WO2014188773A1 - 太陽電池の製造方法及び太陽電池 - Google Patents

太陽電池の製造方法及び太陽電池 Download PDF

Info

Publication number
WO2014188773A1
WO2014188773A1 PCT/JP2014/058064 JP2014058064W WO2014188773A1 WO 2014188773 A1 WO2014188773 A1 WO 2014188773A1 JP 2014058064 W JP2014058064 W JP 2014058064W WO 2014188773 A1 WO2014188773 A1 WO 2014188773A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
semiconductor substrate
diffusion layer
substrate
outer peripheral
Prior art date
Application number
PCT/JP2014/058064
Other languages
English (en)
French (fr)
Inventor
信太郎 月形
渡部 武紀
大塚 寛之
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2015518131A priority Critical patent/JP6299757B2/ja
Publication of WO2014188773A1 publication Critical patent/WO2014188773A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a double-sided light-receiving type high-efficiency solar cell that suppresses leakage current at the time of reverse bias, and a solar cell.
  • an n-type silicon substrate obtained by slicing a single crystal silicon ingot produced by a Czochralski (CZ) method or a polycrystalline silicon ingot produced by a cast method by a multi-wire method is prepared.
  • fine irregularities (texture) having a maximum height of about 10 ⁇ m are formed on both the front surface and the back surface.
  • different conductivity type dopants are thermally diffused on both surfaces of the substrate.
  • a diffusion layer is formed on the first main surface as a surface by vapor phase diffusion using a dopant gas having a conductivity type opposite to that of the substrate.
  • a diffusion layer is formed on the second main surface serving as the back surface by diffusing by a vapor phase diffusion method using a dopant gas having the same conductivity type as the substrate.
  • TiO 2 or SiNx is deposited on the front and back surfaces to a thickness of, for example, about 70 nm to form an antireflection film.
  • a back electrode paste containing silver as a main component is printed in a comb shape on the back surface and the surface, dried and fired to form an ohmic contact with the electrode, thereby completing the solar cell.
  • the solar cell thus fabricated has a surface recombination of the aluminum electrode region on the back side of the substrate, compared to a solar cell having a general back side aluminum electrode (hereinafter referred to as an aluminum electrode) using a p-type semiconductor substrate. And has high photoelectric conversion characteristics. Moreover, the solar cell diffused from both sides has less warpage of the substrate and fewer cracks when modularized, compared to a solar cell having a general back surface aluminum electrode using a p-type semiconductor substrate.
  • phosphorous diffusion is performed on the light receiving surface (front surface) or the entire surface of the substrate in order to form a pn junction.
  • the shunt resistance decreases, and carrier leakage occurs during power generation. As a result, the solar cell characteristics deteriorate.
  • a step of normally separating the pn junction is included.
  • a method thereof there is a method of removing the outer peripheral edge portion (outer peripheral edge) of the light receiving surface, the substrate side end portion, and the rear outer peripheral edge region.
  • plasma etching technology that etches the substrate side edge using an etching gas such as CF 4
  • substrate edge removal technology by mechanical polishing Japanese Patent Laid-Open No. 55-003633 (Patent Document 1)
  • sandblasting Etching of the outer periphery of the back surface (Japanese Patent Application Laid-Open No.
  • Patent Document 2 2003-298080 (Patent Document 2)), joining and separation by laser irradiation and etch back technology that melts the outer periphery of the back surface of the substrate using an alkaline solvent to remove the diffusion layer
  • Patent Document 3 International Publication No. 2006/087786
  • one of the characteristics of solar cells is leakage current during reverse bias. This is because, in a module in which solar cells are connected in series, a reverse bias is applied from another solar cell connected in series when a part of the solar cell is shaded. At that time, a solar cell with a large leakage current, that is, a low withstand voltage, may locally overheat due to the leakage current, and the solar cell or the module may be damaged.
  • the reverse bias leakage current is proportional to the product of the respective dopant concentrations and increases in proportion to the applied reverse bias voltage when diffusion layers of different conductivity types are in contact with each other. It is an important parameter.
  • the leakage current when a reverse bias is applied is reduced by performing the junction separation step.
  • the BSF layer (p + layer) formed when the aluminum electrode is baked is locally formed only directly under the aluminum electrode, and the phosphorus diffusion layer (n + layer) is formed around the back side of the substrate.
  • the region where the n + layer and the p + layer are in contact is limited to the vicinity of the back surface aluminum electrode. Therefore, by the above-described junction separation method capable of continuously removing the phosphorous diffusion layer in the outer peripheral edge region from the light receiving surface edge portion, the reverse bias to the n + p + region due to the discontinuity of the n + layer. Application can be prevented.
  • the solar cell diffused from both sides of the substrate requires the formation of different p-type and n-type diffusion layers, and the phosphorus dopant that diffuses more easily than the boron dopant is not only the phosphorus diffusion surface, but also on the substrate side. It diffuses to the outer peripheral edge region of the end portion or boron diffusion surface, and a high concentration phosphorus diffusion layer is formed.
  • the leakage current at the time of reverse bias increases in proportion to the dopant concentration of the BSF layer in contact with the emitter layer.
  • the above-described junction separation method which is effective, cannot completely separate the solar cell diffused from both sides of the substrate. It has been difficult to produce a high-efficiency solar cell with low leakage current during reverse bias with good yield.
  • the solar cell in which the diffusion layers are formed on both surfaces of the substrate increases the leakage current at the time of reverse bias application, and increases the possibility of damaging the cell and the module by increasing the substrate temperature in the leakage current generation part. This was a factor that reduced module reliability.
  • the present invention has been made in view of the above circumstances, and is a high-efficiency double-sided light-receiving solar cell that electrically separates the front and back surfaces of a solar cell diffused from both sides of the substrate and has little leakage current during reverse biasing.
  • An object of the present invention is to provide a manufacturing method and a solar cell.
  • the present inventors have found that, as a method for separating the solar cell diffused from both sides of the substrate, it is possible to form a junction separation groove in the emitter layer in the outer peripheral region of the surface. It came to the conclusion that it is the most effective for low leakage current, and further intensive investigations led to the present invention.
  • this invention provides the manufacturing method and solar cell of the following solar cell.
  • the surface of the semiconductor substrate is irradiated with a laser along the outer peripheral edge of the diffusion layer having a conductivity type opposite to that of the semiconductor substrate to remove a portion inside the outer peripheral edge of the diffusion layer.
  • junction separation portion is a groove having a groove width of 5 ⁇ m to 30 ⁇ m and a groove depth of 5 ⁇ m to 30 ⁇ m.
  • Manufacturing method [6] The solar cell according to any one of [1] to [5], wherein the step of forming the junction separation portion is performed after the step of forming a diffusion layer on the front surface and the back surface of the semiconductor substrate. Production method.
  • a double-sided light receiving solar cell comprising a first conductive type semiconductor substrate having a second conductive type diffusion layer on the front surface and a first conductive type diffusion layer on the back surface, wherein the semiconductor substrate A junction separation portion for electrically separating the front surface and the back surface of the semiconductor substrate formed by removing the diffusion layer by laser irradiation at a portion inside the outer peripheral edge portion of the second conductivity type diffusion layer on the surface of the semiconductor substrate Solar cell.
  • the solar cell according to [7] wherein the conductivity type of the semiconductor substrate is n-type.
  • the conductivity type of the semiconductor substrate is p-type.
  • the junction separation portion is continuously arranged outside the surface electrode along the outer peripheral edge of the substrate in a region where the center of the width enters the inner side by a distance of 0.15 mm to 0.60 mm from the outer peripheral edge of the surface.
  • a high-efficiency solar cell with little leakage current at the time of reverse bias can be manufactured with high yield.
  • FIG. 1 It is a front view which shows the basic composition of the solar cell which concerns on this invention, (a) is a front view of the surface, (b) is a front view of a back surface. It is sectional drawing which shows the basic composition of the solar cell which concerns on this invention. It is sectional drawing which shows the manufacturing process as embodiment of the manufacturing method of the solar cell which concerns on this invention, (a) is a texture formation process, (b) is a diffused layer formation process, (c) is an antireflection film and passivation film. A forming process, (d) is a laser bonding separation process, and (e) is an electrode forming process. It is sectional drawing which shows 1st Embodiment using the n-type semiconductor substrate in the solar cell which concerns on this invention.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a solar cell of Comparative Example 1.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of a solar cell of Comparative Example 2.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a solar cell of Comparative Example 3.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a solar cell of Comparative Example 4.
  • the solar cell of the present invention is a double-sided light-receiving solar cell in which diffusion layers are formed on both sides of a semiconductor substrate.
  • the surface of the semiconductor substrate has finger electrodes 16f as current collecting electrodes. It has a large number of electrodes having a width of several hundreds to several tens of ⁇ m, and two bus bar electrodes 16b as current collecting electrodes for connecting solar cells.
  • the back surface of the semiconductor substrate also has two finger electrodes 17f as current collecting electrodes and two bus bar electrodes 17b as current collecting electrodes for connecting solar cells.
  • a diffusion layer 12p having a conductivity type (p-type) opposite to the conductivity type of the substrate is provided on the surface side of the n-type semiconductor substrate 10n.
  • the finger electrode 16f and the bus bar electrode 16b are provided on the top (the bus bar electrode 16b is not shown).
  • An antireflection film / passivation film 13 is provided in the other region of the diffusion layer 12p.
  • a diffusion layer 12n having the same conductivity type (n-type) as that of the substrate is provided on the back surface side of the semiconductor substrate 10n, and a finger electrode 17f and a bus bar electrode 17b are provided thereon (the bus bar electrode 17b is not formed).
