WO2014190665A1 - 一种将多肽稳定为alpha螺旋二级结构的方法 - Google Patents

一种将多肽稳定为alpha螺旋二级结构的方法 Download PDF

Info

Publication number
WO2014190665A1
WO2014190665A1 PCT/CN2013/086071 CN2013086071W WO2014190665A1 WO 2014190665 A1 WO2014190665 A1 WO 2014190665A1 CN 2013086071 W CN2013086071 W CN 2013086071W WO 2014190665 A1 WO2014190665 A1 WO 2014190665A1
Authority
WO
WIPO (PCT)
Prior art keywords
side chain
polypeptide
polypeptide compound
sulfoxide
amino acid
Prior art date
Application number
PCT/CN2013/086071
Other languages
English (en)
French (fr)
Inventor
李子刚
张庆舟
Original Assignee
北京大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学深圳研究生院 filed Critical 北京大学深圳研究生院
Publication of WO2014190665A1 publication Critical patent/WO2014190665A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
    • C07K1/1075General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of amino acids or peptide residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups

Definitions

  • the invention belongs to the technical field of polypeptide structure stabilization. More specifically, the present invention relates to a method for stabilizing a polypeptide alpha helix by constructing a side chain and a polypeptide compound having a side chain modification constructed by the method. Background technique
  • the alpha-helix conformation as one of the most important secondary conformations of proteins, plays a crucial role in the physiological processes of cells. For example, many protein-protein interaction regions are mostly alpha-helical conformations.
  • the ability of the polypeptide to have a stable alpha-helical conformation greatly enhances the peptide's ability to resist protein degradation and membrane penetration.
  • the researchers developed a variety of peptide conformational stabilization techniques, such as salt bridges, metal chelation, HBS, construction of covalent side chains, and the like.
  • the construction of covalent side chains is one of the more common methods, and the earliest occurrence is the formation of amide bonds as a side chain construction method. Thereafter, disulfide bonds, formation of carbon-carbon double bonds, and the like are used to construct side chains to stabilize the alpha conformation of the polypeptide.
  • the coupled side chain is generally on the same side of the alpha helix, so the position of the side chain coupled amino acid is generally i/i+3, i/i+4, i/i+ 7, i/i+ll and so on. Among them, i/i+4 and i/i+7 are more widely used.
  • each of the stabilization methods has certain limitations.
  • the amide bond stabilization technique since the amide bond itself is easily hydrolyzed, it may be easily hydrolyzed in the body to function; the two cysteines are sideways.
  • the side chain structure in the chain-forming stabilization technique often contains an aromatic group, which has a great influence on the properties of the polypeptide itself; the triazole formed by the side chain of the azide and alkyne reaction itself is a pharmacophore group, The effect on the drug composition of the polypeptide may be greater.
  • Another object of the present invention is to provide a polypeptide compound having a side chain modification having a stable alpha helix structure and a process for the preparation thereof. Further, the present invention provides a method of stabilizing a polypeptide into an alpha helix secondary structure comprising the steps of:
  • step (1) The product of the step (1) is subjected to a mercapto-ene reaction to obtain a thioether side chain modified polypeptide compound; the position of the thioether side chain coupled amino acid is i/i+4 ;
  • step (3) The product of the step (3) is isolated and purified to obtain a R-type sulfoxide side chain modified polypeptide compound.
  • the unnatural amino acid in the step (1) has the following structural formula: ( 1 ),
  • R 6 is hydrogen or methylene, and n is a positive integer of 1 to 6.
  • the mercapto-ene reaction in the step (2) is a photopolymerization of the product of the step (1) with a cysteine or a cysteine derivative, followed by an amide bond.
  • a synthetic thioether side chain modified polypeptide compound is formed.
  • polypeptide compound having a side chain modification having the following structure
  • ! ⁇ and R 5 are each independently hydrogen or methyl
  • R 2 to R 4 are each independently an amino acid residue
  • n is a positive integer of 1-6
  • the configuration of the sulfoxide is R.
  • the polypeptide is no more than 20 amino acids in length.
  • n 3 or 4.
  • the invention also provides a preparation method of the above polypeptide compound, which comprises the following steps:
  • R 6 is hydrogen or methylene, and n is a positive integer from 1 to 6;
  • step (ii) subjecting the product of step (i) to a mercapto-olefin reaction to obtain a thioether side chain modified polypeptide compound having a position of i/i+4 ;
  • step (iv) The product of step (iii) is isolated and purified to obtain a R-type sulfoxide side chain modified polypeptide compound.
  • the mercapto-ene reaction in the step ( ⁇ ) is a photopolymerization of the product of step (i) with a cysteine or a cysteine derivative, followed by formation of an amide bond.
  • a thioether side chain modified polypeptide compound is synthesized.
  • reaction formulas of the steps ( ⁇ ) and (iii) are as follows:
  • Figure 2 is a CD plot of Ac-cyclo(l,5)-monoS 5 AAAC-NH 2 sulfoxide B in PBS and 50% TFE solution.
  • Figure 3 shows Ac-cyclo(l,5)-monoS 5 AAAC-NH 2 sulfoxide B (ASOB) ,
  • Figure 5 is an HPLC chromatogram of purified Ac-cyclo(l,5)-monoS 5 AAAC-NH 2 .
  • Figure 6 is an LC-MS chromatogram of the polypeptide Ac-cyclo(l,5)-monoS 5 AAAC-NH 2 .
  • Figure 7 is an LC-MS chromatogram of the polypeptide Ac-cyclo(l,5)-monoS 5 AAAC-NH 2 sulfoxide A.
  • Figure 8 is an LC-MS chromatogram of the polypeptide Ac-cyclo(l,5)-monoS 5 AAAC-NH 2 sulfoxide B.
  • Figure 9 is an LC-MS chromatogram of the polypeptide Ac-cyclo(l,5)-monoS 6 AAAC-NH 2 sulfoxide A.
  • Figure 10 is an LC-MS chromatogram of the polypeptide Ac-cyclo(l,5)-monoS 6 AAAC-NH 2 sulfoxide B.
  • Figure 11 is an HPLC chromatogram of the polypeptide Ac-cyclo(l,5)-monoS 5 AAAC-NH 2 sulfoxide A and B. Concrete real
