WO2014192393A1 - 検体センサおよび検体センシング方法 - Google Patents

検体センサおよび検体センシング方法 Download PDF

Info

Publication number
WO2014192393A1
WO2014192393A1 PCT/JP2014/058559 JP2014058559W WO2014192393A1 WO 2014192393 A1 WO2014192393 A1 WO 2014192393A1 JP 2014058559 W JP2014058559 W JP 2014058559W WO 2014192393 A1 WO2014192393 A1 WO 2014192393A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
detection
phase change
measurement
measurement signal
Prior art date
Application number
PCT/JP2014/058559
Other languages
English (en)
French (fr)
Inventor
勝田 宏
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP14804624.6A priority Critical patent/EP3006933B1/en
Priority to JP2014550963A priority patent/JP5837233B2/ja
Priority to US14/894,885 priority patent/US9791413B2/en
Priority to EP18164165.5A priority patent/EP3376218A1/en
Priority to CN201480031070.1A priority patent/CN105247360B/zh
Publication of WO2014192393A1 publication Critical patent/WO2014192393A1/ja
Priority to US15/783,562 priority patent/US10241082B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/012Phase angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/022Liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0255(Bio)chemical reactions, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves

Definitions

  • the present invention relates to a sample sensor and a sample sensing method capable of measuring a property of a sample or a target contained in the sample.
  • a surface acoustic wave sensor that measures a property of a liquid or a component of a liquid using a surface acoustic wave element is known.
  • a surface acoustic wave sensor has a detection unit that reacts with a component contained in a specimen sample on a piezoelectric substrate, and measures an electrical signal based on a change in a surface acoustic wave (SAW) propagated through the detection unit.
  • SAW surface acoustic wave
  • Patent Document 1 measures the analyte concentration by detecting the phase difference of SAW.
  • a quadrature modulation method is generally employed because of the wide range of measurable phase ranges (for example, Non-Patent Document 1).
  • the quadrature modulation method has a problem that it is difficult to reduce the size because of the large number of parts for realizing it. Furthermore, there is a problem in that current consumption increases due to an increase in digital processing.
  • An analyte sensor includes a detection unit that changes in mass according to adsorption of a target contained in a sample or reaction with the target, and is an AC signal according to a change in mass of the detection unit.
  • the phase difference from the first measurement signal is different from the first calculation unit for obtaining the first measurement signal by the method and the heterodyne method from the second signal and the fourth signal ( ⁇ 18).
  • (Except °) a second calculation unit for obtaining a second measurement signal, and calculating two first phase change candidate values from the first measurement signal, and calculating two second phase change candidate values from the second measurement signal
  • a measuring unit that sets a combination of the two first phase change candidate values and the two second phase change candidate values that are closest to each other as a first phase change value and a second phase change value
  • a selection unit that selects, as the phase change value, a signal output value closer to a reference value among the first phase change value and the second phase change value;
  • the detection unit of the detection element in which the mass of an analyte solution containing an analyte with a target changes according to the adsorption of the target or the reaction with the target, and the target
  • a sample solution supply step for supplying to a reference portion of a reference element that does not adsorb or react with the target, a detection signal that is an AC signal according to a change in mass of the detection portion that is output from the sample detection element, and
  • One of the reference signals which is an AC signal corresponding to the mass of the reference section output from the reference element, is branched into a first signal and a second signal, and the other signal is divided into a third signal and a fourth signal.
  • a change candidate value is calculated, two second phase change candidate values are calculated from the second measurement signal, and the largest value of the two first phase change candidate values and the two second phase change candidate values is calculated.
  • the specimen sensor and the specimen sensing method according to the embodiment of the present invention it is possible to combine measurement in a wide phase range with small size and low current consumption.
  • FIG. 1 is a principle configuration diagram of an analyte sensor according to a first embodiment of the present invention. It is a schematic diagram explaining the signal processing of a heterodyne system.
  • FIG. 3A is a diagram showing a schematic trajectory of the first measurement signal and the second measurement signal
  • FIG. 3B is a diagram showing a trajectory of the selected measurement signal.
  • FIG. 5 is a perspective view of a state in which a part of the specimen sensor shown in FIG. 4 is broken.
  • 6A is a cross-sectional view taken along line VIa-VIa in FIG. 4, and FIG. 6B is a cross-sectional view taken along line VIb-VIb in FIG.
  • FIG. 5 is a top view excluding a part of the specimen sensor shown in FIG. 4. It is a fundamental block diagram of the sample sensor which concerns on 2nd Embodiment of this invention. It is a fundamental lineblock diagram of the sample sensor concerning other embodiments of the present invention.
  • FIG. 9A is a diagram showing a sample sensor according to another embodiment of the present invention, and FIG. 9A is a diagram showing trajectories of the first measurement signal, the second measurement signal, and the third measurement signal, and FIG. ) Is a diagram showing a trajectory of a selected measurement signal. It is a fundamental lineblock diagram of the sample sensor concerning other embodiments of the present invention.
  • the analyte sensor may be set in any direction upward or downward, but in the following, for convenience, the orthogonal coordinate system xyz is defined and the positive side in the z direction is defined as the upper side and the lower side. The following terms shall be used.
  • FIG. 1 is a schematic diagram for explaining the principle of the analyte sensor 100.
  • the analyte sensor 100 includes a detection element 110, a reference element 120, a branching unit 130, a calculation unit 140, a measurement unit 150, a selection unit 160, and a detection amount calculation unit 170.
  • a detection element 110 a reference element 120
  • a branching unit 130 a calculation unit 140
  • a measurement unit 150 a selection unit 160
  • a detection amount calculation unit 170 a detection amount calculation unit 170.
  • the detection element 110 has a detection unit 111 that adsorbs a target present in the specimen or changes its mass in accordance with the reaction with the target.
  • the detection unit 111 immobilizes a reactive group having a reactivity that specifically adsorbs a target on a gold (Au) film that is not affected by electrical properties such as the conductivity of the specimen. Can be realized.
  • the target itself may not be adsorbed.
  • a reactive group having a property that reacts with a target and does not react with a substance other than the target present in the specimen may be immobilized on the Au film.
  • the Au film is desirably electrically grounded. With such a configuration, the mass of the detection unit 111 changes according to the amount of the target.
  • the reference element 120 includes a reference unit 121 that does not adsorb a target or does not react with the target.
  • the reference unit 121 does not have such a reactivity as to be specifically adsorbed to a target present in the specimen or cause a substitution reaction with a substance in the specimen by causing a structural change. is there.
  • the Au film not having the above reactive group immobilized thereon, or the DNA, RNA, etc. having the same amount of substance as the above reactive group and having a random base sequence are immobilized on the Au film. Can be used. With such a configuration, it is possible to suppress the reference unit 121 from causing a mass change depending on the amount of the target.
  • An input signal is given to the detection element 110 and the reference element 120 from the outside.
  • An input signal given to the detection element 110 passes through the detection unit 111 and is output as a detection signal through a change corresponding to a mass change of the detection unit 111.
  • an input signal given to the reference element 120 passes through the reference unit 121 and is output as a reference signal through a change corresponding to the mass of the reference unit 121.
  • the detection signal and the reference signal are AC signals, and the reference signal serves as a reference signal for the detection signal.
  • the branching unit 130 includes a first branching unit 131 and a second branching unit 132.
  • the first branch unit 131 is connected to the detection element 110 and branches a detection signal corresponding to a mass change of the detection unit 111 of the detection element 110 into a first signal and a second signal.
  • the first signal and the second signal are signals having the same phase. That is, the detection signal is branched into two identical signals A.
  • the second branching unit 132 branches the reference signal from the reference element 120 into a third signal and a fourth signal.
  • the third signal has the same phase as the first signal.
  • the fourth signal is shifted in phase from the first signal by a value excluding 180 °. In this example, the phase is shifted by 90 °.
  • the third signal is represented by B and the fourth signal is represented by B ′.
  • the first branch part 131 and the second branch part 132 are configured by, for example, a splitter.
  • the second branching unit 132 may be realized by branching a signal into two by a normal method and then making one line length different from the other line length.
  • the calculation unit 140 includes a first calculation unit 141 and a second calculation unit 142.
  • the first calculation unit 141 obtains the first measurement signal from the first signal A and the third signal B by the heterodyne method.
  • the first calculator 141 obtains a first measurement signal that is a value obtained by subtracting the third signal B from the first signal A by the heterodyne method.
  • the second calculator 142 obtains the second measurement signal from the second signal A and the fourth signal B ′ by the heterodyne method.
  • the second calculation unit 142 obtains a second measurement signal that is a value obtained by subtracting the fourth signal B ′ from the second signal A by the heterodyne method.
  • Such first calculation unit 141 and second calculation unit 142 include, for example, a mixer and a low-pass filter.
  • the measurement unit 150 calculates two first phase change candidate values from the first measurement signal, and determines one of them as the first phase change value. Similarly, two second phase change candidate values are calculated from the second measurement signal, and one of them is determined as the second phase change value.
  • the first measurement signal and the second measurement signal are processed by the heterodyne method, as shown in FIG. 2, the first measurement signal and the second measurement signal are sinusoidal, and the voltage intensity (output value).
  • the phase change value candidate There are two values x1 and x2 in the phase change value candidate corresponding to y1. This candidate value for phase change indicates the phase difference between the detection signal and the reference signal.
  • first phase change candidate values x11 and x21 for the first measurement signal.
  • second phase change candidate values x12 and x22 for the second measurement signal.
  • the combination of x11 and x12, the combination of x11 and x22, the combination of x21 and x12, and the combination of x21 and x22 has the closest value (phase difference value).
  • the phase change candidate values that are combined with each other are set as the first phase change value of the first measurement signal and the second phase change value of the second measurement signal, respectively.
  • a difference is obtained for four combinations, and a combination having the smallest value is selected.
  • the phase change candidate values forming the selected combination are set as the first phase change value of the first measurement signal and the second phase change value of the second measurement signal, respectively. This is due to the following mechanism.