  • an antireflection film / passivation film 14 is provided in the other region.
  • a diffusion layer 12n having a conductivity type (n-type) opposite to the conductivity type of the substrate is provided on the front surface side of the substrate, and on the back surface side of the substrate.
  • a diffusion layer 12p of the same conductivity type (p-type) as the conductivity type is provided.
  • Other configurations are the same as above.
  • the method for manufacturing a solar cell according to the present invention includes a step of forming a diffusion layer having a conductivity type opposite to the semiconductor substrate on the surface of the semiconductor substrate, and a conductivity type identical to that of the semiconductor substrate on the back surface of the semiconductor substrate. Forming a diffusion layer, and irradiating a laser along the outer peripheral edge of a diffusion layer (a region serving as an emitter layer) of the conductivity type opposite to the semiconductor substrate on the surface of the semiconductor substrate. And a step of forming a junction separation groove for electrically separating the front surface and the back surface of the semiconductor substrate by removing the peripheral portion.
  • the substrate is not necessarily made of single crystal silicon, but may be polycrystalline silicon or a compound semiconductor. Further, the shape of the silicon substrate is not particularly limited, and may be rectangular or circular. Here, a case where an n-type semiconductor substrate 10n (hereinafter referred to as a substrate 10n) which is an n-type single crystal silicon substrate is used will be described.
  • Texture formation process Subsequently, fine unevenness called texture is formed on both surfaces of the substrate 10n (not shown in FIG. 3). Texture is an effective way to reduce solar cell reflectivity.
  • the texture is about 10 to 30 minutes in an alkaline solution (concentration of 1 to 10% by mass, temperature of 60 to 100 ° C.) such as sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, or sodium hydrogen carbonate in which the substrate 10n is heated. It is formed by dipping. In many cases, a predetermined amount of 2-propanol is dissolved in the solution to promote the reaction. Since the texture is formed by etching the surface, it can be used instead of the damage etching.
  • the substrate 10n is washed in an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, or the like or a mixture thereof (up to this point, FIG. 3A).
  • diffusion layers 12p and 12n are formed on both surfaces of the substrate 10n (FIG. 3B). Specifically, first, a diffusion source (P, As, Sb, etc.) having the same conductivity type (first conductivity type) as that of the substrate 10n on the back surface (second main surface, the downward surface in FIG. 3) of the substrate 10n. A diffusing agent containing a dopant) such as phosphorus or antimony is applied and dried to form a diffusing agent coating layer, and heat treatment is performed at 800 to 1,000 ° C. for 30 minutes to 1 hour. Thus, the n-type diffusion layer 12n is formed on the second main surface.
  • a diffusion source P, As, Sb, etc.
  • a diffusing agent containing a dopant such as phosphorus or antimony
  • a silicon oxide film may be formed on the surface of the substrate 10n as a mask for preventing the formation of a diffusion layer.
  • a diffusion source B, Al, Ga, In
  • a diffusing agent containing a dopant such as boric acid in advance is applied and dried to form a diffusing agent coating layer, and a diffusing agent coating layer is formed at 950 to 1,050 ° C. for 10 minutes to By performing heat treatment for about one hour, the p-type diffusion layer 12p is formed on the first main surface.
  • the first conductive type diffusion source is supplied as an atmospheric gas during the diffusion heat treatment.
  • An n-type diffusion layer 12n may be simultaneously formed on the second main surface of the substrate 10n by introducing a gas such as phosphorus oxychloride (vapor phase diffusion method).
  • the diffusion heat treatment may be performed in a state where the first principal surfaces on which the diffusing agent coating layers of the two substrates 10n are formed face each other and overlap each other.
  • the glass formed on the surface of the substrate 10n is removed with hydrofluoric acid or the like.
  • antireflection films and passivation films 13 and 14 are formed on the front and back surfaces of the substrate 10n (FIG. 3C).
  • the antireflection film and passivation films 13 and 14 are formed by using a plasma CVD apparatus to form a SiNx film with a thickness of about 100 nm.
  • As the reaction gas monosilane (SiH 4 ) and ammonia (NH 3 ) are often mixed and used, but nitrogen can be used instead of NH 3 , and the process pressure can be adjusted and reacted.
  • hydrogen may be mixed into the reaction gas in order to promote the bulk passivation effect of the substrate.
  • the diffusion layers 12p and 12n formed on both surfaces of the substrate 10n are not formed only on desired surfaces in the diffusion heat treatment.
  • a boron diffusion layer is also formed on the back surface side by boron autodoping.
  • phosphorus auto-doping occurs on the front surface side, and a phosphorus diffusion layer is formed.
  • the diffusion concentration of the phosphorus dopant is increased by the phosphorus dopant having a diffusion coefficient larger than that of the boron dopant in the substrate side end portion and the outer surface peripheral edge region. As shown in FIG.
  • the concentration is compensated, and a high-concentration phosphorus diffusion layer (n + layer) 12n is continuously formed at the substrate side edge and the outer peripheral region of the surface (boron diffusion surface). This occurs even if a silicon oxide film for a mask is formed on the surface (boron diffusion surface) of the substrate.
  • the width of the high-concentration phosphorous diffusion layer 12n in the outer peripheral region of the surface (boron diffusion surface) ranges from at least 0.08 mm to a maximum of 0.12 mm from the outer periphery by resistance measurement using a p-type substrate. It was confirmed that it was formed.
  • the width of the high concentration phosphorus diffusion layer 12n in the outer peripheral region of the surface is the same as that when the diffusion heat treatment is performed after the silicon oxide film for the mask is formed, and when the diffusing agent is applied to the two substrates 10n. It was almost the same as the case where the diffusion heat treatment was performed in a state where the first principal surfaces on which the layers were formed face each other and overlapped.
  • the n-type substrate is exposed in the n + layer ( Specifically, when the n-type substrate is exposed at the edge region (outer periphery) on the outermost surface of the surface, the edge on the substrate side, or the outer periphery of the back surface of the substrate, Since a p + n + junction region exists on the 12p side and a voltage is applied to the n + layer in contact with the p + layer in the outer peripheral edge region of the light receiving surface through the n-type substrate, the p + n + junction region A reverse bias is applied and a leak current is generated.
  • the present inventors have made various studies to solve this problem.
  • the surface diffusion layer It is important to prevent reverse bias voltage application from the emitter layer connected to the electrode by forming a junction isolation groove in the emitter layer region and exposing the substrate of the opposite conductivity type to the diffusion layer.
  • the present invention the following laser bonding separation process is performed.
  • Laser bonding separation process In this step, laser irradiation is performed along the outer peripheral edge portion of the diffusion layer (diffusion layer 12p) having a conductivity type opposite to that of the substrate 10n on the surface of the substrate 10n, and a portion inside the outer peripheral edge portion of the diffusion layer 12p ( And the antireflection film / passivation film 13 in that portion) are removed, and a junction separation groove 15 for electrically separating the front surface and the back surface of the substrate 10n is formed (FIG. 3D).
  • the formation of the junction separation groove 15 uses a laser processing technique with a very short processing tact, so that stable processing accuracy can be obtained and the cost can be reduced. That is, regarding laser processing used in this step, a solid laser medium is called a solid laser, and is widely used as an industrial processing laser because a high peak intensity pulse can be obtained.
  • Typical examples include ruby lasers in which chromium ions are mixed into sapphire crystals and YAG lasers in which neodymium ions are put into YAG (yttrium, aluminum, garnet crystals) (exactly described as Nd: YAG laser).
  • the YAG laser emits light (infrared light) having a wavelength of 1064 nm.
  • green light having a wavelength of 532 nm and ultraviolet light having a wavelength of 355 nm can be emitted.
  • Silicon transmits some light at the fundamental wave of a YAG laser (1064 nm), whereas light from a SHG (Second Harmonic Generation) -YAG laser (wavelength of 532 nm) is almost completely absorbed by the surface. Due to its characteristics, when surface processing of a silicon substrate (substrate 10n) is performed, if a SHG-YAG laser is used, light absorption and evaporation occur simultaneously on the molten surface, enabling surface scribing without damaging internal devices. It becomes.
  • the maximum repetition frequency is as low as about 50 kHz, and there is a limit to high-speed processing applications.
  • the Nd: YVO 4 laser is capable of a high repetition frequency of 50 to 200 kHz, and is expected for high-speed processing such as scribing a thin film, cutting, and drilling a substrate. Laser processing with high output and high peak intensity is possible with a wide range of repetition frequencies, and laser processing with high-speed scanning can be realized.
  • the junction separation groove having the desired shape is obtained. 15 can be formed.
  • the center of the groove width is preferably 0.15 mm or more and 0.60 mm or less, more preferably 0.2 mm or more and 0.0. It may be formed continuously outside the surface electrodes (that is, the finger electrodes 16f and the bus bar electrodes 16b) along the outer peripheral edge of the substrate in a region that enters inside by a distance D of 4 mm or less.
  • the scanning pattern of the laser beam irradiated for forming the junction separation groove 15 on the surface of the substrate 10n is drawn with a single stroke from the outer peripheral edge of the surface of the substrate 10n by a certain distance D.
  • the laser may be scanned along the outer peripheral edge as shown in FIG.
  • a position that is located inward by a certain distance D from the outer peripheral edge of one side of each side of the rectangular substrate 10 n is end-to-end.
  • the laser may be scanned along the outer peripheral edge, and this may be performed on all four sides.
  • the groove width of the bonding separation groove 15 is preferably 5 to 30 ⁇ m, more preferably 10 to 20 ⁇ m, and the groove depth is preferably 5 to 30 ⁇ m, more preferably 10 to 20 ⁇ m. If the width and depth of the junction separation groove 15 are below the lower limit, electrical separation may be insufficient. If the width and depth are higher than the upper limit, chipping of the substrate may increase or the substrate may be easily broken.
  • This laser junction separation step is performed after the step of forming the diffusion layers 12p and 12n on the front and back surfaces of the silicon substrate, for example, immediately after the step of forming the diffusion layers 12p and 12n, after the step of forming the antireflection film and passivation films 13 and 14, It is preferable to carry out after the electrode forming step.
