WO2014189339A1 - 텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법 및 상기 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물 - Google Patents

텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법 및 상기 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물 Download PDF

Info

Publication number
WO2014189339A1
WO2014189339A1 PCT/KR2014/004666 KR2014004666W WO2014189339A1 WO 2014189339 A1 WO2014189339 A1 WO 2014189339A1 KR 2014004666 W KR2014004666 W KR 2014004666W WO 2014189339 A1 WO2014189339 A1 WO 2014189339A1
Authority
WO
WIPO (PCT)
Prior art keywords
cch
tungsten
containing film
compound
deposition
Prior art date
Application number
PCT/KR2014/004666
Other languages
English (en)
French (fr)
Inventor
한원석
유범상
이홍주
Original Assignee
주식회사 유피케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유피케미칼 filed Critical 주식회사 유피케미칼
Priority to JP2016515280A priority Critical patent/JP6201204B2/ja
Priority to CN201480029932.7A priority patent/CN105392917A/zh
Priority to US14/893,427 priority patent/US20160122867A1/en
Priority claimed from KR1020140062800A external-priority patent/KR101822884B1/ko
Publication of WO2014189339A1 publication Critical patent/WO2014189339A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table

Definitions

  • the present application relates to a method for depositing a tungsten-containing film using a tungsten compound and a precursor composition for tungsten-containing film deposition including the tungsten compound.
  • Tungsten (W) -containing films are used in many applications in the manufacture of semiconductor devices. Typically, tungsten-containing films are formed by chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques. Tungsten hexafluoride (WF 6 ) has been widely used as a tungsten raw material for forming tungsten-containing films.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • tungsten carbonyl compound [W (CO) 6 ] As a general organometallic precursor for forming a tungsten-containing film, a tungsten carbonyl compound [W (CO) 6 ] is known, and carbonyl (CO) ligands contained in these compounds are easily dissociated even at low temperatures and separated.
  • W (CO) 6 tungsten carbonyl compound
  • CO carbonyl
  • the present application is to provide a method for depositing a tungsten-containing film using a tungsten compound and a precursor composition for depositing a tungsten-containing film including the tungsten compound.
  • a first aspect of the present application provides a method for depositing a tungsten-containing film using a tungsten compound, comprising contacting a substrate comprising a tungsten compound represented by the following formula (1) to a substrate surface:
  • R 1 to R 6 each independently include H or a C 1-5 alkyl group
  • L includes acyclic or cyclic neutral ligand of 0 to 5 carbon atoms containing one to three nitrogen or oxygen.
  • a second aspect of the present application provides a precursor composition for depositing a tungsten-containing film including a tungsten compound represented by Chemical Formula 1.
  • a tungsten-containing film may be formed using a tungsten-containing film deposition method using a tungsten compound containing an alkyne ligand and a precursor composition for depositing a tungsten-containing film including the tungsten compound.
  • a tungsten-containing film may be formed by chemical vapor deposition (CVD) or atomic layer deposition (ALD) using a tungsten compound including an alkyne ligand. It may be, may provide a film deposition composition comprising the tungsten compound.
  • embodiments of the present disclosure can form tungsten-containing films with less nitrogen or oxygen impurities.
  • DSC 2 is a differential scanning calorimetry (DSC) graph of the tungsten compound W (CO) (CH 3 CH 2 C ⁇ CCH 2 CH 3 ) 3 prepared according to Preparation Example 1 of the present application.
  • 3A-3D are cross-sectional Scanning Electron Microscopy (SEM) images of tungsten-containing films formed at a temperature of 325 ° C. of the substrate, in Example 1 herein.
  • 4A-4D are cross-sectional scanning electron microscopy images of tungsten-containing films formed at a substrate temperature of 350 ° C. in Example 1 herein.
  • Example 5 is a result of Auger analysis of a tungsten-containing film formed using hydrogen (H 2 ) gas at a substrate temperature of 350 ° C. in Example 2 of the present application.
  • FIG. 6 is a result of ozone analysis of a tungsten-containing film formed using ammonia (NH 3 ) gas at a substrate temperature of 350 ° C. in Example 2 of the present application.
  • FIG. 6 is a result of ozone analysis of a tungsten-containing film formed using ammonia (NH 3 ) gas at a substrate temperature of 350 ° C. in Example 2 of the present application.
  • FIG. 7 is a thermogravimetric analysis (TGA) graph of each of the precursor compositions for tungsten-containing film deposition with and without stabilizer in Example 3 herein.
  • step to or “step of” does not mean “step for.”
  • the term "combination (s) thereof" included in the expression of the makushi form refers to one or more mixtures or combinations selected from the group consisting of the elements described in the expression of the makushi form, It means to include one or more selected from the group consisting of the above components.
  • alkyl group may include linear or branched, saturated or unsaturated C 1-10 or C 1-5 alkyl groups, for example, methyl, ethyl, propyl, Butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, or all possible isomers thereof may be included, but may not be limited thereto.
  • neutral ligand (L) may be one containing a 0 to 5 acyclic or cyclic structural compound containing one to three heteroatoms each selected from nitrogen or oxygen, For example, atoms or molecules with unshared electron pairs, CO, CS, NO, CO 2 , CS 2 , NH 3 , H 2 O, amines, ethers, alkylnitriles, isocyanides, and derivatives thereof It may be to include one selected from the group consisting of, but may not be limited thereto.
  • coordination bond refers to a bond when the electrons forming the bond are formally provided only from one atom, considering only one of the two atoms involved in the bond.
  • a bond is formed between a central metal in the center of a coordination compound, such as a complex, and a ligand in the vicinity of the coordination compound.
  • a first aspect of the present application provides a method for depositing a tungsten-containing film using a tungsten compound, comprising contacting a substrate comprising a tungsten compound represented by the following formula (1) to a substrate surface:
  • R 1 to R 6 each independently include H or a C 1-5 alkyl group
  • L includes acyclic or cyclic neutral ligand of 0 to 5 carbon atoms containing one to three nitrogen or oxygen.
  • the C 1-5 alkyl group is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, 3-pentyl group, and may include those selected from the group consisting of isomers thereof, but is not limited thereto. You may not.
  • L may be one selected from the group consisting of carbon monoxide (CO), nitrogen monoxide (NO), and acetonitrile (CH 3 CN), but may not be limited thereto. .
  • the tungsten compound is W (CO) (HC ⁇ CH) 3 , W (CO) (CH 3 C ⁇ CCH 3 ) 3 , W (CO) (CH 3 CH 2 C ⁇ CCH 2 CH 3 ) 3 , W (CO) (CH 3 (CH 2 ) 2 C ⁇ C (CH 2 ) 2 CH 3 ) 3 , W (CO) (HC ⁇ CCH 3 ) 3 , W (CO) (HC ⁇ CCH 2 CH 3 ) 3 , W (CO) (HC ⁇ C (CH 2 ) 2 CH 3 ) 3 , W (CO) (HC ⁇ C (CH 2 ) 3 CH 3 ) 3 , W (CO) (HC ⁇ C (CH 2 ) 4 CH 3 ) 3 , W (CO) (CH 3 C ⁇ CCH 2 CH 3 ) 3 , W (CO) (CH 3 C ⁇ C (CH 2 ) 2 CH 3 ) 3 , W (CO ) (CH 3 C ⁇ C (CH 2 ) 3 CH 3 ) 3 , W (CO ) (CH 3
  • the gas containing the tungsten compound may further include a stabilizer for inhibiting thermal decomposition of the tungsten compound, but may not be limited thereto.
  • the stabilizer may act to suppress thermal decomposition of the tungsten compound by inhibiting the polymerization reaction of alkyne contained in the tungsten compound.
  • the stabilizer may be used without particular limitations inhibitors commonly used to inhibit such alkane polymerization reaction, for example, the stabilizer, benzoquinone, tetramethylbenzoquinone, chloranyl ( chloranil, 2,3,5,6-tetrachloro-1,4-benzoquinone), 4-tert-butylcatechol, and 2,2-diphenyl-1-picrylhydrazil (2 , 2-diphenyl-1-picrylhydrazyl) may be included, but may not be limited thereto.
  • inhibitors commonly used to inhibit such alkane polymerization reaction for example, the stabilizer, benzoquinone, tetramethylbenzoquinone, chloranyl ( chloranil, 2,3,5,6-tetrachloro-1,4-benzoquinone), 4-tert-butylcatechol, and 2,2-diphenyl-1-picrylhydrazil (2 , 2-diphenyl-1-picrylhydrazyl) may be included, but may not be limited thereto.
  • the gas including the tungsten compound when the gas including the tungsten compound further includes a stabilizer that suppresses thermal decomposition of the tungsten compound, it may have better vaporization characteristics at a lower temperature than when the gas does not include the stabilizer. It is possible to significantly reduce the amount of pyrolysis product remaining without evaporation when the temperature is raised.
  • the tungsten compound according to the exemplary embodiment of the present invention is a complex connected between the tungsten center metal and the ligand by a weak coordination bond, the ligand may be degraded even at a relatively low temperature, thereby lowering the deposition temperature. .
  • the neutral ligand (L) and the alkyne separated from the tungsten center metal are easily removed from the reaction chamber through vacuum exhaust, they may not remain in the tungsten-containing film in which impurities such as carbon, nitrogen, and oxygen are formed. .
  • depositing the tungsten-containing film comprises hydrogen gas, ammonia gas, oxygen (O 2 ) gas or ozone simultaneously or alternately with contacting the substrate containing the tungsten derivative compound to the substrate.
  • O 3 may further include contacting the reaction gas containing the gas to the substrate, but may not be limited thereto.
  • the deposition of the tungsten-containing film may include, but is not limited to, those performed by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
  • MOCVD organometallic chemical vapor deposition
  • ALD atomic layer deposition
  • the reaction gas in addition to contacting the tungsten compound-containing gas to the substrate, the reaction gas may be contacted to the substrate to form a tungsten-containing film on the substrate surface.
