WO2014187357A1 - 生产丁二酸的重组大肠杆菌及其应用 - Google Patents

生产丁二酸的重组大肠杆菌及其应用 Download PDF

Info

Publication number
WO2014187357A1
WO2014187357A1 PCT/CN2014/078284 CN2014078284W WO2014187357A1 WO 2014187357 A1 WO2014187357 A1 WO 2014187357A1 CN 2014078284 W CN2014078284 W CN 2014078284W WO 2014187357 A1 WO2014187357 A1 WO 2014187357A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
escherichia coli
seq
succinic acid
expression
Prior art date
Application number
PCT/CN2014/078284
Other languages
English (en)
French (fr)
Inventor
张学礼
朱欣娜
徐洪涛
谭在高
Original Assignee
中国科学院天津工业生物技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院天津工业生物技术研究所 filed Critical 中国科学院天津工业生物技术研究所
Priority to US14/891,776 priority Critical patent/US10006063B2/en
Priority to EP14800490.6A priority patent/EP3006556B1/en
Priority to CA2913197A priority patent/CA2913197C/en
Priority to JP2016514268A priority patent/JP6191061B2/ja
Publication of WO2014187357A1 publication Critical patent/WO2014187357A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0051Oxidoreductases (1.) acting on a sulfur group of donors (1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y108/00Oxidoreductases acting on sulfur groups as donors (1.8)
    • C12Y108/01Oxidoreductases acting on sulfur groups as donors (1.8) with NAD+ or NADP+ as acceptor (1.8.1)
    • C12Y108/01004Dihydrolipoyl dehydrogenase (1.8.1.4), i.e. lipoamide-dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to the field of fermentative production of succinic acid by E. coli.
  • the present invention provides an engineered recombinant Escherichia coli for the production of succinic acid.
  • the invention also relates to the use of the engineered recombinant E. coli for the production of succinic acid, and to the use of the engineered recombinant E. coli to produce succinic acid. Background of the invention
  • Succinic acid also known as succinic acid
  • succinic acid is an excellent platform compound with a wide range of uses in the chemical, materials, pharmaceutical, and food industries. It is listed by the US Department of Energy as one of the 12 most valuable platform compounds in the future (McKinlay). Et al. 2007, Appl Microbiol Biotechnol 76: 727-740).
  • Succinic acid is currently mainly used in esterification solvents, deicing equipment, engine coolants, food flavors, water treatment chemicals, and the like.
  • Succinic acid can also be used to produce many downstream products such as 1,4-butanediol, tetrahydrofuran, ⁇ -butyrolactone, ⁇ -methylpyrrolidone, 2-pyridone.
  • succinic acid and 1,4-butanediol can be polymerized to obtain PBS (polybutylene succinate) plastic, which is an excellent biodegradable plastic. It is estimated that the future market potential of succinic acid will exceed 2.7 million tons per year. Approximately 250 chemical products that can be produced from benzene can be produced from succinic acid (McKinlay et al. 2007, Appl Microbiol Biotechnol 76: 727-740).
  • succinic acid is mainly based on the petrochemical route based on maleic anhydride.
  • the price of oil has fluctuated greatly in recent years, which severely restricts the sustainability and price stability of succinic acid production.
  • the chemical synthesis process is complicated and often requires high temperature and high pressure, which greatly increases the energy consumption and material consumption required for production; at the same time, chemical synthesis also causes serious environmental pollution.
  • the high-efficiency bio-manufacturing technology for the development of succinic acid can fundamentally solve the shortcomings of the petrochemical route: Ensure that the price of succinic acid is stable and not subject to fluctuations in oil prices, reduce the manufacturing cost of PBS plastics, and promote its further promotion and application; Continuous production, streamline production processes, save energy and reduce emissions, and reduce environmental pollution.
  • the bio-manufacturing process of succinic acid can also absorb carbon dioxide, which is very good for realizing a low-carbon economy.
  • the core of succinic acid bio-manufacturing technology is a microbial strain capable of efficiently converting biomass feedstock into succinic acid.
  • the first type is natural succinic acid bacteria, mainly producing Actinobacillus succinate 4" wo6ac ⁇ succinogens) (Guettler et al. 1996, US Patent No. 5504004), producing diced.
  • ⁇ M ⁇ Anaerobiospirillum succiniciproducens (G ⁇ assner and Datta 1992, US Patent No. 5143834), arww ze a succiniciproducens (Lee et al. 2002, Appl Microbiol Biotechnol 58: 663-668) and BASF 3 ⁇ 4 bacteria 60 ⁇ 3 ⁇ 42 succiniciproducens) (Scho ⁇ ten et al. 2009, Biotechnol Lett 31: 1947-1951) 0
  • the other type is an engineered strain engineered by metabolic engineering, mainly Escherichia coli.
  • Phosphoenolpyruvate is a key precursor to the succinic acid synthesis pathway. Carboxylation of PEP to oxaloacetate
  • AOA is a key step in the succinic acid synthesis pathway. Millard et al. increased the yield of succinic acid by a factor of 3.5 by overexpressing the PEP carboxylase gene ppc of E. coli (Millard et al., 1996, Appl Environ Microbiol 62: 1808-1810). Kim et al. found that overexpression of the PEP carboxylated kinase gene in wild-type E. coli had no effect on succinic acid production, but overexpressed the gene in E. coli knocked out the ⁇ c gene, which increased the yield of succinic acid. 6.5 times (Kim et al., 2004, Appl Environ Microbiol 70: 1238-1241).
  • Chatteijee et al. constructed the engineered strain NZN111 by knocking out the pyruvate formate lyase gene / and the lactate dehydrogenase gene IdhA in E. coli.
  • the strain cannot be fermented by glucose as a carbon source, but can be fermented with lactose, fructose, mannose and trehalose as a carbon source to produce succinic acid, acetic acid and ethanol.
  • the final concentration of succinic acid can reach 99.2 g / L (841 mM), the conversion of sugar acid is 1.1 g / g (1.68 mol) /mol) (Vemuri et al., 2002, J Ind Microbiol Biotechnol 28: 325-332).
  • Sanchez et al. constructed the engineering strain SBS550MG by knocking out the alcohol dehydrogenase gene ⁇ :, IdhA, the acetate kinase gene ac 4, the phosphoacetyltransferase gene pto, and the isocitrate lyase regulatory protein gene c/R. Under two-step culture (first aerobic culture, then anaerobic fermentation to produce acid), 40 g/L (339 mM) of succinic acid can be produced, and the conversion of sugar acid reaches 1.06 g/g (1.61 mol/mol). (Sanchez et al., 2005, Metab Eng 7: 229-239).
  • the fermentation process uses a two-step fermentation, in which the cells are cultured and produced by an aerobic process, and then converted to an anaerobic process for fermentation. This process is complicated to operate, and the aerobic process greatly increases the cost of building and operating the equipment.
  • These recombinant E. coli require the use of a rich medium, which greatly increases the raw material cost of the fermentation and results in a calculated conversion rate.
  • the invention provides a recombinant E. coli for the production of succinic acid.
  • the invention relates to a recombinant E. coli having the following modifications:
  • coli also contains one or more of the following modifications: (a) enhancement of gene expression involved in the pentose phosphate pathway (PPP), and/or encoding of genes involved in the pentose phosphate pathway (PPP) Enhancement of protein activity; and (b) enhancement of W/ ⁇ 4 gene expression, and/or enhancement of protein activity encoded by the ⁇ gene.
  • PPP pentose phosphate pathway
  • PPP pentose phosphate pathway
  • Enhancement of protein activity Enhancement of protein activity
  • W/ ⁇ 4 gene expression and/or enhancement of protein activity encoded by the ⁇ gene.
  • the inhibition of gene expression involved in the phosphoenolpyruvate-sugar phosphotransferase system (PTS) in E. coli of the invention, and/or the phosphoenolpyruvate-sugar phosphotransferase system Inhibition of protein activity encoded by a gene involved in (PTS), wherein the gene is one or more genes selected from the group consisting of: a gene pts1 encoding a PTS system enzyme I, a gene ptsH encoding a PTS system enzyme Hpr, encoding The PTS system enzyme ⁇ ⁇ gene CJT and the PTS system enzyme IICB ⁇ gene ptsG.
  • the activity of the gene involved in the phosphopentose pathway (PPP) of the E. coli of the invention is enhanced, and/or the activity of the protein encoded by the gene involved in the pentose phosphate pathway (PPP) is enhanced.
  • the gene is one or more genes selected from the group consisting of a gene tA encoding a transketolase, a gene zw/ encoding a 6-phosphate glucose dehydrogenase, and a gene encoding a 6-phosphogluconolactonase Pgl, a gene encoding a 6-phosphogluconate dehydrogenase gnd, a gene encoding a 5-phosphate ribose isomerase r ', a gene encoding a 5-nucleoside ribulose epimerase r J ⁇ and a transaldol
  • the enzyme gene talB is one or more genes selected from the group consisting of a gene tA encoding a transketolase, a gene zw/ encoding a 6-phosphate glucose dehydrogenase, and a gene encoding a 6-phosphogluconolactonase Pgl, a gene encoding a 6-phosphogluconate
  • the gene having enhanced expression of the gene or encoded protein in the pentose phosphate pathway is one or more genes selected from the group consisting of: a gene tA encoding a transketolase , code 6- The gene zw/ of the glucose phosphate dehydrogenase, the gene pgl encoding the 6-phosphogluconolactamase, the gene gm/ encoding the 6-phosphate gluconate dehydrogenase, and the gene talB encoding the transaldolase.
  • the present invention relates to a recombinant Escherichia coli wherein the expression of the gene and the tktA gene in the E. coli is enhanced, and/or the activity of the protein encoded by the sthA gene and the tktA gene is enhanced.
  • the E. coli of the present invention comprises a mutated IpdA gene encoding a polypeptide comprising a modification at a position corresponding to the amino acid sequence shown in SEQ ID No.: 1: T81, ⁇ 275 and ⁇ 358 , the corresponding position is determined by sequence alignment with SEQ ID No.: l, optionally wherein the modification at the position corresponding to T81 is to replace T with I, and the modification at the position corresponding to ⁇ 275 is used The S substitution ⁇ , and the modification at the position corresponding to ⁇ 358, is replaced by V ⁇ .
  • the expression of the mutated IpdA gene contained in the E. coli of the present invention is enhanced, and/or the activity of the protein encoded by the mutated IpdA gene is enhanced.
  • the E. coli of the present invention contains a mutated IpdA gene, and the mutated IpdA gene is located in a chromosome or in a plasmid.
  • the invention relates to a recombinant Escherichia coli, wherein the E. coli contains the following modifications: (a) enhancement of gene expression involved in the pentose phosphate pathway (PPP), and/or pentose phosphate An increase in the activity of the protein encoded by the gene involved in the pathway (PPP); and (b) an increase in the expression of the W/ ⁇ gene, and/or an increase in the activity of the protein encoded by the gene; and (c) a mutated gene,
  • the encoded polypeptide contains a modification at a position corresponding to the amino acid sequence shown in SEQ ID No.: l: T81, ⁇ 275 and ⁇ 358, the corresponding position is determined by sequence alignment with SEQ ID No.:
  • the modification at the position corresponding to T81 is to replace T with I
  • the modification at the position corresponding to ⁇ 275 is to replace ⁇ with S
  • the modification at the position corresponding to ⁇ 358 is replaced with V ⁇ .
  • the E. coli of the invention further comprises the following modifications: (5) inhibition of acM and pto gene expression, and/or inhibition of protein activity encoded by ackA and pta genes; ⁇ > expression of aceBA gene cluster Enhancement of protein activity encoded by enhanced, and/or ace ⁇ gene clusters; (enhancement of 7 fc M C gene expression, and/or enhancement of protein activity encoded by the dc C gene cluster; and (8 ⁇ & 4 gene expression Inhibition, and/or inhibition of protein activity encoded by the m gS A gene.
  • the E. coli of the invention further comprises the following modifications: (9) enhancement of ⁇ gene expression, and/or enhancement of protein activity encoded by the pck gene.
  • the E. coli of the invention further comprises the following modifications: (IO ⁇ : inhibition of gene expression, and/or inhibition of protein activity encoded by the adhE gene; and (ll) tofc £> gene cluster expression Inhibition, and/or inhibition of protein activity encoded by the tdcDE gene cluster.
  • the E. coli of the invention further comprises the following modifications: (12) enhancement of a Ce £F gene cluster expression, and/or enhancement of protein activity encoded by the gene cluster.
  • the present invention provides a method of producing succinic acid, which comprises cultivating the large intestine rod of the present invention The steps of the bacteria.
  • the invention relates to the use of E. coli of the invention for the production of succinic acid.
  • Figure 1 Schematic representation of the transformation of E. coli to obtain recombinant strain NZ-037.
  • X represents gene knockout, including / ⁇ 3 ⁇ 44, pflB, ptsl, ac 4-pto genes.
  • the four-pointed star represents an increase in gene expression, including the ga/P, aceBA, and dcuC genes.
  • FIG. 3 HX023 evolved through the 360 generation to obtain strain HX024.
  • HX024 is fermented horizontally in a 5L fermentor to produce succinic acid.
  • HX028 is fermented horizontally in a 5L fermentor to produce succinic acid.
  • FIG. 7 Transcriptome analysis of HX024.
  • the numbers in the gray box and the white box represent the relative expression of HX024 gene expression and wild-type E. coli ATCC 8739;
  • GLC glucose
  • G6P 6-phosphate glucose
  • F6P 6-phosphate fructose
  • FBP 1 , 6-diphosphate fructose
  • GAP glyceraldehyde 3-phosphate
  • DHAP dihydroxyacetone phosphate
  • GBP 1,3-diphosphoglycerate
  • G3P 3-phosphoglycerate
  • PEP phosphoenolpyruvate
  • OAA oxaloacetic acid
  • MAL malic acid
  • FUM fumaric acid
  • SUC succinic acid
  • 6PGCL 6-phosphogluconolactone
  • 6PGC 6-phosphogluconic acid
  • RL5P ribulose 5-phosphate
  • X5P 5-phosphate ribose
  • R5P 5-xylose x
  • tktA transketolase gene
  • tktB Ketosinase gene
  • talB transaldolase gene
  • p ⁇ F' pyruvate kinase gene
  • pdh pyruvate dehydrogenase gene
  • pta phosphoacetyltransferase gene
  • ackA acetate kinase gene
  • gltA citric acid Synthetase gene
  • aceB malate synthase gene
  • ac isocitrate lyase gene
  • sthA pyrimidine nucleotide transhydrogenase gene
  • maeB NADPH-dependent malic enzyme gene
  • B Anaerobic C4 dicarboxylic acid transporter gene
  • dcuC C4 dicarboxylic acid transporter gene
  • dctA good
  • Figure 8 (A) Nucleotide sequence alignment of wild-type genes and mutated genes; (B) Amino acid sequence alignment of wild-type and mutated IpdA genes.
  • Figure 9 Relationship between Zwf enzyme activity and succinic acid conversion and yield.
  • Figure 10 Relationship between Pgl enzyme activity and succinic acid conversion and yield.
  • Figure 11 Relationship between Gnd enzyme activity and succinic acid conversion and yield.
  • Figure 12 Relationship between Tkt enzyme activity and succinic acid conversion and yield.
  • the invention provides an engineered recombinant E. coli for the production of succinic acid.
  • the yield and/or conversion rate of E. coli succinic acid is improved by modulating the activity of some enzymes involved in the metabolic pathway.
  • engineered recombinant E. coli As used herein, the terms “engineered recombinant E. coli", “engineered E. coli” and “recombinant E. coli” are used interchangeably and refer to modified E. coli, wherein the modification may be For example, enhancement of gene expression, inhibition of gene expression, introduction of a new gene, introduction of a mutated gene, or mutation of a gene, etc., wherein enhancement of gene expression or inhibition of gene expression can be achieved by conventional techniques in the art, for example Knockout of a gene, alteration of the copy number of a gene, introduction of a plasmid, alteration of a promoter of a gene (for example, using a strong promoter or a weak promoter), and the like.
  • the invention relates to a recombinant Escherichia coli, wherein the E. coli contains one or more of the following modifications: (a) enhanced expression of the gene involved in the pentose phosphate pathway (PPP), and / Or an increase in the activity of the protein encoded by the gene involved in the pentose phosphate pathway (PPP); and (b) enhanced expression of the sthA gene, and/or enhanced activity of the protein encoded by the sthA gene.
  • PPP pentose phosphate pathway
  • PPP pentose phosphate pathway
  • PPP pentose phosphate pathway
  • Cpentose-phosphate pathway has the meanings well known in the art.
  • the pentose phosphate pathway is a catabolic pathway of sugar that is ubiquitous in animals, plants and microorganisms. It is characterized by the direct oxidative dehydrogenation and decarboxylation of glucose without glycolysis.
  • the coenzyme of dehydrogenase is not NAD+ but NADP+, produced NADPH as a reducing force for biosynthesis, rather than being passed to 0 2 .
  • the gene expression involved in the phosphopentose pathway (PPP) of the Escherichia coli of the invention is enhanced, or the activity of a protein encoded by a gene involved in the pentose phosphate pathway (PPP) is enhanced, wherein
  • the gene is one or more genes selected from the group consisting of a gene tA encoding a transketolase, a gene encoding a glucose dehydrogenase of 6-phosphate, and a gene pgl encoding a 6-phosphogluconolactonase, coding 6 a gene gnd of phosphogluconate dehydrogenase, a gene rpi encoding a 5-phosphate ribose isomerase, a gene rpe encoding a 5-nucleoside ribulose epimerase, and a gene talB encoding a transaldolase.
  • the protein encoded by the tktA gene (Genbank No: ACA76448.1) is a protein encoded by a transketolase (EC No: 2.2.1.1), a ZH / gene (Genbank No: ACA77430.1).
  • 6-phosphate glucose dehydrogenase (EC No: 1.1.1.49); the protein encoded by the pg/gene (Genbank No: ACA78522.1) is a 6-phosphogluconolactonease (EC No: 3.1.1.31)
  • the protein encoded by gm/gene (Genbank No: ACA76645.1) is 6-phosphogluconate dehydrogenase (EC No: 1.1.1.44); the egg encoded by rpi gene (Genbank No: ACA76468.1)
  • the white matter is 5-phosphate ribose isomerase (EC No: 5.3.1.6); the protein encoded by the rpe gene (Genbank No: ACA76005.1) is 5-nucleoside ribulose epimerase (EC No: 5.1.3.1);
  • the protein encoded by the talB gene (Genbank No: ACA79258.1) is a transaldolase (EC No: 2.2.1.2).
  • the gene (Genbank No: ACA79653.1) encodes a soluble transhydrogenase (EC No: 1.6.1.1).
  • the sequence of the sthA gene of the present invention is shown as SEQ ID No.: 5.
  • the sequence of the sthA gene of the present invention is 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97 with the nucleotide sequence shown by SEQ ID No.: 5. %, 98%, or 99% sequence identity.
  • sequence of the gene of the present invention is shown as SEQ ID No.: 6.
  • sequence of the tktA gene of the invention has 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97 of the nucleotide sequence set forth in SEQ ID No.: %, 98%, or 99% sequence identity
  • the term “enhanced protein activity encoded by a gene” has a meaning well known in the art and refers to an increase in the activity of a protein produced after transcriptional translation of a gene.
  • gene expression enhancement can be achieved, for example, by introducing a strong promoter.
  • the strong promoter used is, for example: Ppck* (SEQ ID No.: 108) (Zhang et al., 2009b, Appl Environ Microbiol 75: 7807-7813), Ml-37 (SEQ ID No.: 109), or Ml-93 (SEQ ID No.: 110) (Lu et al., 2012, Appl Microbiol Biotechnol 93: 2455-2426).
  • the invention relates to a recombinant Escherichia coli, wherein the E. coli contains one or more of the following modifications: (a) enhanced expression of the gene involved in the pentose phosphate pathway (PPP), and / Or the activity of a protein encoded by a gene involved in the pentose phosphate pathway (PPP) is enhanced; (b) enhanced expression of the sthA gene, and/or enhanced activity of a protein encoded by the gene; and (c) mutated
  • the gene, which encodes a polypeptide contains a modification at one or more positions corresponding to the amino acid sequence shown in SEQ ID No.: l: T81, ⁇ 275, and ⁇ 358, the corresponding position is by SEQ ID ⁇ .: 1 determined by sequence alignment, optionally wherein the modification at the position corresponding to T81 is substituted with I, the modification at the position corresponding to ⁇ 275 is ⁇ replaced with S, and at a position corresponding to ⁇ 358 The modification is
  • mutation has the meaning commonly used in the art to refer to the insertion, addition, deletion, or substitution of one or more nucleotides in a nucleotide sequence, or to insert, add, delete, or Replace one or more amino acids.
  • the E. coli of the present invention contains a mutated IpdA gene, and the mutated
  • the IpdA gene is located in a plasmid or in a chromosome.
  • the E. coli of the present invention contains a mutated IpdA gene, and the mutated gene is located in a chromosome.
  • the E. coli of the present invention contains a mutated IpdA gene, and the mutated gene is located in a plasmid.
  • plasmid has a definition well known in the art, which is a non-chromosomal DNA that is present in an episome in a cell and is capable of autonomously replicating a DNA molecule.
  • the plasmids which can be used in the present invention are, for example, pEASY-Blunt, pACYC184, pTrc99A, pTrc99A-M, pTrc99A-M-Kan pKD4, P pKD46 and the like.
  • chromosome has definitions well known in the art.
  • the modified genes of the invention are located in a chromosome. Techniques for integrating a modified gene into a chromosome are well known to those skilled in the art, for example, see “Molecular Cloning: A Laboratory Manual” (Fourth Edition) by Michael R. Green and Joseph Sambrook.
  • the IpdA gene (Genbank No: ACA79157.1) is a gene encoding lipoamide dehydrogenase (EC No: 1.8.1.4).
  • the nucleotide sequence of the wild-type IpdA gene in the original E. coli strain used is as shown in SEQ ID No.: 2, and the amino acid sequence of the polypeptide encoded thereby is SEQ ID No.
  • the mutated IpdA gene introduced in the Escherichia coli of the present invention contains one or more of the following mutations: C242T, C823T, and C1073T; and the polypeptide encoded by the mutated ⁇ dA gene has the following One or more amino acid substitutions: T81I, P275S, and A358V (see Figure 8).
  • the E. coli of the invention comprises a mutated IpdA gene encoding a polypeptide comprising a modification at one or more positions corresponding to the amino acid sequence set forth in SEQ ID No.: l: , P275 and A358, the corresponding position is determined by sequence alignment with SEQ ID No.: l, optionally wherein the modification at the position corresponding to T81 is to replace T with I, at a position corresponding to ⁇ 275 The modification is to replace ⁇ with S, and the modification at the position corresponding to ⁇ 358 is to replace ⁇ with V.
  • the expression of the mutated IpdA gene contained in the Escherichia coli of the present invention is enhanced, and/or the activity of the protein encoded by the mutated IpdA gene is enhanced.
  • the E. coli of the present invention contains a mutated gene comprising a mutation at one or more positions corresponding to the nucleotide sequence shown by SEQ ID ⁇ : 2 at: C242 , C823 and C1073, the corresponding positions are determined by sequence alignment with SEQ ID No.: 2, optionally wherein the mutations are replaced with T by C.
  • the expression of the mutated IpdA gene contained in the Escherichia coli of the present invention is enhanced, and/or the activity of the protein encoded by the mutated IpdA gene is enhanced.
  • the ⁇ dA gene sequence of different E. coli strains may not be identical to the IpdA gene sequence set forth in SEQ ID No.: 2, and the polypeptide sequence encoded by the IpdA gene of different E. coli strains may be SEQ ID The polypeptide sequence shown by ⁇ : 1 is not completely equivalent.
  • the mutation in the mutated gene is at a position corresponding to position C242, position 823, and/or position 1073 of SEQ ID No.: 2.
  • the polypeptide encoded by the mutated gene is The permutation is at a position corresponding to the 81st, 275th, and/or 358th position of SEQ ID No.: l.
  • the position of "corresponding to" a particular position in SEQ ID No.: 1 or SEQ ID No.: 2 can be determined by sequence alignment, including, for example, using artificial alignment and by using numerous available The alignment program (e.g., BLASTP) is aligned as well as other methods known to those skilled in the art.
  • the alignment program e.g., BLASTP
  • polypeptide or nucleotide sequences one skilled in the art can introduce corresponding mutations at appropriate positions to achieve the technical effects of the present invention.
  • those skilled in the art can also use the conserved and similar amino acid residues to replace the amino acid residues at the corresponding positions, or introduce synonymous mutations into the gene sequence to achieve the technical effects of the present invention.
  • the present invention relates to a recombinant Escherichia coli wherein the expression of the gene and the tktA gene in the Escherichia coli is enhanced, or the activity of the protein encoded by the sthA gene and the tktA gene is enhanced.
  • the invention relates to a recombinant Escherichia coli, wherein the E. coli contains the following genetic modifications: (a) enhanced gene expression involved in the pentose phosphate pathway (PPP), and/or pentose phosphate The activity of the protein encoded by the gene involved in the pathway (PPP) is enhanced; (b) the enhanced expression of the W/ ⁇ gene, and/or the increased activity of the protein encoded by the gene; and (c) the mutated gene,
  • the encoded polypeptide contains a modification at one or more positions corresponding to the amino acid sequence shown in SEQ ID No.: 1 at positions: T81, ⁇ 275, and ⁇ 358, corresponding positions by sequence ratio to SEQ ID No.: To be determined, optionally, the modification at the position corresponding to T81 is to replace T with I, the modification at the position corresponding to ⁇ 275 is to replace ⁇ with S, and the modification at the position corresponding to ⁇ 358 is used. V replacement ⁇ .
  • PPP pento
  • the E. coli of the present invention comprises a mutated IpdA gene encoding a polypeptide comprising a modification at a position corresponding to the amino acid sequence shown in SEQ ID No.: l: T81, ⁇ 275, and ⁇ 358 , the corresponding position is determined by sequence alignment with SEQ ID No.: l, optionally wherein the modification at the position corresponding to T81 is to replace T with I, and the modification at the position corresponding to ⁇ 275 is used The S substitution ⁇ , and the modification at the position corresponding to ⁇ 358, is replaced by V ⁇ .
  • the expression of the mutated IpdA gene contained in the E. coli of the present invention is enhanced, and/or the activity of the protein encoded by the mutated IpdA gene is enhanced.
  • the mutated ⁇ dA gene contained in the Escherichia coli of the present invention contains a mutation at a position corresponding to the nucleotide sequence shown in SEQ ID No.: 2: C242, C823 and C1073, corresponding The position is determined by sequence alignment with SEQ ID No.: 2, optionally wherein the mutations are all replaced with T by C.
  • the expression of the mutated IpdA gene contained in the Escherichia coli of the present invention is enhanced, and/or the activity of the protein encoded by the mutated IpdA gene is enhanced.
  • the invention relates to a recombinant E. coli, wherein the E. coli contains the following modifications: (a) enhanced expression of the gene involved in the pentose phosphate pathway (PPP), and/or pentose phosphate The activity of the protein encoded by the gene involved in the pathway (PPP) is enhanced; (b) the enhanced expression of the W/ ⁇ gene, and/or the enhanced activity of the protein encoded by the gene; and (c) the mutated gene,
  • the encoded polypeptide contains a modification at a position corresponding to the amino acid sequence shown in SEQ ID No.: 1 at the following positions: T81, ⁇ 275, and ⁇ 358, the corresponding position is Determined by sequence alignment with SEQ ID No.: l, optionally wherein the modification at the position corresponding to T81 is to replace T with I, and the modification at the position corresponding to ⁇ 275 is to replace ⁇ with S, and The modification at the position corresponding to ⁇ 358 is to replace ⁇ with V.
  • the invention relates to a recombinant Escherichia coli, wherein the E. coli contains the following modifications: (a) enhanced expression of the gene, and/or enhanced activity of the protein encoded by the gene, (b) W/ An increase in the expression of the gene, and/or an increase in the activity of the protein encoded by the gene, and (c) a mutated gene which is contained at a position corresponding to the nucleotide sequence shown in SEQ ID No.: 2 Mutations: C242, C823 and C1073, the corresponding positions are determined by sequence alignment with SEQ ID No.: 2, optionally wherein the mutations are C replaced with T.
  • the expression of the mutated ⁇ dA gene contained in the Escherichia coli of the present invention is enhanced, and/or the activity of the protein encoded by the mutated IpdA gene is enhanced.
  • the E. coli of the present invention further comprises one or more modifications selected from the group consisting of: (1) inhibition of gene expression involved in a phosphoenolpyruvate-sugar phosphotransferase system (PTS), and / or inhibition of protein activity encoded by a gene involved in the phosphoenolpyruvate-sugar phosphotransferase system (PTS); (2) inhibition of pflB and/or adhE gene expression, and/or pflB or adhE gene Inhibition of encoded protein activity; (3) inhibition of IdhA gene expression, and/or inhibition of protein activity encoded by / ⁇ 3 ⁇ 44 gene; (4) enhancement of g a ff gene and/or exogenous g// gene expression And/or enhancement of protein activity encoded by the gene or exogenous g// gene; and (9) pd: enhancement of gene expression, and/or enhancement of protein activity encoded by the gene.
  • PTS phosphoenolpyruvate-sugar phosphotransferas
  • the inhibition of gene expression involved in the phosphoenolpyruvate-sugar phosphotransferase system (PTS) in E. coli of the invention, and/or the phosphoenolpyruvate-sugar phosphotransferase system Inhibition of protein activity encoded by a gene involved in (PTS), wherein the gene is one or more genes selected from the group consisting of: a gene pts1 encoding a PTS system enzyme I, a gene ptsH encoding a PTS system enzyme Hpr, encoding The PTS system enzyme ⁇ ⁇ gene CJT and the PTS system enzyme IICB ⁇ gene ptsG.
  • the pte/gene (GenBank No: ACA76928. K NC_010468.1) encodes phosphoenolpyruvate-sugar phosphotransferase I (EC No: 2.7.3.9).
  • the pteH gene (GenBank No: ACA76929.1) encodes phosphoenolpyruvate-sugar phosphotransferase Hpr (EC No: 2.7.1.69).
  • the err gene (GenBank No: ACA76927.1) encodes phosphoenolpyruvate-sugar phosphotransferase ⁇ ⁇ (EC No: 2.7.1.69).
  • the ptsG gene (GenBank No: ACA78131.1) encodes phosphoenolpyruvate-sugar phosphotransferase IICB ⁇ (EC No: 2.7.1.69).
  • the E. coli of the invention further comprises one or more modifications selected from the group consisting of: inhibition of W ptsl gene expression, and/or inhibition of activity of a protein encoded by the pto/gene; (2) pflB and / Or inhibition of adhE gene expression, and/or inhibition of protein activity encoded by pflB and/or adhE genes; (3) inhibition of IdhA gene expression, and/or inhibition of protein activity encoded by / ⁇ 3 ⁇ 44 gene; Enhancement of g a ff gene and/or exogenous g// gene expression, and/or enhancement of protein activity encoded by gaff gene and/or exogenous g// gene; and (9) enhancement of p gene expression, And/or enhancement of protein activity encoded by the gene.
  • the E. coli of the invention further comprises one or more modifications selected from the group consisting of: inhibition of W ptsl gene expression, and/or inhibition of activity of a protein encoded by the pto/gene; (2) pflB and / Or adhE gene Inhibition of expression, and/or inhibition of protein activity encoded by the pflB and/or adhE genes; (3) inhibition of IdhA gene expression, and/or inhibition of protein activity encoded by the / ⁇ 3 ⁇ 44 gene; (4) g a Enhancement of ff gene expression, and/or enhancement of protein activity encoded by the ff gene; and (9) enhancement of gene expression, and/or enhancement of protein activity encoded by the gene.
  • the E. coli of the invention further comprises one or more modifications selected from the group consisting of: inhibition of W ptsl gene expression, and/or inhibition of activity of a protein encoded by the gene; (2 gene expression Inhibition, and/or inhibition of protein activity encoded by pflB; inhibition of OWhA gene expression, and/or inhibition of protein activity encoded by the !dhA gene; (4) enhancement of g a ff gene expression, and/or gene Enhancement of the activity of the encoded protein; and (9 d: enhancement of gene expression, and/or enhancement of protein activity encoded by the gene).
  • the Escherichia coli of the present invention further comprises a modification selected from the group consisting of: (1) inhibition of pto/gene expression, and/or inhibition of activity of a protein encoded by the gene; inhibition of gene expression, and/or Or inhibition of the activity of the encoded protein; (3) inhibition of gene expression, and/or inhibition of protein activity encoded by the / ⁇ 3 ⁇ 44 gene; (4) enhancement of g a ff gene expression, and/or ⁇ gene Enhancement of the activity of the encoded protein; and (9 d: enhancement of gene expression, and/or enhancement of protein activity encoded by the gene).
  • the gene encodes Pyruvate formate lyase (EC No. 2.3.1.54).
  • the gene encodes an alcohol/acetaldehyde dehydrogenase (EC No: 1.1.1.1, EC No: 1.2.1.10).
  • the / ⁇ 3 ⁇ 44 gene encodes lactate dehydrogenase A (EC No: 1.1.1.28).
  • the galP gene (GenBank No: ACA76443.1) encodes a galactose MFS transporter.
  • the g// gene (GenBank No: AAA27691.1) encodes the glucose transporter protein Glf (glucose facilitator protein).
  • the pck gene (GenBank No: ACA75988.1) encodes a phosphoenolpyruvate carboxylase, also known as a PCK enzyme (EC No: 4.1.1.49).
  • the term “inhibition of gene expression” has a meaning well known in the art and refers to a decrease in the intensity of gene expression, resulting in a decrease in the amount of mRNA produced by transcription of a gene. Inhibition of gene expression can be achieved by, for example, but not limited to, gene knockout, reduction of gene copy number, alteration of a gene promoter (e.g., using a weak promoter), and the like.
  • the term “inhibition of the activity of a protein encoded by a gene” has a meaning well known in the art and refers to a decrease in the activity of a protein produced by transcriptional translation of a gene.
  • the E. coli of the present invention further comprises the following modifications: (1) inhibition of pto/gene expression, and/or inhibition of activity of a protein encoded by the pts1 gene; 2. inhibition of pflB gene expression, and/ Or inhibition of protein activity encoded by pflB; inhibition of (3)/ ⁇ 3 ⁇ 44 gene expression, and/or inhibition of protein activity encoded by / ⁇ 3 ⁇ 44 gene; (4) enhancement of g a ff gene expression, and/or The activity of the protein encoded by the gene is enhanced.
  • the E. coli of the invention further comprises the following modifications: (5) inhibition of acM and pto gene expression, and/or inhibition of protein activity encoded by ackA and pta genes; (expression of aceBA gene cluster Enhancement of protein activity encoded by enhanced, and/or ace ⁇ gene clusters; (enhancement of 7 fc M C gene expression, and/or enhancement of protein activity encoded by the dc C gene cluster; and (8 ⁇ & 4 gene expression Inhibition, and/or inhibition of protein activity encoded by the m gS A gene.
  • the E. coli of the invention further comprises a modification of (9) an increase in gene expression, and/or an increase in activity of a protein encoded by the pck gene.