  • the finger electrodes 16f and 17f) are formed by screen printing (not shown) (FIG. 3E). That is, an Ag paste obtained by mixing Ag powder and glass frit with an organic binder is printed on the front and back surfaces of the substrate 10n and dried. After electrode printing, the SiNx film is formed into an antireflection film and a passivation film 13 and 14 by heat treatment.
  • Electrodes 16 and 17 are electrically connected to the silicon substrate (diffusion layers 12p and 12n). Firing is usually performed by treating at 700 to 800 ° C. for 5 to 30 minutes.
  • the electrodes 16 and 17 may be fired at once, or may be fired after printing each surface.
  • the conductivity type is a silicon substrate (semiconductor substrate 10n)
  • semiconductor substrate 10n semiconductor substrate 10n
  • the p-type and n-type conditions regarding the diffusion layer are switched. If so, the manufacturing method of the present invention is applicable. That is, in this case, in the diffusion layer forming step, the n-type diffusion layer 12n is formed on the front surface of the semiconductor substrate 10p, and the p-type diffusion layer 12p is formed on the back surface.
  • the diffusion is performed by irradiating a laser along the outer peripheral edge of a diffusion layer (diffusion layer 12n) having a conductivity type opposite to that of the substrate 10p on the surface of the semiconductor substrate 10p.
  • a portion inside the outer peripheral edge portion of the layer 12n (and the antireflection film / passivation film 13 in that portion) is removed, and a junction separation groove 15 for electrically separating the front surface and the back surface of the substrate 10p is formed.
  • the laser bonding / separation conditions in this case may be the same as those described above.
  • the center of the groove width of the junction separation groove 15 on the surface of the substrate 10p is preferably from 0.15 mm to 0.60 mm, more preferably from 0.2 mm to 0. It may be formed continuously outside the surface electrodes (that is, the finger electrodes 16f and the bus bar electrodes 16b) along the outer peripheral edge of the substrate within a region that is inside by a distance D of 4 mm or less.
  • the scanning pattern of the laser beam irradiated for forming the junction separation groove 15 on the surface of the substrate 10p is drawn with a single stroke from the outer periphery of the surface of the substrate 10p by a certain distance D.
  • the laser may be scanned along the outer peripheral edge as shown in FIG.
  • a position that is located at a certain distance D from the outer periphery of the surface of one side of each side of the rectangular substrate 10 p is end-to-end.
  • the laser may be scanned along the outer peripheral edge, and this may be performed on all four sides.
  • a solar cell was manufactured using an n-type substrate as follows. Crystal plane orientation (100), 15.6 cm square 200 ⁇ m thickness, as-slice specific resistance 2 ⁇ ⁇ cm (dopant concentration 7.2 ⁇ 10 15 cm ⁇ 3 ) Phosphorus-doped n-type single crystal silicon substrate is immersed in an aqueous sodium hydroxide solution The damaged layer was removed by etching, and texture formation was performed by soaking in an aqueous solution obtained by adding isopropyl alcohol to an aqueous potassium hydroxide solution and performing alkali etching.
  • the entire obtained silicon substrate was heat-treated at 1,000 ° C. for 1 hour to form a silicon oxide film.
  • the silicon oxide film on the back surface is removed using a chemical solution such as hydrofluoric acid, and a coating agent containing a phosphorus dopant is applied to the back surface, followed by heat treatment at 950 ° C. for 1 hour to form an n-type diffusion layer on the back surface. did.
  • glass components attached to the substrate were removed with a hydrofluoric acid solution and then washed.
  • a silicon oxide film is formed on the entire silicon substrate, the surface silicon oxide film is removed using a chemical solution such as hydrofluoric acid, and a coating agent containing boron dopant is applied to the surface, followed by heat treatment at 950 ° C. for 1 hour. A p-type diffusion layer was formed on the entire surface.
  • the glass component attached to the substrate was removed with a high-concentration hydrofluoric acid solution and then washed.
  • a silicon nitride film which is an antireflection film and a passivation film, was stacked on the front and back surfaces of the silicon substrate using a direct plasma CVD apparatus. This film thickness was 70 nm.
  • the antireflection film / passivation film in the region 0.15 mm inward from the outer periphery of the surface and the vicinity of the outer periphery of the p-type diffusion layer are removed to obtain a width of 20 ⁇ m and a depth of 20 ⁇ m.
  • a bonding separation groove having a thickness of 10 ⁇ m was continuously formed along the outer peripheral edge of the surface.
  • the laser irradiation was performed at a repetition frequency of 100 kHz, an output of 10.6 W, and a scan speed of 1,000 mm / sec.
  • a silver paste was electrode-printed on each of the front side and the rear side by screen printing, dried, and baked at 800 ° C. for 20 minutes to form a front electrode and a back electrode. In this case, the glass frit in the silver paste fires through the antireflection film / passivation film during firing to achieve electrical conduction between the electrode and the diffusion layer.
  • Example 2 A solar cell was fabricated in the same manner as in Example 1 except that the junction separation groove was formed in a region 0.30 mm inward from the outer peripheral edge of the surface.
  • Example 3 A solar cell was fabricated in the same process as in Example 1 except that the junction separation groove was formed in an area of 0.60 mm inside from the outer peripheral edge of the surface.
  • a solar cell was manufactured in the case where the substrate side end portion was separated by plasma etching. Specifically, a substrate having a diffusion layer formed on both sides by diffusion heat treatment is stacked so that plasma and radicals do not enter the front and back surfaces, and a plasma etching process using CF 4 gas is performed to remove the side edges of the substrate. A few ⁇ m was shaved. The same processes as in Example 1 were performed in the other processes other than the junction separation.
  • a solar cell was manufactured using a p-type substrate as follows. Crystal plane orientation (100), 15.6 cm square 200 ⁇ m thickness, as-slice specific resistance 2 ⁇ ⁇ cm (dopant concentration 7.2 ⁇ 10 15 cm ⁇ 3 ) Boron-doped p-type single crystal silicon substrate is immersed in an aqueous sodium hydroxide solution The damaged layer was removed by etching, and texture formation was performed by soaking in an aqueous solution obtained by adding isopropyl alcohol to an aqueous potassium hydroxide solution and performing alkali etching.
  • the entire obtained silicon substrate was heat-treated at 1,000 ° C. for 1 hour to form a silicon oxide film.
  • a chemical solution such as hydrofluoric acid
  • a coating agent containing a phosphorus dopant on the surface side
  • heat treatment is performed at 950 ° C. for 1 hour, and the n-type diffusion layer is formed on the surface side. Formed.
  • glass components attached to the substrate were removed with a hydrofluoric acid solution and then washed.
  • a silicon oxide film is formed on the entire silicon substrate, the silicon oxide film on the back side is removed using a chemical solution such as hydrofluoric acid, and a coating agent containing boron dopant is applied on the back side, and then at 950 ° C. for 1 hour. Heat treatment was performed to form a p-type diffusion layer on the back side. Next, the glass component attached to the substrate was removed with a high-concentration hydrofluoric acid solution and then washed. Subsequently, a silicon nitride film, which is an antireflection film and a passivation film, was stacked on the front and back surfaces of the silicon substrate using a direct plasma CVD apparatus. This film thickness was 70 nm.
  • the antireflection film / passivation film and the vicinity of the outer peripheral edge of the n-type diffusion layer in the region 0.10 mm inside from the outer peripheral edge of the surface are removed to obtain a width of 20 ⁇ m and a depth of 20 ⁇ m.
  • a 10 ⁇ m thick junction separation groove was continuously formed along the outer peripheral edge of the substrate.
  • the laser irradiation was performed at a repetition frequency of 50 kHz, an output of 12.5 W, and a scan speed of 1,000 mm / sec.
  • a silver paste was electrode-printed on each of the front side and the rear side by screen printing, dried, and baked at 800 ° C. for 20 minutes to form a front electrode and a back electrode. In this case, the glass frit in the silver paste fires through the antireflection film / passivation film during firing to achieve electrical conduction between the electrode and the diffusion layer.
  • Example 5 A solar cell was produced in the same process as in Example 4 except that the junction separation groove was formed in a region 0.20 mm inward from the outer peripheral edge of the surface.
  • Example 6 A solar cell was produced in the same process as in Example 4 except that the junction separation groove was formed in a region 0.30 mm inward from the outer peripheral edge of the surface.
  • the solar cells obtained in Examples, Reference Examples and Comparative Examples were subjected to current-voltage characteristics under a solar simulator (light intensity: 1 kW / m 2 , spectrum: AM1.5 global) in an atmosphere at 25 ° C. It was measured. Furthermore, the leakage current when a reverse bias of 12 V was applied was also measured. Table 2 shows the results including the processing tact required for joining and separation. In addition, the number in a table
  • surface is an average value of 100 cell made as an experiment by an Example, a reference example, and a comparative example.
  • the leakage current at the time of reverse bias was low, but the conversion efficiency was lowered. This is mainly due to a decrease in the short circuit current due to a decrease in the effective light receiving area.
  • the junction separation groove on the outer periphery of the surface is preferably formed in a region having a distance of 0.15 mm or more and 0.60 mm or less inward from the outer periphery. is doing.
  • the laser junction separation performed in Examples 4 to 6 has a leakage current while maintaining the conversion efficiency as compared with the plasma etching junction separation in Comparative Example 9. It was possible to reduce. Since a uniform emitter layer (n + layer) is formed on the surface side, a junction separation groove can be formed at an arbitrary processing position. In the laser junction separation performed in Comparative Examples 5 to 7, the leakage current was high. In particular, Comparative Examples 6 and 7 had a high leakage current value equivalent to that of Comparative Example 8 in which no junction separation groove was formed.
  • junction isolation grooves using a laser in the emitter layer in the outer peripheral region of the surface can maintain high conversion efficiency and leak compared to the fabrication of solar cells in which diffusion layers are formed on both sides using a semiconductor substrate. It is effective in reducing current and suggests that it is possible to realize low cost with high throughput.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration substantially the same as the technical idea described in the claims of the present invention and exhibits the same function and effect. It is included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 半導体基板の表面に該半導体基板とは逆の導電型となる拡散層を形成する工程と、上記半導体基板の裏面に該半導体基板と同一の導電型となる拡散層を形成する工程と、上記半導体基板の表面の該半導体基板とは逆の導電型の拡散層の外周縁部にレーザー照射して該拡散層の外周縁部より内側の部分を除去し、半導体基板の表面と裏面とを電気的に分離する接合分離溝を形成する工程とを有する太陽電池の製造方法により、逆バイアス時のリーク電流の少ない高効率の両面受光型の太陽電池を提供する。