  • one of the two first phase change candidate values of the first measurement signal is the same as one of the two second phase change candidate values of the second measurement signal.
  • This same value is the correct phase change value (first phase change value, second phase change value).
  • the combination that minimizes the difference is discriminated as the first phase change value and the second phase change value.
  • the phase change value can be determined from the phase change candidate value by using the two detection signals (first and second detection signals) as described above.
  • the selection unit 160 selects one of the first measurement signal and the second measurement signal as a measurement signal used in the subsequent detection amount calculation unit 170. Similarly, if the measurement signal selected is the first measurement signal, the first phase change value is selected as the phase change value. If the second measurement signal is selected, the second phase change value is selected as the phase change value.
  • the following steps are performed. First, the trajectory between the first measurement signal and the second measurement signal is obtained in advance, and two positive and negative intensities at the intersection of the first measurement signal and the second measurement signal are obtained. Then, the first measurement signal and the second measurement signal that are located between two positive and negative intensities at the intersection are selected as measurement signals.
  • FIG. 3 (a) is a diagram showing the locus of theoretical values of the first measurement signal and the second measurement signal.
  • the intensity of the first measurement signal is set to V1
  • the intensity of the second measurement signal is set to V2
  • the intensity of the intersection of the locus of the first measurement signal and the locus of the second measurement signal is set to Vmax and Vmin in descending order.
  • the locus of the first measurement signal is indicated by a broken line
  • the locus of the second measurement signal is indicated by a solid line.
  • the intersection strengths Vmax and Vmin are 0.5 times and -0.5 times the maximum strength of V1 and V2.
  • the section of the phase value is divided for each phase value at which the first measurement signal and the second measurement signal take the intensity of either intersection.
  • sections 1 to 5 are shown.
  • the sections 1 to 4 are repeated, and the sections 1 and 5 are the same.
  • the second measurement signal is used as the measurement signal in section 1, the first measurement signal in section 2, the second measurement signal in section 3, the first measurement signal in section 4, and the second measurement signal in section 5. select.
  • the first phase change value is the phase change value
  • the second phase change value is the phase change value
  • the trajectory of the measurement signal selected in this way is shown in FIG.
  • the phase change value can also be selected according to the measurement signal selected according to the above conditions.
  • the detection amount calculation unit 170 calculates the detection amount of the specimen using the phase change value selected through the above-described process.
  • the detection amount calculation unit 170 is connected to the selection unit 160.
  • the sample sensor according to the present embodiment processes signals by the heterodyne method, the sample detection amount can be calculated only by adding a mixer that takes the difference between the detection signal and the reference signal. For this reason, complicated signal processing is not required as compared with the orthogonal modulation method used conventionally, the number of necessary components is small, miniaturization is possible, and current consumption can be suppressed.
  • the measurable phase range was only from 0 ° to 180 °.
  • the first measurement signal and the second measurement signal are compared with the first and second phase change candidate values, so that the sign of the phase from the phase change candidate value is determined. Judgment can be made and the phase change value can be estimated. Thereby, the measurable phase range can be expanded from ⁇ 180 ° to 180 °.
  • the second measurement signal since the fourth signal is shifted by 90 ° with respect to the first to third signals, the second measurement signal has the highest sensitivity when the first measurement signal has the lowest sensitivity. Since it becomes an area
  • the reference signal is branched to the third signal and the fourth signal by shifting the phase, but the detection signal may be branched to the third signal and the fourth signal.
  • the example which shifted the phase of the 4th signal 90 degrees with respect to the 1st signal was demonstrated as the most effective example, as long as it is a value except 180 degrees, other than 90 degrees may be sufficient.
  • noise determination can be performed by using two measurement signals (first measurement signal and second measurement signal) as described above. This is due to the following mechanism. Noise may be mixed in the detection signal and the reference signal. Usually, it is difficult to distinguish such noise from noise.
  • the sample sensor 100 of the present embodiment when the measurement is correctly performed, one voltage strength of the first measurement signal and the second measurement signal is in a range between the intersection strengths Vmax and Vmin. Enter a value that falls within the range of the other. In other words, if both the first measurement signal and the second measurement signal take a value within this range or take a value outside this range, it can be determined to be noise. Since noise can be discriminated in this way, the analyte sensor 100 capable of accurate measurement without being affected by noise can be obtained.
  • analyte sensor 100 that can detect the phase range having the same width as that of the quadrature modulation method with a small number of components and a small signal processing.
  • the specimen sensor 100 ⁇ / b> A mainly includes a piezoelectric substrate 1 and a cover 3 in appearance.
  • the cover 3 is provided with a first through hole 18 that is an inlet of the sample solution and an air hole or a second through hole 19 that is an outlet of the sample solution.
  • FIG. 5 shows a perspective view of the sample sensor 100A when one half of the cover 3 is removed.
  • a space 20 serving as a sample flow path for a sample (solution) is formed inside the cover 3.
  • the first through hole 18 is connected to the space 20. That is, the specimen entering from the first through hole 18 flows into the space 20.
  • the sample liquid that has flowed into the space 20 includes a target, and the target reacts with a detection unit made of the metal film 7 or the like formed on the piezoelectric substrate 1.
  • the piezoelectric substrate 1 is made of, for example, a single crystal substrate having piezoelectricity such as lithium tantalate (LiTaO 3 ) single crystal, lithium niobate (LiNbO 3 ) single crystal, or quartz.
  • the planar shape and various dimensions of the piezoelectric substrate 1 may be set as appropriate.
  • the thickness of the piezoelectric substrate 1 is 0.3 mm to 1 mm.
  • FIG. 6 shows a cross-sectional view of the specimen sensor 100A.
  • 6A is a cross-sectional view taken along line VIa-VIa in FIG. 4
  • FIG. 6B is a cross-sectional view taken along line VIb-VIb in FIG.
  • FIG. 7 shows a top view of the piezoelectric substrate 1.
  • a detection first IDT electrode 5a, a detection second IDT electrode 6a, a reference first IDT electrode 5b, and a reference second IDT electrode 6b are formed on the upper surface of the piezoelectric substrate 1.
  • the detection first IDT electrode 5a and the reference first IDT electrode 5b are for generating a predetermined SAW
  • the detection second IDT electrode 6a and the reference second IDT electrode 6b are the detection first IDT electrode 5a and the reference first IDT electrode 5b, respectively. This is for receiving the generated SAW.
  • the detection second IDT electrode 6a is disposed on the propagation path of the SAW generated by the detection first IDT electrode 5a so that the detection second IDT electrode 6a can receive the SAW generated by the detection first IDT electrode 5a.
  • the reference first IDT electrode 5b and the reference second IDT electrode 6b are similarly arranged.
  • the detection first IDT electrode 5a and the detection second IDT electrode 6a are the same as the detection first IDT electrode 5a and the detection second IDT electrode 6a, the detection first IDT electrode 5a and the detection second IDT electrode 6a will be described below as an example. .
  • the detection first IDT electrode 5a and the detection second IDT electrode 6a have a pair of comb electrodes (see FIG. 7). Each comb electrode has two bus bars facing each other and a plurality of electrode fingers extending from each bus bar to the other bus bar side. The pair of comb electrodes are arranged so that a plurality of electrode fingers mesh with each other.
  • the detection first IDT electrode 5a and the detection second IDT electrode 6a constitute a transversal IDT electrode.
  • the detection first IDT electrode 5a and the detection second IDT electrode 6a are connected to the pad 9 through the wiring 8, respectively.
  • a signal is input from the outside to the detection first IDT electrode 5a through the pad 9 and the wiring 8, and a signal is output to the outside from the detection second IDT electrode 6a.
  • the detection first IDT electrode 5a, the detection second IDT electrode 6a, the reference first IDT electrode 5b, the reference second IDT electrode 6b, the wiring 8 and the pad 9 are made of, for example, aluminum (Al), an alloy of aluminum and copper (Cu), or the like. . These electrodes may have a multilayer structure. In the case of a multilayer structure, for example, the first layer is made of titanium (Ti) or chromium (Cr), and the second layer is made of aluminum or an aluminum alloy.
  • the detection first IDT electrode 5a, the detection second IDT electrode 6a, the reference first IDT electrode 5b, and the reference second IDT electrode 6b are covered with a protective film 4.
  • the protective film 4 contributes to preventing oxidation of each electrode and wiring.
  • the protective film 4 is made of silicon oxide, aluminum oxide, zinc oxide, titanium oxide, silicon nitride, silicon (Si), or the like.
  • silicon dioxide (SiO 2 ) is used as the protective film 4.
  • the protective film 4 is formed over the entire top surface of the piezoelectric substrate 1 so as to expose the pads 9.
  • the detection first IDT electrode 5a and the detection second IDT electrode 6a are covered with the protective film 4. Thereby, it can suppress that an IDT electrode corrodes.
  • the thickness of the protective film 4 is, for example, 100 nm to 10 ⁇ m.
  • the detection first IDT electrode 5a is accommodated in the first vibration space 11a
  • the detection second IDT electrode 6a is accommodated in the second vibration space 12a. Accordingly, the detection first IDT electrode 5a and the detection second IDT electrode 6a are isolated from the outside air and the sample liquid, and the detection first IDT electrode 5a and the detection second IDT electrode 6a can be protected from corrosive substances such as moisture. Further, by securing the first vibration space 11a and the second vibration space 12a, the detection first IDT electrode 5a and the detection second IDT electrode 6a can be brought into a state in which the excitation of the SAW is not significantly hindered.
  • the first vibration space 11a and the second vibration space 12a can be formed by joining the plate-like body 2 having a recess for forming these vibration spaces to the piezoelectric substrate 1.
  • the reference first IDT electrode 5b and the reference second IDT electrode 6b are also provided with a first vibration space 11b and a second vibration space 12b.
  • a through portion that is a portion penetrating the plate-like body 2 in the thickness direction is formed.
  • This penetrating portion is provided to form the metal film 7a on the SAW propagation path. That is, when the plate-like body 2 is bonded to the piezoelectric substrate 1, at least a part of the SAW propagation path propagating from the detection first IDT electrode 5 a to the detection second IDT electrode 6 a is exposed from the through portion in plan view. A metal film 7a is formed on the exposed portion.
  • the plate-like body 2 having such a shape can be formed using, for example, a photosensitive resist.
  • the metal film 7a exposed from the penetrating part of the plate-like body 2 constitutes a specimen liquid detection part.
  • the metal film 7a has a two-layer structure of, for example, chromium and gold formed on the chromium.
