WO2014187424A1 - 一种直流电源及其工作方法 - Google Patents

一种直流电源及其工作方法 Download PDF

Info

Publication number
WO2014187424A1
WO2014187424A1 PCT/CN2014/079989 CN2014079989W WO2014187424A1 WO 2014187424 A1 WO2014187424 A1 WO 2014187424A1 CN 2014079989 W CN2014079989 W CN 2014079989W WO 2014187424 A1 WO2014187424 A1 WO 2014187424A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
switching power
output
supply unit
change
Prior art date
Application number
PCT/CN2014/079989
Other languages
English (en)
French (fr)
Inventor
王林国
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2016525601A priority Critical patent/JP2016534690A/ja
Priority to EP14801369.1A priority patent/EP3062432A4/en
Priority to US15/030,649 priority patent/US20160261188A1/en
Publication of WO2014187424A1 publication Critical patent/WO2014187424A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation

Definitions

  • the present invention relates to the field of electronic circuit technologies, and in particular, to a DC power supply and a working method thereof.
  • a switching power supply has a dominant position in the power supply of an electronic device because of its high efficiency and small volume, especially in applications with large power.
  • CPU central processing unit
  • FPGA field-programmable gate array
  • the power supply voltage required to supply power is getting lower and lower, current Increasingly large, the current dynamic rate of change is getting higher and higher.
  • Intel's latest CPUs have a dynamic current rate of change that exceeds 100A/ US , which poses new challenges for switching power supplies.
  • the low-voltage filter is required to filter the high-voltage switching voltage source signal into a smooth low-voltage power supply output.
  • This low-frequency filter usually consists of passive power inductors and capacitors.
  • the size of the power inductor determines the rate of change of the switching power supply output current. A smaller inductance value can increase the current response speed of the switching power supply, but it will bring a larger ripple current, which will increase the loss of the switching transistor and the inductor, and reduce the efficiency of the power supply. Larger inductance values increase the efficiency of the power supply, but reduce the current response speed of the switching power supply.
  • the current main solution is to rely on a large number of output capacitors to take up the dynamic current, reducing the requirement for fast response to the inductor current, but this makes the power supply too large and the reliability is reduced.
  • a switching power supply is connected in parallel with a linear power supply, so that the switching power supply operates at a lower bandwidth, and the linear power supply operates at a higher bandwidth.
  • the main current is supplied by the linear power supply, thereby improving The dynamic response speed of the entire power supply.
  • the linear regulator itself is inefficient and needs to remain static during steady state, thus affecting the efficiency of the power supply.
  • a DC power supply including a controller and at least two switching power supply units, and outputs of the at least two switching power supply units are connected to each other, and the controller and each of the controllers respectively
  • the switching power supply unit is connected;
  • the at least two switching power supply units include a fast switching power supply unit having a first output inductance and a high efficiency switching power supply unit having a second output inductance, wherein the first output inductance is smaller than the second output inductance ;
  • the at least two switching power supply units are configured to externally provide an output voltage under the control of the controller;
  • the controller is configured to control the at least two switching power supply units according to a rate of change of the output current, so that When the absolute value of the rate of change of the output current is greater than a predetermined value, the output
  • each of the switching power supply units includes an output inductor, and one end of the output inductor is connected to an input power source through a power switch, and is grounded through a grounding switch, and the other end of the output inductor is connected to an output capacitor;
  • the method further includes: a detecting unit configured to detect a rate of change of the output current; and a control unit configured to control the fast when an absolute value of a rate of change of the output current detected by the detecting unit is greater than the specified value
  • the power switch and the grounding switch of the switching power supply unit are complementarily alternately closed or opened according to pulse width modulation; and the high efficiency is controlled when the absolute value of the output current change rate detected by the detecting unit is less than or equal to the predetermined value
  • the power switch and the grounding switch of the switching power supply unit are alternately closed or opened in accordance with pulse width modulation.
  • control unit is further configured to: when the rate of change of the output current detected by the detecting unit is positive and the absolute value is greater than the predetermined value, close the power switch of the high-efficiency switching power supply unit, and ground The switch is turned off; when the rate of change of the output current detected by the detecting unit is negative and the absolute value is greater than the specified value, the power switch of the high-efficiency switching power supply unit is turned off, and the grounding switch is closed; When the absolute value of the rate of change of the output current detected by the unit is less than the predetermined value, both the power switch and the grounding switch of the fast switching power supply unit are turned off.
  • the pulse width modulation comprises fixed on-time modulation or hysteresis modulation.
  • a switching frequency of the power switch and the grounding switch of the fast switching power supply unit is greater than a switching frequency of the power switch and the grounding switch of the high efficiency switching power supply unit.
  • the switching frequency of the power switch and the grounding switch of the fast switching power supply unit is greater than twice the switching frequency of the power switch and the grounding switch of the high efficiency switching power supply unit.
  • the inductance of the output inductor of the fast switching power supply unit is less than one-half of the inductance of the output inductor of the high-efficiency switching power supply unit.
  • an inductance value of an output inductor of the fast switching power supply unit is one tenth of an inductance value of an output inductor of the high efficiency switching power supply unit.
  • a working method of the foregoing DC power supply including: detecting a rate of change of the output current; And controlling the at least two switching power supply units according to the rate of change of the output current, so that when the absolute value of the rate of change of the output current is greater than the predetermined value, the output voltage is externally supplied through the fast switching power supply unit, When the absolute value of the rate of change of the output current is less than or equal to the predetermined value, an output voltage is externally supplied through the high-efficiency switching power supply unit.
  • the controlling at least two switching power supply units according to the rate of change of the output current, so that when the absolute value of the rate of change of the output current is greater than a predetermined value, the fast switching power supply unit is externally Providing an output voltage, when the absolute value of the rate of change of the output current is less than or equal to the predetermined value, the externally providing the output voltage through the high-efficiency switching power supply unit includes: the output current detected by the detecting unit When the absolute value of the rate of change is greater than the specified value, the power switch and the grounding switch that control the fast switching power supply unit are complementarily alternately closed or opened according to pulse width modulation; when the rate of change of the current detected by the detecting unit is When the absolute value is less than or equal to the predetermined value, the power switch and the grounding switch that control the high-efficiency switching power supply unit are complementarily alternately closed or opened according to pulse width modulation; wherein, the output inductance of each of the switching power supply parts One end is connected to the input power through the power switch, and
  • the method further includes: when the rate of change of the output current is positive and the absolute value is greater than the specified value, closing the power switch of the high-efficiency switching power supply unit, and disconnecting the grounding switch; When the rate of change of the output current is negative and the absolute value is greater than the predetermined value, the power switch of the high efficiency switching power supply unit is turned off, and the grounding switch is closed; when the absolute value of the rate of change of the output current is less than the When the value is specified, both the power switch and the grounding switch of the fast switching power supply unit are disconnected.
  • the DC power supply and the working method thereof provided by the embodiments of the present invention can control each switching power supply unit according to the rate of change of the output current, so that when the absolute value of the change rate of the output current is greater than a predetermined value, the dynamic response is faster.
  • the fast switching power supply unit externally supplies an output voltage, so that the output current can quickly track the change of the load current.