Description

太陽電池の製造方法及び太陽電池
 本発明は、逆バイアス時のリーク電流を抑制する両面受光型の高効率の太陽電池の製造方法及び太陽電池に関する。
 現在、民生用の太陽電池を製造するにあたって、高効率化及び製造コストの低減が重要課題となっており、太陽電池の研究が広く行われている。その中で変換効率を高めるため、両面にそれぞれリン・ボロンの拡散層を形成する太陽電池がある。その詳細は例えば次の通りである。
 まず、チョクラルスキー(CZ)法により作製した単結晶シリコンインゴットやキャスト法により作製した多結晶シリコンインゴットをマルチワイヤー法でスライスすることにより得られたn型シリコン基板を用意する。次に、アルカリ溶液で基板表面のスライスによるダメージを取り除いた後、最大高さ10μm程度の微細凹凸(テクスチャ)を表面と裏面との両面に形成する。続いて、基板の両面に異なる導電型のドーパントを熱拡散させる。例えば、表面となる第一主面に基板とは逆導電型となるドーパントガスを用いて気相拡散させて拡散層(エミッタ層)を形成する。他方、裏面となる第二主面には基板と同導電型であるドーパントガスを用いた気相拡散法で拡散させ、拡散層(BSF層)を形成する。次に、表面及び裏面にはTiO2又はSiNxを、例えば、70nm程度の膜厚で堆積させて、反射防止膜を形成する。次に銀を主成分とする裏面電極用ペーストを裏面と表面に櫛型状に印刷し、乾燥させ、焼成することにより電極とオーミックコンタクトを形成し太陽電池が完成する。
 このようにして作られた太陽電池は、p型半導体基板を用いた一般的な裏面のアルミニウム電極(以下、アルミ電極)を有する太陽電池に比べて、基板裏面側のアルミ電極領域の表面再結合を抑制することができ、高い光電変換特性を有する。また、前記の両面から拡散させた太陽電池は、p型半導体基板を用いた一般的な裏面アルミ電極を有する太陽電池に比べて、基板の反りが小さく、モジュール化の際の割れが少ない。
 一般的に、太陽電池は正極側の電極と負極側の電極が同じ導電型の拡散層によって接続された場合、シャント抵抗が低下し、発電時にキャリアのリークが増大して太陽電池の変換効率が減少する。
 例えば、p型半導体基板を用いた一般的な裏面アルミ電極を有する太陽電池では、pn接合を形成するために、リン拡散を受光面(表面)又は基板全面に行う。このとき、基板側端部や裏面側に亘って形成されたリン拡散層を介して、受光面電極と裏面電極とが接続されると、シャント抵抗が低下し、発電する際にキャリアのリークが生じて太陽電池特性が低下する。
 このシャント抵抗の低下を防止するために、通常pn接合を分離する工程が含まれる。その方法としては、受光面外周エッジ部(外周縁)、基板側端部、裏面外周縁領域を除去する方法がある。例えば、CF4などのエッチングガスを用いて基板側端部をエッチングするプラズマエッチング技術や、機械研磨による基板エッジ除去技術(特開昭55-003633号公報(特許文献1))、サンドブラストを用いた裏面外周のエッチング(特開2003-298080号公報(特許文献2))、更にアルカリ系の溶剤を用いて基板の裏面外周縁を溶融させて拡散層を除去するエッチバック技術やレーザー照射によって接合分離溝を基板裏面外周縁領域に形成する技術(国際公開第2006/087786号(特許文献3))がある。これらは、いずれにおいても連続したエミッタ層を不連続とすることが可能であり、シャント抵抗の低下を防止して、pn接合分離を達成することが可能である。
 また、太陽電池特性の一つに逆バイアス時のリーク電流がある。これは、太陽電池を直列接続したモジュールにおいて、太陽電池の一部が影になった場合に、直列接続した他の太陽電池から逆バイアスがかかる。その際、リーク電流の多い、即ち耐圧が低い太陽電池はリーク電流によって局所的に過熱し、太陽電池やモジュールが破損する場合がある。一般的に、逆バイアスのリーク電流は、異なる導電型の拡散層が接する場合、それぞれのドーパント濃度の積に比例し、印加される逆バイアス電圧に比例して増大し、太陽電池の信頼性において重要なパラメーターである。
 p型半導体基板を用いた一般的な裏面アルミ電極を有する太陽電池では、上記接合分離工程を行うことによって、逆バイアスが印加された場合のリーク電流が小さくなる。これは、アルミ電極を焼成した時に形成されるBSF層(p+層)がアルミ電極直下のみに局所的に形成され、リン拡散層(n+層)が基板裏面側に回りこんで形成された場合でも、n+層とp+層が接する領域が裏面アルミ電極近傍に限定されるからである。従って、受光面エッジ部から裏面外周縁領域のリン拡散層を連続的に除去することが可能な上記接合分離方法によって、n+層が不連続になることによってn++領域への逆バイアス印加を防ぐことが可能となる。
 一方、上記基板両面から拡散させた太陽電池は、p型及びn型の異なる拡散層を形成することが必要であり、ボロンドーパントよりも拡散しやすいリンドーパントがリン拡散面だけでなく、基板側端部やボロン拡散面の外周縁領域に拡散し、高濃度リン拡散層が形成されてしまう。
 また、一般的に逆バイアス時のリーク電流はエミッタ層に接するBSF層のドーパント濃度に比例して増大する。
 そのため、p型半導体基板を用いた一般的な裏面アルミ電極を有する太陽電池では効果のあった上記接合分離方法では、基板両面から拡散させた太陽電池を完全にpn接合分離することができず、逆バイアス時のリーク電流が少ない高効率の太陽電池を歩留まり良く作製することが困難であった。
 また、基板両面に拡散層を形成した太陽電池は、逆バイアス印加時のリーク電流が多くなり、リーク電流発生部において基板温度が上昇することでセル及びモジュールを損傷する可能性が高くなるため、モジュール信頼性を低下させる要因となっていた。
特開昭55-003633号公報 特開2003-298080号公報 国際公開第2006/087786号
 本発明は、上記事情に鑑みなされたもので、基板両面から拡散させた太陽電池の表面と裏面とを電気的に分離し、逆バイアス時のリーク電流の少ない高効率の両面受光型の太陽電池の製造方法及び太陽電池を提供することを目的とする。
 本発明者らは、鋭意研究の結果、基板両面から拡散させた太陽電池の接合分離方法として、表面外周縁領域のエミッタ層内に接合分離溝を形成することが高セル特性及び逆バイアス時の低リーク電流に対して最も効果的であるという結論に至り、更に鋭意検討して本発明を成すに至った。
 即ち、本発明は、下記の太陽電池の製造方法及び太陽電池を提供する。
〔1〕 半導体基板の表面に該半導体基板とは逆の導電型となる拡散層を形成する工程と、上記半導体基板の裏面に該半導体基板と同一の導電型となる拡散層を形成する工程と、上記半導体基板の表面の該半導体基板とは逆の導電型の拡散層の外周縁部に沿ってレーザー照射して該拡散層の外周縁部より内側の部分を除去し、半導体基板の表面と裏面とを電気的に分離する接合分離部を形成する工程とを有することを特徴とする両面受光型の太陽電池の製造方法。
〔2〕 半導体基板の導電型がn型であることを特徴とする〔1〕記載の太陽電池の製造方法。
〔3〕 半導体基板の導電型がp型であることを特徴とする〔1〕記載の太陽電池の製造方法。
〔4〕 接合分離部は、幅の中心が表面外周縁から0.15mm以上0.60mm以下の距離だけ内側に入った領域内で基板外周縁に沿って表面電極よりも外側に連続的に形成された溝であることを特徴とする〔1〕~〔3〕のいずれかに記載の太陽電池の製造方法。
〔5〕 接合分離部は、溝幅が5μm以上30μm以下であり、溝深さが5μm以上30μm以下の溝であることを特徴とする〔1〕~〔4〕のいずれかに記載の太陽電池の製造方法。
〔6〕 上記接合分離部を形成する工程を半導体基板の表面及び裏面に拡散層を形成する工程の後に実施することを特徴とする〔1〕~〔5〕のいずれかに記載の太陽電池の製造方法。
〔7〕 表面に第二の導電型拡散層を有し、裏面に第一の導電型拡散層を有する第一の導電型の半導体基板からなる両面受光型の太陽電池であって、上記半導体基板の表面の第二の導電型拡散層の外周縁部より内側の部分にレーザー照射により該拡散層が除去されて形成された半導体基板の表面と裏面とを電気的に分離する接合分離部を有する太陽電池。
〔8〕 半導体基板の導電型がn型であることを特徴とする〔7〕記載の太陽電池。
〔9〕 半導体基板の導電型がp型であることを特徴とする〔7〕記載の太陽電池。
〔10〕 接合分離部は、幅の中心が表面外周縁から0.15mm以上0.60mm以下の距離だけ内側に入った領域内で基板外周縁に沿って表面電極よりも外側に配置される連続的な溝であることを特徴とする〔7〕~〔9〕のいずれかに記載の太陽電池。
〔11〕 接合分離部は、溝幅が5μm以上30μm以下であり、溝深さが5μm以上30μm以下の溝であることを特徴とする〔7〕~〔10〕のいずれかに記載の太陽電池。
 本発明によれば、半導体基板の表面の外周縁領域でレーザー接合分離を行うことで、逆バイアス時のリーク電流の少ない高効率の太陽電池を歩留まり良く作製することができる。