  • the gene in E. coli of the invention is knocked out.
  • the pta gene (GenBank No: ACA77021.1) encodes a phosphoacetyltransferase (EC No: 2.3.1.8), and the cickA gene (GenBank No: ACA77022.1) encodes an acetate kinase (EC No: 2.7.2.1).
  • the aceBA gene cluster including the aceB gene (GenBank No: ACA79615.1) encodes malate synthase (EC No: 2.3.3.9) and the Pa aceA gene (GenBank No: ACA79614.1) encodes isocitrate lyase (EC No: 4.1). .3.1).
  • Gene (GenBank No: ACA77021.1) encodes a phosphoacetyltransferase (EC No: 2.3.1.8)
  • the cickA gene (GenBank No: ACA77022.1) encodes an acetate kinase (EC No: 2.7.2.1).
  • the aceBA gene cluster including the aceB gene (
  • ACA78647.1 encodes the C4 dicarboxylic acid transporter DcuC.
  • the g3 ⁇ 44 gene (GenBank No: ACA78263.1) encodes methylglyoxal synthase (EC No: 4.2.3.3).
  • the E. coli of the invention further comprises the following modifications: (IO ⁇ : inhibition of gene expression, and/or inhibition of protein activity encoded by the adhE gene; and (ll) tofc £> gene cluster expression Inhibition, and/or inhibition of protein activity encoded by the tdcDE gene cluster.
  • the gene cluster includes the tifcD gene (GenBank No: ACA76259.1) and the tifc£ gene (GenBank No: ACA76260.1), wherein the tifcD gene encodes a propionic acid kinase (EC No: 2.7.2.15), and the gene encoding 2 - Ketobutyrate formate lyase / propionate formate lyase (EC No: 2.3.1.54).
  • the adhE gene (GenBank No: ACA78022.1) encodes ethanol/acetaldehyde dehydrogenase (EC No: 1.1.1.1/EC No: 1.2.1.10).
  • the E. coli of the invention further comprises one or more of the following modifications: (12) enhancement of aCeJ EF gene cluster expression, and/or enhancement of protein activity encoded by the gene cluster; (13 fc ⁇ gene Enhancement of expression, and/or enhancement of protein activity encoded by the dcuB gene; ( ⁇ 4) enhancement of mdh gene expression, and/or enhancement of protein activity encoded by the mdh gene; (15y M ⁇ gene expression enhancement, and / or / enhancement of protein activity encoded by the gene; (enhancement of 16y M gene expression, and / or enhancement of protein activity encoded by the gene; and (17) ⁇ 3 ⁇ 4 0) enhancement of gene cluster expression, and / or Enhancement of protein activity encoded by the frdABCD gene cluster.
  • the gene cluster encodes the pyruvate complex El/E2 (EC No: 1.2.4.1), including the gene (GenBank No: ACA79159.1) encoding the pyruvate dehydrogenase complex El and the aceF gene (GenBank No: ACA79158.1). Pyruvate dehydrogenase complex E2.
  • the dcuB gene (GenBank No: ACA79506.1) encodes the anaerobic C4 dicarboxylic acid transporter 0 ⁇ 8.
  • the ⁇ gene (0608&01 ⁇ 0: 76147.1) encodes malate dehydrogenase (£. ⁇ 0: 1.1.1.37).
  • the fumA gene (GenBank No: ACA77662.1) encodes aerobic fumarase I (EC No: 4.2.1.2).
  • the fumB gene (GenBank No: ACA79507.1) encodes anaerobic fumarase I (EC No: 4.2 ⁇ .2).
  • the frdABCD gene cluster encodes fumarate reductase (EC No: 1.3.5.4), including the 63 ⁇ 4 gene (GenBank).
  • ACA79460.1 encodes fumarate reductase flavin protein subunit
  • frdB gene encodes fumarate reductase iron-sulfur protein subunit
  • frdC gene encodes fumarate reductase iron-sulfur protein subunit
  • frdC gene encodes fumarate reductase iron-sulfur protein subunit
  • the fumarate reductase C subunit and the Gr frdD gene (GenBank No: ACA79463.1) encode a fumarate reductase D subunit.
  • the Escherichia coli of the present invention is deposited with CGMCC under the accession number CGMCC 7260 (February 25, 2013, classification: Escherichia coli E. coli) (No. 1 Beichen West Road, Chaoyang District, Beijing) No. 3, strain of the Institute of Microbiology, Chinese Academy of Sciences.
  • the Escherichia coli of the present invention is deposited with CGMCC under the accession number CGMCC 7259 (February 25, 2013, classification: Escherichia coli E. coli) (No. 1 Beichen West Road, Chaoyang District, Beijing) No. 3, strain of the Institute of Microbiology, Chinese Academy of Sciences.
  • the Escherichia coli of the present invention is deposited with CGMCC under the accession number CGMCC 7550 (May 3, 2013, classification: Escherichia coli E. coli) (No. 1 Beichen West Road, Chaoyang District, Beijing) No. 3, strain of the Institute of Microbiology, Chinese Academy of Sciences.
  • the invention provides a method of producing succinic acid comprising the step of culturing the E. coli of the invention.
  • the method of the invention for producing succinic acid comprises culturing the E. coli of the invention, and optionally collecting or purifying succinic acid.
  • the "cultivation" of the present invention includes seed culture and fermentation culture.
  • seed culture refers to a process in which a strain for fermentation is activated on a solid medium, and then expanded in a shake flask and a seed tank to obtain a certain amount and quality of pure seeds.
  • the term "fermentation culture” refers to the process of converting a medium component to a particular product by a particular metabolic pathway under suitable conditions using a microbial species.
  • the method of the invention comprises anaerobic fermentation of the E. coli of the invention.
  • anaerobic fermentation refers to the process of converting a medium component to a specific product by a specific metabolic pathway under anaerobic fermentation using an anaerobic fermentation strain.
  • the culture process in the method of the invention does not undergo any aeration step.
  • the method of culturing E. coli in the present invention comprises the steps of:
  • the recombinant Escherichia coli of the present invention is inoculated into a seed culture medium, and cultured under conditions suitable for growth of Escherichia coli for a period of time to obtain a seed liquid;
  • the seed solution is inoculated into a fermentation medium and cultured under anaerobic conditions.
  • Various culture conditions conventionally used in the art for cultivating Escherichia coli such as a medium, a culture temperature, a culture time, and whether or not shaking and shaking speed, etc., can be used in the method of the present invention.
  • Those skilled in the art can select appropriate culture conditions as needed.
  • the culture conditions and fermentation conditions used in the method of the present invention are well known to those skilled in the art (Zhu Gejian et al., 1994, Handbook of Industrial Microbial Experimental Techniques, China Light Industry Press;).
  • the culture conditions of the present invention include, but are not limited to: a temperature of 30-45 ° C, such as 30-31 ° C 31-32 ° C 32-33 ° C 33-34 ° C 34-35 ° C 35-36 °C 36-37 °C 37-38 °C 38-39 °C, 39-40 °C, 40-41 °C, 41-42 °C 42-43 °C, 43-44 °C, Or 44-45 °C.
  • a temperature of 30-45 ° C such as 30-31 ° C 31-32 ° C 32-33 ° C 33-34 ° C 34-35 ° C 35-36 °C 36-37 °C 37-38 °C 38-39 °C, 39-40 °C, 40-41 °C, 41-42 °C 42-43 °C, 43-44 °C, Or 44-45 °C.
  • the culture conditions of the present invention include, but are not limited to: seed culture for a period of 6-16 hours, such as 6-7 hours, 7-8 hours, 8-9 hours, 9-10 hours, 10-11 Hours, 11-12 hours, 12-13 hours, 13-14 hours, 14-15 hours, or 15-16 hours.
  • the culture conditions of the invention include, but are not limited to: fermentation culture for a period of 2-5 days, such as 2 days, 3 days, 4 days, or 5 days.
  • the culture conditions of the present invention include, but are not limited to: Inoculating the recombinant Escherichia coli of the present invention in a seed medium at a dose of 0.1-10% (VA, for example, 0.1%, 0.5%, 1%, 2.5 %, 5%, or 10
  • VA 0.1-10%
  • a medium commonly used for E. coli can be used.
  • the medium for use in the Escherichia coli of the present invention may include a suitable nitrogen source such as an organic nitrogen-containing compound or an inorganic nitrogen-containing compound or a mixture thereof.
  • the organic nitrogen-containing compound is, for example, selected from the group consisting of bean cake powder, peanut cake powder, beef extract, fish meal, yeast extract, peptone, corn steep liquor, or a mixture of any of the foregoing, the inorganic nitrogen-containing compound.
  • the compound is selected from the group consisting of a nitrate (such as sodium nitrate, potassium nitrate, calcium nitrate), an ammonium salt (such as ammonium phosphate, ammonium sulfate, ammonium nitrate, ammonium chloride) or a mixture of any of several.
  • the medium for E. coli of the present invention may comprise a suitable carbon source, for example selected from the group consisting of glucose, starch, starch hydrolyzed sugar, fructose, dextrin, lactose, galactose, xylose, sucrose, glycerol. , a mixture of one or any of maltose, fatty acid, acetic acid, pyruvic acid, and fumaric acid.
  • the seed medium and fermentation medium used in the method of the invention consist of the following ingredients (solvent is water):
  • glucose glucose, KH 2 P0 4 , K 2 HP0 4 , ( H 4 ) 2 HP0 4 MgS0 4 -7H 2 0 and betaine-KC1; trace elements: FeCl 3 '6H 2 0, CoCl 2 '6H 2 0 , CuCl 2 '2H 2 0, ZnCl 2 , Na 2 Mo0 4 '2H 2 0,
  • the medium of the invention consists of the following ingredients (solvent is water):
  • the seed medium and the fermentation medium used in the method of the present invention are composed of the following components (solvent is water):
  • glucose H 4 H 2 P0 4 , ( H 4 ) 2 HP0 4 MgS0 4 -7H 2 0 and betaine-KC1; trace elements: FeCl 3 '6H 2 0, CoCl 2 '6H 2 0, CuCl 2 '2H 2 0, ZnCl 2 , Na 2 Mo0 4 '2H 2 0, MnCl 2 -4H 2 0 2 and H 3 B0 3 .
  • the medium of the invention consists of the following ingredients (solvent is water):
  • Trace elements FeCl 3 -6H 2 0 1-5 ⁇ gfL, CoCl 2 -6H 2 0 0.05-1 ⁇ gfL, CuCl 2 -2H 2 0 0.05-1 ⁇ gfL, ZnCl 2 0.05-1 g/L, Na 2 Mo0 4 -2H 2 0 0.05-1 g/L, MnCl 2 -4H 2 0 2 0.1-1 g/L, H 3 B0 3 0.01-0.5
  • the specific method for cultivating Escherichia coli in the present invention is as follows:
  • Anaerobic fermentation of the strain includes the following steps:
  • Seed culture A 1/3-1/2 volume of seed medium is placed in a triangular flask and autoclaved. After cooling, the recombinant Escherichia coli of the present invention is inoculated to a seed medium at an inoculation amount of 0.1 to 10% (V/V), and cultured under TTC and shaking for 6 to 16 hours to obtain a seed liquid for fermentation medium inoculation. ;
  • the culture was carried out at 37 ° C for 2-5 days to obtain a fermentation broth.
  • the method of the invention for producing succinic acid further comprises the step of extracting and/or purifying succinic acid from the fermentation broth.
  • the invention relates to the use of E. coli of the invention for the production of succinic acid.
  • the present invention specifically includes the following examples:
  • Example 1 Construction of recombinant Escherichia coli NZ-037
  • (1-1) First, construct plasmid pXZ-CS for gene knockout, gene expression regulation and foreign gene integration.
  • the plasmid construction steps are a total of four steps:
  • pACYC184 plasmid DNA (Mok et al., 1991, Nucleic Acids Res 19: 2321-2323) was used as a template, using primers 184-cat-up (SEQ ID No.: 7) and 184-cat-down ( SEQ ID No.: 8), a chloramphenicol resistance gene was amplified, and the gene fragment was 994 bp in size, and contained a chloramphenicol gene promoter sequence called fragment I.
  • the amplification system was: NewEngland Biolabs Phusion 5X buffer 10 ⁇ l, dNTP (10 ⁇ for each dNTP) 1 ⁇ DNA template 20 ng, primer (10 ⁇ ) each 2 ⁇ 1, Phusion High-Fidelity DNA polymerase (2.5 ⁇ / ⁇ 1 0.5 ⁇ l, distilled water 33.5 ⁇ 1, total volume 50 ⁇ 1.
  • the amplification conditions were pre-denaturation at 98 ° C for 2 minutes (1 cycle;); denaturation at 98 ° C for 10 seconds, annealing at 56 ° C for 10 seconds, extension at 72 ° C for 30 seconds (30 cycles); extension at 72 ° C for 5 minutes (1 cycle).
  • the chromosomal DNA of BacUhis subtilis sp subtilis 168 purchased from the China General Microbiological Culture Collection, CGMCC No.
  • the fragment I obtained in the first step and the fragment II obtained in the second step were respectively digested with restriction endonuclease Sacl (NEB) at 37 ° C for 30 minutes; PCR purification kit cleaning (Gel/PCR) Extration Kit, purchased from BioMIGA Biotechnology Co., Ltd.; 20 ng of fragment I and fragment II, 1 ⁇ 10XT4 ligation buffer NEB), 1 ⁇ T4-DNA ligase ( ⁇ ), supplemented with distilled water 10 ⁇ l, 25 °C reaction for 5 minutes; Take the enzyme fragment as the substrate, take 1 ⁇ l, use the primers 184-cat-up and Bs-sacB-down for PCR amplification. See the above for amplification system and amplification conditions.
  • a ligation fragment III containing cat-sacB was obtained.
  • the fragment III obtained by PCR is taken as 1 ⁇ l, and 1 ⁇ pEASY-blunt simple vector (kit, Beijing Quanjin Biotechnology Co., Ltd.) is added, and the reaction is carried out at 25 ° C for 15 minutes; 50 ⁇ l of TranslO competent cells (purchased from Beijing Quanjin Biotechnology Co., Ltd.) were added and ice-bathed for 30 minutes. Heat shock at 42 ° C for 30 seconds, immediately placed on ice for 2 minutes. Add 250 ⁇ L of LB medium, incubate at 200 rpm for 1 hour at 37 °C.
  • the PCR product was 1753 bp, and the PCR product contained the lactate dehydrogenase encoding gene IdhA of Escherichia coli ATCC 8739 (GenBank No: ACA77176.1) and about 400 bases thereof upstream and downstream.
  • Amplification system and amplification Conditions refer to the first step in the above ⁇ 2 !).
  • the amplified 1753 bp PCR product was cloned into the pEASY-Blunt cloning vector (purchased from Beijing Quanjin Biotechnology Co., Ltd.).
  • the cloning system and the calcium chloride conversion method see the fourth step in the construction method of the plasmid pXZ-CS in (1).
  • 200 ⁇ l of the bacterial solution was applied to an LB plate containing kanamycin (final concentration of 15 g/ml). After overnight culture, 5 positive single colonies were selected for colony PCR verification, and the target was M13-F/M13. -R.
  • the sample was sequenced and analyzed, and the positive result was positive clone.
  • the obtained recombinant plasmid was named pXZ001.
  • the PCR product was amplified using the primer XZ-ldhA-1 (SEQ ID No.: 15 and XZ-ldhA-2 (SEQ ID No.: 16) using pXZOO1 plasmid DNA as a template to obtain a 4758 bp PCR product.
  • the PCR product comprises about 400 bases each of the upstream of the pEASY-Blunt vector and the lactate dehydrogenase encoding gene.
  • the amplification system and amplification conditions refer to the first step in the above (1 2!).
  • the chloramphenicol gene (cat) and the fructan sucrose transferase gene Cra) DNA fragment cat-sacB are ligated to the PCR amplification product of the second step, as follows: Using pXZ-CS as a template, PCR amplification was performed using primers cat-sacB-up (SEQ ID No.: 17) and cat-sacB-down (SEQ ID No.: 18) to obtain a 2618 bp PCR product. A DNA fragment containing the chloramphenicol gene (cat) and the fructan sucrose transferase gene (c).
  • the ligation system is: 10 ng of the second step 4758 bp PCR product, 30 ng of cat-sacB DNA fragment, 2 ⁇ 1 10 ⁇ 4 ligation buffer (NEB), ⁇ ⁇ ⁇ 4 ligase (NEB, 400,000 cohesive end units/ml ), add steamed water to 20 ⁇ 1. Connect for 2 hours at room temperature. Take 10 ul and transfer it to TranslO by calcium chloride conversion. See the above ⁇ two! The fourth step in the construction method of plasmid pXZ-CS. 200 ⁇ l of the bacterial solution was applied to an LB plate containing chloramphenicol (final concentration of 17 ug/ml).
  • DNA fragment I contains about 400 bases upstream of the lactate dehydrogenase-encoding gene, a cat- ⁇ DNA fragment, and about 400 bases downstream of the lactate dehydrogenase-encoding gene IdhA.
  • DNA fragment I was used for the first homologous recombination: first the pKD46 plasmid (Datsenko and Wanner 2000, Proc Natl Acad Sci USA 97: 6640-6645; plasmid purchased from the Yale University CGSC E. coli collection center) through calcium chloride The transformation was transformed into E. coli ATCC8739, and then DNA fragment I was electroporated into E. coli ATCC8739 with pKD46.
  • the electroporation conditions were: First, electroporation competent cells of Escherichia coli ATCC8739 carrying the pKD46 plasmid were prepared (Dower et al., 1988, Nucleic Acids Res 16:6127-6145); 50 ⁇ l of competent cells were placed on ice, and 50 ng was added. DNA fragment I, placed on ice for 2 minutes, transferred to a 0.2 cm Bio-Rad electric shock cup. Using a MicroPulser (Bio-Rad) electroporator, the shock parameter was 2.5 kV.
  • the 4758 bp PCR product obtained in the second step is phosphorylated, and the self-ligated plasmid is used for the second homologous recombination; the specific steps are as follows: the 4758 bp PCR product of the second step is first purified by PCR.
  • the kit was washed with CGel/PCR Extration Kit (purchased from BioMIGA Biotechnology Co., Ltd.); 30 ng of purified PCR amplification product was added, and 2 ⁇ 1 10XT4 ligation buffer (NEB), ⁇ ⁇ 4 polynucleotide kinase ( ⁇ ; The steamed water was added to 20 ⁇ l, and reacted at 37 ° C for 30 minutes; ⁇ ⁇ T4 ligase (NEB, 400,000 adhesion end unit/ml) was added, and the mixture was reacted at room temperature for 2 hours to obtain a ligation product.
  • the enzyme-linked product is taken from lOul and transferred to TranslO by calcium chloride conversion. The process is as follows.
  • the fourth step in the construction step of the plasmid pXZ-CS 200 ⁇ l of the bacterial solution was applied to an LB plate containing kanamycin (final concentration of 15 ug/ml). After overnight culture, 5 positive single colonies were selected, and the positive clones were subjected to liquid culture, and positive cloned plasmids were extracted for sequencing verification. Sequencing results The PCR of the second step above The amplified product was self-ligated and the plasmid was constructed correctly, and plasmid pXZ003 was obtained.
  • the 829 bp DNA fragment II was amplified using the primer XZ-ldhA-up/XZ-ldhA-down using pXZ003 plasmid DNA as a template. DNA fragment II was used for the second homologous recombination. Electron transfer of DNA fragment II to strain Suc-T101 o
  • the electroporation conditions were: first, electroporation competent cells of Suc-T101 having pKD46 plasmid were prepared (for preparation, see Dower et al., 1988); 50 ⁇ l of competent cells were placed on ice, and 50 ng of DNA fragment II was added, on ice. Leave for 2 minutes and transfer to a 0.2 cm Bio-Rad electric shock cup. Using a MicroPulser (; Bio-Rad;) electroporator, the shock parameter was 2.5kv.
  • the plasmid constructed by knocking out the IdhA gene is shown in Table 3, and the primer sequences used are shown in Table 2.
  • the pflB gene (GenBank No: ACA78322.1) was knocked out using the same method as in the above section (1) to obtain recombinant Escherichia coli Suc-T104.
  • the constructed plasmids are shown in Table 3.
  • the primer sequences used are shown in Table 2, wherein the primers correspond to the names of the primers used in the process of knocking out the IdhA gene, and only ldhA was replaced with pflB.
  • the pte/gene (GenBank No: ACA76928.1) was knocked out using the same method as in (1) above to obtain recombinant Escherichia coli Suc-T106.
  • the constructed plasmids are shown in Table 3.
  • the primer sequences used are shown in Table 2, wherein the primers correspond to the names of the primers used in the process of knocking out the IdhA gene, and only ldhA was replaced with ptsl.
  • ⁇ * represents an E. coli promoter mutant, i.e., at a position -64 relative to the start of ATG, G is changed to A (Zhang et al., 2009b, Appl Environ Microbiol 75: 7807-7813).
  • PCR amplification was carried out using primers XZ-galP-P-up (SEQ ID No.: 27) and XZ-galP-P-down (SEQ ID No.: 28) using Escherichia coli ATCC 8739 genomic DNA as a template.
  • the 841 bp amplification product was obtained as the galactose transporter gene galP regulatory element of Escherichia coli ATCC 8739 and about 400 bases upstream and downstream thereof.
  • the amplified product was cloned into the pEASY-Blunt cloning vector. The positive clones were extracted and verified by sequencing.
  • the sequencing results showed that the galactose transporter-encoding gene galP regulatory element and its 400 upstream and lower bases were inserted into the vector pEASY-Blunt, which proved that the plasmid was constructed correctly and the recombinant was obtained.
  • the plasmid was named pXZOl l.
  • PCR amplification was carried out using the primer XZ-galP-P-1 (SEQ ID No.: 29 and XZ-galP-P-2 (SEQ ID No.: 30) using pXZOl plasmid DNA as a template.
  • a 4614 bp amplification product the amplified product of which comprises the pEASY-Blunt vector and the galactose transporter-encoding gene galP regulatory element and about 400 bases upstream and downstream.
  • the pXZ-CS plasmid was used as a template, and PCR was carried out using the primer cat-sacB-up/cat-sacB-down.
  • the PCR product of 2618 bp was obtained, which was the chloramphenicol gene and the fructan sucrose. A DNA fragment of the transferase gene.
  • the DNA fragment containing the chloramphenicol gene (cat) and the fructan sucrose transferase gene C ⁇ CJ B) was ligated to the 4614 bp PCR amplification product of the second step. Transformation of Transl-Tl competent cells. 200 ⁇ l of the bacterial solution was applied to an LB plate containing chloramphenicol (final concentration of 17 ⁇ ⁇ / ⁇ 1). After overnight culture, 5 positive single colonies were selected, and the positive clones were subjected to liquid culture to extract positive clone plasmids (cat The sacB DNA fragment was cloned into the plasmid of ⁇ for sequencing verification. The sequencing result was ligated with the cat-DNA fragment on the PCR amplification product of the second step above, and the plasmid was constructed correctly. The obtained recombinant plasmid was named pXZ012C.
  • the pXZ012C plasmid DNA was used as a template, and PCR amplification was carried out using the primer XZ-galP-P-up/XZ-galP-P-down to obtain a 3303 bp DNA fragment I; the DNA fragment I comprises a galactose transporter-encoding gene.
  • the DNA fragment I comprises a galactose transporter-encoding gene.
  • DNA fragment I was used for the first homologous recombination.
  • the pKD46 plasmid was first transformed into the strain Suc-T106 by the calcium chloride transformation method, and then the DNA fragment I was electrotransferred to the strain Suc-T106 carrying pKD46.
  • the E. coli ATCC 8739 genomic DNA was used as a template, and the primers P-pck*-up-SpeI (SEQ ID No.: 31) and P-pck*-down-KpnI (SEQ ID No.: 32) were used.
  • the regulatory element pck of the phosphoenolpyruvate carboxylase PCK of Escherichia coli ATCC 8739 was added, and the primer sequences are shown in Table 2.
  • the PCR products were purchased from EB) and ⁇ (purchased from ⁇ ).
  • plasmid pXZ602. This was cloned into the expression vector pTrc99A (Amann et al., 1998, Gene 69:301-15), which was digested with the same enzyme, and designated as plasmid pXZ602.
  • the plasmid pXZ602 was used as a template, and amplification was carried out using primers pck*-F (SEQ ID No.: 33) and pck*-R (SEQ ID No.: 34), and the primer sequences are shown in Table 2.
  • the amplified product was phosphorylated by T4 polynucleotide kinase (purchased from EB), and the positive plasmid was obtained by self-ligation. After sequencing verification, it was named pXZ603.
  • primers P-pck*-up-SpeI and P-pck*-down-KpnI were used for PCR amplification to obtain a 378 bp phosphoenolpyruvate carboxylase kinase PCK mutation regulatory element Ppck, and The 4614 bp amplification product obtained in the second step was ligated to obtain plasmid pXZ013.
  • DNA fragment II was amplified using the plasmid pXZ013 as a template using the XZ-galP-P-up/XZ-galP-P-down primer pair.
  • DNA fragment II was used for the second homologous recombination.
  • DNA fragment II was electroporated to Suc-T107.
  • PCR and sequencing were performed with the primer XZ-galP-P-up/XZ-galP-P-down to obtain a correct single colony of 1051 bp. Name it Suc-T108 (Table 1).
  • the plasmid constructed by substituting the galactose transporter-encoding gene galP regulatory element into ⁇ * is shown in Table 3, and the primer sequences used are shown in Table 2.
  • First homologous recombination using pXZ-CS as a template, amplification using primers pck-cat-sacB-up (SEQ ID No.: 35; > and pck-cat-sacB-down (SEQ ID No.: 36) DNA fragment I, used for the first homologous recombination.
  • the primer sequence is shown in Table 2; the 2717 bp DNA fragment I was obtained, and the obtained DNA amplified fragment I was electroporated into the recombinant strain Suc-T108 carrying the pKD46 plasmid, and the ampicillin and chlorine were screened. a colony resistant to the bacteria, obtaining an intermediate recombinant strain;
  • the second step of homologous recombination using the pXZ603 plasmid as a template, using the primer P-pck*- U p-SpeI/ P-pck*-down-KpnI amplification (the primer sequence is shown in Table 2), the 378 bp artificial regulatory element Ppck was obtained. *; The 378 bp artificial regulatory element was electroporated into the intermediate recombinant strain integrated with fragment I to obtain recombinant strain 1.
  • E. coli NZ-0305 the original promoter of the aCe ⁇ 4 gene cluster (ace GenBank No: ACA79615.1, aceA GenBank No: ACA79614.1) was used in the same manner as in the previous section (4).
  • Recombinant E. coli NZ-036 was obtained by replacing it with a promoter (Table 1).
  • the constructed plasmids are shown in Table 3.
  • the primer sequences used are shown in Table 2, wherein the primers correspond to the names of the primers used in the process of activating the ff gene, and only galP was replaced with aceB.
  • the original regulatory element (GenBank No. ACA78647.1) was replaced with the regulatory element Ppck to obtain recombinant E. coli NZ-037 (Table 1).
  • the constructed plasmids are shown in Table 3.
  • the primer sequences used are shown in Table 2, wherein the primer names correspond to the names of the primers used in the process of activating the galP gene, and only galP was replaced with dcuC.
  • Table 1 Recombinant Escherichia coli producing succinic acid
  • HX028 HX027 A strain obtained after 650 generations of evolution, deposited under the deposit number CGMCC 7550 in CGMCC
  • XZ-maeB-2 AACCTGGATTTTCCCTGG (SEQ ID No. : 74) Knockout of ppc gene
  • ATTTATTTGTTAACTGTTAATTGTCCT (SEQ ID No. : 80)
  • GTGTGACGGAAGATCACTTCGCA (SEQ ID No. :85) CCGGGGCCGGAACCTATTACTATGGCATCGTAATCGTAGG
  • ATTTATTTGTTAACTGTTAATTGTCCT (SEQ ID No. : 86)
  • Kan-up-PacI GCATTTAATTAAGTGTAGGCTGGAGCTGCT (SEQ ID No.: 97)
  • Kan-down-EcoRI GCATGAATTCCAGAATCGAAATCTC (SEQ ID No.: 98)
  • Kan-F CCGTGATATTGCTGAAGAG (SEQ ID No. : 99)
  • CTGCTTATTTGTTAACTGTTAATTGTCCT (SEQ ID No. : 137)
  • the cat gene from the pACYC184 plasmid was ligated with the sacB gene from Bacillus subtilis and cloned into the pEAS Y-blunt simple plasmid.
  • pXZOOl PCR was used to amplify the IdhA gene (XZ-ldhA-up/XZ-ldhA-down) using the E.coli ATCC 8739 genome as a template and cloned into the pEASY-Blunt vector.
  • pXZ002C PCR-amplified cat-sacB cassette (cat-sacB-up/cat-sacB-down) using pXZ-CS as a template and cloned into pXZOO1 plasmid DNA as template, using primer XZ-ldhA-l/XZ-ldhA- 2 amplified DNA fragments.
  • pXZ003 The pXZOO1 plasmid DNA was used as a template, and the DNA fragment amplified by the primer XZ-ldhA-l/XZ-ldhA-2 was phosphorylated and self-ligated.
  • pXZ014 The E.coli ATCC 8739 gene set was used as a template to amplify the ⁇ gene (XZ-pflB-up/XZ-pflB-down) and cloned into pEASY-Blunt vector.
  • pXZ015C PCR-amplified cat-sacB cassette (cat-sacB-up/cat-sacB-down) with pXZ-CS as a template and cloned into pXZ014 plasmid DNA as template, using primer XZ-pflB-l/XZ-pflB- 2 amplified DNA fragments.
  • pXZ016 The pXZ014 plasmid DNA was used as a template, and the DNA fragment amplified by the primer XZ-pflB-l/XZ-pflB-2 was phosphorylated and self-ligated.
  • the DNA fragment amplified by the primer XZ-ptsI-l/XZ-ptsI-2 was phosphorylated and self-ligated.
  • pXZ602 PCR-amplification of the regulatory elements of the pck gene using the genome of E.coli ATCC 8739 as a template i ⁇ c : (P-pck*-up-SpeI/ P-pck*-down-KpnI) and cloned into vector pTrc99A.
  • pXZ603 Phosphorylation of the DNA fragment amplified by the primer pck*-F/pck*-R using pXZ602 plasmid DNA as a template and self-ligation.
  • pXZOO will be a regulatory element (using plasmid pXZ603 as a template, primer P-pck *-up-SpeI/
  • P-pck*-down-KpnI was cloned into a DNA fragment amplified with pXZOl l plasmid DNA as a template (primer XZ-galP-P-l/XZ-galP-P-2).
  • the DNA fragment amplified by the primer XZ-pta-2/XZ-ackA-2 was phosphorylated and self-ligated.
  • PXZ028 will use the Ppck* promoter (using the plasmid pXZ603 as the template, primer)
  • P-pck*-up-SpeI P-pck*-down-KpnI was cloned into a DNA fragment amplified with pXZ026 plasmid DNA as a template (primer XZ-aceB-P-2B/XZ-aceB-P-3) .
  • pXZ066C PCR-amplified cat-sacB cassette (cat-sacB-up/cat-sacB-down) using pXZ-CS as a template and cloned into pXZ065 plasmid DNA as template, using primer XZ-dcuC-P-1/XZ- dcuC-P-2 amplified on the DNA fragment.
  • pXZ067 will use the Ppck* promoter (with plasmid pXZ603 as a template, primer P-pck*-up-SpeI/
  • P-pck*-down-KpnI was cloned into a DNA fragment amplified with pXZ065 plasmid DNA as a template (XZ-dcuC-P-1/XZ-dcuC-P-2).
  • pXZ072C PCR-amplified cat-sacB cassette (cat-sacB-up/cat-sacB-down) using pXZ-CS as a template and cloned into pXZ071 plasmid DNA as template, using primer XZ-mgsA-l/XZ-mgsA- 2 amplified DNA fragments.
  • pXZ073 The pXZ071 plasmid DNA was used as a template, and the DNA fragment amplified by XZ-mgsA-l/XZ-mgsA-2 was phosphorylated and self-ligated.
  • pXZ020 The adhE gene (XZ-adhE-up/XZ-adhE-down) was amplified by PCR using the E. coli ATCC 8739 genome as a template and cloned into the pEASY-Blunt vector.
  • pXZ021C PCR-amplified cat-sacB cassette (cat-sacB-up/cat-sacB-down) using pXZ-CS as a template and cloned into pXZ020 plasmid DNA as template, using primer XZ-adhE-l/XZ-adhE- 2 amplified DNA fragments.
  • pXZ022 The pXZ020 plasmid DNA was used as a template, and the DNA fragment amplified by the primer XZ-adhE-l/XZ-adhE-2 was phosphorylated and self-ligated.
  • the E.coii ATCC 8739 genome was used as a template to amplify the tdcDE gene cluster (XZ-tdcDE-up/XZ-tdcDE-down) and cloned into the pEASY-Blunt vector.
  • pXZ642C PCR-amplified cat-sacB cassette (cat-sacB-up/cat-sacB-down) using pXZ-CS as a template and cloned into pXZ641 plasmid DNA as template, using primer XZ-tdcDE-l/XZ-tdcDE- 2 amplified DNA fragments.
  • pXZ643 was amplified using pXZ641 plasmid DNA as a template using primer XZ-tdcDE-l/XZ-tdcDE-2
  • the DNA fragment was phosphorylated and self-ligated.
  • the pXZ701 was amplified from the gene (XZ-pck-up/XZ-pck-down) and cloned into the pEASY-Blunt vector using the E.coii ATCC 8739 gene set as a template.
  • pXZ702C PCR-amplified cat-sacB cassette (cat-sacB-up/cat-sacB-down) using pXZ-CS as a template and cloned into pXZ701 plasmid DNA as template, using primer XZ-pck-l/XZ-pck- 2 amplified
  • pXZ703 The pXZ701 plasmid DNA was used as a template, and the DNA fragment amplified by the primer XZ-pck-l/XZ-pck-2 was phosphorylated and self-ligated.
  • pXZ704 The e.coli ATCC 8739 genome was used as a template to amplify the maeB gene (XZ-maeB-up/XZ-maeB-down) and cloned into the pEASY-Blunt vector.
  • pXZ705C PCR-amplified cat-sacB cassette (cat-sacB-up/cat-sacB-down) with pXZ-CS as a template and cloned into pXZ704 plasmid DNA as template, using primer XZ-maeB-l/XZ-maeB- 2 amplified DNA fragments.
  • pXZ706 was amplified using pXZ704 plasmid DNA using the primer XZ-maeB-1/XZ-maeB-2
  • the DNA fragment is phosphorylated and self-ligated.
  • pXZ707 PCR was used to amplify the c gene (XZ-ppc-up/XZ-ppc-down) using the Ecoii ATCC 8739 genome as a template and cloned into the pEASY-Blunt vector.
  • pXZ708C PCR-amplified cat-sacB cassette cat-sacB-up/cat-sacB-down
  • pXZ-CS plasmid DNA as template
  • pXZ709 The pXZ707 plasmid DNA was used as a template, and the DNA fragment amplified by the primer XZ-ppc-l/XZ-ppc-2 was phosphorylated and self-ligated.
  • the E.coli ATCC 8739 genome was used as a template to amplify the maeA gene (XZ-maeA-up/XZ-maeA-down) and cloned into the pEASY-Blunt vector.
  • pXZ711C PCR-amplified cat-sacB cassette (cat-sacB-up/cat-sacB-down) using pXZ-CS as a template and cloned into pXZ710 plasmid DNA as template, using primer XZ-maeA-l/XZ-maeA- 2 amplified DNA fragments.
  • pXZ712 Phosphorylation of the DNA fragment amplified by the XX-maeA-l/XZ-maeA-2 using pXZ710 plasmid DNA as a template and self-ligation.
  • the seed medium consists of the following ingredients (solvent is water):
  • glucose 20 g / L KH 2 P0 4 3.5 g / L, K 2 HP0 4 6.55 g / L, (NH 4 ) 2 HP0 4 3.5 g / L MgSO 4 -7H 2 O 0.12 g / L and beets Base-KC1 0.15 g/L.
  • Trace elements FeCl 3 -6H 2 0 1.5 g/L, CoCl 2 '6H 2 0 0.1 g/L, CuCl 2 -2H 2 0 0.1 g/L, ZnCl 2 0.1 g/L, Na 2 Mo0 4 -2H 2 0 0.1 g/L, MnCl 2 -4H 2 00.2 g/L, H 3 BO 3 0.05 g/L.
  • the fermentation medium is the same as the seed medium, the difference is that the glucose concentration is 50 g / L, in addition to 100 mM KHCO 3 o
  • Seed culture The seed medium in a 250 ml flask is 100 ml and sterilized at 115 ° C for 15 min. After cooling, the recombinant E. coli Suc-TllO, NZ-035, NZ-036 and NZ-037 were inoculated into the seed medium at an inoculation amount of 1% CV/V), and cultured at 37 ° C and 100 rpm for 12 hours. A seed solution is obtained for inoculation of the fermentation medium.
  • the fermentation broth was obtained.
  • the neutralizing agent was 2.4 MK 2 C0 3 and 1.2 M KOH.
  • the fermentation broth is all the substances in the fermenter. No gas is passed through the culture process.
  • Analytical method The components in the fermentation broth on day 4 were measured using an Agilent-1200 high performance liquid chromatograph. The concentration of glucose and organic acid in the fermentation broth was determined by Biorad's Aminex HPX-87H organic acid analytical column.
  • the fermentation medium is 250 ml.
  • 100 mM KHC0 3 was added to the fermentation medium.
  • the neutralizing agent used was 2.4 MK 2 C0 3 and 1.2 M KOH.
  • Example 3 Production of succinic acid by fermentation of recombinant Escherichia coli NZ037 using sodium salt
  • the seed medium consists of the following ingredients (solvent is water):
  • glucose 20 g / L H 4 H 2 PO 4 0.87 g / L (H 4 ) 2 HP0 4 2.63 g / L MgS0 4 ⁇ 7 ⁇ 2 0 0.18 g / L, betaine - KC1 0.15 g / L.
  • Trace elements FeCl 3 -6H 2 0 2.4 ⁇ gfL, CoCl 2 -6H 2 0 0.3 ⁇ gfL, CuCl 2 -2H 2 0 0.15 ⁇ gfL, ZnCl 2 0.3 ⁇ gfL, Na 2 Mo0 4 -2H 2 0 0.3 ⁇ gfL, MnCl 2 -4H 2 00.5 g/L, H 3 B0 3 0.072 g/L.
  • Most of the fermentation medium was the same as the seed medium except that the glucose concentration was 100 g/L and 35 mM NaHC0 3 was also added. 2.4 M Na 2 C0 3 and P 1.2 M NaOH was used as a neutralizing agent.
  • the seed culture, fermentation culture, and analysis method were the same as in Example 2.
  • the fermentation medium used for evolutionary metabolism consists of the following components (solvent is water):
  • Trace elements FeCl 3 -6H 2 0 2.4 ⁇ gfL, CoCl 2 -6H 2 0 0.3 ⁇ gfL, CuCl 2 -2H 2 0 0.15 ⁇ gfL, ZnCl 2 0.3 ⁇ gfL, Na 2 Mo0 4 -2H 2 0 0.3 ⁇ gfL, MnCl 2 -4H 2 00.5 g/L, H3BO3 0.072 g/L.
  • the evolutionary metabolic process uses a 500 ml fermentor with a fermentation medium of 250 ml. Use 2.4 M Na 2 C0 3 and
  • 1.2 M NaOH is a neutralizer.
  • the glucose concentration in the fermentation medium was 100 g/L (S ⁇ 10%); every 48 hours, the fermentation broth was transferred to a new fermenter, and the initial OD550 was 0.05;
  • the glucose concentration in the fermentation medium was 100 g/L; every 24 hours, the fermentation broth was transferred to a new fermenter, and the initial OD550 was 0.05;
  • the glucose concentration in the fermentation medium was 120 g/L (g ⁇ 12%); every 24 hours, the fermentation broth was transferred to a new fermenter to give an initial OD550 of 0.05.
  • strain HX021 was obtained (Fig. 2).
  • Example 5 Construction of recombinant Escherichia coli HX023
  • Example 6 Construction of recombinant Escherichia coli HX024 Starting from HX023, cell growth and succinic acid production capacity are enhanced by evolutionary metabolic synchronization.