  • the absolute value of the change rate of the output current is less than or equal to the predetermined value, the dynamic response is slow but the efficiency is used.
  • the high-efficiency switching power supply unit provides an output voltage externally, so that the load can be driven with higher efficiency. Therefore, as a whole, it is possible to quickly track the change of the load current while maintaining high power supply efficiency.
  • FIG. 1 is a schematic diagram of a circuit configuration of a DC power supply according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of another circuit configuration of a DC power supply according to an embodiment of the present invention
  • FIG. 4 is a flow chart of a method of operating a switching power supply according to an embodiment of the present invention.
  • an embodiment of the present invention provides a DC power supply, including a controller 1 and at least two switching power supply units 2, wherein outputs of the at least two switching power supply units 2 are connected to each other to form a common output terminal out.
  • the controller 1 is respectively connected to each of the switching power supply units 2; the at least two switching power supply units 2 include a fast switching power supply unit 21 having a first output inductance and a high efficiency switching power supply unit 22 having a second output inductance.
  • the first output inductance is smaller than the second output inductance.
  • At least two switching power supply units 2 are arranged to jointly provide an output voltage under the control of the controller 1; the controller 1 is arranged to control the at least two switching power supply units 2 according to the rate of change of the output current so that the output is When the absolute value of the rate of change of the current is greater than the predetermined value, the output voltage is externally supplied by the fast switching power supply unit 21, and when the absolute value of the rate of change of the output current is less than or equal to the predetermined value, the high-efficiency switching power supply unit 22 externally Provide output voltage.
  • the DC power supply provided by the embodiment of the present invention includes a plurality of switching power supply units 2, and the output inductances of the switching power supply units 2 are not all equal.
  • the controller 1 can control each switching power supply unit 2 according to the rate of change of the output current.
  • the fast switching power supply unit 21 that uses the faster dynamic response provides an external output voltage, so that the output current can quickly track the change of the load current when the output
  • the high-efficiency switching power supply unit 22 that uses the slower dynamic response but higher efficiency provides the external output voltage, so that the load can be driven with higher efficiency, and therefore, the overall From the above, the DC power supply provided by the present invention can quickly track changes in load current while maintaining high power efficiency.
  • the magnitude of the inductance of the output inductor determines the power efficiency of the switching power supply unit 2 and the response speed to the output. Therefore, in the present embodiment, the inductance of the output inductor in the fast switching power supply unit 21 is small, and the inductance of the output inductor in the high-efficiency switching power supply unit 22 is large.
  • the inductance value of the output inductance of the fast switching power supply unit 21 may be less than one-half of the inductance value of the output inductance of the high-efficiency switching power supply unit 22.
  • the inductance value of the output inductance of the fast switching power supply unit 21 may be one tenth of the inductance value of the output inductance of the high efficiency switching power supply unit 22.
  • the switching power supply section 2 maintains a stable output voltage by controlling the ratio of the time that the switch is closed and opened.
  • a structure of the DC power source can be as shown in FIG. 2.
  • Each of the switching power supply units 2 includes an output inductor L.
  • One end of the output inductor L is connected to the input power source 3 through the power switch T1, and is grounded through the grounding switch T2, and the other end of the output inductor L is connected to the output capacitor C.
  • the controller 1 may specifically include: a detecting unit 11 configured to detect a rate of change of the output current; and a control unit 12 configured to when an absolute value of a rate of change of the output current detected by the detecting unit 11 is greater than the specified value , controlling the power switch T1 and the connection of the fast switching power supply unit 21
  • the ground switch T2 is complementarily alternately closed or opened according to the pulse width modulation; when the absolute value of the output current change rate detected by the detecting unit 11 is less than or equal to the predetermined value, the power switch T1 of the high-efficiency switching power supply unit 22 is controlled.
  • the grounding switch ⁇ 2 is complementarily alternately closed or opened in accordance with pulse width modulation.
  • the switching power supply unit 2 needs to provide a stable DC voltage to the outside. Therefore, the detection unit 11 collects the output current for adjusting the switching power supply unit 2 to stabilize the output voltage on the output capacitor C. .
  • the change of the voltage lags behind the change of the current. Therefore, by using the change of the output current to predict the change of the output voltage, the change trend of the output voltage can be known in advance, so that the change is about to change.
  • the output voltage is adjusted in time. When the absolute value of the rate of change of the output current is greater than the specified value, it indicates that the output current changes rapidly, and the fast switching power supply unit 21 should be used to output the voltage.
  • the power switch T1 and the ground switch ⁇ 2 of the switching power supply unit 2 may be various switches having a function of turning on and off, such as a transistor or the like. By controlling the switches to be turned on and off alternately, the switching power supply unit 2 can "chopp" the voltage output from the input power source 3, that is, convert the DC voltage output from the input power source 3 into a pulse voltage having an amplitude equal to the amplitude of the output voltage. .
  • the duty cycle of the pulse can be adjusted by the controller 1.
  • the fast switching power supply unit 21 or the high-efficiency switching power supply unit 22 can be selected to output a voltage based on the rate of change of the output current. It should be noted, however, that whenever a switching power supply unit 21 or 22 is used, the state of the other switching power supply unit 22 or 21 also exerts a different effect on the stabilization of the output voltage. In order to enable the DC power supply to stabilize the output voltage more effectively under different conditions, optionally, the control unit 12 controls the power switch T1 and the ground switch ⁇ 2 of some fast switching power supply units 2 to be alternately turned on and off.
  • the control unit 12 can also be set to control the power switch T1 and the ground switch ⁇ 2 of the other switching power supply unit 2 to be normally open or normally closed. Specifically, when the rate of change of the output current detected by the detecting unit 11 is positive and the absolute value is greater than the predetermined value, it indicates that the output voltage also increases at a large rate of change after a period of time, and therefore, the control unit 12 further The power switch T1 that can be set to control the high-efficiency switching power supply unit 22 is closed, and the grounding switch ⁇ 2 is turned off. Thus, the high-efficiency switching power supply unit 22 is in a "charged" state, that is, the input power source 3 can be outputted through the closed power switch T1. Capacitor C is charged.
  • the control unit 12 can make the fast switching power supply unit 21 follow the pulse width modulation pair.
  • the output voltage of the input power source 3 is chopped, and the power switch T1 for controlling the high-efficiency switching power supply unit 22 can be turned off, and the ground switch T2 is closed.
  • the high-efficiency switching power supply unit 22 is in the "discharge” state, and the output capacitance C can always be discharged through the closed grounding switch T2 of the high-efficiency switching power supply unit 22.
  • the fast switching power supply section 21 and the high-efficiency switching power supply section 22 the current and voltage on the output capacitor C can more quickly follow the current and voltage drop of the load.
  • the circuit is in a steady state. At this time, even if the response speed of the high-efficiency switching power supply unit 22 is sufficient, the current and voltage of the load can be satisfied.
  • control unit 12 can also be configured to control the power switch T1 and the grounding switch T2 of the fast switching power supply unit 21 to be disconnected, and only the high efficiency switching power supply
  • the unit 22 chopping the input power source 3 in a pulse width modulation manner.
  • the controller 1 can be as shown in FIG. 3. 1 to 3, the control unit 12 may specifically include a plurality of data selectors 13, each of which controls a switching power supply unit 2 correspondingly.
  • the detection result of the rate of change of the output current by the detecting unit 11 can be selected as the selection condition of each data selector 13, and the different state combinations of the various switches of the switching power supply unit T1 and the grounding switch T2 can be closed or opened.
  • the output of each data selector 13 is connected to the power switch T1 and the ground switch T2 of the corresponding switching power supply unit 2, so that the data selector 13 can be selected from the alternate inputs according to the detection result of the detecting unit 11.
