WO2014188690A1 - 冷媒蒸発器 - Google Patents
冷媒蒸発器 Download PDFInfo
- Publication number
- WO2014188690A1 WO2014188690A1 PCT/JP2014/002591 JP2014002591W WO2014188690A1 WO 2014188690 A1 WO2014188690 A1 WO 2014188690A1 JP 2014002591 W JP2014002591 W JP 2014002591W WO 2014188690 A1 WO2014188690 A1 WO 2014188690A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- tank
- evaporation
- hole
- heat exchange
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05391—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0202—Header boxes having their inner space divided by partitions
- F28F9/0204—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
- F28F9/0209—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
- F28F9/0212—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/0265—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
- F28D2021/0071—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/008—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
- F28D2021/0085—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F2009/0285—Other particular headers or end plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F2009/0285—Other particular headers or end plates
- F28F2009/029—Other particular headers or end plates with increasing or decreasing cross-section, e.g. having conical shape
Definitions
- the present disclosure relates to a refrigerant evaporator.
- the refrigerant evaporator functions as a cooling heat exchanger that cools the fluid to be cooled by absorbing heat from the fluid to be cooled (for example, air) flowing outside and evaporating the refrigerant (liquid phase refrigerant) flowing inside. .
- the first and second evaporation parts including a heat exchange core part formed by laminating a plurality of tubes and a pair of tank parts connected to both ends of the plurality of tubes are covered.
- a configuration is known that is arranged in series in the flow direction of the cooling fluid and connects one tank portion in each evaporation portion via a communication portion (for example, see Patent Document 1).
- the refrigerant that has flowed through the heat exchange core portion of the first evaporation portion is secondly passed through one tank portion of each evaporation portion and a pair of communication portions that connect the tank portions.
- the refrigerant flow is changed in the width direction (left-right direction) of the heat exchange core part. That is, in the refrigerant evaporator, the refrigerant flowing on one side in the width direction of the heat exchange core portion of the first evaporation portion is caused to flow in the width direction of the heat exchange core portion of the second evaporation portion by one of the pair of communication portions.
- the refrigerant is caused to flow to the other side, and the refrigerant flowing on the other side in the width direction of the heat exchange core part of the first evaporation part is caused to flow to one side in the width direction of the heat exchange core part of the second evaporation part. Yes.
- an intermediate tank part is provided in one tank part in each evaporation part, and a partition member is disposed in the intermediate tank part to form two refrigerant channels.
- the communication part is configured.
- the partition member is joined to the inner wall surface of the intermediate tank portion by, for example, brazing. For this reason, if a brazing failure occurs between the inner wall surface of the intermediate tank and the partition member, the independence of the refrigerant flow path in the intermediate tank cannot be maintained, and the refrigerant flow is changed in the width direction (left and right) of the heat exchange core. Direction) may not be interchangeable.
- the present disclosure aims to provide a refrigerant evaporator that can reliably exchange the flow of the refrigerant in the width direction of the heat exchange core portion.
- a refrigerant evaporator that performs heat exchange between a cooled fluid that flows outside and a refrigerant includes a first evaporator and a second evaporator that are arranged in series with respect to the flow direction of the cooled fluid. A part.
- Each of the first evaporation section and the second evaporation section is connected to a heat exchange core section configured by laminating a plurality of tubes through which the refrigerant flows, and both ends of the plurality of tubes, and a set of refrigerants flowing through the plurality of tubes or A pair of tank portions that perform distribution.
- the heat exchange core part in a 1st evaporation part has the 2nd core part comprised by the 1st core part comprised by some tube groups among several tubes, and the remaining tube group.
- the heat exchange core part in the second evaporation part includes a third core part composed of a tube group that faces at least a part of the first core part in the flow direction of the fluid to be cooled, and the fluid to be cooled.
- the fourth core portion is composed of a tube group facing at least a part of the second core portion in the flow direction.
- one tank part includes a first refrigerant collecting part that collects refrigerant from the first core part, and a second refrigerant collecting part that collects refrigerant from the second core part. Consists of including.
- one tank part includes a first refrigerant distribution part that distributes the refrigerant to the third core part, and a second refrigerant distribution part that distributes the refrigerant to the fourth core part. Composed.
- the first evaporating unit and the second evaporating unit are a first communication unit that guides the refrigerant of the first refrigerant collecting unit to the second refrigerant distributing unit, and a second that guides the refrigerant of the second refrigerant collecting unit to the first refrigerant distributing unit. It is connected via a communication part.
- An intermediate tank portion through which refrigerant flows is joined to the outer surface of one tank portion of the first evaporation portion and the outer surface of one tank portion of the second evaporation portion.
- the outer wall of one tank part of the first evaporation part, the outer wall of one tank part of the second evaporation part, and the outer wall of the intermediate tank part form a tank outside refrigerant space through which refrigerant flows, and the intermediate tank part is While constituting the 1st communicating part, the refrigerant space outside a tank constitutes the 2nd communicating part.
- the intermediate tank portion is provided as the first communication portion, and is formed by the outer wall of one tank portion of the first evaporation portion, the outer wall of one tank portion of the second evaporation portion, and the outer wall of the intermediate tank portion.
- the first communication portion and the second communication portion can be configured as independent refrigerant channels. For this reason, it becomes possible to replace
- FIG. 5 is a sectional view taken along line VV in FIG. 4.
- FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 7. It is sectional drawing which shows the 2nd windward side tank part, 2nd leeward side tank part, and intermediate
- the refrigerant evaporator 1 is applied to a vapor compression refrigeration cycle of a vehicle air conditioner that adjusts the temperature in the passenger compartment, and absorbs heat from the blown air that is blown into the passenger compartment to form a refrigerant (liquid phase refrigerant). It is a heat exchanger for cooling which cools blowing air by evaporating. In the present embodiment, the blown air corresponds to “cooled fluid flowing outside”.
- the refrigeration cycle includes a compressor, a radiator (condenser), an expansion valve, and the like (not shown) in addition to the refrigerant evaporator 1, and in this embodiment, liquid is received between the radiator and the expansion valve. It is configured as a receiver cycle in which a device is arranged.
- the refrigerant of the refrigeration cycle is mixed with refrigeration oil for lubricating the compressor, and a part of the refrigeration oil circulates in the cycle together with the refrigerant.
- the refrigerant evaporator 1 of the present embodiment includes two evaporators 10 and 20 arranged in series with respect to the flow direction of the blown air (flow direction of the fluid to be cooled) X. It is prepared for.
- positioned among the two evaporation parts 10 and 20 on the windward side (upstream side) of the flow direction X of blowing air is called the windward evaporation part 10, and the flow of blowing air
- the evaporator disposed on the leeward side (downstream side) in the direction X is referred to as a leeward evaporator 20.
- the windward evaporator 10 in this embodiment constitutes a “second evaporator”
- the leeward evaporator 20 constitutes a “first evaporator”.
- the basic configurations of the windward side evaporator 10 and the leeward side evaporator 20 are the same, and the heat exchange core parts 11 and 21 and a pair of tank parts 12 disposed on the upper and lower sides of the heat exchange core parts 11 and 21, respectively. 13, 22, and 23.
- the heat exchange core part in the windward side evaporation part 10 is called the windward heat exchange core part 11
- the heat exchange core part in the leeward side evaporation part 20 is called the leeward side heat exchange core part 21.
- the tank portion disposed on the upper side is referred to as a first windward tank portion 12
- the tank portion disposed on the lower side is referred to as the second windward side. This is referred to as a tank portion 13.
- the tank part arranged on the upper side is referred to as the first leeward side tank part 22, and the tank part arranged on the lower side is referred to as the second leeward side. This is referred to as a side tank portion 23.
- Each of the windward side heat exchange core part 11 and the leeward side heat exchange core part 21 of the present embodiment includes a plurality of tubes 111 and 211 extending in the vertical direction and fins 112 joined between the adjacent tubes 111 and 211. It is comprised by the laminated body arrange
- the stacking direction in the stacked body of the plurality of tubes 111 and 211 and the plurality of fins 112 is referred to as a tube stacking direction.
- the windward side heat exchange core part 11 is the 2nd wind comprised by the 1st windward heat exchange core part 11a comprised by some tube groups among the some tubes 111, and the remaining tube group. It has the upper side heat exchange core part 11b.
- the 1st windward heat exchange core part 11a in this embodiment comprises a "3rd core part”
- the 2nd windward heat exchange core part 11b comprises a "4th core part.”
- the first windward heat exchange core part 11a is configured by a tube group existing on the right side of the tube lamination direction, and the tube stacking is performed.
- the second upwind heat exchange core portion 11b is configured by a tube group existing on the left side of the direction.