  • an aptamer made of nucleic acid or peptide is immobilized on the surface of the metal film 7a.
  • the mass of the metal film 7a monotonously increases as the specimen binds and adsorbs to the aptamer.
  • the mass increases monotonously according to the detection of the specimen.
  • the mass of the metal film 7a monotonously increases only while the specimen is continuously supplied onto the metal film 7a. For example, when the buffer solution is supplied continuously with the sample supply before and after the sample solution is supplied, the sample passes over the metal film 7a, and the mass is reduced due to the separation of the sample and the aptamer. There is no problem.
  • the metal film 7b exposed from the other penetrating portion of the plate-like body 2 constitutes a reference portion.
  • the metal film 7b has, for example, a two-layer structure of chromium and gold formed on the chromium. It is assumed that an aptamer immobilized on the metal film 7a is not attached to the surface of the metal film 7a so as not to be reactive with the specimen. Furthermore, a surface treatment may be performed so as to stabilize the sample solution by reducing its reactivity.
  • a predetermined voltage (signal) is applied to the detection first IDT electrode 5a from the external measuring device via the pad 9 and the wiring 8. Then, the surface of the piezoelectric substrate 1 is excited in the formation region of the detection first IDT electrode 5a, and SAW having a predetermined frequency is generated. Part of the generated SAW passes through the region between the detection first IDT electrode 5a and the detection second IDT electrode, and reaches the detection second IDT electrode 6a.
  • the aptamer immobilized on the metal film 7a binds to a specific target substance in the sample, and the weight of the metal film 7a changes by the amount of the binding, so it passes under the metal film 7a.
  • a voltage corresponding to the SAW is generated in the detection second IDT electrode 6a. This voltage is output to the outside as a detection signal of an AC signal through the wiring 8 and the pad 9, and is processed through the branching unit 130 and the calculating unit 140 shown in FIG. be able to.
  • the detection element 110 ⁇ / b> A is configured by the piezoelectric substrate 1, the metal film 7 a as a detection unit formed on the piezoelectric substrate 1, and the detection first IDT electrode 5 a and the detection second IDT electrode 6 a.
  • a signal from the reference first IDT electrode 5b is input, and an AC signal output from the reference second IDT electrode 6b is converted to a temperature characteristic or the like.
  • Reference signal used for calibration of signal fluctuation due to environmental changes such as humidity and humidity.
  • the piezoelectric substrate 1, the metal film 7b as a reference portion formed on the piezoelectric substrate 1, and the reference first IDT electrode 5b and the reference second IDT electrode 6b constitute a reference element 120A.
  • the detection element 110A and the reference element 120A share the same piezoelectric substrate 1, but the detection element substrate (first substrate) and the reference element substrate (second substrate) may be separated. Good.
  • the cover 3 is made of, for example, polydimethylsiloxane.
  • polydimethylsiloxane By using polydimethylsiloxane as the material of the cover 3, the cover 3 can be formed into an arbitrary shape. Moreover, if polydimethylsiloxane is used, the ceiling part and side wall of the cover 3 can be formed comparatively easily. The thickness of the ceiling part and the side wall of the cover 3 is, for example, 1 mm to 5 mm.
  • one of the pair of comb-like electrodes constituting each of the detection first IDT electrode 5a, the detection second IDT electrode 6a, the reference first IDT electrode 5b, and the reference second IDT electrode 6b is a reference potential line. 31 is connected.
  • the reference potential line 31 is connected to the pad 9G and becomes a reference potential.
  • an electrode on the side connected to the reference potential is selected. It is arranged on the side where the reference potential line 31 is arranged. In other words, the electrode on the inner side of the pair of comb-like electrodes is connected to the reference potential.
  • the wiring 8 can be easily routed between the detection element 110A and the reference element 120A, and the lengths of the wirings 8 can be made uniform. As a result, the reference signal from the reference element 120A becomes more accurate as a reference signal.
  • the example in which signals from the detection element 110 and the reference element 120 are directly used has been described.
  • the sample sensor 100B according to the second embodiment shown in FIG. 8 between the detection element 110 and the first branch part 131 and between the reference element 120 and the second branch part 132, respectively.
  • the low noise amplifier 133 (first low noise amplifier 133a, second low noise amplifier 133b) may be arranged.
  • the SAW sensor when the sensitivity is high, the change of the amplitude characteristic becomes large. Therefore, if the thickness of the protective film 4 is adjusted to increase the sensitivity, the loss may increase and accurate measurement may not be possible. However, high detection accuracy is obtained by interposing the low noise amplifier 133. be able to. On the other hand, if the signal input to the calculation unit 140 is small, noise may increase and the detection accuracy may be lowered. However, by providing a low noise amplifier 133 in the input path to the calculation unit 140, high detection accuracy may be achieved. Obtainable.
  • the low noise amplifier 133 is preferably provided on the side close to the elements 110 and 120 in the input path to the calculation unit 140.
  • the signals input to the detection element 110 and the reference element 120 are increased, there is a possibility that the input signals of each other or these input signals and other signals may have an adverse effect such as crosstalk. Further, by interposing the low noise amplifier 133 in the output path from the reference element 120, it is possible to suppress the above-described crosstalk and obtain high detection accuracy. Furthermore, when the signals input to the detection element 110 and the reference element 120 are increased, there is a possibility that the input signals of each other, or these input signals and other signals may leak to the outside as electromagnetic waves. By interposing the low noise amplifier 133 in the output path from the reference element 120, leakage of electromagnetic waves as described above can be suppressed and high detection accuracy can be obtained.
  • sample solution supply process First, a sample solution supplying step for supplying a sample containing a target to the detection unit of the detection element whose mass changes in accordance with the target adsorption or the reaction with the target and the reference unit of the reference element that does not adsorb or react with the target. Do.
  • the phase of the fourth signal can be appropriately selected as long as it is a value excluding ⁇ 180 ° relative to the phase of the first signal, but is preferably ⁇ 90 °.
  • a first measurement signal is obtained from the first signal and the third signal by a heterodyne method.
  • the third signal may be subtracted from the first signal, or the first signal may be subtracted from the third signal.
  • a second measurement signal is obtained from the second signal and the fourth signal by a heterodyne method.
  • the fourth signal may be subtracted from the second signal, or the second signal may be subtracted from the fourth signal, as in the first calculation step described above.
  • phase change candidate values are calculated from the first measurement signal
  • two second phase change candidate values are calculated from the second measurement signal
  • two first phase change candidate values and two second phase change values are calculated.
  • the phase change candidate values the one that forms the smallest combination is defined as a first phase change value and a second phase change value.
  • the intensity of two intersection points of the trajectory of the first measurement signal and the second measurement signal is obtained in advance, and the first measurement signal and the second measurement signal that are located between the above two intersection intensity values are obtained. Select as measurement signal. Similarly, the first phase change value and the second phase change value corresponding to this measurement signal are selected as the phase change value.
  • the detection amount of the specimen is calculated from the phase change value selected in the selection step.
  • the amount of detected sample can be measured.
  • the present invention is not limited to the above embodiment, and can be implemented in various modes.
  • the intensity of two intersections of the trajectory of the first measurement signal and the second measurement signal is obtained in advance, and the first measurement signal and the second measurement are obtained.
  • a signal and a signal positioned between two intersection strengths are selected as measurement signals.
  • the signal output value for example, V1, V2
  • the phase change value may be selected as the phase change value.
  • the reference value for example, the midpoint of the two intersection strengths described above, or 0 (zero) can be set.
  • the midpoint of the two intersection strengths that are reference values is zero.
  • the reference value is not limited to the midpoint between the two intersection strengths, and is set to an appropriate value so that a highly sensitive measurement signal can be obtained in consideration of the first measurement signal and the second measurement signal. Good.
  • the third signal has the same phase as the first signal, and the fourth signal is derived from the first signal.
  • the phase is shifted by 90 °.
  • the setting of the phases of the first to fourth signals is not limited to this, and the first measurement signal and the second measurement signal may be set so as to have a phase difference excluding ⁇ 180 °.
  • the first signal and the second signal have the same phase
  • the third signal is shifted by ⁇ 45 ° from the first signal
  • the fourth signal is changed to the first signal.
  • the phase may be shifted by + 45 ° with respect to the angle. Even in this case, the same effects as those of the sample sensor according to the above-described embodiment can be obtained.
  • the first branching unit 131 and the second branching unit 132 are branched into two signals, respectively.
  • the unit 131 and the second branch unit 132 may be set to branch into three or more signals, respectively.
  • two of the obtained signals are used to each other by a heterodyne method.
  • the sensitivity of the three measurement signals is higher than that of the three measurement signals even if the region with a small inclination is wide, in other words, the region where each measurement signal can be measured with high sensitivity. Since it can set so that the measurement signal which has an area
  • one detection element 110 and one reference element 120 are provided, and one detection element 110 and the first branch portion 131 are connected.
  • one reference element 120 and the second branch part 132 are connected.
  • two or more detection elements and reference elements are used, and the two or more detection elements 110a and 110b and the first branch portion 131 are connected, and 2 Two or more reference elements 120a, 120b and the second branch part 132 may be connected.
  • the first branch unit 131 can be selectively connected to one of the two or more detection elements 110a and 110b by the switch 136a
  • the second branch unit can be two or more reference elements by the switch 136b.
  • each of the first branch unit and the second branch unit can be connected to both the detection element and the reference element. be able to.
  • three detection elements and one reference element may be used. In this case, as long as one of the first branch part and the second branch part is connected to the reference element, there is no particular limitation on which of the three detection elements is connected to the other. It can be set as appropriate according to the type and number.
  • the detection element 110A and the reference element 120A have been described using an example in which a substrate having piezoelectricity is shared, but the element substrate for the detection element 110A and the reference element The second substrate for the element 120A may be separated. In this case, crosstalk between the detection element 110A and the reference element 120A can be suppressed. In such a case, a separate substrate for holding the element substrate and the second substrate may be provided.