  • the fermentation medium used for evolutionary metabolism is the same as in the case of Example 4.
  • the glucose concentration in the fermentation medium was 120 g/L (ie 12%); every 24 hours, the fermentation broth was transferred to a new fermenter to achieve an initial OD550 of 0.05;
  • strain HX024 was obtained (Fig. 3).
  • Example 7 Effect of different concentrations of bicarbonate ion supply on fermentation of recombinant Escherichia coli HX024
  • the seed medium was the same as in Example 3.
  • the fermentation medium was 250 ml.
  • the fermentation medium was essentially the same as the seed medium except that the glucose concentration was 120 g/L and 35 mM NaHC0 3 was also added. There are 5 different ratios of neutralizing agents used.
  • the composition of 6M sodium hydroxide and 3M sodium carbonate are 1:4, 1:2, 1:1, 3:2, 2:1.
  • Seed culture The seed medium in a 250 ml flask is 100 ml and sterilized at 115 ° C for 15 min. After cooling, the recombinant Escherichia coli HX024 was inoculated to the seed medium at a seeding rate of 1% (v/v), and cultured at 37 ° C and 100 rpm for 12 hours to obtain a seed liquid for inoculation of the fermentation medium.
  • Fermentation culture The volume of the fermentation medium in 500 ml is 250 ml, and the mixture is sterilized at 115 ° C for 25 min.
  • the fermentation broth is all the substances in the fermenter. There is no gas in the culture process.
  • Example 8 Fermentation of recombinant Escherichia coli HX021, HX023 and HX024 in a 500 ml fermentor
  • the seed medium was the same as in Example 3.
  • the fermentation medium was 250 ml.
  • the fermentation medium is basically in phase with the seed medium Again, the difference is a glucose concentration of 120 g/L, plus 35 mM NaHC0 3 .
  • the neutralizing agents used were 1.5 M Na 2 C0 3 and 3 M NaOH.
  • Seed culture The seed medium in a 500 ml flask is 150 ml and sterilized at 115 °C for 15 min. After cooling, the recombinant Escherichia coli HX024 was inoculated to the seed medium at a seeding rate of 1% (v/v), and cultured at 37 ° C and 100 rpm for 12 hours to obtain a seed liquid for inoculation of the fermentation medium.
  • Fermentation culture The volume of the fermentation medium in 5 L was 3 L, and the mixture was sterilized at 115 ° C for 25 min.
  • the fermentation broth is all the substances in the fermenter. There is no gas in the culture process.
  • the recombinant Escherichia coli HX041-HX044 was fermented in the same manner as in Example 8 to produce succinic acid.
  • Results The fermentation results are shown in Table 7. After the gene in the HX041 strain is knocked out, the cells are still able to produce A large amount of succinic acid; indicating that E. coli strain can produce succinic acid without PPC carboxylation reaction using PCK enzyme. On the other hand, after the ae gene in the HX024 strain was knocked out, the yield of succinic acid decreased by 29%, indicating that MaeB plays a role in HX024, and a part of the carbon metabolic flux is synthesized by MaeB for succinic acid synthesis.
  • Fermentation product (mM) strain a genetic modification (g/g) (mol/mol)
  • the fermentation medium is 250 ml.
  • 35 mM NaHC0 3 was added to the fermentation medium.
  • the neutralizing agent used was 1.5 M Na 2 C0 3 and 3 M NaOH
  • Example 1 According to the method of part (1) of Example 1, starting from the HX-024 strain, the gene was first knocked out (Genbank No: ACA78022.1) to obtain the recombinant strain HX-026 (Table 1); and then the tifcZ) £ gene was knocked out.
  • Cluster tofcD gene: GenBank No: ACA76259.1; tdcE gene GenBank No: ACA76260.1
  • recombinant strain HX-027 was obtained (Table 1).
  • the constructed plasmids are shown in Table 3.
  • the primer sequences used are shown in Table 2.
  • the primers are named corresponding to the names used in the knockout of the / ⁇ 3 ⁇ 44 gene, and only ldhA is replaced with adhE or tdcDE, respectively.
  • the fermentation medium used for evolutionary metabolism is the same as in the case of Example 4.
  • the glucose concentration in the fermentation medium was 120 g/L (ie 12%); every 24 hours, the fermentation broth was transferred to a new fermenter to give an initial OD550 of 0.05 (Fig. 5);
  • strain HX028 was obtained (Fig. 5).
  • Example 12 Transcriptome analysis of recombinant Escherichia coli HX024
  • the seed culture and fermentation culture of HX024 were the same as those in Example 8. A total of three parallel anaerobic fermentations were carried out, and the seed culture and fermentation culture of the wild type ATCC 8739 strain were basically the same as those in Example 5, except that the glucose concentration used was 50 g/L.
  • RNA extraction was performed using the RNeasy Mini Kit (Qiagen) kit, and DNase was processed via the RNase-Free DNase Set (Qiagen) kit.
  • the transcriptome sequencing was completed by Shenzhen Huada Gene Technology Co., Ltd. Each sample produces 1 Gb of clean data.
  • the reference sequence for the sequence analysis is the gene group sequence of ATCC 8739 (http: ⁇ www.ncbi.nlm.nih.gov/nuccore/NC_010468.1).
  • Table 8 Transcriptome analysis of recombinant Escherichia coli HX024
  • maeB NADPH is dependent on malic enzyme 3.0
  • the relative expression level of a indicates the multiple expression intensity of HX-024 on the wild-type Escherichia coli ATCC 8739 gene. According to transcriptome analysis, the expression of the following genes in the HX024 strain was significantly increased.
  • pentose phosphate pathway (PPP)-related gene tktA is increased, and the expression of the glycolytic pathway (EMP)-related gene pfkA is decreased, indicating that the carbon metabolic flux flows more into the pentose phosphate pathway.
  • EMP glycolytic pathway
  • Increased expression of the malic enzyme gene indicating an increase in the ability of cells to undergo carboxylation via maeB. The cells produce more NADPH, which is beneficial to the carboxylation of maeB.
  • the original regulatory element of the tktA gene (GenBank No: ACA76448.1) in the Suc-Tl 10 strain was replaced with the human regulatory element M1-37 (SEQ ID No.: 109) to obtain the strain ZT-251.
  • the construction method of the recombinant strain ZT-251 is as follows:
  • the first step of homologous recombination using the pXZ-CS plasmid as a template, using the primers tktA-cat-sacB-up (SEQ ID No.: 79) and tktA-cat-sacB-down (SEQ ID No.: 80) DNA fragment I was added for the first homologous recombination.
  • the primer sequences are shown in Table 2; the 2717 bp DNA fragment I was obtained, and the obtained DNA amplified fragment I was electroporated into E. coli Suc-Tl lO with pKD46 plasmid, and ampicillin and chloramphenicol resistant colonies were screened to obtain intermediate recombination.
  • the second step of homologous recombination using the genomic DNA of recombinant Escherichia coli Ml-37 (Lu et al., 2012, Appl Microbiol Biotechnol. 93: 2455-2462; SEQ ID No.: 109) as a template, using the primer tktA-P -up (SEQ ID No.: 81) and tktA-RBS-down (SEQ ID No.: 82), resulting in a 193 bp DNA fragment tktA-Ml comprising the homologous arm and the artificial regulatory element M1-37 on both sides of the tktA promoter. -37; Primer sequences are shown in Table 2.
  • the 193 bp fragment tktA-Ml-37 was electroporated into an intermediate recombinant strain integrating DNA fragment I to obtain a recombinant strain.
  • the electrotransformation and screening method is the same as the sixth step in the (1-2) partial knockout step in Example 1.
  • the PCR-validated primer tktA-YZ-up (SEQ ID No.: 83)/tktA-YZ-down (SEQ ID No.: 84) of the recombinant strain obtained the correct positive colony, which was named as strain ZT-251. ;
  • the original regulatory element of the sthA gene (GenBank No: ACA79653.1) in the Suc-TllO strain was replaced with the artificial regulatory element M1-37, and the strain ZT-252 was obtained.
  • the primers used are shown in Table 2, The name of the primer used corresponds to the name of the primer used in the replacement of the tktA regulatory element, and only tktA is replaced by sthA;
  • the strain was subjected to culture fermentation according to the method of Example 2.
  • the fermentation results are shown in Table 9.
  • the results showed that the expression of tktA gene in the pentose phosphate pathway was enhanced in Suc-TllO strain, which increased the yield and conversion of succinic acid by 4% and 13%, respectively.
  • the enhanced expression of the gene enhanced the pentose phosphate.
  • the carbon metabolic flux of the pathway enhances the production of reducing power and is beneficial to the synthesis of succinic acid.
  • Enhance the expression intensity of the transhydrogenase-encoding gene sthA which increases the yield and conversion rate of succinic acid by 5% and 13%, respectively. Enhancing the expression intensity of the gene can catalyze the conversion of some NADPH into NADH in cells, which is beneficial to the synthesis of succinic acid. .
  • the fermentation medium is 250 ml. 100 mM KHC0 3 was added to the fermentation medium. Neutralization used The agents were 2.4 MK 2 C0 3 and 1.2 M KOH.
  • the initial glucose concentration is 5%.
  • the original regulatory element of the gene in the ZT-253 strain was replaced with the artificial regulatory element M1-93 using the same method as in part (1) of Example 14; the nomenclature of the regulatory element replacement primer corresponds to the primer used in the tktA gene process. Name, only tktA was replaced with aceEF (Table 2); Intermediate recombinant strain ZT-273A was obtained, which was verified by primer AP1-up (SEQ ID No.: 95)/aceEF-1 (SEQ ID No.: 96).
  • the intermediate recombinant strain ZT-273B was obtained by integrating !pdA* at the ackA site of the intermediate recombinant strain ZT-273A. Specifically, the following steps are included:
  • Step 1 Construct the integration vector pTrc99A-M-Kan.
  • DNA was used as a template for the pKD4 plasmid (Datsenko and Wanner 2000, Proc Natl Acad Sci USA 97:6640-6645; plasmid purchased from the Yale University CGSC E. coli Collection), using the primer Kan-up-PacI (SEQ ID No. :97)/Kan-down-EcoRI (SEQ ID No.: 98) PCR amplification, amplification system and amplification conditions were referred to in the construction step of the partial plasmid pXZ-CS in (1-1) of Example 1.
  • first step was used as a template for the pKD4 plasmid (Datsenko and Wanner 2000, Proc Natl Acad Sci USA 97:6640-6645; plasmid purchased from the Yale University CGSC E. coli Collection
  • Kan-up-PacI SEQ ID No. :97
  • Kan-down-EcoRI SEQ ID No.: 98
  • a DNA fragment of FRT-Km was obtained and treated with restriction endonuclease PacI/EcoRI (NEB) for 30 minutes at 37 ° C; the plasmid pTrc99A-M was digested with the same enzyme B conditions (Zhao et al 2013, Met Eng) Doi: 10.1016/j.ymben.2013.02.002; constructed in our laboratory, the sequence is SEQ ID No.: lll).
  • PCR purification kit (Gel/PCR Extration Kit, purchased from BioMIGA Biotechnology Co., Ltd.); Take 50 ng of purified FRT-Km DNA fragment and 30 ng of pTrc99A-M vector fragment, and add 2 ⁇ 1 10XT4 ligation buffer (NEB) Company), 1 ⁇ 1 ⁇ 4 polynucleotide kinase (NEB), supplemented with distilled water to 20 ⁇ 1, reacted at 37 °C for 30 minutes; added ⁇ ⁇ 4 ligase (NEB, 400,000 cohesive end units/ml), and reacted at room temperature for 2 hours. Connect the product.
  • NEB 2 ⁇ 1 10XT4 ligation buffer
  • NEB polynucleotide kinase
  • the enzyme-linked product was taken to 10 ul, and transferred to TranslO by the calcium chloride conversion method, and the fourth step in the construction step of the partial plasmid pXZ-CS in (1-1) of Example 1.
  • 200 ⁇ l of the bacterial solution was applied to LB plates containing kanamycin (final concentration 50 ⁇ ⁇ / ⁇ 1) and ampicillin (final concentration 50 ⁇ ⁇ / ⁇ 1). After overnight culture, 2-3 clones were selected and primers were used.
  • Kan-F SEQ ID No.: 99
  • pTrc99A-R SEQ ID No.: 100
  • plasmid pXZ174 was taken and digested with restriction endonuclease cl and Hz 3 ⁇ 4fflI (EB) for 30 minutes at 37 ° C, and a fragment of 1455 bp was obtained by gel recovery;
  • pTrc99AM- was treated with the same restriction endonuclease Kan, washed with PCR purification kit (Gel/PCR Extration Kit, purchased from BioMIGA Biotechnology Co., Ltd.;); Take 50 ng of gel-recovered fragment, 20 ng of vector pTrc99AM-Kan fragment, add 2 ⁇ 1 10XT4 ligation buffer (NEB), ⁇ T4 polynucleotide kinase (EB), supplemented with distilled water to 20 ⁇ 1, reacted at 37 °C for 30 minutes; added ⁇ T4 ligase (EB company, 400,000 cohesive end units/ml), and reacted at room temperature for 2 hours to obtain the ligation product; 5
  • the fragment was integrated into the ackA site of the recombinant Escherichia coli ZT-273A strain.
  • One-step integration of the preparation of the fragment PCR amplification using primer ackA-FRT-up (SEQ ID No.: 102)/pta-rrnB-down (SEQ ID No.: 103) using pXZ177 as a template to obtain one-step integration Fragment.
  • One-step integration of the fragment includes: ac 4 left homology arm 50 bp; FRT-km-lpdA* sequence; pto right homology arm 50 bp.
  • One-step integration The pKD46 plasmid was first transformed into ZT-273A by calcium chloride transformation, and then the one-step integration fragment was electroporated into ZT-273A with the pKD46 plasmid.
  • the electroporation conditions were the same as those in the (1 - 2) partial IdhA gene knockout step in Example 1. 200 ⁇ L of bacterial solution was applied to LB plates containing chloramphenicol (final concentration of 17 ug/ml), and after overnight incubation at 37 ° C, 5 single colonies were selected for PCR verification, primer XZ-ackA-up (SEQ ID No) . :39) /lpdA-R-170 (SEQ ID No.: 101) For PCR verification, select a correct single colony and name it ZT-273B.
  • the artificial regulatory element M1-93 was inserted before the gene of ZT-273B, and the nomenclature of the regulatory element replacement primer corresponded to the primer name used in the tktA gene process, only tktA was replaced with ackA or lpdAC Table 2) to obtain strain ZT-273.
  • the strain was subjected to culture fermentation according to the method of Example 2.
  • the fermentation results are shown in Table 10.
  • the results showed that the expression of tktA and sthA genes was enhanced in the Suc-Tl lO strain, which increased the yield and conversion of succinic acid by 10% and 19%, respectively.
  • pyruvate dehydrogenase is activated to obtain additional reducing power for the synthesis of succinic acid.
  • the recombinant succinic acid yield of Escherichia coli ZT-273 was increased by 24%; the conversion rate was increased by 34% to 1.5 mol/mol.
  • the obtained succinic acid-producing strain ZT-273 was fermented in a fermentation medium with a higher sugar concentration (7% glucose), the yield of succinic acid reached 566 mM, and the conversion of sugar acid reached 1.48 mol/mol.
  • Table 10 Effect of activation of SthA, TktA and pyruvate dehydrogenase on succinic acid production
  • the fermentation medium is 250 ml. 100 mM KHC0 3 was added to the fermentation medium. The neutralizing agent used was 2.4 MK 2 C0 3 and 1.2 M KOH.
  • the initial glucose concentration is 5%.
  • the yield and conversion rate of the high-yield strain HX028 obtained by the present invention is the highest. Compared to the KJ073, KJ122 strains cultured using potassium salts, the sodium salt is used in the fermentation of the present invention, which is much lower than the cost of the potassium salt.
  • the activated pentose phosphate pathway itself can produce carbon dioxide, the HX024 and HX028 obtained by the present invention have a lower demand for bicarbonate ions.
  • the composition of the neutralizer was changed from 2.4 M Na 2 C0 3 +1.2 M NaOH to 1.5 M Na 2 C0 3 +3 M NaOH, and the yield and conversion of succinic acid were basically the same. This reduces the amount of sodium carbonate used and reduces production costs.
  • the AFP111 strain has a succinic acid yield of 99.2 g/L, a succinic acid conversion of 1.68 mol/mol (1.1 gig), an acetic acid yield of 10 g/L, and an ethanol yield of 5 g/L (Vemuri). Et al., 2002, J Ind Microbiol Biotechnol 28:325-332), deduced that the glucose consumed was 90.2 g/L.
  • the two strains AFP111 and SBS550MG also use the aerobic-anaerobic two-step fermentation process.
  • the aerobic culture requires the air to flow through the strain, which increases the energy loss, reduces the utilization rate of the fermenter, and improves the utilization rate. Cost of production.
  • Strain KJ073 mainly uses PCK for carboxylation in the synthesis of succinic acid.
  • the pck gene is knocked out alone, and the yield of succinic acid is reduced by 88%.
  • the other three carboxylases have little contribution to the synthesis of succinic acid.
  • Knocking out the other three carboxylase genes (f!pc, maeA, maeB), the yield of succinic acid was reduced by 4%, 7% and 7%, respectively (Zhang et al., 2009a,
  • the high-yield strain HX024 obtained by the present invention four carboxylases have a certain contribution to the synthesis of succinic acid, and the contribution of PPC is the largest.
  • the ⁇ c gene was knocked out alone, and the seeds could not be produced in the inorganic salt medium; the seeds were prepared using the LB culture standard, and then fermented in the inorganic salt fermentation medium, the yield of succinic acid was decreased by 70%.
  • the maeA, maeB gene, and succinic acid production were reduced by 38%, 49%, and 29%, respectively.
  • the present invention obtains recombinant Escherichia coli ZT-253 by combining modification and W/ ⁇ , and the yield of succinic acid is increased by 10%, and the conversion rate is increased by 19%.
  • the invention is combined Transformation of tktA, sthA and pyruvate dehydrogenase to obtain recombinant Escherichia coli ZT-273 increased the yield of succinic acid by 24% and the conversion rate by 34%.
  • the recombinant strain ZT-273 obtained by the invention ferments 50 g/L glucose, and can produce 40.8 g/L (346 mM) succinic acid with a conversion rate of 0.98 g/g (1.50 mol/mol), and the succinic acid production capacity is excellent.
  • the recombinant strain ZT-273 ferments 70 g/L glucose and can produce 66.8 g/L (566 mM) succinic acid with a conversion rate of 0.97 g/g (1.48 mol/mol).
  • Table 11 Comparison of different recombinant E. coli production The ability of diacid to modify the fermentation conditions of succinic acid
  • Knockout of the alcohol dehydrogenase gene adhE According to the method of part (1) of Example 1, the ⁇ / gene (Genbank No: ACA78022.1) was knocked out from the Suc-TlOO strain to obtain a recombinant strain NZ-511 ( Table 1); constructed plasmids are shown in Table 3, and the primer sequences used are shown in Table 2, wherein the primers are named corresponding to the names used in the knockout/ ⁇ 3 ⁇ 44 gene process, and only ldhA is replaced with adhE.
  • the original regulatory element of No: ACA76448.1 was replaced with the artificial regulatory element M1-37 (SEQ ID No.: 109) to obtain strain NZ-513 (Table 1); using the same method, NZ-512 and P NZ-
  • the original regulatory element of sthA gene (GenBank No: ACA79653.1) was replaced with artificial regulatory element M1-37, and strains NZ-517 and NZ-514 (Table 1) were obtained.
  • the primers used are shown in Table 2, which was used.
  • the name of the primer corresponds to the name of the primer used in the replacement of the gene regulatory element, and only tktA is replaced with sthA.
  • Example 17 Fermentation of recombinant Escherichia coli NZ-512, NZ-513, NZ-514 and NZ-517
  • the strain was subjected to culture fermentation according to the method of Example 2.
  • the fermentation results are shown in Table 12.
  • the results showed that in the knockout ⁇ / and the recovered strain NZ-512, the yield of succinic acid was 289 mM, and the conversion rate was 1.18 mol/mol. There was no significant difference compared to Suc-Tl lO.
  • the gene expression was activated separately on the basis of NZ-512, and the strain NZ-513 was obtained.
  • the yield and conversion rate of succinic acid was increased by 4% and 6% compared with NZ-512; sthA was activated separately on the basis of NZ-512.
  • Gene expression, strain NZ-517, yield and conversion of succinic acid were increased by 7% and 5% compared with NZ-512; simultaneous activation and gene expression intensity based on NZ-512, strain NZ- 514, its succinic acid production and conversion rate increased by 9% and 11% compared with NZ-512.
  • Example 18 Effect of increasing Zwf enzyme activity of Suc-TlOO strain on succinic acid production
  • the original regulatory elements of the 6-phosphate glucose dehydrogenase ZH/gene (GenBank No: ACA77430.i;) in the Suc-Tl lO strain were replaced with artificial regulatory elements.
  • the recombinant strain was constructed as follows:
  • the first step of homologous recombination using the pXZ-CS plasmid as a template, using the primer zwf-cat-sacB-up and zwf-cat-sacB-down amplified DNA fragment I for the first homologous recombination.
  • the primer sequences are shown in Table 2; the 2717 bp DNA fragment I was obtained, and the obtained DNA amplified fragment I was electrotransformed into E. coli Suc-Tl lO with pKD46 plasmid, and ampicillin and chloramphenicol resistant colonies were screened to obtain intermediate recombination. bacteria;
  • the second step of homologous recombination using the genomic DNA of recombinant Escherichia coli Ml-93 (Lu et al. 2012, Appl Microbiol Biotechnol 93: 2455-2462; SEQ ID No.: 110) as a template, using primer zwf-P-up Wow zwf-RBSL-down, a 189 bp DNA fragment RBSL-zwf containing the homologous arms and artificial regulatory elements on both sides of the zw/promoter was obtained; the primer sequences are shown in Table 2.
  • the 189 bp fragment R5ffi-zw/ was electroporated into the intermediate recombinant strain of the integrated DNA fragment I to obtain a recombinant strain.
  • the electrotransformation and screening method is the same as the sixth step in the knockout step.
  • the PCR-purified primers of the recombinant strains were zwf-YZ-up/zwf-YZ-down, and 10 positive colonies with the correct sequencing were randomly selected for subsequent Zwf enzyme activity assay.
  • the Zwf enzyme activity detection reaction system is: reaction buffer 990 ⁇ l (100 mM Tris, 10 mM MgCl 2 , 1 mM DTT, 0.5 mM NADP + , 2 mM glucose-6-phosphate; pH 7.5), after adding 10 ⁇ of the above-mentioned ultrasonic centrifugation The supernatant was mixed and placed in a cuvette and the change in ⁇ 340 was recorded (Lamed et al. 1980, J Bacterid 141: 1251-1257; Kabir and Shimizu, 2003, J Bacterid 105: 11-31). The blank control was added 10 ⁇ of dd3 ⁇ 40 to the reaction buffer. The extinction coefficient of NAD(P)H at 340 nm is 6.22 cm -1 mM _1 .
  • the enzyme activity unit (U) is defined as: 1 ⁇ of NADPH per mg of protein per minute.
  • strains ZT-311, ZT-312, ZT-313, and ZT-314 with different Zwf enzyme activities were screened out from (2), and the strain ZT-311 was the original zw/gene in the Suc-Tl lO strain.
  • the regulatory element was replaced with the artificial regulatory element RBSL1-zwf (SEQ JD NO: 142); ZT-312 replaced the original regulatory element of the zw/gene in the Suc-TlOO strain with the artificial regulatory element RASZ2- «; SEQ ID NO: 143) ZT-313 is to replace the original regulatory element of zw/gene in Suc-T110 strain with artificial regulatory element RASZ3-zw SEQ ID NO: 144); ZT-314 is the original regulation of zw/gene in Suc-Tl lO strain The element was replaced by a manual regulatory element R5ffi ⁇ -zw/ (SEQ ID N0: 145).
  • the Suc-TlO and the recombinant strains ZT-311, ZT-312, ZT-313, and ZT-314 were subjected to anaerobic fermentation according to the method of Example 2.
  • the fermentation results are shown in Table 13.
  • the results showed that within a certain range, the yield and conversion rate of succinic acid increased significantly with the increase of Zwf activity (Fig. 9), and the optimal value appeared when Zwf activity was moderately active (1.50 U/mg).
  • the succinic acid yield and conversion rate of strain ZT-312 were 338 mM and 1.44 mol/mol, respectively, which was 29% and 29% higher than that of the starting strain Suc-Tl lO, respectively. It shows that the increase of Zwf enzyme activity is beneficial to the activation of PPP, and can provide more reducing power to the synthesis of strain succinic acid.
  • the original regulatory element of the 6-phosphogluconolactonase/g/gene (GenBank No: ACA78522.1) in the Suc-Tl lO strain was replaced with an artificial regulatory element, and the recombinant strain was constructed in the same manner as in Example 18.
  • the primers are shown in Table 2, wherein the names of the primers used correspond to the names of the primers used in the zw/regulator replacement process, and only zwf is replaced with pgl. Ten positive colonies with the correct sequencing were randomly selected for subsequent Pgl enzyme assay.
  • the crude enzyme solution of the recombinant strain was prepared in the same manner as in Example 18.
  • the Pgl enzyme activity detection reaction system is: reaction buffer 990 ⁇ (25 mM HEPES, 2 mM MgCl 2 , 1 mM NADP + , 0.5 mM glucose 6-phosphate, 1 U 6-phosphate glucose dehydrogenase; pH 7.1 ), room temperature After standing for 8 minutes, 1.5 U 6-phosphogluconate dehydrogenase and 10 ⁇ l of the above supernatant after ultrasonic centrifugation were added, mixed and placed in a cuvette, and the change of ⁇ 340 was recorded (Stanford et al. 2004). , Genetics 168: 117-127). The blank control was added 10 ⁇ of ddH20 to the reaction buffer. The extinction coefficient of NAD(P)H at 340 nm is 6.22 cm -1 mM _1 .
  • the enzyme activity unit (U) is defined as: 1 ⁇ of NADPH per mg of protein per minute.
  • strains ZT-321, ZT-322 ZT-323, and ⁇ -324 with different Pgl enzyme activities were screened out from (2), and the strain ⁇ -321 was the original regulation of pg/gene in Suc-Tl lO strain.
  • the element was replaced with the artificial regulatory element RBSL1-pgl (SEQ ID NO: 146); ZT-322 replaced the original regulatory element of the pgl gene in the Suc-TlOO strain with the artificial regulatory element RAST ⁇ pg/ CSEQ ID NO: 147); ZT -323 is to replace the original regulatory element of the pg/gene in the Suc-T110 strain with the artificial regulatory element R55Z3-/ ⁇ / (SEQ ID NO: 148); ZT-324 is the original pg/gene in the Suc-Tl 10 strain
  • the regulatory element was replaced by the artificial regulatory element RBSL4-pgl (SEQ ID NO: 149).
  • the Suc-TlO and the recombinant strains ZT-321, ZT-322, ZT-323, and ZT-324 were subjected to anaerobic fermentation according to the method of Example 2, and the fermentation results are shown in Table 14.
  • the results showed that the yield and conversion of succinic acid increased significantly with the increase of Pgl activity within a certain range (Fig. 10), and the optimal value appeared when Pgl activity was moderately active (Pgl: 2.44 U).
  • the yield and conversion of succinic acid of strain ZT-321 were 321 mM and 1.33 mol/mol, respectively, which was 19% and 19% higher than that of the starting strain Suc-Tl lO, respectively. It shows that the Pgl enzyme activity is improved, which is beneficial.
  • the activation of PPP can provide more reducing power to the synthesis of the recombinant strain succinic acid.
  • Example 20 Effect of increasing Gnd enzyme activity of Suc-TlOO strain on succinic acid production
  • the original regulatory element of the 6-phosphogluconate dehydrogenase gm/gene (GenBank No: ACA76645.i;> in the Suc-Tl lO strain was replaced with an artificial regulatory element, and the recombinant strain was constructed in the same manner as in Example 18, Primers are shown in Table 2, in which the names of the primers used correspond to the names of the primers used in the zw/regulatory element replacement process, and only zwf was replaced with gnd. 10 randomly selected positive colonies were obtained for subsequent Gnd enzymes. Live measurement.
  • the crude enzyme solution of the recombinant strain was prepared in the same manner as in Example 18.
  • the Gnd enzyme activity detection reaction system is: reaction buffer 990 ⁇ (100 mM Tris, 10 mM MgCl 2 , 1 mM DTT, 0.5 mM NADP + , 2 mM 6-phosphogluconate; pH 7.5), adding 10 ⁇ of the above ultrasonic centrifugation After the supernatant, it was mixed and placed in a cuvette, and the change of ⁇ 340 was recorded (Padilla et al. 2004, Appl Environ Microbiol 70: 370-376). The blank control was added 10 ⁇ of ddH20 to the reaction buffer. The extinction coefficient of NAD(P)H at 340 nm is 6.22 cm" 1 m T 1 .
  • the unit of enzyme activity (U) is defined as: 1 ⁇ of NADPHo per mg of protein per minute.
  • the regulatory element was replaced with the artificial regulatory element RBSL1-gnd (SEQ ID NO: 150); ZT-332 replaced the original regulatory element of the gm/gene in the Suc-TlO strain with the artificial regulatory element RASZ2-gm/ (SEQ ID NO: 151 ); ZT-333 is the gm/base of the Suc-Tl lO strain
  • the original regulatory element was replaced by the artificial regulatory element R55Z3-gm/ (SEQ ID NO: 152);
  • ZT-334 replaced the original regulatory element of the gm/gene in the Suc-TlO strain with the artificial regulatory element R5ffi ⁇ -gm/ (SEQ ID NO: 153).
  • the Suc-Tl lO and the recombinant strains ZT-331, ZT-332, ZT-333, and ZT-334 were subjected to anaerobic fermentation according to the method of Example 2, and the fermentation results are shown in Table 15.
  • the results showed that, within a certain range, the yield and conversion rate of succinic acid increased significantly with the increase of Gnd enzyme activity (Fig. 11). The optimal value appeared when the Gnd enzyme activity was moderately active.
  • the succinic acid yield and conversion rate of strain ZT-333 were 320 mM and 1.31 mol/mol, respectively, which was 17% and 17% higher than the original strain Suc-Tl lO, respectively. It shows that the increase of Gnd enzyme activity is beneficial to the activation of PPP, and can provide more reducing power to the synthesis of recombinant strain succinic acid.
  • Example 21 Increasing the effect of Tkt enzyme activity of Suc-Tl 10 strain on succinic acid production
  • the original regulatory elements of the transketolase gene (GenBank No: ACA76448.1;) of the Suc-Tl 10 strain were replaced with artificial regulatory elements, and the recombinant strain was constructed in the same manner as in Example 18, and the primers used are shown in Table 2, The nomenclature used corresponds to the name of the primer used in the zw/regulator replacement process, replacing only zwf with tktA. Ten positive colonies with the correct sequencing were randomly selected for subsequent determination of Tkt enzyme activity.
  • the crude enzyme solution of the recombinant strain was prepared in the same manner as in Example 18.
  • the Tkt enzyme activity detection reaction system is: reaction buffer 990 ⁇ l (50 mM Tris, 0.24 mM MgCl 2 , 0.01 mM TPP, 0.25 mM NADH, 3 U 3-glycerophosphate dehydrogenase, 10 U phosphate acetone isomerase, 0.5 mM D-5-xylulose phosphate, 0.5 mM D-5-phosphoribosose; pH 7.5), add 10 ⁇ of the above supernatant after ultrasonic centrifugation, Mix and place in a cuvette and record the changes in A340.
  • the blank control added 10 ⁇ of ddH 2 O o NAD(P)H to the reaction buffer.
  • the extinction coefficient at 340 nm was 6.22 cm -1 rnMT 1 0
  • the enzyme activity unit (U) was defined as: per mg protein consumption per minute. 1 ⁇ of NADH.
  • strain ZT-361, ⁇ -362, and ⁇ -363 with different Tkt activities were screened from (2), and strain ZT-361 was used to replace the original regulatory elements of the tktA gene in the Suc-Tl 10 strain with artificial Regulatory element RBSL1-tktA (SEQ ID NO: 154); ZT-362 replaces the original regulatory element of the tktA gene in the Suc-Tl 10 strain with the artificial regulatory element RASZ2-tA (SEQ ID NO: 155); ZT-363 is The original regulatory element of the tktA gene in the Suc-Tl lO strain was replaced by the artificial regulatory element R55Z3-tA (SEQ ID NO: 156); ZT-251 was the replacement of the original regulatory element of the tktA gene in the Suc-TlO strain with artificial regulatory elements. (SEQ ID NO: 157).
  • the Suc-TlO and the recombinant strains ZT-361, ZT-362, and ZT-363 ZT-251 were subjected to anaerobic fermentation according to the method of Example 2.
  • the fermentation results are shown in Table 16.
  • the results showed that, within a certain range, the yield and conversion rate of succinic acid increased significantly with the increase of Tkt activity (Fig. 12), and the optimal value appeared when the Tkt activity was moderately active (Tkt: 0.61 U).
  • the succinic acid yield and conversion rate of strain ZT-361 were 326 mM and 1.37 mol/mol, respectively, which was 22% and 22% higher than the starting strain Suc-Tl lO, respectively. It shows that the increase of Tkt activity is beneficial to the activation of PPP, and can provide more reducing power to the synthesis of recombinant strain succinic acid.
  • Example 22 Effect of increasing TalB activity of Suc-TlOO strain on succinic acid production
  • the original regulatory elements of the transgenic aldolase toffl gene (GenBank No: ACA79258.1) of Suc-Tl lO strain were replaced with artificial regulatory elements, and the recombinant strain was constructed in the same manner as in Example 18, and the primers used are shown in Table 2, Make The name of the primer used corresponds to the name of the primer used in the zw/regulator replacement process, and only zwf is replaced with talB. Ten positive colonies that were sequenced correctly were randomly selected for subsequent determination of Tal enzyme activity.
  • the crude enzyme solution of the recombinant strain was prepared in the same manner as in Example 18. The only difference is that the buffer used is 50 mM HEPES buffer (pH 8.5).
  • the Tal enzyme activity detection reaction system is: reaction buffer 990 ⁇ (50 mM HEPES 0.24 mM MgCl 2 , 0.5 mM NADP + , 10 U 6-phosphate glucose isomerase, 3 U 6-phosphate glucose dehydrogenase, 0.5 mM D -7-Sedum heptose, 0.5 mM glyceraldehyde 3-phosphate; pH 8.5), add 10 ⁇ of the above supernatant after ultrasonic centrifugation, mix and place in a cuvette, and record the change of ⁇ 340 (Sprenger et Al. 1995, J Bacterid 177:5930-5936).
  • the blank control was added 10 ⁇ of ddH 2 0 to the reaction buffer.
  • the extinction coefficient of NAD(P)H at 340 nm is 6.22 cm" 1 mMT
  • the enzyme activity unit (U) is defined as: 1 ⁇ of NADPH per mg of protein per minute.
  • strains ZT-371, ⁇ -372, ⁇ -373 and ⁇ -374 with different Tal enzyme activities were screened out from (2), and the strain ZT-371 was the original regulation of talB gene in Suc-Tl lO strain.
  • the element was replaced with the artificial regulatory element RBSL1-talB (SEQ ID NO: 158); ZT-372 replaced the original regulatory element of the talB gene in the Suc-Tl 10 strain with the artificial regulatory element RBSL2-talB (SEQ ID NO: 159); ZT -373 is the replacement of the original regulatory element of the talB gene in the Suc-Tl lO strain with the artificial regulatory element RBSU-talB (SEQ ID NO: 160); ZT-374 is the replacement of the original regulatory elements of the toffl gene in the Suc-TlOO strain
  • RASZ ⁇ -toffi SEQ ID NO: 161
  • the Suc-TlO and the recombinant strains ZT-371, ZT-372, ZT-373, and ZT-374 were subjected to anaerobic fermentation according to the method of Example 2.
  • the fermentation results are shown in Table 17.
  • the results showed that within a certain range, the yield and conversion rate of succinic acid increased significantly with the increase of Tal enzyme activity (Fig. 13), and the optimal value appeared when the Tal enzyme activity was moderately active (Tal: 0.20 U).
  • the succinic acid yield and conversion rate of strain ZT-372 were 338 mM and 1.42 mol/mol, respectively, which was 27% and 27% higher than the starting strain Suc-Tl lO, respectively.
  • the increase of Tal enzyme activity is beneficial to the activation of PPP, and can provide more reducing power to the synthesis of recombinant strain succinic acid.
  • the fermentation medium is 250 ml. 100 mM KHC0 3 was added to the fermentation medium. The neutralizing agent used was 2.4 MK 2 C0 3 and 1.2 M KOH. The initial glucose concentration was 238 mM. references:
  • Vemuri GN Vemuri GN
  • Eiteman MA Altman E (2002) Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J Ind Microbiol Biotechnol 28:325-332.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

提供了一种用于生产丁二酸的经工程化的重组大肠杆菌,所述大肠杆菌含有选自如下的一种或多种修饰:a)磷酸戊糖途径(PPP)中所涉及的基因所编码的蛋白质活性的增强,b)sthA基因所编码的蛋白质活性的增强,和任选c)突变的IpdA基因。还提供了使用所述经工程化的重组大肠杆菌生产丁二酸的用途,以及使用所述经工程化的重组大肠杆菌生产丁二酸的方法。

Description

生产丁二酸的重组大肠杆菌及其应用
发明领域
本发明涉及通过大肠杆菌发酵生产丁二酸的领域。具体而言,本发明提供了一种用 于生产丁二酸的经工程化的重组大肠杆菌。本发明还涉及使用所述经工程化的重组大肠 杆菌用于生产丁二酸的用途, 及使用所述经工程化的重组大肠杆菌生产丁二酸的方法。 发明背景
丁二酸又称作琥珀酸, 是一种优秀的平台化合物, 在化工、 材料、 医药、 食品领 域有着广泛的用途,被美国能源部列为未来 12 种最有价值的平台化合物之一 (McKinlay et al. 2007, Appl Microbiol Biotechnol 76:727-740)。 丁二酸目前主要应用于酯化溶剂、 除 冰装置、 发动机冷却剂、 食品香精、 水处理化学品等。 丁二酸还可以用于生产很多下游 产品, 如 1,4-丁二醇、 四氢呋喃、 γ-丁内酯、 Ν-甲基吡咯垸酮、 2-吡喏垸酮。 另外, 丁 二酸和 1,4-丁二醇聚合能得到 PBS (聚丁二酸丁二醇酯)塑料, 其是一种性能优良的生物 全降解塑料。据估计丁二酸未来的市场潜力每年将超过 270万吨。大约有 250种可以用 苯为原料生产的化工产品都可以通过丁二酸为原料生产 (McKinlay et al. 2007, Appl Microbiol Biotechnol 76:727-740)。
目前丁二酸的生产主要是基于顺酐为原料的石油化工路线。 石油价格近年来波动 很大, 这严重制约了丁二酸生产的可持续性和价格稳定。 另一方面, 化学合成法工艺复 杂且常需高温高压, 这大大增加了生产所需的能耗物耗; 同时化学合成还会造成严重的 环境污染。开发丁二酸的高效生物制造技术能从根本上解决石油化工路线的弊端: 保证 丁二酸价格稳定不受制于石油价格波动, 降低 PBS塑料的制造成本, 促进其进一步的 推广应用; 实现绿色可持续生产、 简化生产工艺、 节能减排、 减少环境污染。 另外, 丁 二酸的生物制造过程中还可以吸收二氧化碳, 对实现低碳经济具有很好的促进作用。丁 二酸生物制造技术的核心就是能够将生物质原料高效转化为丁二酸的微生物菌株。
目前丁二酸发酵菌种主要有两大类。 第一类是天然产丁二酸菌, 主要有产丁二酸 放线杆菌 4" wo6ac〃 succinogens)(Guettler et al. 1996, US Patent No. 5504004)、产丁二 .^M ^{Anaerobiospirillum succiniciproducens)(G\assner and Datta 1992, US Patent No. 5143834)、 产丁二酸曼海姆菌 ( arww ze a succiniciproducens)(Lee et al. 2002, Appl Microbiol Biotechnol 58 :663-668)禾口巴斯夫琥¾菌 60^ ¾2 succiniciproducens)(Scho\ten et al. 2009, Biotechnol Lett 31 : 1947-1951) 0 另一类是通过代谢工程改造的工程菌, 主要是 大肠杆菌。
天然产丁二酸菌虽然能够高产丁二酸, 但其自有很多缺陷。 发酵过程中, 糖酸转 化率低, 有相当一部分碳源流入到其他有机酸的合成。 另外, 天然产丁二酸菌发酵过程 中需要丰富培养基,提高了生产成本和下游分离纯化成本,限制了其大规模工业化生产。 大肠杆菌在糖发酵过程中虽然只积累少量的丁二酸, 但由于其生理遗传背景都很清晰, 易于改造, 因此很多研究单位都选取大肠杆菌作为出发菌种,将其改造成高产丁二酸的 工程菌。
磷酸烯醇式丙酮酸 (PEP)是丁二酸合成途径的关键前体。 将 PEP 羧化成草酰乙酸
(OAA)是丁二酸合成途径的关键步骤。 Millard等人通过过表达大肠杆菌的 PEP羧化酶 基因 ppc, 将丁二酸的产量提高了 3.5倍 (Millard et al., 1996, Appl Environ Microbiol 62: 1808-1810)。 Kim等人发现在野生型大肠杆菌中过表达 PEP羧化激酶基因 :, 对丁 二酸生产没有影响, 但在敲除了^ c基因的大肠杆菌中过表达 基因, 能将丁二酸的 产量提高 6.5倍 (Kim et al., 2004, Appl Environ Microbiol 70: 1238-1241)。韩国 Kwon等人 进一步发现当发酵液中含有高浓度碳酸氢根离子时,在野生型大肠杆菌中过表达 基 因, 能将丁二酸的产量提高 2.2 倍 (; Kwon et al., 2006, J Microbiol Biotechnol 16: 1448-1452)。
Chatteijee等人通过在大肠杆菌中敲除丙酮酸甲酸裂解酶基因/ 和乳酸脱氢酶基 因 IdhA,构建了工程菌 NZN111。该菌株不能以葡萄糖为碳源发酵生长,但可以以乳糖、 果糖、甘露糖和海藻糖等为碳源发酵生成丁二酸、 乙酸和乙醇。在此基础上筛选出能够 重新利用葡萄糖为碳源发酵生长的突变菌株 AFPl l lCChatteijee et al., 2001, Appl Environ Microbiol 67: 148-154; Donnelly et al., 1998, Appl Biochem Biotechnol 70-72: 187-198 Vemuri等人通过在 AFP111中高表达埃特里根瘤菌 et/ )的丙酮酸羧化酶基因 pyc, 进一步提高了丁二酸的产量。在两步法培养 (先好氧培养, 然后厌氧发酵产酸)条件 下, 丁二酸的最终浓度可达到 99.2 g/L(841 mM), 糖酸转化率为 1.1 g/g(1.68 mol/mol)(Vemuri et al., 2002, J Ind Microbiol Biotechnol 28:325-332)。
Sanchez等人通过敲除醇脱氢酶基因 α^ :、 IdhA , 乙酸激酶基因 ac 4、 磷酸乙酰 转移酶基因 pto、 异柠檬酸裂解酶调控蛋白基因 c/R, 构建出工程菌 SBS550MG。 在两 步法培养 (先好氧培养,然后厌氧发酵产酸)条件下,可以生产 40 g/L(339 mM)的丁二酸, 糖酸转化率达到 1.06 g/g (1.61 mol/mol)(Sanchez et al., 2005, Metab Eng 7:229-239)。
Vemuri等人和 Sanchez等人构建出的重组大肠杆菌虽然能生产高浓度的丁二酸, 但仍有一些缺陷。发酵过程采用的是两步发酵,即先采用好氧过程将细胞培养生产起来, 再转变为厌氧过程进行发酵。这种工艺操作复杂, 而且好氧工艺会大大提高设备的构建 和运行成本。这些重组大肠杆菌都需要使用丰富培养基,这将极大地提高发酵的原料成 本, 并导致计算的转化率偏高。
Jantama等人通过敲除 /i¾4、 adhE、 甲酸转运蛋白基因/ ο 、 ρ 、 ackA、 甲基乙 二醛合成酶基因∞g^4、 丙酮酸氧化酶基因 pox 并经过进化代谢, 构建出重组大肠杆 菌 KJ073。 使用无机盐培养基, 在厌氧条件下可以生产 79 g/L(668 mM)的丁二酸, 糖酸 转化率达到 0.79 g/g (1.2 mol/mol)(Jantama et al., PCT/US2008/057439; Jantama et al., 2008a, Biotechnol Bioeng 99: 1140-1153)。 进一步敲除丙酸激酶基因 tdcD、 2-酮基丁酸甲 酸裂解酶 /丙酮酸甲酸裂解酶基因 fcfc£、 天冬氨酸氨基转移酶基因 o^C、 苹果酸酶基因 sfcA , 并经过进化代谢, 构建出重组大肠杆菌 KJ122。 使用无机盐培养基, 在厌氧条件 下可以生产 80 g/L(680 mM)的丁二酸, 糖酸转化率达到 0.89 g/g (1.36 mol/mol)(Jantama et al., PCT/US2008/057439; Jantama et al., 2008b, Biotechnol Bioeng 101 :881-893)。上述的 两个重组大肠杆菌都是经过进化代谢提高了丁二酸的生产能力。 Zhang等人还通过敲除 PEP-糖磷酸转移酶的酶 I基因/ te/、 基因, 并增强 PEP羧化激酶 (PCK)的活性, 构 建出重组大肠杆菌 XZ721。使用无机盐培养基,在厌氧条件下可以生产 39 g/L(327 mM) 的丁二酸, 糖酸转化率达到 0.82 g/g (1.25 mol/mol)(Zhang et al., PCT/US2010/029728; Zhang et al., 2009b, Appl Environ Microbiol 75:7807-7813)。
为了提高大肠杆菌生产丁二酸的产量和 /或转化率, 需要进一步对大肠杆菌的代谢 途径进行改造。 发明概述
一方面, 本发明提供了一种用于生产丁二酸的重组大肠杆菌。
在一个实施方案中,本发明涉及一种重组大肠杆菌,所述大肠杆菌中含有如下修饰:
(1)磷酸烯醇式丙酮酸 -糖磷酸转移酶系统 (PTS)中所涉及的基因表达的抑制、 和 /或磷酸 烯醇式丙酮酸 -糖磷酸转移酶系统 (PTS)中所涉及的基因所编码的蛋白质活性的抑制,
(2) pflB和 /或 adhE基因表达的抑制、 和 /或 pflB和 /或 adhE基因所编码的蛋白质活性的 抑制, (3)/ύ¾4基因表达的抑制、和 /或 /^¾4基因所编码的蛋白质活性的抑制, 和 (4)gaff 基因和 /或外源 g//基因表达的增强、 和 /或 gaff基因和 /或外源 g//基因所编码的蛋白质 活性的增强; 其中所述大肠杆菌还含有如下的一或多种修饰: (a) 磷酸戊糖途径 (PPP) 中所涉及的基因表达的增强、 和 /或磷酸戊糖途径 (PPP)中所涉及的基因所编码的蛋白质 活性的增强; 和 (b) W/^4基因表达的增强、 和 /或^^基因所编码的蛋白质活性的增强。
在一个实施方案中, 本发明的大肠杆菌中磷酸烯醇式丙酮酸 -糖磷酸转移酶系统 (PTS)所涉及的基因表达的抑制、 和 /或磷酸烯醇式丙酮酸 -糖磷酸转移酶系统 (PTS)中所 涉及的基因所编码的蛋白质活性的抑制, 其中所述基因是选自如下的一或多种基因: 编 码 PTS系统酶 I的基因 ptsl、编码 PTS系统酶 Hpr的基因 ptsH、编码 PTS系统酶 ΠΑ ε 的基因 CJT和编码 PTS系统酶 IICB^的基因 ptsG。
在另一个实施方案中, 本发明的大肠杆菌的磷酸戊糖途径 (PPP)中所涉及的基因表 达增强、 和 /或磷酸戊糖途径 (PPP)中所涉及的基因所编码的蛋白质的活性增强, 其中所 述基因是选自如下的一或多种基因: 编码转酮醇酶的基因 tA 、 编码 6-磷酸葡萄糖脱氢 酶的基因 zw/、编码 6-磷酸葡糖酸内酯酶的基因 pgl、编码 6-磷酸葡萄糖酸脱氢酶的基因 gnd、 编码 5-磷酸核糖异构酶的基因 r '、 编码 5-磷酸核酮糖差向异构酶的基因rJ ^和编 码转醛醇酶的基因 talB。
在进一步的实施方案中, 所述磷酸戊糖途径 (PPP)中表达增强的基因或所编码的蛋 白质的活性增强的基因是选自如下的一或多种基因: 编码转酮醇酶的基因 tA 、 编码 6- 磷酸葡萄糖脱氢酶的基因 zw/、编码 6-磷酸葡糖酸内酯酶的基因 pgl、编码 6-磷酸葡萄糖 酸脱氢酶的基因 gm/和编码转醛醇酶的基因 talB。
在一个实施方案中,本发明涉及一种重组大肠杆菌,其中所述大肠杆菌中 基因 和 tktA基因的表达增强、 和 /或 sthA基因和 tktA基因所编码的蛋白质的活性增强。
在一个实施方案中, 本发明的大肠杆菌中含有突变的 IpdA 基因, 其所编码的多肽 在对应于 SEQ ID No.: l所示氨基酸序列的如下位置的位置上含有修饰: T81、 Ρ275和 Α358, 对应的位置是通过与 SEQ ID No.: l进行序列比对而确定的, 任选其中在对应于 T81的位置上的修饰是用 I置换 T, 在对应于 Ρ275的位置上的修饰是用 S置换 Ρ, 以及 在对应于 Α358的位置上的修饰是用 V置换 Α。 在一个优选的实施方案中, 本发明的大 肠杆菌中所含有的突变的 IpdA基因的表达增强,和 /或所述突变的 IpdA基因所编码的蛋 白质的活性增强。
在一个实施方案中, 本发明的大肠杆菌中含有突变的 IpdA 基因, 并且所述突变的 IpdA基因位于染色体中或者质粒中。
在一个实施方案中, 本发明涉及一种重组大肠杆菌,其中所述大肠杆菌中含有如下 修饰: (a) 磷酸戊糖途径 (PPP)中所涉及的基因表达的增强、 和 /或磷酸戊糖途径 (PPP)中 所涉及的基因所编码的蛋白质活性的增强; 和 (b) W/^基因表达的增强、和 /或 基因 所编码的蛋白质活性的增强; 和 (c) 突变的 基因, 其所编码的多肽在对应于 SEQ ID No. : l所示氨基酸序列的如下位置的位置上含有修饰: T81、 Ρ275和 Α358, 对应的 位置是通过与 SEQ ID No. : l进行序列比对而确定的, 任选其中在对应于 T81的位置上 的修饰是用 I置换 T,在对应于 Ρ275的位置上的修饰是用 S置换 Ρ,以及在对应于 Α358 的位置上的修饰是用 V置换 Α。 在一个优选的实施方案中, 本发明的大肠杆菌中所含 有的突变的 IpdA基因的表达增强,和 /或所述突变的 IpdA基因所编码的蛋白质的活性增 强。
在一个实施方案中, 本发明的大肠杆菌还含有如下的修饰: (5)acM和 pto基因表 达的抑制、 和 /或 ackA和 pta基因所编码的蛋白质活性的抑制; ^>aceBA基因簇表达的 增强、 和 /或 ace ^基因簇所编码的蛋白质活性的增强; (7 fcMC基因表达的增强、 和 / 或 dc C基因簇所编码的蛋白质活性的增强; 和 (8 ^&4基因表达的抑制、 和 /或 mgSA 基因所编码的蛋白质活性的抑制。
在一个实施方案中, 本发明的大肠杆菌还含有如下修饰: (9)ρ 基因表达的增强、 和 /或 pck基因所编码的蛋白质活性的增强。
在一个实施方案中,本发明的大肠杆菌还含有如下修饰:(IO ^ :基因表达的抑制、 和 /或 adhE基因所编码的蛋白质活性的抑制; 和 (l l)tofc£>£基因簇表达的抑制、 和 /或 tdcDE基因簇所编码的蛋白质活性的抑制。
在一个实施方案中, 本发明的大肠杆菌还含有如下的修饰: (12) aCe£F基因簇表达 的增强、 和 /或 基因簇所编码的蛋白质活性的增强。
在第二方面, 本发明提供了一种生产丁二酸的方法,其中包括培养本发明的大肠杆 菌的步骤。
在第三方面, 本发明涉及本发明的大肠杆菌在生产丁二酸中的用途。 附图简述
图 1 : 改造大肠杆菌获得重组菌株 NZ-037的示意图。 X代表基因敲除,包括 /^¾4、 pflB、 ptsl、 ac 4-pto基因。 四角星代表基因表达的增强, 包括 ga/P、 aceBA , dcuC 基因。
图 2: NZ-037经过 1080代进化获得菌株 HX021。
图 3: HX023经过 360代进化获得菌株 HX024。
图 4: HX024在 5L发酵罐水平发酵生产丁二酸。
图 5 : HX027经过 650代进化获得菌株 HX028。
图 6: HX028在 5L发酵罐水平发酵生产丁二酸。
图 7: HX024的转录组分析。灰色方框和白色方框中的数字代表 HX024基因表达 强度和野生型大肠杆菌 ATCC 8739的相对值; 缩写词: GLC: 葡萄糖; G6P: 6-磷酸葡 萄糖; F6P: 6-磷酸果糖; FBP: 1,6-二磷酸果糖; GAP: 3-磷酸甘油醛; DHAP: 磷酸 二羟基丙酮; GBP: 1,3-二磷酸甘油酸; G3P: 3-磷酸甘油酸; PEP: 磷酸烯醇式丙酮 酸; OAA: 草酰乙酸; MAL: 苹果酸; FUM: 富马酸; SUC: 丁二酸; 6PGCL: 6-磷 酸葡萄糖酸内酯; 6PGC: 6-磷酸葡萄糖酸; RL5P: 5-磷酸核酮糖; X5P: 5-磷酸核糖; R5P: 5-磷酸木糖; S7P: 7-磷酸景天庚酮糖; E4P: 4-磷酸赤鲜糖; PYR: 丙酮酸; ACA: 酰基辅酶 A; ACP: 酰基磷酸; ACE: 乙酸; CIT: 柠檬酸; ICIT: 异柠檬酸; GLO: 乙 醛酸; DLAC: D-乳酸; FOR: 甲酸; ETH; 乙醇; NAD+: 氧化型尼克烟酰胺腺嘌吟 二核苷酸; NADPH: 还原型尼克烟酰胺腺嘌吟二核苷酸磷酸; NADH: 还原型尼克烟 酰胺腺嘌吟二核苷酸; NADP+: 氧化型尼克烟酰胺腺嘌吟二核苷酸磷酸。 galP-. 半乳 糖透型酶基因; glk: 葡萄糖激酶基因; gapA: 3-磷酸甘油脱氢酶基因; pflA : 6 磷 酸果糖激酶基因; pck:磷酸烯醇式丙酮酸羧化酶基因; mdh:苹果酸脱氢酶基因; fumA : 富马酸水合酶酶 I基因; frdABCD: 富马酸还原酶基因; 6-磷酸葡萄糖脱氢酶基 因; pgl: 6-磷酸葡萄糖酸内酯酶基因; gnd: 6-磷酸葡萄糖酸脱氢酶基因; rpe: 5-磷 酸核酮糖差向异构酶基因; ψίΑΒ'. 5-磷酸核糖差向异构酶基因; tktA : 转酮醇酶基因; tktB: 转酮醇酶基因; talB: 转醛醇酶基因; p≠F'. 丙酮酸激酶基因; pdh: 丙酮酸脱氢 酶基因; pta: 磷酸乙酰转移酶基因; ackA: 乙酸激酶基因; gltA: 柠檬酸合成酶基因; ac 顺乌头酸酶基因; aceB: 苹果酸合成酶基因; ac : 异柠檬酸裂解酶基因; sthA: 嘧啶核苷酸转氢酶基因; maeB: NADPH依赖苹果酸酶基因; dc B: 厌氧 C4双羧酸转 运蛋白基因; dcuC: C4双羧酸转运蛋白基因; dctA: 好养 C4双羧酸转运蛋白基因。
图 8: (A)野生型 基因以及突变的 基因 的核苷酸序列比对; (B) 野生型以及突变的 IpdA基因 所编码的多肽的氨基酸序列比对。
图 9: Zwf酶活与丁二酸转化率和产量之间的关系。 图 10: Pgl酶活与丁二酸转化率和产量之间的关系。
图 11 : Gnd酶活与丁二酸转化率和产量之间的关系。
图 12: Tkt酶活与丁二酸转化率和产量之间的关系。
图 13 : Tal酶活与丁二酸转化率和产量之间的关系。 发明详述
除非另有说明, 所有技术和科学术语都具有本领域所知的常见含义。 所有专利、 专利申请、 公开出版物、 序列、 以及其他公开材料均援引加入本文, 除非另有说明。
一方面, 本发明提供了一种用于生产丁二酸的经工程化改造的重组大肠杆菌。 在本 发明的大肠杆菌中, 通过调节代谢途径中所涉及的一些酶的活性, 从而改善了大肠杆菌 丁二酸的产量和 /或转化率。
如本文所用, 术语"经工程化改造的重组大肠杆菌"、 "工程化的大肠杆菌 "和"重组大 肠杆菌"可互换使用, 均是指经过修饰的大肠杆菌, 其中所述的修饰可以是, 例如, 基 因表达的增强、 基因表达的抑制、 引入新的基因、 引入突变的基因或者对基因进行突变 等, 其中可以通过本领域常规的技术手段实现基因表达的增强或基因表达的抑制, 例如 基因的敲除、 改变基因的拷贝数、 引入质粒、 改变基因的启动子 (例如使用强启动子或 弱启动子)等。
在一个实施方案中, 本发明涉及一种重组大肠杆菌,其中所述大肠杆菌中含有如下 的一或多种修饰: (a) 磷酸戊糖途径 (PPP)中所涉及的基因表达增强、 和 /或磷酸戊糖途 径 (PPP)中所涉及的基因所编码的蛋白质活性的增强; 和 (b) sthA 基因的表达增强、 和 / 或 sthA基因所编码的蛋白质的活性增强。
如本文所用, 术语"磷酸戊糖途径 Cpentose-phosphate pathway)"具有本领域内熟知的 含义。 磷酸戊糖途径是在动物、 植物和微生物中普遍存在的一条糖的分解代谢途径, 其 特征在于葡萄糖被直接氧化脱氢和脱羧, 而不经过糖酵解, 脱氢酶的辅酶不是 NAD+而 是 NADP+, 产生的 NADPH作为还原力以供生物合成用, 而不是传递给 02
在一些实施方案中, 本发明的大肠杆菌的磷酸戊糖途径 (PPP)中所涉及的基因表达 增强、 或者磷酸戊糖途径 (PPP)中所涉及的基因所编码的蛋白质的活性增强, 其中所述 基因是选自如下的一或多种基因: 编码转酮醇酶的基因 tA 、 编码 6-磷酸葡萄糖脱氢酶 的基因 /、 编码 6-磷酸葡糖酸内酯酶的基因 pgl、 编码 6-磷酸葡萄糖酸脱氢酶的基因 gnd, 编码 5-磷酸核糖异构酶的基因 rpi、 编码 5-磷酸核酮糖差向异构酶的基因 rpe和编 码转醛醇酶的基因 talB。
在本发明中, tktA基因 (Genbank No: ACA76448.1)所编码的蛋白质的是转酮醇酶 (EC No: 2.2.1.1), ZH /基因 (Genbank No: ACA77430.1)所编码的蛋白质的是 6-磷酸葡萄糖脱氢 酶 (EC No: 1.1.1.49); pg/基因 (Genbank No: ACA78522.1)所编码的蛋白质的是 6-磷酸葡 糖酸内酯酶 (EC No: 3.1.1.31); gm/基因 (Genbank No: ACA76645.1)所编码的蛋白质的是 6-磷酸葡萄糖酸脱氢酶 (EC No: 1.1.1.44); rpi基因 (Genbank No: ACA76468.1)所编码的蛋 白质的是 5-磷酸核糖异构酶 (EC No: 5.3.1.6); rpe基因 (Genbank No: ACA76005.1)所编码 的蛋白质的是 5-磷酸核酮糖差向异构酶 (EC No: 5.1.3.1); talB 基因 (Genbank No: ACA79258.1)所编码的蛋白质的是转醛醇酶 (EC No: 2.2.1.2)。
基因 (Genbank No: ACA79653.1)编码一种可溶性转氢酶 (EC No: 1.6.1.1)。 在一 个实施方案中, 本发明的 sthA基因的序列如 SEQ ID No. :5所示。 在一个实施方案中, 本发明的 sthA基因的序列与 SEQ ID No. :5所示的核苷酸序列具有 90%、91%、92%、93%、 94%、 95%、 96%、 97%、 98%、 或 99%的序列相同性。
在一个实施方案中, 本发明的 基因的序列如 SEQ ID No. :6所示。 在一个实施 方案中, 本发明的 tktA基因的序列与 SEQ ID No. :6所示的核苷酸序列具有 90%、 91%、 92%、 93%、 94%、 95%、 96%、 97%、 98%、 或 99%的序列相同性
如本文所用, 术语"基因表达增强", 其具有本领域内熟知的含义, 是指基因表达强 度的增强, 并导致基因转录后产生的 mRNA数量的增加。 基因表达增强可以通过如下 方式实现,例如但不限于:在基因前引入强启动子、增加基因的拷贝数、或者增强 mRNA 的稳定性等。如本文所用,术语"基因所编码的蛋白活性增强"具有本领域内熟知的含义, 是指基因转录翻译后产生的蛋白活性的增加。 其可以例如通过基因表达强度的增强、 增 加酶在细胞中的含量、 氨基酸位点的突变来实现。 实现"基因的表达增强"以及"基因所 编码的蛋白质的活性增强"的各种技术手段是本领域技术人员熟知的。
在本发明中, 基因表达增强可以例如通过引入强启动子来实现。 在本发明的一些实 施方案中, 使用的强启动子例如是: Ppck*(SEQ ID No. : 108)(Zhang et al., 2009b, Appl Environ Microbiol 75 :7807-7813)、 Ml-37 (SEQ ID No. : 109)、 或 Ml-93 (SEQ ID No. : 110) (Lu et al., 2012, Appl Microbiol Biotechnol 93 :2455-2426)。
在一个实施方案中, 本发明涉及一种重组大肠杆菌,其中所述大肠杆菌中含有如下 的一或多种修饰: (a) 磷酸戊糖途径 (PPP)中所涉及的基因表达增强、 和 /或磷酸戊糖途 径 (PPP)中所涉及的基因所编码的蛋白质的活性增强; (b) sthA 基因的表达增强、 和 /或 ^^基因所编码的蛋白质的活性增强; 和 (c)突变的 基因, 其所编码的多肽在对应 于 SEQ ID No. : l所示氨基酸序列的如下位置的一个或多个位置上含有修饰: T81、 Ρ275 和 Α358, 对应的位置是通过与 SEQ ID Νο. : 1进行序列比对而确定的, 任选其中在对应 于 T81的位置上的修饰是用 I置换 Τ, 在对应于 Ρ275的位置上的修饰是用 S置换 Ρ, 以及在对应于 Α358的位置上的修饰是用 V置换 Α。在一个优选的实施方案中, 本发明 的大肠杆菌中所含有的突变的 IpdA基因的表达增强,和 /或所述突变的 IpdA基因所编码 的蛋白质的活性增强。
术语"突变"具有本领域内常用的含义, 是指在核苷酸序列中插入、 添加、 缺失、 或 者取代一或多个核苷酸, 或者是指在多肽序列中插入、 添加、 缺失、 或者取代一或多个 氨基酸。
在一个实施方案中, 本发明的大肠杆菌中含有突变的 IpdA 基因, 并且所述突变的
IpdA基因位于质粒中或者染色体中。 在一个实施方案中, 本发明的大肠杆菌中含有突变的 IpdA 基因, 并且所述突变的 基因位于染色体中。
在一个实施方案中, 本发明的大肠杆菌中含有突变的 IpdA 基因, 并且所述突变的 基因位于质粒中。
如本文所用, 术语"质粒"具有本领域熟知的定义, 其是以附加体形式存在于细胞中 的非染色体 DNA并且能够自主复制的 DNA分子。 本发明中可以使用的质粒例如有: pEASY-Blunt、 pACYC184、 pTrc99A、 pTrc99A-M、 pTrc99A-M-Kan pKD4禾 P pKD46 等。
如本文所用, 术语"染色体 "具有本领域熟知的定义。 在一些实施方案中, 本发明所 涉及的经修饰的基因位于染色体中。将经修饰的基因整合至染色体的技术是本领域技术 人员熟知的,例如可以参见 Michael R. Green和 Joseph Sambrook的" Molecular Cloning: A Laboratory Manual" (Fourth Edition)。
IpdA 基因 (Genbank No: ACA79157.1)是编码硫辛酰胺脱氢酶 (EC No: 1.8.1.4)的基 因。 在本发明的一个实施方案中, 所使用的初始大肠杆菌菌株中的野生型 IpdA基因的 核苷酸序列如 SEQ ID No. :2所示, 其所编码的多肽的氨基酸序列如 SEQ ID No.: l所示, 而本发明的大肠杆菌中所引入的突变的 IpdA基因则含有如下的一或多种突变: C242T、 C823T、 和 C1073T; 而所述突变的 ^dA基因所编码的多肽具有如下的一或多种氨基酸 置换: T81I、 P275S、 和 A358V (参见图 8)。
在一个实施方案中, 本发明的大肠杆菌中含有突变的 IpdA 基因, 其所编码的多肽 在对应于 SEQ ID No. : l所示氨基酸序列的如下位置的一个或多个位置上含有修饰: T81、 P275和 A358, 对应的位置是通过与 SEQ ID No. : l进行序列比对而确定的, 任选其中在 对应于 T81的位置上的修饰是用 I置换 T,在对应于 Ρ275的位置上的修饰是用 S置换 Ρ, 以及在对应于 Α358的位置上的修饰是用 V置换 Α。 在一个优选的实施方案中, 本发明 的大肠杆菌中所含有的突变的 IpdA基因的表达增强,和 /或所述突变的 IpdA基因所编码 的蛋白质的活性增强。
在一个实施方案中, 本发明的大肠杆菌中含有突变的 基因, 所述突变的 基因在对应于 SEQ ID Να :2所示核苷酸序列的如下位置的一个或多个位置上含有突变: C242、 C823和 C1073 , 对应的位置是通过与 SEQ ID No.:2进行序列比对而确定的, 任 选其中所述突变均是用 T置换 C。在一个优选的实施方案中, 本发明的大肠杆菌中所含 有的突变的 IpdA基因的表达增强,和 /或所述突变的 IpdA基因所编码的蛋白质的活性增 强。
本领域技术人员会意识到不同大肠杆菌菌株的 ^dA基因序列可能与 SEQ ID No. :2 所示 IpdA基因序列不完全等同, 以及不同大肠杆菌菌株的 IpdA基因所编码的多肽序列 可能与 SEQ ID Να: 1所示的多肽序列不完全等同。 在本发明的某些实施方案中, 所述 突变的 基因中的突变位于对应于 SEQ ID No. :2的第 C242位、 第 823位、 和 /或第 1073位的位置上。 在本发明的某些实施方案中, 所述突变的 基因所编码的多肽中 的置换位于对应于 SEQ ID No.: l的第 81位、 第 275位、 和 /或第 358位的位置上。 在本发明中, "对应于" SEQ ID No. : l或 SEQ ID No. :2中某一特定位置的位置可以 通过序列比对而确定,包括如使用人工排列对比及通过使用众多可利用的排列对比程序 (例如 BLASTP)以及本领域技术人员已知的其它方法。 通过对比多肽或核苷酸序列, 本 领域技术人员可以在适当的位置引入相应的突变, 从而实现本发明的技术效果。 另外, 本领域技术人员也可以使用保守和类似的氨基酸残基来置换相应位置上的氨基酸残基, 或者在 基因序列中引入同义突变, 而实现本发明的技术效果。
在一个实施方案中,本发明涉及一种重组大肠杆菌,其中所述大肠杆菌中 基因 和 tktA基因的表达增强、 或者 sthA基因和 tktA基因所编码的蛋白质的活性增强。
在一个实施方案中, 本发明涉及一种重组大肠杆菌,其中所述大肠杆菌中含有如下 遗传修饰: (a)磷酸戊糖途径 (PPP)中所涉及的基因表达增强、 和 /或磷酸戊糖途径 (PPP) 中所涉及的基因所编码的蛋白质的活性增强; (b) W/^基因的表达增强、和 /或 基因 所编码的蛋白质的活性增; 和 (c) 突变的 基因, 其所编码的多肽在对应于 SEQ ID No. : l所示氨基酸序列的如下位置的一个或多个位置上含有修饰: T81、 Ρ275和 Α358, 对应的位置是通过与 SEQ ID No.: l进行序列比对而确定的, 任选其中在对应于 T81的 位置上的修饰是用 I置换 T,在对应于 Ρ275的位置上的修饰是用 S置换 Ρ, 以及在对应 于 Α358的位置上的修饰是用 V置换 Α。在一个优选的实施方案中, 本发明的大肠杆菌 中所含有的突变的 IpdA基因的表达增强,和 /或所述突变的 IpdA基因所编码的蛋白质的 活性增强。
在另一个实施方案中, 本发明的大肠杆菌中含有突变的 IpdA 基因, 其所编码的多 肽在对应于 SEQ ID No.: l所示氨基酸序列如下位置的位置上含有修饰: T81、 Ρ275和 Α358, 对应的位置是通过与 SEQ ID No.: l进行序列比对而确定的, 任选其中在对应于 T81的位置上的修饰是用 I置换 T, 在对应于 Ρ275的位置上的修饰是用 S置换 Ρ, 以及 在对应于 Α358的位置上的修饰是用 V置换 Α。 在一个优选的实施方案中, 本发明的大 肠杆菌中所含有的突变的 IpdA基因的表达增强,和 /或所述突变的 IpdA基因所编码的蛋 白质的活性增强。
在一个实施方案中, 本发明的大肠杆菌中所含有的突变的 ^dA基因在对应于 SEQ ID No. :2所示核苷酸序列如下位置的位置上含有突变: C242、 C823和 C1073 , 对应的 位置是通过与 SEQ ID No. :2进行序列比对而确定的,任选其中所述突变均是用 T置换 C。 在一个优选的实施方案中, 本发明的大肠杆菌中所含有的突变的 IpdA基因的表达增强, 和 /或所述突变的 IpdA基因所编码的蛋白质的活性增强。
在一个实施方案中, 本发明涉及一种重组大肠杆菌,其中所述大肠杆菌中含有如下 遗修饰: (a)磷酸戊糖途径 (PPP)中所涉及的基因表达增强、 和 /或磷酸戊糖途径 (PPP)中 所涉及的基因所编码的蛋白质的活性增强; (b) W/^基因的表达增强、和 /或 基因所 编码的蛋白质的活性增强; 和 (c) 突变的 基因, 其所编码的多肽在对应于 SEQ ID No. : l所示氨基酸序列如下位置的位置上含有修饰: T81、 Ρ275和 Α358, 对应的位置是 通过与 SEQ ID No.: l进行序列比对而确定的, 任选其中在对应于 T81的位置上的修饰 是用 I置换 T, 在对应于 Ρ275的位置上的修饰是用 S置换 Ρ, 以及在对应于 Α358的位 置上的修饰是用 V置换 Α。 在一个优选的实施方案中, 本发明的大肠杆菌中所含有的 突变的 IpdA基因的表达增强, 和 /或所述突变的 IpdA基因所编码的蛋白质的活性增强。
在一个实施方案中, 本发明涉及一种重组大肠杆菌,其中所述大肠杆菌中含有如下 修饰: (a) 基因的表达增强、和 /或 基因所编码的蛋白质的活性增强, (b) W/^基 因的表达增强、 和 /或^^基因所编码的蛋白质的活性增强, 和 (c) 突变的 基因, 其在对应于 SEQ ID No. :2所示核苷酸序列如下位置的位置上含有突变: C242、 C823和 C1073 , 对应的位置是通过与 SEQ ID No. :2进行序列比对而确定的, 任选其中所述突变 均是用 T置换 C。在一个优选的实施方案中,本发明的大肠杆菌中所含有的突变的 ^dA 基因的表达增强, 和 /或所述突变的 IpdA基因所编码的蛋白质的活性增强。
在一个实施方案中, 本发明的大肠杆菌还含有选自如下的一或多种修饰: (1)磷酸 烯醇式丙酮酸 -糖磷酸转移酶系统 (PTS)所涉及的基因表达的抑制、和 /或磷酸烯醇式丙酮 酸 -糖磷酸转移酶系统 (PTS)所涉及的基因所编码的蛋白质活性的抑制; (2) pflB和 /或 adhE基因表达的抑制、和 /或 pflB或 adhE基因所编码的蛋白质活性的抑制; (3) IdhA基 因表达的抑制、 和 /或 /^¾4基因所编码的蛋白质活性的抑制; (4) gaff基因和 /或外源 g// 基因表达的增强、和 /或^ 基因或外源 g//基因所编码的蛋白质活性的增强; 和 (9)pd: 基因表达的增强、 和 /或^^基因所编码的蛋白质活性的增强。
在一个实施方案中, 本发明的大肠杆菌中磷酸烯醇式丙酮酸 -糖磷酸转移酶系统 (PTS)所涉及的基因表达的抑制、 和 /或磷酸烯醇式丙酮酸 -糖磷酸转移酶系统 (PTS)中所 涉及的基因所编码的蛋白质活性的抑制, 其中所述基因是选自如下的一或多种基因: 编 码 PTS系统酶 I的基因 ptsl、编码 PTS系统酶 Hpr的基因 ptsH、编码 PTS系统酶 ΠΑ ε 的基因 CJT和编码 PTS系统酶 IICB^的基因 ptsG。
在本发明中, pte/基因 (GenBank No: ACA76928. K NC_010468.1)编码磷酸烯醇式 丙酮酸-糖磷酸转移酶 I(EC No: 2.7.3.9)。 pteH基因 (GenBank No: ACA76929.1)编码磷酸 烯醇式丙酮酸-糖磷酸转移酶 Hpr (EC No: 2.7.1.69)。 err基因 (GenBank No: ACA76927.1) 编码磷酸烯醇式丙酮酸-糖磷酸转移酶 ΠΑ ε (EC No: 2.7.1.69)。 ptsG基因 (GenBank No: ACA78131.1)编码磷酸烯醇式丙酮酸-糖磷酸转移酶 IICB^ (EC No: 2.7.1.69)。
在一个实施方案中, 本发明的大肠杆菌还含有选自如下的一或多种修饰: W ptsl 基因表达的抑制、 和 /或 pto/基因所编码的蛋白质的活性抑制; (2) pflB和 /或 adhE基因 表达的抑制、和 /或 pflB和 /或 adhE基因所编码的蛋白质活性的抑制; (3) IdhA基因表达 的抑制、和 /或 /^¾4基因所编码的蛋白质活性的抑制;(4) gaff基因和 /或外源 g//基因表 达的增强、 和 /或 gaff基因和 /或外源 g//基因所编码的蛋白质活性的增强; 和 (9) p 基 因表达的增强、 和 /或^^基因所编码的蛋白质活性的增强。
在一个实施方案中, 本发明的大肠杆菌还含有选自如下的一或多种修饰: W ptsl 基因表达的抑制、 和 /或 pto/基因所编码的蛋白质的活性抑制; (2) pflB和 /或 adhE基因 表达的抑制、和 /或 pflB和 /或 adhE基因所编码的蛋白质活性的抑制; (3) IdhA基因表达 的抑制、 和 /或 /^¾4基因所编码的蛋白质活性的抑制; (4) gaff基因表达的增强、 和 /或 ^ff基因所编码的蛋白质活性的增强; 和 (9) 基因表达的增强、 和 /或 基因所编 码的蛋白质活性的增强。
在一个实施方案中, 本发明的大肠杆菌还含有选自如下的一或多种修饰: W ptsl 基因表达的抑制、和 /或/^ /基因所编码的蛋白质的活性抑制; (2 基因表达的抑制、 和 /或 pflB所编码的蛋白质活性的抑制; OWhA基因表达的抑制、 和 /或 !dhA基因所编 码的蛋白质活性的抑制; (4)gaff基因表达的增强、和 /或^ 基因所编码的蛋白质活性 的增强; 和 (9 d:基因表达的增强、 和 /或^^基因所编码的蛋白质活性的增强。
在一个实施方案中, 本发明的大肠杆菌还含有选自如下修饰: (l) pto/基因表达的 抑制、 和 /或/^ /基因所编码的蛋白质的活性抑制; 基因表达的抑制、 和 /或 所编码的蛋白质活性的抑制; (3)/ί¾4基因表达的抑制、和 /或 /^¾4基因所编码的蛋白质 活性的抑制; (4)gaff基因表达的增强、和 /或^ 基因所编码的蛋白质活性的增强; 和 (9 d:基因表达的增强、 和 /或^^基因所编码的蛋白质活性的增强。
在本发明中, 基因 (GenBank No: ACA78322.1)编码丙酮酸甲酸裂解酶 (Pyruvate formate lyase)(EC No. 2.3.1.54)。 基因 (; Genbank No: ACA78022.1)编码乙醇 /乙醛脱 氢酶 (Alcohol/acetaldehyde dehydrogenase)(EC No: 1.1.1.1, EC No: 1.2.1.10)。 /ύ¾4基因 (GenBank No: ACA77176.1)编码乳酸脱氢酶 A (lactate dehydrogenase A)(EC No: 1.1.1.28)。 galP基因 (GenBank No: ACA76443.1)编码半乳糖 MFS转运蛋白。 g//基因 (GenBank No: AAA27691.1) 编码葡萄糖转运蛋白 Glf(glucose facilitator protein)。 pck基 因 (GenBank No: ACA75988.1)编码磷酸烯醇式丙酮酸羧化激酶,又称作 PCK酶 (EC No: 4.1.1.49)。
如本文所用, 术语"基因表达的抑制"具有本领域内熟知的含义, 是指基因表达强度 的降低, 从而导致基因转录后产生的 mRNA数量的减少。 基因表达的抑制可以通过如 下方式实现, 例如但不限于: 基因的敲除、 减少基因的拷贝数、 改变基因的启动子 (例 如使用弱启动子)等。如本文所用, 术语"基因所编码的蛋白质的活性抑制"具有本领域内 熟知的含义, 是指基因转录翻译后产生的蛋白活性的降低。 其可以例如通过基因表达强 度的降低、 基因中核苷酸的插入或缺失、 氨基酸位点的突变来实现。 实现"基因表达的 抑制"以及"基因所编码的蛋白质的活性抑制"的各种技术手段是本领域技术人员熟知 的。
在另一个实施方案中, 本发明的大肠杆菌还含有如下修饰: (l) pto/基因表达的抑 制、 和 /或 ptsl基因所编码的蛋白质的活性抑制; 2、pflB基因表达的抑制、 和 /或 pflB所 编码的蛋白质活性的抑制; (3)/ί¾4基因表达的抑制、和 /或 /^¾4基因所编码的蛋白质活 性的抑制; (4)gaff基因表达的增强、 和 /或^ 基因所编码的蛋白质活性的增强。
在一个实施方案中, 本发明的大肠杆菌还含有如下的修饰: (5)acM和 pto基因表 达的抑制、 和 /或 ackA和 pta基因所编码的蛋白质活性的抑制; ( aceBA基因簇表达的 增强、 和 /或 ace ^基因簇所编码的蛋白质活性的增强; (7 fcMC基因表达的增强、 和 / 或 dc C基因簇所编码的蛋白质活性的增强; 和 (8 ^&4基因表达的抑制、 和 /或 mgSA 基因所编码的蛋白质活性的抑制。
在一个实施方案中,本发明的大肠杆菌还含有如下的修饰:(9) 基因表达的增强、 和 /或 pck基因所编码的蛋白质的活性增强。 在另一个实施方案中, 本发明的大肠杆菌 中的 基因被敲除。
pta基因 (GenBank No: ACA77021.1)编码磷酸乙酰转移酶 (EC No: 2.3.1.8), 而 cickA 基因 (GenBank No: ACA77022.1)编码乙酸激酶 (EC No: 2.7.2.1)。 aceBA基因簇包括 aceB 基因(GenBank No: ACA79615.1)编码苹果酸合成酶 (EC No: 2.3.3.9)禾 P aceA 基因 (GenBank No: ACA79614.1)编码异柠檬酸裂解酶 (EC No: 4.1.3.1)。 基因 (GenBank
No: ACA78647.1) 编码 C4二羧酸转运蛋白 DcuC。 g¾4基因 (GenBank No: ACA78263.1) 编码甲基乙二醛合成酶 (EC No: 4.2.3.3)。
在一个实施方案中,本发明的大肠杆菌还含有如下修饰:(IO ^ :基因表达的抑制、 和 /或 adhE基因所编码的蛋白质活性的抑制; 和 (l l)tofc£>£基因簇表达的抑制、 和 /或 tdcDE基因簇所编码的蛋白质活性的抑制。
基因簇包括 tifcD基因 (GenBank No:ACA76259.1)和 tifc£基因 (GenBank No: ACA76260.1 ), 其中 tifcD基因编码丙酸激酶 (EC No: 2.7.2.15 ), 而 ^<?£基因编码 2- 酮基丁酸甲酸裂解酶 /丙酸甲酸裂解酶 (EC No: 2.3.1.54)。 adhE基因 (GenBank No: ACA78022.1 ) 编码乙醇 /乙醛脱氢酶 (EC No: 1.1.1.1/EC No: 1.2.1.10)。
在一个实施方案中, 本发明的大肠杆菌还含有如下的一或多种修饰: (12)aCeJEF基 因簇表达的增强、和 /或 基因簇所编码的蛋白质活性的增强;(13 fc ^基因表达的 增强、和 /或 dcuB基因所编码的蛋白质活性的增强; (\4)mdh基因表达的增强、和 /或 mdh 基因所编码的蛋白质活性的增强;(15yM ^基因表达的增强、 和 /或/ 基因所编码的 蛋白质活性的增强;(16yM 基因表达的增强、 和 /或/ 基因所编码的蛋白质活性的 增强; 和 (17)^¾ 0)基因簇表达的增强、和 /或 frdABCD基因簇所编码的蛋白质活性的 增强。
基因簇编码丙酮酸复合体 El/E2(EC No: 1.2.4.1),包括 基因 (GenBank No: ACA79159.1)编码丙酮酸脱氢酶复合体 El和 aceF基因 (GenBank No: ACA79158.1)编码 丙酮酸脱氢酶复合体 E2。 dcuB基因 (GenBank No: ACA79506.1) 编码厌氧 C4二羧酸转 运蛋白 0^8。^^基因(0608&01^ ^^0: 。 76147.1)编码苹果酸脱氢酶(£。^^0: 1.1.1.37)。 fumA基因 (GenBank No: ACA77662.1) 编码好氧富马酸酶 I(EC No: 4.2.1.2)。 fumB基因 (GenBank No: ACA79507.1)编码厌氧富马酸酶 I (EC No: 4.2 Λ .2) frdABCD基因簇编码 富马酸还原酶 (EC No: 1.3.5.4),包括 6¾基因 (GenBank No: ACA79460.1)编码富马酸还 原酶黄素蛋白亚基、 frdB基因 (GenBank No: ACA79461.1)编码富马酸还原酶铁硫蛋白亚 基、 frdC基因 (GenBank No: ACA79462.1)编码富马酸还原酶 C 亚基、 禾 P frdD 基因 (GenBank No: ACA79463.1)编码富马酸还原酶 D亚基。 在一个实施方案中, 本发明的大肠杆菌是以保藏号 CGMCC 7260 (2013年 2月 25 日, 分类命名: 大肠埃希氏菌 E. coli)保藏于 CGMCC (北京市朝阳区北辰西路 1号院 3 号, 中科院微生物所)的菌株。
在一个实施方案中, 本发明的大肠杆菌是以保藏号 CGMCC 7259 (2013年 2月 25 日, 分类命名: 大肠埃希氏菌 E. coli)保藏于 CGMCC (北京市朝阳区北辰西路 1号院 3 号, 中科院微生物所)的菌株。
在一个实施方案中,本发明的大肠杆菌是以保藏号 CGMCC 7550 (2013年 5月 3日, 分类命名:大肠埃希氏菌 E. coli)保藏于 CGMCC (北京市朝阳区北辰西路 1号院 3号, 中科院微生物所)的菌株。
在第二方面, 本发明提供了一种生产丁二酸的方法,其中包括培养本发明的大肠杆 菌的步骤。
在一个实施方案中, 本发明生产丁二酸的方法包括培养本发明的大肠杆菌, 以及任 选的收集或者纯化丁二酸。
在一个实施方案中, 本发明所述的"培养"包括种子培养和发酵培养。
如本文所用, 术语"种子培养"是指将用于发酵的菌种在固体培养基上活化后, 再经 过摇瓶及种子罐逐级扩大培养而获得一定数量和质量的纯种的过程。
如本文所用, 术语"发酵培养"是指利用微生物菌种, 在适宜的条件下, 将培养基组 分经过特定的代谢途径转化为某些特定产物的过程。
在一个实施方案中, 本发明的方法中包括将本发明的大肠杆菌厌氧发酵。
如本文所用, 术语"厌氧发酵"是指利用厌氧发酵菌株, 在隔绝空气的条件下, 经特 定代谢途径将培养基组分转化为某些特定产物的过程。
在一个实施方案中, 本发明的方法中的培养过程不进行任何通气步骤。
在一个实施方案中, 本发明中对大肠杆菌进行培养的方法包括以下步骤:
(1)将本发明的重组大肠杆菌接种于种子培养基, 在适宜大肠杆菌生长的条件下培 养一段时间得到种子液;
(2)将种子液接种于发酵培养基, 在厌氧条件下培养。
本发明的方法中可以使用本领域中常规用于培养大肠杆菌的各种培养条件,例如培 养基、 培养温度、 培养时间和是否摇动以及摇动速度等。本领域技术人员根据需要可以 选择适当的培养条件。本发明的方法中所使用的培养条件以及发酵条件是本领域技术人 员熟知的 (诸葛健等, 1994, 工业微生物实验技术手册, 中国轻工业出版社;)。
在一个实施方案中, 本发明的培养条件包括但不限于: 温度为 30-45 °C, 例如 30-31 °C 31-32°C 32-33 °C 33-34°C 34-35 °C 35-36 °C 36-37 °C 37-38 °C 38-39 °C、 39-40°C、 40-41 °C、 41-42 °C 42-43 °C、 43-44°C、 或 44-45 °C。
在一个实施方案中, 本发明的培养条件包括但不限于: 种子培养的时间为 6-16小 时, 例如 6-7小时、 7-8小时、 8-9小时、 9-10小时、 10-11小时、 11-12小时、 12-13小 时、 13-14小时、 14-15小时、 或 15-16小时。 在一个实施方案中, 本发明的培养条件包括但不限于: 发酵培养的时间为 2-5天, 例如 2天、 3天、 4天、 或 5天。
在一个实施方案中, 本发明的培养条件包括但不限于: 将本发明的重组大肠杆菌按 照 0.1-10 % (VA 的接种量接种于种子培养基, 例如 0.1%、 0.5%、 1%、 2.5%、 5%、 或 10
在一实施方案中, 本发明的培养条件包括但不限于: 将种子液按照终浓度 OD55Q=0.05-0.5的接种量接种于发酵培养基, 例如 OD55Q为 0.05-0.1、 0.1-0.2、 0.2-0.3、 0.3-0.4或 0.4-0.5。
在一实施方案中, 可以使用常用于大肠杆菌的培养基。用于本发明的大肠杆菌的培 养基可以包括合适的氮源, 例如有机含氮化合物或无机含氮化合物或其混合物。在一实 施方案中, 所述有机含氮化合物例如选自豆饼粉、 花生饼粉、 牛肉膏、 鱼粉、 酵母膏、 蛋白胨、 玉米浆中的一种或任意几种的混合物, 所述无机含氮化合物选自硝酸盐 (如硝 酸钠、 硝酸钾、 硝酸钙), 铵盐 (如磷酸铵、 硫酸铵、 硝酸铵、 氯化铵)中的一种或任意几 种的混合物。 在一实施方案中, 用于本发明的大肠杆菌的培养基可以包括合适的碳源, 例如选自葡萄糖、 淀粉、 淀粉水解糖、 果糖、 糊精、 乳糖、 半乳糖、 木糖、 蔗糖、 甘油、 麦芽糖、 脂肪酸、 乙酸、 丙酮酸、 和富马酸中的一种或任意几种的混合物。
在一个实施方案中,本发明的方法中所使用的种子培养基和发酵培养基由以下成分 组成 (溶剂为水):
大量元素:葡萄糖、 KH2P04、 K2HP04、 ( H4)2HP04 MgS04 -7H20 和甜菜碱 -KC1; 微量元素: FeCl3'6H20、 CoCl2'6H20、 CuCl2'2H20、 ZnCl2、 Na2Mo04'2H20、
MnCl2-4H202 和 H3B03
在一个实施方案中, 本发明的培养基由以下成分组成 (溶剂为水):
大量元素:葡萄糖 20-120 g/L, KH2P042-5 g/L、K2HP04 4-8 g/L、( H4)2HP04 3-5 g/L、 MgS04 ·7Η20 0.1-0.3g/L、 以及甜菜碱 -KC1 0.1-1 g/L;
微量元素: FeCl3-6H20 1-5 μgfL, CoCl2-6H20 0.05-1 μgfL, CuCl2-2H20 0.05-1 μgfL,
ZnCl20.05-1 g/L、 Na2Mo04-2H20 0.05-1 g/L、 MnCl2-4H2020.1-1 g/L, H3B03 0.01-0.5 在一个实施方案中,本发明的方法中所使用的种子培养基和发酵培养基由以下成分 组成 (溶剂为水):
大量元素: 葡萄糖、 H4H2P04、 ( H4)2HP04 MgS04 -7H20 和甜菜碱 -KC1; 微量元素: FeCl3'6H20、 CoCl2'6H20、 CuCl2'2H20、 ZnCl2、 Na2Mo04'2H20、 MnCl2-4H202 和 H3B03
在一个实施方案中, 本发明的培养基由以下成分组成 (溶剂为水):
大量元素: 葡萄糖 20-120 g/L , H4H2P04 0.5-1.5 g/L、 (NH4)2HP04 2-5 g/L、 MgSO4 -7H2O 0.1-0.3g/L 以及甜菜碱 -KC1 0.1-1 g/L;
微量元素: FeCl3-6H20 1-5 μgfL, CoCl2-6H20 0.05-1 μgfL, CuCl2-2H20 0.05-1 μgfL, ZnCl20.05-1 g/L、 Na2Mo04-2H20 0.05-1 g/L、 MnCl2-4H2020.1-1 g/L, H3B03 0.01-0.5 在一个实施方案中, 本发明中对大肠杆菌进行培养的具体方法如下:
将菌株厌氧发酵, 包括以下步骤:
(1)种子培养: 将 1/3-1/2体积的种子培养基置于三角瓶中, 高温高压灭菌。 冷却后 将本发明的重组大肠杆菌按照 0.1-10 % (V/V)的接种量接种于种子培养基, 在 TTC以及 摇动的条件下培养 6-16小时得到种子液, 用于发酵培养基接种;
(2)发酵培养: 将 1/3-1/2体积的发酵培养基体积置于厌氧发酵罐中, 将种子液按照 终浓度 OD55()=0.05-0.5的接种量接种于发酵培养基, 37°C培养 2-5天, 得到发酵液。
在一个实施方案中, 本发明生产丁二酸的方法中还包括从发酵液中提取和 /或纯化 丁二酸的步骤。
在第三方面, 本发明涉及本发明的大肠杆菌在生产丁二酸中的用途。 实施例
本发明通过下述实施例进一步阐明,但任何实施例或其组合不应当理解为对本发明 的范围或实施方式的限制。 本发明的范围由所附权利要求书限定, 结合本说明书和本领 域一般常识, 本领域普通技术人员可以清楚地明白权利要求书所限定的范围。 在不偏离 本发明的精神和范围的前提下,本领域技术人员可以对本发明的技术方案进行任何修改 或改变, 这种修改和改变也包含在本发明的范围内。
下述实施例中所使用的实验方法如无特殊说明, 均为常规方法。 下述实施例中所用 的材料、 试剂等, 如无特殊说明, 均可从商业途径得到。
本发明具体包括如下实施例: 实施例 1 : 重组大肠杆菌 NZ-037的构建
重组大肠杆菌 NZ-037的构建 (表 1), 分为以下八个步骤:
(1)乳酸脱氢酶基因 IdhA的敲除
(1-1): 首先构建质粒 pXZ-CS, 用于基因敲除、 基因表达调控和外源基因整合。 质粒构建操作步骤共四步:
第一步, 以 pACYC184质粒 DNA (Mok et al., 1991, Nucleic Acids Res 19:2321-2323) 为模板, 使用引物 184-cat-up (SEQ ID No.:7)和 184-cat-down(SEQ ID No. :8), 扩增得到 氯霉素抗性基因, 基因片段大小为 994 bp, 包含有氯霉素基因启动子序列, 称为片段 I。
扩增体系为: NewEngland Biolabs Phusion 5X缓冲液 10 μ1、 dNTP (每种 dNTP各 10 ηιΜ)1μΚ DNA模板 20 ng、 引物(10 μΜ)各 2 μ1、 Phusion High-Fidelity DNA聚合酶 (2.5 υ/μ1) 0.5 μ1、 蒸熘水 33.5 μ1, 总体积为 50 μ1。
扩增条件为 98°C预变性 2分钟 (1个循环;); 98°C变性 10秒、 56°C退火 10秒、 72°C 延伸 30秒 (30个循环); 72°C延伸 5分钟 (1个循环)。 第二步,以芽孢杆菌 BacUhis subtilis sp subtilis 168 的染色体 DNA (该菌购自中国普 通微生物菌种保藏中心, CGMCC No. 1.1390)为模板,使用引物 Bs-sacB-upCSEQ ID No. :9) 和 Bs-sacB-down(SEQ ID No. : 10)进行 PCR扩增果聚糖蔗糖转移酶基因 (^ααβ),基因片段 大小为 1618 bp, 含有 基因启动子序列, 称为片段 II。 扩增体系和扩增条件参见上 文第一步。
第三步, 将第一步得到的片段 I和第二步得到的片段 II分别用限制性内切酶 Sacl (NEB公司) 在 37°C酶切 30分钟; PCR纯化试剂盒清洗 (Gel/PCR Extration Kit, 购自 BioMIGA生物技术有限公司); 各取 20 ng片段 I和片段 II, 加入 1 μΐ 10XT4连接缓冲 液NEB公司)、 1 μΐ T4-DNA连接酶 ( ΕΒ公司), 补充蒸熘水至 10 μ1, 25 °C反应 5分 钟; 以酶连片段为底物, 取 1 μ1, 用引物 184-cat-up和 Bs-sacB-down进行 PCR扩增, 扩增体系和扩增条件参见上文第一步, 得到含有 cat-sacB的连接片段 III。
第四步,将 PCR获得的片段 III取 1 μ1,加入 1 μΐ pEASY-blunt simple载体 (;试剂盒, 北京全式金生物技术有限公司), 25 °C反应 15分钟; 氯化钙转化法: 加入 50μ1 TranslO 感受态细胞 (购自北京全式金生物技术有限公司)中进行,冰浴 30分钟。 42°C热激 30秒, 立即置于冰上 2分钟。 加入 250 μΐ LB培养基, 200 rpm, 37°C孵育 1小时。 取 200 μΐ 菌液涂在含有氨苄霉素 (终浓度为 100 g/ml)和氯霉素 (终浓度为 34 g/ml)的 LB平板上, 过夜培养后, 挑选 5 个阳性单菌落, 进行菌落 PCR 验证, 引物为 M13-F(SEQ ID No. : l l)/M13-R(SEQ ID No. : 12)。 送样测序分析, 结果正确的为阳性克隆, 得到质粒 pXZ-CS (表 3)。
(1-2): 从大肠杆菌 ATCC 8739 (Gunsalus et al., 1941, J Biol Chem 141 :853-858)出发, 采用两步同源重组的方法敲除 WW基因,获得重组大肠杆菌 Suc-T102,包括以下六步: 第一步,以大肠杆菌 ATCC 8739基因组 DNA为模板,使用引物 XZ-ldhA-up (SEQ ID No. : 13和 XZ-ldhA-down (SEQ ID No. : 14)进行 PCR扩增, PCR产物为 1753 bp, 该 PCR 产物包含大肠杆菌 ATCC 8739的乳酸脱氢酶编码基因 IdhA (GenBank No: ACA77176.1) 及其上下游各大约 400个碱基。 扩增体系和扩增条件参考实施例上文 α二!)中的第一步。
将扩增得到的 1753 bp PCR产物克隆到 pEASY-Blunt克隆载体 (购自北京全式金生物 技术有限公司)上。克隆体系及氯化钙转化法参见上文 (1二!)中质粒 pXZ-CS构建方法中的 第四步。取 200μ1菌液涂在含有卡那霉素 (终浓度为 15 g/ml)的 LB平板上,过夜培养后, 挑选 5个阳性单菌落, 进行菌落 PCR验证, 弓 I物为 M13-F/M13-R。 送样测序分析, 结 果正确的为阳性克隆, 将得到的重组质粒命名为 pXZ001。
第二步, 以 pXZOOl质粒 DNA为模板, 使用引物 XZ-ldhA-1 (SEQ ID No. : 15和 XZ-ldhA-2 (SEQ ID No. : 16)进行 PCR扩增, 得到 4758 bp的 PCR产物, 该 PCR产物包 含 pEASY-Blunt载体和乳酸脱氢酶编码基因上下游各约 400个碱基。扩增体系和扩增条 件参考实施例上文 (1二!)中的第一步。
第三步, 将含有氯霉素基因 (cat)和果聚糖蔗糖转移酶基因 Cra )DNA片段 cat-sacB 连接至第二步的 PCR扩增产物, 具体如下: 以 pXZ-CS为模板,使用引物 cat-sacB-up (SEQ ID No. : 17)和 cat-sacB-down (SEQ ID No. : 18)进行 PCR扩增, 得到 2618 bp的 PCR产物, 即为含有氯霉素基因 (cat)和果聚糖 蔗糖转移酶基因 ( c )的 DNA片段。
连接体系为: 10 ng的第二步 4758 bp的 PCR产物、 30ng的 cat-sacB DNA片段, 2μ1 10ΧΤ4连接缓冲液 (NEB公司), Ι μΐ Τ4 连接酶 (NEB公司, 400,000 cohesive end units/ml), 补充蒸熘水至 20μ1。 室温连接 2小时。 取 10 ul用氯化钙转化法转入 TranslO, 过程参见 上文 α二!)中质粒 pXZ-CS构建方法中的第四步。取 200μ1菌液涂在含有氯霉素 (终浓度为 17ug/ml)的 LB平板上, 过夜培养后, 挑选 5个阳性单菌落, 将阳性克隆进行液体培养, 提取阳性克隆质粒 (将 cat-^ DNA片段克隆到 pXZOOl中的质粒)进行测序验证, 测序 结果在上述第二步的 PCR扩增产物上连接了 cat-sacB DNA片段, 证明质粒构建正确, 将得到的重组质粒命名为 pXZ002C。
第四步, 以 pXZ002C质粒 DNA为模板, 使用引物 XZ-ldhA-up/ XZ-ldhA-down扩 增出 3447bp DNA片段 I。 扩增体系和扩增条件参见上文 (1二!)中质粒 pXZ-CS构建步骤 中的第一步。 DNA片段 I包含乳酸脱氢酶编码基因 上游约 400个碱基、 cat-^ DNA 片段、 乳酸脱氢酶编码基因 IdhA下游约 400个碱基。
将 DNA片段 I用于第一次同源重组:首先将 pKD46质粒 (Datsenko and Wanner 2000, Proc Natl Acad Sci USA 97:6640-6645; 质粒购买于美国耶鲁大学 CGSC大肠杆菌保藏中 心)通过氯化钙转化法转化至大肠杆菌 ATCC8739,然后将 DNA片段 I电转至带有 pKD46 的大肠杆菌 ATCC8739。
电转条件为: 首先准备带有 pKD46质粒的大肠杆菌 ATCC8739的电转化感受态细 胞 (Dower et al., 1988, Nucleic Acids Res 16:6127-6145); 将 50μ1感受态细胞置于冰上, 加 入 50ng DNA 片段 I, 冰上放置 2 分钟, 转移至 0.2 cm 的 Bio-Rad 电击杯。 使用 MicroPulser(Bio-Rad公司)电穿孔仪, 电击参数为电压 2.5kv。 电击后迅速将 lml LB培 养基转移至电击杯中, 吹打 5次后转移至试管中, 75rpm, 30°C孵育 2小时。 取 200μ1 菌液涂在含有氯霉素 (终浓度为 17ug/ml)的 LB平板上, 37°C过夜培养后, 挑选 5个单菌 落进行 PCR验证, 使用引物 XZ-ldhA-up/XZ-ldhA-down进行验证, 挑选一个正确的单 菌落, 命名为 Suc-T101。
第五步, 将第二步得到的 4758bp的 PCR产物进行磷酸化处理, 自连得到的质粒用 于第二次同源重组;具体步骤如下:将第二步的 4758bp的 PCR产物首先用 PCR纯化试 剂盒清洗 CGel/PCR Extration Kit, 购自 BioMIGA生物技术有限公司); 取 30ng纯化后的 PCR扩增产物, 加入 2μ1 10XT4连接缓冲液 (NEB公司)、 Ι μΐ Τ4多核苷酸激酶 (ΝΕΒ公 司;), 补充蒸熘水至 20μ1, 37°C反应 30分钟; 加入 Ι μΐ T4连接酶 (NEB公司, 400,000 粘 附末端单位 /ml), 室温反应 2小时得到连接产物。 酶连产物取 lOul用氯化钙转化法转入 TranslO, 过程参见上文 α二!)中质粒 pXZ-CS构建步骤中的第四步。 取 200μ1菌液涂在含 有卡那霉素 (终浓度为 15ug/ml)的 LB平板上, 过夜培养后, 挑选 5个阳性单菌落, 将阳 性克隆进行液体培养, 提取阳性克隆质粒进行测序验证, 测序结果上述第二步的 PCR 扩增产物进行了自连, 证明质粒构建正确, 得到质粒 pXZ003。
第六步, 以 pXZ003质粒 DNA为模板, 用引物 XZ-ldhA-up/XZ-ldhA-down扩增出 829bp DNA片段 II。 DNA片段 II用于第二次同源重组。 将 DNA片段 II电转至菌株 Suc-T101 o
电转条件为:首先准备带有 pKD46质粒的 Suc-TlOl的电转化感受态细胞 (制备方法 参见 Dower et al., 1988); 将 50μ1感受态细胞置于冰上, 加入 50ng DNA片段 II, 冰上放 置 2分钟, 转移至 0.2 cm的 Bio-Rad电击杯。使用 MicroPulser (; Bio-Rad公司;)电穿孔仪, 电击参数为电压 2.5kv。 电击后迅速将 1ml LB培养基转移至电击杯中, 吹打 5次后转移 至试管中, 75转, 30°C孵育 4小时, 去除 pKD46质粒。 将菌液转移至含有 10%蔗糖的 没有氯化钠的 LB液体培养基 (250ml烧瓶中装 50ml培养基), 培养 24小时后在含有 6% 蔗糖的没有氯化钠的 LB 固体培养基上划线培养。 经过 PCR 验证, 所用引物为 XZ-ldhA-up/XZ-ldhA-down, 正确的菌落扩增产物为 763bp的片段, 挑选一个正确的单 菌落, 将其命名为 Suc-T102(表 1)。
敲除 IdhA基因所构建的质粒见表 3, 使用的引物序列见表 2。
(2)丙酮酸甲酸裂解酶编码基因 pflB的敲除
从重组大肠杆菌 SUC-T102 出发, 使用上文 (1)部分中相同的方法敲除 pflB基因 (GenBank No: ACA78322.1), 获得重组大肠杆菌 Suc-T104。 构建的质粒见表 3, 使用的 引物序列见表 2, 其中引物的命名对应于敲除 IdhA基因过程中所使用的引物的名称, 仅将 ldhA替换为 pflB。
(3)磷酸烯醇式丙酮酸-糖磷酸转移酶 I基因 ptsl的敲除
从重组大肠杆菌 SUC-T104 出发, 使用上文 (1)部分中相同的方法敲除 pte/基因 (GenBank No: ACA76928.1), 获得重组大肠杆菌 Suc-T106。 构建的质粒见表 3, 使用的 引物序列见表 2, 其中引物的命名对应于敲除 IdhA基因过程中所使用的引物的名称, 仅将 ldhA替换为 ptsl。
(4)半乳糖 MFS转运蛋白 GalP的激活
从重组大肠杆菌 Suc-T106出发, 将 galP基因 (GenBank No: ACA76443.1)的原始调 控元件替换为调控元件 ^^*(SEQ ID No. l08), 获得重组大肠杆菌 Suc-T108。在本发明 中, ^ *代表大肠杆菌 启动子突变体, 也即在相对于 ATG起始处的 -64位处 G变 为 A(Zhang et al., 2009b, Appl Environ Microbiol 75:7807-7813
包括以下六步:
第一步, 以大肠杆菌 ATCC 8739基因组 DNA为模板,使用引物 XZ-galP-P-up (SEQ ID No. :27)和 XZ-galP-P-down (SEQ ID No. :28)进行 PCR扩增,得到 841 bp扩增产物,为 大肠杆菌 ATCC 8739的半乳糖转运蛋白编码基因 galP调控元件以及其上下游各约 400 个碱基。将扩增产物克隆到 pEASY-Blunt克隆载体上。提取阳性克隆质粒进行测序验证, 测序结果表明在载体 pEASY-Blunt上插入了敲除半乳糖转运蛋白编码基因 galP调控元 件及其上下游各 400个左右碱基,证明质粒构建正确,将得到的重组质粒命名为 pXZOl l。 第二步, 以 pXZOl l质粒 DNA为模板, 使用引物 XZ-galP-P-1 (SEQ ID No. :29和 XZ-galP-P-2(SEQ ID No. :30)进行 PCR扩增, 得到 4614 bp扩增产物, 其扩增产物包含 pEASY-Blunt载体和半乳糖转运蛋白编码基因 galP调控元件及上下游各约 400个碱基。
第三步, 以 pXZ-CS质粒为模板, 使用引物 cat-sacB-up/cat-sacB-down进行 PCR扩 ±曾,得到 2618 bp的 PCR产物,即为含有氯霉素基因 和果聚糖蔗糖转移酶基因 的 DNA片段。
将含有氯霉素基因 (cat)和果聚糖蔗糖转移酶基因 C^CJB)DNA 片段连接至第二步的 4614 bp PCR扩增产物。 转化 Transl-Tl感受态细胞。 取 200μ1菌液涂在含有氯霉素 (终 浓度为 17 μ§/ιη1)的 LB平板上, 过夜培养后, 挑选 5个阳性单菌落, 将阳性克隆进行液 体培养, 提取阳性克隆质粒 (将 cat-sacB DNA片段克隆到 ρΧΖΟΙΟ中的质粒)进行测序验 证, 测序结果在上述第二步的 PCR扩增产物上连接了 cat- DNA片段, 证明质粒构 建正确, 将得到的重组质粒命名为 pXZ012C。
第四步, 以 pXZ012C质粒 DNA为模板, 使用引物 XZ-galP-P-up/XZ-galP-P-down 进行 PCR扩增, 得到 3303bp DNA片段 I; 该 DNA片段 I包含半乳糖转运蛋白编码基 因 galP调控元件上游约 400个碱基、 cat-sacB DNA片段、半乳糖转运蛋白编码基因 galP 调控元件下约 400个碱基。
将 DNA片段 I用于第一次同源重组。首先将 pKD46质粒通过氯化钙转化法转化至 菌株 Suc-T106, 然后将 DNA片段 I电转至带有 pKD46的菌株 Suc-T106。
电转条件参见上文 (1二2}中 基因敲除的第四步。取 200 μΐ菌液涂在含有氯霉素 (终 浓度为 17ug/ml)的 LB平板上, 37°C过夜培养后, 挑选 5个单菌落进行 PCR验证, 使用 引物为 XZ-galP-P-up/XZ-galP-P-down, 得到验证正确的单菌落, 将其命名为 Suc-T107。
第五步,以大肠杆菌 ATCC 8739基因组 DNA为模板,使用引物 P-pck*-up-SpeI (SEQ ID No. :31)和 P-pck*-down-KpnI (SEQ ID No. :32)扩增大肠杆菌 ATCC 8739的磷酸烯醇式 丙酮酸羧化激酶 PCK的调控元件 pck, 引物序列见表 2。 PCR产物进行 购自 EB 公司)和 Μ (购自 ΕΒ公司)酶切。 将其克隆到经过相同酶酶切的质粒 pTrc99A(Amann et al., 1998, Gene 69:301-15)表达载体上, 命名为质粒 pXZ602。 以质粒 pXZ602为模板, 使用引物 pck*-F (SEQ ID No. :33)和 pck*-R (SEQ ID No. :34)进行扩增, 引物序列为见表 2。扩增产物经过 T4多核苷酸激酶 (购自 EB公司)磷酸化, 自连得到阳性质粒, 测序验 证无误后, 命名为 pXZ603。
以 pXZ603为模板, 使用引物 P-pck*-up-SpeI和 P-pck*-down-KpnI进行 PCR扩增, 得到 378 bp磷酸烯醇式丙酮酸羧化激酶 PCK的突变调控元件 Ppck , 与第二步得到的 4614 bp扩增产物连接, 得到质粒 pXZ013。
用 XZ-galP-P-up/XZ-galP-P-down引物对以质粒 pXZ013为模板扩增出 DNA片段 II。 第六步, DNA片段 II用于第二次同源重组。 将 DNA片段 II电转至 Suc-T107。 电 转条件参见上文 (1-2)中 IdhA 基 因敲除步骤 中 的第六步 。 用 引 物 XZ-galP-P-up/XZ-galP-P-down进行 PCR以及测序验证, 得到 1051 bp为正确的单菌落, 将其命名为 Suc-T108(表 1)。
将半乳糖转运蛋白编码基因 galP调控元件置换成 ^ *所构建的质粒见表 3,使用 的引物序列见表 2。
(5)磷酸烯醇式丙酮酸羧化激酶 PCK的激活
从重组大肠杆菌 Suc-T108出发,将 基因 (GenBank No: ACA75988.1)的原始调控 元件替换为调控元件 cA:*, 获得重组大肠杆菌 Suc-Tl lO (表 1)。
具体如下:
第一步同源重组: 以 pXZ-CS为模板, 使用引物 pck-cat-sacB-up (SEQ ID No. :35;>和 pck-cat-sacB-down (SEQ ID No. :36)扩增 DNA片段 I, 用于第一次同源重组。引物序列见 表 2; 得到 2717bp DNA片段 I,将所得 DNA扩增片段 I电转至带有 pKD46质粒的重组 菌 Suc-T108, 筛选氨苄青霉素与氯霉素抗性的菌落, 得到中间重组菌;
第二步同源重组: 以 pXZ603 质粒为模板, 使用引物 P-pck*-Up-SpeI/ P-pck*-down-KpnI扩增 (;引物序列见表 2), 得到 378bp人工调控元件 Ppck* ; 将 378bp 人工调控元件 ^ *电转入整合了片段 I的中间重组菌, 得到重组菌 1。 重组菌 1 PCR 验证的引物 pck-YZ-up (SEQ ID No. :37)和 pck-YZ-down (SEQ ID No. :38), 得到 676 bp 且测序正确的单菌落, 将其命名为菌株 Suc-T110。
(6)磷酸乙酰转移酶基因 pto和乙酸激酶基因 cickA的敲除
从重组大肠杆菌 Suc-Tl lO出发, 使用上文 (1)部分中相同的方法敲除磷酸乙酰转移 酶编码基因 pto(GenBank No. ACA77021.1)和乙酸激酶编码基因 ac 4(GenBank No. ACA77022.1), 获得重组大肠杆菌 NZ-035(表 1)。 构建的质粒见表 3, 使用的引物序列 见表 2, 其中引物的命名对应于敲除 基因过程中所使用的引物的名称, 仅分别将 ldhA替换为 ackA或者 pta。
(7)苹果酸合成酶 AceA和异柠檬酸裂解酶 AceB的激活
以重组大肠杆菌 NZ-035出发, 使用和实施案例上文 (4)部分中相同的方法将 aCe^4 基因簇 (ace GenBank No: ACA79615.1, aceA GenBank No: ACA79614.1)的原始启动子 替换为 启动子, 获得重组大肠杆菌 NZ-036(表 1)。 构建的质粒见表 3, 使用的引 物序列见表 2, 其中引物的命名对应于激活 ^ff基因过程中所使用的引物的名称,仅将 galP替换为 aceB。
(8)二羧酸 Dcu转运蛋白 DcuC的激活
以重组大肠杆菌 NZ036 出发, 使用和上文 (4)部分中相同的方法将 d C 基因
(GenBank No. ACA78647.1)的原始调控元件替换为调控元件 Ppck 获得重组大肠杆菌 NZ-037(表 1)。 构建的质粒见表 3, 使用的引物序列见表 2, 其中引物的命名对应于激活 galP基因过程中所使用的引物的名称, 仅将 galP替换为 dcuC。 表 1 : 生产丁二酸的重组大肠杆菌
菌株名 相关特征 ATCC 8739 野生型
Suc-T102 ATCC 8739, MdhA
Suc-T104 ATCC 8739, MdhA, ApflB
Suc-T106 ATCC 8739, MdhA, ApflB, Aptsl
Suc-T108 ATCC 8739, MdhA, ApflB, Aptsl Ppck*-galP
Suc-Tl lO ATCC 8739, MdhA, ApflB, Aptsl, Ppck*-galP, Ppck*-pck
Suc-T112 ATCC 8739, MdhA, ApflB, Aptsl, Ppck*-pck
NZ-035 ATCC 8739, Aptsl, MdhA, ApflB, Ppck*-pck, Ppck*-galP, \ackA-pta
NZ-036 ATCC 8739, Aptsl, MdhA, ApflB, Ppck*-pck, Ppck*-galP, \ackA-pta, Ppck*-aceBA
NZ-037 ATCC 8739, Aptsl, MdhA, ApflB, Ppck*-pck, Ppck*-galP, AackA-pta, Ppck*-aceBA,
Ppck*-dcuC
HX021 NZ-037经过 1080代进化后获得的菌株
Figure imgf000023_0001
HX024 HX023经过 360代进化后获得的菌株, 以保藏号 CGMCC 7259保藏于 CGMCC
HX026 HX024, A dhE
HX027 HX024, AadhE, AtdcDE
HX028 HX027经过 650代进化后获得的菌株, 以保藏号 CGMCC 7550保藏于 CGMCC
HX041 HX024, Apck, 以保藏号 CGMCC 7260保藏于 CGMCC
HX042 HX024, AmaeA
HX043 HX024, AmaeB
HX044 HX024, Appc
ZT-251 Suc-T 110, Ml-37-tktA
ZT-252 Suc-TnO, Ml-37-sthA
ZT-253 Suc-TU O, Ml-37-tktA, Ml-37-sthA
ZT-273 ΖΎ-253, Ml -93-aceEF, ackA::Ml-93-lpdA *
NZ-511 ATCC 8739, MdhA, ApflB, Aptsl, Ppck*-galP, Ppck*-pck, AadhE
NZ-512 ATCC 8739, MdhA, Aptsl, Ppck*-galP, Ppck*-pck, AadhE
NZ-513 ATCC8739, MdhA, Aptsl, Ppck*-galP, Ppck*-pck, AadhE, Ml-37 -tktA
NZ-517 ATCC8739, MdhA, Aptsl, Ppck*-galP, Ppck*-pck, AadhE, Ml-37 -sthA
NZ-514 ATCC8739, MdhA, Aptsl, Ppck*-galP, Ppck*-pck, AadhE, Μ1-37-ίΑ¾ , Ml-37 -sthA
ZT-311 Suc-T 110, RBSL1 -zwf
ZT-312 Suc-T 110, RBSL2-zw
ZT-313 Suc-T110, RBSL3-zw/
ZT-314 Suc-T 110, RBSL4-zw/
ZT-321 Suc-T110, RBSLl-pg/
ZT-322 Suc-T110, RBSL2-pg/
ZT-323 Suc-T110, RBSL3-pg/
ZT-324 Suc-T 110, RBSL4-pg/
ZT-331 Suc-T 110, RBSL1 -gnd
ZT-332 Suc-T110, RBSL2-g«i
ZT-333 Suc-T110, RBSL3-g«t/
ZT-334 Suc-T110, RBSL4-g«t/
ZT-361 Suc-Tl lO, RBSL1-? :L
ZT-362 Suc-Tl lO, RBSL2-? :L
ZT-363 Suc-Tl lO, RBSL3-? :L
ZT-251 Suc-T UO, Ml-37-?^ ZT-371 Suc-T110, RBSLl-to/S
ZT-372 Suc-T110, RBSL2-to/S
ZT-373 Suc-T110, RBSL3-?a¾
ZT-374 Suc-T110, RBSL4-to/S 表 2 : 本发明中使用的引物
名称 序列
pXZ-CS构建
184-cat-up GCTAGGTACCTGTGACGGAAGATCACTTCG(SEQ ID No. :7)
184-cat-down GCTAGAGCTCGCGGCTATTTAACGACCCT (Sad) (SEQ ID No. :8)
Bs-sacB-up GCTAGAGCTCAAGTAAATCGCGCGGGTTT (Sad) (SEQ ID No. :9)
Bs-sacB-down GCTAGGATCCTTATTTGTTAACTGTTAATTGTC (SEQ ID No. : 10)
M13-F GTAAAACGACGGCCAGT (SEQ ID No. : 11)
M13-R CAGGAAACAGCTATGAC (SEQ ID No. : 12)
IdhA基因敲除
XZ-ldhA-up GATAACGGAGATCGGGAATG (SEQ ID No. : 13)
XZ-ldhA-down CTTTGGCTGTCAGTTCACCA (SEQ ID No. : 14)
XZ-ldhA-1 TCTGGAAAAAGGCGAAACCT (SEQ ID No. : 15)
XZ-ldhA-2 TTTGTGCTATAAACGGCGAGT (SEQ ID No. : 16)
cat-sacB-up TGTGACGGAAGATCACTTCGCA (SEQ ID No. : 17)
cat-sacB-down TTATTTGTTAACTGTTAATTGTCCT (SEQ ID No. : 18)
pflB基因敲除
XZ-pflB-up TGTCCGAGCTTAATGAAAAGTT (SEQ ID No.: 19)
XZ-pflB-down CGAGTAATAACGTCCTGCTGCT (SEQ ID No. :20)
XZ-pflB-1 AAACGGGTAACACCCCAGAC (SEQ ID No. :21)
XZ-pflB-2 CGGAGTGTAAACGTCGAACA (SEQ ID No. :22)
te/基因敲除
XZ-ptsI-up CGCATTATGTTCCCGATGAT (SEQ ID No. :23)
XZ-ptsI-down GCCTTTCAGTTCAACGGTGT (SEQ ID No. :24)
XZ-ptsI-1 CGGCCCAATTTACTGCTTAG (SEQ ID No. :25)
XZ-ptsI-2 ATCCCCAGCAACAGAAGTGT (SEQ ID No. :26)
galP基因的原始调控元件替换为调控元件 Ppck*
XZ-galP-P-up ATCTGCTGCACCCGATCTAC (SEQ ID No. :27)
XZ-galP-P-down GAACCGGCAACAAACAAAAT(SEQ ID No. :28)
XZ-galP-P-1 ATGCCTGACGCTAAAAAACAGGG (SEQ ID No. :29)
XZ-galP-P-2 GATTAAACGCTGTTATCTGCAA (SEQ ID No. :30)
P-pck*-up-SpeI GCATACTAGTGTTGGTTATCCAGAATCAAA (SEQ ID No. :31)
P-pck *-down-KpnI GCATGGTACCAGCCAATATGTATTGCCTGAATAG (SEQ ID No. :32) pck*-F ACGGTTAACACCCCCAAAAAG (SEQ ID No.:33)
pck*-R GACAAGGCTCATAGATTTACGTATC (SEQ ID No. :34)
Pck的原始调控元件替换为调控元件 Ppck*
GTGTGACGGAAGATCACTTCGCA (SEQ ID No. :35)
pck-cat-sacB-down
AT TTATTTGTTAACTGTTAATTGTCCT(SEQ ID No. :36) pck-YZ-up ACGCCATAAACAATCCAA (SEQ ID No. :37) pck-YZ-down CGCATTTCACTGCTCCTT (SEQ ID No. :38) ackA-pta基因敲除和 整合调控
XZ-ackA-up CGGGACAACGTTCAAAACAT (SEQ ID No. :39)
XZ-pta-down ATTGCCCATCTTCTTGTTGG (SEQ ID No. :40)
XZ-ackA-2 AACTACCGCAGTTCAGAACCA (SEQ ID No. :41)
XZ-pta-2 TCTGAACACCGGTAACACCA (SEQ ID No.:42) aceBA基因的原始调控元件替换为调控元件 Ppck*
XZ-aceB-P-up ATTCTGGCAGAGACGGAAGA (SEQ ID No. :43)
XZ-aceB-P-down TCGAAATCGGCCATAAAGAC (SEQ ID No. :44) XZ-aceB-P-2B TTAATCCAGC GTTGGATTCA (SEQ ID No. :45)
XZ-aceB-P-3 ATGACTGAACAGGCAACAAC (SEQ ID No. :46) dcuC基因的原始调控元件替换为调控元件 Ppck*
XZ-dcuC-P-up TTTTCTGCGATGGGAATAGT (SEQ ID No. :47)
XZ-dcuC-P-down AAGCCTGGCTGGACGGTAAC (SEQ ID No. :48)
XZ-dcuC-P-1 ATGCTGACATTCATTGAGCTCCTTA (SEQ ID No. :49)
XZ-dcuC-P-2 AATTTTTCCTGTCTCCAGGCCCCAA (SEQ ID No. :50) mgsA基因敲除
XZ-mgsA-up CAGCTCATCAACCAGGTCAA (SEQ ID No. :51)
XZ-mgsA- down AAAAGCCGTCACGTTATTGG (SEQ ID No. :52)
XZ-mgsA-1 AGCGTTATCTCGCGGACCGT (SEQ ID No. :53)
XZ-mgsA-2 AAGTGCGAGTCGTCAGTTCC (SEQ ID No. :54) adhE mm^
XZ-adhE-up CAGCTCATCAACCAGGTCAA (SEQ ID No. :55)
XZ- adhE- down AAAAGCCGTCACGTTATTGG (SEQ ID No. :56)
XZ- adhE-1 AGCGTTATCTCGCGGACCGT (SEQ ID No. :57)
XZ- adhE-2 AAGTGCGAGTCGTCAGTTCC (SEQ ID No. :58) iifcD 基因簇敲除
XZ-tdcDE-up CAGCTCATCAACCAGGTCAA (SEQ ID No. :59)
XZ-tdcDE- down AAAAGCCGTCACGTTATTGG (SEQ ID No. :60)
XZ- tdcDE-1 AGCGTTATCTCGCGGACCGT (SEQ ID No. :61)
XZ- tdcDE-2 AAGTGCGAGTCGTCAGTTCC (SEQ ID No. :62) d:基因的敲除
XZ-pck-up TCCGGGCAGTAGTATTTTGC (SEQ ID No. :63)
XZ-pck-down ATGGCTGGATCAAAGTCAGC (SEQ ID No. :64)
XZ-pck-1 CCTGGCGAAACTGTTTATCG (SEQ ID No. :65)
XZ-pck-2 TTGTTAACGCGCATTTCACT (SEQ ID No. :66)
«ία 基因的敲除
XZ-maeA-up AGCGTTTCGTTACCACTG (SEQ ID No. :67)
XZ-maeA-down TACGGCGATGTTGTCCTT (SEQ ID No. :68)
XZ-maeA-1 ATTGACGATAATTTCTGGCA (SEQ ID No. :69)
XZ-maeA-2 ACGCTGTTTTTTTGTTTTTG (SEQ ID No. :70)
基因的敲除
XZ-maeB-up TTAGCGTCATAATGCCAATT (SEQ ID No. :71) XZ-maeB-down CGACCACCTGTTGTTCCTG (SEQ ID No. :72) XZ-maeB-1 ATCGGTGCGTCGTATCGT (SEQ ID No. :73)
XZ-maeB-2 AACCTGGATTTTCCCTGG (SEQ ID No. :74) ppc基因的敲除
XZ-ppc-up GCGCATCTTATCCGACCTAC (SEQ ID No. :75)
XZ-ppc-down GCCTGGACTTCTGTGGAATG (SEQ ID No. :76)
XZ-ppc-1 GTCACTATTG CCGGGATTGC (SEQ ID No. :77)
XZ-ppc-2 CAATGCGGAA TATTGTTCGT (SEQ ID No. :78)
rf^基因的调控
tktA-cat-sacB-up
TGTGACGGAAGATCACTTCGCA (SEQ ID No. :79)
TCCATGCTCAGCGCACGAATAGCATTGGCAAGC
tktA-cat-sacB-down
ATTTATTTGTTAACTGTTAATTGTCCT (SEQ ID No. :80)
AAATGCGCCGTTTGCAGGTGAATCGACGCT(
tktA-P-up
TTATCTCTGGCGGTGTTGAC (SEQ ID No.:81)
TCCATGCTCAGCGCACGAATAGCATTGC
tktA-RBS-down
ATAGCTGTTTCCTGGTT (SEQ ID No. :82)
tktA-YZ-up TCAGGAAATCACGCCACA (SEQ ID No. :83)
tktA-YZ-down ATCCGTCATCATATCCATCA (SEQ ID No. :84)
^基因的调控
sthA-cat-sacB-up
GTGTGACGGAAGATCACTTCGCA (SEQ ID No. :85) CCGGGGCCGGAACCTATTACTATGGCATCGTAATCGTAGG
sthA-cat-sacB-down
ATTTATTTGTTAACTGTTAATTGTCCT (SEQ ID No. :86)
TTACCCGCGATAAAATGTTACCATTCTGTTGCTTTTATGTAT
sthA-P-up
GTTATCTCTGGCGGTGTTGAC(SEQ ID No. :87)
CCGGGGCCGGAACCTATTACTATGGCATCGTAATCGTAGG
sthA-RBS-down
AATGTGGCATAGCTGTTTCCTGGTT (SEQ ID No.:88)
sthA-YZ-up TTTTCAGCGGTTAGTGTTT (SEQ ID No. :89)
sthA-YZ-down AACTCAGGCTGGCGAAGC (SEQ ID No. :90)
ace£ 基因调控
aceEF-cat-sacB-up
GCTTTATGCATGTGTGACGGAAGATCACTTCGCA (SEQ ID No.:91) aceEF-cat-sacB-down
GTTCTGACATTTATTTGTTAACTGTTAATTGTCCT (SEQ ID No. :92) aceEF-P-up
GCTTTATGCATGTTATCTCTGGCGGTGTTGAC (SEQ ID No.:93) aceEF-RBS-down
GTTCTGACATAGCTGTTTCCTG (SEQ ID No. :94)
API -up TTATCTCTGGCGGTGTTGAC (SEQ ID No. :95)
aceEF-1 ACGGAAGAAGTGGTTAAAGCACAC (SEQ ID No. :96)
基因的整合
Kan-up-PacI GCATTTAATTAAGTGTAGGCTGGAGCTGCT (SEQ ID No. :97)
Kan-down-EcoRI GCATGAATTCCAGAATCGAAATCTC (SEQ ID No. :98)
Kan-F CCGTGATATTGCTGAAGAG (SEQ ID No. :99)
pTrc99A-R CTGCGTTCTGATTTAATCTG (SEQ ID No.: 100)
lpdA-R-170 AGCAGTGCTTTAGAAGGGATAC (SEQ ID No. :101)
ackA-FRT-up
TCAATTATAGGTACTTCCGTGTAGGCTGGAGCTGCTTC (SEQ ID No. :102)
pta-rrnB-down GTTAAG
AACCGGAAATAGTGAAAAAGGCCATCCGTCAGGAT (SEQ ID No.: 103)
/^^*基因的调控
ackA-cat-sacB-up
TCAATTATAGGTACTTCCTGTGACGGAAGATCACTTCGCA (SEQ ID No. :104)
lpdA-cat-sacB-down
CCT (SEQ ID No. :105)
ackA-P-up TCATCATGCGCTACG
TCAATTATAGGTACTTCCTTATCTCTGGCGGTGTTGAC (SEQ ID No.: 106) lpdA-RBS-down
CCTGAGTTTTGATTTCAGTACTCATCATAGCTGTTTCCTGGTT (SEQ ID No. :107)
zw/基因的调控
zwf-cat-sacB-up ATCAGT
ATAAGTGTGACGGAAGATCACTTCGCA (SEQ ID No. :112)
zwf-cat-sacB-down CCAGGGTATACTTGTAATTTTCTTACGGTGCACTGTACTGCTTT
GCTTGTTATTTGTTAACTGTTAATTGTCCT (SEQ ID No. :113)
zwf-P-up ATCAGTTTTGCCGCACTTTGCGCGCTTTTCCCGTAATCGCACG(
ATAAGTTATCTCTGGCGGTGTTGAC (SEQ ID No. :114)
zwf-RBSL-down GCGCCGAAAATGACCAGGTCACAGGCCTGGGCTGTTTGCGTT,
CATN N N YCTCCTGGTTTAAACGTACATG (SEQ ID No. :115) zwf-YZ-up CATGGCAAAGTAGTTAATGG (SEQ ID No. :116)
zwf-YZ-down GACTCACGGGTAATGACGAT (SEQ ID No.: 117)
基因的调控
pgl-cat-sacB-up TTCAGCATTCACCGCCAAAAGCGACTAATTTT
TGGCGTTGGCCGATTCATTA (SEQ ID No. : 118)
pgl-cat-sacB-down ACGTGAATTTGCTGGCTCTCAGGGCTGGCGA
ATGGAGAAAATACCGCATCAGG (SEQ ID No. :119) pgl-P-up TTCAGCATTCACCGCCAAAAGCGACTAATTTTAGCTGTTACAl
TGTTATCTCTGGCGGTGTTGAC (SEQ ID No. :120) pgl-RBSL-down ACGTGAATTTGCTGGCTCTCAGGGCTGGCGATATAAACTGTT'
ATN N NYCTCCTGGTTTAAACGTACATG (SEQ ID No.:121) pgl-YZ-up GTGATGGCGACCTGTGACGA (SEQ ID No.: 122)
pgl-YZ-down GGGCGAACACCAACATAGAG (SEQ ID No. :123)
基因的调控
gnd-cat-sacB-up CTTACTAATTTAATGAATAGAACTCAATTG
GCGTTGGCCGATTCATTA (SEQ ID No. :124)
gnd-cat-sacB-down TTGCGCCCCATCACTGCCATACCGACTACG
TGGAGAAAATACCGCATCAGG (SEQ ID No. :125) gnd-P-up CTTACTAATTTAATGAATAGAACTCAATTGTAT
TTATCTCTGGCGGTGTTGAC (SEQ ID No. :126)
gnd-RBSL-down TTGCGTCCCATCACTGCCATACCGACTACGCC
TN N NYCTCCTGGTTTAAACGTACATG (SEQ ID No. :127) gnd-YZ-up GGTCCTTGCTATAAGAGTGA (SEQ ID No. :128)
gnd-YZ-down ACGGTTACGACGGATGGTGT (SEQ ID No. :129)
rf^基因的调控
tktA-cat-sacB-up AAATGCGCCGTTTGCAGGTGAATCGACGCTCAGTCTCAGTA
TGTGACGGAAGATCACTTCGCA (SEQ ID No. :130) tktA-cat-sacB-down ATTTATTTGTTAACTGTTAATTGTCCT (SEQ ID No. : 131)
tktA-P-up AAATGCGCCGTTTGCAGGTGAATCGACGCTC
TTATCTCTGGCGGTGTTGAC (SEQ ID No. : 132) tktA-RBSL-down TCCATGCTCAGCGCACGAATAGCATTGGCAA(
ATN N NYCTCCTGGTTTAAACGTACATG (SEQ ID No. : 133) tktA-YZ-up TCAGGAAATCACGCCACA (SEQ ID No. : 134)
tktA-YZ-down ATCCGTCATCATATCCATCA (SEQ ID No. : 135)
toffi基因的调控
talB-cat-sacB-up AGTCTCGCCTGGCGATAACCGTCTTGTCGGCGGTTGCGCTGA(
CGTCGTGTGTGACGGAAGATCACTTCGCA (SEQ ID No. : 136) talB-cat-sacB-down TCATGATAGTATTTCTCTTTAAACAGCTTGTTAGGGGGATGTAA
CTGCTTATTTGTTAACTGTTAATTGTCCT (SEQ ID No. : 137)
talB-P-up AGTCTCGCCTGGCGATAACCGTCTTGTCGGCGGTTGCGCTGAC
GTCGTGTTATCTCTGGCGGTGTTGAC (SEQ ID No. : 138)
talB-RBSL-down TCGGCCACTACGGTGGTGTACTGACGAAGGGAGGTCAATTTGr
CATN N N YCTCCTGGTTTAAACGTACATG (SEQ ID No. : 139) talB-YZ-up CCGAAGAGCAGGTAAATCAT (SEQ ID No. : 140)
talB-YZ-down TACCAGCATCGTTGTAGAGT (SEQ ID No. : 141)
表 3 : 本发明中构建的质粒
质粒 质粒信息
cat-sacB 载体
pXZ-CS 来自于 pACYC184质粒的 cat基因和来自于 Bacillus subtilis的 sacB基因连接 到一起, 克隆到 pEAS Y-blunt simple质粒
IdhA基因敲除
pXZOOl 以 E.coli ATCC 8739 基因组为模板 , PCR 扩增 IdhA 基 因 (XZ-ldhA-up/XZ-ldhA-down) 并克隆到 pEASY-Blunt载体上。
pXZ002C 以 pXZ-CS为模板, PCR扩增 cat-sacB cassette (cat-sacB-up/cat-sacB-down) 并 克隆到以 pXZOOl质粒 DNA为模板, 使用引物 XZ-ldhA-l/XZ-ldhA-2扩增出 的 DNA片段上。
pXZ003 以 pXZOOl质粒 DNA为模板,使用引物 XZ-ldhA-l/XZ-ldhA-2扩增出的 DNA 片段磷酸化并自连。
pflB基因敲除
pXZ014 以 E.coli ATCC 8739 基 因组为模板 , PCR 扩增 ^ β 基 因 (XZ-pflB-up/XZ-pflB-down) 并克隆到 pEASY-Blunt载体上。 pXZ015C 以 pXZ-CS为模板, PCR扩增 cat-sacB cassette (cat-sacB-up/cat-sacB-down) 并 克隆到以 pXZ014质粒 DNA为模板, 使用引物 XZ-pflB-l/XZ-pflB-2扩增出 的 DNA片段上。
pXZ016 以 pXZ014质粒 DNA为模板, 使用引物 XZ-pflB-l/XZ-pflB-2扩增出的 DNA 片段磷酸化处理并自连。
te/基因敲除
pXZ008 E.coli ATCC 8739基因组为模板, PCR扩增 te/基因 (XZ-ptsI-up/XZ-ptsI
-down) 并克隆到 pEASY-Blunt载体上。
pXZ009C 以 pXZ-CS为模板, PCR扩增 cat-sacB cassette (cat-sacB-up/cat-sacB-down) 并 克隆到以 pXZ008质粒 DNA为模板, 使用引物 XZ-ptsI- l/XZ-ptsI-2扩增出的
DNA片段上。
ρΧΖΟΙΟ 以 pXZ008质粒 DNA为模板, 使用引物 XZ-ptsI-l/XZ-ptsI-2扩增出的 DNA 片段磷酸化处理并自连。
galP基因的原始调控元件替换为调控元件 Ppck*
pXZ602 以 E.coli ATCC 8739 的基因组为模板, PCR 扩增 pck基因的调控元件 i^c :(P-pck*-up-SpeI/ P-pck*-down-KpnI)并克隆到载体 pTrc99A上。
pXZ603 以 pXZ602质粒 DNA为模板, 使用引物 pck*-F/pck*-R扩增出的 DNA片段 磷酸化处理并自连。
pXZOl l 以 E. coli ATCC 8739 基因组为模板, PCR 扩增 galP 基因
(XZ-galP-P-up/XZ-galP-P-down) 并克隆到 pEASY-Blunt载体上。
pXZ012C 以 pXZ-CS为模板, PCR扩增 cat-sacB cassette (cat-sacB-up/cat-sacB-down) 并 克隆到以 pXZOl l质粒 DNA为模板,使用引物 XZ-galP-P-l/XZ-galP-P-2扩增 出的 DNA片段上。
pXZOO 将 调控元件(以质粒 pXZ603 为模板, 引物 P-pck *-up-SpeI/
P-pck*-down-KpnI)克 隆到 以 pXZOl l 质粒 DNA 为模板(引 物 XZ-galP-P-l/XZ-galP-P-2)扩增出的 DNA片段上。
ackA-pta基因敲除和 整合调控
pXZ023 以 E. coli ATCC 8739 基因组为模板, PCR 扩增 ackA-pta 基因
(XZ-ackA-up/XZ-pta-down)并克隆到 pEASY-Blunt载体上。 pXZ024C 以 pXZ-CS为模板, PCR扩增 cat-sacB cassette (cat-sacB-up/cat-sacB-down) 并 克隆到以 pXZ023质粒 DNA为模板,使用引物 XZ-pta-2/XZ-ackA-2扩增出的 DNA片段上。
pXZ025 以 pXZ023质粒 DNA为模板, 使用引物 XZ-pta-2/XZ-ackA-2扩增出的 DNA 片段磷酸化处理并自连。
aceBA基因的原始调控元件替换为调控元件 Ppck*
pXZ026 以 E. coli ATCC 8739 基因组为模板, PCR 扩增 aceBA 基因
(XZ-aceB-P-up/XZ-aceB-P-up)并克隆到 pEASY-Blunt载体上。 pXZ027C 以 pXZ-CS为模板, PCR扩增 cat-sacB cassette (cat-sacB-up/cat-sacB-down) 并 克隆到以 pXZ026质粒 DNA为模板, 使用引物 XZ-aceB-P-2B/XZ-aceB-P-3 扩增出的 DNA片段上。
PXZ028 将 Ppck* 启 动 子 ( 以 质 粒 pXZ603 为 模 板 , 引 物
P-pck*-up-SpeI P-pck*-down-KpnI)克隆到以 pXZ026质粒 DNA为模板 (引物 XZ-aceB-P-2B/XZ-aceB-P-3)扩增出的 DNA片段上。
dcuC基因的原始调控元件替换为调控元件 Ppck*
pXZ065 以 E. coli ATCC 8739基因组为模板, PCR扩增 dcuC基因 (XZ-dcuC-P-up I
XZ-dcuC-P-down)并克隆到 pEASY-Blunt载体上。
pXZ066C 以 pXZ-CS为模板, PCR扩增 cat-sacB cassette (cat-sacB-up/cat-sacB-down) 并 克隆到以 pXZ065质粒 DNA为模板, 使用引物 XZ-dcuC-P-1/ XZ-dcuC-P-2 扩增出的 DNA片段上。
pXZ067 将 Ppck*启动子(以质粒 pXZ603 为模板, 引物 P-pck*-up-SpeI/
P-pck*-down-KpnI)克隆到以 pXZ065 质粒 DNA 为模板(XZ-dcuC-P-1/ XZ-dcuC-P-2)扩增出的 DNA片段上。
mgsA基因敲除
pXZ071 以 E. coli ATCC 8739 基因组为模板, PCR 扩增 mgsA 基因
(XZ-mgsA-up/XZ-mgsA -down)并克隆到 pEASY-Blunt载体上。
pXZ072C 以 pXZ-CS为模板, PCR扩增 cat-sacB cassette (cat-sacB-up/cat-sacB-down) 并 克隆到以 pXZ071质粒 DNA为模板, 使用引物 XZ-mgsA-l/XZ-mgsA-2扩增 出的 DNA片段上。
pXZ073 以 pXZ071质粒 DNA为模板,使用弓 |物 XZ-mgsA-l/XZ-mgsA-2扩增出的 DNA 片段磷酸化处理并自连。
" 基因敲除
pXZ020 以 E. coli ATCC 8739 基因组为模板, PCR 扩增 adhE 基因 (XZ-adhE-up/XZ-adhE -down)并克隆到 pEASY-Blunt载体上。 pXZ021C 以 pXZ-CS为模板, PCR扩增 cat-sacB cassette (cat-sacB-up/cat-sacB-down) 并 克隆到以 pXZ020质粒 DNA为模板,使用引物 XZ-adhE-l/XZ-adhE-2扩增出 的 DNA片段上。
pXZ022 以 pXZ020质粒 DNA为模板,使用引物 XZ-adhE-l/XZ-adhE-2扩增出的 DNA 片段磷酸化处理并自连。
iifcD 基因簇敲除
pXZ641 以 E.coii ATCC 8739 基因组为模板, PCR 扩增 tdcDE 基因簇 (XZ-tdcDE-up/XZ-tdcDE -down)并克隆到 pEASY-Blunt载体上。
pXZ642C 以 pXZ-CS为模板, PCR扩增 cat-sacB cassette (cat-sacB-up/cat-sacB-down) 并 克隆到以 pXZ641质粒 DNA为模板,使用引物 XZ-tdcDE-l/XZ-tdcDE-2扩增 出的 DNA片段上。
pXZ643 以 pXZ641质粒 DNA为模板, 使用引物 XZ-tdcDE-l/XZ-tdcDE-2扩增出的
DNA片段磷酸化处理并自连。
基因敲除
pXZ701 以 E.coii ATCC 8739 基 因 组为 模板 , PCR 扩增 基 因 (XZ-pck-up/XZ-pck-down) 并克隆到 pEASY-Blunt载体上。 pXZ702C 以 pXZ-CS为模板, PCR扩增 cat-sacB cassette (cat-sacB-up/cat-sacB-down) 并 克隆到以 pXZ701质粒 DNA为模板,使用引物 XZ-pck-l/ XZ-pck-2扩增出的
DNA片段上。
pXZ703 以 pXZ701质粒 DNA为模板, 使用引物 XZ-pck-l/XZ-pck-2扩增出的 DNA 片段磷酸化并自连。
»7^ 基因敲除
pXZ704 以 E.coli ATCC 8739 基因组为模板, PCR 扩增 maeB 基因 (XZ-maeB-up/XZ-maeB-down) 并克隆到 pEASY-Blunt载体上。
pXZ705C 以 pXZ-CS为模板, PCR扩增 cat-sacB cassette (cat-sacB-up/cat-sacB-down) 并 克隆到以 pXZ704质粒 DNA为模板, 使用引物 XZ-maeB-l/XZ-maeB-2扩增 出的 DNA片段上。
pXZ706 以 pXZ704质粒 DNA为模板, 使用引物 XZ-maeB-1/ XZ-maeB-2扩增出的
DNA片段磷酸化并自连。
ppc基因敲除
pXZ707 以 Ecoii ATCC 8739 基 因组为 模板 , PCR 扩增 c 基 因 (XZ-ppc-up/XZ-ppc-down) 并克隆到 pEASY-Blunt载体上。 pXZ708C 以 pXZ-CS为模板, PCR扩增 cat-sacB cassette (cat-sacB-up/cat-sacB-down) 并 克隆到以 pXZ707质粒 DNA为模板,使用引物 XZ-ppc-l/ XZ-ppc-2扩增出的
DNA片段上。
pXZ709 以 pXZ707质粒 DNA为模板, 使用引物 XZ-ppc-l/XZ-ppc-2扩增出的 DNA 片段磷酸化并自连。
maeA基因敲除
pXZ710 以 E.coli ATCC 8739 基因组为模板, PCR 扩增 maeA 基因 (XZ-maeA-up/XZ-maeA-down) 并克隆到 pEASY-Blunt载体上。
pXZ711C 以 pXZ-CS为模板, PCR扩增 cat-sacB cassette (cat-sacB-up/cat-sacB-down) 并 克隆到以 pXZ710质粒 DNA为模板, 使用引物 XZ-maeA-l/ XZ-maeA-2扩增 出的 DNA片段上。
pXZ712 以 pXZ710质粒 DNA为模板,使用弓 I物 XZ-maeA-l/XZ-maeA-2扩增出的 DNA 片段磷酸化并自连。
整合
pTrc99A-M-Kan 从 pKD4上 PCR扩增 (Kan-up-PacI an-down-EcoRI)得到的 FRT- «片段克
隆到于 pTrc99A-M上。 pXZ174 以 HX-024 基 因 组 为 模 板 , PCR 扩 增 IpdA
(8739-lpdA-up-SacI/8739-lpdA-down-PstI) 并克隆到 pTrc99A-M载体上。
pXZ177 从 pXZ174质粒上通过酶切获得 ti¾*(T82I P275S and A358V)片段, 连接至
Figure imgf000031_0001
实施例 2: 使用重组大肠杆菌 Suc-T110、 NZ-035、 NZ-036和 NZ-037生产丁二酸
种子培养基由以下成分组成 (溶剂为水):
大量元素: 葡萄糖 20 g/L, KH2P043.5 g/L、 K2HP04 6.55 g/L、 (NH4)2HP04 3.5 g/L MgSO4 -7H2O 0.12 g/L 和甜菜碱 -KC1 0.15 g/L。
微量元素: FeCl3-6H20 1.5 g/L、 CoCl2'6H20 0.1 g/L、 CuCl2-2H20 0.1 g/L、 ZnCl2 0.1 g/L、 Na2Mo04-2H20 0.1 g/L、 MnCl2-4H200.2 g/L, H3BO30.05 g/ L。
发酵培养基大部分和种子培养基相同, 区别是葡萄糖浓度为 50 g/L、 另外还加入了 100 mM KHCO3 o
Suc-Tl lO, NZ-035, NZ-036和 NZ-037厌氧发酵, 包括以下步骤:
(1)种子培养: 250 ml三角瓶中种子培养基为 100 ml, 115°C灭菌 15 min。 冷却后将 重组大肠杆菌 Suc-TllO, NZ-035, NZ-036和 NZ-037按照 1% CV/V)的接种量接种于种子 培养基, 在 37°C和 lOO rpm的条件下培养 12小时得到种子液, 用于发酵培养基接种。
(2)发酵培养: 500 ml 厌氧罐中发酵培养基体积为 250 ml, 将种子液按照终浓度 OD55Q=0.1的接种量接种于发酵培养基, 37°C, 150 rpm, 发酵 4天, 得到发酵液。 中和 剂为 2.4 M K2C03和 1.2 M KOH。 发酵液为发酵罐内所有物质。培养过程中没有通任何 气体。
分析方法:使用安捷伦 (Agilent-1200)高效液相色谱仪对第 4天发酵液中的组分进行 测定。 发酵液中的葡萄糖和有机酸浓度测定采用伯乐 (Biorad)公司的 Aminex HPX-87H 有机酸分析柱。
结果见表 4。Suc-T110发酵 96小时后,丁二酸产量达 280 mM,产率达 1.12 mol/mol; NZ-035发酵 96小时后, 丁二酸产量达 286 mM, 产率达 1.16 mol/mol; NZ-036发酵 96 小时后, 丁二酸产量达 298 mM, 产率达 1.19 mol/mol; NZ-037发酵 96小时后, 丁二 酸产量达 357 mM, 产率达 1.28 mol/mol。 表 4: 重组大肠杆菌 Suc-T108, Suc-TllO, NZ035, NZ036和 NZ037发酵生产丁
遗传修饰
细胞量 丁二酸产 丁二酸产率 发酵产物 (mM) 菌株 a
(g L) 率 (g/g) (mol/mol)
丁二酸 乙酸
Suc-Tl lO Ppck*-pck 1.53 0.73±0.02 1.12±0.03 280±10 96±10
NZ-035 Suc-Tl lO, AackA-pta 1.51 0.76±0.02 1.16±0.03 286±7 44±6
NZ-036 NZ-035, Ppck*-aceBA 1.48 0.78±0.02 1.19±0.03 298±6 27±4
NZ-037 NZ-036, Ppck*-dcuC 1.50 0.84±0.02 1.28±0.03 357±7 25±3 a使用 500 ml的发酵罐, 发酵培养基为 250 ml。 发酵培养基中加入了 100 mM KHC03。 使用的中和 剂为 2.4 M K2C03和 1.2 M KOH。 实施例 3 : 使用钠盐发酵重组大肠杆菌 NZ037生产丁二酸
种子培养基由以下成分组成 (溶剂为水):
大量元素: 葡萄糖 20 g/L, H4H2PO40.87g/L ( H4)2HP04 2.63 g/L MgS04 ·7Η20 0.18 g/L、 甜菜碱 -KC1 0.15 g/L。
微量元素: FeCl3-6H20 2.4 μgfL, CoCl2-6H20 0.3 μgfL, CuCl2-2H20 0.15 μgfL, ZnCl2 0.3 μgfL, Na2Mo04-2H20 0.3 μgfL, MnCl2-4H200.5 g/L, H3B03 0.072 g/ L。
发酵培养基大部分和种子培养基相同, 区别是葡萄糖浓度为 100 g/L、 另外还加入 了 35 mM NaHC03。 使用 2.4 M Na2C03禾 P 1.2 M NaOH为中和剂。
种子培养、 发酵培养以及分析方法和实施例 2相同。
结果: 发酵 96小时后, 丁二酸产量达 226 mM, 产率达 1.27 mol/mol。 实施例 4: 重组大肠杆菌 HX021的构建
从 NZ-037出发, 通过进化代谢同步提高细胞生长和丁二酸生产能力。
进化代谢所使用的发酵培养基由以下成分组成 (溶剂为水):
大量元素: 葡萄糖 100-120 g/L , H4H2PO4 0.87g/L ( H4)2HP04 2.63 g/L、 MgSO4 -7H2O 0.18 g/L 甜菜碱 -KC1 0.15 g/L、 35 mM NaHC03
微量元素: FeCl3-6H20 2.4 μgfL, CoCl2-6H20 0.3 μgfL, CuCl2-2H20 0.15 μgfL, ZnCl2 0.3 μgfL, Na2Mo04-2H20 0.3 μgfL, MnCl2-4H200.5 g/L, H3BO3 0.072 g/ L。
进化代谢过程使用 500 ml的发酵罐, 发酵培养基为 250 ml。 使用 2.4 M Na2C03
1.2 M NaOH为中和剂。
第 1-80代, 发酵培养基中葡萄糖浓度为 100 g/L(S卩 10%); 每 48小时, 将发酵液转 接到新的发酵罐中, 使初始 OD550达 0.05 ;
第 81-780代, 发酵培养基中葡萄糖浓度为 100 g/L; 每 24小时, 将发酵液转接到 新的发酵罐中, 使初始 OD550达 0.05 ;
第 781-1080代, 发酵培养基中葡萄糖浓度为 120 g/L(g卩 12%); 每 24小时, 将发酵 液转接到新的发酵罐中, 使初始 OD550达 0.05。
经过 1080代进化, 获得菌株 HX021 (图 2)。 实施例 5: 重组大肠杆菌 HX023的构建
从重组大肠杆菌 HX021出发, 使用和实施例 1中 (1)部分相同的方法敲除 mg^4基 因 (GenBank No: ACA78263.1), 获得重组大肠杆菌 HX023。 构建的质粒见表 3, 使用的 引物序列见表 2, 其中引物的命名对应于敲除 IdhA基因过程中所使用的引物的名称, 仅将 IdhA替换为 mgsA。 实施例 6: 重组大肠杆菌 HX024的构建 从 HX023出发, 通过进化代谢同步提高细胞生长和丁二酸生产能力。
进化代谢所使用的发酵培养基和实施案例 4相同。
第 1-360代, 发酵培养基中葡萄糖浓度为 120 g/L (即 12%); 每 24小时, 将发酵液 转接到新的发酵罐中, 使初始 OD550达 0.05;
经过 360代进化, 获得菌株 HX024(图 3)。 实施例 7: 不同浓度的碳酸氢根离子供给对重组大肠杆菌 HX024发酵的影响
使用不同的碳酸氢根离子供给对重组大肠杆菌 HX024进行发酵。
种子培养基和实施例 3相同。
使用 500 ml的发酵罐, 发酵培养基为 250 ml。 发酵培养基基本上和种子培养基相 同, 区别是葡萄糖浓度为 120 g/L, 另外还加入了 35 mM NaHC03。 使用的中和剂有 5 种不同的配比方式, 6M氢氧化钠和 3M碳酸钠的配比组成分别是 1 :4、 1 :2、 1 :1、 3 :2、 2: 1。
HX024在 500 ml发酵罐中的厌氧发酵, 包括以下步骤:
(1)种子培养: 250 ml三角瓶中种子培养基为 100 ml, 115°C灭菌 15 min。 冷却后将 重组大肠杆菌 HX024按照 1% (V/V)的接种量接种于种子培养基, 在 37°C和 100 rpm的 条件下培养 12小时得到种子液, 用于发酵培养基接种。
(2)发酵培养: 500 ml中发酵培养基体积为 250 ml, 115°C灭菌 25 min。 将种子液按 照终浓度 OD55Q=0.1的接种量接种于发酵培养基, 37°C厌氧培养 4天,搅拌转速 150 rpm, 得到发酵液。 发酵液为发酵罐内所有物质。 培养过程没有通任何气体。
结果: 发酵结果见表 5。 在氢氧化钠和碳酸钠不同配比中, 当 C02在碱液中的摩尔 比例低于 33.3%时, 丁二酸转化率明显下降, 而高于 33.3%时, 丁二酸转化率没有明显 差别。
表 5 : 不同的碳酸氢根离子供给对重组大肠杆菌 HX024发酵的影响
NaOH: C02 (% mol) 碱消耗 (ml) C02 消耗 丁二酸产 丁二酸转化
b
Na2C03 a (mM) 量 (mM) 率 (mol/mol)
1 :4 67% 88± 3 880士 29 813± 28 1.36± 0.04
1 :2 50% 78± 4 659士 32 785± 40 1.30± 0.01
1 : 1 33.3% 72± 2 467士 12 798± 21 1.33± 0.02
3:2 25% 67士 1 357± 5 781士 12 1.15± 0.03
2: 1 20% 63± 2 287± 8 739士 23 1.08± 0.03 a使用 500 ml的发酵罐, 发酵培养基为 250 ml。 发酵培养基中加入了 35 mM NaHC03。 不同比例的 NaOH (6 M)和 Na2C03(3 M)组成的碱液自动控制 pH, 使 pH保持在 7.0。
b C02 (% mol)表示 C02在碱液中的摩尔比例。 实施例 8: 重组大肠杆菌 HX021, HX023和 HX024在 500 ml发酵罐中的发酵
种子培养基和实施例 3相同。
使用 500 ml的发酵罐, 发酵培养基为 250 ml。 发酵培养基基本上和种子培养基相 同, 区别是葡萄糖浓度为 120 g/L、 另外还加入了 35 mM NaHC03。 使用的中和剂为 1.5 M Na2C03和 3 M NaOH。
结果: HX021发酵 96小时后,丁二酸产量达 618 mM,产率达 1.24 mol/mol; HX023 发酵 96小时后, 丁二酸产量达 594 mM, 产率达 1.25 mol/mol; HX024发酵 96小时后, 丁二酸产量达 798 mM, 产率达 1.33 mol/mol (表 6)。 表 6: 重组大肠杆菌 HX021, HX023和 HX024发酵生产丁
细胞量 丁二酸产率 丁二酸产率 发酵产物 (mM) 菌株 培养基 a
(g L) (g/g) (mol/mol) 丁二酸 乙酸
HX021 12%, AMI 2.4 0.81 ± 0.01 1.24± 0.02 618 ± 3 18± 3
HX023 12%, AMI 2.1 0.82 ± 0.01 1.25± 0.01 594士 33 16士 1
HX024 12%, AMI 2.72 0.87 ± 0.01 1.33± 0.02 798 ± 21 23± 2 a使用 500 ml的发酵罐, 发酵培养基为 250 ml。 发酵培养基中加入了 35 mM NaHC03。 使用的中和 剂为 1.5 M Na2C03和 3 M NaOH。 实施例 9: 重组大肠杆菌 HX024在 5 L发酵罐中的发酵
种子培养基、 发酵培养基、 分析方法和实施例 8相同
HX024在 5L发酵罐 (上海保兴, BIOTECH-5BG)中的厌氧发酵, 包括以下步骤:
(1)种子培养: 500 ml三角瓶中种子培养基为 150 ml, 115 °C灭菌 15 min。 冷却后将 重组大肠杆菌 HX024按照 1% (V/V)的接种量接种于种子培养基, 在 37°C和 100 rpm的 条件下培养 12小时得到种子液, 用于发酵培养基接种。
(2)发酵培养: 5L中发酵培养基体积为 3L, 115 °C灭菌 25 min。 将种子液按照终浓 度 OD55Q=0.2的接种量接种于发酵培养基, 37°C厌氧培养 4天, 搅拌转速 200rpm, 得到 发酵液。 发酵液为发酵罐内所有物质。 培养过程没有通任何气体。
结果: 发酵 96 小时后, 丁二酸产量达 915 mM (相当于 108 g/L), 产率达 1.37 mol/mol(相当于 0.9 g/g)(图 4) 实施例 10: 重组大肠杆菌 HX041-HX044的构建和发酵
(1)重组大肠杆菌 HX041-HX044的构建
按照实施例 1 中(1-2)部分的方法, 对 HX024 菌株中的 pck基因 (GenBank No:
ACA75988.1) 、 maeA 基 因(GenBank No:ACA77817.1) 、 maeB 基因(; GenBank No:ACA76880.1)和 ppc基因 (GenBank No:ACA79659.1)分别进行单基因敲除, 得到菌株 HX041-HX044 (表 1)。 构建的质粒见表 3, 使用的引物序列见表 2, 其中引物的命名对 应于敲除 IdhA基因过程中所使用的引物的名称, 仅分别将 ldhA替换为 pck、 maeA, maeB或者 ppc。
(2)重组大肠杆菌 HX041-HX044的发酵
使用和实施例 8相同的方法发酵重组大肠杆菌 HX041-HX044生产丁二酸。
结果: 发酵结果见表 7。 HX041菌株中的 基因被敲除后, 细胞仍然能够产生 大量的丁二酸; 说明大肠杆菌菌株可以不使用 PCK酶进行 PEP羧化反应生产丁二酸。 另一方面, HX024菌株中的 ae 基因被敲除后, 丁二酸产量下降 29%, 表明 MaeB在 HX024中起一定作用, 有一部分碳代谢流通过 MaeB进行丁二酸合成。 HX024菌株中 的 a^4基因被单敲除后, 丁二酸产量下降 49%, 表明 MaeA在 HX024中起一定作用, 有一部分碳代谢流通过 MaeA进行丁二酸合成。
此外, HX024菌株中的^ ^;基因单敲除后, 不能在无机盐培养基中进行种子培养; 用 LB培养基进行种子培养, 再在无机盐发酵培养基中发酵, 丁二酸产量下降 70%, 表 明 PPC在 HX024中起到了重要的催化作用,这可能与其优良的酶动力学催化特性有关。 表 7: 重组大肠杆菌 HX041-HX044发酵生产丁
细胞 丁二酸产率 丁二酸产率
发酵产物 (mM) 菌株 a 遗传修饰 里 (g/g) (mol/mol)
(g/L) 丁二酸 乙酸
HX024 2.72 0.87 ± 0.01 1.33± 0.02 798 ± 21 23± 2
HX041 HX024, Apck 2.00 0.86± 0.02 1.31± 0.03 492士 18 22士 2
HX042 HX024, AmaeA 1.92 0.86± 0.01 1.31± 0.02 405士 44 25± 3
HX043 HX024, AmaeB 2.18 0.87± 0.01 1.33± 0.01 566± 31 20± 1
HX044 HX024, Appc - - - - -
HX044b HX024, Appc 1.49 0.79± 0.03 1.21± 0.04 241±19 10士 1 a使用 500 ml的发酵罐, 发酵培养基为 250 ml。 发酵培养基中加入了 35 mM NaHC03。 使用的中和 剂为 1.5 M Na2C03和 3 M NaOH
b HX044使用 LB培养基准备种子, 再在无机盐发酵培养基中发酵; 其他菌株使用的种子培养基为 无机盐培养基 +2%葡萄糖。 实施例 11: 重组大肠杆菌 HX027和 HX028的构建和发酵
(1)重组大肠杆菌 HX-027的构建
按照实施例 1中(1)部分的方法,从 HX-024菌株出发,先敲除 基因 (Genbank No: ACA78022.1), 得到重组菌株 HX-026(表 1); 再敲除 tifcZ)£基因簇 (tofcD基因: GenBank No:ACA76259.1; tdcE基因 GenBank No: ACA76260.1),得到重组菌株 HX-027(表 1)。构 建的质粒见表 3, 使用的引物序列见表 2, 其中引物的命名对应于敲除 /^¾4基因过程中 所使用的名称, 仅分别将 ldhA替换为 adhE或 tdcDE
(2)重组大肠杆菌 HX-028的构建
从 HX027出发, 通过进化代谢同步提高细胞生长和丁二酸生产能力。
进化代谢所使用的发酵培养基和实施案例 4相同。
第 1-650代, 发酵培养基中葡萄糖浓度为 120 g/L (即 12%); 每 24小时, 将发酵液 转接到新的发酵罐中, 使初始 OD550达 0.05 (图 5);
经过 650代进化, 获得菌株 HX028 (图 5)。
(3)重组大肠杆菌 HX-028的发酵
使用和实施例 9相同的方法, 在 5L发酵罐中对重组大肠杆菌 HX-028进行发酵。 发酵结果见图 6。 发酵 96小时, 丁二酸产量达到 1042 mM (相当于 123 g/L), 产率 达 1.02 g/g (相当于 1.56 mol/mol)。 实施例 12: 重组大肠杆菌 HX024的转录组分析
对重组大肠杆菌 HX024的转录组分析, 包括以下步骤:
(1)发酵培养
HX024的种子培养和发酵培养与实施例 8中的方法相同。 共设 3个平行厌氧发酵, 野生型 ATCC 8739菌株的种子培养和发酵培养基本上与实施例 5中的方法相同, 区别是使用的葡萄糖浓度为 50 g/L。
(2) RNA制备:
HX024发酵至 OD550=3.9时三个平行发酵样品分别取样, 混匀, 抽提 RNA。 野生型 ATCC 8739发酵至 OD550=2.5时三个平行发酵样品分别取样, 混匀, 抽提
RNA抽提使用的 RNeasy Mini Kit(Qiagen)试剂盒完成, DNase经由 The RNase-Free DNase Set (Qiagen)试剂盒处理完成。
(3)转录组测序:
转录组测序由深圳华大基因科技有限公司完成。 每个样品产生 1Gb清单数据 (clean data) 。 序 列 分 析 的 参 考 序 列 为 ATCC 8739 的 基 因 组 序 列 (http:〃 www. ncbi . nlm . nih . gov/nuccore/NC_010468.1 )。
HX024菌株和丁二酸合成相关的基因表达变化见表 8和图 7。 表 8 : 重组大肠杆菌 HX024的转录组分析
基因 蛋白 相对表达水平 a
模块 1: 葡萄糖的利用
galP 半乳糖透性酶 72.5
glk 葡萄糖激酶 2.2
模块 2: 羧化反应
pck 磷酸烯醇式丙酮酸羧化激酶 74.0
maeB NADPH依赖苹果酸酶 3.0
模块 3: 还原型 TCA
mdh 苹果酸脱氢酶 6.5
fumA 富马酸水合酶, 酶 I 6.0
frdA 富马酸还原酶黄素蛋白亚基 3.6
frdB 富马酸还原酶硫铁蛋白亚基 4.0
frdC 富马酸还原酶 C亚基 3.9
frdD 富马酸还原酶 D亚基 3.7
模块 4: TCA
gltA 柠檬酸合成酶 2.1
模块 5: 乙醛酸支路
aceB 苹果酸合成酶 160.9 aceA 异柠檬酸裂解酶 292.0
模块 6: 磷酸戊糖途径
tktA 转酮醇酶 2.0
模块 7: 糖酵解
ρβΑ 6-磷酸果糖激酶 0.43
pykF 丙酮酸激酶 0.12
gapA 3-磷酸甘油脱氢酶 2.0
模块 8: 转氢酶
sthA 嘧啶核苷酸转氢酶 2.3
模块 9: 丁二酸运输
dcuB 厌氧 C4双羧酸转运蛋白 DcuB 2.0
dcuC ( 4双羧酸转运蛋白 DcuC 45.3
dctA 好养 C4双羧酸转运蛋白 9.8
a相对表达水平表示 HX-024对野生型大肠杆菌 ATCC 8739基因表达强度倍数。 根据转录组分析, 表明 HX024菌株中以下基因的表达显著提高了。
1)磷酸戊糖途径 (PPP)相关基因 tktA 的表达提高, 糖酵解途径 (EMP)相关基因 pfkA 的表达降低, 表明碳代谢流更多地流入磷酸戊糖途径。利用磷酸戊糖途径, 相对糖酵解 途径, 能产生更多的还原力, 并且是 NADPH形式。 苹果酸酶基因 ^ ?的表达提高, 表明细胞通过 maeB进行羧化反应的能力提高了。细胞产生更多的 NADPH,有利于 maeB 的羧化反应。
2)转氢酶基因 sthA的表达提高,表明细胞将 NADPH转化为 NADH的能力提高了。 细胞产生更多的 NADPH, 这些 NADPH再被转化为 NADH, 用于提供丁二酸合成所需 的还原力。 实施例 13 : 重组大肠杆菌 HX024的 !pdA基因序列分析
对重组大肠杆菌 HX024进行基因组测序, 由深圳华大基因科技有限公司完成。 测 序发现 IpdA基因 (GenBank No:ACA79157.1)含有 3个点突变: C242T 823T和 C1073T, 导致 LpdA蛋白的 3个氨基酸位点突变 T81I、 P275S和 A358VC图 8)。 实施例 14: 激活 TktA和 SthA提高丁二酸生产能力
(1)重组大肠杆菌 ZT-251 , ZT-252和 ZT-253的构建
将 Suc-Tl 10菌株中 tktA基因 (GenBank No: ACA76448.1)的原始调控元件替换为人 工调控元件 M1-37(SEQ ID No. : 109), 得到菌株 ZT-251。
重组菌 ZT-251的构建方法如下:
第一步同源重组:以 pXZ-CS质粒为模板,使用引物 tktA-cat-sacB-up (SEQ ID No. :79) 禾口 tktA-cat-sacB-down (SEQ ID No.:80)扩增 DNA片段 I, 用于第一次同源重组。 引物序 列见表 2; 得到 2717 bp DNA片段 I, 将所得 DNA扩增片段 I电转至带有 pKD46质粒 的大肠杆菌 Suc-Tl lO中, 筛选氨苄青霉素与氯霉素抗性的菌落, 得到中间重组菌; 第二步同源重组: 以重组大肠杆菌 Ml-37(Lu et al., 2012, Appl Microbiol Biotechnol. 93:2455-2462; SEQ ID No.:109)的基因组 DNA为模板, 使用引物 tktA-P-up (SEQ ID No.:81)和 tktA-RBS-down (SEQ ID No. :82),得到包含 tktA启动子两侧同源臂和人工调控 元件 M1-37的 193bp的 DNA片段 tktA-Ml-37; 引物序列见表 2。
将所述 193 bp的片段 tktA-Ml-37电转入整合 DNA片段 I的中间重组菌,得到重组 菌。 电转化和筛选方法与实施例 1中 (1-2)部分 敲除步骤中第六步相同。
重组菌的 PCR 验证的引物 tktA-YZ-up(SEQ ID No.: 83)/tktA-YZ-down(SEQ ID No.:84), 得到测序正确的阳性菌落, 将其命名为菌株 ZT-251;
使用同样的方法, 将 Suc-TllO菌株中 sthA基因 (GenBank No:ACA79653.1)的原始 调控元件替换为人工调控元件 M1-37, 得到菌株 ZT-252, 所使用的引物见表 2, 其中所 使用的引物的命名对应于 tktA调控元件替换过程中所使用的引物的名称, 仅将 tktA替 换为 sthA;
使用同样的方法,将 Suc-TllO菌株中 sthA和 tktA基因的原始调控元件都替换为人 工调控元件 Ml-37CSEQIDNo.:109;>, 得到菌株 ZT-253, 所使用的引物见表 2。
(2)重组大肠杆菌 ZT-251, ZT-252和 ZT-253的发酵
按照实施例 2的方法,对菌株进行培养发酵。发酵结果见表 9。结果表明,在 Suc-TllO 菌株中增强磷酸戊糖途径中 tktA基因的表达强度,使得丁二酸产量和转化率分别提高了 4%和 13%; 增强 基因的表达强度可以增强流经磷酸戊糖途径的碳代谢流, 提高还 原力的生产, 有利于丁二酸合成。
增强转氢酶编码基因 sthA的表达强度,使得丁二酸的产量和转化率分别提高了 5% 和 13%; 增强 基因的表达强度可以催化细胞中部分 NADPH转变成 NADH, 有利 于丁二酸合成。
同时增强 和^^基因的表达强度, 使得丁二酸产量和转化率分别提高了 10% 和 19%。协同利用 和 基因,可以将磷酸戊糖途径产生的 NADPH转变成 NADH, 更有利于丁二酸合成。 将获得的丁二酸高产菌株 ZT-253在含糖浓度更高 (7%葡萄糖)的 BS发酵培养基中发酵, 丁二酸产量达到 506 mM, 糖酸转化率达到 1.36 mol/mol。 表 9 激活 sthA和 tktA对丁二酸生产的影响
细胞量 丁二酸产 丁二酸产率 发酵产物 nM) 菌株 a 遗传修饰
(gL) 率 (g/g) (mol/mol) 丁二酸 乙酸
Suc-T110b 1.53 0.73± 0.02 1.12±0.03 280士 10 96士 10
ZT-251 b Suc-TllO, Ml-37-tktA 1.36 0.83±0.01 1.26±0.02 290±11 74±6
ZT-252 b Sue -Ύ HO, Ml -37-sthA 1.24 0.83±0.01 1.27±0.02 293士 13 64±2
ZT-253 b Suc-ΎΙΙΟ, Ml-37-tktA, 1.22 0.87±0.01 1.33±0.01 307±4 56±7
Ml -37-sthA
ZT-253 c Suc-ΎΙΙΟ, Ml-37-tktA, 1.24 0.89±0.01 1.36±0.02 506±8 85士 10
Ml -37-sthA
a使用 500 ml的发酵罐, 发酵培养基为 250 ml。 发酵培养基中加入了 100 mM KHC03。 使用的中和 剂为 2.4 M K2C03和 1.2 M KOH。
b 初始葡萄糖浓度为 5%。
c初始葡萄糖浓度为 7%。 实施例 15 : 激活 TktA、 SthA和丙酮酸脱氢酶提高丁二酸生产能力
(1)重组大肠杆菌 ZT-273的构建
使用和实施例 14中 (1)部分相同的方法, 将 ZT-253菌株中 基因的原始调控 元件替换为人工调控元件 M1-93 ; 调控元件替换引物的命名对应于 tktA基因过程中所 使用的引物名称, 仅将 tktA替换为 aceEF (表 2); 得到中间重组菌株 ZT-273A, 用引物 APl-up(SEQ ID No.:95)/aceEF-l(SEQ ID No. :96)验证。
在中间重组菌株 ZT-273A的 ackA位点整合 !pdA*, 得到中间重组菌株 ZT-273B。 具体包括以下步骤:
第一步: 构建整合载体 pTrc99A-M-Kan。
具体步骤如下: 以 pKD4质粒 (Datsenko and Wanner 2000, Proc Natl Acad Sci USA 97:6640-6645; 质粒购买于美国耶鲁大学 CGSC大肠杆菌保藏中心) DNA为模板, 用引 物 Kan-up-PacI (SEQ ID No. :97)/Kan-down-EcoRI (SEQ ID No. :98) 进行 PCR扩增,扩增 体系和扩增条件参考实施例 1 中 (1-1)部分质粒 pXZ-CS 构建步骤中的第一步。 得到 FRT-Km的 DNA片段, 用限制性内切酶 PacI/EcoRI (NEB公司) 在 37°C处理 30分钟; 用相 同 的酶禾 B条件酶切质粒 pTrc99A-M(Zhao et al 2013, Met Eng doi: 10.1016/j .ymben.2013.02.002; 本实验室构建, 其序列为 SEQ ID No. : l l l)。 用 PCR纯化 试剂盒清洗 (Gel/PCR Extration Kit, 购自 BioMIGA生物技术有限公司); 取 50ng纯化后 的 FRT-Km的 DNA片段和 30 ng pTrc99A-M载体片段,加入 2μ1 10XT4连接缓冲液 (NEB 公司)、 1μ1 Τ4多核苷酸激酶 (NEB公司), 补充蒸熘水至 20μ1, 37°C反应 30分钟; 加入 Ιμΐ Τ4连接酶 (NEB公司, 400,000 cohesive end units/ml),室温反应 2小时得到连接产物。 酶连产物取 10ul, 用氯化钙转化法转入 TranslO, 同实施例 1 中 (1-1)部分质粒 pXZ-CS 构建步骤中的第四步。 取 200μ1菌液涂在含有卡那霉素 (终浓度 50μ§/ιη1)和氨苄霉素 (终 浓度为 50μ§/ιη1)的 LB平板上, 过夜培养后, 挑选 2-3个克隆, 用引物 Kan-F (SEQ ID No. :99)/pTrc99A-R (SEQ ID No. : 100)进行 PCR验证,正确的质粒命名为 pTrc99A-M-Kan。
第二步, 将 连接到整合型载体 pTrc99A-M-Kan上, 获得质粒 pXZ177。
具体步骤如下:取质粒 pXZ174,用限制性内切酶 cl和 Hz ¾fflI( EB公司)在 37°C 酶切 30 分钟, 胶回收得到大小 1455bp 的片段; 用相同的限制性内切酶处理 pTrc99AM-Kan, 用 PCR纯化试剂盒清洗 (Gel/PCR Extration Kit, 购自 BioMIGA生物技 术有限公司;); 取 50ng胶回收的片段, 20ng载体 pTrc99AM-Kan片段, 加入 2μ1 10XT4 连接缓冲液 (NEB公司)、 Ιμΐ T4多核苷酸激酶 ( EB公司), 补充蒸熘水至 20μ1, 37°C反 应 30分钟; 加入 Ιμΐ T4连接酶 ( EB公司, 400,000 cohesive end units/ml), 室温反应 2 小时得到连接产物;取 5μ1连接产物化转于 50μ1 Trans 1-T1感受态细胞 (;购自北京全式金 生物技术有限公司)中, 取 200μ1菌液涂在含有卡那霉素 (终浓度为 50μ§/ιη1)和氨苄霉素 (终浓度为 100μ§/ιη1)的 LB平板上, 过夜培养后, 挑选 5个阳性单菌落, 进行菌落 PCR 验证, 弓 I物为 Kan-F/lpdA-R-170 CSEQ ID No. : 10i;)。 测序结果证明质粒构建正确, 得到 质粒 pXZ 177。
第三步, 将 片段整合于重组大肠杆菌 ZT-273A菌株的 ackA位点。
一步法整合片段的准备: 以 pXZ177 为模板, 用引物 ackA-FRT-up (SEQ ID No. : 102)/pta-rrnB-down (SEQ ID No. : 103)进行 PCR扩增, 获得一步法整合片段。 一步法 整合片段包括: ac 4左同源臂 50bp; FRT-km-lpdA*序列; pto右同源臂 50bp。
一步法整合: 首先将 pKD46质粒通过氯化钙转化法转化至 ZT-273A, 然后将一步 法整合片段电转至带有 pKD46质粒的 ZT-273A。 电转条件同实施例 1中 (1 -2)部分 IdhA 基因敲除步骤中的第四步。取 200 μΐ菌液涂在含有氯霉素 (终浓度为 17ug/ml)的 LB平板 上, 37°C过夜培养后,挑选 5个单菌落进行 PCR验证,引物 XZ-ackA-up (SEQ ID No. :39) /lpdA-R-170 (SEQ ID No. : 101)进行 PCR验证, 挑选一个正确的单菌落, 将其命名为 ZT-273B。
使用和实施例 14 中 (1)部分相同的方法, 将人工调控元件 M1-93插入到 ZT-273B 的 基因前, 调控元件替换引物的命名对应于 tktA基因过程中所使用的引物名称, 仅将 tktA替换为 ackA或 lpdAC表 2), 得到菌株 ZT-273。
(2)重组大肠杆菌 ZT-273的发酵
按照实施例 2 的方法, 对菌株进行培养发酵。 发酵结果见表 10。 结果表明, 在 Suc-Tl lO菌株中同时增强 tktA和 sthA基因的表达强度, 使得丁二酸产量和转化率分别 提高了 10%和 19%。 在此基础上激活丙酮酸脱氢酶, 获得额外的还原力供给丁二酸合 成。相比 Suc-Tl lO,重组大肠杆菌 ZT-273的丁二酸产量提高了 24%;转化率提高了 34%, 达到 1.5 mol/mol。 将获得的丁二酸高产菌株 ZT-273在含糖浓度更高 (7%葡萄糖)的发酵 培养基中发酵, 丁二酸产量达到 566 mM, 糖酸转化率达到 1.48 mol/mol。 表 10 : 激活 SthA、 TktA和丙酮酸脱氢酶对丁二酸生产的影响
细胞量 丁二酸产 丁二酸产率 发酵产物 nM) 菌株 a 遗传修饰
(g L) 率 (g/g) (mol/mol) 丁二酸 乙酸
Suc-T110b 1.53 0.73± 0.02 1.12± 0.03 280士 10 96士 10
ZT-253b Suc-ΎΙ ΙΟ, Ml -37-tktA, 1.22 0.87± 0.01 1.33± 0.01 307± 4 56± 7
Ml-37-sthA
ZT-273b ΖΎ-253, Ml -93-aceEF, 1.52 0.98± 0.01 1.50± 0.02 346士 10 18± 2 ackA::Ml-934pdA*
ZT-273C ZT-253, Ml-93-aceEF, 1.65 0.97± 0.01 1.48± 0.02 566士 12 29± 5 ackA::Ml-93-lpdA*
a使用 500 ml的发酵罐, 发酵培养基为 250 ml。 发酵培养基中加入了 100 mM KHC03。 使用的中和 剂为 2.4 M K2C03和 1.2 M KOH。
b 初始葡萄糖浓度为 5%。
c初始葡萄糖浓度为 7%。 将本发明获得的重组大肠杆菌和他人获得的重组大肠杆菌进行比较 (表 11),可以到 得如下结论:
1) 相同发酵条件下, 本发明获得的高产菌株 HX028的产量和转化率是最高的。 与 使用钾盐培养的 KJ073、 KJ122菌株相比, 本发明的发酵中使用的是钠盐, 比钾盐的成 本要低很多。另外,由于激活的磷酸戊糖途径自身能产生二氧化碳,本发明获得的 HX024 禾口 HX028对碳酸氢根离子的需求量比较低。 中和剂组成由 2.4 M Na2C03+1.2 M NaOH 改为 1.5 M Na2C03+3 M NaOH, 丁二酸产量和转化率基本保持一致。 这就减少了碳酸 钠的使用量, 降低了生产成本。
2) AFP11 K SBS550MG这两个菌株, 虽然转化率达到 1.68禾 P 1.61 mol/mol, 但其 都是使用丰富培养基, 一方面增加了生产成本; 另一方面, 丰富培养基本身含有碳源, 导致得到的转化率偏高。 例如, AFP111菌株, 其丁二酸产量达 99.2 g/L, 丁二酸转化 率达 1.68 mol/mol(l . l gig),乙酸产量达 10 g/L,乙醇产量达 5 g/L(Vemuri et al., 2002, J Ind Microbiol Biotechnol 28:325-332),推算出其消耗的葡萄糖为 90.2 g/L。然而,生产 99.2 g/L 丁二酸, 需要消耗葡萄糖 88.6 g/L(l g葡萄糖转化为 1.12 g丁二酸); 生产 10 g/L乙酸, 需要消耗葡萄糖 15 g/L(l mol葡萄糖转化为 2 mol乙酸); 生产 5 g/L乙醇, 需要消耗葡 萄糖 9.2 g/L(l mol葡萄糖转化为 2 mol乙醇 总共需要消耗 88.6+15+9.2=112.8 g/L的 葡萄糖。 实际消耗的葡萄糖比理论上需要消耗的葡萄糖少了 112.8-90.2=22.6 g/L, 是因 为发酵培养基中还添加了 10 g/L酵母膏和 20 g/L蛋白胨。 如果葡萄糖是发酵培养基中 的唯一碳源, 那么丁二酸的转化率会降低很多。 推算最多只有 88.6/112.8=78.5%的葡萄 糖用于丁二酸合成, 另外 21.5%的葡萄糖用于乙酸和乙醇的合成。 丁二酸的转化率最多 只有 78.5% X 1.71=1.34 mol/moL
另外, AFP111、 SBS550MG这两个菌株还使用了好氧-厌氧两步法发酵工艺, 好氧 培养使菌株生长的过程需要通空气, 增加了能量损耗, 降低了发酵罐的使用率, 提高了 生产成本。
3)菌株 KJ073在丁二酸合成过程中主要使用 PCK进行羧化反应, 单独敲除 pck基 因, 丁二酸产量降低 88%; 其他三个羧化酶对丁二酸合成的贡献不大, 分别敲除其他三 个羧化酶基因 (f!pc, maeA, maeB),丁二酸产量分别降低 4%, 7%和 7%(Zhang et al., 2009a,
Proc Natl Acad Sci USA 106:20180-20185)。
本发明获得的高产菌株 HX024, 四个羧化酶对丁二酸合成都有一定的贡献, PPC 的贡献最大。 单独敲除^ c基因, 种子不能在无机盐培养基中生产; 使用 LB培养基准 备种子,再在无机盐发酵培养基中发酵,丁二酸产量下降 70%。单独敲除 maeA, maeB 基因, 丁二酸产量分别降低 38%, 49%和 29%。
4) 和 Suc-Tl lO 系列菌株背景最相似的是 XZ721 (Zhang et al., AEM, 2009b,
75 :7807-7813), 它们都没有经过进化代谢。
和 Suc-Tl lO相比, 本发明通过组合改造 和 W/^, 获得重组大肠杆菌 ZT-253 , 将丁二酸的产量提高了 10%, 转化率提高了 19%。 和 Suc-Tl lO相比, 本发明通过组合 改造 tktA、 sthA和丙酮酸脱氢酶, 获得重组大肠杆菌 ZT-273 , 将丁二酸的产量提高了 24%, 转化率提高了 34%。
本发明获得的重组菌株 ZT-273发酵 50 g/L葡萄糖, 能生产 40.8 g/L(346 mM)丁二 酸, 转化率达 0.98 g/g(1.50 mol/mol), 丁二酸生产能力优于 XZ721。 重组菌株 ZT-273 发酵 70 g/L葡萄糖, 能生产 66.8 g/L(566 mM)丁二酸, 转化率达 0.97 g/g(1.48 mol/mol) 0 表 11 : 比较不同重组大肠杆菌生产丁二酸的能力 菌株 修饰 发酵条件 丁二酸 丁 二 文献
浓 度 酸 转
(mM) 化 率
(mol/m
ol)
高产菌株的比较
HX024 ATCC 8739, MdhA, ApflB, 无机盐培养基, 915 1.37 本发明
Aptsl, Ppck*-galP, pck*, 厌氧批式,
AackA-pta, Ppck*-aceBA, 12%葡萄糖
Ppck*-dcuC, AmgsA
钠盐中进化代谢
HX028 ATCC 8739, MdhA, ApflB, 无机盐培养基, 1042 1.56 本发明
Aptsl, Ppck^-galP, pck^, 厌氧批式,
AackA-pta, Ppck^-aceBA, 12%葡萄糖
Ppck^-dcuC, AmgsA, AadhE,,
AtdcDE
钠盐中进化代谢
KJ073 MdhA, Z^adhE, 无机盐培养基,厌 668 1.2 Jantama et
AfocA-pflB, A ckA, AmgsA, 氧批式, al, 2008a
ΔροχΒ, 10%葡萄糖
钾盐中进化代谢
KJ122 MdhA, AadhE, 无机盐培养基, 680 1.36 Jantama et
AfocA-pflB, AackA, AmgsA, 厌氧批式, al" 2008b
ApoxB, AtdcDE, AaspC, AsfcA 10%葡萄糖
钾盐中进化代谢
AFP111 ApflAB, MdhA, AptsG, 丰 Θ培养基, 841 1.68 Vemuri et al.,
¾¾¾ Rhizobium etli的丙酉同 好氧 -厌氧两步法 2002 酸羧化酶
SBS550M MdhA, AadhE, AiclR, 丰 S培养基, 339 1.61 Sanchez et
G AackA-pta, 好氧 -厌氧两步法 al. 2005
过表达 Lactococcus
lactis的丙酮酸羧化酶 关键基因改造后的菌株
XZ721 pck*, Aptsl, ApflB 无机盐培养基, 327 1.25 Zhang et al., 厌氧批式, 2009a
5%葡萄糖 Suc-Tl lO MdhA, ApflB, Aptsl, 无机盐培养基, 280 1.12 本发明 Ppck*-galP, Ppck*-pck 厌氧批式,
5%葡萄糖
ZT-253 uc-TUQ, Ml-37-tktA, 无机盐培养基, 307 1.33 本发明
Ml-37-sthA 厌氧批式,
5%葡萄糖
ZT-273 ΖΎ-253, Ml -93-aceEF, 无机盐培养基, 346 1.50 本发明
ackA::Ml-93-lpdA* 厌氧批式,
5%葡萄糖
ZT-253 uc-TUQ, Ml-37-tktA, 无机盐培养基, 506 1.36 本发明
Ml-37-sthA 厌氧批式,
7%葡萄糖
ZT-273 ΖΎ-253, Ml -93-aceEF, 无机盐培养基, 566 1.48 本发明
ackA::Ml-93-lpdA* 厌氧批式,
7%葡萄糖 实施例 16: 重组大肠杆菌 NZ-512、 NZ-513、 NZ-514和 NZ-517的构建
(1) 重组大肠杆菌 NZ-512的构建 (表 1), 分为以下 2个步骤:
醇脱氢酶基因 adhE的敲除: 按照实施例 1中 (1)部分的方法, 从 Suc-Tl lO菌株出 发, 敲除 αί/ 基因 (GenbankNo: ACA78022.1), 得到重组菌株 NZ-511(表 1); 构建的质 粒见表 3, 使用的引物序列见表 2, 其中引物的命名对应于敲除 /^¾4基因过程中所使用 的名称, 仅将 ldhA替换为 adhE。
丙酮酸甲酸裂解酶基 的恢复: 从重组菌株 NZ-511(表 1)出发, 按照实施例 1 中 (1)部分的方法,将 Δρ 基因恢复为野生型大肠杆菌 ATCC 8739的 pflB基因 (GenBank No: ACA78322.1), 仅在第二次同源重组时, 以野生型大肠杆菌 ATCC 8739菌 DNA为 模板, 用引物 XZ-pflB-up/XZ-pflB-down扩增出 2260bp的 DNA片段; 得到重组菌株 NZ-512 (表 1)。 构建的质粒见表 3, 使用的引物序列见表 2, 其中引物的命名对应于敲 除 ldhA基因过程中所使用的名称, 仅将 ldhA替换为 pflB。
(2) 激活 TktA和 SthA构建重组大肠杆菌 NZ-513、 NZ-517和 NZ-514
按照实施例 14 中(1)部分的方法, 将 NZ-512 菌株中 tktA 基因(GenBank
No:ACA76448.1)的原始调控元件替换为人工调控元件 M1-37(SEQ ID No. : 109), 得到菌 株 NZ-513(表 1); 使用同样的方法, 将 NZ-512 禾 P NZ-513 中 sthA 基因 (GenBank No:ACA79653.1)的原始调控元件替换为人工调控元件 M1-37 , 得到菌株 NZ-517 和 NZ-514 (表 1), 所使用的引物见表 2, 其中所使用的引物的命名对应于 基因调控元 件替换过程中所使用的引物的名称, 仅将 tktA替换为 sthA。 实施例 17: 重组大肠杆菌 NZ-512、 NZ-513、 NZ-514和 NZ-517的发酵
按照实施例 2的方法, 对菌株进行培养发酵。 发酵结果见表 12。 结果表明, 在敲 除 αί/ 和恢复 的菌株 NZ-512中,丁二酸的产量为 289 mM,转化率为 1.18 mol/mol, 和 Suc-Tl lO相比无显著差异。
在 NZ-512的基础上单独激活 基因的表达, 得到菌株 NZ-513 , 其丁二酸的产 量和转化率比 NZ-512提高了 4%和 6%;在 NZ-512的基础上单独激活 sthA基因的表达, 得到菌株 NZ-517, 丁二酸的产量和转化率比 NZ-512提高了 7%和 5%; 在 NZ-512的基 础上同时激活 和 基因的表达强度, 得到的菌株 NZ-514, 其丁二酸的产量和转 化率比 NZ-512提高了 9%和 11%。 这些结果说明协同利用 tktA和 sthA基因, 可以将磷 酸戊糖途径产生的 NADPH转变成 NADH, 更有利于丁二酸合成。 表 12 :: 重组大肠杆菌 NZ-512、 NZ-513、 NZ-514和 NZ-517发酵生产丁二酸
遗传修饰 细胞量 丁二酸产 丁二酸产率 发酵产物 M) 菌株 a
(g L) 率 (g/g) (mol/mol)
丁二酸 乙酸 甲酸
Suc-Tl lO ATCC 8739, MdhA, 1.53 0.73±0.02 1.12±0.03 280±10 96±10 0
ApflB, Aptsl,
Ppck*-galP, Ppck*-pck
NZ-512 ATCC 8739, MdhA, 1.5 0.77±0.01 1.18±0.02 289±6 89±10 58±2
Aptsl, Ppck*-galP,
Ppck*-pck, ^adhE
NZ-513 ATCC8739, MdhA, 1.54 0.82±0.01 1.25±0.01 300±2 60±4 60±4
Aptsl, Ppck*-galP,
Ppck*-pck, ^adhE,
Ml -37 -tktA
NZ-517 ATCC 8739, MdhA, 1.6 0.8±0.01 1.24±0.01 310±3 84±2 68±2
Aptsl, AadhE,
Ppck*-galP,
Ppck*-pck,
Ml -37 -sthA
NZ-514 ATCC8739, MdhA, 1.59 0.86±0.02 1.31±0.02 315±2 52±4 52±4
Aptsl, Ppck*-galP,
Ppck*-pck,
AadhE ^-37-tktA,
Ml-37-sthA
a使用 500 ml的发酵罐, 发酵培养基为 250 ml。 发酵培养基中加入了 100 mM KHC03。 使用的中和 剂为 2.4 M K2C03和 1.2 M KOH。 初始葡萄糖浓度为 5%。 实施例 18 : 提高 Suc-Tl lO菌株的 Zwf酶活对丁二酸生产的影响
( 1 ) 调控 6-磷酸葡萄糖脱氢酶 zw/基因的重组大肠杆菌的构建
将 Suc-Tl lO菌株中 6-磷酸葡萄糖脱氢酶 ZH/基因 (GenBank No:ACA77430. i;>的原始 调控元件替换为人工调控元件, 重组菌株的构建方法如下:
第一步同源重组: 以 pXZ-CS 质粒为模板, 使用引物 zwf-cat-sacB-up 和 zwf-cat-sacB-down扩增 DNA片段 I,用于第一次同源重组。引物序列见表 2;得到 2717 bp DNA片段 I, 将所得 DNA扩增片段 I电转至带有 pKD46质粒的大肠杆菌 Suc-Tl lO 中, 筛选氨苄青霉素与氯霉素抗性的菌落, 得到中间重组菌;
第二步同源重组:以重组大肠杆菌 Ml-93(Lu et al.2012, Appl Microbiol Biotechnol 93 : 2455-2462; SEQ ID No. : 110)的基因组 DNA 为模板, 使用引物 zwf-P-up 禾口 zwf-RBSL-down, 得到包含 zw/启动子两侧同源臂和人工调控元件的 189 bp的 DNA片 段 RBSL-zwf; 引物序列见表 2。
将所述 189 bp的片段 R5ffi-zw/电转入整合 DNA片段 I的中间重组菌, 得到重组 菌。 电转化和筛选方法与 敲除步骤中第六步相同。
重组菌的 PCR验证的引物 zwf-YZ-up/zwf-YZ-down,随机挑选 10个得到测序正确 的阳性菌落用于后续 Zwf酶活的测定。
(2) 重组大肠杆菌 Zwf酶活的测定
取 30 ml 对数生长中后期的发酵液于 50 ml 离心管中, 在 4°C下 10000 rpm 离心 5 min, 弃去上清液, 收集菌体, 用 15 ml 100 mM Tris-HCl buffer洗涤 2次后, 将菌体悬 浮 3 ml 100 mM Tris-HCl, 冰浴超声 (功率: 25W; 开: Is; 关: 3s)破碎 3-5 min至澄 清, 4°C下 10000 rpm离心 20 min, 收集上清用于酶活测定。
Zwf酶活检测反应体系为: 反应缓冲液 990 μ1 ( 100 mM Tris、 10 mM MgCl2、 1 mM DTT、 0.5 mM NADP+、 2 mM 6-磷酸葡萄糖; pH 7.5 ), 加入 10 μΐ上述超声离心后的上 清液, 混匀后置于比色皿中, 记录 Α340 的变化情况 (Lamed et al. 1980, J Bacterid 141 : 1251-1257; Kabir and Shimizu, 2003, J Bacterid 105: 11-31)。 空白对照为反应缓冲液 液加入 10 μΐ的 dd¾0。 NAD(P)H在 340 nm处的消光系数为 6.22 cm-1 mM_1。 酶活力 单位 (U) 定义为: 每分钟每 mg蛋白形成 1 μιηοΐ 的 NADPH。
( 3 ) 重组大肠杆菌发酵生产丁二酸
从 (2) 中筛选出 Zwf酶活有差异的重组菌株 ZT-311、 ZT-312、 ZT-313、 ZT-314, 其中, 菌株 ZT-311是将 Suc-Tl lO菌株中 zw/基因的原始调控元件替换为人工调控元件 RBSLl-zwf(SEQ JD NO: 142); ZT-312将 Suc-Tl lO菌株中 zw/基因的原始调控元件替换 为人工调控元件 RASZ2-«; SEQ ID NO: 143); ZT-313是将 Suc-T110菌株中 zw/基因的 原始调控元件替换为人工调控元件 RASZ3-zw SEQ ID NO: 144); ZT-314是将 Suc-Tl lO 菌株中 zw/基因的原始调控元件替换为人工调控元件 R5ffi¥-zw/(SEQ ID N0: 145)。
按照实施例 2的方法对 Suc-Tl lO以及重组菌株 ZT-311、 ZT-312、 ZT-313、 ZT-314 进行厌氧发酵。 发酵结果见表 13。 结果表明, 在一定范围内, 随着 Zwf酶活的提高, 丁二酸的产量和转化率均显著提高 (图 9), 其中最优值出现在当 Zwf酶活处于中等活 性 (1.50 U/mg) 时, 此时菌株 ZT-312的丁二酸产量和转化率分别为 338 mM和 1.44 mol/mol, 比出发菌株 Suc-Tl lO分别提高了 29%和 29%。 表明, Zwf酶活的提高, 有利 于 PPP的激活, 能够提供更多的还原力供给菌株丁二酸的合成。
但是, 在此基础上继续提高 Zwf 的酶活, 丁二酸产量和转化率均有不同程度的降 低 (图 9)。 拥有更高 Zwf酶活的菌株 ZT-313 (Zwf: 2.16 U/mg) 的丁二酸产量和转化 率分别为 322 mM和 1.37 mol/mol, 比 ZT-312降低了 5%和 5%。 表 13 : 提高 Suc-Tl lO菌株的 Zwf酶活对丁二酸生产的影响 细胞量 丁二酸产率 丁二酸产率 Zwf酶活 发酵产物 nM) 菌株 a 遗传修饰
(g L) (g/g) (mol/mol) (U/mg) 丁二酸 乙酸
Suc-Tl lO 1.53 0.73±0.02 1.12±0.03 0.13±0.01 263±2 90±6
Suc-Tl lO,
ZT-311 1.21 0.90±0.01 1.37±0.01 0.80±0.02 322±3 85±3
RBSLl-zwf
Suc-Tl lO,
ZT-312 1.47 0.94±0.02 1.44±0.02 1.50±0.03 338±4 79±3
RBSL2-zwf
Suc-Tl lO,
ZT-313 1.36 0.90±0.01 1.37±0.01 2.16±0.01 322±3 76±4
RBSL3-zwf
Suc-Tl lO,
ZT-314 1.38 0.89±0.01 1.36±0.02 2.47±0.03 320±4 84±5
RBSL4-zwf
a使用 500 ml的发酵罐, 发酵培养基为 250 ml。 发酵培养基中加入了 100 mM KHCO: 使用的中和剂为 2.4 M K2C03和 1.2 M KOH。 初始葡萄糖浓度为 235 mM。 实施例 19: 提高 Suc-Tl lO菌株的 Pgl酶活对丁二酸生产的影响
( 1 ) 调控 6-磷酸葡糖酸内酯酶;g/基因的重组大肠杆菌的构建
将 Suc-Tl lO菌株中 6-磷酸葡糖酸内酯酶/g/基因 (GenBank No:ACA78522.1)的原始 调控元件替换为人工调控元件,重组菌株的构建方法同实施例 18,所使用的引物见表 2, 其中所使用的引物的命名对应于 zw/调控元件替换过程中所使用的引物的名称, 仅将 zwf替换为 pgl。 随机挑选 10个得到测序正确的阳性菌落用于后续 Pgl酶活的测定。
(2) 重组大肠杆菌 Pgl酶活的测定
重组菌株粗酶液的制备方法同实施例 18。
Pgl酶活检测反应体系为: 反应缓冲液 990 μΐ (25 mM HEPES、 2 mM MgCl2、 1 mM NADP+、 0.5 mM 6-磷酸葡萄糖、 1 U 6-磷酸葡萄糖脱氢酶; pH 7.1 ),室温静置 8分钟后, 加入 1.5 U 6-磷酸葡萄糖酸脱氢酶和 10 μΐ上述超声离心后的上清液, 混匀后置于比色 皿中, 记录 Α340的变化情况 (Stanford et al. 2004, Genetics 168: 117-127)。 空白对照为反 应缓冲液液加入 10 μΐ的 ddH20。 NAD(P)H在 340 nm处的消光系数为 6.22 cm-1 mM_1。 酶活力单位 (U) 定义为: 每分钟每 mg蛋白形成 1 μιηοΐ 的 NADPH。
( 3 ) 重组大肠杆菌发酵生产丁二酸
从 (2) 中筛选出 Pgl酶活有差异的重组菌株 ZT-321、 ZT-322 ZT-323、 ΖΤ-324, 其中, 菌株 ΖΤ-321是将 Suc-Tl lO菌株中 pg/基因的原始调控元件替换为人工调控元件 RBSLl-pgl (SEQ ID NO: 146); ZT-322将 Suc-Tl lO菌株中 pgl基因的原始调控元件替换 为人工调控元件 RAST^pg/ CSEQ ID NO: 147); ZT-323是将 Suc-T110菌株中 pg/基因的 原始调控元件替换为人工调控元件 R55Z3-/^/ (SEQ ID NO: 148); ZT-324是将 Suc-Tl lO 菌株中 pg/基因的原始调控元件替换为人工调控元件 RBSL4-pgl (SEQ ID NO: 149)。
按照实施例 2的方法,对 Suc-Tl lO以及重组菌株 ZT-321、 ZT-322 ZT-323、 ZT-324 进行厌氧发酵, 发酵结果见表 14。 结果表明, 在一定范围内, 随着 Pgl酶活的提高, 丁 二酸的产量和转化率均显著提高 (图 10), 其中最优值出现在当 Pgl酶活处于中等活性 (Pgl: 2.44 U/mg)时, 此时菌株 ZT-321的丁二酸产量和转化率分别为 321 mM和 1.33 mol/mol, 比出发菌株 Suc-Tl lO分别提高了 19%和 19%。 表明, Pgl酶活的提高, 有利 于 PPP的激活, 能够提供更多的还原力供给重组菌株丁二酸的合成。
但是, 在此基础上继续提高 Pgl的酶活, 丁二酸产量和转化率均有不同程度的降低 (图 10), 拥有更高 Pgl酶活的菌株 ZT-323 (Pgl: 5.34 U/mg) 的丁二酸产量和转化率 分别为 308 mM和 1.28 mol/mol, 比 ZT-321降低了 4%和 4%。 表 14: 提高 Suc-Tl lO菌株的 Pgl酶活对丁二酸生产的影响
细胞量 丁二酸产率 丁二酸产率 Pgl酶活 发酵产物 M) 菌株 a 遗传修饰
(g L) (g/g) (mol/mol) (U/mg) 丁二酸 乙酸
Suc-Tl lO 1.53 0.73±0.02 1.12±0.03 0.71±0.02 270±5 89±5
Suc-Tl lO,
ZT-321 1.39 0.87±0.01 1.33±0.01 2.44±0.05 321±3 69±4
RBSLl-pgl
Suc-Tl lO,
ZT-322 1.68 0.86±0.01 1.31±0.02 3.05±0.03 316±4 63±4
RBSL2-pgl
Suc-Tl lO,
ZT-323 1.57 0.84±0.01 1.28±0.01 5.34±0.09 308±3 69±5
RBSL3-pgl
Suc-Tl lO,
ΖΤ-324 1.87 0.83±0.01 1.26±0.02 5.74±0.11 294±4 75±7
RBSL4-pgl
a使用 500 ml的发酵罐, 发酵培养基为 250 ml。 发酵培养基中加入了 100 mM KHCO: 使用的中和剂为 2.4 M K2C03和 1.2 M KOH。 初始葡萄糖浓度为 241 mM。 实施例 20: 提高 Suc-Tl lO菌株的 Gnd酶活对丁二酸生产的影响
( 1 ) 调控 6-磷酸葡萄糖酸脱氢酶 gm/基因的重组大肠杆菌的构建
将 Suc-Tl lO菌株中 6-磷酸葡萄糖酸脱氢酶 gm/基因 (GenBank No:ACA76645. i;>的原 始调控元件替换为人工调控元件, 重组菌株的构建方法同实施例 18, 所使用的引物见 表 2, 其中所使用的引物的命名对应于 zw/调控元件替换过程中所使用的引物的名称, 仅将 zwf替换为 gnd。 随机挑选 10个得到测序正确的阳性菌落用于后续 Gnd酶活的测 定。
(2) 重组大肠杆菌 Gnd酶活的测定
重组菌株粗酶液的制备方法同实施例 18。
Gnd酶活检测反应体系为: 反应缓冲液 990 μΐ ( 100 mM Tris、 10 mM MgCl2、 1 mM DTT、 0.5 mM NADP+、 2 mM 6-磷酸葡萄糖酸; pH 7.5 ), 加入 10 μΐ上述超声离心后的 上清液, 混匀后置于比色皿中, 记录 Α340的变化情况 (Padilla et al. 2004, Appl Environ Microbiol70:370-376)。空白对照为反应缓冲液液加入 10 μΐ的 ddH20。NAD(P)H在 340nm 处的消光系数为 6.22 cm"1 m T1。酶活力单位(U)定义为:每分钟每 mg蛋白形成 1 μιηοΐ 的 NADPHo
( 3 ) 重组大肠杆菌发酵生产丁二酸
从 (2) 中筛选出 Gnd酶活有差异的重组菌株 ZT-331、 ΖΤ-332、 ΖΤ-333、 ΖΤ-334, 其中,菌株 ΖΤ-331是将 Suc-Tl lO菌株中 gm/基因的原始调控元件替换为人工调控元件 RBSLl-gnd (SEQ ID NO: 150); ZT-332将 Suc-Tl lO菌株中 gm/基因的原始调控元件替 换为人工调控元件 RASZ2-gm/ (SEQ ID NO: 151); ZT-333是将 Suc-Tl lO菌株中 gm/基 因的原始调控元件替换为人工调控元件 R55Z3-gm/ (SEQ ID NO: 152); ZT-334是将 Suc-Tl lO菌株中 gm/基因的原始调控元件替换为人工调控元件 R5ffi¥-gm/ (SEQ ID NO: 153)。
按照实施例 2的方法,对 Suc-Tl lO以及重组菌株 ZT-331、 ZT-332、 ZT-333、 ZT-334 进行厌氧发酵, 发酵结果见表 15。 结果表明, 在一定范围内, 随着 Gnd酶活的提高, 丁二酸的产量和转化率均显著提高 (图 11 ), 最优值出现在当 Gnd酶活处于中等活性
( Gnd: 5.71 U/mg)时,此时菌株 ZT-333的丁二酸产量和转化率分别为 320 mM和 1.31 mol/mol, 比出发菌株 Suc-Tl lO分别提高了 17%和 17%。 表明, Gnd酶活的提高, 有利 于 PPP的激活, 能够提供更多的还原力供给重组菌株丁二酸的合成。
但是在此基础上继续提高 Gnd 的酶活, 丁二酸产量和转化率均有不同程度的降低
(图 11 )。拥有更高 Gnd酶活的菌株 ZT-334 ( Gnd: 11.3 U/mg)的丁二酸产量和转化率 分别为 278 mM和 1.24 mol/mol, 比 ZT-333降低了 13%和 5%。 表 15 : 提高 Suc-Tl lO菌株的 Gnd酶活对丁二酸生产的影响
丁二酸产 发酵产物 (mM) 细胞量 丁二酸产 Gnd酶活
菌株 a 遗传修饰
(g/L) 率 (g/g) (U/mg) 丁二酸 乙酸
(mol/mol)
Suc-Tl lO 1.53 0.73±0.02 1.12±0.02 0.42±0.02 273±4 93±4
Suc-Tl lO,
ZT-331 1.46 0.83±0.01 1.27±0.02 2.41±0.06 308±5 62±5
RBSLl-gnd
Suc-Tl lO,
ΖΤ-332 1.39 0.85±0.01 1.29±0.01 4.90±0.10 314±3 80±7
RBSL2-gnd
Suc-Tl lO,
ZT-333 1.75 0.86±0.01 1.31±0.01 5.71±0.16 320±2 78±6
RBSL3-gnd
Suc-Tl lO,
ZT-334 1.16 0.81±0.01 1.24±0.02 11.3±0.23 278±5 82±10
RBSL4-gnd
a使用 500 ml的发酵罐, 发酵培养基为 250 ml。 发酵培养基中加入了 100 mM KHC03。 使用的中和剂为 2.4 M K2C03和 1.2 M KOH。 初始葡萄糖浓度为 244 mM。 实施例 21 : 提高 Suc-Tl lO菌株的 Tkt酶活对丁二酸生产的影响
( 1 ) 调控转酮醇酶 基因的重组大肠杆菌的构建
将 Suc-Tl 10菌株中转酮醇酶 基因 (GenBank No: ACA76448.1;)的原始调控元件替 换为人工调控元件, 重组菌株的构建方法同实施例 18, 所使用的引物见表 2, 其中所使 用的引物的命名对应于 zw/调控元件替换过程中所使用的引物的名称,仅将 zwf替换为 tktA。 随机挑选 10个得到测序正确的阳性菌落用于后续 Tkt酶活的测定。
(2) 重组大肠杆菌 Tkt酶活的测定
重组菌株粗酶液的制备方法同实施例 18。
Tkt酶活检测反应体系为:反应缓冲液 990 μ1( 50 mM Tris、0.24 mM MgCl2、0.01 mM TPP、 0.25 mM NADH、 3 U 3-磷酸甘油脱氢酶、 10 U磷酸丙酮异构酶、 0.5 mM D-5- 磷酸木酮糖、 0.5 mM D-5-磷酸核糖; pH 7.5 ), 加入 10 μΐ上述超声离心后的上清液, 混匀后置于比色皿中, 记录 A340的变化情况。 空白对照为反应缓冲液液加入 10 μΐ的 ddH2O o NAD(P)H在 340 nm处的消光系数为 6.22 cm-1 rnMT1 0酶活力单位(U)定义为: 每分钟每 mg蛋白消耗 1 μιηοΐ 的 NADH。
( 3 ) 重组大肠杆菌发酵生产丁二酸
从 (2) 中筛选出 Tkt酶活有差异的重组菌株 ZT-361、 ΖΤ-362、 ΖΤ-363 , 其中, 菌 株 ZT-361 是将 Suc-Tl lO 菌株中 tktA 基因的原始调控元件替换为人工调控元件 RBSLl-tktA (SEQ ID NO: 154); ZT-362将 Suc-Tl 10菌株中 tktA基因的原始调控元件替 换为人工调控元件 RASZ2-tA (SEQ ID NO: 155); ZT-363是将 Suc-Tl lO菌株中 tktA基 因的原始调控元件替换为人工调控元件 R55Z3-tA (SEQ ID NO: 156); ZT-251是将 Suc-Tl lO菌株中 tktA基因的原始调控元件替换为人工调控元件 (SEQ ID NO: 157)。
按照实施例 2的方法,对 Suc-Tl lO以及重组菌株 ZT-361、 ZT-362、 ZT-363 ZT-251 进行厌氧发酵。 发酵结果见表 16。 结果表明, 在一定范围内, 随着 Tkt酶活的提高, 丁二酸的产量和转化率均显著提高 (图 12), 其中最优值出现在当 Tkt酶活处于中等活 性 (Tkt: 0.61 U/mg) 时, 此时菌株 ZT-361的丁二酸产量和转化率分别为 326 mM和 1.37 mol/mol, 比出发菌株 Suc-Tl lO分别提高了 22%和 22%。 表明, Tkt酶活的提高, 有利于 PPP的激活, 能够提供更多的还原力供给重组菌株丁二酸的合成。
但是, 在此基础上继续提高 Tkt的酶活, 丁二酸产量和转化率均有不同程度的降低 (图 12)。 拥有更高 Tkt酶活的菌株 ZT-251 ( Tkt: 1.20 U/mg) 的丁二酸产量和转化率 分别为 300 mM和 1.26 mol/mol, 比 ZT-361降低了 8%和 8%。 表 16: 提高 Suc-Tl lO菌株的 Tkt酶活对丁二酸生产的影响
细胞量 丁二酸产 丁二酸产率 发酵产物 (mM) 菌株 a 遗传修饰
(g L) 率 (g/g) (mol/mol) 丁二酸 乙酸
Suc-Tl lO 1.53 0.73±0.01 1.12±0.01 0.07±0.02 267±3 91±4
Suc-Tl lO,
ZT-361 1.43 0.90±0.01 1.37±0.01 0.61±0.01 326±2 60±5
RBSLl-tktA
Suc-Tl lO,
ZT-362 1.39 0.90±0.01 1.36±0.01 0.68±0.02 324±3 61±4
RBSL2-tktA
Suc-Tl lO,
ZT-363 1.57 0.88±0.01 1.34±0.01 1.10±0.05 319±2 62±6
RBSL3-tktA
Suc-Tl lO,
ZT-251 1.36 0.83±0.01 1.26±0.02 1.20±0.07 300±5 77±6
Ml -37 -tktA
a使用 500 ml的发酵罐, 发酵培养基为 250 ml。 发酵培养基中加入了 100 mM KHC03。 使用的中和剂为 2.4 M K2C03和 1.2 M KOH。 初始葡萄糖浓度为 238 mM。 实施例 22: 提高 Suc-Tl lO菌株的 TalB酶活对丁二酸生产的影响
( 1 ) 调控转醛醇酶 toffi基因的重组大肠杆菌的构建
将 Suc-Tl lO菌株中转醛醇酶 toffl基因 (GenBank No:ACA79258.1)的原始调控元件替 换为人工调控元件, 重组菌株的构建方法同实施例 18, 所使用的引物见表 2, 其中所使 用的引物的命名对应于 zw/调控元件替换过程中所使用的引物的名称,仅将 zwf替换为 talB。 随机挑选 10个得到测序正确的阳性菌落用于后续 Tal酶活的测定。
(2) 重组大肠杆菌 Tal酶活的测定
重组菌株粗酶液的制备方法同实施例 18。 唯一不同之处在于所使用的缓冲液是 50 mM HEPES buffer (pH 8.5)。
Tal酶活检测反应体系为: 反应缓冲液 990 μΐ ( 50 mM HEPES 0.24 mM MgCl2、 0.5 mM NADP+、 10 U 6-磷酸葡萄糖异构酶、 3 U 6-磷酸葡萄糖脱氢酶、 0.5 mM D-7-景 天庚糖、 0.5 mM 3-磷酸甘油醛; pH 8.5 ), 加入 10 μΐ上述超声离心后的上清液, 混匀后 置于比色皿中, 记录 Α340的变化情况 (Sprenger et al. 1995, J Bacterid 177:5930-5936)。 空白对照为反应缓冲液液加入 10 μΐ的 ddH20。NAD(P)H在 340nm处的消光系数为 6.22 cm"1 mMT 酶活力单位 (U) 定义为: 每分钟每 mg蛋白产生 1 μιηοΐ 的 NADPH。
( 3 ) 重组大肠杆菌发酵生产丁二酸
从 (2) 中筛选出 Tal酶活有差异的重组菌株 ZT-371、 ΖΤ-372、 ΖΤ-373、 ΖΤ-374, 其中,菌株 ZT-371是将 Suc-Tl lO菌株中 talB基因的原始调控元件替换为人工调控元件 RBSLl-talB (SEQ ID NO: 158); ZT-372将 Suc-Tl 10菌株中 talB基因的原始调控元件替 换为人工调控元件 RBSL2-talB (SEQ ID NO: 159); ZT-373是将 Suc-Tl lO菌株中 talB基 因的原始调控元件替换为人工调控元件 RBSU-talB (SEQ ID NO: 160); ZT-374 是将 Suc-Tl lO菌株中 toffl基因的原始调控元件替换为人工调控元件 RASZ¥-toffi (SEQ ID NO: 161) o
按照实施例 2的方法,对 Suc-Tl lO以及重组菌株 ZT-371、 ZT-372、 ZT-373、 ZT-374 进行厌氧发酵。 发酵结果见表 17。 结果表明, 在一定范围内, 随着 Tal酶活的提高, 丁 二酸的产量和转化率均显著提高 (图 13 ), 其中最优值出现在当 Tal酶活处于中等活性 ( Tal: 0.20 U/mg)时, 此时菌株 ZT-372的丁二酸产量和转化率分别为 338 mM和 1.42 mol/mol, 比出发菌株 Suc-Tl lO分别提高了 27%和 27%。 Tal酶活的提高, 有利于 PPP 的激活, 能够提供更多的还原力供给重组菌株丁二酸的合成。
但是, 在此基础上继续提高 Tal的酶活, 丁二酸产量和转化率均有不同程度的降低 (图 13 )。 拥有更高 Tal酶活的菌株 ZT-374 ( Tal: 0.26 U/mg) 的丁二酸产量和转化率 分别为 309 mM和 1.30 mol/mol, 比 ZT-372降低了 8%和 8%。 表 17: 提高 Suc-Tl lO菌株的 TalB酶活对丁二酸生产的影响
细胞量 丁二酸产 丁二酸产率 Tal酶活 发酵产物 nM) 菌株 a 遗传修饰
(g/L) 率 (g/g) (mol/mol) (U/mg) 丁二酸 乙酸
Suc-Tl lO 1.53 0.73±0.01 1.12±0.01 0.054±0.001 267±3 90±4
Suc-Tl lO,
ZT-371 1.46 0.90±0.01 1.36±0.01 0.14±0.02 324±3 68±7
RBSLl-talB
Suc-Tl lO,
ZT-372 1.40 0.90±0.01 1.42±0.01 0.20±0.03 338±5 62±9
RBSL2-talB
Suc-Tl lO,
ZT-373 1.55 0.88±0.01 1.35±0.01 0.23±0.01 321±3 55±4
RBSL3-talB
ZT-374 Suc-Tl lO, 1.54 0.83±0.01 1.30±0.02 0.26±0.03 309±4 75±7 RBSL4-talB
a使用 500 ml的发酵罐, 发酵培养基为 250 ml。 发酵培养基中加入了 100 mM KHC03。 使用的中和剂为 2.4 M K2C03和 1.2 M KOH。 初始葡萄糖浓度为 238 mM。 参考文献:
Amann E, Ochs B, Abel KJ (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69:301-315.
Chatterjee R, Millard CS, Champion K, Clark DP, Donnelly MI (2001) Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 67: 148-154.
Cheng KK, Wang GY, Zeng J, Zhang JA (2013) Improved succinate production by metabolic engineering. BioMed Res Int 2013 :538790.
Datsenko KA, Wanner BL (2000) One- step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640-6645.
Donnelly MI, Millard CS, Clark DP, Chen MJ, Rathke JW (1998) A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol. Appl Biochem Biotechnol 70-72: 187-198.
Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127-6145.
Glassner D, Datta R (1992) Process for the production and purification of succinic acid. US patent 5143834.
Guettler M, Jain M, Soni B (1996) Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms. US patent 5504004.
Gunsalus IC, Hand DB (1941) The use of bacteria in the chemical determination of total vitamin C. J Biol Chem 141 :853-858.
Jantama K, Haupt MJ, Zhang X, Moore JC, Shanmugam KT, Ingram LO (2008)
Materials and methods for efficient succinate and malate production. PCT/US2008/057439.
Jantama K, Haupt MJ, Svoronos SA, Zhang X, Moore JC, Shanmugam KT, Ingram LO (2008a) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng 99: 1140-1153.
Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO (2008b) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 101 :881-893.
Kabir mM, Shimizu K (2003) Gene expression patterns for metabolic pathway in pgi knockout Escherichia coli with and without phb genes based on RT-PCR. J Bacteriol 105 : 11-31.
Kim P, Laivenieks M, Vieille C, Zeikus JG (2004) Effect of overexpression of Actinobacillus succinogenes phosphoenolpymvate carboxy kinase on succinate production in Escherichia coli. Appl Environ Microbiol 70: 1238-1241.
Kim YM, Cho HS, Jung GY, Park JM (2011) Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli. Biotechnol Bioeng 108:2941-2946.
Kwon YD, Lee SY, Kim P (2006) Influence of gluconeogenic phosphoenolpymvate carboxy kinase (PCK) expression on succinic acid fermentation in Escherichia coli under high bicarbonate condition. J Microbiol Biotechnol 16: 1448-1452.
Lamed R, Zeikus JG (1980) Glucose Fermentation Pathway of Thermoanaerobium-Brockii . J B acted ol 141 : 1251-1257.
Lee PC, Lee SY, Hong SH, Chang HN (2002) Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl Microbiol Biotechnol 58:663-668.
Lee WH, Park JB, Park K, Kim MD, Seo JH (2007) Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl Microbiol Biotechnol 76:329-338.
Lee WH, Kim MD, Jin YS, Seo JH (2013) Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl Microbiol Biotechnol 97:2761-2772.
Lu J, Tang J, Liu Y, Zhu X, Zhang T, Zhang X (2012) Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl Microbiol Biotechnol 93 :2455-2426.
McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727-740.
Millard CS, Chao YP, Liao JC, Donnelly MI (1996) Enhanced production of succinic acid by overexpression of phosphoenolpymvate carboxylase in Escherichia coli. Appl Environ Microbiol 62: 1808-1810.
Mok YK, Clark DR, Kam KM, Shaw PC, Bsi YI, (1991) A novel thermophilic restriction endonuclease that recognizes 5' CCNNNNNNNGG 3' and the discovery of a wrongly sequenced site in pACYC177. Nucleic Acids Res 19:2321-2323.
Padilla L, Kramer R, Stephanopoulos Q Agosin E (2004) Overproduction of trehalose: Heterologous expression of Escherichia coli trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in Coryne bacterium glutamicum. Appl Environ Microbiol70:370-376.
Papagianni M (2012) Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microb Cell Fact 11 :50.
Sanchez AM, Bennett GN, San KY (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7:229-239.
Scholten E, Renz T, Thomas J (2009) Continuous cultivation approach for fermentative succinic acid production from crude glycerol by Basfia succiniciproducens DDI . Biotechnol Lett 31 : 1947-1951.
Siedler S, B ringer S, Blank LM, Bott M (2012) Engineering yield and rate of reductive biotransformation in Escherichia coli by partial cyclization of the pentose phosphate pathway and PTS-independent glucose transport. Appl Microbiol Biotechnol 93 : 1459-1467.
Sob ota JM, Imlay JA (2011) Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc Natl Acad Sci USA 108:5402-5407.
Sprenger GA (1995) Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch Microbiol 164:324-330.
Sprenger GA, Schorken U, Sprenger Q Sahm H (1995) Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme fromrecombinant strains. J Bacteriol 177:5930-5936. Stanford DR, Whitney ML, Hurto RL, Eisaman DM, Shen WC, Hopper AK (2004) Division of labor among the yeast sol proteins implicated in tRNA nuclear export and carbohydrate metabolism. Genetics 168: 117-127.
Vemuri GN, Eiteman MA, Altman E (2002) Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J Ind Microbiol Biotechnol 28:325-332.
Zhang X, Jantama K, Moore JC, Jarboe LR, Shanmugam KT, Ingram LO (2010) Engineering the pathway for succinate production. PCT/US2010/029728.
Zhang X, Jantama K, Moore JC, Jarboe LR, Shanmugam KT, Ingram LO (2009a) Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci USA 106:20180-20185.
Zhang X, Jantama K, Shanmugam KT, Ingram LO (2009b) Reengineering Escherichia coli for succinate production in mineral salts medium. Appl Environ Microbiol 75 :7807-7813.
Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y (2013) Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab Eng 17:42-50.