- the leeward side heat exchange core part 21 is the 2nd leeward side comprised by the 1st leeward side heat exchange core part 21a comprised by some tube groups among the some tubes 211, and the remaining tube group. It has a heat exchange core portion 21b.
- the 1st leeward side heat exchange core part 21a in this embodiment comprises a "1st core part”
- the 2nd leeward side heat exchange core part 21b comprises a "2nd core part.”
- the first leeward side heat exchange core part 21a when the leeward side heat exchange core part 21 is viewed from the flow direction X of the blown air, the first leeward side heat exchange core part 21a is configured by a tube group existing on the right side in the tube lamination direction.
- the second leeward heat exchange core portion 21b is configured by a tube group existing on the left side of the direction.
- the first windward side heat exchange core part 11a and the first leeward side heat exchange core part 21a are arranged so as to overlap (oppose) each other.
- the second windward side heat exchange core part 11b and the second leeward side heat exchange core part 21b are arranged so as to overlap (oppose) each other.
- Each of the tubes 111 and 211 is formed of a flat tube in which a refrigerant passage through which a refrigerant flows is formed and a cross-sectional shape thereof is a flat shape extending along the flow direction X of the blown air.
- the tube 111 of the windward side heat exchange core part 11 has one end side (upper end side) in the longitudinal direction connected to the first windward tank part 12, and the other end side (lower end side) in the longitudinal direction is the second windward side. It is connected to the tank unit 13.
- the tube 211 of the leeward heat exchange core portion 21 has one end side (upper end side) in the longitudinal direction connected to the first leeward tank portion 22 and the other end side (lower end side) in the longitudinal direction is second.
- the leeward tank unit 23 is connected.
- Each fin 112 is a corrugated fin formed by bending a thin plate material into a wave, joined to the flat outer surface side of the tubes 111 and 211, and promotes heat exchange to expand the heat transfer area between the blown air and the refrigerant. Functions as a means.
- side plates 113 that reinforce the heat exchange core parts 11 and 12 are disposed at both ends in the tube laminating direction.
- the side plate 113 is joined to the fins 112 arranged on the outermost side in the tube stacking direction.
- the first upwind tank 12 is closed at one end (the left end when viewed from the blowing air flow direction X) and at the other end (the right end when viewed from the blowing air flow direction X). Part) is formed of a cylindrical member in which a refrigerant outlet 12a for leading the refrigerant from the inside of the tank to the suction side of a compressor (not shown) is formed.
- the first upwind tank unit 12 has a through hole (not shown) in which one end side (upper end side) of each tube 111 is inserted and joined at the bottom.
- the first upwind tank unit 12 is configured such that the internal space thereof communicates with each tube 111 of the upwind heat exchange core unit 11, and the core units 11 a and 11 b of the upwind heat exchange core unit 11. It functions as a refrigerant collecting part that collects the refrigerant from.
- the first leeward tank unit 22 is closed at one end, and has a cylinder formed with a refrigerant introduction unit 22a for introducing low-pressure refrigerant decompressed by an expansion valve (not shown) into the tank at the other end. It is comprised by the shape-shaped member.
- the first leeward tank portion 22 has a through hole (not shown) in which one end side (upper end side) of each tube 211 is inserted and joined at the bottom. That is, the 1st leeward side tank part 22 is comprised so that the internal space may connect with each tube 211 of the leeward side heat exchange core part 21, and each core part 21a, 21b of the leeward side heat exchange core part 21 is comprised. It functions as a refrigerant distribution unit that distributes the refrigerant.
- the second upwind tank unit 13 is composed of a cylindrical member whose both ends are closed.
- the second upwind tank portion 13 has a through hole (not shown) in which the other end side (lower end side) of each tube 111 is inserted and joined to the ceiling portion. That is, the second upwind tank unit 13 is configured such that its internal space communicates with each tube 111.
- a partition member 131 is disposed at the center in the longitudinal direction inside the second upwind tank unit 13, and the tank internal space forms the first upwind heat exchange core unit 11a by the partition member 131.
- the partition member 131 Are divided into a space where the tubes 111 communicate with each other and a space where the tubes 111 constituting the second upwind heat exchange core portion 11b communicate with each other.
- the space communicating with each tube 111 constituting the first upwind heat exchange core unit 11a distributes the refrigerant to the first upwind heat exchange core unit 11a.
- a second refrigerant distributor that constitutes the first refrigerant distributor 13a and that communicates with the tubes 111 constituting the second windward heat exchange core 11b distributes the refrigerant to the second windward heat exchange core 11b. 13b is constituted.
- the second leeward tank portion 23 is formed of a cylindrical member whose both ends are closed.
- the second leeward tank portion 23 has a through hole (not shown) in which the other end side (lower end side) of each tube 211 is inserted and joined to the ceiling portion. That is, the second leeward tank unit 23 is configured such that the internal space thereof communicates with each tube 211.
- a partition member 231 is arranged at a central position in the longitudinal direction.
- the tank internal space constitutes the first leeward heat exchange core part 21a. It is partitioned into a space in which the tubes 211 communicate with each other and a space in which the tubes 211 constituting the second leeward heat exchange core portion 21b communicate with each other.
- the space communicating with each tube 211 constituting the first leeward side heat exchange core part 21a collects the refrigerant from the first leeward side heat exchange core part 21a.
- the second refrigerant that constitutes the first refrigerant collecting portion 23a to be communicated and in which the space where the tubes 211 constituting the second leeward heat exchange core portion 21b communicate with each other collects refrigerant from the second leeward heat exchange core portion 21b.
- the aggregation unit 23b is configured.
- the second leeward tank unit 13 and the second leeward tank unit 23 of the present embodiment are integrally formed.
- the second leeward tank unit 23 and the second leeward tank unit 13 include a core plate 41 into which the tubes 111 and 211 are inserted and joined, and a space in the tank together with the core plate 41 (the first refrigerant distribution unit 13a and the second refrigerant distribution).
- the core plate 41 has a substantially W-shaped cross section. Specifically, the core plate 41 includes an upwind tube joining surface 411 into which the tube 111 of the upwind heat exchange core section 11 is inserted and joined, and a downwind tube into which the tube 211 of the leeward heat exchange core section 21 is inserted and joined. A bonding surface 412. The core plate 41 is disposed between the two tube joining surfaces 411 and 412, and protrudes on the opposite side of the heat exchange core portions 11 and 21 from the two tube joining surfaces 411 and 412. Part 413.
- the tank body 42 has a substantially W-shaped cross section. Specifically, the windward side tank main body part 421 constituting the first refrigerant distribution part 13a and the second refrigerant distribution part 13b together with the windward side tube joining surface 411, and the first refrigerant collecting part 23a and the second side together with the leeward side tube joining face 412. And a leeward tank main body 422 constituting the two refrigerant collecting portions 23b.
- the tank main body 42 is disposed between the two tank main bodies 421 and 421, and protrudes toward the heat exchange cores 11 and 21 from the two tank main bodies 421 and 422. Part 423.
- the first refrigerant distribution unit 13a and the second refrigerant distribution unit 13b are partitioned by being joined in a state where the partition member 131 is disposed between the windward side tube joining surface 411 and the windward side tank main body 421. ing. Further, the first refrigerant assembly portion 23a and the second refrigerant assembly portion 23b are joined by joining the leeward side tube joining surface 412 and the leeward side tank body 422 in a state where the partition member 231 is disposed. It is partitioned.
- the outer surface of the intermediate tank 33 to be described later is joined to the outer surface (the outer wall on the lower side in FIG. 3) of the tank main body 42 opposite to the heat exchange cores 11 and 12.
- the outer surface of the intermediate tank portion 33 is a portion in which the cross section connected to the outer surface of the tank main body side convex portion 423 and the tank main body side convex portion 423 in the upwind tank main body portion 421 is a straight line.
- the outer surface of the leeward side straight line portion 421a and the cross section connected to the tank main body side convex portion 423 in the leeward side tank main body portion 422 (hereinafter referred to as the leeward side straight portion 422a). ) Is joined to the outer surface.
- a first windward through hole 421b penetrating the front and back is formed in a portion of the windward straight portion 421a opposite to the refrigerant outlet 12a from the partition member 131. Further, a second windward through hole 421c penetrating the front and back is formed in a portion of the windward straight portion 421a closer to the refrigerant outlet 12a than the partition member 131.
- the first windward through hole 421b is provided at the end of the windward straight portion 421a opposite to the refrigerant outlet 12a.
- the second windward through hole 421c is disposed in the vicinity of the partition member 131 in the windward straight portion 421a.
- the opening area of the first upwind through hole 421b is larger than the opening area of the second upwind through hole 421c.
- a first leeward side through hole 422b penetrating the front and back is formed in a portion of the leeward side straight portion 422a closer to the refrigerant introduction portion 22a than the partition member 231.
- a second leeward side through hole 422c penetrating the front and back is formed in a portion of the leeward side straight portion 422a opposite to the refrigerant introduction portion 22a with respect to the partition member 231.
- the 1st leeward side through-hole 422b is provided in the edge part by the side of the refrigerant
- the second leeward side through hole 422c is disposed in the vicinity of the partition member 231 in the leeward side straight portion 422a.
- the opening area of the first leeward side through hole 422b is larger than the opening area of the second leeward side through hole 422c.
- the intermediate tank portion 33 is configured by a cylindrical member in which a refrigerant flow passage through which a refrigerant flows is formed.
- the intermediate tank portion 33 is formed by bending a single metal plate into a cylindrical shape.
- the intermediate tank portion 33 has a concave portion 331 in which an outer wall facing the tank main body portion 42 is recessed toward the inner side of the intermediate tank portion 33 (the lower side in FIG. 3). That is, the concave portion 331 is formed by denting the outer wall of the intermediate tank portion 33 that faces both the second leeward tank portion 23 and the second leeward tank portion 13 toward the inner side of the intermediate tank portion 33. Is formed.
- the concave portion 331 is disposed in the vicinity of the portion corresponding to the partition members 131 and 231 in the intermediate tank portion 33 (in the present embodiment, the central portion in the tube stacking direction).
- the tank outer refrigerant space 34 through which the refrigerant flows is formed by the outer wall of the tank body 42 and the outer wall of the recess 331 of the intermediate tank 33. More specifically, the tank outside refrigerant space 34 is defined by the outer wall of the concave portion 331 of the intermediate tank portion 33, the outer wall of the tank main body side convex portion 423, the outer wall of the windward straight portion 421a, and the outer wall of the leeward straight portion 422a. Is formed.
- a portion joined to the windward straight portion 421a of the tank main body portion 42 is referred to as a windward wall surface 332, and a portion joined to the leeward straight portion 422a of the tank main body portion 42 is referred to as the leeward side. It is called wall surface 333.
- a first intermediate tank portion side through hole 332a penetrating the front and back is formed in a portion corresponding to the first windward through hole 421b in the windward wall surface 332.
- the first intermediate tank portion side through hole 332a is formed in the same shape as the first upwind through hole 421b.
- a second intermediate tank portion side through hole 333a penetrating the front and back is formed at a portion corresponding to the first leeward side through hole 422b in the leeward side wall surface 333.
- the second intermediate tank portion side through hole 333a is formed in the same shape as the first leeward side through hole 422b.
- the first leeward heat exchange core portion 21a is formed as shown by the broken arrow in FIG.
- the refrigerant having flowed down flows into the first refrigerant collecting portion 23a of the second leeward tank portion 23.
- the refrigerant that has flowed into the first refrigerant collecting portion 23a flows into the intermediate tank portion 33 through the first leeward side through hole 422b and the second intermediate tank portion side through hole 333a.
- the refrigerant that has flowed into the intermediate tank portion 33 flows into the second refrigerant distribution portion 13b of the second upwind tank portion 13 through the first intermediate tank portion side through hole 332a and the first upwind side through hole 421b.
- the refrigerant that has flowed into the second refrigerant distribution unit 13 b rises in the second upwind heat exchange core unit 11 b of the upwind heat exchange core unit 11.
- the refrigerant descending the second leeward heat exchange core portion 21 b flows into the second refrigerant collecting portion 23 b of the second leeward tank portion 23.
- the refrigerant that has flowed into the second refrigerant collecting portion 23b flows into the tank outside refrigerant space 34 through the second leeward side through hole 422c.
- the refrigerant that has flowed into the tank outside refrigerant space 34 flows into the first refrigerant distribution portion 13a of the second windward side tank portion 13 through the second windward side through hole 421c.
- the refrigerant that has flowed into the first refrigerant distribution unit 13a ascends the first upwind heat exchange core unit 11a of the upwind heat exchange core unit 11.
- the first leeward side through hole 422b constitutes the “first through hole”
- the second intermediate tank portion side through hole 333a constitutes the “second through hole”.
- the first upwind through hole 421b constitutes a “third through hole”
- the first intermediate tank portion side through hole 332a constitutes a “fourth through hole”.
- the refrigerant in the first refrigerant collecting portion 23a in the second leeward tank portion 23 becomes the second refrigerant distribution portion in the second leeward tank portion 13.
- the refrigerant in the second refrigerant assembly part 23b in the second leeward tank part 23 is introduced to the first refrigerant distribution part 13a in the second leeward tank part 13 while being guided to 13b. That is, the intermediate tank part 33 and the tank external refrigerant space 34 are configured to exchange the refrigerant flow in the core width direction in each of the heat exchange core parts 11 and 21.
- the intermediate tank portion 33 constitutes a “first communicating portion”, and the outside-tank refrigerant space 34 constitutes a “second communicating portion”.
- a flow path (see broken line arrow in FIG. 6) is formed.
- the second leeward side heat exchange is formed by forming an outside tank refrigerant space 34 formed by the outer wall of the second leeward side tank portion 23, the outer wall of the second leeward side tank portion 13, and the outer wall of the intermediate tank portion 33.
- coolant flow path (refer the dashed-dotted arrow of FIG. 6) which guide
- the first refrigerant channel and the second refrigerant channel can be configured as independent refrigerant channels. For this reason, it becomes possible to replace
- the second embodiment has a joint surface between the second leeward tank unit 13 and the intermediate tank unit 33 and a joint between the second leeward tank unit 23 and the intermediate tank unit 33.
- the difference is that a groove 35 communicating with the outside is provided on the surface.
- a groove 35 extending in a direction orthogonal to the longitudinal direction (tube stacking direction) of the tank body 42 is formed in the windward straight part 421 a and the leeward straight part 422 a of the tank body 42.
- a total of four are provided.
- the groove portion 35 provided on the leeward side wall surface 332 is referred to as an upwind side groove portion 351
- the groove portion 35 provided on the leeward side wall surface 333 is referred to as a leeward side groove portion 352.
- two each of the windward side groove part 351 and the leeward side groove part 352 are provided.
- the windward groove portion 351 and the leeward groove portion 352 are arranged at positions where they are overlapped.
- One of the two windward side groove portions 351 is disposed between the first windward side through hole 421b (first intermediate tank portion side through hole 332a) and the concave portion 331.
- One of the two leeward side groove portions 352 is disposed between the first leeward side through hole 422b (second intermediate tank portion side through hole 333a) and the recess 331.
- the first upwind side through hole 421b first intermediate tank portion side through hole 332a
- the tank outside refrigerant space. 34 or between the first leeward side through hole 422b (second intermediate tank part side through hole 333a) and the outside-tank refrigerant space 34.
- the refrigerant in the first refrigerant flow path that circulates in the intermediate tank portion 33 and the refrigerant in the second refrigerant flow path that circulates in the refrigerant space outside the tank 34 may be mixed, and the independence of the refrigerant flow path may not be maintained. is there.
- an inspection method is adopted in which a test fluid at a predetermined pressure is enclosed in the refrigerant evaporator 1 and leakage due to a brazing defect or the like is detected by the outflow of the test fluid.
- the inspection fluid leaks to the outside during the leak inspection. Therefore, it was impossible to detect a brazing defect.
- the joint surface between the second leeward tank unit 13 and the intermediate tank unit 33 and the joint surface between the second leeward tank unit 23 and the intermediate tank unit 33 are externally connected.
- the communicating groove portion 35 when a brazing failure communicating between the first and second windward side through holes 421 b and 422 b and the outside-tank refrigerant space 34 occurs, the groove portion 35 in the leakage inspection. Since the inspection fluid flows out to the outside, it is possible to easily detect a brazing failure.
- the intermediate tank portion 33 is formed by bending a single metal plate into a cylindrical shape, but the configuration of the intermediate tank portion 33 is not limited thereto.
- the intermediate tank portion 33 is formed by combining and joining a semi-cylindrical first tank member 33A and a second tank member 33B formed so as to cover the first tank member 33A. May be formed.
- the present invention is not limited thereto, and the second leeward tank unit 13 and the second leeward tank are formed. You may comprise the part 23 as a different body.
- the refrigerant evaporator 1 is arranged such that the first windward side heat exchange core portion 11a and the first leeward side heat exchange core portion 21a are superposed when viewed from the flow direction X of the blown air.
- the example has been described in which the second leeward heat exchange core portion 11b and the second leeward heat exchange core portion 21b are superposed, but the present invention is not limited thereto.
- the refrigerant evaporator 1 is arranged such that at least a part of the first windward side heat exchange core portion 11a and the first leeward side heat exchange core portion 21a are polymerized when viewed from the flow direction X of the blown air.
- the second windward side heat exchange core part 11b and the second leeward side heat exchange core part 21b may be arranged so as to be superposed.
- the windward side evaporator 10 in the refrigerant evaporator 1 on the upstream side in the flow direction X of the blown air with respect to the leeward side evaporator 20, but not limited to this, the windward side evaporator
- the part 10 may be arranged on the downstream side in the flow direction X of the blown air with respect to the leeward side evaporation part 20.
- each heat exchange core portion 11, 21 is configured by the plurality of tubes 111, 211 and the fins 112 .
- the units 11 and 21 may be configured.
- the fin 112 may employ
- the present invention is not limited thereto, and may be applied to, for example, a refrigeration cycle used in a water heater or the like.
- the present invention is not limited thereto, and the groove 35 may be formed in the intermediate tank 33.
- the groove portions 35 are provided on both the joint surface between the second leeward tank portion 13 and the intermediate tank portion 33 and the joint surface between the second leeward tank portion 23 and the intermediate tank portion 33.
- the present invention is not limited to this, and the groove 35 is connected to the joining surface of the second leeward tank unit 13 and the intermediate tank unit 33 and the joining of the second leeward tank unit 23 and the intermediate tank unit 33. You may provide in either one of the surfaces.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Abstract
冷媒蒸発器(1)では、タンク部(23)の内部に形成された第1冷媒集合部(23a)とタンク部(13)の内部に形成された第2冷媒分配部(13b)とを連結すると共に、タンク部(23)の内部に形成された第2冷媒集合部(23b)とタンク部(13)の内部に形成された第1冷媒分配部(13a)とを連結している。タンク部(23)の外表面およびタンク部(13)の外表面に、内部に冷媒が流通する中間タンク部(33)が接合されている。タンク部(23)の外壁、タンク部(13)の外壁、および中間タンク部(33)の外壁によって、冷媒が流通するタンク外冷媒空間(34)が形成されている。
Description
本開示は、2013年5月24日に出願された日本出願番号2013-110057号に基づくもので、ここにその記載内容を援用する。
本開示は、冷媒蒸発器に関する。
冷媒蒸発器は、外部を流れる被冷却流体(例えば、空気)から吸熱して、内部を流れる冷媒(液相冷媒)を蒸発させることで、被冷却流体を冷却する冷却用熱交換器として機能する。
この種の冷媒蒸発器としては、複数のチューブを積層して構成される熱交換コア部、および複数のチューブの両端部に接続された一対のタンク部を備える第1、第2蒸発部を被冷却流体の流れ方向に直列に配置し、各蒸発部における一方のタンク部同士を、連通部を介して連結する構成が知られている(例えば、特許文献1参照)。
この特許文献1の冷媒蒸発器では、第1蒸発部の熱交換コア部を流れた冷媒を、各蒸発部の一方のタンク部および当該タンク部同士を連結する一対の連通部を介して第2蒸発部の熱交換コア部に流す際に、冷媒の流れを熱交換コア部の幅方向(左右方向)で入れ替える構成としている。つまり、冷媒蒸発器は、一対の連通部のうち、一方の連通部によって、第1蒸発部の熱交換コア部の幅方向一側を流れる冷媒を第2蒸発部の熱交換コア部の幅方向他側に流すと共に、他方の連通部によって第1蒸発部の熱交換コア部の幅方向他側を流れる冷媒を第2蒸発部の熱交換コア部の幅方向一側に流すように構成されている。
ここで、特許文献1に記載の冷媒蒸発器では、各蒸発部における一方のタンク部に中間タンク部を設け、当該中間タンク部内に仕切部材を配置して二つの冷媒流路を形成することにより、連通部を構成している。
上記特許文献1に記載の冷媒蒸発器では、仕切部材は、中間タンク部内壁面に、例えばろう付けにより接合されている。このため、中間タンク部内壁面と仕切部材との間にろう付け不良が発生すると、中間タンク部内での冷媒流路の独立性が保てず、冷媒の流れを熱交換コア部の幅方向(左右方向)で入れ替えることができない可能性がある。
本開示は、冷媒の流れを熱交換コア部の幅方向で確実に入れ替えることができる冷媒蒸発器を提供することを目的とする。
本開示の一態様では、外部を流れる被冷却流体と冷媒との間で熱交換を行う冷媒蒸発器は、被冷却流体の流れ方向に対して直列に配置された第1蒸発部および第2蒸発部を備える。第1蒸発部および第2蒸発部それぞれは、冷媒が流れる複数のチューブを積層して構成された熱交換コア部と、複数のチューブの両端部に接続され、複数のチューブを流れる冷媒の集合あるいは分配を行う一対のタンク部と、を有する。第1蒸発部における熱交換コア部は、複数のチューブのうち、一部のチューブ群で構成される第1コア部、および残部のチューブ群で構成される第2コア部を有する。第2蒸発部における熱交換コア部は、複数のチューブのうち、被冷却流体の流れ方向において第1コア部の少なくとも一部と対向するチューブ群で構成される第3コア部、および被冷却流体の流れ方向において第2コア部の少なくとも一部と対向するチューブ群で構成される第4コア部を有する。第1蒸発部における一対のタンク部のうち、一方のタンク部は、第1コア部からの冷媒を集合させる第1冷媒集合部、第2コア部からの冷媒を集合させる第2冷媒集合部を含んで構成される。第2蒸発部における一対のタンク部のうち、一方のタンク部は、第3コア部に冷媒を分配させる第1冷媒分配部、第4コア部に冷媒を分配させる第2冷媒分配部を含んで構成される。第1蒸発部および第2蒸発部は、第1冷媒集合部の冷媒を第2冷媒分配部に導く第1連通部、および、第2冷媒集合部の冷媒を第1冷媒分配部に導く第2連通部を介して連結される。第1蒸発部の一方のタンク部の外表面および第2蒸発部の一方のタンク部の外表面には、内部に冷媒が流通する中間タンク部が接合される。第1蒸発部の一方のタンク部の外壁、第2蒸発部の一方のタンク部の外壁、および中間タンク部の外壁によって、冷媒が流通するタンク外冷媒空間が形成されており、中間タンク部が第1連通部を構成するとともに、タンク外冷媒空間が第2連通部を構成している。
これによれば、第1連通部として中間タンク部を設けるとともに、第1蒸発部の一方のタンク部の外壁、第2蒸発部の一方のタンク部の外壁、および中間タンク部の外壁によって形成されたタンク外冷媒空間を第2連通部とすることで、第1連通部と第2連通部とを互いに独立した冷媒流路として構成することができる。このため、冷媒の流れを熱交換コア部の幅方向、つまりチューブの積層方向で、確実に入れ替えることが可能となる。
本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
第1実施形態について図1~図6を用いて説明する。本実施形態に係る冷媒蒸発器1は、車室内の温度を調整する車両用空調装置の蒸気圧縮式の冷凍サイクルに適用され、車室内へ送風する送風空気から吸熱して冷媒(液相冷媒)を蒸発させることで、送風空気を冷却する冷却用熱交換器である。なお、本実施形態では、送風空気が「外部を流れる被冷却流体」に相当する。
第1実施形態について図1~図6を用いて説明する。本実施形態に係る冷媒蒸発器1は、車室内の温度を調整する車両用空調装置の蒸気圧縮式の冷凍サイクルに適用され、車室内へ送風する送風空気から吸熱して冷媒(液相冷媒)を蒸発させることで、送風空気を冷却する冷却用熱交換器である。なお、本実施形態では、送風空気が「外部を流れる被冷却流体」に相当する。
冷凍サイクルは、周知の如く、冷媒蒸発器1以外に、図示しない圧縮機、放熱器(凝縮器)、膨張弁等を備えおり、本実施形態では、放熱器と膨張弁との間に受液器を配置するレシーバサイクルとして構成されている。また、冷凍サイクルの冷媒には、圧縮機を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
図1~図3に示すように、本実施形態の冷媒蒸発器1は、送風空気の流れ方向(被冷却流体の流れ方向)Xに対して直列に配置された2つの蒸発部10、20を備えて構成されている。ここで、本実施形態では、2つの蒸発部10、20のうち、送風空気の流れ方向Xの風上側(上流側)に配置される蒸発部を風上側蒸発部10と称し、送風空気の流れ方向Xの風下側(下流側)に配置される蒸発部を風下側蒸発部20と称する。なお、本実施形態における風上側蒸発部10が、「第2蒸発部」を構成し、風下側蒸発部20が、「第1蒸発部」を構成している。
風上側蒸発部10および風下側蒸発部20の基本的構成は同一であり、それぞれ熱交換コア部11、21と、熱交換コア部11、21の上下両側に配置された一対のタンク部12、13、22、23を有して構成されている。
なお、本実施形態では、風上側蒸発部10における熱交換コア部を風上側熱交換コア部11と称し、風下側蒸発部20における熱交換コア部を風下側熱交換コア部21と称する。また、風上側蒸発部10における一対のタンク部12、13のうち、上方側に配置されるタンク部を第1風上側タンク部12と称し、下方側に配置されるタンク部を第2風上側タンク部13と称する。同様に、風下側蒸発部20における一対のタンク部22、23のうち、上方側に配置されるタンク部を第1風下側タンク部22と称し、下方側に配置されるタンク部を第2風下側タンク部23と称する。
本実施形態の風上側熱交換コア部11および風下側熱交換コア部21それぞれは、上下方向に延びる複数のチューブ111、211と、隣り合うチューブ111、211の間に接合されるフィン112とが交互に積層配置された積層体で構成されている。なお、以下、複数のチューブ111、211および複数のフィン112の積層体における積層方向をチューブ積層方向と称する。
ここで、風上側熱交換コア部11は、複数のチューブ111のうち、一部のチューブ群で構成される第1風上側熱交換コア部11a、および残部のチューブ群で構成される第2風上側熱交換コア部11bを有している。なお、本実施形態における第1風上側熱交換コア部11aが、「第3コア部」を構成し、第2風上側熱交換コア部11bが、「第4コア部」を構成する。
本実施形態では、風上側熱交換コア部11を送風空気の流れ方向Xから見たときに、チューブ積層方向の右側に存するチューブ群で第1風上側熱交換コア部11aが構成され、チューブ積層方向の左側に存するチューブ群で第2風上側熱交換コア部11bが構成されている。
また、風下側熱交換コア部21は、複数のチューブ211のうち、一部のチューブ群で構成される第1風下側熱交換コア部21a、および残部のチューブ群で構成される第2風下側熱交換コア部21bを有している。なお、本実施形態における第1風下側熱交換コア部21aが、「第1コア部」を構成し、第2風下側熱交換コア部21bが、「第2コア部」を構成する。
本実施形態では、風下側熱交換コア部21を送風空気の流れ方向Xから見たときに、チューブ積層方向の右側に存するチューブ群で第1風下側熱交換コア部21aが構成され、チューブ積層方向の左側に存するチューブ群で第2風下側熱交換コア部21bが構成されている。なお、本実施形態では、送風空気の流れ方向Xから見たときに、第1風上側熱交換コア部11aおよび第1風下側熱交換コア部21aそれぞれが重合(対向)するように配置されると共に、第2風上側熱交換コア部11bおよび第2風下側熱交換コア部21bそれぞれが重合(対向)するように配置されている。
各チューブ111、211は、内部に冷媒が流れる冷媒通路が形成されると共に、その断面形状が送風空気の流れ方向Xに沿って延びる扁平形状となる扁平チューブで構成されている。
風上側熱交換コア部11のチューブ111は、長手方向の一端側(上端側)が第1風上側タンク部12に接続されると共に、長手方向の他端側(下端側)が第2風上側タンク部13に接続されている。また、風下側熱交換コア部21のチューブ211は、長手方向の一端側(上端側)が第1風下側タンク部22に接続されると共に、長手方向の他端側(下端側)が第2風下側タンク部23に接続されている。
各フィン112は、薄板材を波上に曲げて成形したコルゲートフィンであり、チューブ111、211における平坦な外面側に接合され、送風空気と冷媒との伝熱面積を拡大させるための熱交換促進手段として機能する。
チューブ111、211およびフィン112の積層体には、チューブ積層方向の両端部に、各熱交換コア部11、12を補強するサイドプレート113が配置されている。なお、サイドプレート113は、チューブ積層方向の最も外側に配置されたフィン112に接合されている。
第1風上側タンク部12は、一端側(送風空気の流れ方向Xから見たときの左側端部)が閉塞されると共に、他端側(送風空気の流れ方向Xから見たときの右側端部)にタンク内部から圧縮機(図示略)の吸入側に冷媒を導出するための冷媒導出部12aが形成された筒状の部材で構成されている。この第1風上側タンク部12は、底部に各チューブ111の一端側(上端側)が挿入接合される貫通穴(図示略)が形成されている。つまり、第1風上側タンク部12は、その内部空間が風上側熱交換コア部11の各チューブ111に連通するように構成されており、風上側熱交換コア部11の各コア部11a、11bからの冷媒を集合させる冷媒集合部として機能する。
第1風下側タンク部22は、一端側が閉塞されると共に、他端側にタンク内部に膨張弁(図示略)にて減圧された低圧冷媒を導入するための冷媒導入部22aが形成された筒状の部材で構成されている。この第1風下側タンク部22は、底部に各チューブ211の一端側(上端側)が挿入接合される貫通穴(図示略)が形成されている。つまり、第1風下側タンク部22は、その内部空間が風下側熱交換コア部21の各チューブ211に連通するように構成されており、風下側熱交換コア部21の各コア部21a、21bへ冷媒を分配する冷媒分配部として機能する。
第2風上側タンク部13は、両端側が閉塞された筒状の部材で構成されている。この第2風上側タンク部13は、天井部に各チューブ111の他端側(下端側)が挿入接合される貫通穴(図示略)が形成されている。つまり、第2風上側タンク部13は、その内部空間が各チューブ111に連通するように構成されている。
また、第2風上側タンク部13の内部には、長手方向の中央位置に仕切部材131が配置されており、この仕切部材131によって、タンク内部空間が第1風上側熱交換コア部11aを構成する各チューブ111が連通する空間と、第2風上側熱交換コア部11bを構成する各チューブ111が連通する空間とに仕切られている。
ここで、第2風上側タンク部13の内部のうち、第1風上側熱交換コア部11aを構成する各チューブ111に連通する空間が、第1風上側熱交換コア部11aに冷媒を分配する第1冷媒分配部13aを構成し、第2風上側熱交換コア部11bを構成する各チューブ111に連通する空間が、第2風上側熱交換コア部11bに冷媒を分配する第2冷媒分配部13bを構成する。
第2風下側タンク部23は、両端側が閉塞された筒状の部材で構成されている。この第2風下側タンク部23は、天井部に各チューブ211の他端側(下端側)が挿入接合される貫通穴(図示略)が形成されている。つまり、第2風下側タンク部23は、その内部空間が各チューブ211に連通するように構成されている。
第2風下側タンク部23の内部には、長手方向の中央位置に仕切部材231が配置されており、この仕切部材231によって、タンク内部空間が第1風下側熱交換コア部21aを構成する各チューブ211が連通する空間と、第2風下側熱交換コア部21bを構成する各チューブ211が連通する空間とに仕切られている。
ここで、第2風下側タンク部23の内部のうち、第1風下側熱交換コア部21aを構成する各チューブ211に連通する空間が、第1風下側熱交換コア部21aからの冷媒を集合させる第1冷媒集合部23aを構成し、第2風下側熱交換コア部21bを構成する各チューブ211が連通する空間が、第2風下側熱交換コア部21bからの冷媒を集合させる第2冷媒集合部23bを構成する。
ここで、本実施形態の第2風上側タンク部13および第2風下側タンク部23の詳細な構成について説明する。
図3~図5に示すように、本実施形態の第2風上側タンク部13および第2風下側タンク部23は、一体に形成されている。第2風下側タンク部23および第2風上側タンク部13は、チューブ111、211が挿入接合されたコアプレート41と、コアプレート41とともにタンク内空間(第1冷媒分配部13a、第2冷媒分配部13b、第1冷媒集合部23aおよび第2冷媒集合部23b)を構成するタンク本体部42とを有して構成されている。
コアプレート41は、断面略W字形状に形成されている。詳細には、コアプレート41は、風上側熱交換コア部11のチューブ111が挿入接合される風上側チューブ接合面411と、風下側熱交換コア部21のチューブ211が挿入接合される風下側チューブ接合面412とを有している。また、コアプレート41は、二つのチューブ接合面411、412の間に配置されるとともに、二つのチューブ接合面411、412よりも熱交換コア部11、21と反対側に突出するコアプレート側凸部413を有している。
タンク本体部42は、断面略W字形状に形成されている。詳細には、風上側チューブ接合面411とともに第1冷媒分配部13aおよび第2冷媒分配部13bを構成する風上側タンク本体部421と、風下側チューブ接合面412とともに第1冷媒集合部23aおよび第2冷媒集合部23bを構成する風下側タンク本体部422とを有している。また、タンク本体部42は、二つのタンク本体部421、421の間に配置されるとともに、二つのタンク本体部421、422よりも熱交換コア部11、21側に突出するタンク本体部側凸部423を有している。
コアプレート41のコアプレート側凸部413とタンク本体部421のタンク本体部側凸部423とを接合することで、第2風上側タンク部13と第2風下側タンク部23とが仕切られている。
風上側チューブ接合面411と風上側タンク本体部421との間に、仕切部材131が配置された状態で接合されることで、第1冷媒分配部13aと第2冷媒分配部13bとが仕切られている。また、風下側チューブ接合面412と風下側タンク本体部422との間に、仕切部材231が配置された状態で接合されることで、第1冷媒集合部23aと第2冷媒集合部23bとが仕切られている。
タンク本体部42における熱交換コア部11、12と反対側の外表面(図3の下方側の外壁)には、後述する中間タンク部33の外表面が接合されている。本実施形態では、中間タンク部33の外表面は、タンク本体部側凸部423の外表面、風上側タンク本体部421におけるタンク本体部側凸部423と接続されている断面が直線状の部分(以下、風上側直線部421aという)の外表面、および、風下側タンク本体部422におけるタンク本体部側凸部423と接続されている断面が直線状の部分(以下、風下側直線部422aという)の外表面に接合されている。
風上側直線部421aにおける仕切部材131よりも冷媒導出部12aと反対側の部分には、その表裏を貫通する第1風上側貫通穴421bが形成されている。また、風上側直線部421aにおける仕切部材131よりも冷媒導出部12a側の部分には、その表裏を貫通する第2風上側貫通穴421cが形成されている。
第1風上側貫通穴421bは、風上側直線部421aにおける冷媒導出部12aと反対側の端部に設けられている。第2風上側貫通穴421cは、風上側直線部421aにおける仕切部材131の近傍に配置されている。本実施形態では、第1風上側貫通穴421bの開口面積が、第2風上側貫通穴421cの開口面積よりも大きくなっている。
風下側直線部422aにおける仕切部材231よりも冷媒導入部22a側の部分には、その表裏を貫通する第1風下側貫通穴422bが形成されている。また、風下側直線部422aにおける仕切部材231よりも冷媒導入部22aと反対側の部分には、その表裏を貫通する第2風下側貫通穴422cが形成されている。
第1風下側貫通穴422bは、風上側直線部421aにおける冷媒導入部22a側の端部に設けられている。第2風下側貫通穴422cは、風下側直線部422aにおける仕切部材231の近傍に配置されている。本実施形態では、第1風下側貫通穴422bの開口面積が、第2風下側貫通穴422cの開口面積よりも大きくなっている。
中間タンク部33は、内部に冷媒が流通する冷媒流通路が形成された筒状の部材で構成されている。本実施形態では、1枚の金属板を筒状に湾曲させることにより、中間タンク部33が形成されている。
中間タンク部33は、タンク本体部42と対向する外壁を、当該中間タンク部33の内方側(図3における下方側)に向かって凹ませた凹部331を有している。つまり、凹部331は、中間タンク部33における第2風下側タンク部23および第2風上側タンク部13の双方と対向する外壁を、当該中間タンク部33の内方側に向かって凹ませることにより形成されている。
凹部331は、当該中間タンク部33における仕切部材131、231に対応する部位近傍(本実施形態では、チューブ積層方向の中央部)に配置されている。
この凹部331を設けることにより、タンク本体部42の外壁および中間タンク部33の凹部331の外壁によって、冷媒が流通するタンク外冷媒空間34が形成されている。より詳細には、中間タンク部33の凹部331の外壁、タンク本体部側凸部423の外壁、風上側直線部421aの外壁、および、風下側直線部422aの外壁によって、タンク外冷媒空間34が形成されている。
ここで、中間タンク部33において、タンク本体部42の風上側直線部421aと接合される部位を風上側壁面332といい、タンク本体部42の風下側直線部422aと接合される部位を風下側壁面333という。
風上側壁面332における第1風上側貫通穴421bと対応する部位には、その表裏を貫通する第1中間タンク部側貫通穴332aが形成されている。第1中間タンク部側貫通穴332aは、第1風上側貫通穴421bと同等の形状に形成されている。
風下側壁面333における第1風下側貫通穴422bと対応する部位には、その表裏を貫通する第2中間タンク部側貫通穴333aが形成されている。第2中間タンク部側貫通穴333aは、第1風下側貫通穴422bと同等の形状に形成されている。
上述したように、第2風上側タンク部13、第2風下側タンク部23および中間タンク部33を形成することで、図6の破線矢印に示すように、第1風下側熱交換コア部21aを下降した冷媒は、第2風下側タンク部23の第1冷媒集合部23aに流入する。第1冷媒集合部23aに流入した冷媒は、第1風下側貫通穴422bおよび第2中間タンク部側貫通穴333aを介して中間タンク部33に流入する。
中間タンク部33に流入した冷媒は、第1中間タンク部側貫通穴332aおよび第1風上側貫通穴421bを介して第2風上側タンク部13の第2冷媒分配部13bに流入する。第2冷媒分配部13bに流入した冷媒は、風上側熱交換コア部11の第2風上側熱交換コア部11bを上昇する。
一方、図6の一点鎖線矢印に示すように、第2風下側熱交換コア部21bを下降した冷媒は、第2風下側タンク部23の第2冷媒集合部23bに流入する。第2冷媒集合部23bに流入した冷媒は、第2風下側貫通穴422cを介してタンク外冷媒空間34に流入する。
タンク外冷媒空間34に流入した冷媒は、第2風上側貫通穴421cを介して第2風上側タンク部13の第1冷媒分配部13aに流入する。第1冷媒分配部13aに流入した冷媒は、風上側熱交換コア部11の第1風上側熱交換コア部11aを上昇する。
したがって、本実施形態では、第1風下側貫通穴422bが「第1貫通穴」を構成し、第2中間タンク部側貫通穴333aが「第2貫通穴」を構成している。また、第1風上側貫通穴421bが「第3貫通穴」を構成し、第1中間タンク部側貫通穴332aが「第4貫通穴」を構成している。
上述したように構成された中間タンク部33およびタンク外冷媒空間34によって、第2風下側タンク部23における第1冷媒集合部23a内の冷媒が第2風上側タンク部13における第2冷媒分配部13bに導かれると共に、第2風下側タンク部23における第2冷媒集合部23b内の冷媒が第2風上側タンク部13における第1冷媒分配部13aに導かれる。すなわち、中間タンク部33およびタンク外冷媒空間34は、冷媒の流れを各熱交換コア部11、21においてコア幅方向に入れ替えるように構成されている。
したがって、本実施形態では、中間タンク部33が、「第1連通部」を構成し、タンク外冷媒空間34が、「第2連通部」を構成している。
以上説明した本実施形態に係る冷媒蒸発器1では、中間タンク部33を設けることで、第1風下側熱交換コア部21aからの冷媒を第2風上側熱交換コア部11bへ導く第1冷媒流路(図6の破線矢印参照)を構成している。また、第2風下側タンク部23の外壁、第2風上側タンク部13の外壁、および中間タンク部33の外壁によって形成されたタンク外冷媒空間34を形成することで、第2風下側熱交換コア部21bからの冷媒を第1風上側熱交換コア部11aへ導く第1冷媒流路(図6の一点鎖線矢印参照)を構成している。
これにより、第1冷媒流路と第2冷媒流路とを互いに独立した冷媒流路として構成することができる。このため、冷媒の流れを熱交換コア部11a、11b、21a、21bの幅方向(チューブ積層方向)で確実に入れ替えることが可能となる。
(第2実施形態)
第2実施形態について図7および図8に基づいて説明する。第2実施形態は、上記第1実施形態と比較して、第2風上側タンク部13と中間タンク部33との接合面、および、第2風下側タンク部23と中間タンク部33との接合面に、外部と連通する溝部35を設けた点が異なる。
第2実施形態について図7および図8に基づいて説明する。第2実施形態は、上記第1実施形態と比較して、第2風上側タンク部13と中間タンク部33との接合面、および、第2風下側タンク部23と中間タンク部33との接合面に、外部と連通する溝部35を設けた点が異なる。
図7および図8に示すように、タンク本体部42の風上側直線部421aおよび風下側直線部422aには、タンク本体部42の長手方向(チューブ積層方向)に直交する方向に延びる溝部35が合計4つ設けられている。ここで、溝部35のうち、風上側壁面332に設けられた溝部35を風上側溝部351といい、風下側壁面333に設けられた溝部35を風下側溝部352という。
本実施形態では、風上側溝部351および風下側溝部352は、それぞれ二つずつ設けられている。冷媒蒸発器1を送風空気の流れ方向Xから見たときに、風上側溝部351および風下側溝部352は重合する位置に配置されている。
二つの風上側溝部351のうちの一つは、第1風上側貫通穴421b(第1中間タンク部側貫通穴332a)と凹部331との間に配置されている。二つの風下側溝部352のうちの一つは、第1風下側貫通穴422b(第2中間タンク部側貫通穴333a)と凹部331との間に配置されている。
ところで、タンク本体部42の外壁と中間タンク部33の外壁との間にろう付け不良が発生した場合、第1風上側貫通穴421b(第1中間タンク部側貫通穴332a)とタンク外冷媒空間34との間や、第1風下側貫通穴422b(第2中間タンク部側貫通穴333a)とタンク外冷媒空間34との間で連通する可能性がある。その際、中間タンク部33を流通する第1冷媒流路の冷媒とタンク外冷媒空間34を流通する第2冷媒流路の冷媒とが混合し、冷媒流路の独立性が保てなくなるおそれがある。
通常、ろう付け不良を検出するために、冷媒蒸発器1内に所定圧力の検査流体を封入し、ろう付け不良等による洩れを検査流体の外部流出により検出する検査方法を採用している。しかしながら、上述したような、第1、第2風上側貫通穴421b、422bとタンク外冷媒空間34との間で連通するろう付け不良が発生した場合、洩れ検査時、外部に検査流体は洩れ出さないため、ろう付け不良を検出することが不可能であった。
これに対し、本実施形態のように、第2風上側タンク部13と中間タンク部33との接合面、および、第2風下側タンク部23と中間タンク部33との接合面に、外部と連通する溝部35を設けることで、前述の第1、第2風上側貫通穴421b、422bとタンク外冷媒空間34との間で連通するろう付け不良が発生した場合に、洩れ検査において当該溝部35を介して検査流体が外部に流出するので、ろう付け不良を容易に検出することが可能となる。
(他の実施形態)
本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
上述の実施形態では、1枚の金属板を筒状に湾曲させることにより、中間タンク部33を形成した例について説明したが、中間タンク部33の構成はこれに限定されない。
例えば、図9に示すように、半円筒状の第1タンク部材33Aと、第1タンク部材33Aを覆うように形成された第2タンク部材33Bとを組み合わせて接合することにより、中間タンク部33を形成してもよい。
上述の実施形態では、第2風上側タンク部13および第2風下側タンク部23を一体に形成した例について説明したが、これに限らず、第2風上側タンク部13と第2風下側タンク部23とを別体として構成してもよい。
上述の実施形態では、冷媒蒸発器1として、送風空気の流れ方向Xから見たときに、第1風上側熱交換コア部11aおよび第1風下側熱交換コア部21aが重合するように配置されると共に、第2風上側熱交換コア部11bおよび第2風下側熱交換コア部21bが重合するように配置される例について説明したが、これに限られない。冷媒蒸発器1としては、送風空気の流れ方向Xから見たときに、第1風上側熱交換コア部11aおよび第1風下側熱交換コア部21aの少なくとも一部が重合するように配置したり、第2風上側熱交換コア部11bおよび第2風下側熱交換コア部21bの少なくとも一部が重合するように配置したりしてもよい。
上述の実施形態の如く、冷媒蒸発器1における風上側蒸発部10を風下側蒸発部20よりも送風空気の流れ方向Xにおける上流側に配置することが望ましいが、これに限らず、風上側蒸発部10を風下側蒸発部20よりも送風空気の流れ方向Xにおける下流側に配置するようにしてもよい。
上述の実施形態では、各熱交換コア部11、21を複数のチューブ111、211とフィン112で構成する例を説明したが、これに限らず、複数のチューブ111、211だけで各熱交換コア部11、21を構成するようにしてもよい。また、各熱交換コア部11、21を複数のチューブ111、211とフィン112で構成する場合、フィン112は、コルゲートフィンに限らずプレートフィンを採用してもよい。
上述の実施形態では、冷媒蒸発器1を車両用空調装置の冷凍サイクルに適用する例について説明したが、これに限らず、例えば、給湯機等に用いられる冷凍サイクルに適用してもよい。
上記第2実施形態では、溝部35をタンク本体部42に形成した例について説明したが、これに限らず、溝部35を中間タンク部33に形成してもよい。
上記第2実施形態では、溝部35を、第2風上側タンク部13と中間タンク部33との接合面、および、第2風下側タンク部23と中間タンク部33との接合面の双方に設けた例について説明したが、これに限らず、溝部35を、第2風上側タンク部13と中間タンク部33との接合面、および、第2風下側タンク部23と中間タンク部33との接合面のいずれか一方に設けてもよい。
Claims (3)
- 外部を流れる被冷却流体と冷媒との間で熱交換を行う冷媒蒸発器であって、
前記被冷却流体の流れ方向に対して直列に配置された第1蒸発部(20)および第2蒸発部(10)を備え、
前記第1蒸発部(20)および前記第2蒸発部(10)それぞれは、
冷媒が流れる複数のチューブ(111、211)を積層して構成された熱交換コア部(11、21)と、
前記複数のチューブ(111、211)の両端部に接続され、前記複数のチューブ(111、211)を流れる冷媒の集合あるいは分配を行う一対のタンク部(12、13、22、23)と、を有し、
前記第1蒸発部(20)における前記熱交換コア部(21)は、前記複数のチューブ(211)のうち、一部のチューブ群で構成される第1コア部(21a)、および残部のチューブ群で構成される第2コア部(21b)を有し、
前記第2蒸発部(10)における前記熱交換コア部(11)は、前記複数のチューブ(111)のうち、前記被冷却流体の流れ方向において前記第1コア部(21a)の少なくとも一部と対向するチューブ群で構成される第3コア部(11a)、および前記被冷却流体の流れ方向において前記第2コア部(21b)の少なくとも一部と対向するチューブ群で構成される第4コア部(11b)を有し、
前記第1蒸発部(20)における前記一対のタンク部(22、23)のうち、一方のタンク部(23)は、前記第1コア部(21a)からの冷媒を集合させる第1冷媒集合部(23a)、前記第2コア部(21b)からの冷媒を集合させる第2冷媒集合部(23b)を含んで構成され、
前記第2蒸発部(10)における前記一対のタンク部(12、13)のうち、一方のタンク部(13)は、前記第3コア部(11a)に冷媒を分配させる第1冷媒分配部(13a)、前記第4コア部(11b)に冷媒を分配させる第2冷媒分配部(13b)を含んで構成され、
前記第1蒸発部(20)および前記第2蒸発部(10)は、前記第1冷媒集合部(23a)の冷媒を前記第2冷媒分配部(13b)に導く第1連通部(33)、および、前記第2冷媒集合部(23b)の冷媒を前記第1冷媒分配部(13a)に導く第2連通部(34)を介して連結されており、
前記第1蒸発部(20)の前記一方のタンク部(23)の外表面および前記第2蒸発部(10)の前記一方のタンク部(13)の外表面には、内部に冷媒が流通する中間タンク部(33)が接合されており、
前記第1蒸発部(20)の前記一方のタンク部(23)の外壁、前記第2蒸発部(10)の前記一方のタンク部(13)の外壁、および前記中間タンク部(33)の外壁によって、冷媒が流通するタンク外冷媒空間(34)が形成されており、
前記中間タンク部(33)が前記第1連通部を構成するとともに、前記タンク外冷媒空間(34)が前記第2連通部を構成している冷媒蒸発器。 - 前記中間タンク部(33)は、当該中間タンク部(33)における前記第1蒸発部(20)の前記一方のタンク部(23)および前記第2蒸発部(10)の前記一方のタンク部(13)の双方と対向する外壁を、当該中間タンク部(33)の内方側に向かって凹ませた凹部(331)を有しており、
前記第1蒸発部(20)の前記一方のタンク部(23)の外壁、前記第2蒸発部(10)の前記一方のタンク部(13)の外壁、および前記中間タンク部(33)の前記凹部(331)の外壁によって、前記タンク外冷媒空間(34)が形成されている請求項1に記載の冷媒蒸発器。 - 前記第1蒸発部(20)の前記一方のタンク部(23)における前記中間タンク部(33)と対向する部位には、第1貫通穴(422b)が形成されており、
前記中間タンク部(33)における前記第1貫通穴(422b)と対応する部位には、第2貫通穴(333a)が形成されており、
前記第1貫通穴(422b)および前記第2貫通穴(333a)を介して、前記第1蒸発部(20)の前記一方のタンク部(23)内と前記中間タンク部(33)内とが連通しており、
前記第2蒸発部(10)の前記一方のタンク部(13)における前記中間タンク部(33)と対向する部位には、第3貫通穴(421b)が形成されており、
前記中間タンク部(33)における前記第3貫通穴(421b)と対応する部位には、第4貫通穴(332a)が形成されており、
前記第3貫通穴(421b)および前記第4貫通穴(332a)を介して、前記第2蒸発部(10)の前記一方のタンク部(13)内と前記中間タンク部(33)内とが連通しており、
前記第1蒸発部(20)の前記一方のタンク部(23)と前記中間タンク部(33)との接合面における前記第1貫通穴(422b)または前記第2貫通穴(333a)と前記凹部(331)との間、および、前記第2蒸発部(10)の前記一方のタンク部(13)と前記中間タンク部(33)との接合面における前記第3貫通穴(421b)または前記第4貫通穴(332a)と前記凹部(331)との間の少なくとも一方には、外部と連通する溝部(35)が設けられている請求項2に記載の冷媒蒸発器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480029765.6A CN105247315B (zh) | 2013-05-24 | 2014-05-16 | 制冷剂蒸发器 |
DE112014002544.5T DE112014002544B4 (de) | 2013-05-24 | 2014-05-16 | Kältemittelverdampfer |
US14/893,434 US10107532B2 (en) | 2013-05-24 | 2014-05-16 | Refrigerant evaporator having a tank external refrigerant space |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013110057A JP6123484B2 (ja) | 2013-05-24 | 2013-05-24 | 冷媒蒸発器 |
JP2013-110057 | 2013-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014188690A1 true WO2014188690A1 (ja) | 2014-11-27 |
Family
ID=51933258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/002591 WO2014188690A1 (ja) | 2013-05-24 | 2014-05-16 | 冷媒蒸発器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10107532B2 (ja) |
JP (1) | JP6123484B2 (ja) |
CN (1) | CN105247315B (ja) |
DE (1) | DE112014002544B4 (ja) |
WO (1) | WO2014188690A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016164486A (ja) * | 2015-02-27 | 2016-09-08 | 株式会社デンソー | 冷媒蒸発器 |
JP2017032262A (ja) * | 2015-02-27 | 2017-02-09 | 株式会社デンソー | 冷媒蒸発器 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015157507A (ja) * | 2014-02-21 | 2015-09-03 | 株式会社ケーヒン・サーマル・テクノロジー | 車両用空調装置 |
KR102118597B1 (ko) * | 2015-03-06 | 2020-06-04 | 한온시스템 주식회사 | 차량용 냉방장치의 열교환기 |
WO2017037772A1 (ja) * | 2015-08-28 | 2017-03-09 | 三菱電機株式会社 | 熱交換器及び熱交換器の製造方法 |
JP6746234B2 (ja) * | 2017-01-25 | 2020-08-26 | 日立ジョンソンコントロールズ空調株式会社 | 熱交換器、及び、空気調和機 |
CN106939853A (zh) * | 2017-05-09 | 2017-07-11 | 浙江银轮机械股份有限公司 | 用于发动机废气再循环的蒸发器 |
AU2017444848B2 (en) * | 2017-12-25 | 2021-08-19 | Mitsubishi Electric Corporation | Heat exchanger and refrigeration cycle device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0364359U (ja) * | 1989-10-12 | 1991-06-24 | ||
JP2005195316A (ja) * | 2003-12-08 | 2005-07-21 | Showa Denko Kk | 熱交換器 |
JP2005299981A (ja) * | 2004-04-08 | 2005-10-27 | Denso Corp | 冷媒蒸発器 |
JP2006029697A (ja) * | 2004-07-16 | 2006-02-02 | Denso Corp | 冷媒蒸発器 |
JP2013096653A (ja) * | 2011-11-01 | 2013-05-20 | Denso Corp | 冷媒蒸発器 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3413931A1 (de) * | 1984-04-13 | 1985-10-24 | Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co. KG, 7000 Stuttgart | Verdampfer, insbesondere fuer klimaanlagen in kraftfahrzeugen |
JP4024095B2 (ja) | 2002-07-09 | 2007-12-19 | カルソニックカンセイ株式会社 | 熱交換器 |
JP4124136B2 (ja) | 2003-04-21 | 2008-07-23 | 株式会社デンソー | 冷媒蒸発器 |
WO2005040710A1 (en) | 2003-10-29 | 2005-05-06 | Showa Denko K.K. | Heat exchanger |
JP2005241170A (ja) * | 2004-02-27 | 2005-09-08 | Mitsubishi Heavy Ind Ltd | 熱交換器 |
WO2005108899A1 (en) * | 2004-05-11 | 2005-11-17 | Showa Denko K.K. | Heat exchangers |
DE102009043264A1 (de) | 2009-09-29 | 2011-03-31 | Behr Gmbh & Co. Kg | Wärmeübertrager |
US8434324B2 (en) * | 2010-04-05 | 2013-05-07 | Denso Corporation | Evaporator unit |
KR101409196B1 (ko) | 2012-05-22 | 2014-06-19 | 한라비스테온공조 주식회사 | 증발기 |
KR101457585B1 (ko) * | 2012-05-22 | 2014-11-03 | 한라비스테온공조 주식회사 | 증발기 |
KR101878317B1 (ko) * | 2012-05-22 | 2018-07-16 | 한온시스템 주식회사 | 증발기 |
-
2013
- 2013-05-24 JP JP2013110057A patent/JP6123484B2/ja active Active
-
2014
- 2014-05-16 US US14/893,434 patent/US10107532B2/en active Active
- 2014-05-16 DE DE112014002544.5T patent/DE112014002544B4/de active Active
- 2014-05-16 WO PCT/JP2014/002591 patent/WO2014188690A1/ja active Application Filing
- 2014-05-16 CN CN201480029765.6A patent/CN105247315B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0364359U (ja) * | 1989-10-12 | 1991-06-24 | ||
JP2005195316A (ja) * | 2003-12-08 | 2005-07-21 | Showa Denko Kk | 熱交換器 |
JP2005299981A (ja) * | 2004-04-08 | 2005-10-27 | Denso Corp | 冷媒蒸発器 |
JP2006029697A (ja) * | 2004-07-16 | 2006-02-02 | Denso Corp | 冷媒蒸発器 |
JP2013096653A (ja) * | 2011-11-01 | 2013-05-20 | Denso Corp | 冷媒蒸発器 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016164486A (ja) * | 2015-02-27 | 2016-09-08 | 株式会社デンソー | 冷媒蒸発器 |
JP2017032262A (ja) * | 2015-02-27 | 2017-02-09 | 株式会社デンソー | 冷媒蒸発器 |
CN107003090A (zh) * | 2015-02-27 | 2017-08-01 | 株式会社电装 | 制冷剂蒸发器 |
Also Published As
Publication number | Publication date |
---|---|
US20160109168A1 (en) | 2016-04-21 |
JP6123484B2 (ja) | 2017-05-10 |
US10107532B2 (en) | 2018-10-23 |
DE112014002544T5 (de) | 2016-02-18 |
JP2014228234A (ja) | 2014-12-08 |
CN105247315B (zh) | 2017-09-22 |
CN105247315A (zh) | 2016-01-13 |
DE112014002544B4 (de) | 2023-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014188690A1 (ja) | 冷媒蒸発器 | |
WO2014181546A1 (ja) | 冷媒蒸発器 | |
WO2014041771A1 (ja) | 熱交換器 | |
WO2016170751A1 (ja) | 蓄冷熱交換器 | |
WO2014188689A1 (ja) | 冷媒蒸発器 | |
JP2016090217A (ja) | 積層型熱交換器 | |
WO2014068842A1 (ja) | 冷媒蒸発器 | |
JP2016130612A (ja) | 冷媒蒸発器 | |
JP6322982B2 (ja) | 冷媒蒸発器 | |
JP2007078292A (ja) | 熱交換器および複式熱交換器 | |
WO2018207556A1 (ja) | 冷媒蒸発器およびその製造方法 | |
JP2014228233A (ja) | 冷媒蒸発器 | |
JP6098358B2 (ja) | 冷媒蒸発器 | |
JP6477306B2 (ja) | 冷媒蒸発器 | |
WO2014181547A1 (ja) | 冷媒蒸発器 | |
JP2014219176A (ja) | 冷媒蒸発器 | |
JP6458617B2 (ja) | 冷媒蒸発器 | |
KR20100067164A (ko) | 자동차용 열교환기 및 그의 제조방법 | |
JP5761134B2 (ja) | 冷媒蒸発器 | |
EP4235058A1 (en) | Heat exchanger and refrigeration cycle device | |
JP2006284163A (ja) | 一体型熱交換装置 | |
JP6613996B2 (ja) | 冷媒蒸発器 | |
KR20170011736A (ko) | 열교환기용 튜브 | |
JP2011117699A (ja) | 熱交換器 | |
JP2013002652A (ja) | 熱交換器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14801569 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14893434 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014002544 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14801569 Country of ref document: EP Kind code of ref document: A1 |