁波のうち内管37,外管38,赤外線吸収プレート70,75が吸収する成分や反射板60が反射する成分によって、発熱体32から塗膜82に到達する放射エネルギーは変化する。そして、本実施形態では、これらの影響も考慮した上で、発熱体32の放射波長に関する値と、発熱体32の回転位置に関する値と、発熱体32からみて下方向に配置された被加熱物である塗膜82に到達する発熱体32からの放射エネルギーに関する値と、の対応関係を表すデータが、対応関係データ93として予めフラッシュメモリー92に記憶されている。図5は、対応関係データ93の概念図である。図示するように、対応関係データ93では、発熱体32の放射波長に関する値として発熱体32の出力を用い、発熱体32の回転位置に関する値として発熱体32の回転角を用いており、これらと塗膜82に到達する放射エネルギーとの対応関係がマップとして記憶されている。図5からもわかるように、発熱体32の回転角が-90°~90°の間で変化すると、塗膜82に到達する放射エネルギーは回転角が0°のときに最大となり、回転角が90°,-90°のときに最小となる。また、同じ回転角であっても、発熱体32の出力が大きい(=発熱体32の温度が高い、発熱体32からの電磁波のピーク波長が短い)ほど、塗膜82に到達する放射エネルギーは大きくなる。なお、図5では発熱体32の出力が25%,50%,75%,100%のときの対応関係を示したが、対応関係データ93には発熱体32の出力がこれ以外の場合の対応関係も含まれている。本実施形態では、対応関係データ93には発熱体32の出力が10~100%の範囲にわたって1%刻みでの対応関係が記憶されているものとした。このような対応関係データ93は、例えば実験により予め求めてもよいし、シミュレーションなどを用いて計算により予め導出してもよい。なお、本実施形態では、発熱体32の放射面の断面形状が楕円であり2回対称であるため、回転角は-90°~90°の間で変化させるものとしたが、回転角を-180°~180°までの間で変化させてもよい。 In addition, since the infrared heating unit 30 includes the infrared absorbing plates 70 and 75, the value of the form factor F corresponding to the rotational position of the heating element 32 includes the arrangement and size of the infrared absorbing plates 70 and 75, and the like. Also affects. Further, since the infrared heating unit 30 includes the inner tube 37, the outer tube 38, the reflection plate 60, and the infrared absorption plates 70 and 75, the radiant energy reaching the coating film 82 from the heating element 32 is arranged and sized in these. It is also affected by the reflected wavelength region and the absorbing wavelength region. For example, the radiant energy that reaches the coating film 82 from the heating element 32 due to the components absorbed by the inner tube 37, the outer tube 38, the infrared absorbing plates 70 and 75 and the components reflected by the reflecting plate 60 among the electromagnetic waves from the heating element 32. Will change. In this embodiment, in consideration of these influences, the value relating to the radiation wavelength of the heating element 32, the value relating to the rotational position of the heating element 32, and the object to be heated disposed downward from the heating element 32. Data representing the correspondence relationship between the value relating to the radiant energy from the heating element 32 reaching the coating film 82 is stored in the flash memory 92 in advance as correspondence relationship data 93. FIG. 5 is a conceptual diagram of the correspondence data 93. As shown in the figure, in the correspondence data 93, the output of the heating element 32 is used as a value related to the radiation wavelength of the heating element 32, and the rotation angle of the heating element 32 is used as a value related to the rotational position of the heating element 32. A correspondence relationship with the radiant energy reaching the coating film 82 is stored as a map. As can be seen from FIG. 5, when the rotation angle of the heating element 32 changes between −90 ° and 90 °, the radiant energy reaching the coating film 82 becomes maximum when the rotation angle is 0 °, and the rotation angle is The minimum is at 90 ° and -90 °. In addition, even when the rotation angle is the same, the higher the output of the heating element 32 (= the higher the temperature of the heating element 32 and the shorter the peak wavelength of the electromagnetic wave from the heating element 32), the more the radiant energy reaching the coating film 82. growing. FIG. 5 shows the correspondence when the output of the heating element 32 is 25%, 50%, 75%, and 100%, but the correspondence data 93 corresponds to the case where the output of the heating element 32 is other than this. Relationships are also included. In the present embodiment, it is assumed that the correspondence data 93 stores the correspondence in increments of 1% over the range of 10 to 100% of the output of the heating element 32. Such correspondence data 93 may be obtained in advance by experiments, for example, or may be derived in advance by calculation using simulation or the like. In the present embodiment, since the cross-sectional shape of the radiation surface of the heating element 32 is elliptical and symmetrical twice, the rotation angle is changed between −90 ° and 90 °, but the rotation angle is − It may be changed between 180 ° and 180 °.
 なお、塗膜82に到達する放射エネルギー(図5の縦軸)には、発熱体32から直接塗膜82に到達する放射エネルギーと、反射板60での反射を経由して塗膜82に到達する放射エネルギーとが含まれる。ここで、本実施形態では、発熱体32の電磁波の放射面の形状が回転軸Rを中心として2回対称であり、発熱体32を上方向から見た際の見かけの放射面積と、下方向から見た際の見かけの放射面積とが等しく、回転角の値の変化に伴って同じように変化する。そのため、回転角が0°のときに発熱体32から塗膜82に直接到達する放射エネルギーが最大になるのと同様、発熱体32から塗膜82に直接到達する放射エネルギーと反射板60に反射されて到達する放射エネルギーとの和も、回転角が0°のときに最大になる。 The radiant energy that reaches the coating film 82 (vertical axis in FIG. 5) reaches the coating film 82 via the radiation energy that directly reaches the coating film 82 from the heating element 32 and the reflection on the reflection plate 60. Radiant energy to be included. Here, in the present embodiment, the shape of the radiation surface of the electromagnetic wave of the heating element 32 is two-fold symmetric about the rotation axis R, the apparent radiation area when the heating element 32 is viewed from above, and the downward direction Is equal to the apparent radiation area when viewed from above, and changes in the same way as the rotation angle changes. Therefore, when the rotation angle is 0 °, the radiant energy that directly reaches the coating film 82 from the heating element 32 is maximized, and the radiant energy that directly reaches the coating film 82 from the heating element 32 is reflected on the reflection plate 60. The sum of the radiant energy that reaches and reaches the maximum is also maximized when the rotation angle is 0 °.
 次に、こうして構成された乾燥装置10を用いて塗膜82を乾燥する様子について説明する。まず、ユーザーが操作パネル98を操作して乾燥条件などの各種設定値の入力を行い、スタートボタンを押下する。なお、操作パネル98がユーザーから入力する各種設定値には、5個の赤外線加熱ユニット30の各々についての、発熱体32からの放射波長及び塗膜82への放射エネルギーに関する情報が含まれる。また、各種設定値には、給気装置20からの熱風の温度及び風量、排気装置25による空間12aの雰囲気の排気量、外管38の表面温度の上限値、流体流路72,77を流れる第2流体の流量、塗膜82の炉体12内の通過時間などの値が含まれる。すると、コントローラー90は操作パネル98からの操作信号によりユーザーからの各種設定値などを入力してRAM94に記憶し、記憶した各種設定値に基づく乾燥処理を開始する。具体的には、まず、コントローラー90が入力された通過時間に基づく速度でロール17,ロール18を回転させ、シート80の搬送を開始する。これにより、乾燥装置10の左端に配置されたロール17からシート80が巻き外されていく。また、シート80は開口15から炉体12内に搬入される直前に図示しないコーターによって上面に塗膜82が塗布される。そして、塗膜82が塗布されたシート80は、炉体12内に搬送される。このとき、コントローラー90は、入力された設定値に基づいて給気ファン21,排気ファン26,第1流体供給源52,第2流体供給源54を制御する。また、コントローラー90は、入力された発熱体32からの放射波長及び塗膜82への放射エネルギーに関する情報に基づいて、電力供給源50,モーター56を制御して発熱体32の出力や回転位置を制御する発熱体制御ルーチン(後述)を実行する。これらにより、シート80が炉体12の空間12a内を通過する間に、シート80の上面に形成された塗膜82は、発熱体32からの赤外線(反射板60に反射された赤外線を含む)が照射されることによって乾燥される。また、発熱体32からの赤外線のうち、一部は赤外線吸収プレート70,75によって吸収され、流体流路72,77を流れる第2流体を加熱する。また、給気装置20からの熱風が塗膜82やシート80を加熱したり、塗膜82から蒸発した溶剤を除去したりする。塗膜82から蒸発した溶剤を含む熱風は、排気装置25により排出される。塗膜82は、炉体12を通過する間に乾燥されて上述した電極となり、開口16から搬出される。そして、この電極(塗膜82)は、炉体12の右端に設置されたロール18にシート80とともに巻き取られる。 Next, how the coating film 82 is dried using the drying apparatus 10 configured as described above will be described. First, the user operates the operation panel 98 to input various setting values such as drying conditions, and presses the start button. The various setting values input from the user by the operation panel 98 include information on the radiation wavelength from the heating element 32 and the radiation energy to the coating film 82 for each of the five infrared heating units 30. The various set values include the temperature and amount of hot air from the air supply device 20, the exhaust amount of the atmosphere in the space 12a by the exhaust device 25, the upper limit value of the surface temperature of the outer pipe 38, and the fluid flow paths 72 and 77. Values such as the flow rate of the second fluid and the passage time of the coating film 82 in the furnace body 12 are included. Then, the controller 90 inputs various setting values from the user in response to an operation signal from the operation panel 98, stores them in the RAM 94, and starts a drying process based on the stored various setting values. Specifically, first, the rolls 17 and 18 are rotated at a speed based on the passing time input by the controller 90, and the conveyance of the sheet 80 is started. As a result, the sheet 80 is unwound from the roll 17 disposed at the left end of the drying apparatus 10. The sheet 80 is coated with a coating film 82 on the upper surface by a coater (not shown) immediately before being brought into the furnace body 12 from the opening 15. And the sheet | seat 80 with which the coating film 82 was apply | coated is conveyed in the furnace body 12. FIG. At this time, the controller 90 controls the air supply fan 21, the exhaust fan 26, the first fluid supply source 52, and the second fluid supply source 54 based on the input set values. In addition, the controller 90 controls