  • One output is selected to control the corresponding switching power supply unit 2.
  • each of the alternate outputs is a combination of various closed or open states of the power switch T1 and the ground switch T2, by selectively outputting these different combinations to the respective switching power supply units 2, it is possible to The power switch T1 and the ground switch T2 of the switching power supply unit 2 are controlled.
  • the detecting unit 11 detects that the absolute value of the current change rate on the output capacitor C is less than a predetermined value, the circuit is in a steady state, and "0" is input at the selection condition end of each data selector, when the detecting unit 11 detects When the current change rate to the output capacitor c is positive and the absolute value is greater than the specified value, the load current transient increases, and "1" is input at the selection condition end of each data selector, and the detection unit 11 detects the output capacitance. When the current change rate on c is negative and the absolute value is larger than the predetermined value, the load current transient decreases, and "2" is input to the selection condition end of each data selector 13.
  • each selectable state corresponds to a different input channel, but different switching power supply units 2 correspond to In the data selector 13, the signals loaded in the respective input channels are different.
  • the input corresponding to the "0" channel is a "PWM (Pulse Width Modulation)" state
  • the "1" channel corresponds to input of It is in the "ON” state, that is, Tl is closed, T2 is off, and the input corresponding to the "2” channel is "OFF", that is, T1 is off and T2 is on.
  • the input corresponding to the "0" channel is in the "Disable” state, that is, the disabled state, in which both T1 and T2 are disconnected; "1" channel and The input corresponding to the "2" channel is in the "PWM” state, that is, the pulse width modulation state.
  • the pulse width modulation may be specifically implemented by a dedicated controller.
  • the pulse width modulation may include fixed on-time modulation or hysteresis modulation or the like.
  • the difference between the fast switching power supply unit 21 and the high-efficiency switching power supply unit 22 is mainly because the inductance values of the output inductors are different, but the embodiment of the present invention is not limited thereto.
  • the fast switching power supply The difference between the portion 21 and the high efficiency switching power supply unit 22 may also include different magnitudes of the switching frequencies.
  • the switching frequency of the power switch and the grounding switch of the fast switching power supply unit 21 may be greater than the switching frequency of the power switch and the grounding switch of the high-efficiency switching power supply unit 22, for example, the switching frequency of the power switch and the grounding switch of the fast switching power supply unit 21.
  • the fast switching power supply section 21 can track the change of the load current more quickly, and the high-efficiency switching power supply section 22 can also use a lower switching frequency to further improve the power supply efficiency.
  • the following describes the working process of the DC power supply provided by the embodiment of the present invention. In one embodiment of the present invention, assuming that the dynamic rate of change of the load current is 100 A/ US (ampere/microsecond), the inductance of the output inductor L1 of the fast switching power supply unit 21 is 50 nH (nah), the switches of T1 and ⁇ 2.
  • the frequency is 1.2 ⁇
  • the inductance of the output inductor L2 of the high-efficiency switching power supply unit 22 is 5 uH (micro-henry), and the switching frequency of T1 and ⁇ 2 is 200 kHz.
  • the controller 1 causes the power switch and the grounding switch of the fast switching power supply unit 21 to be alternately closed or disconnected according to the pulse width modulation, and the output current can track the load current faster, so that the output capacitor C is discharged. Less, the output voltage changes less.
  • the controller 1 also causes the high-efficiency switching power supply unit 22 to be in the "ON" state, only because the output inductor L2 is large and the output current changes slowly, and the output current can be traced to the load current later.
  • the output current supplied from the fast switching power supply unit 21 has a step rise first, and then, as the output current supplied from the high-efficiency switching power supply unit 22 gradually rises, the fast switching power supply unit 21 The output current provided is gradually reduced, so that the output current on the output capacitor C is relatively stable.
  • the controller 1 operates the high-efficiency switching power supply unit 22 in accordance with the pulse width modulation, and disconnects the fast switching power supply unit 21 from the input power supply 3 and the output capacitance C, so that the DC power supply maintains a high power supply at a steady state. effectiveness.
  • the embodiment of the present invention further provides a working method of any one of the switching power supplies described in the foregoing embodiments, including:
  • the at least two switching power supply units are controlled according to the rate of change of the output current, so that when the absolute value of the rate of change of the output current is greater than the predetermined value, the fast switching power supply unit provides an external output. Voltage, when the absolute value of the rate of change of the output current is less than or equal to the predetermined value, the output voltage is externally supplied through the high-efficiency switching power supply unit.
  • the working method of the DC power supply provided by the embodiment of the present invention can control each switching power supply part according to the rate of change of the output current, so that when the absolute value of the change rate of the output current is greater than a predetermined value, the dynamic response is faster.
  • the fast switching power supply unit externally supplies an output voltage, so that the output current can quickly track the change of the load current.
  • the absolute value of the change rate of the output current is less than or equal to the predetermined value, the dynamic response is slower but the efficiency is higher.
  • the high-efficiency switching power supply unit provides an output voltage externally, so that the load can be driven with higher efficiency. Therefore, as a whole, it is possible to quickly track the change of the load current while maintaining high power supply efficiency.
  • the at least two switching power supply units are controlled according to the rate of change of the output current, so that when the absolute value of the rate of change of the output current is greater than a predetermined value, the fast switching power supply unit provides external
  • the output voltage when the absolute value of the rate of change of the output current is less than or equal to the predetermined value, the externally providing the output voltage through the high-efficiency switching power supply unit includes: changing the output current detected by the detecting unit When the absolute value of the rate is greater than the specified value, the power switch and the ground switch of the fast switching power supply unit are controlled to be alternately closed or opened according to pulse width modulation; when the detection unit detects the absolute rate of change of the current When the value is less than or equal to the predetermined value, the power switch and the ground switch that control the high-efficiency switching power supply unit are complementarily alternately closed or opened according to pulse width modulation; wherein, the output inductance of each of the switching power supply parts One end is connected to the input power through the power switch, and is grounded through the grounding switch,
  • the method may further include: when the rate of change of the output current is positive and the absolute value is greater than the predetermined value, closing the power switch of the high-efficiency switching power supply unit, and grounding switch Disconnecting; when the rate of change of the output current is negative and the absolute value is greater than the specified value, disconnecting the power switch of the high-efficiency switching power supply unit, and closing the grounding switch; when the rate of change of the output current is equal to zero When the power switch and the grounding switch of the fast switching power supply unit are disconnected.
  • the embodiments of the present invention can be applied to the field of electronic circuit technology, and can control each switching power supply unit according to a rate of change of an output current so that a dynamic response is used when an absolute value of a rate of change of the output current is greater than a predetermined value.
  • the faster fast switching power supply unit provides an output voltage externally, so that the output current can quickly track the change of the load current, and when the absolute value of the change rate of the output current is less than or equal to the predetermined value, the dynamic response is slow.
  • the high-efficiency high-efficiency switching power supply unit provides an output voltage to the outside, so that the load can be driven with high efficiency. Therefore, as a whole, it is possible to quickly track the change of the load current while maintaining high power supply efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种直流电源及其工作方法,涉及电子电路领域,能在保持较高电源效率的同时快速跟踪负载电流的变化。该直流电源包括控制器和至少两个开关电源部,所述至少两个开关电源部的输出端彼此相连,所述控制器分别与各开关电源部相连;所述至少两个开关电源部中包括具有第一输出电感的快速开关电源部和具有第二输出电感的高效开关电源部,所述第一输出电感小于所述第二输出电感;所述控制器设置为根据输出电流的变化率控制所述至少两个开关电源部,以使当所述输出电流的变化率的绝对值大于规定值时,通过快速开关电源部对外提供输出电压,当所述输出电流的变化率的绝对值小于或等于所述规定值时,通过高效开关电源部对外提供输出电压。