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • the tungsten compound-containing gas uses a known method such as bubbling, gas phase flow control method, direct liquid injection method, or liquid transfer method. It may be in contact with the surface of the substrate.
  • the reaction gas used in the ALD and CVD method is a semiconductor such as hydrogen (H 2 ) gas, ammonia (NH 3 ) gas, oxygen (O 2 ) gas, ozone (O 3 ) gas
  • the gas used in the process may be used to form a tungsten-containing film, but may not be limited thereto.
  • a tungsten metal film containing less impurities may be formed.
  • a tungsten oxide film may be formed, but may not be limited thereto.
  • a second aspect of the present application provides a tungsten-containing film precursor composition comprising a tungsten compound represented by the following formula (1):
  • R 1 to R 6 each independently include H or a C 1-5 alkyl group
  • L includes acyclic or cyclic neutral ligand of 0 to 5 carbon atoms containing one to three nitrogen or oxygen.
  • the C 1-5 alkyl group is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, 3-pentyl group, and may include those selected from the group consisting of isomers thereof, but is not limited thereto. You may not.
  • L may be one selected from the group consisting of carbon monoxide (CO), nitrogen monoxide (NO), and acetonitrile (CH 3 CN), but may not be limited thereto. .
  • Tungsten compound according to an embodiment of the present application, W (CO) (HC ⁇ CH) 3 , W (CO) (CH 3 C ⁇ CCH 3 ) 3 , W (CO) (CH 3 CH 2 C ⁇ CCH 2 CH 3 ) 3 , W (CO) (CH 3 (CH 2 ) 2 C ⁇ C (CH 2 ) 2 CH 3 ) 3 , W (CO) (HC ⁇ CCH 3 ) 3 , W (CO) (HC ⁇ CCH 2 CH 3 ) 3 , W (CO) (HC ⁇ C (CH 2 ) 2 CH 3 ) 3 , W (CO) (HC ⁇ C (CH 2 ) 3 CH 3 ) 3 , W (CO) (HC ⁇ C ( CH 2 ) 4 CH 3 ) 3 , W (CO) (CH 3 C ⁇ CCH 2 CH 3 ) 3 , W (CO) (CH 3 C ⁇ C (CH 2 ) 2 CH 3 ) 3 , W (CO) (CH 3 C ⁇ C (CH 2 ) 3 CH 3 ) 3 , W (
  • forming the film by using the precursor composition for depositing a tungsten-containing film comprising the tungsten compound includes that performed by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD) It may be, but may not be limited thereto.
  • MOCVD organometallic chemical vapor deposition
  • ALD atomic layer deposition
  • the precursor composition for tungsten-containing film deposition may further include a stabilizer for inhibiting thermal decomposition of the tungsten compound, but may not be limited thereto.
  • the stabilizer is to inhibit the polymerization of the alkane, and can be used without particular limitation inhibitors commonly used to inhibit the polymerization reaction, for example, benzoquinone (benzoquinone), tetramethylbenzo Quinone (tetramethylbenzoquinone), chloranil (2,3,5,6-tetrachloro-1,4-benzoquinone), 4-tert-butylcatechol, 2,2-diphenyl-1 It may include, but is not limited to -picrylhydrazyl (2,2-diphenyl-1-picrylhydrazyl).
  • the tungsten-containing film deposition precursor composition according to an embodiment of the present disclosure includes a stabilizer, it may have better vaporization properties at a lower temperature than does not include a stabilizer, and does not evaporate when the temperature is increased. Can significantly reduce the amount of pyrolysis product remaining.
  • the tungsten-containing film deposition precursor composition according to the embodiment of the present application includes the stabilizer
  • a stabilizer having a similar degree of volatilization to the tungsten compound may be used.
  • the tungsten compound and the stabilizer are volatilized at the same ratio as the composition of the precursor composition solution, the composition of the precursor composition is kept relatively constant while the volatilization of the precursor composition proceeds.
  • the tungsten compound includes W (CO) (CH 3 CH 2 C ⁇ CCH 2 CH 3 ) 3
  • the stabilizer comprises 4-tert-butylcatechol. It may be, but may not be limited thereto.
  • the second aspect of the present disclosure relates to a precursor composition for depositing a tungsten-containing film including a tungsten compound, and detailed descriptions of portions overlapping with the first aspect of the present disclosure are omitted, but descriptions of the first aspect of the present disclosure are provided. Is equally applicable even if the description is omitted in the second aspect of the present application.
  • the tungsten precursor compound, tris (3-hexine) carbonyl tungsten [W (CO) (CH 3 CH 2 C ⁇ CCH 2 CH 3 ) 3 ] was obtained by synthesis according to known methods [Journal of the American Chemical Society (1963). ), 85 (14), 2174].
  • the tungsten precursor compound obtained was subjected to thermogravimetric analysis and differential scanning calorimetry analysis, and the results are shown in FIGS. 1 and 2.
  • FIG. 1 is a thermogravimetric analysis (TGA) graph of a tungsten compound prepared according to this example
  • FIG. 2 is a differential scanning calorimetry (DSC) graph of a tungsten compound prepared according to this example.
  • the substrate may be a silicon (Si) wafer, a wafer coated with a silicon oxide (SiO 2 ) film on the silicon substrate with a thickness of 100 nm, a wafer coated with a silicon nitride (SiN) film on a silicon substrate with a thickness of 50 nm, and titanium nitride (TiN) on the silicon substrate.
  • Si silicon
  • SiO 2 silicon oxide
  • SiN silicon nitride
  • TiN titanium nitride
  • a wafer was used, each of which was coated with a film thickness of 50 nm.
  • the temperature of the substrate was heated to 325 °C and 350 °C, respectively, and the compound obtained in Preparation Example 1 contained a stainless steel container (stainless steel) of the container at a temperature of 70 °C while heating the vessel at a flow rate of 60 sccm
  • the compound obtained in Preparation Example 1 was vaporized using an argon gas having a gas as a carrier gas.
  • the process pressure of the reactor in which gas flowed in a direction horizontal to the flat surface of the substrate was adjusted to 0.5 torr, and the tungsten precursor gas and hydrogen gas were alternately contacted with the substrate placed in the atomic layer deposition chamber.
  • the hydrogen gas was flowed at 60 sccm.
  • the cross section of the tungsten-containing film formed after repeating the gas supply cycle of 20 seconds-> Ar gas supply 10 seconds-> hydrogen gas supply 10 seconds-> Ar gas supply 10 seconds obtained in Preparation Example 1 was repeated 300 times. Observation was made with an electron microscope (SEM), and the results are shown in FIGS. 3 and 4.
  • FIGS. 3A-3D are cross-sectional scanning electron microscopy images of tungsten-containing films formed at a temperature of 325 ° C. of the substrate according to this embodiment
  • FIGS. 4A-4D are temperatures 350 of the substrate according to this embodiment.
  • a cross-sectional scanning electron microscope image of the films formed at < RTI ID 0.0 >
  • a tungsten-containing film having a generally flat surface was obtained on silicon, silicon oxide, silicon nitride, and titanium nitride substrates at the temperatures of 325 ° C and 350 ° C of the substrate, respectively. .
  • the temperature of the silicon (Si) substrate was heated to 350 ° C. and the tungsten compound W (CO) (CH 3 CH 2 C ⁇ CCH 2 CH 3 ) 3 obtained in Preparation Example 1 was placed in a stainless steel container at 70 ° C.
  • the tungsten-containing compound obtained in Preparation Example 1 was vaporized using argon gas having a flow rate of 60 sccm as a carrier gas while heating the vessel at temperature.
  • the working pressure of the reactor was adjusted to 0.5 torr, and the tungsten compound gas and hydrogen gas or ammonia gas obtained in Preparation Example 1 were alternately contacted with the silicon substrate placed in the same reactor as Example 1.
  • the hydrogen gas or the ammonia gas was flowed at a flow rate of 500 sccm.
  • the tungsten-containing film was formed by repeating the gas supply cycle of the compound gas supply 10 seconds-> Ar gas supply 10 seconds-> hydrogen gas or ammonia gas supply 20 seconds-> Ar gas supply 10 seconds obtained in Preparation Example 1 above 300 times. It was. Thereafter, the content of carbon, nitrogen, oxygen and tungsten according to the depth of the formed tungsten-containing film was analyzed using an OJ spectrometer, and the results are shown in FIGS. 5 and 6.
  • FIG. 5 is a result of Auger analysis of a tungsten-containing film formed using hydrogen (H 2 ) gas at a temperature of 350 ° C. of the substrate according to the present embodiment
  • FIG. 6 is described according to the present embodiment.
  • NH 3 ammonia
  • Example 3 Thermogravimetric Analysis of Tungsten-Containing Precursor Compositions for Deposition of Tungsten-Containing Films Containing W (CO) (CH 3 CH 2 C ⁇ CCH 2 CH 3 ) 3 With 4-tert-butylcatechol (TBC) Stabilizer TGA)
  • the tungsten compound W (CO) (CH 3 CH 2 C ⁇ CCH 2 CH 3 ) 3 prepared in Preparation Example 1 was 4-tert-butylcatechol (TBC). ) was subjected to thermogravimetric analysis (TGA) of a tungsten-containing film deposition precursor composition.
  • T 1/2 temperature corresponding to reaching 1/2 weight of the original sample at weight reduction with temperature
  • T 1/2 Is 7 ° C lower than T 1/2 (212 ° C) of 205 ° C without TBC.
  • the residual amount after evaporation of the precursor composition for deposition of a tungsten-containing film including the TBC stabilizer was 10.18%, which was significantly reduced compared to that of 16.96%.
  • the precursor composition for deposition of tungsten-containing film containing a TBC stabilizer has better vaporization properties at lower temperatures and the amount of pyrolysis products remaining without evaporation at elevated temperatures is significantly reduced. You can see that. Therefore, when using the tungsten-containing film deposition precursor composition further including the stabilizer to form a tungsten-containing film on the substrate by CVD or ALD method, the composition is thermally stable to form a tungsten compound precursor. It can transport well to the surface more efficiently.
  • a tungsten-containing film can be formed using the same method as in Examples 1 and 2, except that the precursor composition is contained.
  • the container made of stainless steel containing the precursor composition may be heated to a temperature of 70 ° C. as in Examples 1 and 2, or may be heated to a temperature selected from a range of about 63 ° C. to about 70 ° C., which is lower than this. It may not be limited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법 및 상기 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물에 관한 것이다.