本発明に係る太陽電池の基本構成を示す正面図であり、(a)は表面の正面図、(b)は裏面の正面図である。 本発明に係る太陽電池の基本構成を示す断面図である。 本発明に係る太陽電池の製造方法の実施形態としての製造工程を示す断面図であり、(a)はテクスチャ形成工程、(b)は拡散層形成工程、(c)は反射防止膜兼パッシベーション膜形成工程、(d)はレーザー接合分離工程、(e)は電極形成工程である。 本発明に係る太陽電池においてn型半導体基板を用いた第1の実施形態を示す断面図である。 図4の太陽電池における接合分離溝の形成例を示す正面図である。 図4の太陽電池における接合分離溝の別の形成例を示す正面図である。 本発明に係る太陽電池においてp型半導体基板を用いた第2の実施形態を示す断面図である。 図7の太陽電池における接合分離溝の形成例を示す正面図である。 図7の太陽電池における接合分離溝の別の形成例を示す正面図である。 比較例1の太陽電池の概略構成を示す断面図である。 比較例2の太陽電池の概略構成を示す断面図である。 比較例3の太陽電池の概略構成を示す断面図である。 比較例4の太陽電池の概略構成を示す断面図である。
 以下、本発明に係る太陽電池の製造方法及び太陽電池について説明する。
 図1及び図2に、本発明に係る太陽電池の基本構成を示す。
 本発明の太陽電池は、半導体基板の両面に拡散層が形成された両面受光型の太陽電池であり、図1(a)に示すように、半導体基板の表面において集電電極としてフィンガー電極16fと呼ばれる数百~数十μm幅の電極を多数有し、また太陽電池を連結するための集電電極としてのバスバー電極16bを2本有する。また、図1(b)に示すように、半導体基板の裏面においても集電電極としてのフィンガー電極17fと、太陽電池を連結するための集電電極としてのバスバー電極17bを2本有する。
 また、この太陽電池の断面構造として、図2に示すように、n型の半導体基板10nの表面側には基板の導電型と逆の導電型(p型)の拡散層12pが設けられ、この上にフィンガー電極16f及びバスバー電極16bが設けられる(バスバー電極16bは不図示)。なお、拡散層12pのそれ以外の領域には反射防止膜兼パッシベーション膜13が設けられている。また、半導体基板10nの裏面側には基板の導電型と同一の導電型(n型)の拡散層12nが設けられ、この上にフィンガー電極17f及びバスバー電極17bが設けられ(バスバー電極17bは不図示)、それ以外の領域には反射防止膜兼パッシベーション膜14が設けられる。
 なお、図2において、p型の半導体基板10pの場合には、基板の表面側には基板の導電型と逆の導電型(n型)の拡散層12nが設けられ、裏面側には基板の導電型と同一の導電型(p型)の拡散層12pが設けられる。それ以外の構成は上記と同じである。
 本発明に係る太陽電池の製造方法は、半導体基板の表面に該半導体基板とは逆の導電型となる拡散層を形成する工程と、上記半導体基板の裏面に該半導体基板と同一の導電型となる拡散層を形成する工程と、上記半導体基板の表面の該半導体基板とは逆の導電型の拡散層(エミッタ層となる領域)の外周縁部に沿ってレーザー照射して該拡散層の外周縁部を除去し、半導体基板の表面と裏面とを電気的に分離する接合分離溝を形成する工程とを有することを特徴とする。
 以下、図3に基づき、本発明の太陽電池の製造方法を具体的に説明する。
[シリコン基板の準備]
 高純度シリコンにリンあるいは砒素、アンチモンのようなV族元素をドープし、比抵抗0.1~5Ω・cmとしたアズカット単結晶{100}n型シリコン基板表面のスライスダメージを、濃度5~60質量%の水酸化ナトリウムや水酸化カリウムのような高濃度のアルカリもしくはふっ酸と硝酸の混酸などを用いてエッチングする。単結晶シリコン基板は、CZ法、FZ法のいずれの方法によって作製されてもよい。基板は必ずしも単結晶シリコンである必要はなく、多結晶シリコンや化合物半導体でも構わない。また、シリコン基板の形状も特に限定されず、矩形、円形のいずれでもよい。ここでは、n型単結晶シリコン基板であるn型半導体基板10n(以下、基板10n)を用いる場合を説明する。
[テクスチャ形成工程]
 引き続き、基板10nの両面にテクスチャと呼ばれる微小な凹凸形成を行う(図3では凹凸表示省略)。テクスチャは太陽電池の反射率を低下させるための有効な方法である。テクスチャは、基板10nを加熱した水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウムなどのアルカリ溶液(濃度1~10質量%、温度60~100℃)中に10~30分間程度浸漬することで形成される。上記溶液中に、所定量の2-プロパノールを溶解させ、反応を促進させることが多い。テクスチャ形成は、表面のエッチングを行っていることになるため、前記ダメージエッチングの代用とすることも可能である。
 以上の工程の後、塩酸、硫酸、硝酸、ふっ酸等もしくはこれらの混合液の酸性水溶液中で基板10nを洗浄する(ここまで図3(a))。
[拡散層形成工程]
 次いで、基板10nの両面に拡散層12p、12nを形成する(図3(b))。
 詳しくは、まず基板10nの裏面(第二主面、図3において下向きの面)に基板10nの導電型と同一の導電型(第一の導電型)となる拡散源(P、As、Sb等のドーパント)を含む拡散剤、例えばリンやアンチモン等を含有する材料を塗布し乾燥させることで拡散剤塗布層を形成し、800~1,000℃で30分~1時間程度の熱処理を施すことで、第二主面上にn型の拡散層12nを形成する。なお、このとき、基板10nの表面に拡散層の形成を防止するマスクとしてシリコン酸化膜を形成しておくとよい。
 次に、基板10nの表面(第一主面、図3において上向きの面)に基板10nの導電型と逆の導電型(第二の導電型)となる拡散源(B、Al、Ga、In等のドーパント)を含む拡散剤、例えば予めホウ酸を純水に溶解しておいた拡散剤を塗布し乾燥させることで、拡散剤塗布層を形成し、950~1,050℃で10分~1時間程度の熱処理を施すことで、第一主面上にp型の拡散層12pを形成する。
 なお、基板10nの表面(第一主面)に第二の導電型の拡散剤を塗布して拡散剤塗布層を形成した後、拡散熱処理時に雰囲気ガスとして第一の導電型の拡散源を供給するガス、例えばオキシ塩化リンを導入することで、基板10nの第二主面にn型の拡散層12nを同時に形成するようにしてもよい(気相拡散法)。この場合、2枚の基板10nの拡散剤塗布層を形成した第一主面同士を向き合わせて重ね合わせた状態で上記拡散熱処理を施すとよい。
 拡散熱処理が終わったら、基板10n表面に形成されたガラスをふっ酸などで除去する。
[反射防止膜兼パッシベーション膜形成工程]
 次いで、基板10nの表裏面に反射防止膜兼パッシベーション膜13、14を形成する(図3(c))。反射防止膜兼パッシベーション膜13、14の形成にはプラズマCVD装置を用いSiNx膜を厚さ約100nmで製膜する。なお、反応ガスとして、モノシラン(SiH4)及びアンモニア(NH3)を混合して用いることが多いが、NH3の代わりに窒素を用いることも可能であり、また、プロセス圧カの調整、反応ガスの希釈、更には基板に多結晶シリコンを用いた場合には基板のバルクパッシベーション効果を促進するため、反応ガスに水素を混合することもある。
 ところで、基板10nの両面それぞれに形成される拡散層12p、12nは、拡散熱処理において、所望の面だけに形成されるものではない。例えば、表面側にボロン拡散を行っている際には、裏面側にもボロンオートドープによりボロン拡散層が形成される。また、裏面側にリン拡散を行っている際にも表面側にリンオートドープが起こり、リン拡散層が形成される。その結果、基板側端部及び表面外周縁領域において、ボロンドーパントよりも拡散係数が大きいリンドーパントによってリンドーパントの拡散濃度が高くなってしまい、図3(b)に示すようにこれらの領域のボロン濃度が補償され、基板側端部及び表面(ボロン拡散面)外周縁領域に高濃度リン拡散層(n+層)12nが連続して形成されることになる。これは基板の表面(ボロン拡散面)にマスク用のシリコン酸化膜を形成しておいても発生する。なお、表面(ボロン拡散面)外周縁領域における高濃度リン拡散層12nの幅は、p型基板を用いた抵抗測定により、外周縁から少なくとも0.08mmまで、最大0.12mmまでの領域に亘って形成されていることを確認した。また、表面(ボロン拡散面)外周縁領域における高濃度リン拡散層12nの幅は、上記マスク用のシリコン酸化膜を形成した後に拡散熱処理を施した場合と、2枚の基板10nの拡散剤塗布層を形成した第一主面同士を向き合わせて重ね合わせた状態で上記拡散熱処理を施した場合とで同程度であった。
 この高濃度リン拡散層(n+層)12nが高濃度ボロン拡散層(p+層)12pに接している状態(p++接合)で、この領域に逆バイアスが印加されると、p++接合領域に電界がかかり、トンネル効果によってリーク電流が増大してしまう。一般的な太陽電池におけるpn接合分離が発電時(順バイアス時)における正極電極及び負極電極の拡散層を介した導通を阻止するために行われるのに対し、本発明における後述するレーザー接合分離は更に逆バイアス時のリーク電流も低減する効果も併せ持っている。例えば、n型基板を用いて、表面側にボロン拡散層(拡散層12p)、裏面側にリン拡散層(拡散層12n)を形成した太陽電池において、n+層内でn型基板の露出(接合分離)が行われた場合、具体的には、表面最外周のエッジ領域(外周縁)や基板側端部、又は基板裏面外周縁でn型基板を露出させたとしても、表面の拡散層12p側にp++接合領域が存在しており、受光面外周縁領域のp+層に接したn+層にはn型基板を介して電圧がかかるため、p++接合領域に逆バイアスが印加されてリーク電流を発生させてしまう。
 ここで、本発明者らはこの問題を解決すべく種々検討したところ、両面に拡散層を有する太陽電池においてp++接合領域に逆バイアスが印加されないようにする方法として、表面拡散層(エミッタ層)の領域内に接合分離の溝を形成し、該拡散層とは逆の導電型の基板を露出させることで電極に接続したエミッタ層からの逆バイアスの電圧印加を防止することが重要であることを見出し、鋭意検討を行い、本発明を成すに至った。
 即ち、本発明では下記のレーザー接合分離工程の処理を行う。
[レーザー接合分離工程]
 本工程では、基板10nの表面の該基板10nとは逆の導電型の拡散層(拡散層12p)の外周縁部に沿ってレーザー照射して該拡散層12pの外周縁部より内側の部分(及びその部分の反射防止膜兼パッシベーション膜13を含む)を除去し、基板10nの表面と裏面とを電気的に分離する接合分離溝15を形成する(図3(d))。
 接合分離溝15の形成は処理タクトが非常に短いレーザー加工技術を用いることで、安定した加工精度が得られ、低コスト化することが可能となる。
 即ち、本工程で利用するレーザー加工に関し、レーザー媒体が固体であるものを固体レーザーといい、高ピーク強度パルスが得られることにより、広く工業用加工レーザーとして利用されている。その中で、クロムイオンをサファイア結晶に混入させたルビーレーザーやネオジウムイオンをYAG(イットリウム・アルミニウム・ガーネット結晶)に入れたYAGレーザー(正確にはNd:YAGレーザーと記述する)が代表的であり、YAGレーザーは波長が1064nmの光(赤外線)を発するが、非線形光学結晶を用いて高調波を発生させることによって、波長532nmの緑色の光や波長355nmの紫外線なども出すことができるようになっている。波長532nmのグリーンレーザーの光エネルギーはeV=1238.9/λの式より、eV=2.33であるので、シリコンのバンドギャップ1.1eVの2倍以上のエネルギーを持っており、シリコン基板の加工を行うには十分な光エネルギーである。
 シリコンはYAGレーザーの基本波(1064nm)ではいくらか光が透過するのに対し、SHG(Second Harmonic Generation:第2高調波発生)-YAGレーザー(波長532nm)の光はほぼ完全に表面で吸収するという特性を持つことから、シリコン基板(基板10n)の表面加工を行うにあたり、SHG-YAGレーザーを用いれば溶融表面での光吸収と蒸発が同時に起こり,内部デバイスに損傷を与えることなく表面スクライビングが可能となる。
 また、代表的なNd:YAG固体レーザーは高出力が得られるものの、最大繰り返し周波数が50kHz程度と低く、高速な加工用途には限界がある。これに対してNd:YVO4レーザーは高い繰り返し周波数50~200kHzが可能で、薄膜のスクライビング、切断、基板の穴あけ等の高速加工用に期待されている。高出力・高ピーク強度でのレーザー加工が幅広い繰り返し周波数で可能になり、高速走査でのレーザー加工が実現できる。
 上述のようにレーザーには他にも様々な種類があるが、シリコン表面のスクライビング現象に必要なエネルギーと時間幅に対応するレーザー光をシリコン基板に照射することによって目的とする形状の接合分離溝15を形成することができる。
 ここで、図4に示すように、接合分離溝15を基板10nの表面において、溝幅の中心が表面外周縁から好ましくは0.15mm以上0.60mm以下、より好ましくは0.2mm以上0.4mm以下の距離Dだけ内側に入った領域内で基板外周縁に沿って表面電極(即ち、フィンガー電極16f及びバスバー電極16b)よりも外側に連続的に形成するとよい。
 また、基板10nの表面における接合分離溝15形成用に照射するレーザー光の走査パターンとしては、図5に示すように、基板10nの表面外周縁から一定距離Dだけ内側に入った位置を一筆書きのようにその外周縁に沿ってレーザーを走査してもよい。あるいは、レーザー光の他の走査パターンとしては、図6に示すように、矩形の基板10nの一辺ごとにその一辺の表面外周縁から一定距離Dだけ内側に入った位置をその辺の端から端まで該外周縁に沿ってレーザーを走査するようにし、これを4辺すべてにおいて行うようにしてもよい。
 また、接合分離溝15の溝幅が好ましくは5~30μm、より好ましくは10~20μmであり、溝深さが好ましくは5~30μm、より好ましくは10~20μmであることが好ましい。接合分離溝15の幅及び深さが上記下限を下回ると電気的な分離が不十分となるおそれがあり、上限を上回ると基板のチッピングが増えたり、基板が割れ易くなる場合がある。
 このレーザー接合分離工程は、上記シリコン基板の表面及び裏面に拡散層12p、12nを形成する工程の後、例えば拡散層12p、12n形成工程直後、反射防止膜兼パッシベーション膜13、14形成工程後、電極形成工程後に実施することが好ましい。
[電極形成工程]
 次いで、基板10nの表裏面の反射防止膜兼パッシベーション膜13、14上にバスバー電極16b及びフィンガー電極16fからなる表面電極16とバスバー電極17b及びフィンガー電極17fからなる裏面電極17とを(図3ではフィンガー電極16f、17f)は不図示)スクリーン印刷法で形成する(図3(e))。即ち、上記基板10nの表裏面に、Ag粉末とガラスフリットを有機物バインダと混合したAgペーストを印刷して乾燥し、電極印刷の後、熱処理によりSiNx膜の反射防止膜兼パッシベーション膜13、14にAg粉末を貫通させ(ファイヤースルー)、電極16、17とシリコン基板(拡散層12p、12n)とを導通させる。焼成は、通常700~800℃の温度で5~30分間処理することで行われる。電極16、17の焼成は一度に行ってもよいし、各面の印刷後それぞれに焼成することも可能である。
 以上、導電型がn型のシリコン基板(半導体基板10n)の場合を例にとって説明したが、基板の導電型がp型の場合でも、上記の拡散層に関するp型とn型の条件を入れ替えるようにすれば、本発明の製造方法が適用可能である。即ち、この場合には拡散層形成工程において、半導体基板10pの表面にn型の拡散層12nを形成し、裏面にp型の拡散層12pを形成する。次いで、この工程以降に行われるレーザー接合分離工程において、半導体基板10pの表面の該基板10pとは逆の導電型の拡散層(拡散層12n)の外周縁部に沿ってレーザー照射して該拡散層12nの外周縁部より内側の部分(及びその部分の反射防止膜兼パッシベーション膜13を含む)を除去し、基板10pの表面と裏面とを電気的に分離する接合分離溝15を形成する。この場合のレーザー接合分離の条件は上述したものと同じでよい。
 具体的には、図7に示すように、接合分離溝15を基板10pの表面において溝幅の中心が表面外周縁から好ましくは0.15mm以上0.60mm以下、より好ましくは0.2mm以上0.4mm以下の距離Dだけ内側に入った領域内で基板外周縁に沿って表面電極(即ち、フィンガー電極16f及びバスバー電極16b)よりも外側に連続的に形成するとよい。
 また、基板10pの表面における接合分離溝15形成用に照射するレーザー光の走査パターンとしては、図8に示すように、基板10pの表面外周縁から一定距離Dだけ内側に入った位置を一筆書きのようにその外周縁に沿ってレーザーを走査してもよい。あるいは、レーザー光の他の走査パターンとしては、図9に示すように、矩形の基板10pの一辺ごとにその一辺の表面外周縁から一定距離Dだけ内側に入った位置をその辺の端から端まで該外周縁に沿ってレーザーを走査するようにし、これを4辺すべてにおいて行うようにしてもよい。
 以上のように、レーザー接合分離を行うことにより、逆バイアス時のリーク電流の少ない高効率の両面受光型の太陽電池を歩留まりよく作製することができる。
 以下に本発明の実施例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
<太陽電池の製造>
 上記レーザー接合分離を含む本発明の太陽電池の製造方法で、以下のようにn型基板を用いて太陽電池を製造した。
 結晶面方位(100)、15.6cm角200μm厚、アズスライス比抵抗2Ω・cm(ドーパント濃度7.2×1015cm-3)リンドープn型単結晶シリコン基板を、水酸化ナトリウム水溶液に浸してダメージ層をエッチングで取り除き、水酸化カリウム水溶液にイソプロピルアルコールを加えた水溶液に浸してアルカリエッチングすることでテクスチャ形成を行った。得られたシリコン基板全体を1,000℃、1時間熱処理してシリコン酸化膜を形成した。次に、裏面のシリコン酸化膜をふっ酸等の薬液を用いて除去し、裏面にリンドーパントを含む塗布剤を塗布した後に、950℃、1時間熱処理を行い、n型拡散層を裏面に形成した。熱処理後、基板に付いたガラス成分はふっ酸溶液等により除去後、洗浄した。
 再度、シリコン基板全体にシリコン酸化膜を形成し、表面のシリコン酸化膜をふっ酸等の薬液を用いて除去し、表面にボロンドーパントを含む塗布剤を塗布した後に、950℃、1時間熱処理を行い、p型拡散層を表面全体に形成した。
 次に、基板に付いたガラス成分を高濃度ふっ酸溶液等により除去後、洗浄した。
 引き続き、ダイレクトプラズマCVD装置を用い、シリコン基板の表面及び裏面に反射防止膜兼パッシベーション膜であるシリコン窒化膜を積層した。この膜厚は70nmであった。
 ここで、波長532nmのYVO4レーザーを用いて、表面外周縁から内側に0.15mm入った領域の反射防止膜兼パッシベーション膜及びp型拡散層の外周縁部近傍を除去して幅20μm、深さ10μmの接合分離溝を表面外周縁に沿って連続的に形成した。レーザー照射の条件は、繰り返し周波数100kHz、出力10.6W、スキャンスピード1,000mm/secで行った。
 表面側及び裏面側にそれぞれ銀ペーストをスクリーン印刷法により電極印刷し、乾燥後800℃で20分間焼成を行い、表面電極及び裏面電極を形成した。この場合、焼成中に銀ペースト中のガラスフリットが反射防止膜兼パッシベーション膜をファイヤースルーすることにより、電極と拡散層との電気的な導通が達成される。
[実施例2]
 接合分離溝を表面外周縁から内側に0.30mm入った領域に形成したこと以外は実施例1と同様の工程で太陽電池を作製した。
[実施例3]
 接合分離溝を表面外周縁から内側に0.60mm入った領域に形成したこと以外は実施例1と同様の工程で太陽電池を作製した。
[参考例]
 参考のため、接合分離溝を表面外周縁から内側に0.80mm入った領域に形成したこと以外は実施例1と同様の工程で太陽電池を作製した。
[比較例1]
 比較のため、図10に示すように、接合分離溝を表面外周縁から内側に0.10mm入った領域に形成したこと以外は実施例1と同様の工程で太陽電池を作製した。
[比較例2]
 比較のため、図11に示すように、接合分離溝を裏面外周縁から内側に0.20mm入った領域に形成したこと以外は実施例1と同様の工程で太陽電池を作製した。
[比較例3]
 比較のため、図12に示すように、表面側及び裏面側のどちらにも接合分離溝を形成しなかった場合の太陽電池を作製した。接合分離以外の他の工程は実施例1と同様の処理を行った。
[比較例4]
 更に比較のため、図13に示すように、プラズマエッチングによって基板側端部を接合分離した場合の太陽電池を作製した。具体的には、拡散熱処理により両面に拡散層を形成した基板をプラズマやラジカルが表面や裏面に侵入しないようにスタックし、CF4ガスを用いたプラズマエッチング処理を行って基板の側端部を数μm削った。接合分離以外の他の工程は実施例1と同様の処理を行った。
[実施例4]
<太陽電池の製造>
 上記レーザー接合分離を含む本発明の太陽電池の製造方法で、以下のようにp型基板を用いて太陽電池を製造した。
 結晶面方位(100)、15.6cm角200μm厚、アズスライス比抵抗2Ω・cm(ドーパント濃度7.2×1015cm-3)ボロンドープp型単結晶シリコン基板を、水酸化ナトリウム水溶液に浸してダメージ層をエッチングで取り除き、水酸化カリウム水溶液にイソプロピルアルコールを加えた水溶液に浸してアルカリエッチングすることでテクスチャ形成を行った。得られたシリコン基板全体を1,000℃、1時間熱処理してシリコン酸化膜を形成した。次に、表面のシリコン酸化膜をふっ酸等の薬液を用いて除去し、表面側にリンドーパントを含む塗布剤を塗布した後に、950℃、1時間熱処理を行い、n型拡散層を表面側に形成した。熱処理後、基板に付いたガラス成分はふっ酸溶液等により除去後、洗浄した。
 再度、シリコン基板全体にシリコン酸化膜を形成し、裏面側のシリコン酸化膜をふっ酸等の薬液を用いて除去し、裏面側にボロンドーパントを含む塗布剤を塗布した後に、950℃、1時間熱処理を行い、p型拡散層を裏面側に形成した。
 次に、基板に付いたガラス成分を高濃度ふっ酸溶液等により除去後、洗浄した。
 引き続き、ダイレクトプラズマCVD装置を用い、シリコン基板の表面及び裏面に反射防止膜兼パッシベーション膜であるシリコン窒化膜を積層した。この膜厚は70nmであった。
 ここで、波長532nmのYVO4レーザーを用いて、表面外周縁から0.10mm内側に入った領域の反射防止膜兼パッシベーション膜及びn型拡散層の外周縁部近傍を除去して幅20μm、深さ10μmの接合分離溝を基板の外周縁に沿って連続的に形成した。レーザー照射の条件は、繰り返し周波数50kHz、出力12.5W、スキャンスピード1,000mm/secで行った。
 表面側及び裏面側にそれぞれ銀ペーストをスクリーン印刷法により電極印刷し、乾燥後800℃で20分間焼成を行い、表面電極及び裏面電極を形成した。この場合、焼成中に銀ペースト中のガラスフリットが反射防止膜兼パッシベーション膜をファイヤースルーすることにより、電極と拡散層との電気的な導通が達成される。
[実施例5]
 接合分離溝を表面外周縁から内側に0.20mm入った領域に形成したこと以外は実施例4と同様の工程で太陽電池を作製した。
[実施例6]
 接合分離溝を表面外周縁から内側に0.30mm入った領域に形成したこと以外は実施例4と同様の工程で太陽電池を作製した。
[比較例5]
 比較のため、接合分離溝を裏面外周縁から内側に0.10mm入った領域に形成したこと以外は実施例4と同様の工程で太陽電池を作製した。
[比較例6]
 比較のため、接合分離溝を裏面外周縁から内側に0.20mm入った領域に形成したこと以外は実施例4と同様の工程で太陽電池を作製した。
[比較例7]
 比較のため、接合分離溝を裏面外周縁から内側に0.30mm入った領域に形成したこと以外は実施例4と同様の工程で太陽電池を作製した。
[比較例8]
 比較のため、表面側及び裏面側のどちらにも接合分離溝を形成しなかった場合の太陽電池を作製した。接合分離以外の他の工程は実施例4と同様の処理を行った。
[比較例9]
 更に比較のため、プラズマエッチングによって基板側端部を接合分離した場合の太陽電池を作製した。具体的には、拡散熱処理により両面に拡散層を形成した基板をプラズマやラジカルが表面や裏面に侵入しないようにスタックし、CF4ガスを用いたプラズマエッチング処理を行って基板の側端部を数μm削った。接合分離以外の他の工程は実施例4と同様の処理を行った。
 以上の実施例、参考例及び比較例の接合分離条件を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 また、実施例、参考例及び比較例で得られた太陽電池を、25℃の雰囲気の中、ソーラーシミュレータ(光強度:1kW/m2,スペクトル:AM1.5グローバル)の下で電流電圧特性を測定した。更に、12Vの逆バイアスを印加した際のリーク電流も測定した。接合分離に要する処理タクトを含めた結果を表2に示す。なお、表中の数字は実施例、参考例及び比較例で試作したセル100枚の平均値である。
Figure JPOXMLDOC01-appb-T000002
 上記表2の結果より、n型基板に両面拡散層を有する太陽電池において、実施例1~3で行われたレーザー接合分離は、比較例4のプラズマエッチング接合分離に対して、変換効率を維持しながらリーク電流を低減させることができた。比較例1及び2で行われたレーザー接合分離では、リーク電流が高かった。特に、比較例2は、接合分離溝を形成していない比較例3と同等の高いリーク電流値であった。n型基板に両面拡散層を有する太陽電池では、裏面に接合分離溝を形成しても、逆バイアス時のリーク電流を低減させる効果はない。
 更に、参考例の表面外周から0.80mmでレーザー接合分離した条件では、逆バイアス時のリーク電流は低かったが、変換効率が低下した。主に、有効な受光面積が減少したことによって、短絡電流が減少したことによる。n型基板に両面拡散層を有する太陽電池における表面外周縁の接合分離溝は外周縁から内側に0.15mm以上0.60mm以下の距離だけ入った領域に形成することが好適であることを示唆している。
 また、p型基板に両面拡散層を有する太陽電池において、実施例4~6で行われたレーザー接合分離は、比較例9のプラズマエッチング接合分離に対して、変換効率を維持しながらリーク電流を低減させることができた。表面側には均一なエミッタ層(n+層)が形成されているため、任意の加工位置で接合分離溝を形成することができる。比較例5~7で行われたレーザー接合分離では、リーク電流が高かった。特に、比較例6及び7は、接合分離溝を形成していない比較例8と同等の高いリーク電流値であった。p型基板に両面拡散層を有する太陽電池では、裏面に接合分離溝を形成しても、逆バイアス時のリーク電流を低減させる効果はないか、又は小さい。
 これらの結果から、半導体基板を用いて両面に拡散層を形成した太陽電池の作製に対して、表面外周縁領域のエミッタ層内におけるレーザーを用いた接合分離溝の形成が高変換効率維持とリーク電流低減に有効であり、高いスループットと共に低コスト化を実現することが可能となることを示唆している。
 更に、本発明は上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、如何なるものであっても本発明の技術範囲に包含される。
10n n型半導体基板
10p p型半導体基板
12n n型拡散層(n+拡散層)
12p p型拡散層(p+拡散層)
13、14 反射防止膜兼パッシベーション膜
15 接合分離溝
16 表面電極
16b 表面バスバー電極(バスバー電極)
16f 表面フィンガー電極(フィンガー電極)
17 裏面電極
17b 裏面バスバー電極(バスバー電極)
17f 裏面フィンガー電極(フィンガー電極)