Abstract

 広い位相範囲での測定と小型で低い消費電流とを兼ね備えた検体センサおよび検体センシング方法を提供する。すなわち、検出部111の質量変化に応じた検出信号を出力する検出素子110と、リファレンス部121の質量に応じたリファレンス信号を出力するリファレンス素子120とから得た検出信号およびリファレンス信号から、ヘテロダイン方式で位相変化値を求め、標的の検出量を算出する検体センサおよび検出センシング方法とする。

Description

検体センサおよび検体センシング方法
 本発明は、検体の性質あるいは検体に含まれる標的を測定することができる検体センサおよび検体センシング方法に関する。
 弾性表面波素子を用いて、検体である液体の性質もしくは液体の成分を測定する弾性表面波センサが知られている。
 弾性表面波センサは、圧電基板上に検体試料に含まれる成分と反応する検出部を設け、この検出部を伝搬した弾性表面波(SAW:Surface Acoustic Wave)の変化に基づく電気信号を測定することによって、検体である液体の性質あるいは成分を検出するものである(例えば、特許文献1)。
 特許文献1に開示されているSAWセンサは、SAWの位相差を検出することによって検体濃度を測定している。位相差を測定するためには、一般に測定可能な位相範囲の広さから、直交変調方式が採用されている(例えば、非特許文献1)。
特開2008-122105号公報
「SAW発振器一体型SAWセンサシステムの開発」、信学技報、電子情報通信学会、2003年2月
 しかしながら、直交変調方式は、それを実現するための部品点数が多いことから、小型化が困難であるという問題があった。さらに、デジタル処理が多くなるため消費電流が大きくなるという問題があった。
 そこで、小型化が可能で低消費電流の検体センサおよび検体センシング方法が求められている。
 本発明の実施形態に係る検体センサは、検体に含まれる標的の吸着または前記標的との反応に応じて質量が変化する検出部を有し、前記検出部の質量変化に応じた交流信号である検出信号を出力する検出素子と、前記標的を吸着しないまたは前記標的と反応しないリファレンス部を有し、前記検出信号に対する交流信号であるリファレンス信号を出力するリファレンス素子と、前記検出信号および前記リファレンス信号のうち一方の信号を、第1信号と第2信号とに分岐し、他方の信号を第3信号と第4信号とに分岐する分岐部と、前記第1信号と前記第3信号とからヘテロダイン方式によって第1計測信号を得る第1計算部と、前記第2信号と前記第4信号とからヘテロダイン方式によって、前記第1計測信号と位相差が異なる(±180°を除く)第2計測信号を得る第2計算部と、前記第1計測信号から2つの第1位相変化候補値を算出し、前記第2計測信号から2つの第2位相変化候補値を算出し、前記2つの第1位相変化候補値と前記2つの第2位相変化候補値とのうち最も値が近い組合せを成すものを第1位相変化値および第2位相変化値とする計測部と、前記第1位相変化値と前記第2位相変化値とのうち信号の出力値が基準値に近い方を位相変化値として選択する選択部と、を備える。
 本発明の実施形態に係る検体センシング方法は、標的を備えた検体を含む検体溶液を、前記標的の吸着または前記標的との反応に応じて質量が変化する、検出素子の検出部、および前記標的を吸着しないまたは前記標的と反応しない、リファレンス素子のリファレンス部に供給する検体溶液供給工程と、前記検体検出素子から出力される前記検出部の質量変化に応じた交流信号である検出信号、および前記リファレンス素子から出力される前記リファレンス部の質量に応じた交流信号であるリファレンス信号のうち一方の信号を、第1信号と第2信号とに分岐し、他方の信号を第3信号と第4信号とに分岐する分岐工程と、前記第1信号と前記第3信号とからヘテロダイン方式によって第1計測信号を得る第1計算工程と、前記第2信号と前記第4信号とからヘテロダイン方式によって、前記第1計測信号と位相差が異なる(±180°を除く)第2計測信号を得る第2計算工程と、前記第1計測信号から2つの第1位相変化候補値を算出し、前記第2計測信号から2つの第2位相変化候補値を算出し、前記2つの第1位相変化候補値と前記2つの第2位相変化候補値とのうち最も値が近い組合せを成すものを第1位相変化値および第2位相変化値とする計測工程と、前記第1計測信号と前記第2計測信号とのうち信号の出力値が基準値に近い方を位相変化値として選択する選択工程と、を備える。
 本発明の実施形態に係る検体センサおよび検体センシング方法によれば、広い位相範囲での測定と小型で低い消費電流とを兼ね備えることが可能である。
本発明の第1実施形態に係る検体センサの原理的な構成図である。 ヘテロダイン方式の信号処理について説明する模式図である。 図3(a)は第1計測信号と第2計測信号との模式的な軌跡を示す線図であり、図3(b)は選択された計測信号の軌跡を示す線図である。 本発明の第1実施形態に係る検体センサの斜視図である。 図4に示す検体センサの一部を破断した状態の斜視図である。 図6(a)は図4のVIa-VIa線における断面図、図6(b)は図4のVIb-VIb線における断面図である。 図4に示す検体センサの一部を除いた上面図である。 本発明の第2実施形態に係る検体センサの原理的な構成図である。 本発明の他の実施形態に係る検体センサの原理的な構成図である。 本発明の他の実施形態に係る検体センサを示す図であり、図9(a)は第1計測信号、第2計測信号および第3計測信号の軌跡を示す線図であり、図9(b)は選択された計測信号の軌跡を示す線図である。 本発明の他の実施形態に係る検体センサの原理的な構成図である。
 以下、本発明の実施形態に係る検体センサの実施形態について、図面を参照しつつ詳細に説明する。なお、以下に説明する各図面において同じ構成部材には同じ符号を付すものとする。また、各部材の大きさや部材同士の間の距離などは模式的に図示しており、現実のものとは異なる場合がある。
 また、検体センサは、いずれの方向が上方または下方とされてもよいものであるが、以下では、便宜的に、直交座標系xyzを定義するとともにz方向の正側を上方として、上面、下面などの用語を用いるものとする。
 <検体センサ>
 (第1実施形態)
 (検体センサ100)
 図1は、検体センサ100の原理を説明するための概略図である。
 検体センサ100は、図1に示すように、検出素子110と、リファレンス素子120と、分岐部130と、計算部140と、計測部150と、選択部160と、検出量算出部170と、を有する。
  (検出素子110)
 検出素子110は、検体中に存在する標的が吸着する、またはこの標的との反応に応じて質量が変化する検出部111を有する。この検出部111は、例えば、検体の導電率などの電気的性質の影響を受けない金(Au)の膜に、標的を特異的に吸着させるような反応性を有する反応基を固定化することで実現できる。なお、標的自体を吸着させなくてもよい。例えば、Auの膜に、標的に対して反応し、検体中に存在する標的以外の物質と反応しないような特性を有する反応基を固定化してもよい。なお、このAu膜は電気的に接地されていることが望ましい。このような構成により、標的の量に応じて検出部111の質量が変化するものとなる。
  (リファレンス素子120)
 リファレンス素子120は、標的を吸着しない、または標的と反応しないリファレンス部121を有する。このリファレンス部121は、例えば、検体中に存在する標的に対して特異的に吸着させたり、構造変化を生じて検体中の物質と置換反応を起こしたりするような反応性を有さないものである。具体的には、上述の反応基を固定化していないAuの膜や、上述の反応基と同程度の物質量を有し、ランダムな塩基配列を有するDNA,RNA等をAu膜上に固定化したものを用いることができる。このような構成により、リファレンス部121が標的の量に依存して質量変化を生じることを抑制できる。
 検出素子110,リファレンス素子120にはそれぞれ、外部から入力信号が与えられる。そして検出素子110に与えられた入力信号が検出部111を通過し、検出部111の質量変化に応じた変化を経て検出信号として出力される。同様に、リファレンス素子120に与えられた入力信号が、リファレンス部121を通過し、リファレンス部121の質量に応じた変化を経てリファレンス信号として出力される。
 ここで、検出信号とリファレンス信号とは交流信号であり、リファレンス信号は検出信号に対して基準信号の役割を果たす。
  (分岐部130)
 分岐部130は、第1分岐部131と第2分岐部132とを含む。第1分岐部131は、検出素子110に接続されて、検出素子110の検出部111の質量変化に応じた検出信号を第1信号と第2信号とに分岐する。ここで、第1信号と第2信号とは位相の同じ信号である。すなわち、検出信号を2つの同一信号Aに分岐するものである。
 第2分岐部132は、リファレンス素子120からのリファレンス信号を第3信号と第4信号とに分岐する。第3信号は、第1信号と同じ位相である。第4信号は、第1信号から位相を180°を除く値だけずらしている。この例では90°位相をずらしている。図1中において、第3信号をB,第4信号をB’で表している。
 このような第1分岐部131,第2分岐部132は、例えばスプリッタで構成される。第2分岐部132については、通常の手法で信号を2つに分岐させた後に、一方の線路長を他方の線路長に対して異ならせることで実現してもよい。
  (計算部140)
 計算部140は、第1計算部141と第2計算部142とを有する。
 第1計算部141は、第1信号Aと第3信号Bとからヘテロダイン方式によって第1計測信号を得る。この例では、第1計算部141は、ヘテロダイン方式によって第1信号Aから第3信号Bを差し引いた値である第1計測信号を得る。
 第2計算部142は、第2信号Aと第4信号B’とからヘテロダイン方式によって第2計測信号を得る。この例では、第2計算部142は、ヘテロダイン方式によって第2信号Aから第4信号B’を差し引いた値である第2計測信号を得る。
 このような第1計算部141,第2計算部142は、例えばミキサとローパスフィルタとで構成される。
  (計測部150)
 計測部150は、第1計測信号から2つの第1位相変化候補値を算出し、そのうちの一方を第1位相変化値と判断する。同様に、第2計測信号から2つの第2位相変化候補値を算出し、そのうち一方を第2位相変化値と判断する。
 ここで、ヘテロダイン方式によって第1計測信号および第2計測信号を処理しているため、図2に示すように、第1計測信号および第2計測信号は正弦曲線となり、電圧の強度(出力値)y1に相当する位相変化値の候補には2つの値x1、x2が存在することとなる。この位相変化の候補値とは、検出信号とリファレンス信号とにおける位相差を示すものである。
 第1計測信号および第2計測信号に対して検討すると、第1計測信号に対して2つの第1位相変化候補値x11,x21が存在する。同様に第2計測信号に対して2つの第2位相変化候補値x12,x22が存在する。ここで、x11とx12との組合せ,x11とx22との組合せ、x21とx12との組合せ、およびx21とx22との組合せの合計4つの組合せの中で、最も値(位相差の値)が近いもので組合せをなす位相変化候補値をそれぞれ、第1計測信号の第1位相変化値および第2計測信号の第2位相変化値とする。具体的には4つの組合せについて差をとり、その値が最も小さくなる組合せを選択する。そして、選択した組合せをなす位相変化候補値をそれぞれ、第1計測信号の第1位相変化値および第2計測信号の第2位相変化値とする。これは、以下のメカニズムによる。
 すなわち、理論上では、第1計測信号の2つの第1位相変化候補値のうちの1つと、第2計測信号の2つの第2位相変化候補値のうちの1つとが同じになる。この同じ値が正しい位相変化値(第1位相変化値,第2位相変化値)である。しかしながら、実測定の第1および第2計測信号においては、誤差によって完全に同一の値をとることができない可能性がある。このため、差を最も少なくする組合せ(すなわち最も近い値を取るもの)を第1位相変化値,第2位相変化値と判別するものである。
 従来では、ヘテロダイン方式によって信号処理を行なうと、位相変化候補値が2つあり、判別が困難となり、その結果、測定可能な位相範囲が非常に小さくなっていた。しかしながら、本実施形態では、上述のように2つの検出信号(第1および第2検出信号)を用いることにより、位相変化候補値から位相変化値を判断することができる。
  (選択部160)
 選択部160は、第1計測信号と第2計測信号との2つから、一方をその後の検出量算出部170で用いる計測信号として選択する。同様に、計測信号として選択されたものが第1計測信号の場合には第1位相変化値を、第2計測信号の場合には第2位相変化値をそれぞれ位相変化値として選択する。
 具体的には、以下のステップを行なう。まず、予め第1計測信号と第2計測信号との軌跡を求め、第1計測信号と第2計測信号との交点における正負2つの強度を求める。そして、第1計測信号と第2計測信号とのうち、交点における正負2つの強度の間に位置するものを計測信号として選択する。