Description

텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법 및 상기 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물
본원은 텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법 및 상기 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물에 관한 것이다.
반도체 소자 제조에서 여러 용도로 텅스텐 (W)-함유 막을 사용하고 있다. 통상, 텅스텐-함유 막은 화학기상 증착 (CVD) 기술이나 원자층 증착 (ALD) 기술에 의해 형성된다. 텅스텐-함유 막을 형성하기 위한 텅스텐 원료로서 헥사플루오르화 텅스텐 (WF6)이 널리 사용되어 왔다.
그러나 반도체 소자의 미세화가 진행됨에 따라 불소가 포함되지 않은 텅스텐 원료를 사용하여 텅스텐-함유 막을 형성할 필요가 있다. 불소를 포함하지 않은 증착용 전구체로서 여러 가지 텅스텐 화합물들이 알려져 있으나, 불소를 포함하지 않은 기존에 알려진 텅스텐 화합물들은 증착된 막에 질소나 산소가 많이 포함되는 문제가 있어서 바람직하지 못한 막 특성을 가질 수 있다.
예를 들어, 텅스텐-함유 막을 형성하기 위한 일반적인 유기금속 전구체로서는 텅스텐 카르보닐 화합물 [W(CO)6] 이 알려져 있는데, 이들 화합물에 포함된 카르보닐 (CO) 리간드가 낮은 온도에서도 쉽게 해리되어 별도의 반응 기체 없이도 낮은 온도에서 열분해에 의해 금속 텅스텐 막을 증착하는 데에는 유리하지만, 텅스텐 층의 물질 특성은 열 증착된 텅스텐 층으로의 CO 반응 부산물의 혼입으로 인해 악화될 수 있고, 그 결과 텅스텐 층의 전기전도도가 낮아 문제가 될 수 있다 [Bing Luo and Wayne L. Gladfelte (2009), "Chapter 7. Chemical Vapor Deposition of Metals: W, Al, Cu and Ru" in Anthony C Jones and Michael L Hitchman (Eds.) "Chemical Vapour Deposition: Precursors", (Page 322), Royal Society of Chemistry].
이에, 본원은 텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법 및 상기 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물을 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 하기 화학식 1로서 표시되는 텅스텐 화합물을 포함하는 기체를 기재 표면에 접촉시키는 것을 포함하는, 텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법을 제공한다:
[화학식 1]
Figure PCTKR2014004666-appb-I000001
;
상기 화학식 1 에서,
R1 내지 R6은 각각 독립적으로 H 또는 C1-5 알킬기를 포함하고,
L은 질소 또는 산소가 한 개 내지 세 개 포함되는 탄소수 0 내지 5의 비고리형 또는 고리형 중성 리간드를 포함하는 것임.
본원의 제 2 측면은, 상기 화학식 1로서 표시되는, 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물을 제공한다.
본원의 구현예에 따라, 알카인 (alkyne) 리간드를 포함하는 텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법 및 상기 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물을 사용하여 텅스텐-함유 막을 형성할 수 있다. 본원의 일부 구현예에 의하여 알카인 (alkyne) 리간드를 포함하는 텅스텐 화합물을 이용하여 화학기상 증착법 (Chemical Vapor Deposition; CVD) 또는 원자층 증착법 (Atomic Layer Deposition; ALD)을 통하여 텅스텐-함유 막을 형성할 수 있으며, 상기 텅스텐 화합물을 포함하는 막 증착용 조성물을 제공할 수 있다. 특히, 본원의 구현예에 의하면 질소 또는 산소 불순물이 적은 텅스텐-함유 막을 형성할 수 있다.
도 1은, 본원의 제조예 1에 따라 제조된 텅스텐 화합물 W(CO)(CH3CH2C≡CCH2CH3)3의 열무게 분석 (thermogravimetric analysis; TGA) 그래프이다.
도 2는, 본원의 제조예 1에 따라 제조된 텅스텐 화합물 W(CO)(CH3CH2C≡CCH2CH3)3의 시차 주사 열량계 분석 (differential scanning calorimetry; DSC) 그래프이다.
도 3a 내지 3d는, 본원의 실시예 1에 있어서, 기재의 온도 325℃에서 형성한 텅스텐-함유 막들의 단면 주사 전자 현미경 (Scanning Electron Microscopy; SEM) 이미지이다.
도 4a 내지 4d는, 본원의 실시예 1 에 있어서, 기재의 온도 350℃에서 형성한 텅스텐-함유 막들의 단면 주사 전자 현미경 이미지이다.
도 5는, 본원의 실시예 2 에 있어서, 기재의 온도 350℃에서 수소 (H2) 기체를 사용하여 형성한 텅스텐-함유 막의 오제이 (Auger) 분석 결과이다.
도 6은, 본원의 실시예 2 에 있어서, 기재의 온도 350℃에서 암모니아 (NH3) 기체를 사용하여 형성한 텅스텐-함유 막의 오제이 분석 결과이다.
도 7은, 본원의 실시예 3 에 있어서, 안정제를 첨가한 경우와 첨가하지 않은 경우 각각의 텅스텐-함유 막 증착용 전구체 조성물의 열무게 분석 (TGA) 그래프이다.
이하, 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들) "의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.
본원 명세서 전체에서, 용어 "알킬기"는, 각각, 선형 또는 분지형의, 포화 또는 불포화의 C1-10 또는 C1-5 알킬기를 포함하는 것일 수 있으며, 예를 들어, 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 헵실, 옥틸, 노닐, 데실, 또는 이들의 가능한 모든 이성질체를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원 명세서 전체에서, 용어 "중성 리간드 (L)"는, 각각, 질소 또는 산소 중에서 선택된 헤테로 원자가 한 개 내지 세 개 포함되는 탄소수 0 내지 5의 비고리형 또는 고리형 구조 화합물을 포함하는 것일 수 있으며, 예를 들어, 비공유 전자쌍을 가진 원자 또는 분자, CO, CS, NO, CO2, CS2, NH3, H2O, 아민, 에테르, 알킬나이트릴, 아이소시아나이드 (isocyanide), 및 이들의 유도체로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원 명세서 전체에서, 용어 "배위 결합"은 결합에 관여하는 두 개의 원자 중 일측 원자만을 중심으로 생각할 때, 결합을 형성하는 전자가 형식적으로 일측 원자로부터만 제공되어 있는 경우의 결합을 의미하는 것으로서, 통상적으로 착물 (complex) 등 배위 화합물의 중심에 있는 중심 금속 및 그 주위에 있는 리간드 사이에는 배위 결합 (coordinate covalent bond)에 의하여 결합이 형성된다.
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.