Claims

权 利 要 求 书
1. 一种重组大肠杆菌, 所述大肠杆菌中含有如下修饰:
(1) 磷酸烯醇式丙酮酸 -糖磷酸转移酶系统 (PTS)中所涉及的基因表达的抑制、和 /或磷酸烯醇式丙酮酸 -糖磷酸转移酶系统 (PTS)中所涉及的基因所编码的蛋白质活性的 抑制,
(2) pflB和 /或 adhE基因表达的抑制、 和 /或 pflB和 /或 adhE基因所编码的蛋白质活 性的抑制,
(3) WM基因表达的抑制、 和 /或 基因所编码的蛋白质活性的抑制, 和
(4) galP基因和 /或外源 gZ/基因表达的增强、和 /或 galP基因和 /或外源 g//基因所编 码的蛋白质活性的增强;
其中所述大肠杆菌还含有如下的一或多种修饰:
(a) 磷酸戊糖途径 (PPP)中所涉及的基因表达的增强、 和 /或磷酸戊糖途径 (PPP) 中所涉及的基因所编码的蛋白质活性的增强; 和
(b) 基因表达的增强、 和 /或 基因所编码的蛋白质活性的增强。
2. 权利要求 1 的大肠杆菌, 其中所述磷酸烯醇式丙酮酸 -糖磷酸转移酶系统 (PTS)中所涉及的基因是选自如下的一或多种基因: 编码 PTS系统酶 I的基因 /^/、 编 码 PTS系统酶 Hpr的基因 ptsH、 编码 PTS系统酶 nAek的基因 err和编码 PTS系统酶 IICBGlc的基因 ptsG。
3. 权利要求 1或 2的大肠杆菌, 其中所述磷酸戊糖途径中所涉及的基因是选 自如下的一或多种基因: 编码转酮醇酶的基因 tktA、 编码 6-磷酸葡萄糖脱氢酶的基因 zwf, 编码 6-磷酸葡糖酸内酯酶的基因/ ¾/、 编码 6-磷酸葡萄糖酸脱氢酶的基因 编 码 5-磷酸核糖异构酶的基因 rpi、 编码 5-磷酸核酮糖差向异构酶的基因 rpe和编码转醛 醇酶的基因 talB。
4. 权利要求 3 的大肠杆菌, 其中所述磷酸戊糖途径中所涉及的基因是选自如 下的一或多种基因: 编码转酮醇酶的基因 fl¾4、 编码 6-磷酸葡萄糖脱氢酶的基因 zvv/、 编码 6-磷酸葡糖酸内酯酶的基因 pgl、 编码 6-磷酸葡萄糖酸脱氢酶的基因 ^^和编码转 醛醇酶的基因 talB。
5. 权利要求 3或 4的大肠杆菌, 其中所述大肠杆菌中 sthA基因和 tktA基因的 表达增强、 和 /或 sthA基因和 tktA基因所编码的蛋白质活性的增强。
6. 权利要求 1-5任一项的大肠杆菌, 其中所述大肠杆菌还含有如下的修饰:
(5) ackA和 pta基因表达的抑制、和 /或 ackA和 pta基因所编码的蛋白质活性的抑制;
(6) aceBA基因簇表达的增强、 和 /或 BA基因簇所编码的蛋白质活性的增强;
(7) ^Μ<:基因表达的增强、 和 /或 基因所编码的蛋白质活性的增强; 和
(8) mgsA基因表达的抑制、 和 /或 mg 基因所编码的蛋白质活性的抑制。
7. 权利要求 1-6任一项的大肠杆菌, 其中所述大肠杆菌中还含有突变的 IpdA 基因, 其所编码的多肽在对应于 SEQ ID No.: l所示氨基酸序列的如下位置的位置上含 有修饰: T81、 Ρ275和 Α358, 对应的位置是通过与 SEQ ID Νο.: 1进行序列比对而确定 的, 任选其中在对应于 T81的位置上的修饰是用 I置换 Τ, 在对应于 Ρ275的位置上的 修饰是用 S置换 Ρ, 以及在对应于 Α358的位置上的修饰是用 V置换 Α,
任选地, 所述大肠杆菌中所述突变的 Ζ/^Μ基因的表达增强、 和 /或所述突变的 Ζ/^ 基因所编码的蛋白质的活性增强。
8. 权利要求 7的大肠杆菌, 其中所述突变的 Ζ/^Μ基因位于质粒或染色体中。
9. 权利要求 7的大肠杆菌, 其中所述大肠杆菌以保藏号 CGMCC 7260保藏于 CGMCC。
10. 权利要求 1-8任一项的大肠杆菌,其中所述大肠杆菌还含有如下的修饰: (9) 基因表达的增强、 和 /或 基因所编码的蛋白质活性的增强。
11. 权利要求 10的大肠杆菌,其中所述大肠杆菌以保藏号 CGMCC 7259保藏于 CGMCC。
12. 权利要求 10的大肠杆菌, 其中所述大肠杆菌还含有如下修饰:
(10) Ωί//^基因表达的抑制、 和 /或 Ωί//^基因所编码的蛋白质活性的抑制; 和 (11) tdcDE基因簇表达的抑制、和 /或 tdcDE基因簇所编码的蛋白质活性的抑制。
13. 权利要求 12的大肠杆菌,其中所述大肠杆菌以保藏号 CGMCC 7550保藏于 CGMCC。
14. 权利要求 10的大肠杆菌,其中所述大肠杆菌还含有如下的遗传改造: aceEF 基因簇表达的增强、 和 /或 ^eEF基因簇所编码的蛋白质活性的增强。
15. 生产丁二酸的方法, 所述方法包括培养权利要求 1- 14任一项的大肠杆菌。
16. 权利要求 1- 14任一项的大肠杆菌在生产丁二酸中的用途。
PCT/CN2014/078284 2013-05-24 2014-05-23 生产丁二酸的重组大肠杆菌及其应用 WO2014187357A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/891,776 US10006063B2 (en) 2013-05-24 2014-05-23 Recombinant Escherichia coli for producing succinate acid and application thereof
EP14800490.6A EP3006556B1 (en) 2013-05-24 2014-05-23 Recombinant escherichia coli for producing succinic acid and application thereof
CA2913197A CA2913197C (en) 2013-05-24 2014-05-23 Recombinant e. coli for producing succinate and use thereof
JP2016514268A JP6191061B2 (ja) 2013-05-24 2014-05-23 コハク酸を生産するための組換え大腸菌、及び組み換え大腸菌の使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310198953.9A CN104178443B (zh) 2013-05-24 2013-05-24 生产丁二酸的重组大肠杆菌及其应用
CN201310198953.9 2013-05-24

Publications (1)

Publication Number Publication Date
WO2014187357A1 true WO2014187357A1 (zh) 2014-11-27

Family

ID=51932910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078284 WO2014187357A1 (zh) 2013-05-24 2014-05-23 生产丁二酸的重组大肠杆菌及其应用

Country Status (6)

Country Link
US (1) US10006063B2 (zh)
EP (1) EP3006556B1 (zh)
JP (1) JP6191061B2 (zh)
CN (1) CN104178443B (zh)
CA (1) CA2913197C (zh)
WO (1) WO2014187357A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605280B2 (en) 2013-05-24 2017-03-28 Tianjin Institute Of Industrial Biotechnology, Chinese Academy Of Sciences Escherichia coli containing mutated lpdA gene and application thereof
WO2020168407A1 (en) * 2019-02-20 2020-08-27 Braskem S.A. Microorganisms and methods for the production of oxygenated compounds from hexoses

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647642B2 (en) 2008-09-18 2014-02-11 Aviex Technologies, Llc Live bacterial vaccines resistant to carbon dioxide (CO2), acidic PH and/or osmolarity for viral infection prophylaxis or treatment
KR102266177B1 (ko) * 2013-07-23 2021-06-17 피티티 글로벌 케미컬 퍼블릭 컴퍼니 리미티드 당 이입을 위해 촉진 확산을 이용한 석신산 및 기타 화학물질의 제조방법
US10301653B2 (en) 2015-07-06 2019-05-28 Wisconsin Alumni Research Foundation Microorganisms that co-consume glucose with non-glucose carbohydrates and methods of use
US11180535B1 (en) 2016-12-07 2021-11-23 David Gordon Bermudes Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
CN106995794B (zh) * 2017-04-19 2020-09-18 广西科学院 一种提高丁二酸产量的产琥珀酸放线杆菌工程菌株及其构建方法与用途
CN109652434B (zh) * 2019-02-25 2023-03-31 中国科学院天津工业生物技术研究所 一株以甘油为底物生产丁二酸的重组菌及其构建方法与应用
CN112575041B (zh) * 2019-09-30 2022-12-13 江南大学 一种混合碳源高效发酵生产phb的工程菌及其应用
CN112852692B (zh) * 2020-04-14 2022-05-31 中国科学院天津工业生物技术研究所 一种产1,5-戊二胺-丁二酸盐的重组大肠杆菌及其构建方法与应用
CN114457122B (zh) * 2020-05-13 2023-06-20 安徽华恒生物科技股份有限公司 生产l-缬氨酸的重组微生物及构建方法、应用
CN112280725B (zh) * 2020-10-29 2022-08-30 江南大学 一种高效生产琥珀酸的重组大肠杆菌及其构建方法
WO2023093796A1 (zh) * 2021-11-24 2023-06-01 中国科学院天津工业生物技术研究所 一种高产丁二酸的耐酸酵母菌株及其构建方法和应用
CN116064546A (zh) * 2022-11-21 2023-05-05 中国科学院天津工业生物技术研究所 一种调控丁酸生产的启动子及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143834A (en) 1986-06-11 1992-09-01 Glassner David A Process for the production and purification of succinic acid
US5504004A (en) 1994-12-20 1996-04-02 Michigan Biotechnology Institute Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms
CN101023178A (zh) * 2004-09-17 2007-08-22 莱斯大学 高琥珀酸产出细菌
CN101128577A (zh) * 2004-12-22 2008-02-20 密歇根生物技术研究所 一种提高有机酸产量的重组微生物
WO2009062190A2 (en) * 2007-11-10 2009-05-14 Joule Biotechnologies, Inc. Hyperphotosynthetic organisms
CN102174455A (zh) * 2011-01-28 2011-09-07 天津工业生物技术研究所 生产丁二酸的大肠杆菌基因工程菌及其构建方法与应用
CN102803470A (zh) * 2009-04-02 2012-11-28 佛罗里达大学研究基金会公司 针对生产琥珀酸路径的工程方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869766B (zh) * 2010-04-21 2015-11-25 帝斯曼知识产权资产管理有限公司 适于发酵混合的糖组合物的细胞
RU2466186C2 (ru) 2010-11-13 2012-11-10 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов" (ФГУП "ГосНИИгенетика") БАКТЕРИЯ Escherichia coli - ПРОДУЦЕНТ ЯНТАРНОЙ КИСЛОТЫ И СПОСОБ ПОЛУЧЕНИЯ ЯНТАРНОЙ КИСЛОТЫ
WO2012071439A1 (en) * 2010-11-22 2012-05-31 The Regents Of The University Of California Host cells and methods for producing diacid compounds
CA2834379A1 (en) * 2011-04-29 2012-11-01 The Goodyear Tire & Rubber Company Production of mevalonate, isoprene, and isoprenoids using genes encoding polypeptides having thiolase, hmg-coa synthase and hmg-coa reductase enzymatic activities
EP2877568B1 (en) * 2012-07-25 2021-04-28 Cargill, Incorporated Yeast cells having reductive tca pathway from pyruvate to succinate and overexpressing an exogenous nad(p)+ transhydrogenase enzyme
US9932611B2 (en) 2012-10-22 2018-04-03 Genomatica, Inc. Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing succinate related thereto
CN104178442B (zh) 2013-05-24 2017-10-31 中国科学院天津工业生物技术研究所 含有突变的lpdA基因的大肠杆菌及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143834A (en) 1986-06-11 1992-09-01 Glassner David A Process for the production and purification of succinic acid
US5504004A (en) 1994-12-20 1996-04-02 Michigan Biotechnology Institute Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms
CN101023178A (zh) * 2004-09-17 2007-08-22 莱斯大学 高琥珀酸产出细菌
CN101128577A (zh) * 2004-12-22 2008-02-20 密歇根生物技术研究所 一种提高有机酸产量的重组微生物
WO2009062190A2 (en) * 2007-11-10 2009-05-14 Joule Biotechnologies, Inc. Hyperphotosynthetic organisms
CN102803470A (zh) * 2009-04-02 2012-11-28 佛罗里达大学研究基金会公司 针对生产琥珀酸路径的工程方法
CN102174455A (zh) * 2011-01-28 2011-09-07 天津工业生物技术研究所 生产丁二酸的大肠杆菌基因工程菌及其构建方法与应用

Non-Patent Citations (67)

* Cited by examiner, † Cited by third party
Title
AMANN E; OCHS B; ABEL KJ: "Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli", GENE, vol. 69, 1988, pages 301 - 315
CHATTERJEE ET AL., APPL ENVIRON MICROBIOL, vol. 67, 2001, pages 148 - 154
CHATTERJEE R; MILLARD CS; CHAMPION K; CLARK DP; DONNELLY MI: "Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli", APPL ENVIRON MICROBIOL, vol. 67, 2001, pages 148 - 154
CHENG KK; WANG GY; ZENG J; ZHANG JA: "Improved succinate production by metabolic engineering", BIOMED RES INT, 2013, pages 538790
DATSENKO KA; WANNER BL: "One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products", PROC NATL ACAD SCI USA, vol. 97, no. 12, 2000, pages 6640 - 6645
DATSENKO; WANNER, PROC NATL ACAD SCI USA, vol. 97, 2000, pages 6640 - 6645
DONNELLY ET AL., APPL BIOCHEM BIOTECHNOL, vol. 70-72, 1998, pages 187 - 198
DONNELLY MI; MILLARD CS; CLARK DP; CHEN MJ; RATHKE JW: "A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol", APPL BIOCHEM BIOTECHNOL, vol. 70-72, 1998, pages 187 - 198
DOWER ET AL., NUCLEIC ACIDS RES, vol. 16, 1988, pages 6127 - 6145
DOWER WJ; MILLER JF; RAGSDALE CW: "High efficiency transformation of E. coli by high voltage electroporation", NUCLEIC ACIDS RES, vol. 16, 1988, pages 6127 - 6145
GUNSALUS ET AL., J BIOL CHEM, vol. 141, 1941, pages 853 - 858
GUNSALUS IC; HAND DB: "The use of bacteria in the chemical determination of total vitamin C", J BIOL CHEM, vol. 141, pages 853 - 858
JANTAMA ET AL., BIOTECHNOL BIOENG, vol. 101, 2008, pages 881 - 893
JANTAMA ET AL., BIOTECHNOL BIOENG, vol. 99, 2008, pages 1140 - 1153
JANTAMA K; HAUPT MJ; SVORONOS SA; ZHANG X; MOORE JC; SHANMUGAM KT; INGRAM LO: "Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate", BIOTECHNOL BIOENG, vol. 99, 2008, pages 1140 - 1153
JANTAMA K; ZHANG X; MOORE JC; SHANMUGAM KT; SVORONOS SA; INGRAM LO: "Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C", BIOTECHNOL BIOENG, vol. 101, 2008, pages 881 - 893
KABIR MM; SHIMIZU K: "Gene expression patterns for metabolic pathway in pgi knockout Escherichia coli with and without phb genes based on RT-PCR", J BACTERIOL, vol. 105, 2003, pages 11 - 31
KABIR; SHIMIZU, J BACTERIOL, vol. 105, 2003, pages 11 - 31
KIM ET AL., APPL ENVIRON MICROBIOL, vol. 70, 2004, pages 1238 - 1241
KIM P; LAIVENIEKS M; VIEILLE C; ZEIKUS JG: "Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli", APPL ENVIRON MICROBIOL, vol. 70, 2004, pages 1238 - 1241
KIM YM; CHO HS; JUNG GY; PARK JM: "Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli", BIOTECHNOL BIOENG, vol. 108, 2011, pages 2941 - 2946
KWON ET AL., J MICROBIOL BIOTECHNOL, vol. 16, 2006, pages 1448 - 1452
KWON YD; LEE SY; KIM P: "Influence of gluconeogenic phosphoenolpyruvate carboxykinase (PCK) expression on succinic acid fermentation in Escherichia coli under high bicarbonate condition", J MICROBIOL BIOTECHNOL, vol. 16, 2006, pages 1448 - 1452
LAMED ET AL., J BACTERIOL, vol. 141, 1980, pages 1251 - 1257
LAMED R; ZEIKUS JG: "Glucose Fermentation Pathway of Thermoanaerobium-Brockii", J BACTERIOL, vol. 141, 1980, pages 1251 - 1257
LEE ET AL., APPL MICROBIOL BIOTECHNOL, vol. 58, 2002, pages 663 - 668
LEE PC; LEE SY; HONG SH; CHANG HN: "Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen", APPL MICROBIOL BIOTECHNOL, vol. 58, 2002, pages 663 - 668
LEE WH; KIM MD; JIN YS; SEO JH: "Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation", APPL MICROBIOL BIOTECHNOL, vol. 97, 2013, pages 2761 - 2772
LEE WH; PARK JB; PARK K; KIM MD; SEO JH: "Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene", APPL MICROBIOL BIOTECHNOL, vol. 76, 2007, pages 329 - 338
LU ET AL., APPL MICROBIOL BIOTECHNOL, vol. 93, 2012, pages 2455 - 2426
LU ET AL., APPL MICROBIOL BIOTECHNOL, vol. 93, 2012, pages 2455 - 2462
LU ET AL., APPL MICROBIOL BIOTECHNOL., vol. 93, 2012, pages 2455 - 2462
LU J; TANG J; LIU Y; ZHU X; ZHANG T; ZHANG X: "Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization", APPL MICROBIOL BIOTECHNOL, vol. 93, 2012, pages 2455 - 2426
MCKINLAY ET AL., APPL MICROBIOL BIOTECHNOL, vol. 76, 2007, pages 727 - 740
MCKINLAY JB; VIEILLE C; ZEIKUS JG: "Prospects for a bio-based succinate industry", APPL MICROBIOL BIOTECHNOL, vol. 76, 2007, pages 727 - 740
MICHAEL R. GREEN; JOSEPH SAMBROOK: "Molecular Cloning: A Laboratory Manual (Fourth Edition)", .
MILLARD CS; CHAO YP; LIAO JC; DONNELLY MI: "Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli", APPL ENVIRON MICROBIOL, vol. 62, 1996, pages 1808 - 1810
MILLARD ET AL., APPL ENVIRON MICROBIOL, vol. 62, 1996, pages 1808 - 1810
MOK ET AL., NUCLEIC ACIDS RES, vol. 19, 1991, pages 2321 - 2323
MOK YK; CLARK DR; KAM KM; SHAW PC; BSI YI: "A novel thermophilic restriction endonuclease that recognizes 5' CCNNNNNNNGG 3' and the discovery of a wrongly sequenced site in pACYC177", NUCLEIC ACIDS RES, vol. 19, 1991, pages 2321 - 2323
PADILLA L; KRAMER R; STEPHANOPOULOS G; AGOSIN E: "Overproduction of trehalose: Heterologous expression of Escherichia coli trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in Corynebacterium glutamicum", APPL ENVIRON MICROBIOL, vol. 70, 2004, pages 370 - 376
PAPAGIANNI M: "Recent advances in engineering the central carbon metabolism of industrially important bacteria", MICROB CELL FACT, vol. 11, 2012, pages 50
SANCHEZ AM; BENNETT GN; SAN KY: "Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity", METAB ENG, vol. 7, 2005, pages 229 - 239
SANCHEZ ET AL., METAB ENG, vol. 7, 2005, pages 229 - 239
SCHOLTEN E; RENZ T; THOMAS J: "Continuous cultivation approach for fermentative succinic acid production from crude glycerol by Basfia succiniciproducens DDI", BIOTECHNOL LETT, vol. 31, 2009, pages 1947 - 1951
SCHOLTEN ET AL., BIOTECHNOL LETT, vol. 31, 2009, pages 1947 - 1951
See also references of EP3006556A4
SIEDLER S; BRINGER S; BLANK LM; BOTT M: "Engineering yield and rate of reductive biotransformation in Escherichia coli by partial cyclization of the pentose phosphate pathway and PTS-independent glucose transport", APPL MICROBIOL BIOTECHNOL, vol. 93, 2012, pages 1459 - 1467
SOBOTA JM; IMLAY JA: "Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese", PROC NATL ACAD SCI USA, vol. 108, 2011, pages 5402 - 5407
SPRENGER ET AL., J BACTERIOL, vol. 177, 1995, pages 5930 - 5936
SPRENGER GA: "Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12", ARCH MICROBIOL, vol. 164, 1995, pages 324 - 330
SPRENGER GA; SCHORKEN U; SPRENGER G; SAHM H: "Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains", J BACTERIOL, vol. 177, 1995, pages 5930 - 5936
STANFORD DR; WHITNEY ML; HURTO RL; EISAMAN DM; SHEN WC; HOPPER AK: "Division of labor among the yeast sol proteins implicated in tRNA nuclear export and carbohydrate metabolism", GENETICS, vol. 168, 2004, pages 117 - 127
STANFORD ET AL., GENETICS, vol. 168, 2004, pages 117 - 127
VEMURI ET AL., J IND MICROBIOL BIOTECHNOL, vol. 28, 2002, pages 325 - 332
VEMURI ET AL., J. IND. MICROBIOL BIOTECHNOL, vol. 28, 2002, pages 325 - 332
VEMURI GN; EITEMAN MA; ALTMAN E: "Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions", J IND MICROBIOL BIOTECHNOL, vol. 28, 2002, pages 325 - 332
WANNER; DATSENKO, PROC NATL ACAD SCI USA, vol. 97, 2000, pages 6640 - 6645
WU, QIONG ET AL.: "Research Progress on Fiber Hydrolyzate Fermentation Production of Succinate", FOOD AND FERMENTATION INDUSTRIES, vol. 38, no. 9, 30 September 2012 (2012-09-30), XP008182510 *
ZHANG ET AL., AEM, vol. 75, 2009, pages 7807 - 7813
ZHANG ET AL., APPL ENVIRON MICROBIOL, vol. 75, 2009, pages 7807 - 7813
ZHANG ET AL., PROC NATL ACAD SCI USA, vol. 106, 2009, pages 20180 - 20185
ZHANG X; JANTAMA K; MOORE JC; JARBOE LR; SHANMUGAM KT; INGRAM LO: "Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli", PROC NATL ACAD SCI USA, vol. 106, 2009, pages 20180 - 20185
ZHANG X; JANTAMA K; SHANMUGAM KT; INGRAM LO: "Reengineering Escherichia coli for succinate production in mineral salts medium", APPL ENVIRON MICROBIOL, vol. 75, 2009, pages 7807 - 7813
ZHAO ET AL., MET ENG, vol. 17, 2013, pages 42 - 50
ZHAO J; LI Q; SUN T; ZHU X; XU H; TANG J; ZHANG X; MA Y: "Engineering central metabolic modules of Escherichia coli for improving ?-carotene production", METAB ENG, vol. 17, 2013, pages 42 - 50
ZHUGE JIAN ET AL.: "Industrial Microbiology Experimental Techniques Manual", 1994, CHINA LIGHT INDUSTRY PRESS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605280B2 (en) 2013-05-24 2017-03-28 Tianjin Institute Of Industrial Biotechnology, Chinese Academy Of Sciences Escherichia coli containing mutated lpdA gene and application thereof
WO2020168407A1 (en) * 2019-02-20 2020-08-27 Braskem S.A. Microorganisms and methods for the production of oxygenated compounds from hexoses

Also Published As

Publication number Publication date
JP6191061B2 (ja) 2017-09-06
US20160097064A1 (en) 2016-04-07
US10006063B2 (en) 2018-06-26
JP2016518145A (ja) 2016-06-23
CN104178443B (zh) 2017-04-12
CN104178443A (zh) 2014-12-03
CA2913197C (en) 2019-01-22
EP3006556A1 (en) 2016-04-13
CA2913197A1 (en) 2014-11-27
EP3006556A4 (en) 2016-11-30
EP3006556B1 (en) 2020-04-29

Similar Documents

Publication Publication Date Title
WO2014187357A1 (zh) 生产丁二酸的重组大肠杆菌及其应用
JP5836342B2 (ja) 効率的なコハク酸およびリンゴ酸の生産のための材料および方法
JP5826634B2 (ja) 新規微生物コハク酸生産菌及びコハク酸の精製
JP2019195330A (ja) 遺伝子操作された微生物からのムコン酸の生成
US11685938B2 (en) Muconic acid production from genetically engineered microorganisms
US8778656B2 (en) Organic acid production in microorganisms by combined reductive and oxidative tricaboxylic acid cylce pathways
JP5014998B2 (ja) 乳酸の製造法
NZ575237A (en) Novel engineered microorganism producing homo-succinic acid and method for preparing succinic acid using the same
CN104278003B (zh) 生产d-乳酸的重组大肠杆菌及其应用
CN104178442B (zh) 含有突变的lpdA基因的大肠杆菌及其应用
CN109929786B (zh) 发酵法生产酪氨酸的大肠杆菌及其构建方法与应用
Fukui Studies on Microbial Succinate Production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800490

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14891776

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016514268

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2913197

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014800490

Country of ref document: EP