Claims (11)

  1.  半導体基板の表面に該半導体基板とは逆の導電型となる拡散層を形成する工程と、上記半導体基板の裏面に該半導体基板と同一の導電型となる拡散層を形成する工程と、上記半導体基板の表面の該半導体基板とは逆の導電型の拡散層の外周縁部に沿ってレーザー照射して該拡散層の外周縁部より内側の部分を除去し、半導体基板の表面と裏面とを電気的に分離する接合分離部を形成する工程とを有することを特徴とする両面受光型の太陽電池の製造方法。
  2.  半導体基板の導電型がn型であることを特徴とする請求項1記載の太陽電池の製造方法。
  3.  半導体基板の導電型がp型であることを特徴とする請求項1記載の太陽電池の製造方法。
  4.  接合分離部は、幅の中心が表面外周縁から0.15mm以上0.60mm以下の距離だけ内側に入った領域内で基板外周縁に沿って表面電極よりも外側に連続的に形成された溝であることを特徴とする請求項1~3のいずれか1項記載の太陽電池の製造方法。
  5.  接合分離部は、溝幅が5μm以上30μm以下であり、溝深さが5μm以上30μm以下の溝であることを特徴とする請求項1~4のいずれか1項記載の太陽電池の製造方法。
  6.  上記接合分離部を形成する工程を半導体基板の表面及び裏面に拡散層を形成する工程の後に実施することを特徴とする請求項1~5のいずれか1項記載の太陽電池の製造方法。
  7.  表面に第二の導電型拡散層を有し、裏面に第一の導電型拡散層を有する第一の導電型の半導体基板からなる両面受光型の太陽電池であって、上記半導体基板の表面の第二の導電型拡散層の外周縁部より内側の部分にレーザー照射により該拡散層が除去されて形成された半導体基板の表面と裏面とを電気的に分離する接合分離部を有する太陽電池。
  8.  半導体基板の導電型がn型であることを特徴とする請求項7記載の太陽電池。
  9.  半導体基板の導電型がp型であることを特徴とする請求項7記載の太陽電池。
  10.  接合分離部は、幅の中心が表面外周縁から0.15mm以上0.60mm以下の距離だけ内側に入った領域内で基板外周縁に沿って表面電極よりも外側に配置される連続的な溝であることを特徴とする請求項7~9のいずれか1項記載の太陽電池。
  11.  接合分離部は、溝幅が5μm以上30μm以下であり、溝深さが5μm以上30μm以下の溝であることを特徴とする請求項7~10のいずれか1項記載の太陽電池。
PCT/JP2014/058064 2013-05-21 2014-03-24 太陽電池の製造方法及び太陽電池 WO2014188773A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015518131A JP6299757B2 (ja) 2013-05-21 2014-03-24 太陽電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-107203 2013-05-21
JP2013107203 2013-05-21

Publications (1)

Publication Number Publication Date
WO2014188773A1 true WO2014188773A1 (ja) 2014-11-27

Family

ID=51933339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058064 WO2014188773A1 (ja) 2013-05-21 2014-03-24 太陽電池の製造方法及び太陽電池

Country Status (3)

Country Link
JP (1) JP6299757B2 (ja)
TW (1) TWI624078B (ja)
WO (1) WO2014188773A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102400911B1 (ko) * 2016-06-13 2022-05-20 신에쓰 가가꾸 고교 가부시끼가이샤 태양전지, 태양전지의 제조 방법 및 태양전지의 제조 시스템
US11282815B2 (en) 2020-01-14 2022-03-22 Micron Technology, Inc. Methods of forming microelectronic devices, and related microelectronic devices and electronic systems
US11699652B2 (en) 2020-06-18 2023-07-11 Micron Technology, Inc. Microelectronic devices and electronic systems
US11557569B2 (en) 2020-06-18 2023-01-17 Micron Technology, Inc. Microelectronic devices including source structures overlying stack structures, and related electronic systems
US11563018B2 (en) 2020-06-18 2023-01-24 Micron Technology, Inc. Microelectronic devices, and related methods, memory devices, and electronic systems
US11705367B2 (en) 2020-06-18 2023-07-18 Micron Technology, Inc. Methods of forming microelectronic devices, and related microelectronic devices, memory devices, electronic systems, and additional methods
US11380669B2 (en) * 2020-06-18 2022-07-05 Micron Technology, Inc. Methods of forming microelectronic devices
US11825658B2 (en) 2020-08-24 2023-11-21 Micron Technology, Inc. Methods of forming microelectronic devices and memory devices
US11417676B2 (en) 2020-08-24 2022-08-16 Micron Technology, Inc. Methods of forming microelectronic devices and memory devices, and related microelectronic devices, memory devices, and electronic systems
US11751408B2 (en) 2021-02-02 2023-09-05 Micron Technology, Inc. Methods of forming microelectronic devices, and related microelectronic devices, memory devices, and electronic systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087786A1 (ja) * 2005-02-17 2006-08-24 Mitsubishi Denki Kabushiki Kaisha 太陽電池の製造方法
WO2009107955A2 (en) * 2008-02-25 2009-09-03 Lg Electronics Inc. Solar cell and method for manufacturing the same
JP2011151192A (ja) * 2010-01-21 2011-08-04 Sharp Corp 太陽電池セル、インターコネクタ付き太陽電池セルおよびその製造方法
WO2011152986A2 (en) * 2010-06-03 2011-12-08 Suniva, Inc. Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
WO2012008061A1 (ja) * 2010-07-16 2012-01-19 シラクセル株式会社 ボロン拡散層を有するシリコン太陽電池セル及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989059A (en) * 1988-05-13 1991-01-29 Mobil Solar Energy Corporation Solar cell with trench through pn junction
TWI398958B (zh) * 2010-01-08 2013-06-11 Tainergy Tech Co Ltd 太陽能電池以及其製造方法
JP5436276B2 (ja) * 2010-03-11 2014-03-05 三菱電機株式会社 太陽電池の製造方法
CN102332488A (zh) * 2011-05-25 2012-01-25 湖南红太阳光电科技有限公司 一种用于晶体硅太阳能电池激光边缘隔离的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087786A1 (ja) * 2005-02-17 2006-08-24 Mitsubishi Denki Kabushiki Kaisha 太陽電池の製造方法
WO2009107955A2 (en) * 2008-02-25 2009-09-03 Lg Electronics Inc. Solar cell and method for manufacturing the same
JP2011151192A (ja) * 2010-01-21 2011-08-04 Sharp Corp 太陽電池セル、インターコネクタ付き太陽電池セルおよびその製造方法
WO2011152986A2 (en) * 2010-06-03 2011-12-08 Suniva, Inc. Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
WO2012008061A1 (ja) * 2010-07-16 2012-01-19 シラクセル株式会社 ボロン拡散層を有するシリコン太陽電池セル及びその製造方法

Also Published As

Publication number Publication date
TW201511319A (zh) 2015-03-16
JP6299757B2 (ja) 2018-03-28
TWI624078B (zh) 2018-05-11
JPWO2014188773A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6299757B2 (ja) 太陽電池の製造方法
EP2485278B1 (en) Solar cell element and solar cell module
US20110000532A1 (en) Solar Cell Device and Method of Manufacturing Solar Cell Device
JP6410951B2 (ja) 太陽電池セルおよび太陽電池セルの製造方法
JP2011155041A (ja) 太陽電池素子および太陽電池モジュール
JP2010010493A (ja) 太陽電池セルおよびその製造方法
JP6021392B2 (ja) 光電変換装置の製造方法
JP2016139762A (ja) 太陽電池素子の製造方法
JP6115806B2 (ja) 光起電力装置
WO2013051323A1 (ja) 太陽電池素子およびその製造方法
TWI629804B (zh) 太陽電池之製造方法
JP2011146678A (ja) 太陽電池素子の製造方法
JP2010177444A (ja) 太陽電池素子および太陽電池素子の製造方法
JP2012209316A (ja) 太陽電池素子および太陽電池モジュール
KR20100041238A (ko) 후면전극 태양전지 및 그 제조방법
US20200176626A1 (en) Solar cell and method for manufacturing the same
WO2017018300A1 (ja) 太陽電池および太陽電池の製造方法
US11038078B2 (en) Method for manufacturing high efficiency solar cell
US10700223B2 (en) High photoelectric conversion efficiency solar battery cell and method for manufacturing high photoelectric conversion solar battery cell
JP6313086B2 (ja) 結晶シリコン太陽電池およびその製造方法、太陽電池モジュールの製造方法、集光型太陽電池モジュールの製造方法
JP2014086587A (ja) 太陽電池セルの製造方法および太陽電池セル
TWI668880B (zh) Solar battery unit and solar battery module
TW201817021A (zh) 高光電變換效率太陽電池及高光電變換效率太陽電池的製造方法
WO2016117073A1 (ja) 太陽電池の製造方法および太陽電池
KR20050098473A (ko) 태양전지 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800750

Country of ref document: EP

Kind code of ref document: A1