  • polypeptide molecules have large contact areas and low toxicity that are not possessed by small molecule drugs, but polypeptides often do not have secondary or tertiary structure of proteins.
  • short peptides of less than twenty amino acids in a physiological environment often do not have a stable conformation. Therefore, how to make a polypeptide with less than 20 amino acids in a stable conformation in the aqueous phase has been a hot spot in the study of peptide chemistry.
  • the alpha helix is one of the most important secondary structures in proteins and plays an important role in many important physiological processes, such as signal transduction, protein-protein interactions, etc., so if the peptide can have a stable alpha helix structure, Make these processes easier to regulate. Stabilizing the alpha helix of the polypeptide by constructing a covalently bonded side chain is one of the most widely used strategies.
  • the inventors used the pentapeptide as a model to significantly improve the stability of the polypeptide alpha helix by constructing a new side chain, and this side chain has a high sequence tolerance.
  • This new peptide stabilization method will have a good application prospect.
  • the inventors constructed a thioether side chain-stabilized polypeptide compound using a thiolene reaction, and further oxidized the thioether to a chiral sulfoxide. This chiral sulfoxide side chain was then demonstrated by CD to have a good effect on the alpha helix secondary structure of the stable polypeptide and to be well tolerated by the polypeptide sequence.
  • the position of the side chain in the polypeptide compound has the following structural formula:
  • ⁇ and R 5 are each independently hydrogen or methyl
  • R 2 to R 4 are each independently a residue of twenty natural amino acids
  • n is a positive integer of from 1 to 6, more preferably, n is 3 or 4.
  • the configuration of sulfoxide is R.
  • Compound 1 is obtained by linking the amino terminus of the polypeptide to an unnatural amino acid and acetylating the tail.
  • the natural amino acid is completed by a solid phase peptide protected by Fmoc (fluorenylmethoxycarbonyl), and the structural formula of the unnatural amino acid (abbreviated as m 0n0 S n+2 ) is as follows:
  • the unnatural amino acid can be obtained by solid-phase peptide attached to the resin, wherein R 6 may be hydrogen or a methylene group.
  • Compound 2 is obtained by reacting Compound 1 with Cys-amide and its derivatives.
  • the reaction conditions were set as follows: 0.5 mmol of compound 1 was added, 1.5 mmol of photoinitiator DMPA, 1.5-2.5 mmol of Cys-amide derivative was added, then 10 ml of DMF was added as a solvent, and degassed under 365 nm ultraviolet light for 3 h, and the reaction was filtered off.
  • Compound 2 can be obtained by washing with a liquid.
  • the compound 2 obtained in the previous step was added to 10 ml of a trifluoroacetic acid (TFA) / triisopropylsilyl (TIS) / water (H 2 0) (9.5: 0.25: 0.25 vol / volume) shear solution for 3 h.
  • the shear solution was blown dry with nitrogen, and precipitated with 10 ml of diethyl ether/n-hexane (4:1); the precipitate was drained and dissolved in 200 ml of hydrazine, ⁇ '-dimethylformamide (DMF), degassed, and placed under ice bath.
  • TFA trifluoroacetic acid
  • TIS triisopropylsilyl
  • Compound 3 was dissolved in 4 ml of water and added with 1 ml of 30% hydrogen peroxide for 3 h. Purification by HPLC to compound 4, sulfoxide Side chain modified polypeptide compounds. Compound 4 contains two isomers, wherein the peak before is referred to as compound 4A, and the peak is compound 4B.
  • Compound 4B has a good alpha helix and can have a higher helix content in the same sequence compared to conventional amide bond stabilization methods.
  • this chiral sulfoxide side chain has a good effect on the alpha helix secondary structure of the stable polypeptide and is well tolerated to the polypeptide sequence.
  • the present invention provides a method for stabilizing a polypeptide alpha helix by constructing a novel side chain, and the method can control the alpha helix content by adjusting the chain length within a certain range.
  • This method produces a better alpha helix stabilization by contrast to the amide bond-stabilized alpha helix.
  • Its side chain is simple, the spiral content is high, the sequence tolerance is good, and the spiral content is adjustable within a certain range by the chain length adjustment, which is not available in other stable methods in the field.
  • Unnatural amino acid monoS 5 deprotection, add Fmoc-monoS 5 -OH (0.4M in NMP) solution, HCUT (0.38M in NMP), DIEA mixed with 5.0ml/5.0ml/0.71ml into the resin Nitrogen gas was bubbled for 120 min, and the reaction solution was filtered off to carry out the next reaction.
  • Shearing IJ Take 30mg of resin in a 1.5ml eppendof tube, add 0.5ml TFA/TIPS/H 2 0 (volume ratio 9.5: 0.25 0.25), shake the reaction for 0.5h; Precipitate: remove the resin by filtration, blow the shear solution with nitrogen Dry, then add cold 1ml ether / A mixture of hexamidine (4:1); the supernatant was removed by centrifugation, and the solid precipitate was drained.
  • the specific operation is: weigh l.Og Ac-monoS 5 AAA-CTC resin in a 25ml flask, then add 780mg Cys-amide, 380mg DMPA, 50ml DMF; remove the oxygen in the solvent three times with nitrogen; The flask was placed in a high-pressure mercury lamp at 20 cm and stirred for 3 hours; the reaction resin was transferred to a peptide tube, and the reaction solution was filtered off, and washed with DMF (10 ml), DCM (10 ml), MeOH (10 ml), and dried.
  • -monoS 5 (Cys-NH 2 ) AAA-CTC resin The specific operation is: weigh l.Og Ac-monoS 5 AAA-CTC resin in a 25ml flask, then add 780mg Cys-amide, 380mg DMPA, 50ml DMF; remove the oxygen in the solvent three times with nitrogen; The flask was placed in a high-pressure mercury lamp at 20 cm and stirred for
  • HPLC chromatogram Figure 5
  • LCMS detection Figure 6
  • ASOB is the standard [ ⁇ ] 215 ( ⁇ ) / [ ⁇ ] 215 (ASOB) is the relative alpha helix content

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Peptides Or Proteins (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