the power supply source 50 and the motor 56 based on the input information on the radiation wavelength from the heating element 32 and the radiation energy to the coating film 82 to control the output and rotation position of the heating element 32. A heating element control routine (described later) to be controlled is executed. Thus, while the sheet 80 passes through the space 12 a of the furnace body 12, the coating film 82 formed on the upper surface of the sheet 80 is infrared rays from the heating element 32 (including infrared rays reflected by the reflecting plate 60). Is dried by irradiation. Part of the infrared rays from the heating element 32 is absorbed by the infrared absorbing plates 70 and 75 to heat the second fluid flowing through the fluid flow paths 72 and 77. Further, the hot air from the air supply device 20 heats the coating film 82 and the sheet 80 or removes the solvent evaporated from the coating film 82. The hot air containing the solvent evaporated from the coating film 82 is discharged by the exhaust device 25. The coating film 82 is dried while passing through the furnace body 12 to become the electrode described above, and is carried out from the opening 16. And this electrode (coating film 82) is wound up with the sheet | seat 80 on the roll 18 installed in the right end of the furnace body 12. FIG.
 ここで、発熱体制御ルーチンについて詳細に説明する。図6は、発熱体制御ルーチンの一例を示すフローチャートである。このルーチンは、コントローラー90が、ユーザーから操作パネル98を介して、発熱体32からの放射波長及び塗膜82への放射エネルギーに関する情報と、スタートボタンが押下されたことを表す操作信号と、を入力したときに実行される。また、このルーチンは、CPU91が回転位置取得部95及び制御部96の機能を用いて実行する。なお、図6の発熱体制御ルーチンは、図1の5個の赤外線加熱ユニット30の各々について実行されるが、処理内容はいずれも同様であるため、ここでは1個の赤外線加熱ユニット30についての処理を説明する。 Here, the heating element control routine will be described in detail. FIG. 6 is a flowchart illustrating an example of the heating element control routine. In this routine, the controller 90 receives information on the radiation wavelength from the heating element 32 and the radiation energy to the coating film 82 via the operation panel 98 from the user, and an operation signal indicating that the start button has been pressed. Executed when entered. This routine is executed by the CPU 91 using the functions of the rotational position acquisition unit 95 and the control unit 96. The heating element control routine of FIG. 6 is executed for each of the five infrared heating units 30 of FIG. 1, but since the processing contents are the same, here, for one infrared heating unit 30. Processing will be described.
 この発熱体制御ルーチンが実行されると、CPU91は、まず、入力された発熱体32からの放射波長及び塗膜82への放射エネルギーに関する情報をRAM94に記憶する(ステップS100)。なお、本実施形態では、放射波長に関する情報として、発熱体32からの電磁波のピーク波長を表す値を、操作パネル98を介してユーザーから入力するものとした。また、放射エネルギーに関する情報としては、発熱体32から塗膜82に到達する放射エネルギーの値自体を入力するものとした。続いて、CPU91は、ステップS100で記憶したピーク波長の値に基づいて発熱体32の出力を導出する(ステップS110)。この処理は、発熱体32からの電磁波のピーク波長と発熱体32の出力とを対応づけたテーブルを予めフラッシュメモリー92が記憶しており、このテーブルに基づいて発熱体32の出力を導出するものとした。次に、CPU91は、対応関係データ93に基づいて、ステップS100で記憶した放射エネルギーの値自体と、ステップS110で導出した発熱体32の出力とに対応する回転角を取得する(ステップS120)。図5に示したように、対応関係データ93は、発熱体32の出力と、発熱体32の回転角と、塗膜82に到達する放射エネルギーとの3つのパラメーターの対応関係を表すデータであるため、このうちの2つのパラメータ(ここでは、発熱体32の出力と、塗膜82に到達する放射エネルギー)に基づいて他の1つのパラメータ(ここでは、発熱体32の回転角)の値を取得することができる。そして、CPU91は、電力供給源50及びモーター56に制御信号を出力して発熱体32の出力及び回転角を調整して(ステップS130)、本ルーチンを終了する。このステップS130により、発熱体32の出力がステップS110で導出された出力となるよう電力供給源50から電力が供給される。また、発熱体32の回転角がステップS120で導出された回転角となるようモーター56から駆動力が出力される。そして、この回転角及び出力の状態で発熱体32が発熱することにより、塗膜82の乾燥処理における発熱体32の電磁波のピーク波長や発熱体32から塗膜82へ到達する放射エネルギーが、ユーザーが入力した値すなわち所望の値となる。 When this heating element control routine is executed, the CPU 91 first stores in the RAM 94 information regarding the input radiation wavelength from the heating element 32 and radiation energy to the coating film 82 (step S100). In the present embodiment, a value representing the peak wavelength of the electromagnetic wave from the heating element 32 is input from the user via the operation panel 98 as information regarding the emission wavelength. Further, as the information on the radiant energy, the value of the radiant energy that reaches the coating film 82 from the heating element 32 itself is input. Subsequently, the CPU 91 derives the output of the heating element 32 based on the peak wavelength value stored in step S100 (step S110). In this processing, a table in which the peak wavelength of the electromagnetic wave from the heating element 32 is associated with the output of the heating element 32 is stored in advance in the flash memory 92, and the output of the heating element 32 is derived based on this table. It was. Next, the CPU 91 acquires the rotation angle corresponding to the value of the radiant energy stored in step S100 and the output of the heating element 32 derived in step S110 based on the correspondence relationship data 93 (step S120). As shown in FIG. 5, the correspondence data 93 is data representing the correspondence of three parameters of the output of the heating element 32, the rotation angle of the heating element 32, and the radiant energy reaching the coating film 82. Therefore, based on two of these parameters (here, the output of the heating element 32 and the radiant energy reaching the coating film 82), the value of the other one parameter (here, the rotation angle of the heating element 32) is determined. Can be acquired. Then, the CPU 91 outputs a control signal to the power supply source 50 and the motor 56 to adjust the output and rotation angle of the heating element 32 (step S130), and ends this routine. In step S130, power is supplied from the power supply source 50 so that the output of the heating element 32 becomes the output derived in step S110. Further, the driving force is output from the motor 56 so that the rotation angle of the heating element 32 becomes the rotation angle derived in step S120. When the heating element 32 generates heat in the state of the rotation angle and output, the peak wavelength of the electromagnetic wave of the heating element 32 in the drying process of the coating film 82 and the radiant energy reaching the coating film 82 from the heating element 32 are Becomes the input value, that is, the desired value.
 本実施形態では、この発熱体制御ルーチンを5個の赤外線加熱ユニット30の各々について行うことで、電磁波のピーク波長や発熱体32から塗膜82へ到達する放射エネルギーを個別に調整することができる。例えば、5個の赤外線加熱ユニット30のうち図1の前側の3個については、発熱体32の出力を100%(ピーク波長が3μm),回転角を90°とし、後側の2個については、発熱体32の出力を25%(ピーク波長が4μm),回転角を0°とすることで、炉体12の前側と後側とで塗膜82に放射する電磁波のピーク波長を変えつつ、5個の赤外線加熱ユニット30から塗膜82への放射エネルギーはほぼ等しくしすることができる。これにより、塗膜82の乾燥状況に応じて塗膜82に放射する電磁波のピーク波長を変えつつ、出力の比較的高い前側3個の赤外線加熱ユニット30からの放射エネルギーが大きくなりすぎることを抑制して、炉体12内の塗膜82の温度ムラや過熱などを抑制できる。 In this embodiment, by performing this heating element control routine for each of the five infrared heating units 30, the peak wavelength of electromagnetic waves and the radiation energy reaching the coating film 82 from the heating element 32 can be individually adjusted. . For example, for the three infrared heating units 30 on the front side in FIG. 1, the output of the heating element 32 is 100% (peak wavelength is 3 μm), the rotation angle is 90 °, and the two on the rear side are By changing the peak wavelength of the electromagnetic wave radiated to the coating film 82 between the front side and the rear side of the furnace body 12 by setting the output of the heating element 32 to 25% (peak wavelength is 4 μm) and the rotation angle to 0 °, The radiant energy from the five infrared heating units 30 to the coating film 82 can be made substantially equal. As a result, the radiant energy from the three front infrared heating units 30 with relatively high outputs is prevented from becoming too large while changing the peak wavelength of the electromagnetic wave radiated to the coating film 82 in accordance with the drying state of the coating film 82. Thus, temperature unevenness or overheating of the coating film 82 in the furnace body 12 can be suppressed.
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の赤外線加熱ユニット30が本発明の赤外線加熱ユニットに相当し、発熱体32が発熱体に相当する。また、赤外線吸収プレート70,75が赤外線吸収体に相当し、流体流路72,77が流体流路に相当し、反射板60が赤外線反射体に相当する。モーター56が回転手段に相当し、電力供給源50が電力供給手段に相当し、対応関係データ93を記憶するフラッシュメモリー92が対応関係記憶手段に相当し、操作パネル98が入力手段に相当し、回転位置取得部95が回転位置取得手段に相当し、制御部96が制御手段に相当する。赤外線加熱ユニット30と、モーター56と、電力供給源50と、フラッシュメモリー92及び回転位置取得部95,制御部96を備えたコントローラー90と、操作パネル98と、が本発明の赤外線加熱装置に相当する。乾燥装置10が本発明の乾燥装置に相当する。 Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The infrared heating unit 30 of the present embodiment corresponds to the infrared heating unit of the present invention, and the heating element 32 corresponds to the heating element. The infrared absorbing plates 70 and 75 correspond to an infrared absorber, the fluid flow paths 72 and 77 correspond to a fluid flow path, and the reflector 60 corresponds to an infrared reflector. The motor 56 corresponds to the rotation means, the power supply source 50 corresponds to the power supply means, the flash memory 92 that stores the correspondence data 93 corresponds to the correspondence storage means, the operation panel 98 corresponds to the input means, The rotational position acquisition unit 95 corresponds to a rotational position acquisition unit, and the control unit 96 corresponds to a control unit. The infrared heating unit 30, the motor 56, the power supply source 50, the controller 90 including the flash memory 92, the rotational position acquisition unit 95 and the control unit 96, and the operation panel 98 correspond to the infrared heating device of the present invention. To do. The drying device 10 corresponds to the drying device of the present invention.