Description

一种直流电源及其工作方法 技术领域 本发明涉及电子电路技术领域, 特别是涉及一种直流电源及其工作方法。 背景技术 开关电源以其效率高、体积小的优势在电子设备的供电电源中占据了主导的地位, 尤其是在较大功率的应用场合。 而随着一些电子设备如 CPU (central processing unit, 中央处理器)、 FPGA (field-programmable gate array, 现场可编程门阵列) 的快速更新 换代, 要求对其供电的电源电压越来越低, 电流越来越大, 电流动态变化率越来越高。 英特尔公司 (Intel) 最新的 CPU的动态电流变化率甚至超过了 100A/US, 这对开关电 源的应用提出了新的挑战。 对于传统降压型开关电源, 需要通过低频滤波器将高压的开关电压源信号滤成平 稳的低压电源输出。 此低频滤波器通常由无源的功率电感和电容组成, 功率电感的大 小决定了开关电源输出电流的变化率。较小的电感值能提高开关电源的电流响应速度, 但会带来较大纹波电流, 从而使开关管、 电感的损耗增加, 降低电源的效率。 较大的 电感值能提高电源的效率, 但会降低开关电源的电流响应速度。 当前的主要解决方案是靠大量的输出电容承担动态电流, 降低对电感电流快速响 应的要求, 但这使得电源体积过大和可靠性降低。 也有采用开关电源与线性电源并联 的方案, 使开关电源工作在较低的带宽, 而线性电源工作在较高的带宽, 在大的电流 变化率时, 由线性电源提供主要的电流, 以此提高整个电源的动态响应速度。 然而线 性调节器本身效率较低, 且在稳态下也需要保持静态工作,所以也影响了电源的效率。 发明内容 本发明实施例提供一种直流电源及其工作方法, 至少能够在保持较高电源效率的 同时快速跟踪负载电流的变化。 根据本发明实施例的一个方面, 提供了一种直流电源, 包括控制器和至少两个开 关电源部, 所述至少两个开关电源部的输出端彼此相连, 所述控制器分别与各所述开 关电源部相连; 所述至少两个开关电源部中包括具有第一输出电感的快速开关电源部 和具有第二输出电感的高效开关电源部, 所述第一输出电感小于所述第二输出电感; 所述至少两个开关电源部, 设置为在所述控制器的控制下共同对外提供输出电压; 所 述控制器, 设置为根据输出电流的变化率控制所述至少两个开关电源部, 以使当所述 输出电流的变化率的绝对值大于规定值时, 通过所述快速开关电源部对外提供输出电 压, 当所述输出电流的变化率的绝对值小于或等于所述规定值时, 通过所述高效开关 电源部对外提供输出电压。 可选地, 每个所述开关电源部包括输出电感, 所述输出电感的一端通过接电开关 接输入电源, 并通过接地开关接地, 所述输出电感的另一端接输出电容; 所述控制器 具体包括: 检测单元, 设置为检测所述输出电流的变化率; 控制单元, 设置为当所述 检测单元检测的所述输出电流的变化率的绝对值大于所述规定值时, 控制所述快速开 关电源部的接电开关和接地开关按照脉宽调制进行互补交替地闭合或断开; 当所述检 测单元检测的输出电流变化率的绝对值小于或等于所述规定值时, 控制所述高效开关 电源部的接电开关和接地开关按照脉宽调制进行互补交替地闭合或断开。 可选地, 所述控制单元, 还设置为当所述检测单元检测的输出电流的变化率为正 且绝对值大于所述规定值时,将所述高效开关电源部的接电开关闭合,接地开关断开; 当所述检测单元检测的输出电流的变化率为负且绝对值大于所述规定值时, 将所述高 效开关电源部的接电开关断开, 接地开关闭合; 当所述检测单元检测的输出电流的变 化率的绝对值小于所述规定值时, 将所述快速开关电源部的接电开关和接地开关都断 开。 可选地, 所述脉宽调制包括固定导通时间调制或滞环调制。 可选地, 所述快速开关电源部的接电开关和接地开关的开关频率大于所述高效开 关电源部的接电开关和接地开关的开关频率。 可选地, 所述快速开关电源部的接电开关和接地开关的开关频率大于所述高效开 关电源部的接电开关和接地开关的开关频率的 2倍。 可选地, 所述快速开关电源部的输出电感的电感值小于所述高效开关电源部的输 出电感的电感值的二分之一。 可选地, 所述快速开关电源部的输出电感的电感值是所述高效开关电源部的输出 电感的电感值的十分之一。 根据本发明实施例的另一个方面, 还提供前述直流电源的一种工作方法, 包括: 检测所述输出电流的变化率; 根据所述输出电流的变化率控制所述至少两个开关电源部, 以使当所述输出电流 的变化率的绝对值大于所述规定值时, 通过所述快速开关电源部对外提供输出电压, 当所述输出电流的变化率的绝对值小于或等于所述规定值时, 通过所述高效开关电源 部对外提供输出电压。 可选地, 所述根据所述输出电流的变化率控制所述至少两个开关电源部, 以使当 所述输出电流的变化率的绝对值大于规定值时, 通过所述快速开关电源部对外提供输 出电压, 当所述输出电流的变化率的绝对值小于或等于所述规定值时, 通过所述高效 开关电源部对外提供输出电压具体包括: 当所述检测单元检测的所述输出电流的变化 率的绝对值大于所述规定值时, 控制所述快速开关电源部的接电开关和接地开关按照 脉宽调制进行互补交替地闭合或断开; 当所述检测单元检测的电流变化率的绝对值小 于或等于所述规定值时, 控制所述高效开关电源部的接电开关和接地开关按照脉宽调 制进行互补交替地闭合或断开; 其中, 每个所述开关电源部的输出电感的一端通过接 电开关接输入电源, 并通过接地开关接地, 另一端接输出电容。 可选地, 所述方法还包括: 当所述输出电流的变化率为正且绝对值大于所述规定 值时, 将所述高效开关电源部的接电开关闭合, 接地开关断开; 当所述输出电流的变 化率为负且绝对值大于所述规定值时, 将所述高效开关电源部的接电开关断开, 接地 开关闭合; 当所述输出电流的变化率的绝对值小于所述规定值时, 将所述快速开关电 源部的接电开关和接地开关都断开。 本发明实施例提供的直流电源及其工作方法, 能够根据输出电流的变化率控制每 个开关电源部, 以使当所述输出电流的变化率的绝对值大于预定值时, 使用动态响应 较快的快速开关电源部对外提供输出电压, 从而使输出电流能够快速地跟踪负载电流 的变化, 当所述输出电流的变化率的绝对值小于或等于所述预定值时, 使用动态响应 较慢但效率较高的高效开关电源部对外提供输出电压,从而能以较高的效率驱动负载, 因此, 从整体上看, 能够在保持较高电源效率的同时快速跟踪负载电流的变化。 附图说明 图 1 是本发明的实施例提供的直流电源的一种电路结构示意图; 图 2 是本发明的实施例提供的直流电源的另一种电路结构示意图; 图 3 是本发明的实施例提供的直流电源的又一种电路结构示意图; 图 4 是本发明的实施例提供的开关电源的工作方法的一种流程图。 具体实施方式 以下结合附图, 对本发明实施例进行进一步详细说明。 应当理解, 此处所描述的 具体实施例仅仅用以解释本发明实施例, 并不限定本发明实施例。 