本发明提供了一种将多肽稳定为alpha螺旋二级结构的方法,其依次包括如下步骤:(1)将多肽的氨基端连接非天然氨基酸,并乙酰化封尾;(2)将步骤(1)的产物经过巯基-烯反应获得硫醚侧链修饰的多肽化合物;(3)将硫醚侧链修饰的多肽化合物氧化,获得R型或者S型亚砜侧链修饰的多肽化合物;(4)将步骤(3)的产物分离纯化,获得R型亚砜侧链修饰的多肽化合物。通过CD证明了该方法利用手性亚砜侧链对稳定多肽的alpha螺旋二级结构效果很好,而且对多肽序列有良好的耐受性。

Description

一种将多肽稳定为 alpha螺旋二级结构的方法
技术领域
本发明属于多肽结构稳定技术领域。 更具体地说, 本发明涉及一种通过构建侧链来稳定 多肽 alpha螺旋的方法以及由该方法构建的带有侧链修饰的多肽化合物。 背景技术
研究发现: 在一个蛋白质中真正起到结合作用的往往只有很小的一段序列, 而其他部分 往往是为了达到这一序列的结构专一性而存在的。 alpha-helix 构象作为蛋白最重要的二级构 象之一, 在细胞生理过程起着至关重要的作用, 如很多蛋白 -蛋白相互作用的区域多为 alpha 螺旋构象。 此外, 使多肽具有稳定的 alpha螺旋构象还能大幅提升多肽的抗蛋白降解能力和 穿膜能力。
为了使多肽具有稳定的 alpha螺旋构象, 研究人员开发了各种各样的多肽构象稳定技术, 如盐桥、 金属螯合、 HBS、 构建共价侧链等。 其中构建共价侧链是其中较为常用的方法, 最 早出现的是以酰胺键的形成作为侧链构建方法。 此后二硫键, 碳碳双键的形成等均被用于构 建侧链以稳定多肽的 alpha构象。
在侧链共价键的构建过程中偶联的侧链一般在 alpha螺旋的同一面上, 所以侧链偶联氨 基酸的位置一般为 i/i+3, i/i+4, i/i+7, i/i+ll等。 其中应用较多的是 i/i+4与 i/i+7。
但是每种稳定方法都有其一定的局限性, 例如在酰胺键稳定技术中, 由于酰胺键本身易 水解所以在体内可能很容易被水解掉而无法发挥作用; 以两个半胱氨酸为侧链形成基础的稳 定技术中的侧链结构往往含有芳香基团, 其对多肽本身的性质影响较大; 基于叠氮与炔反应 的侧链形成的三氮唑本身就是一个药效基团, 其对多肽成药性影响可能更大。
所以至今为止并没有一种侧链技术是普适性的, 故而需要开发多种多肽稳定技术以便于 研发人员针对不同情况选择适合的技术。 发明内容
本发明的目的是提供一种通过构建新型的含有手性亚砜的侧链来稳定多肽的 alpha螺旋 的方法。
本发明的另一目的是提供一种具有稳定 alpha 螺旋结构的带有侧链修饰的多肽化合物及 其制备方法。 进而, 本发明提供了一种将多肽稳定为 alpha螺旋二级结构的方法, 它包括如下步骤:
( 1 ) 将多肽的氨基端连接非天然氨基酸, 并乙酰化封尾;
(2)将步骤 (1 ) 的产物经过巯基-烯反应获得硫醚侧链修饰的多肽化合物; 该硫醚侧链 偶联氨基酸的位置为 i/i+4;
(3) 将硫醚侧链修饰的多肽化合物氧化, 获得 R型或者 S型亚砜侧链修饰的多肽化合 物;
(4) 将步骤 (3) 的产物分离纯化, 获得 R型亚砜侧链修饰的多肽化合物。
在一优选例中, 所述步骤 (1 ) 中的非天然氨基酸具有如下结构式:
Figure imgf000003_0001
( 1 ),
其中 R6为氢或亚甲基, n为 1~6的正整数。
在另一优选例中, 所述步骤 (2) 中的巯基 -烯反应是先将步骤 (1 ) 的产物与半胱氨酸或 者半胱氨酸衍生物进行光聚合反应,然后通过酰胺键的形成合成硫醚侧链修饰的多肽化合物。
在另一
Figure imgf000003_0002
化合物 4
Α,Β两种异构体
本发明第二方面是提供了一种带有侧链修饰的多肽化合物, 该多肽化合物具有如下结构
Figure imgf000004_0001
( II ) ,
其中, !^和 R5各自独立地为氢或甲基, R2〜R4各自独立地为氨基酸残基, n为 1-6的 正整数, 亚砜的构型为 R。
在一优选例中, 所述多肽的长度不大于 20个氨基酸。
在另一优选例中, 所述 n为 3或 4。
本发明还提供了上述多肽化合物的制备方法, 它包括如下步骤:
( i ) 将多肽的氨基端连接非天然氨基酸, 并乙酰化封尾, 所述非天然氨基酸具有如下 结构式:
Figure imgf000004_0002
( I ),
其中 R6为氢或亚甲基, n为 1~6的正整数;
( ii )将步骤(i)的产物经过巯基-烯反应获得硫醚侧链修饰的多肽化合物, 该侧链偶联 氨基酸的位置为 i/i+4;
( iii)将硫醚侧链修饰的多肽化合物氧化, 获得 R型或者 S型亚砜侧链修饰的多肽化合 物;
( iv ) 将步骤 (iii) 的产物分离纯化, 获得 R型亚砜侧链修饰的多肽化合物。
在一优选例中, 所述步骤(ϋ ) 中的巯基 -烯反应是先将步骤(i) 的产物与半胱氨酸或者 半胱氨酸衍生物进行光聚合反应, 然后通过酰胺键的形成合成硫醚侧链修饰的多肽化合物。
在另一优选例中, 所述步骤 (ϋ ) 和步骤 (iii) 的反应式如下:
Figure imgf000005_0001
Α,Β两种异构体
本发明的其它方面由于本文的公开内容, 对本领域的技术人员而言是显而易见的。 附图说明
图 1 为 η = 3时, Ac-cyclo(l,5)-monoS5AAAC-NH2 sulfoxide A和 B在 lOmM ph=7.4 的
PBS 缓冲液里的 CD图。
图 2为 Ac-cyclo(l,5)-monoS5AAAC-NH2 sulfoxide B在 PBS 禾卩 50%TFE溶液里的 CD图。 图 3 为 Ac-cyclo(l,5)-monoS5AAAC-NH2 sulfoxide B (ASOB) ,
Ac-cyclo(l,5)-monoS5AGAC-NH2 sulfoxide B(GSOB), Ac-cyclo(l,5)-monoS5AIAC-NH2 sulfoxide B(ISOB)的 CD图。
图 4为 n = 4时, Ac-cyclo(l,5)-monoS6AAAC-NH2 sulfoxide A和 B在 lOmM ph=7.4 的
PBS 缓冲液里的 CD图。
图 5 为纯化 Ac-cyclo(l,5)-monoS5AAAC-NH2的 HPLC色谱图。
图 6 为多肽 Ac-cyclo(l,5)-monoS5AAAC-NH2的 LC-MS色谱图。
图 7 为多肽 Ac-cyclo(l,5)-monoS5AAAC-NH2 sulfoxide A的 LC-MS色谱图。
图 8 为多肽 Ac-cyclo(l,5)-monoS5AAAC-NH2 sulfoxide B的 LC-MS色谱图。
图 9 为多肽 Ac-cyclo(l,5)-monoS6AAAC-NH2 sulfoxide A的 LC-MS色谱图。
图 10 为多肽 Ac-cyclo(l,5)-monoS6AAAC-NH2 sulfoxide B的 LC-MS色谱图。
图 11 为多肽 Ac-cyclo(l,5)-monoS5AAAC-NH2 sulfoxide A和 B的 HPLC色谱图。 具体实 式
研究证实, 多肽分子具有小分子药物所不具有的大接触面积和低毒性, 但多肽往往不具 有蛋白的二级或三级结构。 此外, 在生理环境下少于二十个氨基酸的短肽往往不具有稳定的 构象。所以如何使少于 20个氨基酸的多肽在水相中具有稳定构象一直是多肽化学中的研究热 点。 alpha螺旋是蛋白中最重要的二级结构之一, 在很多重要的生理过程, 如信号传导、 蛋白 -蛋白相互作用等中起着重要作用, 所以如果能够使多肽具有稳定的 alpha螺旋结构将会使这 些过程更加容易调控。 以构建共价键的侧链来稳定多肽 alpha 螺旋构象是其中应用最多的策 略之一。
本发明人以五肽为模型, 通过构建一种新的侧链使得多肽 alpha 螺旋的稳定性有明显提 高, 而且这一侧链具有很高的序列耐受能力。 这一新型的多肽稳定方法将具有良好的运用前 景。 首先, 本发明人运用 thiolene反应构建硫醚侧链稳定的多肽化合物, 并进一步将硫醚氧 化成含手性亚砜。之后通过 CD证明了这一手性亚砜侧链对稳定多肽的 alpha螺旋二级结构效 果很好, 而且对多肽序列有良好的耐受性。
所述侧链在多肽化合物中的位置有如下结构通式:
Figure imgf000006_0001
( II )
通式中!^和 R5各自独立地为氢或甲基, R2〜R4各自独立地为二十种天然氨基酸的残基, n为 1~6的正整数, 较优选地, n为 3或 4, 亚砜的构型为 R。
制备上述侧链稳定的多肽化合物的核心反应步骤如下:
Figure imgf000007_0001
化合物 4
Α,Β两种异构体
化合物 1是将多肽的氨基端连接非天然氨基酸, 并乙酰化封尾而得。 其中的天然氨基酸 是由 Fmoc (芴甲氧羰基) 保护的固相接肽完成, 所述非天然氨基酸 (简称为 m0n0Sn+2) 的 结构式如下:
NH-
Figure imgf000007_0002
所述非天然氨基酸可通过固相接肽连接到树脂上, 其中 R6可以为氢或亚甲基。
n可以为 1〜6中的任何一个正整数。 在本发明的一个优选例中, 以 n=3或 4为示例进行 表述。
化合物 2, 是由化合物 1与半胱氨酸 (Cys-amide) 及其衍生物进行反应而得。 反应条件 设定为:取化合物 1 0.5mmol,加入光引发剂 DMPA 1.5mmol, Cys-amide衍生物 1.5-2.5mmol, 然后加入 10ml DMF作溶剂, 脱气于 365nm紫外光下反应 3h, 滤掉反应液洗涤即可得化合 物 2。
将上一步得到的化合物 2加入 10ml三氟乙酸 (TFA) /三异丙基硅垸 (TIS) /水 (H20) (9.5: 0.25: 0.25体积 /体积) 的剪切液中反应 3h, 用氮气将剪切液吹干, 10ml乙醚 /正己垸 (4: 1 ) 沉淀; 将沉淀抽干后溶于 200ml Ν,Ν'-二甲基甲酰胺 (DMF) 中, 脱气,冰浴下加入 l.Og 2- (7-偶氮苯并三氮唑) -Ν,Ν,Ν',Ν'-四甲基脲六氟磷酸酯 (HATU), 0.9ml二异丙基乙胺 (DIEA),缓慢升至室温反应 36h; LCMS检测反应完全后, 将溶剂旋干, HPLC纯化, 冻干, 得到干净的化合物 3, 即硫醚侧链修饰的多肽化合物。
将化合物 3溶于 4ml水中加入 lml 30%双氧水反应 3h。 HPLC纯化得化合物 4, 即亚砜 侧链修饰的多肽化合物。 化合物 4含有两个异构体, 其中出峰在前的称为化合物 4A, 出峰在 后的为化合物 4B。
将得到的化合物溶于 10mM pH=7.4的磷酸盐缓冲液中测 CD谱。 化合物 4B具有良好的 alpha螺旋, 与传统的酰胺键稳定方法相比, 相同序列下可以有更高的螺旋含量。
本发明人进而通过 CD结果证实了这一手性亚砜侧链对稳定多肽的 alpha螺旋二级结构效 果很好, 而且对多肽序列有良好的耐受性。
综上所述, 本发明提供了一种通过构建新型的侧链稳定多肽 alpha螺旋的方法, 而且该 方法在一定范围内可通过调节链长来控制 alpha螺旋的含量。通过与酰胺键稳定 alpha螺旋对 比, 该方法可以产生更好的 alpha螺旋稳定效果。 其侧链简单、 螺旋含量高、 序列耐受性好 以及螺旋含量通过链长调节在一定范围内可调等优点是目前本领域的其他稳定方法所不具备 的。
下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明本发明而不 用于限制本发明的范围。 下列实施例中未注明具体条件的实验方法, 通常按照常规条件中所 述的条件, 或按照制造厂商所建议的条件。
除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。 此外, 任何与所记载内容相似或均等的方法及材料皆可应用于本发明中。 文中所述的较佳实 施方法与材料仅作示范之用。 实施例 1 n=3时, 手性亚砜侧链稳定的多肽 Ac-cyclo(l,5)-monoS5AAAC-NH2 sulfoxide 的合成:
^H2
monoSs的结构式为: ^^^COOH ·
首先是以 Fmoc固相多肽合成法合成 Ac-monoS5AAA-CTC树脂:
具体路线如下: 树脂 IT^ S ¾; 5" Ρ =1 7 : 2: 1, F置- TC树脂
2 ' |||¾ H2 a-CTC树脂
Figure imgf000009_0001
3 .
25%吗啡啉 _ ^„ M Δ1 Δ 1T Fmoc-Ala-OH/HCTU/DIEA.
4 ·室温鼓 Ν230ηή H2N-Ala-Ala-CTC树月日 in NMP,室温鼓 50ηώ^
' Fmoc-Ala-Ala-Ala-CTC树脂
25%吗啡啉 ™^ Η^ Fmoc-monoS,-OH/HCTU/DI¾A
5 .室温鼓 Ν230ηώί H2N-Ala-Ala-Ala-CTC树月曰 ίη NMP,室温 ¾?2, 90min ¾
Fmoc-monoS -Ala-Ala-Ala-CTC树脂
Figure imgf000009_0002
具体操作为:
1. 接第一个氨基酸: 称取 l.Og CTC树脂于 100ml接肽管中, 加入 20ml N-甲基吡咯垸酮 (NMP)鼓氮气溶胀 30min;滤掉溶剂加入用 9331mg Fmoc-Ala-OH,9.6mlNMP及 2.11mlDIEA 配制成的溶液, 鼓氮气 3.0h; 洗涤: 将接肽管中的溶剂抽干, 将树脂用 NMP ( 10ml*3 )洗涤 三次, 每次一分钟; 封闭: 洗涤结束后, 滤掉反应液, 加入 NMP/MeOH/DIEA (体积比 17/2/l)10mL鼓氮气 5min, 滤掉反应液, 洗涤并进行下一步反应。
2. 接第二个氨基酸: 脱保护: 加入体积比为 25%吗啡啉的 NMP溶液,鼓氮气 30min, 洗 涤; 连接反应: 将配制好的 Fmoc-Ala-OH (0.4M in NMP)溶液, 6-氯苯并三氮唑 -1,1,3,3-四甲 基脲六氟磷酸酯 (HCUT)(0.38M in NMP), DIEA 按 7.5ml/7.5ml/lml 混匀加入树脂中鼓氮气 50min; 滤掉反应液, 洗涤然后进行下一步操作。
3. 接第三个个氨基酸: 操作同 2接第三个 Ala
4. 接非天然氨基酸 monoS5:脱保护, 加入 Fmoc-monoS5-OH (0.4M in NMP) 溶液, HCUT(0.38M in NMP), DIEA 按 5.0ml/5.0ml/0.71ml混匀加入树脂中鼓氮气 120min,滤掉反应 液进行下一步反应。
5. 乙酰化封尾: 脱保护, 洗涤, 滤掉 NMP; 加入 10ml Ac2O/DIEA/NMP(l : 3 16)的混 合液, 鼓氮气 50min
6.滤掉反应液,将树脂依次用 NMP(lOml),二氯甲垸(DCM) (10ml),甲醇(MeOH) (10ml) 交替洗涤, 抽干保存或用于下一步反应。
切害 IJ :取 30mg树脂于 1.5ml eppendof管中,加入 0.5ml TFA/TIPS/H20(体积比 9.5: 0.25 0.25)震荡反应 0.5h; 沉淀: 树脂过滤除去, 用氮气把剪切液吹干, 然后加入冷的 1ml 乙醚 / 正己垸 (4:1 ) 的混合液; 离心去上清, 将固体沉淀抽干。
将产物溶于 0.5ml氘代 DMSO中进行核磁检测:
1H NMR (500 MHz, DMSO) δ 8.07 (d, J = 7.3 Hz, 1H), 8.02 (d, J = 7.4 Hz, 1H), 7.97 (d, J = 7.9 Ηζ,ΙΗ), 7.81 (d, J = 7.6 Hz, 1H), 5.80 - 5.71 (m, 1H), 5.02 - 4.89 (m, 2H), 4.23 - 4.15 (m, 4H) 1.82 (s, 3H), 1.59 (d, J = 9.4 Ηζ,ΙΗ), 1.45 (d, J = 5.4 Hz, 1H), 1.39 - 1.28 (m, 2H), 1.28 - 1.13 (m, 11H).
通过 thiol-ene反应 (巯基-烯反应) 来完成侧链构建。
首先进行光聚合反应:
Ac-monoS -Ala-Ala-Ala-CTC树脂 Ac-monoS5(Cys-NH2)-Ala-Ala-Ala-CTC
Figure imgf000010_0001
365nm光照 3h
所获得反应中间体的结
Figure imgf000010_0002
具体操作为: 称取 l.Og Ac-monoS5AAA-CTC树脂于 25ml烧瓶中,依次然后加入 780mg Cys-amide, 380mg DMPA, 50ml DMF; 用氮气换气三次除掉溶剂中的氧;将该烧瓶置于高压汞 灯 20cm处搅拌下反应 3h;将反应树脂转入接肽管中,滤除反应液,用 DMF(10ml), DCM(10ml), MeOH(lOml)交替洗涤, 抽干得 Ac-monoS5 (Cys-NH2) AAA-CTC树脂。
取 30mg Ac-monoS5 (Cys-NH2) AAA-CTC 树脂切割, 沉淀, 核磁检测, 通过观察氢谱 上 5.80 - 5.71 (m, 1H), 5.02 - 4.89 (m, 2H)两处的双键峰来检测反应是否进行完全,如仍有双键 峰则重复 thiol-ene反应。 如双键峰消失说明反应完全, 将剩余的树脂用 10ml切割液反应 3h, 氮气吹干切割液, 加 10ml冻乙醚 /正己垸(4:1 ) 10ml沉淀, 离心去上清, 最后将所得固体抽 干保存。
1H NMR (400 MHz, DMSO) δ 8.14 (s, 3H), 8.08 (d, J = 7.3 Hz, 1H), 8.05 - 7.96 (m, 2H), 7.93 - 7.85 (m, 2H), 7.67 (s, 1H), 4.30 - 4.11 (m, 5H), 2.93 - 2.91 (m, 1H), 2.87 - 2.77 (m, 1H), 1.84 (s, 3H), 1.65 - 1.54(m, 1H), 1.54 - 1.39 (m, 3H), 1.39 - 1.16 (m, 13H). 然后通过酰胺键的形成合成环状多肽 Ac-cyclo(l,5)-monoS5AAAC-NH2
具体操作: 将 thiol-ene反应中所得的固体转移到 1000ml烧瓶中, 加入 500ml DMF,氮气 换气三次; 氮气保护下冰浴加入 l.Og 接肽试剂 HATU, 搅拌 lOmin后加入 0.9ml DIEA,缓慢 升至室温反应 12h。
反应液旋干之后用 HPLC纯化, 250*10mm C18 反相色谱, A液: 0.1% TFA H20, B液: 0.1 TFA 乙腈; 溶剂梯度: 0-45min 5-50% ; Rt=31.492。 HPLC色谱图 (图 5) 及 LCMS检 测 (图 6) 。
图 5的具体结果如表 1所示。
表 1 Ac-cyclo(l,5)-monoS5AAAC-NH2的 HPLC分析结果
峰名称 保留时间 高度 峰开始 峰结束 面积%
P 31.492 2712473 30.808 31.983 10.7948 产物冻干后取 2mg溶于 0.5ml氘代 DMSO中核磁检测:
1H NMR (400 MHz, DMSO) δ 8.38 (d, J = 7.3 Hz, 1H), 8.20 (d, J = 5.9 Hz, 1H), 8.00 (d, J = 7.8 Hz, IH), 7.95 (d, J = 8.1 Hz, IH), 7.39 (d, J = 6.4 Hz, IH), 7.21 (s, IH), 7.08 (s, IH), 4.29 - 4.05 (m, 5H), 2.84 (dd, J = 13.9, 4.4 Hz, 1H), 2.76 - 2.65 (m, 1H), 1.82 (s, 3H), 1.74 - 1.69 (m, 1H), 1.62 - 1.12 (m, 18H).
将产物环肽 Ac-cyclo(l,5)-monoS5AAAC-NH2 3mg溶于 4ml水中然后加入 1ml 30% H202 反应 3h HPLC 纯化, 得到侧链含有手性亚砜的两种环肽非对应异构体: Ac-cyclo(l,5)-monoS5AAAC-NH2 sulfoxide A, Ac-cyclo(l,5)-monoS5AAAC-NH2 sulfoxide B. 如图 11 :
图 11的具体结果如表 2所示。
Ac-cyclo(l,5)-monoS5AAAC-NH2 sulfoxide A和 B的 HPLC分析结果
峰名称 保留时间 高度 峰开始 峰结束 面积%
A 22.860 31087340 22.483 23.850 41.0151
B 27.398 44707504 27.050 28.600 58.9849
两个产物用 LC-MS分析 (图 7, 图 8 ) , 及核磁氢谱分析:
Ac-cyclo(l,5)-monoS5AAAC-NH2 sulfoxide A
1H NMR (500 MHz, DMSO) δ 8.36 (d, J = 7.5 Hz, IH), 8.22 (d, J = 7.5 Hz, 2H), 7.95 (d, J = 8 Hz, IH), 7.53 (d, J = 5 Hz, IH), 7.18 (d, J = 7.5Hz, 2H), 4.51 - 4.39 (m, IH), 4.25 - 4.19 (m, 2H), 4.01 - 3.95 (m, 1H), 3.15 - 3.03 (m, 2H), 2.87 - 2.81 (m,lH), 2.70 - 2.64 (m, 1H), 1.81 (s, 3H), 1.75- 1.62 (m, 2H), 1.45 - 1.34 (m, 5H), 1.32 (s, 3H), 1.25 - 1.21 (m, 9H).
Ac-cyclo(l ,5)-monoS5AAAC-NH2 sulfoxide B
1H NMR (500 MHz, DMSO) δ 8.42 (d, J = 6.9 Hz, IH), 8.12 (d, J = 6.2 Hz, IH), 8.07 (d, J = 5.7 Hz, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.28 (d, J = 10.4 Hz, 2H), 7.20 (s, 1H), 4.57 (t, J = 8.4 Hz, IH), 4.13 (dd, J = 14.5, 7.4 Hz, 3H), 4.06 - 3.97 (m, IH), 3.08 - 2.94 (m, 2H), 2.87 (dd, J = 13.2, 7.1 Ηζ, ΙΗ), 2.70 - 2.60 (m, IH), 1.87 (s, 3H), 1.79 (dd, J = 18.3, 11.6 Hz, 2H), 1.60 - 1.47 (m, 3H), 1.32 (s, 3H), 1.24 (t, J = 6.5 Hz, 9H).
将 Ac-cyclo(l,5)-monoS5AAAC-NH2 sulfoxide两种异构体 ASOA/ASOB溶于 lOmM PBS 溶液中测定 CD图谱: 取 0.1-0.5mg样品分别溶于 0.5ml lOmmol PBS 中测 CD波长为
190nm-250nm处的色谱图, 然后根据以下公式计算得 alpha螺旋含量; 结果如表 3。
alpha螺旋计算公式:
Figure imgf000012_0001
[6]obs2i 5= 6 /(10*C* Np *1)
[Θ] ∞215= ( -44000 + 250T) (1 - κ/Νρ) [Q]c= 2220 - 53T = 1054
T=22°C , κ=4.0, Νρ=6 (对于五肽), l=0.1(cm),C为样品摩尔浓度 M。
从 CD (图 1 )可以看出两种异构体只有在 HPLC分离中出峰靠后的异构体 B具有稳定的 alpha螺旋。
对比 Ac-cyclo(l,5)-monoS5AAAC-NH2 sulfoxide B在 PBS 禾卩 50%TFE缓冲液中的 CD 图可发现, TFE缓冲液对这一异构体没有 alpha螺旋的提高, 说明这一侧链稳定方法已经将 短肽的 alpha螺旋提高到了最佳值。
改变五肽的中间氨基酸为不利于 alpha螺旋的 G和 I得到 Ac-cyclo(l ,5)-monoS5AGAC-NH2 sulfoxide B(GSOB) , Ac-cyclo(l ,5)-monoS5AIAC-NH2 sulfoxide B(ISOB)结果同样有很高的 alpha螺旋含量 (表 3, 图 3 )
将本发明的方法与传统的酰胺键稳定方法进行对比, 表 3中 ASOA/对照, 结果表明相同 中间序列情况下, 这一稳定方法相对于酰胺键侧链稳定多肽 alpha螺旋稳定效果提高 14%。 表 3 多肽在 pH=7.4 22 °C 10mM PBS中的相对 alpha螺旋含量
多肽 [θ]215 [θ]207 [Θ] ΐ90 [θ] 215/[θ] 207 相对 alpha螺旋含量 *
ASOA 672 -4667 -14594 -0.14 -0.04
ASOB -15666 -16054 25987 0.98 1.00
GSOB -7920 -7777 9121 1.02 0.51
ISOB -13558 -15556 26306 0.87 0.87
对照 -13537 -13684 39352 0.99 0.86**
*以 ASOB为标准 [θ]215 (χ) /[θ]215 (ASOB) 为相对 alpha螺旋含量
**control为酰胺键侧链的环肽 Ac-(cyclo2,6)-R[KAAAD]-NH2 实施例 2 n=4时亚砜侧链稳定的多肽的合成及 CD图谱的测定
将 mon0S5换成多一个碳原子的 m0n0S6用同样的合成路线, 我们得到了两个非对映异构 体, 同样根据 HPLC上出峰时间的先后命名为 Ac-cyclo(l,5)-monoS6AAAC-NH2 sulfoxide A 禾口 Ac-cyclo(l,5)-monoS6AAAC-NH2 sulfoxide B, LCMS鉴定 (图 9, 图 10) , 及核磁氢谱:
Ac-cyclo(l,5)-monoS6AAAC-NH2 sulfoxide A
1H NMR (500 MHz, DMSO) δ 8.42 (d, J = 7.6 Hz, IH), 8.33 (d, J = 8.2 Hz, IH), 8.19 (d, J = 6.4 Hz, 1H), 7.99 (d, J = 7.9 Hz, 1H), 7.24 - 7.16 (m, 3H), 4.68 - 4.61 (m, 1H), 4.30 - 4.08 (m, 4H), 3.17 (dd, J = 13.8, 3.0 Hz, 1H), 3.02 (dd, J = 13.9, 9.3 Hz, 1H), 2.71 (dd, J = 13.7, 6.5 Hz, 2H), 1.81 (s, 3H), 1.76 - 1.67 (m, IH), 1.67 - 1.52 (m, 2H), 1.52 - 1.40 (m, 3H), 1.40 - 1.18 (m, 13H).
Ac-cyclo(l,5)-monoS6AAAC-NH2 sulfoxide B
1H NMR (500 MHz, DMSO) δ 8.41 (d, J = 7.4 Hz, 1H), 8.20 (d, J = 6.8 Hz, 1H), 8.13 (d, J = 8.7 Hz, 1H), 7.98 (d, J = 7.7 Hz, 1H), 7.39 (s, 1H), 7.20 (d, J = 7.5 Hz, 2H), 4.54 (t, J = 9.7 Hz, IH), 4.29 - 4.13 (m, 4H), 3.08 - 2.93 (m, 2H), 2.74 (td, J = 13.3, 6.4 Hz, 2H), 1.82 (s, 3H), 1.64 (t, J = 18.4 Hz, 3H), 1.44 (d, J = 6.9 Hz, 3H), 1.38 - 1.17 (m, 13H).
测定 Ac-cyclo(l,5)-monoS6AAAC-NH2 sulfoxide A/ B的 CD (图 4), 同样只有 B异构体 才有 alpha螺旋稳定效果。
本发明所涉及的多个方面已做如上阐述。 然而, 应理解的是, 在不偏离本发明精神之前 提下, 本领域专业人员可对其进行等同改变和修饰, 所述改变和修饰同样落入本专利申请所 附权利要求的覆盖范围。