 図3(a)は、第1計測信号および第2計測信号の理論値の軌跡を示す図である。便宜上、第1計測信号の強度をV1とし、第2計測信号の強度をV2とし、第1計測信号の軌跡と第2計測信号の軌跡との交点の強度を大きい値から順にVmax,Vminとしている。また、第1計測信号の軌跡を破線で、第2計測信号の軌跡を実線で示している。理論的には、交点の強度Vmax,Vminは、V1,V2の最大強度の0.5倍,-0.5倍となる。
 第1計測信号および第2計測信号がいずれかの交点の強度をとる位相値ごとに位相値の区間を区切る。図3(a)では区間1~区間5を示している。なお、区間1~区間4を繰り返すものであり、区間1と区間5とは同一となる。そして、区間1では第2計測信号を、区間2では第1計測信号を、区間3では第2計測信号を、区間4では第1計測信号を、区間5では第2計測信号をそれぞれ計測信号として選択する。
 そして、第1計測信号を計測信号としたときには、第1位相変化値を位相変化値とし、第2計測信号を計測信号としたときには、第2位相変化値を位相変化値とする。
 上記を言い換えると、次のようになる。
  V1>V2,かつV1>Vmax・・・計測信号としてV2を採用
  V1<V2,かつV2>Vmax・・・計測信号としてV1を採用
  V1<V2,かつV1<Vmin・・・計測信号としてV2を採用
  V1>V2,かつV2<Vmin・・・計測信号としてV1を採用
 仮にV1=V2の場合は、どちらを計測信号として採用してもよい。このようにして選択した計測信号の軌跡を図3(b)に示す。
 上述の条件により選択した計測信号に応じて、位相変化値も選択することができる。
  (検出量算出部170)
 次に、検出量算出部170において、上述の過程を経て選択した位相変化値を用いて検体の検出量を算出する。検出量算出部170は、選択部160に接続されている。
 以上のように構成することにより、検体が備える標的の検出量を算出可能な検体センサ100を提供することができる。
 本実施形態に係る検体センサは、ヘテロダイン方式によって信号を処理しているため、検出信号とリファレンス信号との差分をとるミキサを追加するのみで検体検出量を算出可能である。このため、従来用いられている直交変調方式に比べて複雑な信号処理が不要であり、必要部品点数も少なく、小型化が可能であり、かつ消費電流を抑制することができる。
 また、通常のヘテロダイン方式では位相値の正負の判断がつかないため、測定可能な位相範囲は0°から180°までのみであった。しかしながら、本実施形態の検体センサ100によれば、第1計測信号と第2計測信号とを第1および第2の位相変化候補値を比較することで、位相変化候補値からの位相の正負を判断し、位相変化値を推定することができる。これにより、測定可能な位相範囲を-180°から180°まで広げることができる。
 そして、連続的に第1計測信号と第2計測信号との電圧強度の変化の様子を追うことで、180°を超える位相範囲においても測定可能となる。
 また、通常のヘテロダイン方式では、正弦曲線を描くため、位相差が0°と±180°とで傾きが小さくなり、感度が低くなったり誤差が大きくなったりするおそれがある。これに対して、上述の構成とすることにより、傾きが小さくなる領域を省き、全ての位相範囲で傾きの大きい計測信号を用いることとなる。これにより、位相変化に対して電圧変化率の高いものとすることができ、感度の高い検体センサ100とすることができる。検体センサにおいて0°付近は、標的検出による信号変化の立ち上り部分に相当することが多く、高い感度で測定することが望まれるため、特に有効である。
 特に、上述の例では、第4信号を第1~第3信号に対して90°ずらしていることより、第1計測信号が最も感度が低くなるときに、第2計測信号が最も感度の高い領域となるため、高感度の検体センサ100とすることができる。
 なお、上述の例では、リファレンス信号を第3信号と第4信号とに位相をずらして分岐した例を示したが、検出信号を第3信号と第4信号とに分岐してもよい。また、最も効果的な例として第4信号の位相を第1信号に対して90°ずらした例を説明したが、180°を除く値であれば90°以外でもよい。
 さらに、上述のように2つの計測信号(第1計測信号、第2計測信号)を用いることより、ノイズ判定を行なうことができる。これは以下のようなメカニズムによる。検出信号やリファレンス信号にはノイズが混入することがある。通常、このようなノイズをノイズと判別することは困難である。これに対して、本実施形態の検体センサ100によれば、正しく測定できている場合には、第1計測信号および第2計測信号の一方の電圧強度が交点強度Vmax,Vminの間の範囲に入る値を、他方がこの範囲を外れる値をとる。言い換えると、第1計測信号および第2計測信号のいずれも、この範囲内の値をとったり、この範囲外の値をとったりする場合には、ノイズであると判断することができる。このようにして、ノイズを判別することができるので、ノイズに影響されずに、正確な測定が可能な検体センサ100とすることができる。
 以上より、少ない部品点数および少ない信号処理で、直交変調方式と同じ広さの位相範囲を高精度に検出可能な検体センサ100を提供することができる。
 (検体センサ100Aの構成)
 次に、図4を用いて、検体センサ100の原理を具体化した、本発明の第1実施形態に係る検体センサ100Aの構成について説明する。
 検体センサ100Aは、図4の斜視図に示すように、外観上は主に圧電基板1とカバー3とで構成されている。カバー3には、検体溶液の流入口である第1貫通孔18と空気孔もしくは検体溶液の流出口である第2貫通孔19とが設けられている。
 図5に、カバー3の片側半分を取り除いたときの検体センサ100Aの斜視図を示す。同図に示すように、カバー3の内部には検体(溶液)の検体用流路となる空間20が形成されている。第1貫通孔18はこの空間20に繋がっている。すなわち、第1貫通孔18から入った検体は空間20に流れ込むようになっている。
 空間20に流れ込んだ検体液には標的が含まれており、その標的が圧電基板1上に形成された金属膜7などからなる検出部と反応する。
 圧電基板1は、例えば、タンタル酸リチウム(LiTaO)単結晶,ニオブ酸リチウム(LiNbO)単結晶,水晶などの圧電性を有する単結晶の基板からなる。圧電基板1の平面形状および各種寸法は適宜に設定されてよい。一例として、圧電基板1の厚みは、0.3mm~1mmである。
 図6に検体センサ100Aの断面図を示す。図6(a)は図4のVIa-VIa線における断面図であり、図6(b)は図2のVIb-VIb線における断面図である。図7に圧電基板1の上面図を示す。
 図6,図7に示すように、圧電基板1の上面には、検出第1IDT電極5a,検出第2IDT電極6a,リファレンス第1IDT電極5b,およびリファレンス第2IDT電極6bが形成されている。検出第1IDT電極5aおよびリファレンス第1IDT電極5bは所定のSAWを発生させるためのものであり、検出第2IDT電極6aおよびリファレンス第2IDT電極6bは、それぞれ検出第1IDT電極5aおよびリファレンス第1IDT電極5bで発生したSAWを受信するためのものである。検出第1IDT電極5aで発生したSAWを検出第2IDT電極6aが受信できるように、検出第2IDT電極6aは、検出第1IDT電極5aで発生したSAWの伝搬路上に配置されている。リファレンス第1IDT電極5bとリファレンス第2IDT電極6bとも同様に配置される。
 リファレンス第1IDT電極5bおよびリファレンス第2IDT電極6bは、検出第1IDT電極5aおよび検出第2IDT電極6aと同様であるため、以下、検出第1IDT電極5aおよび検出第2IDT電極6aを例に取って説明する。
 検出第1IDT電極5aおよび検出第2IDT電極6aは、1対の櫛歯電極を有する(図7参照)。各櫛歯電極は、互いに対向する2本のバスバーおよび各バスバーから他のバスバー側へ延びる複数の電極指を有している。そして、1対の櫛歯電極は、複数の電極指が互いに噛み合うように配置されている。検出第1IDT電極5aおよび検出第2IDT電極6aは、トランスバーサル型のIDT電極を構成している。
 検出第1IDT電極5aおよび検出第2IDT電極6aは、それぞれ配線8を介してパッド9に接続されている。これらのパッド9および配線8を介して外部から検出第1IDT電極5aに信号が入力され、検出第2IDT電極6aから外部に信号が出力される。
 検出第1IDT電極5a、検出第2IDT電極6a、リファレンス第1IDT電極5b、リファレンス第2IDT電極6b、配線8およびパッド9は、例えば、アルミニウム(Al)、アルミニウムと銅(Cu)との合金などからなる。またこれらの電極は、多層構造としてもよい。多層構造とする場合は、例えば、1層目がチタン(Ti)またはクロム(Cr)からなり、2層目がアルミニウムまたはアルミニウム合金からなる。
 検出第1IDT電極5a、検出第2IDT電極6a、リファレンス第1IDT電極5b、およびリファレンス第2IDT電極6bは、保護膜4によって覆われている。保護膜4は各電極および配線の酸化防止などに寄与するものである。保護膜4は、酸化珪素、酸化アルミニウム、酸化亜鉛、酸化チタン、窒化珪素、またはシリコン(Si)などからなる。検体センサ100Aでは、保護膜4として二酸化珪素(SiO)を使用している。
 保護膜4は、パッド9を露出するようにして、圧電基板1の上面全体にわたって形成されている。検出第1IDT電極5aおよび検出第2IDT電極6aはこの保護膜4によって被覆されている。これにより、IDT電極が腐食するのを抑制することができる。
 保護膜4の厚さは、例えば100nm~10μmである。
 図6(b)に示すように、検出第1IDT電極5aは第1振動空間11aに収容され、検出第2IDT電極6aは第2振動空間12aに収容されている。これにより、検出第1IDT電極5aおよび検出第2IDT電極6aが外気および検体液と隔離され、水分などの腐食物質から検出第1IDT電極5aおよび検出第2IDT電極6aを保護することができる。また、第1振動空間11aおよび第2振動空間12aが確保されることによって、検出第1IDT電極5aおよび検出第2IDT電極6aにおいてSAWの励振が大きく阻害されない状態とすることができる。
 第1振動空間11aおよび第2振動空間12aは、これら振動空間を構成するための凹部を有した板状体2を圧電基板1に接合することによって形成することができる。
 リファレンス第1IDT電極5bとリファレンス第2IDT電極6bとにも、同様に第1振動空間11bおよび第2振動空間12bが設けられている。
 板状体2の、第1振動空間11aおよび第2振動空間12aを形成するための凹部の間には、板状体2を厚み方向に貫通している部分である貫通部が形成されている。この貫通部はSAWの伝搬路上に金属膜7aを形成するために設けられたものである。すなわち、板状体2を圧電基板1に接合したときに、平面視で、検出第1IDT電極5aから検出第2IDT電極6aに伝搬するSAWの伝搬路の少なくとも一部が貫通部から露出し、その露出部に金属膜7aが形成される。
 同様に、板状体2の、第1振動空間11bおよび第2振動空間12bを形成するための凹部の間には、板状体2を厚み方向に貫通している部分である他の貫通部が形成されている。この貫通部はSAWの伝搬路上に金属膜7bを形成するために設けられたものである。
 このような形状の板状体2は、例えば、感光性のレジストを用いて形成することができる。
 板状体2の貫通部から露出する金属膜7aは、検体液の検出部を構成する。金属膜7aは、例えば、クロムおよびクロム上に成膜された金の2層構造となっている。金属膜7aの表面には、例えば、核酸やペプチドからなるアプタマーが固定化されている。このようにアプタマーが固定化された金属膜7aに検体液が接触すると、検体液中の特定の標的物質がその標的物質に対応するアプタマーと結合する。このような構成とすることで、検体がアプタマーと結合し、吸着するにつれて金属膜7aの質量が単調増加するものとなる。すなわち、検体の検出に応じて質量が単調増加するものとなる。なお、ここで金属膜7aの質量が単調増加するのは、検体が連続的に金属膜7a上に供給される間のみである。例えば、検体溶液の供給の前後に、検体の供給と連続して緩衝液が供給される場合には、検体が金属膜7a上を通過し、検体とアプタマーとが乖離することによって質量が減少しても問題はない。
 また、板状体2の他の貫通部から露出する金属膜7bは、リファレンス部を構成する。金属膜7bは、例えば、クロムおよびクロム上に成膜された金の2層構造となっている。金属膜7aの表面には、検体に対して反応性を示さないように金属膜7aに固定化したようなアプタマーを付けないものとする。さらに、検体溶液に対して反応性を低めて安定化させるような表面処理を行なってもよい。
 SAWを利用して検体溶液の性質などを測定するには、まず、検出第1IDT電極5aに、パッド9および配線8を介して外部の測定器から所定の電圧(信号)を印加する。そうすると、検出第1IDT電極5aの形成領域において圧電基板1の表面が励振され、所定の周波数を有するSAWが発生する。発生したSAWはその一部が検出第1IDT電極5aと検出第2IDT電極との間の領域を通過し、検出第2IDT電極6aに到達する。このとき金属膜7aでは、金属膜7aに固定化されたアプタマーが検体中の特定の標的物質と結合し、結合した分だけ金属膜7aの重さが変化するため、金属膜7aの下を通過するSAWの位相特性などが変化する。このように特性が変化したSAWが検出第2IDT電極6aに到達すると、それに応じた電圧が検出第2IDT電極6aに生じる。この電圧が交流信号の検出信号として配線8およびパッド9を介して外部に出力され、それを図1に示す分岐部130、計算部140を経て処理することによって、検体液の性質や成分を調べることができる。
 すなわち、圧電基板1と、圧電基板1上に形成された検出部としての金属膜7aと、検出第1IDT電極5aおよび検出第2IDT電極6aとで検出素子110Aを構成する。
 同様に、同じ空間20にアプタマーが固定化されていない別の金属膜7bを設け、リファレンス第1IDT電極5bからの信号を入力し、リファレンス第2IDT電極6bから出力される交流信号を、温度特性等や湿度等の環境変化による信号変動の校正に用いるリファレンス信号とする。
 すなわち、圧電基板1と、圧電基板1上に形成されたリファレンス部としての金属膜7bと、リファレンス第1IDT電極5bおよびリファレンス第2IDT電極6bとでリファレンス素子120Aを構成する。
 なお、この例では、検出素子110Aとリファレンス素子120Aとで同一の圧電基板1を共有しているが、検出素子基板(第1基板)とリファレンス素子基板(第2基板)とに分離してもよい。
 カバー3は、例えば、ポリジメチルシロキサンからなる。カバー3の材料としてポリジメチルシロキサンを用いることによって、カバー3を任意の形状にすることができる。また、ポリジメチルシロキサンを用いれば、カバー3の天井部や側壁を比較的簡単に分厚く形成することができる。カバー3の天井部および側壁の厚みは、例えば、1mm~5mmである。
 なお、図7に示すように、検出第1IDT電極5a,検出第2IDT電極6a,リファレンス第1IDT電極5b,およびリファレンス第2IDT電極6bのそれぞれを構成する一対の櫛歯状電極の一方が基準電位線31に接続されている。この基準電位線31はパッド9Gに接続されて基準電位となる。そして、検出第1IDT電極5a,検出第2IDT電極6a,リファレンス第1IDT電極5b,およびリファレンス第2IDT電極6bのそれぞれを構成する一対の櫛歯状電極のうち、基準電位に接続される側の電極を基準電位線31が配置されている側に配置している。換言すると、一対の櫛歯状電極のうち内側に位置する側の電極が基準電位に接続されている。このように構成することで、検出素子110Aとリファレンス素子120Aとの間で互いの信号がクロストークすることを抑制できる。
 このような構成とすることにより、検出素子110Aとリファレンス素子120Aとの間における配線8の取回しを容易とするとともに,配線8の長さを揃えることができる。これにより、リファレンス素子120Aからのリファレンス信号が、参照用の信号としてより正確なものとなる。
 (第2実施形態)
 次に、本発明の第2実施形態に係る検体センサ100Bについて、図8を参照しつつ説明する。
 上述の第1実施形態に係る検体センサ100Aでは、検出素子110およびリファレンス素子120からの信号を直接用いた例について説明した。これに対して、図8に示す第2実施形態に係る検体センサ100Bのように、検出素子110と第1分岐部131との間およびリファレンス素子120と第2分岐部132との間のそれぞれに、ローノイズアンプ133(第1ローノイズアンプ133a、第2ローノイズアンプ133b)を配置してもよい。
 これによれば、次のような場合においても、高い検出精度を得ることができる。
 一般にSAWセンサでは、感度が高いと振幅特性の変化も大きくなる。そのため、保護膜4の厚みなどを調整して感度が高くなるような設計とすると、ロスも大きくなり正確な測定ができないおそれがあるが、ローノイズアンプ133を介在させることで、高い検出精度を得ることができる。一方で、計算部140へ入力される信号が小さいと、ノイズが多くなり検出精度が低くなるおそれがあるが、計算部140への入力経路にローノイズアンプ133を介在させることで、高い検出精度を得ることができる。ローノイズアンプ133は、計算部140への入力経路のうち各素子110,120に近い側に設けることが好ましい。
 また、検出素子110およびリファレンス素子120に入力する信号を大きくすると、互いの入力信号同士が、あるいはこれらの入力信号と他の信号とがクロストークなどの悪影響が生じるおそれがあるが、検出素子110およびリファレンス素子120からの出力経路にローノイズアンプ133を介在させることで、上述のようなクロストークを抑制して高い検出精度を得ることができる。さらに、検出素子110およびリファレンス素子120に入力する信号を大きくすると、互いの入力信号同士が、あるいはこれらの入力信号と他の信号とが電磁波として外部に漏洩するおそれがあるが、検出素子110およびリファレンス素子120からの出力経路にローノイズアンプ133を介在させることで、上述のような電磁波の外部への漏洩を抑制して高い検出精度を得ることができる。
 <検体センシング方法>
 本発明の実施形態に係る検体センシング方法について説明する。
 (検体溶液供給工程)
 まず標的を含む検体を、標的の吸着または標的との反応に応じて質量が変化する検出素子の検出部と、標的を吸着しないまたは反応しないリファレンス素子のリファレンス部とに供給する検体溶液供給工程を行なう。
 (分岐工程)
 次に、検出部の質量変化に応じた交流信号である検出信号およびリファレンス部から、交流信号である上述のリファレンス信号のうち一方の信号を、2つの同じ位相の第1信号と第2信号とに分岐し、他方の信号を、第1信号と同じ位相の第3信号と、位相を180°を除く値だけずらした第4信号とに分岐する。
 ここで、第4信号の位相は、第1信号の位相に対して±180°を除く値とすれば適宜選択可能であるが、±90°とすることが好ましい。
 なお、上述の分岐工程に先立ち、検出信号とリファレンス信号とのそれぞれを増幅させることが好ましい。
 (第1計算工程)
 次に、第1信号と第3信号とからヘテロダイン方式によって第1計測信号を得る。
 ここで、ヘテロダイン方式を実行する際に、第1信号から第3信号を差し引いてもよいし、第3信号から第1信号を差し引いてもよい。
 (第2計算工程)
 同様に、第2信号と第4信号とからヘテロダイン方式によって第2計測信号を得る。
 ここで、ヘテロダイン方式を実行する際に、上述の第1計算工程と同様に、第2信号から第4信号を差し引いてもよいし、第4信号から第2信号を差し引いてもよい。
 (計測工程)
 次に、第1計測信号から2つの第1位相変化候補値を算出し、第2計測信号から2つの第2位相変化候補値を算出し、2つの第1位相変化候補値と2つの第2位相変化候補値とのうち最も値が小さい組合せを成すものを第1位相変化値および第2位相変化値とする。
 (選択工程)
 さらに、第1計測信号と第2計測信号との軌跡の2つの交点の強度を予め求め、第1計測信号と第2計測信号とのうち、上述の2つの交点強度の間に位置するものを計測信号として選択する。同様に、第1位相変化値と第2位相変化値とのうち、この計測信号に対応するものを位相変化値として選択する。
 (検出量算出工程)
 選択工程にて選択した位相変化値から検体の検出量を算出する。
 以上の工程を経て検体検出量を測定することができる。
 本発明は、以上の実施形態に限定されず、種々の態様で実施することができる。
 例えば、上述の実施形態に係る検出センサでは、図3などに示すように、第1計測信号と第2計測信号との軌跡の2つの交点の強度を予め求め、第1計測信号と第2計測信号とのうち2つの交点強度の間に位置するものを計測信号として選択する構成とした。これに代えて、第1位相変化値および第2位相変化値のうち信号の出力値(例えば、V1、V2)が所定の基準値に近い方を位相変化値として選択する構成としてもよい。これによれば、上述の実施形態と同様の効果を奏するとともに、所定の基準値を基準として選択すべき位相変化値を特定することができる。ここで、基準値として、例えば、上述の2つの交点強度の中点、あるいは0(ゼロ)などを設定することができる。図3に示すような理論的な軌跡を用いる場合には、基準値である2つの交点強度の中点はゼロになる。なお、基準値としては、2つの交点強度の中点に限られず、第1計測信号および第2計測信号を考慮して、高い感度の計測信号を得ることができるよう適切な値に設定すればよい。
 また、上述の実施形態に係る検出センサでは、図1~図3などに示すように、第2分岐部132において、第3信号を第1信号と同じ位相とし、第4信号を第1信号から位相を90°位相をずらしている。第1~第4信号の位相の設定はこれに限られるものではなく、第1計測信号と第2計測信号とが、±180°を除く位相差を有するように設定すればよい。図9に示す検体センサ100Cのように、例えば、第1信号と第2信号とを同じ位相とし、第3信号を第1信号に対して-45°位相をずらすとともに第4信号を第1信号に対して+45°位相をずらすようにしてもよい。この場合においても、上述の実施形態に係る検体センサと同様の効果を奏することができる。
 また、上述の実施形態に係る検出センサでは、図1などに示すように第1分岐部131および第2分岐部132はそれぞれ2つの信号に分岐していたが、これに代えて、第1分岐部131および第2分岐部132がそれぞれ3つあるいはそれ以上の信号に分岐するように設定してもよい。図10に示す検体センサ100Dのように、例えば、第1分岐部131および第2分岐部132がそれぞれ3つの信号に分岐する場合は、得られる信号のうち2つずつを用いてヘテロダイン方式によって互いに異なる位相差を有する3つの計測信号を得ることで、上記検出センサと同様の効果を奏することが可能となる。しかもこの場合には、3つの計測信号のそれぞれにおいて傾きの小さい領域が広い場合、言い換えればそれぞれの計測信号を感度よく計測できる領域が狭い場合であっても、3つの計測信号からより感度が高い領域を有する計測信号を選択するように設定することができるため、感度の低下をより効果的に抑制することが可能となる。
 また、上述の実施形態に係る検出センサでは、図1などに示すように、検出素子110およびリファレンス素子120が1つずつであり、1つの検出素子110と第1分岐部131とが接続されるとともに、1つのリファレンス素子120と第2分岐部132とが接続される構成を有していた。これに代えて、図11に示す検体センサ100Eのように、検出素子およびリファレンス素子を2つ以上とし、2つ以上の検出素子110a、bと第1分岐部131とが接続されるとともに、2つ以上のリファレンス素子120a、bと第2分岐部132とが接続される構成としてもよい。この場合には、第1分岐部131はスイッチ136aによって2つ以上の検出素子110a、bのうちのいずれかと選択的に接続できるようにし、第2分岐部はスイッチ136bによって2つ以上のリファレンス素子120a、bのうちのいずれかと選択的に接続できるようにすればよい。これによれば、2つ以上の検出対象を、分岐部130以降の構成を変えることなく、一度に、すなわち1つの検体を用いることによって検出することが可能となる。また、図11の各スイッチ135、136の構成に示すように、例えば、第1分岐部および第2分岐部のそれぞれが、検出素子およびリファレンス素子のいずれに対しても接続できるような構成にすることができる。さらに、これらの構成に代えて、検出素子を3つ、リファレンス素子を1つとしてもよい。この場合において、第1分岐部および第2分岐部のいずれか一方がリファレンス素子と接続する構成であれば、他方については3つの検出素子のいずれに接続するかは特に限定されず、検出対象の種類・数に応じて適宜設定することができる。
 また、上述の実施形態に係る検出センサでは、検出素子110Aとリファレンス素子120Aとでは、圧電性を有する基板を共有している例を用いて説明したが、検出素子110A用の素子基板と、リファレンス素子120A用の第2基板とを別体としてもよい。この場合には、検出素子110Aとリファレンス素子120Aとの間でのクロストークを抑制することができる。このような場合には、素子基板と第2基板とを保持する別体の基体を設ければよい。
 1・・・圧電基板
 2・・・板状体
 3・・・カバー
 4・・・保護膜
 5a・・・検出第1IDT電極
 5b・・・リファレンス第1IDT電極
 6a・・・検出第2IDT電極
 6b・・・リファレンス第2IDT電極
 7a,7b・・・金属膜
 8・・・配線
 9・・・パッド
 11a,11b・・・第1振動空間
 12a,12b・・・第2振動空間
 20・・・空間
 31・・・基準電位線
 100,100A,B,C,D,E・・・検体センサ
 110・・・検出素子
 111・・・検出部
 120・・・リファレンス素子
 121・・・リファレンス部
 130・・・分岐部
 131・・・第1分岐部
 132・・・第2分岐部
 133・・・ローノイズアンプ
 135a,b,c,d・・・素子側スイッチ
 136a,b・・・分岐部側スイッチ
 140・・・計算部
 141・・・第1計算部
 142・・・第2計算部
 150・・・計測部
 160・・・選択部
 170・・・検出量算出部

Claims (9)

  1.  検体に含まれる標的の吸着または前記標的との反応に応じて質量が変化する検出部を有し、前記検出部の質量変化に応じた交流信号である検出信号を出力する検出素子と、
     前記標的を吸着しないまたは前記標的と反応しないリファレンス部を有し、前記検出信号に対する交流信号であるリファレンス信号を出力するリファレンス素子と、
     前記検出信号および前記リファレンス信号のうち一方の信号を、第1信号と第2信号とに分岐し、他方の信号を第3信号と第4信号とに分岐する分岐部と、
     前記第1信号と前記第3信号とからヘテロダイン方式によって第1計測信号を得る第1計算部と、
     前記第2信号と前記第4信号とからヘテロダイン方式によって、前記第1計測信号と位相差が異なる(±180°を除く)第2計測信号を得る第2計算部と、
     前記第1計測信号から2つの第1位相変化候補値を算出し、前記第2計測信号から2つの第2位相変化候補値を算出し、前記2つの第1位相変化候補値と前記2つの第2位相変化候補値とのうち最も値が近い組合せを成すものを第1位相変化値および第2位相変化値とする計測部と、
     前記第1位相変化値と前記第2位相変化値とのうち信号の出力値が基準値に近い方を位相変化値として選択する選択部と、を備える検体センサ。
  2.  検体に含まれる標的の吸着または前記標的との反応に応じて質量が変化する検出部を有し、前記検出部の質量変化に応じた交流信号である検出信号を出力する検出素子と、
     前記標的を吸着しないまたは前記標的と反応しないリファレンス部を有し、前記検出信号に対する交流信号であるリファレンス信号を出力するリファレンス素子と、
     前記検出信号および前記リファレンス信号のうち一方の信号を、2つの同じ位相の第1信号と第2信号とに分岐し、他方の信号を、前記第1信号の位相と同じ第3信号と、前記第1信号と位相が異なる(±180°を除く)第4信号とに分岐する分岐部と、
     前記第1信号と前記第3信号とからヘテロダイン方式によって第1計測信号を得る第1計算部と、
     前記第2信号と前記第4信号とからヘテロダイン方式によって第2計測信号を得る第2計算部と、
     前記第1計測信号から2つの第1位相変化候補値を算出し、前記第2計測信号から2つの第2位相変化候補値を算出し、前記2つの第1位相変化候補値と前記2つの第2位相変化候補値とのうち最も値が近い組合せを成すものを第1位相変化値および第2位相変化値とする計測部と、
     前記第1計測信号と前記第2計測信号との軌跡の2つの交点の強度を予め求め、前記第1計測信号と前記第2計測信号とのうち、前記2つの交点の強度の間に位置するものを計測信号として選択し、前記第1位相変化値と前記第2位相変化値とのうち前記計測信号に対応するものを位相変化値として選択する選択部と、を備える検体センサ。
  3.  前記第4信号は、前記第3信号と位相が90°異なる、請求項2に記載の検体センサ。
  4.  前記検出素子は、圧電性を有する第1基板と、前記第1基板上にそれぞれ配置された、前記検出部と、前記検出部に向かって弾性波を発生させる検出第1IDT電極と、前記検出部を通過した前記弾性波を受ける検出第2IDT電極とを有し、
     前記リファレンス素子は、圧電性を有する第2基板と、前記第2基板上にそれぞれ配置された、前記リファレンス部と、前記リファレンス部に向かって弾性波を発生させるリファレンス第1IDT電極と、前記リファレンス部を通過した前記弾性波を受けるリファレンス第2IDT電極とを有し、
     前記検出信号は、前記検出部を通過した前記弾性波を前記検出第2IDT電極で受けて得られた交流信号であり、
     前記リファレンス信号は、前記リファレンス部を通過した前記弾性波を前記リファレンス第2IDT電極で受けて得られた交流信号である、請求項1~3のいずれかに記載の検体センサ。
  5.  前記検出素子と前記分岐部との間に位置し、前記検出素子からの前記検出信号を増幅する第1ローノイズアンプと、
     前記リファレンス素子と前記分岐部との間に位置し、前記リファレンス素子からの前記リファレンス信号を増幅する第2ローノイズアンプと、をさらに備える、請求項1~4のいずれかに記載の検体センサ。
  6.  標的を備えた検体を含む検体溶液を、前記標的の吸着または前記標的との反応に応じて質量が変化する、検出素子の検出部、および前記標的を吸着しないまたは前記標的と反応しない、リファレンス素子のリファレンス部に供給する検体溶液供給工程と、
     前記検体検出素子から出力される前記検出部の質量変化に応じた交流信号である検出信号、および前記リファレンス素子から出力される前記リファレンス部の質量に応じた交流信号であるリファレンス信号のうち一方の信号を、第1信号と第2信号とに分岐し、他方の信号を第3信号と第4信号とに分岐する分岐工程と、
     前記第1信号と前記第3信号とからヘテロダイン方式によって第1計測信号を得る第1計算工程と、
     前記第2信号と前記第4信号とからヘテロダイン方式によって、前記第1計測信号と位相差が異なる(±180°を除く)第2計測信号を得る第2計算工程と、
     前記第1計測信号から2つの第1位相変化候補値を算出し、前記第2計測信号から2つの第2位相変化候補値を算出し、前記2つの第1位相変化候補値と前記2つの第2位相変化候補値とのうち最も値が近い組合せを成すものを第1位相変化値および第2位相変化値とする計測工程と、
     前記第1計測信号と前記第2計測信号とのうち信号の出力値が基準値に近い方を位相変化値として選択する選択工程と、を備える、検体センシング方法。
  7.  標的を備えた検体を含む検体溶液を、前記標的の吸着または前記標的との反応に応じて質量が変化する、検出素子の検出部、および前記標的を吸着しないまたは前記標的と反応しない、リファレンス素子のリファレンス部に供給する検体溶液供給工程と、
     前記検体検出素子から出力される前記検出部の質量変化に応じた交流信号である検出信号、および前記リファレンス素子から出力される前記リファレンス部の質量に応じた交流信号であるリファレンス信号のうち一方の信号を、2つの同じ位相の第1信号と第2信号とに分岐し、他方の信号を、前記第1信号と同じ位相の第3信号と、前記第1信号と位相が異なる(±180°を除く)第4信号とに分岐する分岐工程と、
     前記第1信号と前記第3信号とからヘテロダイン方式によって第1計測信号を得る第1計算工程と、
     前記第2信号と前記第4信号とからヘテロダイン方式によって第2計測信号を得る第2計算工程と、
     前記第1計測信号から2つの第1位相変化候補値を算出し、前記第2計測信号から2つの第2位相変化候補値を算出し、前記2つの第1位相変化候補値と前記2つの第2位相変化候補値とのうち最も値が近い組合せを成すものを第1位相変化値および第2位相変化値とする計測工程と、
     前記第1計測信号と前記第2計測信号との軌跡の2つの交点の強度を予め求め、前記第1計測信号と前記第2計測信号とのうち、前記2つの交点の強度の間に位置するものを前記計測信号として選択し、前記第1位相変化値と前記第2位相変化値とのうち前記計測信号に対応するものを位相変化値として選択する選択工程と、を備える、検体センシング方法。
  8.  前記分岐工程において、前記検出信号および前記リファレンス信号のそれぞれを増幅し、増幅した前記検出信号および前記リファレンス信号に基づき前記第1~前記第4信号を得る、請求項7に記載の検体センシング方法。
  9.  前記分岐工程において、前記第4信号の位相を前記第3信号の位相と90°異ならせる、請求項7または8に記載の検体センシング方法。
PCT/JP2014/058559 2013-05-30 2014-03-26 検体センサおよび検体センシング方法 WO2014192393A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14804624.6A EP3006933B1 (en) 2013-05-30 2014-03-26 Specimen sensor and specimen sensing method detecting a change in mass in response to specimen adsorption
JP2014550963A JP5837233B2 (ja) 2014-03-26 2014-03-26 検体センサおよび検体センシング方法
US14/894,885 US9791413B2 (en) 2013-05-30 2014-03-26 Analyte sensor and analyte sensing method
EP18164165.5A EP3376218A1 (en) 2013-05-30 2014-03-26 Analyte sensor and analyte sensing method
CN201480031070.1A CN105247360B (zh) 2013-05-30 2014-03-26 检体传感器以及检体传感方法
US15/783,562 US10241082B2 (en) 2013-05-30 2017-10-13 Analyte sensor and analyte sensing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-113969 2013-05-30
JP2013113969A JP6042774B2 (ja) 2013-05-30 2013-05-30 検体センサおよび検体センシング方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/894,885 A-371-Of-International US9791413B2 (en) 2013-05-30 2014-03-26 Analyte sensor and analyte sensing method
US15/783,562 Continuation US10241082B2 (en) 2013-05-30 2017-10-13 Analyte sensor and analyte sensing method

Publications (1)

Publication Number Publication Date
WO2014192393A1 true WO2014192393A1 (ja) 2014-12-04

Family

ID=51988436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058559 WO2014192393A1 (ja) 2013-05-30 2014-03-26 検体センサおよび検体センシング方法

Country Status (5)

Country Link
US (2) US9791413B2 (ja)
EP (2) EP3376218A1 (ja)
JP (1) JP6042774B2 (ja)
CN (2) CN105247360B (ja)
WO (1) WO2014192393A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016137009A1 (ja) * 2015-02-27 2016-09-01 京セラ株式会社 検体液の測定方法および検体液センサ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115175A1 (ja) 2012-01-30 2013-08-08 京セラ株式会社 検体センサおよび検体センシング方法
EP3187869B1 (en) * 2014-08-29 2023-03-08 Kyocera Corporation Sensor device and sensing method
US10627367B2 (en) 2015-03-30 2020-04-21 Kyocera Corporation Liquid specimen sensor and method of measuring liquid specimen
JP6391653B2 (ja) * 2016-11-04 2018-09-19 京セラ株式会社 検体センサおよび検体センシング方法
EP3961922A4 (en) * 2019-04-26 2022-11-16 Kyocera Corporation METHOD FOR MANUFACTURING A SENSOR DEVICE AND SENSOR DEVICE
US20220229019A1 (en) * 2019-05-31 2022-07-21 Kyocera Corporation Sensor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024568A (ja) * 2005-07-13 2007-02-01 Toppan Printing Co Ltd 水素センサ,燃料電池およびそれらを備える車輌
JP2008122105A (ja) 2006-11-08 2008-05-29 Japan Radio Co Ltd 弾性波センサ及び検出方法
JP2009109261A (ja) * 2007-10-29 2009-05-21 Tama Tlo Kk 弾性表面波ガス・センサ装置
JP5421502B1 (ja) * 2012-01-30 2014-02-19 京セラ株式会社 検体センサおよび検体センシング方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140838A (ja) * 1989-10-26 1991-06-14 Brother Ind Ltd ガスセンサ
US5478756A (en) * 1990-07-24 1995-12-26 Fisons Plc Chemical sensor for detecting binding reactions
JP3379180B2 (ja) 1993-12-13 2003-02-17 株式会社日立製作所 光音響信号検出方法及びその装置
US5763283A (en) * 1994-10-12 1998-06-09 Sandia Corporation Method and apparatus for phase for and amplitude detection
JP4378019B2 (ja) 2000-03-06 2009-12-02 雅弘 西川 超音波による金属の材質劣化検出方法
WO2003032487A1 (fr) * 2001-10-09 2003-04-17 Toppan Printing Co., Ltd. Element a ondes acoustiques de surface, dispositif de traitement de signaux electriques utilisant cet element a ondes acoustiques de surface, dispositif d'evaluation d'environnement utilisant ce dispositif de traitement de signaux electriques, et procede d'analyse utilisant ledit element a ondes acoustiques de surface
JP2004048675A (ja) * 2002-05-15 2004-02-12 Murata Mfg Co Ltd 弾性表面波装置及びそれを有する通信装置
WO2006039506A2 (en) * 2004-10-01 2006-04-13 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno Cantilevered probe detector with piezoelectric element
JP2008128856A (ja) * 2006-11-22 2008-06-05 Toppan Printing Co Ltd 球状表面弾性波素子を用いた計測装置
WO2009037977A1 (ja) 2007-09-19 2009-03-26 Toppan Printing Co., Ltd. 弾性波測定装置及び方法
JP5422938B2 (ja) * 2008-08-19 2014-02-19 凸版印刷株式会社 流体測定装置
CN102804600B (zh) * 2009-06-26 2015-09-02 京瓷株式会社 表面声波滤波器以及使用其的分波器
KR20130067875A (ko) * 2011-12-14 2013-06-25 삼성전자주식회사 집적화된 미세유체 카트리지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024568A (ja) * 2005-07-13 2007-02-01 Toppan Printing Co Ltd 水素センサ,燃料電池およびそれらを備える車輌
JP2008122105A (ja) 2006-11-08 2008-05-29 Japan Radio Co Ltd 弾性波センサ及び検出方法
JP2009109261A (ja) * 2007-10-29 2009-05-21 Tama Tlo Kk 弾性表面波ガス・センサ装置
JP5421502B1 (ja) * 2012-01-30 2014-02-19 京セラ株式会社 検体センサおよび検体センシング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Development of Novel SAW Liquid Sensing System with SAW Signal Generator", IEICE TECHNICAL REPORT, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, February 2003 (2003-02-01)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016137009A1 (ja) * 2015-02-27 2016-09-01 京セラ株式会社 検体液の測定方法および検体液センサ
JPWO2016137009A1 (ja) * 2015-02-27 2017-12-07 京セラ株式会社 検体液の測定方法および検体液センサ
US10416119B2 (en) 2015-02-27 2019-09-17 Kyocera Corporation Measurement method of specimen liquid and specimen liquid sensor

Also Published As

Publication number Publication date
JP6042774B2 (ja) 2016-12-14
EP3006933B1 (en) 2018-04-25
EP3376218A1 (en) 2018-09-19
US20160195498A1 (en) 2016-07-07
EP3006933A1 (en) 2016-04-13
CN107655968A (zh) 2018-02-02
JP2015025658A (ja) 2015-02-05
CN105247360B (zh) 2017-09-29
EP3006933A4 (en) 2017-08-09
CN107655968B (zh) 2020-07-28
US10241082B2 (en) 2019-03-26
US9791413B2 (en) 2017-10-17
CN105247360A (zh) 2016-01-13
US20180156754A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
JP6568126B2 (ja) 検体センサおよび検体センシング方法
WO2014192393A1 (ja) 検体センサおよび検体センシング方法
JP2006313092A (ja) 弾性表面波センサ及び弾性表面波センサシステム
JP6466533B2 (ja) 検体センサおよび検体センシング方法
JP2018138920A (ja) センサ装置およびセンシング方法
WO2014054269A1 (ja) 弾性波素子とこれを用いた弾性波センサ
JP6193956B2 (ja) 検体センサおよび検体センシング方法
JP5837233B2 (ja) 検体センサおよび検体センシング方法
JP5917973B2 (ja) Sawセンサおよびsawセンサ装置
TWI825603B (zh) 用於在生物液體中估計不同分子的含量的感測系統及方法
JP6391653B2 (ja) 検体センサおよび検体センシング方法
EP3978917A1 (en) Sensor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014550963

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014804624

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14894885

Country of ref document: US