如图 1所示, 本发明的实施例提供一种直流电源, 包括控制器 1和至少两个开关 电源部 2, 所述至少两个开关电源部 2的输出端彼此相连形成公共输出端 out, 所述控 制器 1分别与各所述开关电源部 2相连; 所述至少两个开关电源部 2中包括具有第一 输出电感的快速开关电源部 21和具有第二输出电感的高效开关电源部 22, 所述第一 输出电感小于所述第二输出电感。 至少两个开关电源部 2, 设置为在控制器 1 的控制 下共同对外提供输出电压; 控制器 1, 设置为根据输出电流的变化率控制至少两个开 关电源部 2, 以使当所述输出电流的变化率的绝对值大于规定值时, 通过快速开关电 源部 21对外提供输出电压,当所述输出电流的变化率的绝对值小于或等于所述规定值 时, 通过高效开关电源部 22对外提供输出电压。 本发明实施例提供的直流电源, 包括多个开关电源部 2, 且这些开关电源部 2中 的输出电感不都相等, 控制器 1能够根据输出电流的变化率控制每个开关电源部 2, 以使当所述输出电流的变化率的绝对值大于预定值时, 使用动态响应较快的快速开关 电源部 21对外提供输出电压, 从而使输出电流能够快速地跟踪负载电流的变化, 当所 述输出电流的变化率的绝对值小于或等于所述预定值时, 使用动态响应较慢但效率较 高的高效开关电源部 22对外提供输出电压, 从而能以较高的效率驱动负载, 因此, 从 整体上看, 本发明提供的直流电源能够在保持较高电源效率的同时快速跟踪负载电流 的变化。 输出电感的电感值的大小决定着开关电源部 2的电源效率和对输出的响应速度。 因此, 本实施例中, 快速开关电源部 21中的输出电感的电感值较小, 而高效开关电源 部 22中的输出电感的电感值较大。 例如, 快速开关电源部 21的输出电感的电感值可 以小于高效开关电源部 22的输出电感的电感值的二分之一。优选的,快速开关电源部 21的输出电感的电感值可以是高效开关电源部 22的输出电感的电感值的十分之一。 开关电源部 2是通过控制开关闭合和断开的时间比率来维持稳定输出电压的。 具 体而言, 直流电源的一种结构可如图 2所示。 其中, 每个所述开关电源部 2都包括输 出电感 L, 输出电感 L的一端通过接电开关 T1接输入电源 3, 并通过接地开关 T2接 地, 输出电感 L的另一端接输出电容 C。 控制器 1具体可包括: 检测单元 11, 设置为 检测所述输出电流的变化率; 控制单元 12, 设置为当检测单元 11检测的所述输出电 流的变化率的绝对值大于所述规定值时, 控制快速开关电源部 21的接电开关 T1和接 地开关 T2按照脉宽调制进行互补交替地闭合或断开; 当检测单元 11检测的输出电流 变化率的绝对值小于或等于所述规定值时, 控制高效开关电源部 22的接电开关 T1和 接地开关 Τ2按照脉宽调制进行互补交替地闭合或断开。 需要说明的是, 开关电源部 2需要对外提供一个稳定的直流电压, 因此检测单元 11对输出电流的采集也是为了以此为依据来调节开关电源部 2, 以使输出电容 C上的 输出电压稳定。 根据基本电学知识可知, 在输出电容 C上, 电压的变化是滞后于电流 的变化的, 因此, 用输出电流的变化来预测输出电压的变化, 能够提前获知输出电压 的变化趋势, 从而对即将变化的输出电压进行及时的调节。 当输出电流的变化率的绝 对值大于规定值时, 说明此时输出电流变化较快,应该使用快速开关电源部 21对外输 出电压, 当输出电流的变化率的绝对值小于或等于该规定值时, 说明此时输出电流变 化较慢, 应该使用高效开关电源部 21对外提供输出电压。 可选地, 开关电源部 2的接电开关 T1和接地开关 Τ2可以为具有导通和断开功能 的各种开关, 如晶体管等。 通过控制这些开关交替导通与断开, 开关电源部 2能够将 输入电源 3输出的电压"斩波", 即把输入电源 3输出的直流电压斩成幅值等于该输出 电压幅值的脉冲电压。 脉冲的占空比可以由控制器 1来调节, 这些脉冲电压经过输出 电感 L和输出电容 C的滤波作用后, 即可在输出电容 C上得到直流输出电压。 上述实施例中,可以根据输出电流的变化率来选择使用快速开关电源部 21或高效 开关电源部 22来对外输出电压。 但需要注意的是, 每当使用一种开关电源部 21或 22 时, 另一种开关电源部 22或 21的状态对输出电压的稳定也会产生不同的作用。 为了使直流电源能够在不同的情况下更有效地对输出电压进行稳定, 可选地, 控 制单元 12除了控制一些快速开关电源部 2的接电开关 T1和接地开关 Τ2交替导通和 断开外, 还可设置为控制另一些开关电源部 2的接电开关 T1和接地开关 Τ2常开或常 闭。具体的,当检测单元 11检测的输出电流的变化率为正且绝对值大于所述规定值时, 则说明输出电压在一段时间后也要以较大的变化率上升, 因此,控制单元 12还可设置 为控制高效开关电源部 22的接电开关 T1 闭合, 接地开关 Τ2断开, 这样, 高效开关 电源部 22处于 "充电"状态, 即输入电源 3可以通过闭合的接电开关 T1一直对输出 电容 C充电。通过快速开关电源部 21和高效开关电源部 22的协作, 输出电容 C上的 电流和电压就能够更快速地跟随负载的电流和电压的上升。 同样的, 当检测单元 11 检测的输出电流的变化率为负且绝对值大于所述规定值 时, 则说明电压在一段时间后也要以较大的变化率降低。 为了使输出电容 C上的输出 电压能够更快速的下降, 控制单元 12除了可以使快速开关电源部 21按照脉宽调制对 输入电源 3 的输出电压进行斩波外, 还可设置为控制高效开关电源部 22的接电开关 T1断开, 接地开关 T2闭合。 这样, 高效开关电源部 22处于 "放电"状态, 输出电容 C可以一直通过高效开关电源部 22的闭合的接地开关 T2放电。 通过快速开关电源部 21和高效开关电源部 22的协作, 输出电容 C上的电流和电压就能够更快速地跟随负 载的电流和电压的下降。 而当检测单元 11检测的输出电流的变化率的绝对值小于所述规定值时,说明电路 处于稳态,此时, 即便以高效开关电源部 22的响应速度也足可以满足负载的电流和电 压变化的需求, 因此, 为了使开关电源仍然保持较高的电源效率, 控制单元 12还可设 置为控制快速开关电源部 21的接电开关 T1和接地开关 T2都断开, 而仅使高效开关 电源部 22以脉宽调制方式对输入电源 3进行斩波。 举例说明, 控制器 1的一种可能的实现方式可如图 3所示。 结合图 1-图 3, 控制 单元 12具体可以包括多个数据选择器 13, 每个数据选择器 13对应控制一个开关电源 部 2。 检测单元 11对输出电流的变化率的检测结果可以作为各个数据选择器 13的选 择条件, 每个开关电源部 2的接电开关 T1和接地开关 T2的各种闭合或断开的不同状 态组合可以作为对应的数据选择器 13的备选输入。 每个数据选择器 13的输出端与相 应的开关电源部 2的接电开关 T1和接地开关 T2相连, 从而使数据选择器 13能够根 据检测单元 11的检测结果, 从备选的几路输入中选择一路输出,用以控制相应的开关 电源部 2。 