Claims

权 利 要 求 书 -WO 2014/190665- -PCT/CN2013/086071-
1. 一种将多肽稳定为 alpha螺旋二级结构的方法, 其特征在于, 该方法包括如下步骤:
( 1 ) 将多肽的氨基端连接非天然氨基酸, 并乙酰化封尾;
(2)将步骤 (1 ) 的产物经过巯基-烯反应获得硫醚侧链修饰的多肽化合物, 该硫醚侧链 偶联氨基酸的位置为 i/i+4;
(3)将硫醚侧链修饰的多肽化合物氧化, 获得 R型或 S型亚砜侧链修饰的多肽化合物;
(4) 将步骤 (3) 的产物分离纯化, 获得 R型亚砜侧链修饰的多肽化合物。
2. 如权利要求 1所述的方法, 其特征在于, 所述步骤 (1 ) 中的非天然氨基酸具有如下 结构式:
^HiTcooH
Figure imgf000014_0001
( I ),
其中 R6为氢或亚甲基, n为 1~6的正整数。
3. 如权利要求 1所述的方法, 其特征在于, 所述步骤 (2) 中的巯基 -烯反应是先将步骤 ( 1 )的产物与半胱氨酸或半胱氨酸衍生物进行光聚合反应, 然后通过酰胺键的形成合成硫醚 则链修饰的多肽化合物。
4. 如下:
Figure imgf000014_0002
化合物 4
Α,Β两种异构体 权 利 要 求 书
WO 2014/190665 PCT/CN2013/086071—
5. 一种带有侧链修饰的多肽化合物, 其特征在于, 该多肽化合物具有如下结构式:
Figure imgf000015_0001
( II ) ,
其中, 和 各自独立地为氢或甲基, R2〜R4各自独立地为氨基酸残基, n为 1~6的 正整数, 亚砜的构型为 R。
6. 如权利要求 5所述的多肽化合物, 其特征在于, 所述多肽的长度不大于 20个氨基酸。
7. 如权利要求 5所述的多肽化合物, 其特征在于, 所述 n为 3或 4。
8. 如权利要求 5所述的多肽化合物的制备方法, 其特征在于, 该方法包括如下步骤:
( i )将多肽的氨基端连接非天然氨基酸, 并乙酰化封尾, 所述非天然氨基酸具有如下 结构式:
^HiTcooH
Figure imgf000015_0002
( I ),
其中 R6为氢或亚甲基, n为 1~6的正整数;
( ϋ ) 将步骤 ( i ) 的产物经过巯基-烯反应获得硫醚侧链修饰的多肽化合物, 该侧链 偶联氨基酸的位置为 i/i+4;
( iii)将硫醚侧链修饰的多肽化合物氧化,获得 R型或 S型亚砜侧链修饰的多肽化合物;
( iv ) 将步骤 (iii) 的产物分离纯化, 获得 R型亚砜侧链修饰的多肽化合物。
9. 如权利要求 8所述的多肽化合物的制备方法, 其特征在于, 所述步骤(ii ) 中的巯基 -烯反应是先将步骤( i ) 的产物与半胱氨酸或半胱氨酸衍生物进行光聚合反应, 然后通过酰 胺键的形成合成硫醚侧链修饰的多肽化合物。
10. 如权利要求 8所述的多肽化合物的制备方法, 其特征在于, 所述步骤 (ii ) 和步骤 权 利 要 求 书
-WO 2014/190665- PCT/CN2013/086071-
(iii) 的反应式如下:
Figure imgf000016_0001
化合物 4
Α,Β两种异构体
PCT/CN2013/086071 2013-05-29 2013-10-28 一种将多肽稳定为alpha螺旋二级结构的方法 WO2014190665A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310205762.0 2013-05-29
CN201310205762.0A CN104211751B (zh) 2013-05-29 2013-05-29 一种将多肽稳定为alpha螺旋二级结构的方法

