WO2014190943A1 - 液位传感器系统 - Google Patents

液位传感器系统 Download PDF

Info

Publication number
WO2014190943A1
WO2014190943A1 PCT/CN2014/078997 CN2014078997W WO2014190943A1 WO 2014190943 A1 WO2014190943 A1 WO 2014190943A1 CN 2014078997 W CN2014078997 W CN 2014078997W WO 2014190943 A1 WO2014190943 A1 WO 2014190943A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
axis
fixing portion
sensor system
liquid level
Prior art date
Application number
PCT/CN2014/078997
Other languages
English (en)
French (fr)
Inventor
迪克·詹姆斯·G
仝大·马克·C
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to JP2016515646A priority Critical patent/JP6420825B2/ja
Priority to EP14804604.8A priority patent/EP3006906B1/en
Priority to US14/894,271 priority patent/US9964427B2/en
Publication of WO2014190943A1 publication Critical patent/WO2014190943A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/48Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using twisted spindles as transmission elements
    • G01F23/54Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using twisted spindles as transmission elements using magnetically actuated indicating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/48Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using twisted spindles as transmission elements
    • G01F23/54Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using twisted spindles as transmission elements using magnetically actuated indicating means
    • G01F23/543Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using twisted spindles as transmission elements using magnetically actuated indicating means using magnets only as coupling means in a mechanical transmission path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/32Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using rotatable arms or other pivotable transmission elements
    • G01F23/38Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats using rotatable arms or other pivotable transmission elements using magnetically actuated indicating means