由于每一路备选的输出都是接电开关 T1和接地开关 T2的各种闭合或断开 状态的组合, 这样通过把这些不同的组合选择性地向各开关电源部 2输出, 就可以对 各个开关电源部 2的接电开关 T1和接地开关 T2进行控制。 可选地, 当检测单元 11检测到输出电容 C上的电流变化率的绝对值小于规定值 时, 电路处于稳态, 在各数据选择器的选择条件端输入 "0", 当检测单元 11检测到输 出电容 c上的电流变化率为正且绝对值大于所述规定值时, 负载电流瞬态增大, 在各 数据选择器的选择条件端输入 " 1 ", 当检测单元 11检测到输出电容 c上的电流变化 率为负且绝对值大于所述规定值时, 负载电流瞬态减小,在各数据选择器 13的选择条 件端输入 "2"。 虽然各数据选择器 13的选择条件端都包括 "0" " 1 " "2"这三种不同的可选状态, 各个可选状态对应着不同的输入通道, 但不同的开关电源部 2所对应的数据选择器 13 中, 各输入通道中所加载的信号却有所不同。 可选地, 高效开关电源部 22对应的数据选择器 131备选的输入端中, "0"通道对 应的输入为 "PWM (Pulse Width Modulation, 脉宽调制;)"状态, " 1 "通道对应的输入 为 "ON"状态, 也就是 Tl闭合, T2断开的状态, "2"通道对应的输入为 "OFF"状 态, 也就是 T1 断开, T2闭合的状态。 而快速开关电源部 21对应的数据选择器 131 备选的输入端中, "0"通道对应的输入为 "Disable"状态, 即禁止状态, 此时 T1 和 T2都断开; " 1 "通道和 "2"通道对应的输入均为 "PWM"状态, 也就是脉宽调制状 态。 脉宽调制具体可以由专用的控制器来实现, 可选地, 所述脉宽调制可以包括固定 导通时间调制或滞环调制等。 虽然上述实施例中, 快速开关电源部 21与高效开关电源部 22的区别主要在于输 出电感的电感值不同, 但本发明的实施例不限于此, 在本发明的其他实施例中, 快速 开关电源部 21与高效开关电源部 22的区别还可以包括开关频率的大小不同。 快速开 关电源部 21的接电开关和接地开关的开关频率可以大于高效开关电源部 22的接电开 关和接地开关的开关频率,例如,快速开关电源部 21的接电开关和接地开关的开关频 率可以大于高效开关电源部 22的接电开关和接地开关的开关频率的 2倍。这样,快速 开关电源部 21可以更快速地跟踪负载电流的变化, 而高效开关电源部 22也可以使用 较低的开关频率从而进一步提高电源效率。 下面举例说明本发明实施例提供的直流电源的工作过程。 在本发明的一个实施例 中, 假定负载电流动态变化率在 100A/US (安培 /微秒), 快速开关电源部 21的输出电 感 L1的电感值为 50nH (纳亨), Tl、 Τ2的开关频率为 1.2ΜΗζ, 高效开关电源部 22 的输出电感 L2的电感值为 5uH (微亨), Tl、 Τ2的开关频率 200kHz。 在负载电流瞬 态变化时,控制器 1使快速开关电源部 21的接电开关和接地开关按照脉宽调制交替互 补地闭合或断开, 输出电流能较快跟踪负载电流, 使输出电容 C放电较少, 输出电压 变化较小。 同时, 控制器 1也使高效开关电源部 22处于 " ON"状态, 只是由于输出 电感 L2较大, 输出电流变化较慢, 要稍后才能使输出电流跟踪至负载电流。 在输出 电流跟踪负载电流的整个动态过程中,快速开关电源部 21提供的输出电流先有一个阶 跃上升, 而后, 随着高效开关电源部 22提供的输出电流的逐渐上升, 快速开关电源部 21提供的输出电流会逐渐减小, 从而使输出电容 C上的输出电流相对稳定。 当高效开 关电源部 22 提供的电流跟踪上负载电流时, 电路的动态过程结束。 此时, 控制器 1 使高效开关电源部 22按照脉宽调制工作, 并使快速开关电源部 21与输入电源 3以及 输出电容 C都断开, 以使直流电源在稳态时保持较高的电源效率。 相应的, 如图 4所示, 本发明实施例还提供一种前述实施例中所述的任一种开关 电源的工作方法, 包括:
S11 , 检测输出电流的变化率; S12,根据所述输出电流的变化率控制所述至少两个开关电源部, 以使当所述输出 电流的变化率的绝对值大于所述规定值时, 通过所述快速开关电源部对外提供输出电 压, 当所述输出电流的变化率的绝对值小于或等于所述规定值时, 通过所述高效开关 电源部对外提供输出电压。 本发明实施例提供的直流电源的工作方法, 能够根据输出电流的变化率控制每个 开关电源部, 以使当所述输出电流的变化率的绝对值大于预定值时, 使用动态响应较 快的快速开关电源部对外提供输出电压, 从而使输出电流能够快速地跟踪负载电流的 变化, 当所述输出电流的变化率的绝对值小于或等于所述预定值时, 使用动态响应较 慢但效率较高的高效开关电源部对外提供输出电压, 从而能以较高的效率驱动负载, 因此, 从整体上看, 能够在保持较高电源效率的同时快速跟踪负载电流的变化。 具体的, 所述根据所述输出电流的变化率控制所述至少两个开关电源部, 以使当 所述输出电流的变化率的绝对值大于规定值时, 通过所述快速开关电源部对外提供输 出电压, 当所述输出电流的变化率的绝对值小于或等于所述规定值时, 通过所述高效 开关电源部对外提供输出电压具体包括: 当所述检测单元检测的所述输出电流的变化率的绝对值大于所述规定值时, 控制 所述快速开关电源部的接电开关和接地开关按照脉宽调制进行互补交替地闭合或断 开; 当所述检测单元检测的电流变化率的绝对值小于或等于所述规定值时, 控制所述 高效开关电源部的接电开关和接地开关按照脉宽调制进行互补交替地闭合或断开; 其 中, 每个所述开关电源部的输出电感的一端通过接电开关接输入电源, 并通过接地开 关接地, 另一端接输出电容。 进一步地, 在步骤 S11之后, 所述方法还可包括: 当所述输出电流的变化率为正 且绝对值大于所述规定值时,将所述高效开关电源部的接电开关闭合,接地开关断开; 当所述输出电流的变化率为负且绝对值大于所述规定值时, 将所述高效开关电源部的 接电开关断开, 接地开关闭合; 当所述输出电流的变化率等于零时, 将所述快速开关 电源部的接电开关和接地开关都断开。 关于开关电源的详细工作原理, 在前文已经进行过详细的说明, 请参照前文, 此 处不再赘述。 尽管为示例目的, 已经公开了本发明实施例的优选实施例, 本领域的技术人员将 意识到各种改进、 增加和取代也是可能的, 因此, 本发明实施例的范围应当不限于上 述实施例。 工业实用性 本发明实施例可以应用于电子电路技术领域, 能够根据输出电流的变化率控制每 个开关电源部, 以使当所述输出电流的变化率的绝对值大于预定值时, 使用动态响应 较快的快速开关电源部对外提供输出电压, 从而使输出电流能够快速地跟踪负载电流 的变化, 当所述输出电流的变化率的绝对值小于或等于所述预定值时, 使用动态响应 较慢但效率较高的高效开关电源部对外提供输出电压,从而能以较高的效率驱动负载, 因此, 从整体上看, 能够在保持较高电源效率的同时快速跟踪负载电流的变化。