본원의 제 1 측면은, 하기 화학식 1로서 표시되는 텅스텐 화합물을 포함하는 기체를 기재 표면에 접촉시키는 것을 포함하는, 텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법을 제공한다:
[화학식 1]
Figure PCTKR2014004666-appb-I000002
;
상기 화학식 1 에서,
R1 내지 R6은, 각각 독립적으로, H 또는 C1-5 알킬기를 포함하고,
L은 질소 또는 산소가 한 개 내지 세 개 포함되는 탄소수 0 내지 5의 비고리형 또는 고리형 중성 리간드를 포함하는 것임.
본원의 일 구현예에 있어서, 상기 C1-5 알킬기는, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, sec-펜틸기, tert-펜틸기, neo-펜틸기, 3-펜틸기, 및 이들의 이성질체로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 L은 일산화탄소 (CO), 일산화질소 (NO), 및 아세토나이트릴 (CH3CN)로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 텅스텐 화합물은, W(CO)(HC≡CH)3, W(CO)(CH3C≡CCH3)3, W(CO)(CH3CH2C≡CCH2CH3)3, W(CO)(CH3(CH2)2C≡C(CH2)2CH3)3, W(CO)(HC≡CCH3)3, W(CO)(HC≡CCH2CH3)3, W(CO)(HC≡C(CH2)2CH3)3, W(CO)(HC≡C(CH2)3CH3)3, W(CO)(HC≡C(CH2)4CH3)3, W(CO)(CH3C≡CCH2CH3)3, W(CO)(CH3C≡C(CH2)2CH3)3, W(CO)(CH3C≡C(CH2)3CH3)3, W(CO)(CH3CH2C≡C(CH2)2CH3)3, W(CO)(HC≡CCH(CH3)2)3, W(CO)(HC≡CC(CH3)3)3, W(CO)(HC≡C(CH2CH(CH3)2)3, W(NO)(HC≡CH)3, W(NO)(CH3C≡CCH3)3, W(NO)(CH3CH2C≡CCH2CH3)3, W(NO)(CH3(CH2)2C≡C(CH2)2CH3)3, W(NO)(HC≡CCH3)3, W(NO)(HC≡CCH2CH3)3, W(NO)(HC≡C(CH2)2CH3)3, W(NO)(HC≡C(CH2)3CH3)3, W(NO)(HC≡C(CH2)4CH3)3, W(NO)(CH3C≡CCH2CH3)3, W(NO)(CH3C≡C(CH2)2CH3)3, W(NO)(CH3C≡C(CH2)3CH3)3, W(NO)(CH3CH2C≡C(CH2)2CH3)3, W(NO)(HC≡CCH(CH3)2)3, W(NO)(HC≡CC(CH3)3)3, W(NO)(HC≡C(CH2CH(CH3)2)3, W(CH3CN)(HC≡CH)3, W(CH3CN)(CH3C≡CCH3)3, W(CH3CN)(CH3CH2C≡CCH2CH3)3 W(CH3CN)(CH3(CH2)2C≡C(CH2)2CH3)3, W(CH3CN)(HC≡CCH3)3, W(CH3CN)(HC≡CCH2CH3)3, W(CH3CN)(HC≡C(CH2)2CH3)3, W(CH3CN)(HC≡C(CH2)3CH3)3, W(CH3CN)(HC≡C(CH2)4CH3)3, W(CH3CN)(CH3C≡CCH2CH3)3, W(CH3CN)(CH3C≡C(CH2)2CH3)3, W(CH3CN)(CH3C≡C(CH2)3CH3)3, W(CH3CN)(CH3CH2C≡C(CH2)2CH3)3, W(CH3CN)(HC≡CCH(CH3)2)3, W(CH3CN)(HC≡CC(CH3)3)3, 및 W(CH3CN)(HC≡C(CH2CH(CH3)2)3로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있다. 일 구현예에 있어서, 상기 텅스텐 화합물은 W(CO)(CH3CH2C≡CCH2CH3)3를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 텅스텐 화합물을 포함하는 기체가 상기 텅스텐 화합물의 열분해를 억제하는 안정제를 추가 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 안정제는 상기 텅스텐 화합물에 포함된 알카인 (alkyne)의 중합 반응을 억제함으로써 상기 텅스텐 화합물의 열분해를 억제하는 작용을 할 수 있다. 상기 안정제는 이러한 알카인 중합 반응을 억제하기 위해 통상적으로 사용되는 억제제들을 특별히 제한 없이 사용할 수 있으며, 예를 들어, 상기 안정제는, 벤조퀴논 (benzoquinone), 테트라메틸벤조퀴논 (tetramethylbenzoquinone), 클로라닐 (chloranil, 2,3,5,6-tetrachloro-1,4-benzoquinone), 4-tert-부틸카테콜 (4-tert-butylcatechol), 및 2,2-다이페닐-1-피크릴하이드라질(2,2-diphenyl-1-picrylhydrazyl) 로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서 상기 텅스텐 화합물을 포함하는 기체가 상기 텅스텐 화합물의 열분해를 억제하는 안정제를 추가 포함하는 경우, 안정제를 포함하지 않는 경우에 비해, 더 낮은 온도에서 더 우수한 기화 특성을 가질 수 있고, 온도를 높였을 때 증발하지 않고 잔류하는 열분해 생성물의 양을 현저히 감소시킬 수 있다.
본원의 일 구현예에 따른 상기 텅스텐 화합물은 텅스텐 중심 금속과 리간드 사이에 결합력이 약한 배위 결합에 의하여 연결되어 있는 착물 (complex)이므로, 비교적 낮은 온도에서도 리간드의 분해가 잘 일어나 증착 온도를 낮출 수 있다. 아울러, 상기 텅스텐 중심 금속으로부터 분리된 중성 리간드 (L) 및 알카인 (alkyne)은 진공 배기를 통하여 반응 챔버에서 쉽게 제거되므로 탄소, 질소, 산소 등 불순물이 형성된 텅스텐-함유 막 내에 잔류하지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 텅스텐-함유 막을 증착하는 것은, 상기 텅스텐 유도체 화합물을 포함하는 기체를 기재에 접촉시킴과 동시에 또는 교대로 수소 기체, 암모니아 기체, 산소 (O2) 기체 또는 오존 (O3) 기체를 함유하는 반응 기체를 상기 기재에 접촉시키는 것을 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 텅스텐-함유 막을 증착하는 것은 유기금속 화학기상증착법 (MOCVD) 또는 원자층 증착법 (ALD)에 의하여 수행되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 텅스텐 화합물-함유 기체를 기재에 접촉시키는 것에 추가로 반응 기체를 기재에 접촉시켜 텅스텐-함유 막을 기재 표면에 형성할 수 있다. 예를 들어, 상기 텅스텐 화합물-함유 기체와 반응 기체를 교대로 기재 표면에 접촉시키는 원자층 증착 (atomic layer deposition; ALD) 방법을 사용할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 텅스텐 화합물-함유 기체와 반응 기체를 동시에 기재 표면에 접촉시키는 화학 기상 증착 (chemical vapor deposition; CVD) 방법을 사용할 수 있으나, 이에 제한되지 않을 수 있다.
막 증착을 위한 ALD 장치 또는 CVD 장치에 있어서, 본원의 일 구현예에 따른 상기 텅스텐 화합물-함유 기체는 버블링, 기체상 유량제어 방법, 직접 액체 주입 방법, 또는 액체 이송 방법 등의 알려진 방법을 사용하여 기재 표면에 접촉되는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 ALD 및 CVD 방법에 이용되는 반응 기체로는 수소 (H2) 기체, 암모니아 (NH3) 기체, 산소 (O2) 기체, 또는 오존 (O3) 기체 등 반도체 공정에 사용하는 기체를 사용하여 텅스텐-함유 막을 형성할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 ALD 및 CVD 방법에 수소 기체 및/또는 암모니아 기체를 사용하여 막을 형성하는 경우, 불순물이 적게 포함된 텅스텐 금속 막을 형성할 수 있다. 예를 들어, 산소 기체 또는 오존 기체를 사용하여 막을 형성하는 경우, 텅스텐 산화물 막을 형성할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 2 측면은, 하기 화학식 1로서 표시되는 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물을 제공한다:
[화학식 1]
Figure PCTKR2014004666-appb-I000003
;
R1 내지 R6은, 각각 독립적으로, H 또는 C1-5 알킬기를 포함하고,
L은 질소 또는 산소가 한 개 내지 세 개 포함되는 탄소수 0 내지 5의 비고리형 또는 고리형 중성 리간드를 포함하는 것임.
본원의 일 구현예에 있어서, 상기 C1-5 알킬기는, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, sec-펜틸기, tert-펜틸기, neo-펜틸기, 3-펜틸기, 및 이들의 이성질체로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 L은 일산화탄소 (CO), 일산화질소 (NO), 및 아세토나이트릴 (CH3CN)로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따른 텅스텐 화합물은, W(CO)(HC≡CH)3, W(CO)(CH3C≡CCH3)3, W(CO)(CH3CH2C≡CCH2CH3)3, W(CO)(CH3(CH2)2C≡C(CH2)2CH3)3, W(CO)(HC≡CCH3)3, W(CO)(HC≡CCH2CH3)3, W(CO)(HC≡C(CH2)2CH3)3, W(CO)(HC≡C(CH2)3CH3)3, W(CO)(HC≡C(CH2)4CH3)3, W(CO)(CH3C≡CCH2CH3)3, W(CO)(CH3C≡C(CH2)2CH3)3, W(CO)(CH3C≡C(CH2)3CH3)3, W(CO)(CH3CH2C≡C(CH2)2CH3)3, W(CO)(HC≡CCH(CH3)2)3, W(CO)(HC≡CC(CH3)3)3, W(CO)(HC≡C(CH2CH(CH3)2)3, W(NO)(HC≡CH)3, W(NO)(CH3C≡CCH3)3, W(NO)(CH3CH2C≡CCH2CH3)3, W(NO)(CH3(CH2)2C≡C(CH2)2CH3)3, W(NO)(HC≡CCH3)3, W(NO)(HC≡CCH2CH3)3, W(NO)(HC≡C(CH2)2CH3)3, W(NO)(HC≡C(CH2)3CH3)3, W(NO)(HC≡C(CH2)4CH3)3, W(NO)(CH3C≡CCH2CH3)3, W(NO)(CH3C≡C(CH2)2CH3)3, W(NO)(CH3C≡C(CH2)3CH3)3, W(NO)(CH3CH2C≡C(CH2)2CH3)3, W(NO)(HC≡CCH(CH3)2)3, W(NO)(HC≡CC(CH3)3)3, W(NO)(HC≡C(CH2CH(CH3)2)3, W(CH3CN)(HC≡CH)3, W(CH3CN)(CH3C≡CCH3)3, W(CH3CN)(CH3CH2C≡CCH2CH3)3 W(CH3CN)(CH3(CH2)2C≡C(CH2)2CH3)3, W(CH3CN)(HC≡CCH3)3, W(CH3CN)(HC≡CCH2CH3)3, W(CH3CN)(HC≡C(CH2)2CH3)3, W(CH3CN)(HC≡C(CH2)3CH3)3, W(CH3CN)(HC≡C(CH2)4CH3)3, W(CH3CN)(CH3C≡CCH2CH3)3, W(CH3CN)(CH3C≡C(CH2)2CH3)3, W(CH3CN)(CH3C≡C(CH2)3CH3)3, W(CH3CN)(CH3CH2C≡C(CH2)2CH3)3, W(CH3CN)(HC≡CCH(CH3)2)3, W(CH3CN)(HC≡CC(CH3)3)3, 및 W(CH3CN)(HC≡C(CH2CH(CH3)2)3로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있다. 상기 텅스텐 화합물은 W(CO)(CH3CH2C≡CCH2CH3)3를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물을 이용하여 막을 형성하는 것은 유기금속 화학기상증착법 (MOCVD) 또는 원자층 증착법 (ALD)에 의하여 수행되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 텅스텐-함유 막 증착용 전구체 조성물은 상기 텅스텐 화합물의 열분해를 억제하는 안정제를 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 안정제는 알카인의 중합 반응을 억제하는 것으로서, 상기 중합 반응을 억제하기 위해 통상적으로 사용되는 억제제들을 특별히 제한 없이 사용할 수 있으며, 예를 들어, 벤조퀴논 (benzoquinone), 테트라메틸벤조퀴논 (tetramethylbenzoquinone), 클로라닐 (chloranil, 2,3,5,6-tetrachloro-1,4-benzoquinone), 4-tert-부틸카테콜 (4-tert-butylcatechol), 2,2-다이페닐-1-피크릴하이드라질 (2,2-diphenyl-1-picrylhydrazyl) 등을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 따른 텅스텐-함유 막 증착용 전구체 조성물이 안정제를 포함하는 경우, 안정제를 포함하지 않는 경우에 비해 더 낮은 온도에서 더 우수한 기화 특성을 가질 수 있고, 온도를 높였을 때 증발하지 않고 잔류하는 열분해 생성물의 양을 현저히 감소시킬 수 있다.
본원의 일 구현예에 따른 텅스텐-함유 막 증착용 전구체 조성물이 상기 안정제를 포함하는 경우, 상기 텅스텐 화합물과 휘발하는 정도가 비슷한 안정제를 사용할 수 있다. 상기 텅스텐 화합물과 상기 안정제가, 전구체 조성물 용액의 조성과 같은 비율로 휘발하면 상기 전구체 조성물의 휘발이 진행되는 동안, 상기 전구체 조성물의 조성이 비교적 일정하게 유지된다.
본원의 일 구현예에 따른 전구체 조성물에 있어서, 상기 텅스텐 화합물이 W(CO)(CH3CH2C≡CCH2CH3)3를 포함하고, 상기 안정제는 4-tert-부틸카테콜을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 2 측면은 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물에 관한 것으로서, 본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면에 대해 설명한 내용은 본원의 제 2 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.
[실시예]
<제조예 1> W(CO)(CH3CH2C≡CCH2CH3)3의 제조
텅스텐 전구체 화합물, 트리스(3-헥신)카르보닐텅스텐 [W(CO)(CH3CH2C≡CCH2CH3)3]은 알려진 방법에 따라 합성하여 수득되었다 [Journal of the American Chemical Society (1963), 85(14), 2174]. 수득된 텅스텐 전구체 화합물에 대하여 열무게 분석 및 시차 주사 열량계 분석을 수행하였고, 그 결과는 도 1 및 도 2에 나타내었다.
이와 관련하여, 도 1은 본 실시예에 따라 제조된 텅스텐 화합물의 열무게 분석 (TGA) 그래프이고, 도 2는 본 실시예에 따라 제조된 텅스텐 화합물의 시차 주사 열량계 분석 (DSC) 그래프이다.
<실시예 1> W(CO)(CH3CH2C≡CCH2CH3)3 화합물과 수소 (H2) 기체를 사용한 텅스텐-함유 막의 형성 및 단면 분석
상기 제조예 1에서 수득된 트리스(3-헥신)카르보닐텅스텐 [W(CO)(CH3CH2C≡CCH2CH3)3] 기체와 수소 (H2) 기체를 교대로 기재 표면에 접촉시켜 텅스텐-함유 막을 형성하였다. 기재로는 실리콘 (Si) 웨이퍼, 실리콘 기재 위에 산화실리콘 (SiO2) 막이 100 nm 두께로서 입혀진 웨이퍼, 실리콘 기재 위에 질화실리콘 (SiN) 막이 50 nm 두께로서 입혀진 웨이퍼, 및 실리콘 기재 위에 질화티타늄 (TiN) 막이 50 nm 두께로서 입혀진 웨이퍼 각각을 사용하였다. 이때, 상기 기재의 온도는 325℃ 및 350℃로 각각 가열하였고 상기 제조예 1에서 수득된 화합물을 스테인리스 스틸 (stainless steel) 재질의 용기에 담아 70℃의 온도에서 상기 용기를 가열하면서 60 sccm의 유속을 갖는 아르곤 기체를 운반기체로서 사용하여 상기 제조예 1에서 수득된 화합물을 기화시켰다. 상기 기재의 평평한 면에 수평한 방향으로 기체가 흐르는 반응기의 공정 압력은 0.5 torr로 조절하고, 상기 텅스텐 전구체 기체와 수소 기체를 교대로 원자층 증착 챔버 안에 놓인 상기 기재에 접촉시켰다. 상기 수소 기체는 60 sccm으로 흘려주었다. 상기 제조예 1에서 수득된 화합물 기체 공급 20 초 -> Ar 기체 공급 10 초 -> 수소 기체 공급 10 초 -> Ar 기체 공급 10 초의 기체 공급 주기를 300 회 반복한 후에 형성된 텅스텐-함유 막의 단면을 주사 전자 현미경 (SEM)으로 관찰하였고, 그 결과를 도 3 및 도 4에 나타내었다.
이와 관련하여, 도 3a 내지 3d는 본 실시예에 따라 상기 기재의 온도 325℃에서 형성한 텅스텐-함유 막들의 단면 주사 전자 현미경 이미지이고, 도 4a 내지 4d는 본 실시예에 따라 상기 기재의 온도 350℃에서 형성한 막들의 단면 주사 전자 현미경 이미지이다. 도 3a 내지 3d 및 4a 내지 4d에서 확인할 수 있듯이, 상기 기재의 온도 325℃ 및 350℃ 각각에서 실리콘, 산화실리콘, 질화실리콘, 질화티타늄 기재 위에서 모두 표면이 대체로 평탄한 텅스텐-함유 막이 얻어진 것을 확인할 수 있었다.
<실시예 2> W(CO)(CH3CH2C≡CCH2CH3)3 화합물과 수소 (H2) 또는 암모니아 (NH3) 기체를 사용하여 형성된 텅스텐-함유 막의 성분 분석
실리콘 (Si) 기재의 온도는 350℃로 가열하였고 상기 제조예 1에서 수득된 텅스텐 화합물 W(CO)(CH3CH2C≡CCH2CH3)3을 스테인리스강 재질의 용기에 담아 70℃의 온도에서 용기를 가열하면서 60 sccm의 유속을 갖는 아르곤 기체를 운반기체로 사용하여 상기 제조예 1에서 수득된 텅스텐-함유 화합물을 기화시켰다. 반응기의 공정 압력 (working pressure)은 0.5 torr로 조절하고, 상기 제조예 1에서 수득된 텅스텐 화합물 기체와 수소 기체 또는 암모니아 기체를 교대로 상기 실시예 1과 같은 반응기 안에 놓인 상기 실리콘 기재에 접촉시켰다. 상기 수소 기체 또는 상기 암모니아 기체는 500 sccm의 유속으로 흘려주었다. 상기 제조예 1에서 수득된 화합물 기체 공급 10 초 -> Ar 기체 공급 10 초 -> 수소 기체 또는 암모니아 기체 공급 20 초 -> Ar 기체 공급 10 초의 기체 공급 주기를 300 회 반복함으로써, 텅스텐-함유 막을 형성하였다. 이후 오제이 분광기를 이용하여 상기 형성된 텅스텐-함유 막의 깊이에 따른 탄소, 질소, 산소 및 텅스텐의 함량을 분석하여 도 5 및 도 6에 나타내었다.
이와 관련하여, 도 5는 본 실시예에 따라 기재의 온도 350℃에서 수소 (H2) 기체를 사용하여 형성한 텅스텐-함유 막의 오제이 (Auger) 분석 결과이고, 도 6은 본 실시예에 따라 기재의 온도 350℃에서 암모니아 (NH3) 기체를 사용하여 형성한 텅스텐-함유 막의 오제이 분석 결과이다. 도 5 및 도 6 에서 확인할 수 있듯이, 수소 기체를 사용한 경우와 암모니아 기체를 사용한 경우에 모두 실리콘 기재 위에 텅스텐 함량이 약 75%인 텅스텐-함유 막이 형성된 것을 알 수 있었다.
<실시예 3> 4-tert-butylcatechol (TBC) 안정제가 첨가된 W(CO)(CH3CH2C≡CCH2CH3)3를 포함하는 텅스텐-함유 막 증착용 전구체 조성물의 열무게 분석 (TGA)
CVD 또는 ALD 목적에 사용되는 전구체 조성물의 안정성을 향상시키기 위하여, 상기 제조예 1에서 제조된 텅스텐 화합물 W(CO)(CH3CH2C≡CCH2CH3)3에 4-tert-butylcatechol (TBC)을 3,000 ppm 첨가한, 텅스텐-함유 막 증착용 전구체 조성물의 열무게 분석 (TGA)을 실시하였다.
이 때 상기 텅스텐-함유 막 증착용 전구체 조성물 샘플을 약 5 mg 취하여 알루미나 시료 용기에 넣은 후 10 ℃/min의 승온 속도로 500℃까지 열무게 분석 측정을 하였고, 그 측정된 결과를 도 7에 나타내었다.
도 7에 나타낸 바와 같이, TBC 안정제를 포함하는 텅스텐-함유 막 증착용 전구체 조성물의 TGA 그래프에서, T1/2 (온도에 따른 무게 감소에서 원래 시료의 1/2 무게에 도달할 때에 해당하는 온도)은 205℃로서 TBC를 포함하지 않은 것의 T1/2 (212℃)에 비해 7℃ 낮아졌음을 알 수 있다. 또한 상기 TBC 안정제를 포함하는 텅스텐-함유 막 증착용 전구체 조성물의 증발 후의 잔여량이 10.18%로, TBC를 포함하지 않은 것의 잔여량이 16.96%인 것에 비해 크게 감소했음을 알 수 있다. 상기와 같은 결과로부터, TBC 안정제를 포함하는 텅스텐-함유 막 증착용 전구체 조성물이 더 낮은 온도에서 더 우수한 기화 특성을 갖는다는 것 및 온도를 높였을 때 증발하지 않고 남는 열분해 생성물의 양이 현저히 감소한다는 것을 확인할 수 있다. 따라서, CVD 또는 ALD 방법을 이용하여 기재에 텅스텐-함유 막을 형성하기 위해 상기 안정제를 추가 포함하는 상기 텅스텐-함유 막 증착용 전구체 조성물을 사용하는 경우, 상기 조성물이 열적으로 안정하여 텅스텐 화합물 전구체를 기재 표면까지 더 효율적으로 잘 운반할 수 있다.
안정제를 포함하는 텅스텐-함유 막 증착용 전구체 조성물을 이용하여 텅스텐-함유 막을 제조하는 경우, 스테인리스강 재질의 용기에 TBC가 포함된 텅스텐-함유 막 증착용 전구체 조성물을 담는 것 이외에는 상기 실시예 1 및 2와 동일한 방법을 사용하여 텅스텐-함유 막을 형성할 수 있다. 안정제 (예를 들어, TBC)가 포함된 텅스텐-함유 막 증착용 전구체 조성물이 담긴 스테인리스강 재질의 용기는 상기 실시예 1 및 2와 마찬가지로 70℃의 온도로 가열할 수도 있고, 이보다 낮은 온도인 약 63℃ 내지 약 70℃ 구간에서 선택된 온도로 가열할 수도 있으나, 이에 제한되지 않을 수 있다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.
본원에 다른 신규 루테늄 화합물은 상업적인 원료로부터 쉽게 대량생산할 수 있고, 상온에서 액체이므로 Ru 을 함유하는 막을 증착하는 목적으로 산업에 이용하기에 유리하다.

Claims (15)

  1. 하기 화학식 1로서 표시되는 텅스텐 화합물을 포함하는 기체를 기재 표면에 접촉시키는 것을 포함하는,
    텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법:
    [화학식 1]
    Figure PCTKR2014004666-appb-I000004
    ;
    상기 화학식 1 에서,
    R1 내지 R6은 각각 독립적으로 H 또는 C1-5 알킬기를 포함하고,
    L은 질소 또는 산소가 한 개 내지 세 개 포함되는 탄소수 0 내지 5의 비고리형 또는 고리형 중성 리간드를 포함하는 것임.
  2. 제 1 항에 있어서,
    상기 L은 일산화탄소 (CO), 일산화질소 (NO), 및 아세토나이트릴 (CH3CN)로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 텅스텐-함유 막의 증착 방법.
  3. 제 1 항에 있어서,
    상기 텅스텐 화합물은,
    W(CO)(HC≡CH)3, W(CO)(CH3C≡CCH3)3, W(CO)(CH3CH2C≡CCH2CH3)3, W(CO)(CH3(CH2)2C≡C(CH2)2CH3)3, W(CO)(HC≡CCH3)3, W(CO)(HC≡CCH2CH3)3, W(CO)(HC≡C(CH2)2CH3)3, W(CO)(HC≡C(CH2)3CH3)3, W(CO)(HC≡C(CH2)4CH3)3, W(CO)(CH3C≡CCH2CH3)3, W(CO)(CH3C≡C(CH2)2CH3)3, W(CO)(CH3C≡C(CH2)3CH3)3, W(CO)(CH3CH2C≡C(CH2)2CH3)3, W(CO)(HC≡CCH(CH3)2)3, W(CO)(HC≡CC(CH3)3)3, W(CO)(HC≡C(CH2CH(CH3)2)3, W(NO)(HC≡CH)3, W(NO)(CH3C≡CCH3)3, W(NO)(CH3CH2C≡CCH2CH3)3, W(NO)(CH3(CH2)2C≡C(CH2)2CH3)3, W(NO)(HC≡CCH3)3, W(NO)(HC≡CCH2CH3)3, W(NO)(HC≡C(CH2)2CH3)3, W(NO)(HC≡C(CH2)3CH3)3, W(NO)(HC≡C(CH2)4CH3)3, W(NO)(CH3C≡CCH2CH3)3, W(NO)(CH3C≡C(CH2)2CH3)3, W(NO)(CH3C≡C(CH2)3CH3)3, W(NO)(CH3CH2C≡C(CH2)2CH3)3, W(NO)(HC≡CCH(CH3)2)3, W(NO)(HC≡CC(CH3)3)3, W(NO)(HC≡C(CH2CH(CH3)2)3, W(CH3CN)(HC≡CH)3, W(CH3CN)(CH3C≡CCH3)3, W(CH3CN)(CH3CH2C≡CCH2CH3)3, W(CH3CN)(CH3(CH2)2C≡C(CH2)2CH3)3, W(CH3CN)(HC≡CCH3)3, W(CH3CN)(HC≡CCH2CH3)3, W(CH3CN)(HC≡C(CH2)2CH3)3, W(CH3CN)(HC≡C(CH2)3CH3)3, W(CH3CN)(HC≡C(CH2)4CH3)3, W(CH3CN)(CH3C≡CCH2CH3)3, W(CH3CN)(CH3C≡C(CH2)2CH3)3, W(CH3CN)(CH3C≡C(CH2)3CH3)3, W(CH3CN)(CH3CH2C≡C(CH2)2CH3)3, W(CH3CN)(HC≡CCH(CH3)2)3, W(CH3CN)(HC≡CC(CH3)3)3, 및 W(CH3CN)(HC≡C(CH2CH(CH3)2)3로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 텅스텐-함유 막의 증착 방법.
  4. 제 1 항에 있어서,
    상기 텅스텐 화합물이 W(CO)(CH3CH2C≡CCH2CH3)3를 포함하는 것인, 텅스텐-함유 막의 증착 방법.
  5. 제 1 항에 있어서,
    상기 텅스텐-함유 막을 증착하는 것은, 상기 텅스텐 유도체 화합물을 포함하는 기체를 상기 기재에 접촉시킴과 동시에 또는 교대로 수소 기체 암모니아 기체, 산소 기체 또는 오존 기체를 함유하는 반응 기체를 상기 기재에 접촉시키는 것을 추가 포함하는, 텅스텐-함유 막의 증착 방법.
  6. 제 1 항에 있어서,
    상기 텅스텐-함유 막을 증착하는 것은, 유기금속 화학기상증착법 (MOCVD) 또는 원자층 증착법 (ALD)에 의하여 수행되는 것을 포함하는 것인, 텅스텐-함유 막의 증착 방법.
  7. 제 1 항에 있어서,
    상기 텅스텐 화합물을 포함하는 기체가 상기 텅스텐 화합물의 열분해를 억제하는 안정제를 추가 포함하는 것인, 텅스텐-함유 막의 증착 방법.
  8. 7 항에 있어서,
    상기 안정제는, 벤조퀴논 (benzoquinone), 테트라메틸벤조퀴논 (tetramethylbenzoquinone), 클로라닐 (chloranil, 2,3,5,6-tetrachloro-1,4-benzoquinone), 4-tert-부틸카테콜 (4-tert-butylcatechol), 및 2,2-다이페닐-1-피크릴하이드라질(2,2-diphenyl-1-picrylhydrazyl) 로 이루어진 군으로부터 선택된 것을 포함하는 것인, 텅스텐-함유 막의 증착 방법.
  9. 하기 화학식 1로서 표시되는 텅스텐 화합물을 포함하는, 텅스텐-함유 막 증착용 전구체 조성물:
    [화학식 1]
    Figure PCTKR2014004666-appb-I000005
    ;
    상기 화학식 1 에서,
    R1 내지 R6 및 L은 각각 제 1 항에서 정의된 바와 같음.
  10. 제 9 항에 있어서,
    상기 L은 일산화탄소 (CO), 일산화질소 (NO), 및 아세토나이트릴 (CH3CN)로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 텅스텐-함유 막 증착용 전구체 조성물.
  11. 제 9 항에 있어서,
    상기 텅스텐 화합물은,
    W(CO)(HC≡CH)3, W(CO)(CH3C≡CCH3)3, W(CO)(CH3CH2C≡CCH2CH3)3, W(CO)(CH3(CH2)2C≡C(CH2)2CH3)3, W(CO)(HC≡CCH3)3, W(CO)(HC≡CCH2CH3)3, W(CO)(HC≡C(CH2)2CH3)3, W(CO)(HC≡C(CH2)3CH3)3, W(CO)(HC≡C(CH2)4CH3)3, W(CO)(CH3C≡CCH2CH3)3, W(CO)(CH3C≡C(CH2)2CH3)3, W(CO)(CH3C≡C(CH2)3CH3)3, W(CO)(CH3CH2C≡C(CH2)2CH3)3, W(CO)(HC≡CCH(CH3)2)3, W(CO)(HC≡CC(CH3)3)3, W(CO)(HC≡C(CH2CH(CH3)2)3, W(NO)(HC≡CH)3, W(NO)(CH3C≡CCH3)3, W(NO)(CH3CH2C≡CCH2CH3)3, W(NO)(CH3(CH2)2C≡C(CH2)2CH3)3, W(NO)(HC≡CCH3)3, W(NO)(HC≡CCH2CH3)3, W(NO)(HC≡C(CH2)2CH3)3, W(NO)(HC≡C(CH2)3CH3)3, W(NO)(HC≡C(CH2)4CH3)3, W(NO)(CH3C≡CCH2CH3)3, W(NO)(CH3C≡C(CH2)2CH3)3, W(NO)(CH3C≡C(CH2)3CH3)3, W(NO)(CH3CH2C≡C(CH2)2CH3)3, W(NO)(HC≡CCH(CH3)2)3, W(NO)(HC≡CC(CH3)3)3, W(NO)(HC≡C(CH2CH(CH3)2)3, W(CH3CN)(HC≡CH)3, W(CH3CN)(CH3C≡CCH3)3, W(CH3CN)(CH3CH2C≡CCH2CH3)3, W(CH3CN)(CH3(CH2)2C≡C(CH2)2CH3)3, W(CH3CN)(HC≡CCH3)3, W(CH3CN)(HC≡CCH2CH3)3, W(CH3CN)(HC≡C(CH2)2CH3)3, W(CH3CN)(HC≡C(CH2)3CH3)3, W(CH3CN)(HC≡C(CH2)4CH3)3, W(CH3CN)(CH3C≡CCH2CH3)3, W(CH3CN)(CH3C≡C(CH2)2CH3)3, W(CH3CN)(CH3C≡C(CH2)3CH3)3, W(CH3CN)(CH3CH2C≡C(CH2)2CH3)3, W(CH3CN)(HC≡CCH(CH3)2)3, W(CH3CN)(HC≡CC(CH3)3)3, 및 W(CH3CN)(HC≡C(CH2CH(CH3)2)3로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 텅스텐-함유 막 증착용 전구체 조성물.
  12. 제 9 항에 있어서,
    상기 텅스텐 화합물이 W(CO)(CH3CH2C≡CCH2CH3)3를 포함하는 것인, 텅스텐-함유 막 증착용 전구체 조성물.
  13. 제 9 항에 있어서,
    상기 텅스텐 화합물의 열분해를 억제하는 안정제를 추가 포함하는, 텅스텐-함유 막 증착용 전구체 조성물.
  14. 제 13 항에 있어서,
    상기 안정제는, 벤조퀴논 (benzoquinone), 테트라메틸벤조퀴논 (tetramethylbenzoquinone), 클로라닐 (chloranil, 2,3,5,6-tetrachloro-1,4-benzoquinone), 4-tert-부틸카테콜 (4-tert-butylcatechol), 및 2,2-다이페닐-1-피크릴하이드라질(2,2-diphenyl-1-picrylhydrazyl) 로 이루어진 군으로부터 선택된 것을 포함하는 것인, 텅스텐-함유 막 증착용 전구체 조성물.
  15. 제 13 항에 있어서,
    상기 텅스텐 화합물이 W(CO)(CH3CH2C≡CCH2CH3)3를 포함하고 상기 안정제가 4-tert-부틸카테콜 (4-tert-butylcatechol)을 포함하는 것인, 텅스텐-함유 막 증착용 전구체 조성물.
PCT/KR2014/004666 2013-05-24 2014-05-26 텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법 및 상기 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물 WO2014189339A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016515280A JP6201204B2 (ja) 2013-05-24 2014-05-26 タングステン化合物を用いたタングステン−含有膜の蒸着方法及び前記タングステン化合物を含むタングステン−含有膜蒸着用前駆体組成物
CN201480029932.7A CN105392917A (zh) 2013-05-24 2014-05-26 使用钨化合物沉积含钨膜的方法和用于沉积含钨膜的包含钨化合物的前体组合物
US14/893,427 US20160122867A1 (en) 2013-05-24 2014-05-26 Deposition method for tungsten-containing film using tungsten compound, and precursor composition for depositing tungsten-containing film, comprising tungsten compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0059238 2013-05-24
KR20130059238 2013-05-24
KR10-2014-0062800 2014-05-26
KR1020140062800A KR101822884B1 (ko) 2013-05-24 2014-05-26 텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법 및 상기 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물

Publications (1)

Publication Number Publication Date
WO2014189339A1 true WO2014189339A1 (ko) 2014-11-27

Family

ID=51933824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004666 WO2014189339A1 (ko) 2013-05-24 2014-05-26 텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법 및 상기 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물

Country Status (1)

Country Link
WO (1) WO2014189339A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403620A (en) * 1992-10-13 1995-04-04 Regents Of The University Of California Catalysis in organometallic CVD of thin metal films
US6616972B1 (en) * 1999-02-24 2003-09-09 Air Products And Chemicals, Inc. Synthesis of metal oxide and oxynitride
US20050215805A1 (en) * 2004-03-25 2005-09-29 Meiere Scott H Organometallic precursor compounds
KR20070073636A (ko) * 2006-01-05 2007-07-10 하.체. 스타르크 게엠베하 운트 코. 카게 텅스텐 및 몰리브덴 화합물, 및 이들의 화학적증착법(cvd)에서의 용도
KR20090095546A (ko) * 2006-09-28 2009-09-09 프랙스에어 테크놀로지, 인코포레이티드 유기금속 전구체 화합물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403620A (en) * 1992-10-13 1995-04-04 Regents Of The University Of California Catalysis in organometallic CVD of thin metal films
US6616972B1 (en) * 1999-02-24 2003-09-09 Air Products And Chemicals, Inc. Synthesis of metal oxide and oxynitride
US20050215805A1 (en) * 2004-03-25 2005-09-29 Meiere Scott H Organometallic precursor compounds
KR20070073636A (ko) * 2006-01-05 2007-07-10 하.체. 스타르크 게엠베하 운트 코. 카게 텅스텐 및 몰리브덴 화합물, 및 이들의 화학적증착법(cvd)에서의 용도
KR20090095546A (ko) * 2006-09-28 2009-09-09 프랙스에어 테크놀로지, 인코포레이티드 유기금속 전구체 화합물

Similar Documents

Publication Publication Date Title
WO2015130108A1 (ko) 지르코늄 함유막 형성용 전구체 조성물 및 이를 이용한 지르코늄 함유막 형성 방법
KR101703871B1 (ko) 신규 루테늄 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
EP3348667A1 (en) Chemical vapor deposition feedstock comprising organic ruthenium compound and chemical vapor deposition method using said chemical vapor deposition feedstock
KR101822884B1 (ko) 텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법 및 상기 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물
WO2015142053A1 (ko) 유기 게르마늄 아민 화합물 및 이를 이용한 박막 증착 방법
KR20210156444A (ko) 몰리브데넘 함유 전구체, 이를 이용한 몰리브데넘 함유 박막 및 이의 제조 방법.
CN113943321A (zh) 用于薄膜沉积的第5族金属化合物和使用该化合物形成含第5族金属的薄膜的方法
US9382616B2 (en) Chemical vapor deposition raw material comprising organoplatinum compound, and chemical vapor deposition method using the chemical vapor deposition raw material
WO2016133365A1 (ko) 알루미늄 화합물 및 이를 이용한 알루미늄-함유 막의 형성 방법
WO2019066179A1 (ko) 열적 안정성 및 반응성이 우수한 기상 증착 전구체 및 이의 제조방법
WO2014189339A1 (ko) 텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법 및 상기 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물
WO2022245039A1 (ko) 신규한 하프늄 함유 화합물, 이를 함유하는 하프늄 전구체 조성물, 상기 하프늄 전구체 조성물을 이용한 하프늄 함유 박막 및 이의 제조방법.
WO2014189340A1 (ko) 신규 루테늄 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
WO2020130215A1 (ko) 코발트 전구체, 이의 제조방법 및 이를 이용한 박막의 제조방법
TW200302291A (en) Process of forming thin film and precursor for chemical vapor deposition
JP3632475B2 (ja) 有機アミノタンタル化合物及びこれを含む有機金属化学蒸着用原料溶液並びにこれから作られる窒化タンタル膜
WO2023013949A1 (ko) 루테늄 유기금속화합물, 이의 제조방법 및 이를 이용하여 박막을 제조하는 방법
WO2017116124A1 (ko) 탄탈럼 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
KR102653042B1 (ko) 몰리브데늄 전구체 화합물, 이의 제조방법, 및 이를 이용한 몰리브데늄-함유 막의 증착 방법
WO2024058624A1 (ko) 란탄족 금속 함유 박막 형성용 전구체, 이를 이용한 란탄족 금속 함유 박막 형성 방법 및 상기 란탄족 금속 함유 박막을 포함하는 반도체 소자.
WO2024117809A1 (ko) 이트륨 또는 스칸듐 함유 박막 형성용 전구체, 이를 이용한 이트륨 또는 스칸듐 함유 박막 형성 방법 및 상기 이트륨 또는 스칸듐 함유 박막을 포함하는 반도체 소자.
WO2013157901A1 (ko) 4 족 전이금속-함유 전구체 화합물, 이의 제조 방법, 이를 포함하는 전구체 조성물, 및 이를 이용하는 박막의 증착 방법
KR102682682B1 (ko) 5족 금속 화합물, 이를 포함하는 증착용 전구체 조성물 및 이를 이용하여 박막을 형성하는 방법
KR100756388B1 (ko) 알루미늄증착 전구체 및 그의 제조방법
WO2022169290A1 (ko) 하프늄 전구체 화합물, 이를 포함하는 하프늄 함유 막 형성용 조성물 및 하프늄-함유 막 형성 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480029932.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801477

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14893427

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016515280

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801477

Country of ref document: EP

Kind code of ref document: A1