Definitions

  • the invention has innovations in the following fields of technology: "liquid level sensor”, “magnetic angle sensor”, and “magnetic rotation sensor”, in particular, a liquid level sensor system capable of measuring the liquid level in a container.
  • Blackburn's U.S. Patent No. 5,419,913 describes a "remote indicating liquid level sensor", and Figure 1 is a schematic view of this patent.
  • the problem solved by Blackburn is that the liquid level in the container can be read electronically without placing the electronic components in the container. This is achieved by placing a permanent magnet on the device in the container and having an electronic magnetic probe outside the container.
  • the inner permanent magnet is disposed on the curved arm, and as the rotating lever is twisted about the central axis, the permanent magnet rotates together with the curved arm. At this time, the permanent magnet rotates to a larger diameter and can reach several centimeters.
  • An external circular array of nine magnetic sensors detects the motion of the permanent magnet. The sensor is discharged at a regular angular spacing on a circular array so that only one or two sensors can detect the presence of permanent magnets at any time.
  • the magnetic sensor described is a magnetic reed switch. These electric switches can be opened or closed when the magnetic field force on a thin magnetic reed is large enough to cause the reed to bend into contact with the second electric contact.
  • the magnetic field force is generated by the interaction of the magnetic reed and the applied magnetic field.
  • the applied magnetic field reaches a certain threshold, the magnetic reed will bend and the electric switch will close.
  • the applied magnetic field is smaller than the threshold, the magnetic reed cannot be bent enough to close the electric switch.
  • Figures 1 through 3 of the accompanying drawings are derived from U.S. Patent 5,410,913.
  • Figure 1 is a cross-sectional view of an electronic remote control level sensor. This sensor system is placed through a hole in the top of the container and has an electrical connection outside the chamber. This design requires the container to be detached from the outside air in an environment that is temperature and pressure different from the outside world. These requirements are determined by its specific application.
  • the two main parts of the system are shown here, device A and device B, device A is a mechanical socket, and device B is an electronic sensor module. These two devices are normally mechanically connected together and are shown separately here for ease of viewing and interpretation.
  • the conduit 14 provides a structural support for the vertical extension of the level sensing device.
  • the conduit 14 has two orifices 27, 28 through which liquid can flow into the lumen 38.
  • Such a conduit 14 The liquid level inside is the same as the liquid level 39 in the container.
  • the float 15 slides up and down along the Z axis 16.
  • the origin is on the top surface of the catheter floor 26.
  • the exact calculation for the float 15 above and below the liquid level 39 depends on the ratio of their respective specific gravities. Therefore, as long as the float 15 has a smaller specific gravity than the liquid, it will float vertically on the liquid surface so that the liquid level 39 is between its top and bottom ends, as shown in FIG.
  • a permanent magnet 22 is adhered to the upper end of the twistable rigid strip 19, and the rigid strip 19 is bent at a right angle so that when the curved arm 21 extending beyond the radial direction rotates about the axis of rotation (Z-axis) 16, The magnet 22 will enter the recess 30 cut in the fixed top plate 29.
  • the raised end ring 25 at the upper end and the bottom plate 26 of the lower end provide mechanical support for the weight of the rigid strip 19.
  • the precise mechanical relationship between the vertical position and the angular displacement of the float 15 can be maintained by the physical boundary between the conduit 14, the rigid strip 19 and the float 15.
  • a slidable keyway-like notch is formed between the float 15 and the rigid strip 19.
  • a slidable groove guide interface is created between the float 15 and the conduit 14, and the rigid strip 19 is twisted, thus acting as a bottom From the function of Z, the normal direction on the surface can be changed smoothly.
  • the twisted rigid strip upper end portion 19' is at a distance of Z full from the bottom. To meet the needs of a particular application, the designer can choose a reasonable rotation angle of 9 full .
  • the rigid thin strip upper end portion 19' is twisted by 360° with respect to the bottom end portion of the rigid web 19.
  • the bending arm 21 on which the permanent magnet 22 is placed is directed at an angle perpendicular to the normal direction of the upper end portion 19' of the rigid strip, and the angle of rotation of the permanent magnet 22 can be obtained (strictly speaking, the permanent magnet 22 and the upper end portion of the rigid thin strip 19)
  • Z levf: 1 as a variable describing the vertical position of the liquid level 39; a variable describing the rotation angle 102 in the full and empty state ⁇ Ful ⁇ P ⁇ Empty is a constant; The variables 9 Full and ⁇ Empty in the full slot and empty slot state are constant. Therefore, ⁇
  • the linear relationship between Z kvf:1 can be written as:
  • Device B includes nine reed switches 41-49 and nine resistors 61-69 that are mounted on PCB 35.
  • the switches 41-49 are discharged in a circular array that is coaxial with the rotating shaft 16 and has a radius that satisfies the magnetic field generated only when the permanent magnet 22 is at or near the rotation angle of a given switch. Go to the trigger switch.
  • the electrical connection cords 33, 34 transmit electrical signals to the PCB 35 and transmit electrical signals from the PCB 35.
  • the sensor module top cover 36 and the sensor module bottom cover 37 provide protection and mechanical support for the PCB 35.
  • the finger-shaped snap handle 31 in device A provides permanent or temporary mechanical contact to the notch 32 in device B.
  • FIG. 2 is a top plan view of the sensor pad 10 and the fixed top plate 29.
  • the finger-shaped snap handles 31 are discharged at a regular angular interval with respect to the rotating shaft 16, and they are all bolted to the sensor pad 10 through the holes.
  • FIG. 3 is a top view of the PCB 35 and its components.
  • Switches 41-49 are normally open, that is, they are not conducting under "low magnetic field” conditions, but in high-intensity magnetic fields they are closed and their resistance is zero. This switch closes when the permanent magnet 22 is close to a particular switch.
  • terminals 50-51 are the external electrical contacts of the measurement circuit.
  • Resistors 61-69 are connected in series between terminals 50 and 51.
  • One end of each of the reed switches 41-49 is electrically connected to the terminal 51, and the other end is connected to a contact point between each of the resistors 61-69. If switches 41-49 are all open, the resistance measured between terminals 50 and 51 is the sum of the resistances of resistors 61-69. If only switch 49 is closed, the measured resistance is the sum of the resistances of resistors 61-68. If only switch 48 is closed, the measured resistance is the sum of the resistances of resistors 61-67.
  • This calculation logic applies to all switch position points such that when the permanent magnet 22 is rotated from 0 degrees to 360 degrees, the measured resistance between the terminals 50-51 is discontinuous as the switches 41-49 are closed one by one. Increase.
  • the present invention uses the same or similar rigid belt rotation mechanism, but is an improved magnetic sensing system.
  • the next two figures will explain the magnetic probing geometry. The figure shows the position and orientation of the magnetic angle sensor and the permanent magnet. The angle of rotation of the permanent magnet is detected by the angle sensor.
  • FIG. 4 is a perspective view and a cross-sectional view showing a positional relationship between a magnetic field angle sensor chip and a permanent magnet.
  • the permanent magnet 105 rotates about the rotating shaft 16 in the rotational direction 101, the magnitude of which is given by the angle of rotation 102.
  • An electromagnetic resistance sensor chip is located at or near the rotating shaft 16. Its internal sensing element is designed with sensitive axes along the X-axis 8 and Y-axis 9.
  • the magnetic field angle sensor chip 103 is fixed relative to the detection coordinate axis and cannot move when the permanent magnet 105 rotates.
  • the magnetic field angle sensor chip 103 is mounted on the PCB 104 in a standard manner.
  • a gap S 106 is formed between the magnetic field angle sensor chip 103 and the upper surface of the permanent magnet 105.
  • Each of the sensing elements in the magnetic field angle sensor chip 103 has two output leads, for a total of four output leads.
  • X axis The voltage between each pair of output leads in the sensor is shown as curve 110 in Figure 5; the voltage between each pair of output leads in the Y-axis sensor is shown as curve 111 in Figure 5. These curves represent changes in voltage as the angle of rotation 102 changes.
  • magnetoresistive rotation sensor that is common in the prior art.
  • two patents with application numbers 201110130222.1 and 201110130202.4 describe a design of a magnetoresistive sensor element that has potential applications in magnetic field angle sensors. These patent documents are hereby incorporated by reference.
  • the present invention provides a level sensor system that not only reduces size, reduces cost, but also improves performance.
  • the present invention provides a liquid level sensor system for remote monitoring of a liquid level in a container, the sensor system comprising:
  • the first level response element includes:
  • the rotating rod is mechanically coupled with the float, and during the floating of the float, the rotating rod rotates around a rotating shaft fixed to the container;
  • a permanent magnet disposed at an upper end of the rotating rod and rotating together with the rotating rod;
  • a second-stage responsive element comprising: a PCB fixedly disposed on the second fixing portion, a magnetoresistive angle sensor chip deposited on the PCB and facing the permanent magnet, and a control circuit electrically connected to the magnetoresistive angle sensor chip;
  • the magnetoresistive angle sensor chip outputs an analog voltage signal to the control circuit according to a rotation angle of the permanent magnet, and the control circuit calculates a liquid level in the current container according to the analog voltage signal.
  • the rotating rod is rotated by n times 360 degrees, wherein n is an integer greater than or equal to 1, the height of the liquid surface and the rotating rod
  • the rotation angle is linearly proportional.
  • the magnetoresistive angle sensor chip is constructed of a TMR sensing element.
  • the magnetoresistive angle sensor chip comprises two independent sensors, one of which is an X-axis sensor, The other is a Y-axis sensor, the sensitive axis of the X-axis sensor is an X-axis, and the sensitive axis of the X-axis sensor is a ⁇ axis, wherein the X-axis and the ⁇ -axis are in the same plane, and between the X-axis and the ⁇ -axis The angle is 90°.
  • the component of the stray field generated by the permanent magnet on the magnetoresistive angle sensor chip has a 360 degree symmetry in the sensing plane.
  • the sensing plane is parallel to the pupil plane and spaced apart from the upper surface of the permanent magnet by a distance.
  • the analog voltage signal output by the magnetoresistive angle sensor chip is a single value function of the rotation angle of the permanent magnet.
  • the analog voltage signal is converted to a standard digital signal format, the standard digital signal format being pulse width modulated.
  • the pulse width modulated output value is in a linear relationship with the rotation angle of the permanent magnet.
  • the first fixing portion and the second fixing portion are detachably connected.
  • an adjustment structure for adjusting the height of the permanent magnet is disposed between the first fixing portion and the container.
  • a first hole is defined in the first fixing portion, and an upper end of the rotating rod extends upwardly from the center hole, and the rotating rod is suspended from the first fixing portion, and the first fixing portion is further provided with a hole a sealed housing for isolating the container from the outside, the second fixing portion being relatively fixed to the sealing housing.
  • control circuit comprises a magnetic angle sensor circuit, a power supply circuit and a signal processing circuit.
  • the sensor system comprises a wireless sensor module, the wireless sensor module implements wireless communication through a wireless communication line, and the wireless sensor module obtains electrical energy from a battery.
  • the present invention replaces a complex curved rod-shaped magnetic arm with a simple straight-rod magnetic arm.
  • This more compact magnet arrangement enables a regular change of the magnetic field, using a single position
  • the magnetic angle sensor can detect the change in the angle of the magnetic field at or near the axis of rotation of the rotating rod.
  • the present invention replaces such a large circular array of nine reed switches with a single solid state reluctance switch.
  • the liquid level sensor provided by the invention has the advantages of smaller size, simpler control circuit, higher reliability, higher resolution of the detection liquid level, and improved electrical communication method.
  • FIG. 1 is a cross-sectional view of an electronic remote control level sensor system of the prior art U.S. Patent No. 5,409,913.
  • Figure 2 is a plan view of the weir portion of Figure 1.
  • Figure 3 is a plan view of portion B of Figure 1.
  • 4 is a perspective view and a cross-sectional view showing a positional relationship between a magnetic field angle sensor and a permanent magnet.
  • Figure 5 is a graph showing the relationship between the analog voltage signal of the sensor and the rotation angle of the X-axis sensor and the Y-axis sensor.
  • Figure 6 is a cross-sectional view showing a liquid level sensor system of a first embodiment of the present invention.
  • Figure 7 is a plan view of the apparatus 1 of Figure 6.
  • Figure 8 is a top plan view of the device 2 of Figure 6.
  • Figure 9 is a circuit block diagram of the magnetic angle rotation sensor.
  • Figure 10 is a waveform diagram of a pulse width modulated output pulse width modulated output signal.
  • Figure 11 is a graph showing the relationship between the duty cycle and the rotation angle ratio of the PWM waveform.
  • Figure 12 is a cross-sectional view showing a liquid level sensor system in accordance with a second embodiment of the present invention.
  • Figure 6 is a cross-sectional view of an electronic remote control level sensor system.
  • a liquid level sensor system includes a first fixed portion 1, a first stage responsive element, a second fixed portion 2, and a second stage responsive element.
  • This sensor system is placed at the top of the container through a hole and has an electrical connection point outside the container cavity.
  • This design requires the container to be detached from the outside air in an environment that is temperature and pressure different from the outside world, as determined by its particular application.
  • the figure shows the two main parts of the system, the lower half of which is the first fixed part 1 and the first stage responsive element, the upper part being the second fixed part 2 and part of the second stage responsive element. These two parts are mechanically connected together under normal conditions, and they are shown separately here for ease of observation and interpretation.
  • the first fixing portion 1 is fixedly disposed at the opening of the container.
  • the first fixing portion 1 includes a finger spring lock 131 and a top flange 132.