Publications (1)

Publication Number Publication Date
WO2014190665A1 true WO2014190665A1 (zh) 2014-12-04

Family

ID=51985846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086071 WO2014190665A1 (zh) 2013-05-29 2013-10-28 一种将多肽稳定为alpha螺旋二级结构的方法

Country Status (3)

Country Link
US (1) US20140357841A1 (zh)
CN (1) CN104211751B (zh)
WO (1) WO2014190665A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016209978A2 (en) * 2015-06-22 2016-12-29 University Of Utah Research Foundation Thiol-ene based peptide stapling and uses thereof
WO2018017485A1 (en) 2016-07-17 2018-01-25 University Of Utah Research Foundation Thiol-yne based peptide stapling and uses thereof
CN106432403A (zh) * 2016-09-21 2017-02-22 北京大学深圳研究生院 一种螺旋度可调节的多肽化合物的合成方法
CN106699841B (zh) * 2017-01-05 2020-07-24 北京大学深圳研究生院 一种自组装的多肽纳米棒及其制备方法
CN108084249A (zh) * 2018-01-22 2018-05-29 北京大学深圳研究生院 一种用于抗雌激素受体α的稳定多肽及其用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073326A2 (en) * 1999-06-02 2000-12-07 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Redox-stable, non-phosphorylated cyclic peptide inhibitors of sh2 domain binding to target protein, conjugates thereof, compositions and methods of synthesis and use

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2332968B1 (en) * 2003-11-05 2016-05-04 Dana-Farber Cancer Institute, Inc. Alpha-helical peptides suitable for activating or inhibiting cell death
CN102010461B (zh) * 2010-10-11 2014-02-12 华南理工大学 一种alpha螺旋状阳离子多肽分子及其制法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073326A2 (en) * 1999-06-02 2000-12-07 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Redox-stable, non-phosphorylated cyclic peptide inhibitors of sh2 domain binding to target protein, conjugates thereof, compositions and methods of synthesis and use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, DEXIN ET AL.: "Progress in Synthesis of Cyclopeptides.", CHINESE JOURNAL OF ORGANIC CHEMISTRY, vol. 28, no. 4, 31 December 2008 (2008-12-31), pages 549 - 573 *

Also Published As

Publication number Publication date
CN104211751A (zh) 2014-12-17
US20140357841A1 (en) 2014-12-04
CN104211751B (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
JP6713983B2 (ja) ペプチド合成方法
Schneider et al. Synthesis and efficacy of square planar copper complexes designed to nucleate. beta.-sheet structure
WO2014190665A1 (zh) 一种将多肽稳定为alpha螺旋二级结构的方法
US8569452B2 (en) Preparation of phalloidin and its derivatives
CN112724193A (zh) 一种基于多肽-锰-羰基复合物的co释放分子的固相合成方法及其应用
JP5985534B2 (ja) グアニジル基およびアミノ基の保護のためのインドールスルホニル保護基
KR20180059549A (ko) 바루시반 및 이의 중간체의 새로운 제조 방법
CN112585153A (zh) 一种化合物或其盐及其制备方法与应用
JPH02229804A (ja) ペプチド合成用担体
JP6010052B2 (ja) 複数のペプチド断片をアッセンブルすることによるペプチドを調製するための方法
WO2020195303A1 (ja) ペプチド複合体及びその製造方法、並びに前記ペプチド複合体の利用
JP2008503597A (ja) ペプチドの製造方法
JP4227193B2 (ja) 触媒イミダゾール(例えばヒスチジン)機能を有する触媒を使用した安定化変還複合体を用いたアシル移行
JP2002521385A (ja) 樹脂の誘導体化の方法およびその使用
JP2815362B2 (ja) ベンズヒドリルアミン誘導体及びその製法
EP2812345B1 (en) Method of synthesizing peptides, proteins and bioconjugates
WO2016060096A1 (ja) ホスホリルコリン基含有化合物およびホスホリルコリン複合体
Qiu et al. Selective Bi‐directional Amide Bond Cleavage of N‐Methylcysteinyl Peptide
JP4016104B2 (ja) 新規セレニルリンカー及びその用途
TW201100445A (en) Production method of peptide thioesters
WO2023054712A1 (ja) ペプチド
CA2655090A1 (en) New supported oxidation reactants, process for their preparation and uses thereof
CN113735954A (zh) 一种手动固相合成蜈蚣毒素RhTx和蜘蛛毒素GsMTx4的方法
WO2003093301A2 (en) Process for the synthesis of peptides
CN116554269A (zh) 一种二苯基膦酰氧基二苯甲胺标签辅助液相依替巴肽全合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885911

Country of ref document: EP

Kind code of ref document: A1