Claims

权 利 要 求 书
1. 一种直流电源, 包括控制器和至少两个开关电源部, 所述至少两个开关电源部 的输出端彼此相连, 所述控制器分别与各所述开关电源部相连; 所述至少两个 开关电源部中包括具有第一输出电感的快速开关电源部和具有第二输出电感的 高效开关电源部, 所述第一输出电感小于所述第二输出电感;
所述至少两个开关电源部, 设置为在所述控制器的控制下共同对外提供输 出电压; 所述控制器, 设置为根据输出电流的变化率控制所述至少两个开关电 源部, 以使当所述输出电流的变化率的绝对值大于规定值时, 通过所述快速开 关电源部对外提供输出电压, 当所述输出电流的变化率的绝对值小于或等于所 述规定值时, 通过所述高效开关电源部对外提供输出电压。
2. 如权利要求 1所述的电源, 其中,
每个所述开关电源部包括: 输出电感, 所述输出电感的一端通过接电开关 接输入电源, 并通过接地开关接地, 所述输出电感的另一端接输出电容; 所述控制器具体包括:
检测单元, 设置为检测所述输出电流的变化率;
控制单元, 设置为当所述检测单元检测的所述输出电流的变化率的绝对值 大于所述规定值时, 控制所述快速开关电源部的接电开关和接地开关按照脉宽 调制进行互补交替地闭合或断开; 当所述检测单元检测的输出电流变化率的绝 对值小于或等于所述规定值时, 控制所述高效开关电源部的接电开关和接地开 关按照脉宽调制进行互补交替地闭合或断开。
3. 如权利要求 2所述的电源, 其中, 所述控制单元, 还设置为当所述检测单元检 测的输出电流的变化率为正且绝对值大于所述规定值时, 将所述高效开关电源 部的接电开关闭合, 接地开关断开; 当所述检测单元检测的输出电流的变化率 为负且绝对值大于所述规定值时, 将所述高效开关电源部的接电开关断开, 接 地开关闭合; 当所述检测单元检测的输出电流的变化率的绝对值小于所述规定 值时, 将所述快速开关电源部的接电开关和接地开关都断开。
4. 如权利要求 2所述的电源, 其中, 所述脉宽调制包括固定导通时间调制或滞环 调制。 如权利要求 1所述的电源, 其中, 所述快速开关电源部的接电开关和接地开关 的开关频率大于所述高效开关电源部的接电开关和接地开关的开关频率。
6. 如权利要求 5所述的电源, 其中, 所述快速开关电源部的接电开关和接地开关 的开关频率大于所述高效开关电源部的接电开关和接地开关的开关频率的 2 倍。
7. 如权利要求 1所述的电源, 其中, 所述快速开关电源部的输出电感的电感值小 于所述高效开关电源部的输出电感的电感值的二分之一。
8. 如权利要求 7所述的电源, 其中, 所述快速开关电源部的输出电感的电感值是 所述高效开关电源部的输出电感的电感值的十分之一。
9. 一种如权利要求 1至 8中任一项所述的直流电源的工作方法, 包括: 检测所述输出电流的变化率;
根据所述输出电流的变化率控制所述至少两个开关电源部, 以使当所述输 出电流的变化率的绝对值大于所述规定值时, 通过所述快速开关电源部对外提 供输出电压, 当所述输出电流的变化率的绝对值小于或等于所述规定值时, 通 过所述高效开关电源部对外提供输出电压。
10. 如权利要求 9所述的方法, 其中, 所述根据所述输出电流的变化率控制所述至 少两个开关电源部, 以使当所述输出电流的变化率的绝对值大于规定值时, 通 过所述快速开关电源部对外提供输出电压, 当所述输出电流的变化率的绝对值 小于或等于所述规定值时,通过所述高效开关电源部对外提供输出电压,包括: 当所述检测单元检测的所述输出电流的变化率的绝对值大于所述规定值 时, 控制所述快速开关电源部的接电开关和接地开关按照脉宽调制进行互补交 替地闭合或断开; 当所述检测单元检测的电流变化率的绝对值小于或等于所述 规定值时, 控制所述高效开关电源部的接电开关和接地开关按照脉宽调制进行 互补交替地闭合或断开; 其中, 每个所述开关电源部的输出电感的一端通过接电开关接输入电源, 并通过接地开关接地, 另一端接输出电容。
11. 如权利要求 10所述的方法, 其中, 还包括: 当所述输出电流的变化率为正且绝对值大于所述规定值时, 将所述高效开 关电源部的接电开关闭合, 接地开关断开; 当所述输出电流的变化率为负且绝 对值大于所述规定值时, 将所述高效开关电源部的接电开关断开, 接地开关闭 合; 当所述输出电流的变化率的绝对值小于所述规定值时, 将所述快速开关电 源部的接电开关和接地开关都断开。
PCT/CN2014/079989 2013-10-22 2014-06-16 一种直流电源及其工作方法 WO2014187424A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016525601A JP2016534690A (ja) 2013-10-22 2014-06-16 直流電源及びその動作方法
EP14801369.1A EP3062432A4 (en) 2013-10-22 2014-06-16 DC POWER SOURCE AND METHOD OF OPERATION
US15/030,649 US20160261188A1 (en) 2013-10-22 2014-06-16 Direct Current Power Supply and Operation Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310499577.7 2013-10-22
CN201310499577.7A CN104578768B (zh) 2013-10-22 2013-10-22 一种直流电源及其工作方法