  • An adjustment bolt 128 is disposed between the top flange 132 and the container wall 140.
  • the position of the top flange 132 can be adjusted up and down to adjust the distance between the permanent magnet and the magnetoresistive angle sensor chip.
  • the lower portion of the first fixed portion 1 is provided with a conduit 14, which provides a structural support for the vertical extension of the level sensing device.
  • the conduit 14 is provided with a flow guiding hole 27 through which the liquid can flow into the lumen 38, so that the liquid level in the conduit 14 is the same as the liquid level 39 in the container, and
  • the conduit 14 is provided with the same flow guiding holes 28 as in Fig. 1, which is not shown in Fig. 6.
  • the first stage response element includes a float 15, a rotating rod 19, and a permanent magnet 139.
  • the rotating rod 19 of the present invention is also the twistable rigid strip 19 mentioned above, and the float 15 can float up and down as the level of the liquid level in the conduit 14 changes.
  • the rotating rod 19 and the float 15 are mechanically coupled by the sliding piece 20, and during the floating of the floating element 15, the rotating rod 19 is rotated.
  • the movement is only about a rotation axis 16 fixed relative to the container, and the permanent magnet 139 disposed at the upper end of the rotation lever 19 also rotates together with the rotation lever 19.
  • the angle of rotation of the rotating lever 19 is n times 360 degrees, and n is an integer equal to 1 or greater than 1.
  • the position of the liquid level 39 is proportional to the rotation angle of the rotating rod 19. For example, when the container is empty, that is, the liquid level 39 is 0%, the rotation angle of the rotating rod 19 is 0 degree, and when the liquid level is 50%, the rotation angle of the rotating rod 19 is 180 degrees, and when the container is full, the liquid is The position 39 is 100%, and the rotation angle of the rotating lever 19 is 360 degrees.
  • a disk 137 is fixed to the tip end of the rotating lever 19.
  • the weight of the disc 137 and other forces applied thereto, the tip portion of the rotating rod 19 and all other additional material are supported by a support ring 134 which is a pointed projection on the support strip 133.
  • the permanent magnet 139 is bonded to the top end surface of the disk 137.
  • the groove 135 and the snap ring 136 mechanically limit the upward movement of the upper end portion of the rotating lever 19.
  • the rotating lever 19 rotates around the rotating shaft 16, thereby driving the rotation of the permanent magnet 139.
  • the rotating lever 19 cannot move in the axial direction.
  • the second fixing portion 2 is located above the first fixing portion 1, and the second fixing portion 2 is fixedly connected to the first fixing portion 1.
  • the first fixing portion 1 is formed with a finger-shaped spring lock 131 extending upward with respect to the flange 132, and the second fixing portion 2 is provided with a notch 126 corresponding to the finger-shaped spring lock 131.
  • the second fixing portion 2 can be removed from the first fixing portion 1. Whether the second fixing portion 2 and the first fixing portion 1 are fixedly bonded or temporarily bonded depends on actual needs.
  • the second fixing portion 2 includes a top plate 121 and a bottom plate 122.
  • a notch 126 is provided in the top plate 121, and the top plate 121 is latched by the finger spring lock 131 through the notch 126.
  • the alignment holes 138 are fixed to each other by providing alignment holes 138 on the top plate 121, the PCB 104, and the bottom plate 122.
  • the alignment holes of the top plate 121 are threaded, and no screws are shown in the drawing. If they are permanently installed, the threaded holes should be on the top flange 132 of the device, and the alignment holes on the top plate 121 and the bottom plate 122 should be through holes.
  • the second fixing portion 2 can also fix the PCB 104 by using a removable retaining clip, which is not shown in the figure and the retaining clip.
  • a plurality of upwardly extending projections are formed on the bottom plate 122, including a sensor support 123 for supporting the magnetoresistive angle sensor chip 103, and a circuit board bottom support 124 for supporting the PCB 104.
  • a plurality of downwardly extending projections are formed on the top plate 121, including a circuit board top support 125 for supporting the PCB 104.
  • the purpose of these three supports is to prevent the rotation of the PCB 104 and any vibration of the magnetoresistive angle sensor chip 103 relative to the permanent magnet 139. Moving or moving, this avoids the generation of erroneous magnetic signals in the magnetoresistive angle sensor chip 103. It is also within the scope of the invention to connect these components together.
  • These methods include: potting, external counterparts, rivets, injection of molten plastic, and all other standard electrical packaging techniques known to the public.
  • the functions of these fixing methods are: 1) maintaining the magnetoresistive angle sensor chip 103 at an appropriate position on the rotating shaft 16, and at the designed gap S106; 2) being able to connect the power source; 3) being capable of data communication connection; 4) protecting The environment of the magnetic rotation sensor.
  • the selection of materials, potting materials, and fasteners for these components is subject to two conditions: magnetic compatibility and optional visual clarity (if desired, the top of the disc 137 and/or the permanent magnet 139 can be visually inspected Rotation of features, lines or marks as an aid to measurement methods and calibration techniques).
  • the top plate 121 may be a ferromagnetic material such as soft magnetic steel to provide "magnetic shielding" between the magnetoresistive angle sensor chip 103 and the field source outside the second fixing portion 2.
  • a magnetic shielding block (not shown) may be attached to the top of the top plate 121. This does not change the physical properties of the magnetoresistive angle sensor chip 103 below it, but can better at the magnetoresistance angle.
  • a "magnetic shield” is provided between the sensor chip 103 and the field source outside the second fixing portion 2.
  • the second fixing portion 2, all other components on the top flange 132 should be non-magnetic metal, plastic, wood, glass, ceramic, polymer, and the like.
  • the second stage responsive element includes a printed circuit board PCB 104 fixedly disposed on the second fixed portion, and a magnetoresistive angle sensor chip 103 deposited on the printed PCB 104 and facing the permanent magnet 139.
  • the magnetoresistive angle sensor chip 103 is composed of a TMR sensing element that outputs an analog voltage signal to the control circuit according to the rotation angle of the permanent magnet 139, and the control circuit calculates the liquid level in the current container based on the analog voltage signal.
  • Fig. 7 is a plan view showing the second fixing portion 2 and the second-stage responsive element removed. It shows the position of the rotation angle 102 of the upper end portion of the rotation lever 19 and the permanent magnet 139 which has an angular rotation direction 101 with respect to the rotation shaft 16.
  • the magnetoresistive angle sensor chip 103 does not rotate.
  • the top flange 132 is secured to the container wall 140 by bolts 128 through the mounting holes 142 of the top flange.
  • Figure 8 is a plan view of some of the components of the second fixed portion 2 and the second stage responsive element.
  • the figure shows the circular outline of the bottom plate 122.
  • the top plate 121 is not shown in the drawing, only the notch 126 aligned with the finger spring lock 131 is shown.
  • the rectangular outline is the front side of the printed circuit board PCB 104, and its key features include an alignment hole 138 and a magnetoresistive angle sensor chip 103.
  • the left end is the electrical connection of the PCB 104. These include the power supply terminal 151, the signal terminal 152 and the ground terminal 153.
  • the flexible wires can be soldered at these terminals, a standard card edge connector can slide at this end, or a spring
  • the clip connector can be clamped at this end of the PCB 104.
  • the raised circuit board bottom support 124 provides mechanical support for the PCB 104
  • the magnetoresistive angle sensor chip 103 is supported by the raised sensor support 123.
  • the top end flange 132 of the first fixing portion 1 is not provided with an opening unless it is used to bolt the container wall 140.
  • a flange is formed in the flange 220.
  • a narrow portion of the rotating rod 19 passes through the center hole, and the rotating rod 19 is suspended from the flange 220, as shown in FIG.
  • a sealing housing 221 for isolating the container from the outside is provided on the flange 220, and the second fixing portion 4 is fixedly coupled to the sealing housing 221.
  • the sealing housing 221 is provided with a finger-shaped engaging handle 222
  • the second fixing portion 4 is provided with a notch corresponding to the finger-shaped engaging handle 222.
  • the support ring 134 is moved to the top end of the flange 220, which supports the weight and other forces of the disc 137.
  • the groove 135 and the snap ring 136 are the same as in Fig. 6.
  • the parts not shown in the figure are also the same as in Fig. 6.
  • the level sensor signal can be used in higher level systems and must have a means of communicating with higher level systems. It may also reduce the original analog signal of the magnetic angle sensor, providing signals that can be used in digital electronics. Communication between the sensor system and higher-level systems can be through a set of wires, a data bus (I 2 C, RS232, IEEE 488, Ethernet, USB, etc.) or wireless network (WIFI, Bluetooth, IoT, etc.) To achieve, choose which method is determined by the communication protocol selected by the user. In addition, this communication can also be achieved by a visual signal such as an LED display that can be read by a person in the same space as the container. It goes without saying that a level sensor using a combination of these communication methods and similar other methods is also within the scope of the present invention.
  • the control circuit has three main circuit modules, each of which has one or more sub-circuits.
  • the three main circuit modules are a magnetic angle sensor circuit 161, a power supply circuit 162, and a signal processing circuit 163. It must be noted herein that this particular choice of dividing the circuit into sub-circuits is not exclusive and is not limited by the protection of the present invention, but is merely to more easily explain the present invention and many of the components of the present invention.
  • the magnetic angle sensor circuit 161 is electrically connected to the magnetoresistive angle sensor chip 103.
  • the chip includes an X-axis magnetoresistive sensor 171 and a Y-axis magnetoresistive sensor 172.
  • the sensitive axis of the X-axis magnetoresistive sensor 171 is an X-axis and a Y-axis magnetic field.
  • the sensitive axis of the resistive sensor is the Y-axis, wherein the X-axis and the Y-axis are in the same plane, and the angle between them is 90 degrees.
  • the sensing planes of the two sensors are parallel to the XY plane, and the sensing plane is spaced apart from the upper surface of the permanent magnet 139 by a distance, as shown by the gap S106 in FIG.
  • the magnetic angle sensor circuit 161 has two sub-circuits: one for the X-axis magnetoresistive sensor 171 and the Y-axis magnetoresistive sensor 172 for V cc 164 or V Ref 170, and the other for the X-axis magnetoresistive sensor 171 and the Y-axis magnetic field.
  • the resistance sensor 172 is connected to the ground terminal 166.
  • Power circuit 162 is capable of absorbing electrical energy from the battery and distributing the electrical energy to other portions of the circuit in an efficient, smooth manner.
  • the circuit has two sub-circuits: a power supply 168 and a power conditioning circuit 169.
  • the signal processing circuit 163 has many functions.
  • the communication protocol 177 defines a method of receiving information from the sensor system.
  • the signal processing circuit 163 must receive the original voltage signal from the magnetic angle sensor circuit 161 and convert the signal into an acceptable form.
  • the first sub-circuit is an analog preamplifier circuit 173 which amplifies the signal value according to the design value and uses a filter to help remove unused signals.
  • the second sub-circuit is an analog to digital conversion circuit 174 that receives the amplified analog signal (in volts or amperes) output from the analog preamplifier circuit 173 and converts these signals into digital signals (in units of bits).
  • the third sub-circuit is an output formatting circuit 175 containing digital circuitry and algorithms that primarily converts the digital signals produced by analog to digital conversion circuitry 174 into values and formats that are acceptable to communication protocol 177.
  • the next sub-circuit is the microcontroller circuit 176, which primarily communicates with the communication protocol 177 via an input/output circuit 178 (also known as a digital interface circuit) and stores and retrieves data in the data circuit 179 and the system control circuit 180.
  • System control circuit 180 is for transmitting signals to other sub-circuits in the system.
  • the output signal of the microcontroller circuit 176 is ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 165.
  • the X-axis sensor and the Y-axis sensor output corresponding analog voltage signals according to the rotation angle of the permanent magnet 139, the signals they output reflect the magnetic field generated by the permanent magnet 139. It can be seen from the curves 110 and 111 in Fig. 5 that the components of the stray field generated by the permanent magnet in the sensing plane have a 360 degree symmetry, that is, within the range of 360 degrees of the rotation of the permanent magnet, the total amplitude value of the stray field is not Change, direction is different.
  • the output signal is formatted into a pulse width modulation format, which uses only three Electrical connections: Power supply V CC 164, signal output 165 and ground GND166. These terminals are connected to connection pads 151, 152 and 153 on the PCB 104, respectively.
  • This embodiment describes a liquid level detecting system having a digital processing output.
  • the two linear analog voltage signals shown by curves 110 and 111 are converted into a single digital waveform, which is waveform 30 in FIG.
  • This curve represents the relationship between the voltage and time signals, the time is the horizontal axis, and the waveform 30 is a cyclic function with a fixed period 21T CYDF:.
  • the voltage value of waveform 30 is not VL. W 24, is V HIGH 25.
  • the time of each cycle of waveform 30 at voltage V Hig h 25 is T HIGH 22 at voltage VL.
  • the time at W 24 is TL. W 23.
  • T HIGH and TL are shown.
  • w is 700 microseconds and 300 microseconds respectively
  • T CYDF: 21 is 1000 microseconds.
  • the mathematical ratio of T HIGH 22 to T CYDF: 21 is called the "output duty cycle" and is expressed as a percentage (%).
  • the external power and signal connections are on the connection pads 151, 152, 153 at the left end of the PCB 104, which are the connection terminals for the pulse width modulation (PWM), the output, and the ground.
  • PWM pulse width modulation
  • the upper end portion of the rotating lever 19 is rotated from the 0° position to the 324° position, and the PWM voltage output between the connection pads 152 and 153 is as shown by the curve 29 of FIG. In this embodiment of the invention, the angle of rotation cannot exceed 360 degrees.
  • the sensor module 231 does not display a line connection, it obtains power from the battery 232, and communicates via the communication protocol 177 using the wireless communication line 233.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Level Indicators Using A Float (AREA)

Abstract

一种液位传感器系统,其用于对容器内的液面进行远程监测,包括第一固定部(1)、第一级响应元件、第二固定部(2)、第二级响应元件。第一固定部(1)的下方设置有插入容器内的导管(14),导管(14)上开设有导流孔(27)以使得导管(14)内的液面与容器内的液面相持平,第一级响应元件包括可随着导管(14)内液面的变化而上下浮动的浮子(15)、在浮子(15)上下浮动的过程中绕一相对固定的旋转轴(16)转动的转动杆(19)和永磁体(139);第二固定部(2)固定设置在第一固定部(1)上且位于第一固定部(1)的上方;第二级响应元件包括PCB(104)、磁电阻角度传感器芯片(103)、与磁电阻角度传感器芯片(103)相电连的控制电路,磁电阻角度传感器芯片(103)根据永磁体(139)的旋转角度对控制电路输出模拟电压信号,控制电路根据模拟电压信号计算出液面高度。

Description

液位传感器系统 技术领域
本发明在以下几个科技领域具有创新: "液位传感器", "磁性角度传感器", 以及 "磁性旋转 传感器", 尤其涉及一种能测量容器中液位的液位传感器系统。
背景技术
本发明是在现有技术的基础上产生的。 布莱克本的美国专利 5410913, 描述了一个 "远程指 示液位传感器", 图 1 便为此专利的一副示意图。 布莱克本解决的问题是无需把电子元件放 在容器里就可以电子读出容器里的液位。 这是通过将一块永磁体放在容器里的装置上来实现 的, 并且在容器外有电子磁性探测。
具体而言, 内部的永磁体设置在弯曲臂上, 随着转动杆绕着中心轴扭转, 永磁体跟随弯曲臂 一起旋转。 此时永磁体旋转的直径更大, 能达到几厘米。 由 9个磁传感器所组成的外部圆形 阵列对永磁体的运动进行探测。 在圆形阵列上以常规的角间距来排放传感器, 这样在任何时 候只有 1个或者 2个传感器能探测到永磁体的出现。 所描述的磁传感器为磁性舌簧开关。 当 一薄磁簧片上的磁场力足够大, 能使该磁簧片弯曲与第二个电动触点接触的时候, 这些电动 开关就能产生断开或者闭合的动作。 该磁场力是由磁簧片与外加磁场的相互作用下产生的。 当外加磁场达到一个特定阈值的时候, 磁簧片就会弯曲, 使电动开关闭合。 当外加磁场比阈 值小的时候, 磁簧片就不能足够弯曲使电动开关闭合。
在现有技术中已存在一些固态磁开关, 这些开关无需任何物理动作, 就能电动断开和闭合, 也有一些磁开关能探测转动杆的旋转角度。
在现有技术中, 也有一些磁传感器能记录转动杆绕其轴旋转的转数。
具体的说, 附图中的图 1至图 3来自于美国专利 5410913。 图 1为一种电子远程控制液位传 感器的剖面图。 这个传感器系统通过一个孔放置在容器的顶端, 在容器腔外有电气连接。 这 种设计需要容器脱离外界空气, 处于一个与外界不同温度和气压的环境当中, 这些要求是由 其具体应用所决定的。 这里显示了该系统的两个主要部分, 装置 A和装置 B, 装置 A为一 机械插座, 装置 B 为一电子传感器模块。 这两个装置正常情况下是机械连接在一起的, 在 这里将它们分开显示, 是为了便于观察和解释。
在装置 A中的容器壁 13和传感器垫板 10处有一分界面, 在容器壁 13上打一个传感器孔 12 来调整液位传感装置。 导管 14 为液位传感装置上的垂直延长部分提供了一个结构支撑, 在 导管 14上有两个导流孔 27、 28, 通过这两个导流孔, 液体就能流进管腔 38, 这样导管 14 里面的液位就与容器里的液位 39相同。
随着液位 39的变化, 浮子 15沿着 Z轴 16上下滑动。 我们将 X轴 8和 Z轴 16的交点设置 为我们坐标系的原点, Y轴 9垂直指向页面, 在图 1 中没有显示出来。 原点在导管底板 26 的顶端表面上。 当液位 39在 Z=0以下, 浮子 15滑动至 Z=0, 但由于导管底板 26的缘故, 不能继续向下滑动。 当液位 39高于浮子 15的高度, 对于浮子 15 位于液位 39上方和下方 部分的精确计算取决于它们各自比重的比率。 因此, 只要浮子 15 的比重比液体的小, 它将 会竖直漂浮在液面上, 这样液位 39就在它的顶端和底端之间, 如图 1中所示。
在可扭转的刚性薄条 19 的上端粘附了一个永磁体 22, 该刚性薄条 19 以直角弯曲, 这样当 伸出径向以外的弯曲臂 21绕旋转轴 (Z轴) 16旋转时, 永磁体 22就会进入在固定顶板 29 中切割的凹槽 30里。 在传感器垫板 10中切割的带孔 24, 刚性薄条 19就能从此孔穿过。 上 端的凸起环 25和下端的导管底板 26为刚性薄条 19的重量提供了机械支撑。 当浮子 15沿旋 转轴 16上下滑动时, 刚性薄条 19的下端就会绕旋转轴 16旋转, 但由于存在机械限制, 它 不能沿轴向上下移动。
浮子 15的竖直位置和角位移之间精确的力学关系可由导管 14、 刚性薄条 19和浮子 15之间 的物理边界来保持。 通过使用在浮子 15上的滑片 20, 在浮子 15和刚性薄条 19之间就形成 了一个可滑动的类似于钥匙槽形的槽口。 通过使用在导管 14上的导轨 17 以及浮子 15上的 凹槽 18, 在浮子 15和导管 14之间就产生了一个可滑动的凹槽导轨界面, 刚性薄条 19产生 扭转, 这样作为离底部的距离 Z的函数, 其面上的法线方向就能平稳地变化。 扭曲的刚性薄 条上端部分 19 ' 离底部的距离为 Zfull,为了满足特定应用的需求, 设计者可选择一个合理的 旋转角度 9 full。 在本图中, 相对于刚性薄条 19 的底端部分, 刚性薄条上端部分 19' 扭转了 360 °。 放有永磁体 22的弯曲臂 21指向垂直于刚性薄条上端部分 19' 的法线方向的角度, 可以得到永磁体 22 的旋转角度 (严格地来说, 永磁体 22和刚性薄条上端部分 19' 一起旋 转) 和液位 39 (以及浮子 15的 Z轴位置) 之间的一般线性关系。
将 作为描述旋转角度 102的变量, Zlevf:1作为描述液位 39 的竖直位置的变量; 描述旋 转角度 102处于满槽和空槽状态的变量 Θ Ful^P Θ Empty为常数; 描述液位 39处于满槽和空槽 状态的变量 9 Full和 Θ Empty为常数。 因此, Θ
Figure imgf000004_0001
Zkvf:1之间的线性关系可以写为:
©Level = θΕηιρΐν + (6Fl1n― θΕηιρ1>.) * (- xevel■ mpty) (ZFUII― Z-Em t ) (1) 对21(¾1求解:
ZLevel = Z Empty + (Z'FuU ― 1 ') * (0Le el― Θ Em y) ' ( ©Full ― ©Emptv) (2) 装置 B包含了 9个磁簧开关 41-49和 9个电阻 61-69, 它们安装在 PCB 35上。 开关 41-49排 放在一个圆形阵列里, 该阵列与旋转轴 16 同轴, 并且其半径能满足:仅当永磁铁 22在或者 接近一个给定开关的旋转角度时, 其产生的磁场足够大去触发开关。
电连接软线 33,34传送电信号给 PCB 35以及传送 PCB 35所发出的电信号。 传感器模块顶盖 36以及传感器模块底盖 37为 PCB 35提供防护和机械支撑。 装置 A里的手指形扣合柄 31给 装置 B里的槽口 32提供了永久的或者暂时的机械接触。
图 2为传感器垫板 10和固定顶板 29的俯视图。 手指形扣合柄 31相对于旋转轴 16以常规的 角间距排放, 它们都通过孔栓在传感器垫板 10上。 这些结构特征一起固定了开关 41-49 的 位置, 但不影响永磁体 22绕旋转轴 16的旋转。
图 3为 PCB 35及其部件的俯视图。 开关 41-49常开, 也就是说在 "低磁场"条件下, 它们 不导电, 但是在高强度磁场中, 它们闭合, 此时它们的电阻为 0。 当永磁体 22靠近一个特 定的开关时, 此开关闭合。
进行简单的电阻测量时, 接线端 50-51便是测量电路的外部电接点。 电阻 61-69在接线端 50 和 51之间串联。 每一个磁簧开关 41-49的一端与接线端 51电连接, 另一端与电阻 61-69中 的每两个电阻之间的接触点连接。 如果开关 41-49全部断开, 则接线端 50和 51之间所测电 阻为电阻 61-69 阻值的总和。 如果只有开关 49 闭合, 那么所测电阻为电阻 61-68 阻值之 和。 如果只有开关 48 闭合, 那么所测电阻为电阻 61-67 阻值之和。 这种计算逻辑适用于所 有开关位置点, 这样永磁体 22从 0度旋转到 360度时, 随着开关 41-49的逐一闭合, 接线 端 50-51之间的所测电阻以不连续的方式增大。
一般地, 它是一种带有磁性浮子和转动杆的用于容器液位测量的电子远程控制液位传感器系 统。 本发明使用了相同或者类似的刚性带旋转机制, 但是是一种改进的磁性传感系统。 接下 来的两幅图将会解释磁性探测几何体, 图中所示的是磁性角度传感器和永磁体的位置和方 向, 永磁体的旋转角度由角度传感器所探测。
图 4为磁场角度传感器芯片与永磁体的位置关系的立体示意图和剖面图。 永磁体 105绕着旋 转轴 16沿旋转方向 101旋转, 其旋转大小由旋转角度 102给出。 一个电磁阻传感器芯片位 于或者靠近旋转轴 16。 它的内部传感元件沿着 X轴 8和 Y轴 9设计有敏感轴。 磁场角度传 感器芯片 103要相对于探测坐标轴固定, 并且当永磁体 105旋转时, 不能移动。 磁场角度传 感器芯片 103 以一种标准的方式安装在 PCB 104上。 在磁场角度传感器芯片 103 和永磁体 105的上表面之间设计有一间隙 S 106。
在磁场角度传感器芯片 103里的每一个传感元件有 2根输出引线, 总共 4根输出引线。 X轴 传感器里每对输出引线之间的电压, 如图 5中的曲线 110所示; Y轴传感器里每对输出引线 之间的电压, 如图 5中的曲线 111所示。 这些曲线代表随着旋转角度 102的改变, 电压的变 化情况。
上面所描述的为在现有技术中通用的磁阻旋转传感器。 例如, 申请号为 201110130222.1 和 201110130202.4 的两个专利描述了一种在磁场角度传感器中有潜在应用的磁阻传感器元件的 设计。 这些专利文件在这里作为本申请的参考。
但是, 上述的现有技术存在一定的缺陷, 诸如磁性探测系统要比所探测的永磁体以及液位计 管的直径大很多, 它们需要很多磁传感器, 而这些基于机械运动的磁传感器容易发生机械故 障。
发明内容
本发明提供了一种不仅能减小尺寸、 降低成本, 也能改善性能的液位传感器系统。
本发明通过以下技术方案实现上述目标:
本发明提供了一种液位传感器系统, 其用于对容器内的液面进行远程监测, 所述的传感器系 统包括:
固定设置在容器开口处的第一固定部, 所述第一固定部的下方设置有插入容器内的导管, 所 述导管上开设有多个导流孔以使得所述导管内的液体液面与容器内的液面相持平; 以及 第一级响应元件, 其包括:
漂浮在所述导管内液体上的浮子, 其可随着导管内液体的变化而上下浮动;
转动杆, 所述转动杆与所述浮子相机械耦合, 在所述浮子上下浮动的过程中, 所述转动杆绕 与所述容器相对固定的旋转轴转动;
永磁体, 其设置于所述转动杆的上端部, 随所述转动杆一起转动;
第二固定部, 其固定设置在第一固定部上且位于第一固定部的上方;
第二级响应元件, 其包括固定设置于第二固定部上的 PCB、 沉积于 PCB 上且朝向永磁体的 磁电阻角度传感器芯片、 与所述磁电阻角度传感器芯片相电连的控制电路;
所述磁电阻角度传感器芯片根据所述永磁体的旋转角度对所述控制电路输出模拟电压信号, 所述控制电路根据模拟电压信号计算出当前容器内的液面高度。
优选地, 在导管内的液面自空至满的过程中, 所述转动杆旋转了 360度的 n倍, 其中 n为大 于或等于 1的整数, 所述液面的高度与所述转动杆的旋转角度呈线性比例关系。
优选地, 所述磁电阻角度传感器芯片是由 TMR传感元件构成。
优选地, 所述磁电阻角度传感器芯片包含了两个独立的传感器, 其中一个是 X轴传感器, 另一个是 Y轴传感器, 所述 X轴传感器的敏感轴为 X轴, 所述 Υ轴传感器的敏感轴为 Υ 轴, 其中 X轴与 Υ轴位于同一平面内, X轴与 Υ轴之间的夹角为 90° 。
进一步地, 在所述转动杆旋转过程中, 所述磁电阻角度传感器芯片上面的所述永磁体所产生 的杂散场在感应平面内的分量具有 360度对称性。
再进一步地, 所述感应平面与 ΧΥ 平面平行, 并与所述永磁体的上表面之间相隔有一定距 离。
优选地, 所述磁电阻角度传感器芯片输出的模拟电压信号是所述永磁体的旋转角度的单值函 数。
优选地, 所述模拟电压信号被转化为标准数字信号格式, 所述标准数字信号格式为脉冲宽度 调制。
进一步地, 所述脉冲宽度调制的输出值与所述永磁体的旋转角度成正比例线性关系。
优选地, 所述第一固定部与所述第二固定部之间可拆卸连接。
优选地, 所述第一固定部与所述容器之间设置有调节永磁体高度的调节结构。
优选地, 所述第一固定部上开设有一中心孔, 转动杆的上端自该中心孔中向上穿出, 且转动 杆悬设于第一固定部上, 所述第一固定部上还设置有一用于将容器与外界相隔离的密封壳 体, 所述第二固定部与所述密封壳体相对固定。
优选地, 所述控制电路包括磁角度传感器电路、 电源电路和信号处理电路。
优选地, 所述传感器系统包含有一无线传感器模块, 所述无线传感器模块通过无线通信线路 来实现无线通信, 所述无线传感器模块从电池中获得电能。
与现有技术相比, 本发明用一个简单的直杆状磁臂取代了复杂的弯曲杆状磁臂, 这种更加紧 凑的磁铁排布能使磁场有规律的变化, 在单个位置上用一个磁角度传感器就能探测磁场的角 度变化情况, 这个位置在或者靠近转动杆的旋转轴处。 本发明用一个单一的固态磁阻开关取 代了有 9个磁簧开关的这种大的圆形阵列。 本发明提供的液位传感器具有尺寸更小、 控制电 路更简单、 可靠性更高、 探测液位的分辨率更高, 采用了改进的电气通信方法等优点。 附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发明的示意性 实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中:
图 1为现有技术美国专利 5410913中的电子远程控制液位传感器系统的剖面图。
图 2为图 1中 Α部分的俯视图。
图 3为图 1中 B部分的俯视图。 图 4为磁场角度传感器与永磁体的位置关系的立体示意图和剖面图。
图 5为传感器的模拟电压信号与 X轴传感器、 Y轴传感器的旋转角度的关系曲线图。
图 6为本发明第一实施例的液位传感器系统的剖面图。
图 7为图 6中装置 1的俯视图。
图 8为图 6中装置 2的俯视图。
图 9为磁角度旋转传感器的电路框图。
图 10为脉冲宽度调制输出脉冲宽度调制输出信号的波形图。
图 11为 PWM波形的占空比与旋转角度比的关系曲线图。
图 12为本发明第二实施例的液位传感器系统的剖面图。
具体实施方式
实施例 1 :
图 6为一种电子远程控制液位传感器系统的剖面图。 如图 6所示, 一种液位传感器系统, 该 传感器系统包括第一固定部 1、 第一级响应元件、 第二固定部 2以及第二级响应元件。 这个 传感器系统通过一个孔放置在容器的顶端, 并且在容器腔的外面有电气连接点。 这种设计需 要容器脱离外界空气, 处于一个与外界不同温度和气压的环境当中, 这是由其特殊应用所决 定的。 图中显示了该系统的两个主要部分, 图下半部分为第一固定部 1和第一级响应元件, 上半部分为第二固定部 2和部分第二级响应元件。 这两个部分在正常情况下是机械连接在一 起的, 在这里将它们分开显示, 是为了便于观察和解释。
第一固定部 1固定设置在容器的开口处。 具体的, 在本实施例中, 第一固定部 1包括手指形 弹簧锁 131、 顶端法兰 132。 顶端法兰 132与容器壁 140之间设置有调节螺栓 128。 通过对 调节螺栓 128进行调节, 就能够对顶端法兰 132的位置进行上下调节, 以调节永磁体与磁电 阻角度传感器芯片之间的距离。 当然, 在本发明中第一固定部 1与容器之间的连接方式选用 粘接和焊接作为固定的方法也在本申请的保护范围之内。
第一固定部 1的下部设置有导管 14, 导管 14为液位传感装置上的竖直延长部分提供了一个 结构支撑。 在本实施例中导管 14 上开设有导流孔 27, 通过导流孔 27, 液体就能流进管腔 38, 这样导管 14里面的液位就与容器里的液位 39相同, 也可以在导管 14上开设有与图 1 中相同的导流孔 28, 此种情况未在图 6中显示。
第一级响应元件包括浮子 15、 转动杆 19、 永磁体 139。 本发明中的转动杆 19也即上文中提 到的可扭转的刚性薄条 19, 浮子 15可随着导管 14内液面高度变化而上下浮动。 转动杆 19 与浮子 15之间通过滑片 20来进行机械耦合连接, 在浮子 15上下浮动的过程中, 转动杆 19 的运动方式仅为绕一相对容器固定的旋转轴 16转动, 设置在转动杆 19上端部的永磁体 139 也跟随转动杆 19一起转动。 当液位 39从空槽到满槽的变化过程中, 转动杆 19旋转的角度 为 360度的 n倍, n为等于 1或者大于 1的整数。 液位 39所在位置即液面的高度与转动杆 19的旋转角度成正比例关系。 例如, 容器空槽时, 即液位 39为 0%, 转动杆 19的旋转角度 为 0度, 液位为 50%的时候, 转动杆 19的旋转角度为 180度, 容器满槽时, 即液位 39为 100%, 转动杆 19的旋转角度为 360度。
具体而言, 在本实施例中, 转动杆 19 的顶端固定有一个圆盘 137。 圆盘 137 的重量和其施 加的其他作用力、 转动杆 19 的顶端部分和其他所有附加的材料由支撑环 134支撑, 支撑环 134为支撑条 133上的尖角突出部分。 永磁体 139粘接在圆盘 137的顶端面上。 凹槽 135和 卡环 136机械限制了转动杆 19的上端部分向上移动。 当浮子 15沿轴向上下滑动时, 转动杆 19绕旋转轴 16旋转, 从而带动永磁体 139的旋转。 但是由于存在已描述的机械限制, 所以 转动杆 19不能沿轴向移动。 转动杆 19上端部分的法向方向和液位 39的竖直位置之间的关 系和图 1中的相同, 并且浮子 15、 导轨 17和凹槽 135的机械设计也与图 1中相同。 图 1中 现有技术的实施例提到的方程 1 所描述的 9 1^(1和 ZLCTf:1之间的线性关系也同样适用于本实 施例。
第二固定部 2位于第一固定部 1的上方, 且第二固定部 2与第一固定部 1相对固定连接。 在 本实施例中, 第一固定部 1形成有相对法兰 132向上延伸的手指形弹簧锁 131, 在第二固定 部 2上设置有与手指形弹簧锁 131相对应的槽口 126。 采用此种设计可实现将第二固定部 2 从第一固定部 1上移除。 第二固定部 2与第一固定部 1之间是固定永久粘接还是临时粘接, 这取决于实际需求。
在本实施例中, 第二固定部 2包括顶板 121 以及底板 122。 在顶板 121 里面设置有一槽口 126, 通过槽口 126, 顶板 121被手指形弹簧锁 131锁存。 通过在顶板 121、 PCB104以及底 板 122上设置对准孔 138来将它们固定在一起。 顶板 121的对准孔是螺纹状的, 图中没有显 示出螺钉。 如果它们是永久安装的话, 那么螺纹孔就应该是在装置的顶端法兰 132上, 并且 顶板 121 和底板 122上的对准孔应该是贯通孔。 第二固定部 2 也可通过使用一可移除的固 位夹来固定 PCB 104, 图中没有画出这种永久安装方法以及固位夹。
在底板 122上形成有多个向上延伸的凸起, 包括用于对磁电阻角度传感器芯片 103形成支撑 的传感器支撑 123、 用于对 PCB 104形成支撑的电路板底部支撑 124。 在顶板 121上形成有 多个向下延伸的凸起, 包括用于对 PCB 104形成支撑的电路板顶部支撑 125。 这三个支撑的 目的是为了阻止 PCB 104的旋转以及磁电阻角度传感器芯片 103相对于永磁体 139的任何振 动或者移动, 这样就能避免在磁电阻角度传感器芯片 103里产生错误的磁信号。 将这些部件连接在一起其他连接方法也在本发明的保护范围之内。 这些方法包括: 灌胶、 外 对口器、 铆钉、 注入熔融塑料以及其他所有公众已知的标准的电封装技术。 这些固定方法的 功能有: 1 ) 保持磁电阻角度传感器芯片 103在旋转轴 16上适当的位置, 以及在设计的间隙 S 106处; 2) 能够连接电源; 3 ) 能够数据通信连接; 4) 保护磁旋转传感器的环境。 这些部 件的材料、 灌封材料、 紧固件的选择需要满足两个条件: 磁兼容性以及可选的视觉清晰度 (如果有需要, 可以目测圆盘 137 的顶端以及 /或永磁体 139 上的特征、 线或者标记的旋 转, 将其作为一种辅助测量方法和校准技术)。
顶板 121可以是软磁钢之类的铁磁材料, 以便于在磁电阻角度传感器芯片 103和第二固定部 2外面的场源之间提供 "磁屏蔽"。
优选地, 还可以在顶板 121 的顶部附加一个磁屏蔽块 (图中未显示), 这种做法不会改变其 下方的磁电阻角度传感器芯片 103 的物理性能, 但是能够更好的在磁电阻角度传感器芯片 103和第二固定部 2外面的场源之间提供 "磁屏蔽"。 第二固定部 2、 顶端法兰 132上的所有 其他部件应该是非磁性的金属、 塑料、 木材、 玻璃、 陶瓷、 聚合物等。
如果需要通过视觉进行查看, 那么永磁体 139 上面的所有层都必须选择透明材料, 并且在 PCB 104的相应位置处开设有一个穿孔以形成视觉通路 (图中未显示)。
第二级响应元件包括固定设置于第二固定部上的印刷电路板 PCB 104、 沉积于印刷 PCB 104 上且朝向永磁体 139的磁电阻角度传感器芯片 103。 优选地, 磁电阻角度传感器芯片 103由 TMR传感元件构成, 其根据永磁体 139 的旋转角度对控制电路输出模拟电压信号, 控制电 路根据模拟电压信号计算出当前容器内的液面高度。
图 7为除去第二固定部 2以及第二级响应元件的俯视图。 它显示了转动杆 19上端部分的旋 转角度 102所在位置以及永磁体 139, 永磁体 139关于旋转轴 16有一个角度旋转方向 101。 磁电阻角度传感器芯片 103不旋转。 通过顶端法兰的安装孔 142, 用螺栓 128来将顶端法兰 132固定到容器壁 140上。
图 8为第二固定部 2以及第二级响应元件中一些部件的俯视图。 图中显示出了底板 122的圆 形轮廓, 顶板 121在图中没有显示, 只显示了与手指形弹簧锁 131对齐的槽口 126。 矩形轮 廓为印刷电路板 PCB 104 的正面, 其关键特征包括对准孔 138 和磁电阻角度传感器芯片 103。 左端为 PCB 104 的电连接端, 它们包括电源接线端 151,信号接线端 152 以及接地端 153, 可以在这些接线端焊接柔韧导线, 一个标准的卡边连接器能在这端滑动, 或者一个弹 簧夹连接器能夹在 PCB 104的这端。 凸起的电路板底部支撑 124为 PCB 104提供了机械支 撑, 磁电阻角度传感器芯片 103由凸起的传感器支撑 123支撑。
实施例 2
在第一实施例中, 如图 6所示, 第一固定部 1的顶端法兰 132上并没有开孔, 除非用于螺栓 连接容器壁 140。 而在本实施例中, 法兰 220上开设有一中心孔, 转动杆 19上面的狭窄部 分自该中心孔中穿出, 且转动杆 19悬设于法兰 220上, 如图 12所示。 在法兰 220上设置有 一用于将容器与外界隔离的密封壳体 221, 第二固定部 4与密封壳体 221相固定连接。 具体 的说, 密封壳体 221上设置有一手指形扣合柄 222, 第二固定部 4上设置有与手指形扣合柄 222相对应的槽口。 支撑环 134移到法兰 220 的顶端, 其支撑圆盘 137 的重量和其他作用 力。 凹槽 135和卡环 136和图 6中相同。 图中未显示部分也与图 6中相同。
实施例 3
液位传感器信号能用于更高层次的系统, 必须具备与更高层次系统沟通的方法。 它还可能降 低磁角度传感器的原模拟信号, 提供可用于数字电子技术的信号。 传感器系统和更高层次的 系统之间的交流可通过一组电线, 一个数据总线 (I2C, RS232, IEEE 488,以太网, USB等类 似的) 或者无线网 (WIFI,蓝牙, 物联网等) 来实现, 选择哪种方式由用户选择的通信协议 来决定。 此外, 这种通讯也可通过 LED 显示器这样的可视信号来实现, 这个信号能被跟容 器在同一空间的人读出。 毫无疑问, 使用这些通讯方法的组合以及类似的其他方法的液位传 感器也在本发明的保护范围之内。
图 9为本发明中磁性远程控制液位传感器的高层次电路的电路框图。 该控制电路主要有三个 电路模块, 每一个电路模块都有一个或者更多子电路。 这三个主要电路模块为磁角度传感器 电路 161、 电源电路 162和信号处理电路 163。 这里必须说明将电路划分成子电路的这种特 殊选择并不是唯一的, 也不受本发明的保护限制, 它只是为了更容易解释本发明以及本发明 中的许多部件。
磁角度传感器电路 161与磁电阻角度传感器芯片 103相电连, 该芯片包含了 X轴磁阻传感 器 171和 Y轴磁阻传感器 172, X轴磁阻传感器 171的敏感轴为 X轴, Y轴磁阻传感器的 敏感轴为 Y轴, 其中 X轴与 Y轴位于同一平面内, 它们之间夹角为 90度。 这两传感器的 感应平面与 XY平面平行, 此感应平面与永磁体 139的上表面之间相隔有一定距离, 如图 4 中的间隙 S 106所示。 这两传感器的输出如图 5中的曲线 110和 111所示。 磁角度传感器电 路 161有两个子电路: 一条为 X轴磁阻传感器 171提供和 Y轴磁阻传感器 172与 Vcc 164 或者 VRef170相连接, 另一条为 X轴磁阻传感器 171和 Y轴磁阻传感器 172与接地端 166相 连接。 电源电路 162能从电池中吸收电能, 并以一种有效、 平稳的方式将电能分配给电路的其他部 分。 该电路有两个子电路: 电源 168和功率调节电路 169。 功率调节电路的输出为 VRrf 164, VRef要比输入电压 Vcc低。 如果使用一些过滤器, 也能降低噪声。 由于整个电路的不同部分 需要不同的电源电压, 所以有时候要有几个不同的功率调节子电路来为子电路供应合适的电 压。
信号处理电路 163有许多的功能。 简而言之, 就是通讯协议 177定义了从传感器系统接收信 息的方法, 信号处理电路 163必须从磁角度传感器电路 161接收原电压信号, 并将此信号转 化为一种可接受的形式。 第一个子电路是模拟前置放大电路 173, 这个电路根据设计值将信 号值放大, 并且用滤波器帮助去除没有用的信号。 第二个子电路是模拟数字转换电路 174, 这个电路接收模拟前置放大电路 173 输出的放大的模拟信号 (单位用伏特或者安培表示), 并将这些信号转化为数字信号 (单位用比特表示)。 第三个子电路是输出格式化电路 175, 含有数字电路和算法, 主要是将模拟数字转换电路 174产生的数字信号转化为可被通讯协议 177 接受的值和格式。 下一个子电路是微控制器电路 176, 主要是通过输入 /输出电路 178 (也叫作数字接口电路) 与通讯协议 177进行通讯, 并存储和检索数据电路 179和系统控制 电路 180里的数据, 系统控制电路 180是用于给系统里的其他子电路发送信号。 微控制器电 路 176的输出信号为 νουτΡυτ 165。
实施例 4
一个从所测得的 X轴传感器和 Υ轴传感器的模拟信号得到液位 ZLevel的简单的电路方法如 下。 再利用方程 (2) 有:
^ L el Z Empty十 (ZFllii - ZEmptv) * (eLevei - θΕπΐρ(ν) . (θρυΐι - θΕι1ιρ1ν) (2) 从图 5中, 我们能看到曲线 110和 110分别为对称性曲线 sin(8LCTei)和 coS(eLevd), 也可以看 出 X轴传感器和 γ轴传感器所输出的模拟电压信号是旋转角度 eLevel的单值函数。 因此, 我 们能监控磁电阻角度传感器芯片 103的这两组模拟电压输出, 通过检查或者自动查找表将那 些输出值转化为一个适用于 的值。
由于 X轴传感器和 Y轴传感器是根据永磁体 139的旋转角度来输出相应的模拟电压信号, 所以它们输出的信号反应了永磁体 139所产生的磁场情况。 从图 5中的曲线 110和 111可以 看出, 永磁体所产生的杂散场在感应平面内的分量具有 360 度对称性, 即在永磁体旋转的 360度范围内, 杂散场的总幅度值不变, 方向不同。
实施例 5
在本发明的一个实施例中, 输出信号格式化为一个脉冲宽度调制格式, 这种格式只使用了三 个电连接端: 电源 VCC 164, 信号输出 165 以及接地 GND166。 这些接线端分别与 PCB 104 上的连接焊盘 151、 152和 153连接。
本实施例描述了一个有数字处理输出的液位检测系统。 这里, 将曲线 110和 111显示的两个 线性模拟电压信号转化为一个单一的数字波形, 这个波形为图 10中的波形 30。 这个曲线代 表着电压与时间信号之间的关系, 时间为水平轴, 波形 30是一个有固定周期 21TCYDF:的循环 函数。 波形 30 的电压值不是为 VL。W 24, 就是为 VHIGH 25。 波形 30 的每一个周期在电压 VHigh 25处的时间为 THIGH 22, 在电压 VL。W24处的时间为 TL。W 23。 在图 10 中, 所显示的 THIGH和 TL。w分别为 700微秒和 300微秒, TCYDF:21为 1000微秒。 THIGH 22与 TCYDF:21的数学 比例称为 "输出占空比", 以百分比 (%) 表示。 在所显示的波形 30里, 输出占空比为 (700 1 1000) = 70%。
如图 11 图所示, 用一个自定义设计电路和程序将曲线 110和 111上的两个正余弦波形输入 转化为曲线 29, 这个图是输出占空比 (%)与旋转角度比 (%) 之间的关系图, 由于 9 LCTel和 !^^之间的这种线性关系, 曲线 29所示的便等同于输出占空比 (%)与液位比 (%)之间的关系 图, 图 10和图 11 所示的便为脉冲宽度调制 (PWM)。 在技术中, 它是一种熟知的输出样 式。 许多数字算法可将输出占空比解码成任何需要的变量。 因此, PWM 是一种将任意振幅 和形状的无规则模拟信号改变为有标准特性的规则的数字波形的方法。
包含有磁电阻角度传感器芯片 103和相关电源以及控制电子装置的控制电路, 该控制电路以 技术中熟知的方法建立于 PCB 104上, PCB 104的俯视图以及旋转轴 16、 转动杆 19上端部 分的叠加图, 如图 7和图 8所示。 外接电源和信号连接是在 PCB 104左端的连接焊盘 151、 152、 153 上, 这三个焊盘分别是脉冲宽度调制 (PWM ) 的电源端、 输出端以及接地端的连 接点。 转动杆 19 的上端部分从 0° 位置旋转到 324 ° 位置, 连接焊盘 152和 153 之间的 PWM 电压输出如图 11 的曲线 29 所示。 在本发明的这个实施例当中, 旋转角度不能超过 360度。
实施例 6
如图 12所示, 传感器模块 231没有显示出线连接, 它从电池 232中获得电能, 并利用无线 电通信线路 233通过通讯协议 177来进行通讯。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人员来 说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何修改、 等同 替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

1. 一种液位传感器系统, 其用于对容器内的液面进行远程监测, 其特征在于, 所述的传感 器系统包括:
固定设置在容器开口处的第一固定部, 所述第一固定部的下方设置有插入容器内的导管, 所 述导管上开设有多个导流孔以使得所述导管内的液体液面与容器内的液面相持平; 以及 第一级响应元件, 其包括
漂浮在所述导管内液体上的浮子, 其可随着导管内液体的变化而上下浮动;
转动杆, 所述转动杆与所述浮子相机械耦合, 在所述浮子上下浮动的过程中, 所述转动杆绕 与所述容器相对固定的旋转轴转动;
永磁体, 其设置于所述转动杆的上端部, 随所述转动杆一起转动;
第二固定部, 其固定设置在第一固定部上且位于第一固定部的上方;
第二级响应元件, 其包括固定设置于第二固定部上的 PCB、 沉积于 PCB 上且朝向永磁体的 磁电阻角度传感器芯片、 与所述磁电阻角度传感器芯片相电连的控制电路;
所述磁电阻角度传感器芯片根据所述永磁体的旋转角度对所述控制电路输出模拟电压信号, 所述控制电路根据模拟电压信号计算出当前容器内的液面高度。
2. 根据权利要求 1 所述的传感器系统, 其特征在于: 在导管内的液面自空至满的过程中, 所述转动杆旋转了 360度的 n倍, 其中 n为大于或等于 1的整数, 所述液面的高度与所述转 动杆的旋转角度呈线性比例关系。
3. 根据权利要求 1所述的传感器系统, 其特征在于: 所述磁电阻角度传感器芯片是由 TMR 传感元件构成。
4. 根据权利要求 1 所述的传感器系统, 其特征在于: 所述磁电阻角度传感器芯片包含了两 个独立的传感器, 其中一个是 X轴传感器, 另一个是 Y轴传感器, 所述 X轴传感器的敏感 轴为 X轴, 所述 Y轴传感器的敏感轴为 Y轴, 其中 X轴与 Y轴位于同一平面内, X轴与 Y 轴之间的夹角为 90° 。
5. 根据权利要求 4 所述的传感器系统, 其特征在于: 在所述转动杆旋转过程中, 所述磁电 阻角度传感器芯片上面的所述永磁体所产生的杂散场在感应平面内的分量具有 360 度对称 性。
6. 根据权利要求 5 所述的传感器系统, 其特征在于: 所述感应平面与 XY平面平行, 并与 所述永磁体的上表面之间相隔有一定距离。
7. 根据权利要求 1 所述的传感器系统, 其特征在于: 所述磁电阻角度传感器芯片输出的模 拟电压信号是所述永磁体的旋转角度的单值函数。
8. 根据权利要求 1 所述的传感器系统, 其特征在于: 所述模拟电压信号被转化为标准数字 信号格式, 所述标准数字信号格式为脉冲宽度调制。
9. 根据权利要求 8 所述的传感器系统, 其特征在于: 所述脉冲宽度调制的输出值与所述永 磁体的旋转角度成正比例线性关系。
10. 根据权利要求 1 所述的传感器系统, 其特征在于: 所述第一固定部与所述第二固定部之 间可拆卸连接。
11. 根据权利要求 1 所述的传感器系统, 其特征在于: 所述第一固定部与所述容器之间设置 有调节永磁体高度的调节结构。
12. 根据权利要求 1 所述的传感器系统, 其特征在于: 所述第一固定部上开设有一中心孔, 转动杆的上端自该中心孔中向上穿出, 且转动杆悬设于第一固定部上, 所述第一固定部上还 设置有一用于将容器与外界相隔离的密封壳体, 所述第二固定部与所述密封壳体相对固定。
13. 根据权利要求 1 所述的传感器系统, 其特征在于: 所述控制电路包括磁角度传感器电 路、 电源电路和信号处理电路。
14. 根据权利要求 1 所述的传感器系统, 其特征在于: 所述传感器系统包含有一无线传感器 模块, 所述无线传感器模块通过无线通信线路来实现无线通信, 所述无线传感器模块从电池 中获得电能。
PCT/CN2014/078997 2013-05-31 2014-05-30 液位传感器系统 WO2014190943A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016515646A JP6420825B2 (ja) 2013-05-31 2014-05-30 液面センサシステム
EP14804604.8A EP3006906B1 (en) 2013-05-31 2014-05-30 Liquid level sensor system
US14/894,271 US9964427B2 (en) 2013-05-31 2014-05-30 Liquid level sensor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013102133516A CN103278216A (zh) 2013-05-31 2013-05-31 液位传感器系统
CN201310213351.6 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014190943A1 true WO2014190943A1 (zh) 2014-12-04

Family

ID=49060802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078997 WO2014190943A1 (zh) 2013-05-31 2014-05-30 液位传感器系统

Country Status (5)

Country Link
US (1) US9964427B2 (zh)
EP (1) EP3006906B1 (zh)
JP (1) JP6420825B2 (zh)
CN (1) CN103278216A (zh)
WO (1) WO2014190943A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9964427B2 (en) 2013-05-31 2018-05-08 MultiDimension Technology Co., Ltd. Liquid level sensor system
CN109060075A (zh) * 2018-09-27 2018-12-21 中数通信息有限公司 一种城市内涝用水位监测仪
JP2020197542A (ja) * 2015-02-18 2020-12-10 ティーアイ グループ オートモーティブ システムズ,リミティド ライアビリティ カンパニー レベルセンダ
EP4019913A4 (en) * 2019-08-23 2023-08-30 MultiDimension Technology Co., Ltd. MAGNETIC LEVEL GAUGE

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6372180B2 (ja) * 2013-07-16 2018-08-15 株式会社デンソー 液面検出装置
CN203657892U (zh) * 2013-11-28 2014-06-18 江苏多维科技有限公司 一种非接触式滑轮液位传感器
CN105486380A (zh) * 2014-10-07 2016-04-13 厦门悦兴信息科技有限公司 外贴式液位传感器装置
WO2017027408A1 (en) * 2015-08-07 2017-02-16 Rayotek Scientific, Inc. Ring clamp level sensor and method of use
KR102261619B1 (ko) 2015-11-30 2021-06-07 본스인코오포레이티드 플로트를 통한 유체 레벨 검출
CN109470335A (zh) * 2019-01-16 2019-03-15 浙江湖州新京昌电子有限公司 一种新型接地式密封液位传感器
CN109443495A (zh) * 2019-01-16 2019-03-08 浙江湖州新京昌电子有限公司 一种磁阻式密封非接触液位传感器
EP3942260A1 (de) * 2019-03-20 2022-01-26 Vitesco Technologies GmbH Winkelerfassungseinrichtung
CN111982235B (zh) * 2019-05-21 2023-03-17 上海汽车集团股份有限公司 一种油液检测的方法和装置
USD951973S1 (en) 2020-01-21 2022-05-17 Marshall Excelsior Co. Display screen with animated images
USD972426S1 (en) 2020-01-21 2022-12-13 Marshall Excelsior Co. Gauge
TWI770520B (zh) * 2020-05-28 2022-07-11 國立虎尾科技大學 水平監控與調整系統
CN113820353B (zh) * 2021-08-02 2023-11-07 北京锐达仪表有限公司 介质分层界面测量装置及热交换场界面测量装置
CN114280980B (zh) * 2021-11-30 2024-03-12 宁波普瑞均胜汽车电子有限公司 一种汽车香薰块气味种类的识别方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3709038A (en) * 1971-03-01 1973-01-09 G Werner Liquid level indicator
US5410913A (en) 1993-12-15 1995-05-02 Thomas G. Faria Corporation Remote indicating liquid level sensor
WO2008120222A1 (en) * 2007-04-03 2008-10-09 Pricol Limited A fluid level sensor
CN101509803A (zh) * 2009-03-20 2009-08-19 联合汽车电子有限公司 液位传感器
CN102297652A (zh) * 2011-03-03 2011-12-28 江苏多维科技有限公司 一种独立封装的磁电阻角度传感器
CN103278216A (zh) * 2013-05-31 2013-09-04 江苏多维科技有限公司 液位传感器系统
CN203337221U (zh) * 2013-05-31 2013-12-11 江苏多维科技有限公司 液位传感器系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674328B1 (fr) * 1991-03-19 1994-12-09 Jaeger Dispositif perfectionne pour la mesure de niveau de carburant dans un reservoir de vehicule automobile.
JP3390827B2 (ja) 1998-04-01 2003-03-31 矢崎総業株式会社 液面レベル計測装置
US6326781B1 (en) * 1999-01-11 2001-12-04 Bvr Aero Precision Corp 360 degree shaft angle sensing and remote indicating system using a two-axis magnetoresistive microcircuit
WO2002033364A1 (en) 2000-10-16 2002-04-25 Isa - Instrumentação E Sistemas De Automação, Lda Gauge comprising a magneto-resistive sensor, for liquid level remote measuring system on reservoirs
US20040079152A1 (en) * 2001-02-01 2004-04-29 Fluent Systems, Llc Remote fluid level detection system
JP2003177051A (ja) 2001-12-11 2003-06-27 Denso Corp 液面検出装置
JP2005017265A (ja) * 2003-01-31 2005-01-20 Showa Kiki Kogyo Co Ltd 遠隔式タンク液量測定装置
JP4229050B2 (ja) * 2004-11-24 2009-02-25 株式会社デンソー 車両用液面検出装置
US7230419B2 (en) * 2005-06-03 2007-06-12 Delphi Technologies, Inc. Rotary position sensor
ITMI20060716A1 (it) * 2006-04-11 2007-10-12 Abb Service Srl Dispositivo per la taratura di un trasmettitore di campo
DE102008061924A1 (de) * 2008-12-15 2010-07-01 Continental Automotive Gmbh Sensoranordnung, Tachographenanordnung und Verfahren zur Erkennung einer Manipulation
US20110000297A1 (en) * 2009-07-06 2011-01-06 Ti Group Automotive Systems, L.L.C. Fluid tank and fluid level sender with external signaling feature
JP5187538B2 (ja) * 2010-12-14 2013-04-24 Tdk株式会社 磁気センサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3709038A (en) * 1971-03-01 1973-01-09 G Werner Liquid level indicator
US5410913A (en) 1993-12-15 1995-05-02 Thomas G. Faria Corporation Remote indicating liquid level sensor
WO2008120222A1 (en) * 2007-04-03 2008-10-09 Pricol Limited A fluid level sensor
CN101509803A (zh) * 2009-03-20 2009-08-19 联合汽车电子有限公司 液位传感器
CN102297652A (zh) * 2011-03-03 2011-12-28 江苏多维科技有限公司 一种独立封装的磁电阻角度传感器
CN103278216A (zh) * 2013-05-31 2013-09-04 江苏多维科技有限公司 液位传感器系统
CN203337221U (zh) * 2013-05-31 2013-12-11 江苏多维科技有限公司 液位传感器系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3006906A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9964427B2 (en) 2013-05-31 2018-05-08 MultiDimension Technology Co., Ltd. Liquid level sensor system
JP2020197542A (ja) * 2015-02-18 2020-12-10 ティーアイ グループ オートモーティブ システムズ,リミティド ライアビリティ カンパニー レベルセンダ
CN109060075A (zh) * 2018-09-27 2018-12-21 中数通信息有限公司 一种城市内涝用水位监测仪
CN109060075B (zh) * 2018-09-27 2023-11-21 中数通信息有限公司 一种城市内涝用水位监测仪
EP4019913A4 (en) * 2019-08-23 2023-08-30 MultiDimension Technology Co., Ltd. MAGNETIC LEVEL GAUGE

Also Published As

Publication number Publication date
CN103278216A (zh) 2013-09-04
EP3006906A4 (en) 2017-01-18
EP3006906A1 (en) 2016-04-13
JP6420825B2 (ja) 2018-11-07
JP2016522410A (ja) 2016-07-28
US9964427B2 (en) 2018-05-08
US20160123789A1 (en) 2016-05-05
EP3006906B1 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
WO2014190943A1 (zh) 液位传感器系统
CN106249021B (zh) 具有磁场传感器的电流传感器芯片
US9182457B2 (en) Isolated voltage transducer
US8442787B2 (en) Apparatus, sensor circuit, and method for operating an apparatus or a sensor circuit
US9846058B2 (en) Non-contact potentiometer
CN101629924B (zh) 用于电磁式溶液电导率测量的输入电路
CN105866713B (zh) 状态反馈式自激励磁通门传感器
RU2008151180A (ru) Устройство неразрушающего контроля детали путем анализа магнитного поля утечки
US7994772B2 (en) Remote transmitter for analogue gauges
CN102169133A (zh) 一种电流测量装置
CN101871801B (zh) 采用tmr磁性传感器的智能流量计
CN110160608A (zh) 一种信号波形显示的磁致伸缩液位计
CN203337221U (zh) 液位传感器系统
CN202033405U (zh) 一种电流测量装置
US10690519B2 (en) Meter reading sensor using TMR and hall effect sensors
CN108139242A (zh) 隔膜位移流量计
CN203249935U (zh) 一种压阻式三向加速度传感器
George et al. Detailed study on error characteristics of core-less hall-effect current transducer
CN103076578B (zh) 各向异性磁阻结构磁场强度检测装置
CN103134556B (zh) 涡轮流量计预缩放接线板电子元件
CN207816449U (zh) 一种电子秤作弊检测系统
GB2424956A (en) Device for the measurement of a volume flow with inductive coupling
CN201449446U (zh) 霍尔集成电路磁灵敏度精密测量装置
CN106404123A (zh) 汽车用液位传感器
CN105651347A (zh) 一种智能电磁流量计系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804604

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14894271

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016515646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014804604

Country of ref document: EP