 以上説明した本実施形態の赤外線加熱ユニット30は、加熱されると赤外線を含む電磁波を放射し、回転軸Rを中心に回転可能であり、回転軸Rと垂直な下方向から見た際の電磁波の見かけの放射面積が回転により変化する形状の発熱体32を備えている。そのため、例えば発熱体32の温度変化による発熱体32からの放射波長の変化とは独立して、発熱体32の見かけの放射面積を変化させることができる。そして、見かけの放射面積が変化すると、発熱体32から下方向に放射される電磁波の放射エネルギーが変化する。そのため、例えば、下方向に配置された塗膜82への放射エネルギーを一定にしつつ放射波長(例えば電磁波のピーク波長や電磁波の波長領域など)を調整したり、塗膜82への放射波長を一定にしつつ放射エネルギーを調整したりするなど、塗膜82への放射波長と放射エネルギーとを別々に調整することができる。 The infrared heating unit 30 of the present embodiment described above radiates electromagnetic waves including infrared rays when heated, can rotate around the rotation axis R, and is viewed from the lower direction perpendicular to the rotation axis R. The heating element 32 has a shape in which the apparent radiation area changes with rotation. Therefore, for example, the apparent radiation area of the heating element 32 can be changed independently of the change in the radiation wavelength from the heating element 32 due to the temperature change of the heating element 32. When the apparent radiation area changes, the radiation energy of the electromagnetic wave radiated downward from the heating element 32 changes. Therefore, for example, the radiation wavelength (for example, the peak wavelength of the electromagnetic wave or the wavelength region of the electromagnetic wave) is adjusted while the radiation energy to the coating film 82 arranged in the downward direction is constant, or the radiation wavelength to the coating film 82 is constant. The radiation wavelength and radiation energy to the coating film 82 can be adjusted separately, for example, by adjusting the radiation energy.
 また、発熱体32は、回転軸Rに垂直な断面で見たときに、電磁波の放射面が楕円形状である。そのため、比較的単純な形状で、発熱体32を「下方向から見た際の電磁波の見かけの放射面積が回転により変化する形状」とすることができる。 Further, when the heating element 32 is viewed in a cross section perpendicular to the rotation axis R, the radiation surface of the electromagnetic wave has an elliptical shape. Therefore, it is possible to make the heating element 32 “a shape in which the apparent radiation area of the electromagnetic wave when viewed from below changes by rotation” with a relatively simple shape.
 さらに、赤外線加熱ユニット30は、電磁波のうち、発熱体32から回転軸Rと垂直且つ下方向以外の方向に放射される赤外線の少なくとも一部を吸収可能な赤外線吸プレート70,75を備えている。そのため、発熱体32から下方向以外の方向へ向かう赤外線が、例えば炉体12の壁部などの他の物体に反射して塗膜82に到達してしまうなど、塗膜82に間接的に放射エネルギーを与えることを抑制できる。なお、発熱体32の見かけの放射面積を減少させて塗膜82への放射エネルギーを減少させたい場合に、塗膜82に間接的に与えられる放射エネルギーが存在すると、放射エネルギーの減少が不十分となる場合がある。赤外線吸収プレート70,75を備えることで、このようなことを抑制し、発熱体32の回転による放射エネルギーの調整をより十分なものとすることができる。 Further, the infrared heating unit 30 includes infrared absorbing plates 70 and 75 capable of absorbing at least a part of infrared rays emitted from the heating element 32 in a direction perpendicular to the rotation axis R and other than the lower direction among the electromagnetic waves. . For this reason, infrared rays traveling in a direction other than the downward direction from the heating element 32 are reflected on other objects such as the wall of the furnace body 12 and reach the coating film 82 indirectly. It can suppress giving energy. In addition, when it is desired to reduce the radiant energy to the coating film 82 by reducing the apparent radiation area of the heating element 32, if there is radiant energy given indirectly to the coating film 82, the reduction of the radiant energy is insufficient. It may become. By providing the infrared absorbing plates 70 and 75, such a situation can be suppressed, and the adjustment of the radiation energy by the rotation of the heating element 32 can be made more sufficient.
 さらにまた、赤外線吸収プレート70,75は、電磁波のうち、発熱体32から回転軸Rと垂直且つ下方向と垂直な方向(=前後方向)に放射される赤外線の少なくとも一部を吸収可能である。発熱体32の回転により下方向からの見かけの放射面積を減少させる場合、回転軸Rと垂直且つ下方向と垂直な前後方向からの見かけの放射面積は増大しやすい。そのため、赤外線吸収プレート70,75がこの前後方向に放射される赤外線を吸収可能にすることで、下方向に配置された塗膜82に間接的に放射エネルギーを与えることを抑制する効果が高まる。しかも、赤外線吸収プレート70,75は、発熱体32から前後方向に放射される赤外線の少なくとも一部を吸収する赤外線吸収面を有しており、赤外線吸収面の上下方向の存在範囲が発熱体32の上下方向の存在範囲を含んでいる。そのため、塗膜82に間接的に放射エネルギーを与えることを抑制する効果がさらに高まる。 Furthermore, the infrared absorbing plates 70 and 75 can absorb at least a part of the infrared rays radiated from the heating element 32 in the direction perpendicular to the rotation axis R and perpendicular to the downward direction (= front-rear direction). . When the apparent radiation area from the lower direction is reduced by the rotation of the heating element 32, the apparent radiation area from the front-rear direction perpendicular to the rotation axis R and perpendicular to the lower direction is likely to increase. Therefore, the infrared absorbing plates 70 and 75 can absorb the infrared rays radiated in the front-rear direction, so that the effect of suppressing the application of radiant energy indirectly to the coating film 82 arranged in the downward direction is enhanced. In addition, the infrared absorbing plates 70 and 75 have an infrared absorbing surface that absorbs at least a part of infrared rays emitted from the heating element 32 in the front-rear direction, and the existence range in the vertical direction of the infrared absorbing surface is the heating element 32. The range of the vertical direction is included. Therefore, the effect which suppresses giving a radiant energy indirectly to the coating film 82 further increases.
 そしてまた、赤外線加熱ユニット30は、電磁波のうち、発熱体32から前後方向のうちの前方向に放射される赤外線の少なくとも一部を吸収可能な赤外線吸収プレート70と、前後方向のうちの後方向に放射される赤外線の少なくとも一部を吸収可能な赤外線吸収プレート75とを備える。そのため、塗膜82に間接的に放射エネルギーを与えることを抑制する効果がさらに高まる。 In addition, the infrared heating unit 30 includes an infrared absorbing plate 70 capable of absorbing at least a part of infrared rays radiated from the heating element 32 in the front-rear direction among the electromagnetic waves, and the rear direction in the front-rear direction. And an infrared ray absorbing plate 75 capable of absorbing at least a part of the infrared ray radiated to the surface. Therefore, the effect which suppresses giving a radiant energy indirectly to the coating film 82 further increases.
 そしてまた、赤外線吸収プレート70,75は、第2流体が流通可能な流体流路72,77を内部に有している。そのため、流体流路72,77に第2流体を流通させることによって、赤外線吸収プレート70,75を冷却することができる。これにより、赤外線吸収プレート70,75自身が赤外線の輻射源となるのを抑制できる。また、第2流体の熱を給気装置20が供給する熱風の予熱に利用して、発熱体32から塗膜82への加熱に用いられないエネルギーを有効に活用することができる。 Further, the infrared absorption plates 70 and 75 have fluid flow paths 72 and 77 through which the second fluid can flow. Therefore, the infrared absorbing plates 70 and 75 can be cooled by allowing the second fluid to flow through the fluid flow paths 72 and 77. Thereby, it can suppress that the infrared rays absorption plates 70 and 75 itself become an infrared radiation source. Moreover, the heat which is not used for the heating from the heat generating body 32 to the coating film 82 can be effectively utilized by using the heat of the second fluid for preheating of hot air supplied by the air supply device 20.
 そしてまた、赤外線加熱ユニット30において、電磁波のうち、発熱体32からみて上方向に放射される赤外線の少なくとも一部を反射可能な反射板60、を備え、発熱体32は、発熱体32を下方向から見た際の電磁波の見かけの放射面積と、上方向から見た際の電磁波の見かけの放射面積との和が、回転により変化する形状としている。これにより、反射板60が赤外線を反射することで、塗膜82には、発熱体32から下方向に放射される赤外線と上方向に放射された赤外線とが共に到達可能になる。そのため、発熱体32から放射エネルギーを効率よく塗膜82に到達させることができる。なお、発熱体32は、下方向から見た際の見かけの放射面積と、上方向から見た際の見かけの放射面積との和が、回転により変化するため、発熱体32から塗膜82に直接到達する放射エネルギーと、反射板60に反射されて到達する放射エネルギーとの和も回転により変化する。そのため、反射板60が存在しても、発熱体32の回転による放射エネルギーの調整を行うことができる。 In addition, the infrared heating unit 30 includes a reflector 60 capable of reflecting at least a part of infrared rays radiated upward as viewed from the heating element 32 among the electromagnetic waves. The sum of the apparent radiation area of the electromagnetic wave when viewed from the direction and the apparent radiation area of the electromagnetic wave when viewed from above is a shape that changes by rotation. Thereby, the reflecting plate 60 reflects the infrared rays, so that both the infrared rays emitted downward from the heating element 32 and the infrared rays emitted upward can reach the coating film 82. Therefore, the radiant energy from the heating element 32 can efficiently reach the coating film 82. In addition, since the sum of the apparent radiation area when viewed from below and the apparent radiation area when viewed from above is changed by rotation, the heating element 32 changes from the heating element 32 to the coating film 82. The sum of the radiant energy that reaches directly and the radiant energy that arrives after being reflected by the reflector 60 also changes by rotation. Therefore, even if the reflection plate 60 exists, the radiant energy can be adjusted by the rotation of the heating element 32.
 そしてまた、乾燥装置10では、コントローラー90のフラッシュメモリー92が、発熱体32の放射波長に関する値と、回転位置に関する値と、塗膜82に到達する発熱体32からの放射エネルギーに関する値と、の対応関係を表す対応関係データ93を記憶している。そして、まず、この対応関係と、操作パネル98に入力された放射波長及び放射エネルギーに関する情報と、に基づいて発熱体32の回転位置に関する値を取得する。続いて、取得された値で表される回転位置に発熱体32が位置し、入力された放射波長の電磁波を発熱体32が放射するように、電力供給源50が発熱体32に供給する電力やモーター56による発熱体32の回転を制御する。そのため、ユーザーが所望の放射波長及び放射エネルギーに関する情報を入力するだけで、所望の放射波長及び放射エネルギーを得るための供給電力や回転位置を適切に調整することができる。 In the drying apparatus 10, the flash memory 92 of the controller 90 includes a value relating to the radiation wavelength of the heating element 32, a value relating to the rotational position, and a value relating to the radiation energy from the heating element 32 reaching the coating film 82. Correspondence relation data 93 representing the correspondence relation is stored. First, a value related to the rotational position of the heating element 32 is acquired based on this correspondence and information on the radiation wavelength and radiation energy input to the operation panel 98. Subsequently, the power supplied from the power supply source 50 to the heating element 32 so that the heating element 32 is positioned at the rotation position represented by the acquired value and the heating element 32 radiates the electromagnetic wave having the input radiation wavelength. And the rotation of the heating element 32 by the motor 56 is controlled. Therefore, the supply power and rotational position for obtaining the desired radiation wavelength and radiant energy can be appropriately adjusted only by the user inputting information regarding the desired radiation wavelength and radiant energy.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 例えば、上述した実施形態では、赤外線加熱ユニット30は発熱体32を1つ備えるものとしたが、これに限らず複数の発熱体32を備えるものとしてもよい。例えば、互いの回転軸が平行となりその回転軸と垂直且つ所定方向と垂直な方向に並べて配置された複数の発熱体32を有していてもよい。図7は、この場合の変形例の赤外線加熱ユニット130の断面図である。なお、赤外線加熱ユニット130のうち赤外線加熱ユニット30と同様の構成要素については同じ符号を付してその説明を省略し、赤外線加熱ユニット30との相違点について主に説明する。図7に示すように、赤外線加熱ユニット130は、赤外線加熱ユニット30の構成要素に加えて、さらに赤外線ヒーター131を備えている。この赤外線ヒーター131は、発熱体132と、内管137と、外管138などを備えている。赤外線ヒーター131の構成は、赤外線ヒーター31と同様である。赤外線ヒーター131は、赤外線加熱ユニット30の回転軸Rと平行な回転軸R2を有し、この回転軸R2を中心に発熱体132が回転可能である。また、発熱体32と発熱体132とは、回転軸R,R2と垂直且つ所定方向(下方向)と垂直な前後方向に並ぶように配置されている。なお、赤外線吸収プレート75は、赤外線ヒーター131の後方に配置されており、赤外線吸収プレート70,75が赤外線ヒーター31,131を前後から挟むように位置している。また、反射板160が、赤外線ヒーター31及び赤外線ヒーター131の共通の反射板として1つ設けられている。反射板160の前後方向の存在範囲は、発熱体32,132や外管38,138の前後方向の存在範囲を含んでいる。なお、赤外線ヒーター31と赤外線ヒーター131とのそれぞれに反射板を設けてもよい。この赤外線加熱ユニット130においても、例えば発熱体32と発熱体132とが回転後に同じ回転角になるようにすることで、発熱体32,132を下方向から見た際の電磁波の見かけの放射面積の和を、発熱体32,132の回転により変化させることができる。これにより、発熱体32,132の放射面に対する塗膜82の表面の形態係数を変化させることができ、赤外線加熱ユニット30と同様に塗膜82への放射波長と放射エネルギーとを別々に調整することができる。しかも、複数の発熱体32,132が前後方向に並べて配置されているため、隣り合う発熱体32,132同士が自身からの赤外線で互いを加熱することができる。これにより、例えば発熱体32を1つ備えた赤外線加熱ユニット30を別々に2つ配置する場合と比べて、発熱体32,132の加熱に要するエネルギーを少なくすることができる。なお、赤外線加熱ユニットは、発熱体を3つ以上有するものとしてもよい。また、赤外線加熱ユニット130において内管137,外管138を備えないものとし、発熱体32と発熱体132とが同じ内管37,外管38の中に配置されるように構成してもよい。 For example, in the above-described embodiment, the infrared heating unit 30 includes one heating element 32. However, the present invention is not limited thereto, and may include a plurality of heating elements 32. For example, you may have the some heat generating body 32 which mutually arranged the rotation axis in parallel and arranged in the direction perpendicular | vertical to the rotation axis, and perpendicular | vertical to a predetermined direction. FIG. 7 is a cross-sectional view of an infrared heating unit 130 of a modified example in this case. In addition, the same code | symbol is attached | subjected about the component similar to the infrared heating unit 30 among the infrared heating units 130, the description is abbreviate | omitted, and a difference with the infrared heating unit 30 is mainly demonstrated. As shown in FIG. 7, the infrared heating unit 130 further includes an infrared heater 131 in addition to the components of the infrared heating unit 30. The infrared heater 131 includes a heating element 132, an inner tube 137, an outer tube 138, and the like. The configuration of the infrared heater 131 is the same as that of the infrared heater 31. The infrared heater 131 has a rotation axis R2 parallel to the rotation axis R of the infrared heating unit 30, and the heating element 132 can rotate around the rotation axis R2. The heating element 32 and the heating element 132 are arranged so as to be aligned in the front-rear direction perpendicular to the rotation axes R and R2 and perpendicular to the predetermined direction (downward direction). The infrared absorbing plate 75 is disposed behind the infrared heater 131, and the infrared absorbing plates 70 and 75 are positioned so as to sandwich the infrared heaters 31 and 131 from the front and rear. One reflector 160 is provided as a common reflector for the infrared heater 31 and the infrared heater 131. The existence range in the front-rear direction of the reflecting plate 160 includes the existence range in the front-rear direction of the heating elements 32 and 132 and the outer tubes 38 and 138. In addition, you may provide a reflecting plate in each of the infrared heater 31 and the infrared heater 131. Also in this infrared heating unit 130, for example, by making the heating element 32 and the heating element 132 have the same rotation angle after rotation, the apparent radiation area of electromagnetic waves when the heating elements 32, 132 are viewed from below. Can be changed by the rotation of the heating elements 32 and 132. Thereby, the form factor of the surface of the coating film 82 with respect to the radiation surface of the heat generating elements 32 and 132 can be changed, and the radiation wavelength and radiation energy to the coating film 82 are adjusted separately similarly to the infrared heating unit 30. be able to. Moreover, since the plurality of heating elements 32 and 132 are arranged side by side in the front-rear direction, the adjacent heating elements 32 and 132 can heat each other with infrared rays from themselves. Thereby, for example, the energy required for heating the heating elements 32 and 132 can be reduced as compared with the case where two infrared heating units 30 each having one heating element 32 are separately arranged. The infrared heating unit may have three or more heating elements. The infrared heating unit 130 may not include the inner tube 137 and the outer tube 138, and the heating element 32 and the heating element 132 may be arranged in the same inner tube 37 and outer tube 38. .
 上述した実施形態では、発熱体32は回転軸Rに垂直な形状が楕円形状であるものとしたが、発熱体が回転することで回転軸と垂直な所定方向から発熱体32を見た際の電磁波の見かけの放射面積が変化する形状であれば、これに限られない。例えば、発熱体32を、回転軸Rに垂直な断面で見たときに、電磁波の放射面が長手方向と短手方向とを有する多角形状としてもよい。例えば、発熱体32の形状を平板状として、回転軸Rに垂直な断面が長方形となるようにしてもよい。また、発熱体32は、電磁波の放射面の形状が回転軸Rを中心軸として2回対称な形状としたが、これに限られない。発熱体32は、電磁波の放射面の形状が回転軸Rを通る平面を対称面として面対称な形状としたが、これに限られない。なお、図7に示した赤外線加熱ユニット130のように複数の発熱体を備えた構成においては、複数の発熱体の形状は同じであってもよいし、異なっていてもよい。図8は、変形例の発熱体232の斜視図である。発熱体232は、例えば炭素製の発熱体(カーボンフィラメント)であり、長手方向が回転軸Rに沿った平板状に形成されている。また、発熱体232には、平板(直方体)の最長辺と最短辺とで囲まれる面の一方の面(図8の上側の面)から他方の面(図8の下側の面)に向かって形成された第1溝236aと、他方の面から一方の面に向かって形成された第2溝236bとが、発熱体232の長手方向に沿って交互に複数形成されている。この第1溝236a,第2溝236bが形成されていることで、発熱体232はジグザグの形状に構成されている。なお、このような形状にする理由は、発熱体232の抵抗値を適切な値まで高めるためである。発熱体232のジグザグの経路の両端(図8における発熱体232の右下端と左下端)には、電気配線32aがそれぞれ接続されている。また、発熱体232の長手方向の両端には、軸体34がそれぞれ接続されている。この発熱体232は、回転軸Rに垂直な断面でみたときの電磁波の放射面(発熱体232の表面)が長方形であり、この長方形の中心に回転軸Rが位置している。また、発熱体232の電磁波の放射面の形状は、回転軸Rを中心軸として2回対称となっている。本実施形態の発熱体32と同様に、この発熱体232も、回転軸Rを中心に回転することで回転軸Rと垂直な方向から発熱体232を見た際の電磁波の見かけの放射面積が変化する。 In the embodiment described above, the heating element 32 has an elliptical shape perpendicular to the rotation axis R. However, when the heating element 32 is viewed from a predetermined direction perpendicular to the rotation axis by rotating the heating element. The shape is not limited to this as long as the apparent radiation area of the electromagnetic wave changes. For example, when the heating element 32 is viewed in a cross section perpendicular to the rotation axis R, the electromagnetic wave radiation surface may have a polygonal shape having a longitudinal direction and a lateral direction. For example, the shape of the heating element 32 may be a flat plate shape, and the cross section perpendicular to the rotation axis R may be a rectangle. In addition, although the heating element 32 has a shape of an electromagnetic wave radiation surface that is twice symmetrical about the rotation axis R as a central axis, the present invention is not limited thereto. Although the heating element 32 has a plane-symmetric shape in which the plane of the radiation surface of the electromagnetic wave passes through the rotation axis R is a plane of symmetry, the present invention is not limited to this. In addition, in the structure provided with a several heat generating body like the infrared heating unit 130 shown in FIG. 7, the shape of a several heat generating body may be the same, and may differ. FIG. 8 is a perspective view of a heating element 232 according to a modification. The heating element 232 is, for example, a carbon heating element (carbon filament), and is formed in a flat plate shape whose longitudinal direction is along the rotation axis R. Further, the heating element 232 is directed from one surface (upper surface in FIG. 8) to the other surface (lower surface in FIG. 8) surrounded by the longest side and the shortest side of the flat plate (cuboid). A plurality of first grooves 236 a formed in this way and second grooves 236 b formed from the other surface toward one surface are alternately formed along the longitudinal direction of the heating element 232. By forming the first groove 236a and the second groove 236b, the heating element 232 is formed in a zigzag shape. The reason why such a shape is used is to increase the resistance value of the heating element 232 to an appropriate value. Electrical wirings 32a are respectively connected to both ends of the zigzag path of the heating element 232 (the lower right end and the lower left end of the heating element 232 in FIG. 8). In addition, shafts 34 are connected to both ends of the heating element 232 in the longitudinal direction. The heating element 232 has a rectangular electromagnetic wave radiation surface (surface of the heating element 232) when viewed in a cross section perpendicular to the rotation axis R, and the rotation axis R is located at the center of the rectangle. In addition, the shape of the electromagnetic wave radiation surface of the heating element 232 is two-fold symmetric about the rotation axis R as a central axis. Similar to the heating element 32 of the present embodiment, this heating element 232 also has an apparent radiation area of electromagnetic waves when the heating element 232 is viewed from a direction perpendicular to the rotation axis R by rotating about the rotation axis R. Change.
 上述した実施形態では、回転軸Rは発熱体32の断面の楕円の中心に位置しているものとしたが、これに限られない。回転軸Rが発熱体32の断面の楕円の中心以外に位置していてもよい。すなわち、回転軸Rが偏心していてもよい。 In the embodiment described above, the rotation axis R is located at the center of the ellipse of the cross section of the heating element 32, but is not limited thereto. The rotation axis R may be located other than the center of the ellipse of the cross section of the heating element 32. That is, the rotation axis R may be eccentric.
 上述した実施形態では、赤外線加熱ユニット30は赤外線吸収プレート70,75を備えるものとしたが、これに限られない。例えば、赤外線吸収プレート70,75のうちいずれか一方を備えるものとしてもよいし、いずれも備えないものとしてもよい。また、赤外線吸収プレート70,75の他にも、発熱体32からみて下方向以外の位置に赤外線吸収プレートを配置してもよい。例えば反射板60を備えない代わりに発熱体32の上方向に赤外線吸収プレートを配置してもよい。あるいは、赤外線吸収プレート70,赤外線吸収プレート75,反射板60を備えない代わりに発熱体32の上方向に赤外線吸収プレートを配置してもよい。また、赤外線吸収プレート70,75は、赤外線吸収面の上下方向の存在範囲が発熱体32の上下方向の存在範囲を含んでいるものとしたが、これに限られない。例えば、赤外線吸収プレート70,75のいずれか1以上が、上下方向の長さが発熱体32の上下方向の長さ未満であるものとしてもよい。 In the above-described embodiment, the infrared heating unit 30 includes the infrared absorbing plates 70 and 75, but is not limited thereto. For example, any one of the infrared absorption plates 70 and 75 may be provided, or none may be provided. In addition to the infrared absorbing plates 70 and 75, an infrared absorbing plate may be disposed at a position other than the downward direction when viewed from the heating element 32. For example, an infrared absorbing plate may be disposed above the heating element 32 instead of providing the reflecting plate 60. Alternatively, instead of including the infrared absorbing plate 70, the infrared absorbing plate 75, and the reflecting plate 60, the infrared absorbing plate may be disposed above the heating element 32. In addition, although the infrared absorption plates 70 and 75 have the vertical range of the infrared absorption surface including the vertical range of the heating element 32, the present invention is not limited to this. For example, any one or more of the infrared absorbing plates 70 and 75 may have a vertical length that is less than the vertical length of the heating element 32.
 上述した実施形態では、赤外線吸収プレート70,75は流体流路72,77を備えるものとしたが、これに限られない。例えば、赤外線吸収プレート70,75のいずれか1以上が、流体流路を備えないものとしてもよい。また、流体流路72,77を流れる第2流体は空気としたが、他の気体としてもよいし、例えば水などの液体としてもよい。 In the above-described embodiment, the infrared absorption plates 70 and 75 are provided with the fluid flow paths 72 and 77, but the present invention is not limited thereto. For example, any one or more of the infrared absorbing plates 70 and 75 may not include a fluid flow path. In addition, the second fluid flowing through the fluid flow paths 72 and 77 is air, but it may be another gas, for example, a liquid such as water.
 上述した実施形態では、給気ファン21は流体流路72,77を流れて予熱された第2流体を、熱風として炉体12内に供給するものとしたが、これに限られない。例えば、流体流路72,77を流れて予熱された第2流体と他の流体との間で熱交換を行い、これにより予熱された他の流体を給気ファン21が熱風として炉体12内に供給するものとしてもよい。あるいは、流体流路72,77を流れた第2流体の熱を他の用途に利用しないものとしてもよい。 In the above-described embodiment, the air supply fan 21 supplies the second fluid preheated through the fluid flow paths 72 and 77 as hot air into the furnace body 12, but is not limited thereto. For example, heat exchange is performed between the second fluid preheated through the fluid flow paths 72 and 77 and the other fluid, and the other fluid preheated thereby is supplied to the inside of the furnace body 12 by the supply fan 21 as hot air. It is good also as what supplies to. Or it is good also as what does not utilize the heat | fever of the 2nd fluid which flowed through the fluid flow paths 72 and 77 for another use.
 上述した実施形態では、対応関係データ93は、発熱体32の出力と、発熱体32の回転角と、塗膜82に到達する放射エネルギーとの対応関係を表すデータとしたが、発熱体32の放射波長に関する値と、発熱体32の回転位置に関する値と、発熱体32からみて下方向に配置された被加熱物である塗膜82に到達する発熱体32からの放射エネルギーに関する値と、の対応関係を表すものであればよい。例えば、「放射波長に関する値」は、発熱体32の出力に限らずピーク波長や波長領域の範囲としてもよい。波長領域の範囲の具体例としては、例えば、発熱体32からの電磁波の全放射エネルギーのうち波長3μm~5μmの範囲の放射エネルギーが90%以上、などとしてもよい。あるいは、発熱体32の温度,発熱体32への供給電力など、放射波長を導出可能な値としてもよい。なお、操作パネル98を介して入力する「放射波長に関する情報」についても同様に、ピーク波長に限らず波長領域の範囲としたり、その他放射波長を導出可能な値としてもよい。「回転位置に関する値」は、発熱体32の回転角に限らず、発熱体32を下方向から見た際の電磁波の見かけの放射面積など、回転位置を導出可能な値としてもよい。「放射エネルギーに関する値」は、放射エネルギーの値自体に限らず、放射エネルギーを導出可能な値であればよい。操作パネル98を介して入力する「放射エネルギーに関する情報」についても同様である。なお、対応関係データ93で用いる「放射波長に関する値」と操作パネル98を介して入力する「放射波長に関する情報」とは同じものであっても異なるものであってもよい。「放射エネルギーに関する値」と「放射エネルギーに関する情報」とについても同様である。 In the above-described embodiment, the correspondence relationship data 93 is data representing the correspondence relationship between the output of the heating element 32, the rotation angle of the heating element 32, and the radiant energy reaching the coating film 82. A value relating to the radiation wavelength, a value relating to the rotational position of the heating element 32, and a value relating to the radiation energy from the heating element 32 that reaches the coating film 82, which is an object to be heated as viewed from the heating element 32, It only needs to indicate a correspondence relationship. For example, the “value relating to the radiation wavelength” is not limited to the output of the heating element 32 but may be a peak wavelength or a range of a wavelength region. As a specific example of the range of the wavelength region, for example, the radiant energy in the wavelength range of 3 μm to 5 μm out of the total radiant energy of the electromagnetic wave from the heating element 32 may be 90% or more. Or it is good also as a value which can derive radiation wavelengths, such as the temperature of the heat generating body 32, and the electric power supplied to the heat generating body 32. FIG. Similarly, the “information regarding the radiation wavelength” input via the operation panel 98 may be not limited to the peak wavelength but may be in the range of the wavelength region, or may be a value from which the radiation wavelength can be derived. The “value relating to the rotational position” is not limited to the rotation angle of the heat generating element 32, and may be a value from which the rotational position can be derived, such as an apparent radiation area of electromagnetic waves when the heat generating element 32 is viewed from below. The “value relating to the radiant energy” is not limited to the value of the radiant energy, but may be any value that can derive the radiant energy. The same applies to “information on radiant energy” input via the operation panel 98. The “value relating to the radiation wavelength” used in the correspondence data 93 and the “information relating to the radiation wavelength” input via the operation panel 98 may be the same or different. The same applies to “value regarding radiant energy” and “information regarding radiant energy”.
 上述した実施形態では、モーター56が発熱体32の回転角を調整するものとしたが、これに限られない。発熱体32を回転軸Rを中心に回転させるものであれば、モーター以外の装置や機構を用いてもよい。あるいは、本実施形態のコントローラー90とモーター56のように自動で発熱体32を回転させる場合に限らず、モーター56を備えないものとして、ユーザーが手動で発熱体32の回転角を調整するものとしてもよい。 In the above-described embodiment, the motor 56 adjusts the rotation angle of the heating element 32, but is not limited thereto. Any device or mechanism other than a motor may be used as long as the heating element 32 rotates about the rotation axis R. Alternatively, the controller 90 and the motor 56 of the present embodiment are not limited to the case where the heating element 32 is automatically rotated, and the user manually adjusts the rotation angle of the heating element 32 assuming that the motor 56 is not provided. Also good.
 上述した実施形態では、発熱体32の出力が25%~100%の間で変化すると、ピーク波長が4μm~3μmの間で変化するものとしたが、発熱体32の出力(温度)変化に伴ってピーク波長が変化するものであれば、これに限られない。例えば、発熱体32の出力変化に伴って、発熱体32からの電磁波のピーク波長が赤外線領域(波長が0.7μm~8μmの領域)の間で変化するものとしてもよい。 In the above-described embodiment, when the output of the heating element 32 changes between 25% and 100%, the peak wavelength changes between 4 μm and 3 μm. However, as the output (temperature) of the heating element 32 changes, As long as the peak wavelength changes, the present invention is not limited to this. For example, the peak wavelength of the electromagnetic wave from the heating element 32 may be changed in the infrared region (wavelength of 0.7 μm to 8 μm) as the output of the heating element 32 changes.
上述した実施形態では、発熱体32の材料としてNi-Cr合金を例示したが、加熱すると赤外線を放出するものであれば特に限定されない。例えば、W(タングステン),Mo,Ta,及びFe-Cr-Al合金のいずれかでもよい。また、発熱体32を炭素繊維などの炭素からなる発熱体としてもよい。なお、発熱体32を回転可能に構成するため、発熱体の周囲を窒素雰囲気に保つ必要がないなど、気密を要しない材料が好ましい。 In the above-described embodiment, the Ni—Cr alloy is exemplified as the material of the heating element 32, but it is not particularly limited as long as it emits infrared rays when heated. For example, any of W (tungsten), Mo, Ta, and Fe—Cr—Al alloy may be used. The heating element 32 may be a heating element made of carbon such as carbon fiber. In addition, since the heating element 32 is configured to be rotatable, a material that does not require airtightness is preferable, for example, it is not necessary to maintain the periphery of the heating element in a nitrogen atmosphere.
 上述した実施形態では、内管37,外管38は、発熱体32から放射された電磁波のうち少なくとも赤外線を透過するものとしたが、少なくとも赤外線の一部を透過するものであればよい。例えば、内管37,外管38が、波長4μmを超える赤外線を吸収し且つ4μm以下の赤外線を透過する材料(例えば、石英ガラス)で形成されているものとしてもよい。こうすることで、発熱体32の出力を調整して発熱体32からの電磁波の放射波長を変化させつつ、塗膜82に到達する電磁波のうち波長が4μm以下の赤外線の割合を増大させることができる。内管37,外管38が、波長3.5μmを超える赤外線を吸収し且つ3.5μm以下の赤外線を透過する材料(例えば、石英ガラス)で形成されているものとしてもよい。 In the above-described embodiment, the inner tube 37 and the outer tube 38 transmit at least infrared rays among the electromagnetic waves radiated from the heating element 32. However, the inner tube 37 and the outer tube 38 only need to transmit at least part of infrared rays. For example, the inner tube 37 and the outer tube 38 may be formed of a material (for example, quartz glass) that absorbs infrared light having a wavelength exceeding 4 μm and transmits infrared light having a wavelength of 4 μm or less. By doing this, the ratio of the infrared rays having a wavelength of 4 μm or less among the electromagnetic waves reaching the coating film 82 can be increased while adjusting the output of the heat generator 32 to change the radiation wavelength of the electromagnetic waves from the heat generator 32. it can. The inner tube 37 and the outer tube 38 may be formed of a material (for example, quartz glass) that absorbs infrared light having a wavelength exceeding 3.5 μm and transmits infrared light having a wavelength of 3.5 μm or less.
 上述した実施形態では、赤外線ヒーター31のうち、内管37,外管38は回転させずに発熱体32を回転させるものとしたが、これに限らず、少なくとも発熱体32が回転可能であればよい。例えば、内管37,外管38を含めて赤外線ヒーター31全体を回転可能に構成してもよい。 In the above-described embodiment, the heating element 32 is rotated without rotating the inner tube 37 and the outer tube 38 of the infrared heater 31. However, the present invention is not limited to this, and at least the heating element 32 can be rotated. Good. For example, the entire infrared heater 31 including the inner tube 37 and the outer tube 38 may be configured to be rotatable.
 上述した実施形態では、被加熱物である塗膜82として、リチウムイオン二次電池用の電極となる塗膜を例示したが、加熱対象はこれに限られない。例えば、シート80がPETフィルムからなるものとし、塗膜82は、乾燥後にMLCC(積層セラミックコンデンサ)用の薄膜として用いられるものとしてもよい。この場合の塗膜82は、例えばセラミック粉末又は金属粉末と、有機バインダーと、有機溶剤とを含むものである。あるいは、塗膜82は、LTCC(低温焼成セラミックス)やその他のグリーンシート用の薄膜として用いられるものとしてもよい。 In the above-described embodiment, the coating film 82 that is an object to be heated is exemplified as a coating film serving as an electrode for a lithium ion secondary battery, but the heating target is not limited thereto. For example, the sheet 80 may be made of a PET film, and the coating film 82 may be used as a thin film for MLCC (multilayer ceramic capacitor) after drying. The coating film 82 in this case contains, for example, ceramic powder or metal powder, an organic binder, and an organic solvent. Alternatively, the coating film 82 may be used as a thin film for LTCC (low temperature fired ceramics) or other green sheets.
 上述した実施形態では、乾燥装置10は、塗膜82を連続的に搬送して乾燥を行うロールトゥロール方式の乾燥炉としたが、これに限られない。例えば、乾燥装置10を、ロールトゥロール方式以外の連続炉として構成してもよいし、塗膜82が炉体12内で停止した状態で乾燥を行うバッチ炉として構成してもよい。 In the embodiment described above, the drying apparatus 10 is a roll-to-roll type drying furnace that continuously transports the coating film 82 and performs drying, but is not limited thereto. For example, the drying apparatus 10 may be configured as a continuous furnace other than the roll-to-roll method, or may be configured as a batch furnace that performs drying while the coating film 82 is stopped in the furnace body 12.
 上述した実施形態では、発熱体32からの放射波長及び塗膜82への放射エネルギーに関する情報を、操作パネル98がユーザーから入力するものとしたが、これに限られない。例えば、発熱体32からの放射波長及び塗膜82への放射エネルギーに関する情報が予めフラッシュメモリー92に記憶されており、CPU91がフラッシュメモリー92からこの情報を入力し(読み出し)てもよい。この場合、CPU91が本発明の赤外線加熱ユニットにおける入力手段に相当する。 In the above-described embodiment, the operation panel 98 inputs information on the radiation wavelength from the heating element 32 and the radiation energy to the coating film 82, but the present invention is not limited to this. For example, information on the radiation wavelength from the heating element 32 and the radiation energy to the coating film 82 may be stored in the flash memory 92 in advance, and the CPU 91 may input (read) this information from the flash memory 92. In this case, the CPU 91 corresponds to input means in the infrared heating unit of the present invention.
 本出願は、2013年5月30日に出願された日本国特許出願第2013-114177号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
This application is based on Japanese Patent Application No. 2013-114177 filed on May 30, 2013, the contents of which are incorporated herein by reference in their entirety.
 本発明は、赤外線を用いた加熱や乾燥が必要な産業、例えばリチウムイオン二次電池の電極塗膜を製造する電池産業や、MLCC又はLTCC等を製造するセラミックス産業などに利用可能である。 The present invention can be used in industries that require heating and drying using infrared rays, such as the battery industry for producing electrode coatings for lithium ion secondary batteries, and the ceramics industry for producing MLCC or LTCC.
 10 乾燥装置、12 炉体、12a 空間、13 前端面、14 後端面、15,16 開口、17,18 ロール、19 搬送通路、20 給気装置、21 給気ファン、22 パイプ構造体、23 給気口、25 排気装置、26 排気ファン、27 パイプ構造体、28 排気口、30,130 赤外線加熱ユニット、31,131 赤外線ヒーター、32,132,232 発熱体、32a 電気配線、33 接続端子、34 軸体、35 軸受、37,137 内管、38,138 外管、39 流体流路、40 キャップ、42~43 円筒部、44 蓋、45 ホルダー、47 配線引出部、48 流体出入口、49 温度センサ、50 電力供給源、52 第1流体供給源、54 第2流体供給源、56 モーター、57 駆動軸、60,160 反射板、70,75 赤外線吸収プレート、71,76 流体出入口、72,77 流体流路、80 シート、82 塗膜、90 コントローラー、91 CPU、92 フラッシュメモリー、93 対応関係データ、94 RAM、95 回転位置取得部、96 制御部、98 操作パネル、236a 第1溝、236b 第2溝、R,R2 回転軸。 10 Drying device, 12 furnace body, 12a space, 13 front end face, 14 rear end face, 15, 16 opening, 17, 18 roll, 19 transport passage, 20 air supply device, 21 air supply fan, 22 pipe structure, 23 supply Vent, 25 exhaust device, 26 exhaust fan, 27 pipe structure, 28 exhaust port, 30, 130 infrared heating unit, 31, 131 infrared heater, 32, 132, 232 heating element, 32a electrical wiring, 33 connection terminal, 34 Shaft body, 35 bearing, 37, 137 inner pipe, 38, 138 outer pipe, 39 fluid flow path, 40 cap, 42-43 cylindrical part, 44 lid, 45 holder, 47 wiring outlet, 48 fluid inlet / outlet, 49 temperature sensor , 50 power supply source, 52 first fluid supply source, 54 second fluid supply source, 56 motor, 5 Drive shaft, 60, 160 reflector, 70, 75 infrared absorbing plate, 71, 76 fluid inlet / outlet, 72, 77 fluid flow path, 80 sheet, 82 coating film, 90 controller, 91 CPU, 92 flash memory, 93 correspondence data 94 RAM, 95 rotational position acquisition unit, 96 control unit, 98 operation panel, 236a first groove, 236b second groove, R, R2 rotation axis.

Claims (12)

  1.  加熱されると赤外線を含む電磁波を放射し、所定の回転軸を中心に回転可能であり、該回転軸と垂直な所定方向から見た際の前記電磁波の見かけの放射面積が該回転により変化する形状の発熱体、
     を備えた赤外線加熱ユニット。
    When heated, it emits electromagnetic waves including infrared rays and can rotate around a predetermined rotation axis, and the apparent radiation area of the electromagnetic waves when viewed from a predetermined direction perpendicular to the rotation axis changes due to the rotation. Shape heating element,
    Infrared heating unit equipped with.
  2.  前記発熱体は、前記回転軸に垂直な断面で見たときに、前記電磁波の放射面が楕円形状又は長手方向と短手方向とを有する多角形状である、
     請求項1に記載の赤外線加熱ユニット。
    When the heat generating element is viewed in a cross section perpendicular to the rotation axis, the electromagnetic wave radiation surface has an elliptical shape or a polygonal shape having a longitudinal direction and a transverse direction.
    The infrared heating unit according to claim 1.
  3.  請求項1又は2に記載の赤外線加熱ユニットであって、
     前記電磁波のうち、前記発熱体から前記回転軸と垂直且つ前記所定方向以外の方向に放射される赤外線の少なくとも一部を吸収可能な赤外線吸収体、
     を備えた赤外線加熱ユニット。
    The infrared heating unit according to claim 1 or 2,
    Among the electromagnetic waves, an infrared absorber capable of absorbing at least a part of infrared rays emitted from the heating element in a direction other than the predetermined direction perpendicular to the rotation axis,
    Infrared heating unit equipped with.
  4.  前記赤外線吸収体は、前記電磁波のうち、前記発熱体から前記回転軸と垂直且つ前記所定方向と垂直な方向に放射される赤外線の少なくとも一部を吸収可能である、
     請求項3に記載の赤外線加熱ユニット。
    The infrared absorber is capable of absorbing at least a part of the infrared ray radiated from the heating element in a direction perpendicular to the rotation axis and perpendicular to the predetermined direction.
    The infrared heating unit according to claim 3.
  5.  前記赤外線吸収体は、前記発熱体から前記回転軸と垂直且つ前記所定方向と垂直な方向に放射される赤外線の少なくとも一部を吸収する赤外線吸収面を有しており、前記所定方向を下方向とし前記所定方向とは反対方向を上方向としたときに、該赤外線吸収面の上下方向の存在範囲は前記発熱体の上下方向の存在範囲を含んでいる、
     請求項4に記載の赤外線加熱ユニット。
    The infrared absorber has an infrared absorbing surface that absorbs at least a part of infrared rays emitted from the heating element in a direction perpendicular to the rotation axis and perpendicular to the predetermined direction, and the predetermined direction is downward. When the direction opposite to the predetermined direction is the upward direction, the vertical range of the infrared absorbing surface includes the vertical range of the heating element,
    The infrared heating unit according to claim 4.
  6.  前記赤外線吸収体は、前記電磁波のうち、前記発熱体から前記回転軸と垂直且つ前記所定方向と垂直な一方の方向に放射される赤外線の少なくとも一部と他方の方向に放射される赤外線の少なくとも一部とを吸収可能である、
     請求項4又は5に記載の赤外線加熱ユニット。
    The infrared absorber includes at least a part of infrared rays emitted from the heating element in one direction perpendicular to the rotation axis and perpendicular to the predetermined direction, and at least infrared rays emitted from the heating element in the other direction. A part can be absorbed,
    The infrared heating unit according to claim 4 or 5.
  7.  前記赤外線吸収体は、流体が流通可能な流体流路を内部に有している、
     請求項3~6のいずれか1項に記載の赤外線加熱ユニット。
    The infrared absorber has a fluid flow path through which a fluid can flow.
    The infrared heating unit according to any one of claims 3 to 6.
  8.  請求項1~7のいずれか1項に記載の赤外線加熱ユニットであって、
     前記電磁波のうち、前記発熱体からみて前記所定方向とは反対方向に放射される赤外線の少なくとも一部を反射可能な赤外線反射体、
     を備え、
     前記発熱体は、前記発熱体を前記所定方向から見た際の前記電磁波の見かけの放射面積と、前記発熱体を該所定方向とは反対方向から見た際の前記電磁波の見かけの放射面積との和が、前記回転により変化する形状である、
     赤外線加熱ユニット。
    The infrared heating unit according to any one of claims 1 to 7,
    Among the electromagnetic waves, an infrared reflector capable of reflecting at least a part of infrared rays radiated in a direction opposite to the predetermined direction when viewed from the heating element,
    With
    The heating element includes an apparent radiation area of the electromagnetic wave when the heating element is viewed from the predetermined direction, and an apparent radiation area of the electromagnetic wave when the heating element is viewed from a direction opposite to the predetermined direction. Is a shape that changes due to the rotation,
    Infrared heating unit.
  9.  請求項1~8のいずれか1項に記載の赤外線加熱ユニットであって、
     互いの回転軸が平行となり該回転軸と垂直且つ前記所定方向と垂直な方向に並ぶように配置された複数の前記発熱体を有している、
     赤外線加熱ユニット。
    The infrared heating unit according to any one of claims 1 to 8,
    A plurality of the heating elements arranged such that their rotation axes are parallel to each other and aligned in a direction perpendicular to the rotation axis and perpendicular to the predetermined direction;
    Infrared heating unit.
  10.  請求項1~9のいずれか1項に記載の赤外線加熱ユニットであって、
     3.5μmを超える波長の赤外線を吸収し前記発熱体を覆う管状部材、
     を備えた赤外線加熱ユニット。
    The infrared heating unit according to any one of claims 1 to 9,
    A tubular member that absorbs infrared rays having a wavelength exceeding 3.5 μm and covers the heating element;
    Infrared heating unit equipped with.
  11.  請求項1~10のいずれか1項に記載の赤外線加熱ユニットと、
     前記発熱体を前記回転軸を中心に回転させる回転手段と、
     前記発熱体に電力を供給する電力供給手段と、
     前記発熱体の放射波長に関する値と、前記発熱体の回転位置に関する値と、前記発熱体からみて前記所定方向に配置された被加熱物に到達する前記発熱体からの放射エネルギーに関する値と、の対応関係を記憶する対応関係記憶手段と、
     前記放射波長に関する情報及び前記放射エネルギーに関する情報を入力可能な入力手段と、
     前記入力された放射波長に関する情報と、前記入力された放射エネルギーに関する情報と、前記対応関係と、に基づいて、該入力された放射波長及び放射エネルギーに対応する前記発熱体の回転位置に関する値を取得する回転位置取得手段と、
     前記回転手段及び前記電力供給手段を制御して、前記取得された値で表される回転位置に前記発熱体が位置するよう前記回転手段により前記発熱体を回転させ、前記入力された放射波長の電磁波を前記発熱体が放射するよう前記電力供給手段により前記発熱体に電力を供給させる制御手段と、
     を備えた赤外線加熱装置。
    Infrared heating unit according to any one of claims 1 to 10,
    Rotating means for rotating the heating element about the rotation axis;
    Power supply means for supplying power to the heating element;
    A value relating to the radiation wavelength of the heating element, a value relating to the rotational position of the heating element, and a value relating to the radiation energy from the heating element that reaches the object to be heated arranged in the predetermined direction when viewed from the heating element. Correspondence storage means for storing the correspondence,
    Input means capable of inputting information on the radiation wavelength and information on the radiation energy;
    Based on the information regarding the input radiation wavelength, the information regarding the input radiation energy, and the correspondence, a value regarding the rotational position of the heating element corresponding to the input radiation wavelength and radiation energy is obtained. Rotational position acquisition means for acquiring;
    The rotating means and the power supply means are controlled to rotate the heating element by the rotating means so that the heating element is positioned at the rotation position represented by the acquired value, and the input radiation wavelength Control means for supplying power to the heating element by the power supply means so that the heating element radiates electromagnetic waves;
    Infrared heating device equipped with.
  12.  請求項1~10のいずれか1項に記載の赤外線加熱ユニットと、請求項11に記載の赤外線加熱装置と、のいずれかを備え、前記発熱体からみて前記所定方向に位置する被加熱物を乾燥させる乾燥装置。 An infrared heating unit according to any one of claims 1 to 10 and an infrared heating device according to claim 11, comprising: an object to be heated positioned in the predetermined direction as viewed from the heating element; Drying equipment to dry.
PCT/JP2014/061720 2013-05-30 2014-04-25 Infrared heating unit, infrared heating device and drying device WO2014192478A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014536809A JP5775224B2 (en) 2013-05-30 2014-04-25 Infrared heating unit, infrared heating device and drying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013114177 2013-05-30
JP2013-114177 2013-05-30

Publications (1)

Publication Number Publication Date
WO2014192478A1 true WO2014192478A1 (en) 2014-12-04

Family

ID=51988516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061720 WO2014192478A1 (en) 2013-05-30 2014-04-25 Infrared heating unit, infrared heating device and drying device

Country Status (3)

Country Link
JP (1) JP5775224B2 (en)
TW (1) TWI600343B (en)
WO (1) WO2014192478A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490253A (en) * 2017-07-31 2017-12-19 兰溪市捷喜食品加工技术有限公司 The industrial drying machine of high temperature, thermal balance
JP2020056873A (en) * 2018-10-01 2020-04-09 キヤノン電子株式会社 Optical filter and imaging apparatus
WO2021117618A1 (en) * 2019-12-10 2021-06-17 Agc株式会社 Melted glass transport device, glass article manufacturing device, and glass article manufacturing method
WO2023089431A1 (en) * 2021-11-17 2023-05-25 S, Rekha T Heater assembly
WO2023126944A1 (en) * 2021-12-31 2023-07-06 LINKOVSKI, Zvi Iheskel Electromagnetic radiation emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112954877A (en) * 2021-01-29 2021-06-11 黄正曦 Device and method for generating electromagnetic energy by uniform linear motion charge

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184561A (en) * 2000-12-18 2002-06-28 Matsushita Electric Ind Co Ltd Infra-red lamp
JP2005037042A (en) * 2003-07-15 2005-02-10 Meidensha Corp Heat processing device
JP2005158689A (en) * 2003-08-27 2005-06-16 Heraeus Noblelight Gmbh Infrared radiator, methods for its operation, and method its manufacture
JP2005315496A (en) * 2004-04-28 2005-11-10 Iseki & Co Ltd Far-infrared grain drier
JP2005347202A (en) * 2004-06-07 2005-12-15 Ushio Inc Light source device
JP2012509561A (en) * 2008-11-20 2012-04-19 ブルダ,イリ Multi-function supply element
JP2012132662A (en) * 2010-04-30 2012-07-12 Ngk Insulators Ltd Coating film drying furnace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184561A (en) * 2000-12-18 2002-06-28 Matsushita Electric Ind Co Ltd Infra-red lamp
JP2005037042A (en) * 2003-07-15 2005-02-10 Meidensha Corp Heat processing device
JP2005158689A (en) * 2003-08-27 2005-06-16 Heraeus Noblelight Gmbh Infrared radiator, methods for its operation, and method its manufacture
JP2005315496A (en) * 2004-04-28 2005-11-10 Iseki & Co Ltd Far-infrared grain drier
JP2005347202A (en) * 2004-06-07 2005-12-15 Ushio Inc Light source device
JP2012509561A (en) * 2008-11-20 2012-04-19 ブルダ,イリ Multi-function supply element
JP2012132662A (en) * 2010-04-30 2012-07-12 Ngk Insulators Ltd Coating film drying furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490253A (en) * 2017-07-31 2017-12-19 兰溪市捷喜食品加工技术有限公司 The industrial drying machine of high temperature, thermal balance
JP2020056873A (en) * 2018-10-01 2020-04-09 キヤノン電子株式会社 Optical filter and imaging apparatus
WO2021117618A1 (en) * 2019-12-10 2021-06-17 Agc株式会社 Melted glass transport device, glass article manufacturing device, and glass article manufacturing method
CN114787089A (en) * 2019-12-10 2022-07-22 Agc株式会社 Molten glass conveying device, glass article manufacturing device, and glass article manufacturing method
WO2023089431A1 (en) * 2021-11-17 2023-05-25 S, Rekha T Heater assembly
WO2023126944A1 (en) * 2021-12-31 2023-07-06 LINKOVSKI, Zvi Iheskel Electromagnetic radiation emitting device

Also Published As

Publication number Publication date
JP5775224B2 (en) 2015-09-09
TW201517684A (en) 2015-05-01
TWI600343B (en) 2017-09-21
JPWO2014192478A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5775224B2 (en) Infrared heating unit, infrared heating device and drying device
JP6225117B2 (en) Infrared heating device and drying furnace
WO2011136041A1 (en) Coating film drying furnace
WO2014129072A1 (en) Heater provided with nozzle and drying furnace
WO2015022857A1 (en) Infrared radiation device and infrared treatment device
JP2015036590A (en) Infrared ray processing device and infrared ray processing method
WO2014168229A1 (en) Drying furnace
WO2014103786A1 (en) Method for drying electrode coating film of battery and drying furnace
KR101969044B1 (en) Heater unit and heat treatment apparatus
JP6072900B2 (en) Dehydrator
KR102383920B1 (en) low temperature drying device
JP5810074B2 (en) Drying equipment
JP6704764B2 (en) Infrared processor
WO2015005207A1 (en) Drying furnace
JP6408279B2 (en) Infrared treatment method
JP2016040496A (en) Infrared ray processing device
JP2017003169A (en) Infrared heater and infrared ray processing device
JP2016040757A (en) Infrared ray processing apparatus
JP2018132272A (en) Drying apparatus and method for producing dried body
JP2014035086A (en) Drying furnace

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014536809

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804791

Country of ref document: EP

Kind code of ref document: A1