Publications (1)

Publication Number Publication Date
WO2014187424A1 true WO2014187424A1 (zh) 2014-11-27

Family

ID=51932968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079989 WO2014187424A1 (zh) 2013-10-22 2014-06-16 一种直流电源及其工作方法

Country Status (5)

Country Link
US (1) US20160261188A1 (zh)
EP (1) EP3062432A4 (zh)
JP (1) JP2016534690A (zh)
CN (1) CN104578768B (zh)
WO (1) WO2014187424A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183243A1 (ja) * 2016-04-22 2017-10-26 株式会社オートネットワーク技術研究所 電源装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9912234B2 (en) * 2014-03-24 2018-03-06 Intersil Americas LLC Systems and methods for mitigation of resistor nonlinearity errors in single or multiphase switching voltage regulators employing inductor DCR current sensing
US11277912B2 (en) 2018-02-01 2022-03-15 Delta Electronics (Shanghai) Co., Ltd System of providing power
CN110112905A (zh) * 2018-02-01 2019-08-09 台达电子企业管理(上海)有限公司 主板上芯片供电系统
CN109067179B (zh) * 2018-09-20 2020-11-27 矽力杰半导体技术(杭州)有限公司 集成电路、开关变换器及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1732614A (zh) * 2002-12-27 2006-02-08 索尼株式会社 开关电源电路
CN1788410A (zh) * 2004-03-26 2006-06-14 三垦电气株式会社 开关电源装置
CN101132147A (zh) * 2006-08-23 2008-02-27 王悦 一种直流-直流开关电源及其输出电压调节方法
CN201213222Y (zh) * 2008-06-10 2009-03-25 中兴通讯股份有限公司 一种双路电源供电系统的后级工作电路保护装置
CN101511141A (zh) * 2009-03-16 2009-08-19 无锡矽瑞微电子有限公司 开关电源电感电流控制技术
CN101855816B (zh) * 2007-11-07 2013-02-27 富士通株式会社 开关电源、控制开关电源的控制电路、开关电源的控制方法及模块基板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663635A (en) * 1995-05-24 1997-09-02 Vlt Corporation Reverse energy transfer in zero-current switching power conversion
TW521177B (en) * 2000-08-31 2003-02-21 Primarion Inc Apparatus and system for providing transient suppression power regulation
US7262628B2 (en) * 2004-07-02 2007-08-28 Primarion, Inc. Digital calibration with lossless current sensing in a multiphase switched power converter
JP4347231B2 (ja) * 2005-01-27 2009-10-21 富士通マイクロエレクトロニクス株式会社 マルチフェーズdc−dcコンバータ及びマルチフェーズdc−dcコンバータの制御回路
JP5282424B2 (ja) * 2008-03-14 2013-09-04 ダイキン工業株式会社 整流回路
US8243410B2 (en) * 2008-05-07 2012-08-14 Intel Corporation Transient voltage compensation system and method
US8441242B2 (en) * 2010-06-04 2013-05-14 Fuji Electric Co., Ltd. Digitally controlled integrated DC-DC converter with transient suppression
JP2013062966A (ja) * 2011-09-14 2013-04-04 Toyota Central R&D Labs Inc 電源装置
US9214866B2 (en) * 2013-06-21 2015-12-15 Micrel, Inc. Current sharing method for COT buck converter
US9577532B2 (en) * 2013-07-25 2017-02-21 Gazelle Semiconductor, Inc. Switching regulator circuits and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1732614A (zh) * 2002-12-27 2006-02-08 索尼株式会社 开关电源电路
CN1788410A (zh) * 2004-03-26 2006-06-14 三垦电气株式会社 开关电源装置
CN101132147A (zh) * 2006-08-23 2008-02-27 王悦 一种直流-直流开关电源及其输出电压调节方法
CN101855816B (zh) * 2007-11-07 2013-02-27 富士通株式会社 开关电源、控制开关电源的控制电路、开关电源的控制方法及模块基板
CN201213222Y (zh) * 2008-06-10 2009-03-25 中兴通讯股份有限公司 一种双路电源供电系统的后级工作电路保护装置
CN101511141A (zh) * 2009-03-16 2009-08-19 无锡矽瑞微电子有限公司 开关电源电感电流控制技术

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3062432A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183243A1 (ja) * 2016-04-22 2017-10-26 株式会社オートネットワーク技術研究所 電源装置
US10326368B2 (en) 2016-04-22 2019-06-18 Autonetworks Technologies, Ltd. Power supply device

Also Published As

Publication number Publication date
EP3062432A4 (en) 2016-10-26
EP3062432A1 (en) 2016-08-31
JP2016534690A (ja) 2016-11-04
US20160261188A1 (en) 2016-09-08
CN104578768B (zh) 2018-10-02
CN104578768A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
US10749350B2 (en) System and method for wireless power transfer using a power converter with a bypass mode
US20130194831A1 (en) Resonant converter with auxiliary resonant components and holdup time control circuitry
US7285941B2 (en) DC-DC converter with load intensity control method
US20170187214A1 (en) Buck-boost battery charging circuit, control circuit and associated control method
CN106200742B (zh) 调压器的非线性控制
CN103401400B (zh) 开关电源转换器系统及其控制电路和控制方法
WO2014187424A1 (zh) 一种直流电源及其工作方法
US9923468B2 (en) Multiphase power conversion using skewed per-phase inductor current limits
TW201904180A (zh) 功率轉換器電路中切換式電容器之慢速充電
JP2018506955A (ja) 有限ステートマシン制御によるマルチレベルスイッチングレギュレータ回路および方法
CN106464141B (zh) 具有有源dV/dt及dI/dt控制的PoDL系统
US9496788B2 (en) Multi-phase boost converter with phase self-detection and detecting circuit thereof
US9465421B2 (en) Partitioned switch mode power supply (SMPS) interface
JP5380041B2 (ja) マルチフェーズ型dc/dcコンバータ
EP2810364B1 (en) Independently adjustable current and voltage ac-ac converter
KR20200125006A (ko) 출력 전압의 발진을 검출하는 전력 변환기
US20140167720A1 (en) Power control device with snubber circuit
TWI525414B (zh) 用於升壓轉換器的軟關閉
CN101674044A (zh) 电压保护装置
US20160294316A1 (en) Ac motor driving system and method thereof
US20170093276A1 (en) Voltage Transient Improvement Using Zero Crossing Detectors of Master and/or Slave Phase Inductors of a DC-DC Converter
US20130106384A1 (en) Voltage converting circuit
TW201448435A (zh) 供電電路
JP2010114996A (ja) マルチフェーズ型dc/dcコンバータ
JP2022117869A (ja) 充電回路及び電気機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801369

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014801369

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014801369

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15030649

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016525601

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE