WO2014187082A1 - 有机电致发光器件及显示装置 - Google Patents

有机电致发光器件及显示装置 Download PDF

Info

Publication number
WO2014187082A1
WO2014187082A1 PCT/CN2013/087039 CN2013087039W WO2014187082A1 WO 2014187082 A1 WO2014187082 A1 WO 2014187082A1 CN 2013087039 W CN2013087039 W CN 2013087039W WO 2014187082 A1 WO2014187082 A1 WO 2014187082A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic electroluminescent
electroluminescent device
layer
cathode
energy level
Prior art date
Application number
PCT/CN2013/087039
Other languages
English (en)
French (fr)
Inventor
焦志强
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP13840127.8A priority Critical patent/EP3001473B1/en
Priority to JP2016514245A priority patent/JP6339181B2/ja
Priority to KR1020147010145A priority patent/KR101686718B1/ko
Priority to US14/347,866 priority patent/US9755162B2/en
Publication of WO2014187082A1 publication Critical patent/WO2014187082A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Definitions

  • Embodiments of the present invention relate to an organic electroluminescent device and a display device. Background technique
  • An organic light emitting device is composed of a cathode and an anode, and a hole transporting layer, a light emitting layer and an electron transporting layer disposed between the anode and the cathode.
  • OLED organic light emitting device
  • the holes generated by the anode and the electrons generated by the cathode are recombined in the light-emitting layer through the hole transport layer and the electron transport layer, respectively, to cause the light-emitting layer to be bright, depending on the light-emitting layer.
  • Different formulas produce light of three primary colors of red, green and blue RGB, which constitute the basic color of the display.
  • the number of electrons in the light-emitting layer of the organic electroluminescent device is small, and the number of holes is often more than The number of electrons, the number of holes and electrons do not match, which results in lower luminous efficiency of the organic electroluminescent device.
  • An embodiment of the present invention provides an organic electroluminescent device comprising an anode, a cathode, a light-emitting layer disposed between the anode and the cathode, and a method further comprising:
  • An electron transport layer disposed between the cathode and the light-emitting layer, the material of the electron transport layer comprising an organometallic chelate.
  • the lowest unoccupied orbital LUMO energy level of the organometallic chelate is
  • the organometallic chelate has a highest occupied orbital HOMO level of greater than or equal to -6.0 eV, and a hole blocking layer is further disposed between the light emitting layer and the electron transporting layer.
  • the organometallic chelate has a highest occupied orbital HOMO level of less than -6.0 eV, and the luminescent layer and the electron transport layer are in direct contact.
  • the lowest unoccupied orbital LUMO energy level of the organometallic chelate is -3.9eV ⁇ - 3.3eV.
  • the lowest unoccupied orbital LUMO level of the organometallic chelate is greater than the lowest unoccupied orbital LUMO level of the cathode and less than the lowest unoccupied orbital LUMO level of the emissive layer, and The absolute value of the difference between the lowest unoccupied orbital LUMO level of the organometallic chelate and the lowest unoccupied orbital LUMO level of the cathode is less than or equal to 1.2 eV.
  • the absolute value of the difference between the lowest unoccupied orbital LUMO level of the organometallic chelate and the lowest unoccupied orbital LUMO level of the cathode is less than or equal to 0.9 eV.
  • the absolute value of the difference between the lowest unoccupied orbital LUMO level of the organometallic chelate and the lowest unoccupied orbital LUMO level of the cathode is less than or equal to 0.6 eV.
  • the organometallic chelate comprises CuPc or ZnPc.
  • the anode is an indium tin oxide ITO pattern layer.
  • the organic electroluminescent device further includes:
  • a hole transport layer disposed between the anode and the light emitting layer; a hole injection layer disposed between the anode and the hole transport layer, disposed between the electron transport layer and the cathode Inter-electron injection layer.
  • the organic electroluminescent device is a tandem stacked structure.
  • Another embodiment of the present invention provides a display device comprising the above-described organic electroluminescent device.
  • the organic electroluminescent device and the display device provided by the embodiments of the present invention can significantly improve the electron injection and transmission efficiency of the OLED device by using the metal chelate compound as the material of the electron transport layer, thereby balancing the holes in the luminescent layer and The amount of electrons significantly increases the luminous efficiency of the device.
  • FIG. 1 is a schematic cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing current density-voltage-luminance curves of two devices under different driving voltages
  • Figure 3 is a graph showing the current efficiency-current density curves of the two devices at different current densities. detailed description
  • An embodiment of the present invention provides an organic electroluminescent device, as shown in Figure 1, the organic electroluminescent device comprises an anode 11, a cathode 12, a light-emitting layer 13 disposed between the anode 11 and the cathode 12; A hole transport layer 14 disposed between the anode 11 and the light-emitting layer 13 and an electron transport layer 15 disposed between the cathode 12 and the light-emitting layer 13 are provided.
  • the hole transport layer 14 is for transporting holes generated by the anode 11 to the light-emitting layer 13, and the electron transport layer 15 is for transporting electrons generated by the cathode 12 to the light-emitting layer 13.
  • the material of the electron transport layer in the embodiment of the invention includes an organometallic chelate.
  • the organic electroluminescent device provided by the embodiment of the invention adopts a metal chelate compound as a material of the electron transport layer, which can obviously improve the electron injection and transmission efficiency of the OLED device, thereby balancing the number of holes and electrons in the light-emitting layer. Significantly improve the luminous efficiency of the device.
  • the LUMO (Loss Unoccupied Molecular Orbital) energy level of the organometallic chelate is -4.2 eV to -3.0 eV
  • a hole blocking is further disposed between the light emitting layer 13 and the electron transport layer 15.
  • Layer 16 It should be noted here that the LUMO is an electron transport level and the HOMO is a hole transport level.
  • the organometallic chelate has a LUMO energy level of -4.2 eV to -3.0 eV, a HOMO energy level of less than -6.0 eV, and an organometallic chelate compound having a HOMO energy level of less than -6.0 eV.
  • the ability of the electron transport layer to block holes is high, and a hole blocking layer is not required, and the light emitting layer and the electron transport layer are in direct contact.
  • the above organometallic chelate compound has a LUMO level of -4.2 eV to 3.0 eV.
  • the LUMO energy level of the organometallic chelate may be, for example, -3.9 eV to -3.3 eV; or, -3.8 eV to - 3.4 eV. ; or, -3.7eV ⁇ - 3.5eV; or -3.6eV.
  • the organometallic chelate compound may be CuPc or ZnPc or the like.
  • the anode is an ITO (Indium Tin Oxides) pattern layer, and since the ITO as an anode is patterned, the surface of the anode is uneven, and light that cannot be totally reflected by the total reflection can be prevented from being totally reflected. It is emitted from the glass to enhance the light output.
  • ITO Indium Tin Oxides
  • the organic electroluminescent device further includes: a hole injection layer 17 disposed between the anode 11 and the hole transport layer 14 , and disposed on the electron transport layer An electron injection layer 18 is formed between the cathode and the cathode 12.
  • the anode 11 is a glass substrate with an ITO pattern.
  • the material of the hole injection layer 17 may be Mo03 or F4-TCNQ or the like.
  • the material of the hole transport layer 14 may be NPB or TPD or the like.
  • the material of the light-emitting layer 13 may be an organic high-molecular polymer, an organic small molecule fluorescent or phosphorescent material, etc., and the light-emitting layer may be a non-doped other monochromatic, mixed color, and white light-emitting layer, or may be doped. Other monochromatic, mixed colors and white luminescent layers.
  • the material of the hole blocking layer 16 may be an electron transport type material having a low LUMO level such as BCP.
  • the material of the electron transport layer 15 may be an organometallic chelate such as CuPc or the like.
  • the material of the electron injecting layer 18 may be a common electron injecting material such as LiF, Liq, CsF or Cs2C03.
  • the material of the cathode 12 may be Al. It should be noted here that the HOMO level of the electron transport layer CuPc is -5.2 eV (greater than -6.0 eV), so it is necessary to provide a hole blocking layer 16 between the electron transport layer 15 and the light-emitting layer 13 to block the space. The transmission of the hole.
  • the doped blue light emitting layer is taken as an example, and the blue light emitting layer doped body is
  • the dopant of the blue light-emitting layer is DSA-Ph ( l-4-di-[4-(N, N-diphenyl)amino] Styryl-benzene ).
  • the anode is an ITO pattern layer having a thickness of 150 nm; the hole injection layer material is Mo0 3 and having a thickness of 5 nm; the hole transport layer material is NPB and having a thickness of 40 nm; and the blue light-emitting layer material is MAND: DSA-Ph, thickness 30nm; hole blocking layer material is BCP, thickness is 10nm; electron transport layer material is CuPc thickness 35nm, electron injection layer material is LiF thickness lnm, cathode material is A1, thickness is 120nm .
  • the above organic light-emitting device is manufactured as follows: a transparent glass substrate with ITO (face resistance ⁇ 30 ⁇ /port), photolithographically formed a ruthenium pattern layer, and then the bismuth glass substrate is sequentially deionized water, acetone, and absolute ethanol. Wash in medium-ultrasonic environment, dry with ⁇ 2 and carry out 0 2 plasma (etc. Treatment of ions). Finally, the processed substrate is placed in the evaporation chamber, and the vacuum is lower than
  • the hole injection layer Mo0 3 (5 nm), the hole transport layer NPB (40 nm), and the blue light-emitting layer MAND:DSA-Ph were sequentially deposited on the ITO pattern layer by vacuum thermal evaporation. 3%) (30 nm), hole blocking layer BCP (lOnm), electron transport layer CuPc (35 nm), electron injection layer LiF (l ⁇ ), cathode Al (120 nm).
  • a metal cathode is used in the above evaporation process. A metal mask was used and the evaporation rate was 0.3 nm/s. The remaining layers were all open masks and the evaporation rate was 0.1 nm/s; the light-emitting area of the device was 3 mm x 3 mm.
  • an organic electroluminescent device is provided, except that the device uses Bphen to fabricate an electron transport layer, and no hole blocking layer is provided (since the HOMO level of Bphen is -6.4 eV is less than -6.0 eV, it can be 4 ⁇ )
  • the holes are well blocked, so that it is not necessary to provide a hole blocking layer.
  • the other functional layers are the same as those in the above organic electroluminescent device in which an electron transport layer is formed using CuPc.
  • the above organic electroluminescent device in which an electron transporting layer was formed using CuPc was compared with an organic electroluminescent device in which an electron transporting layer was produced by using Bphen.
  • the LUMO level of the cathode (A1) and the electron injection layer (LiF) is about -4.2 eV
  • the LUMO level of the electron transport layer (Bphen) is -2.9 eV
  • the LUMO level of the light-emitting layer (MAND:DSA-Ph) is approximately -2.5eV
  • the energy level between the electron transport layer Bphen (-2.9 eV) and the electron injection layer LiF (-4.2eV) is too high , requires a relatively large driving voltage.
  • the LUMO level of the cathode (A1) and the electron injecting layer (LiF) is about -4.2 eV
  • the LUMO level of the electron transporting layer (CuPc) is about -3.6 eV, which is empty.
  • the LUMO level of the hole barrier layer (BCP) is about -3.2eV
  • the LUMO level of the light-emitting layer (MAND:DSA-Ph) is about -2.5eV
  • the electron transport layer CuPc (-3.6eV) provided by the present invention is just right
  • a suitable electron transport level step is formed between the electron injection layer (-4.2eV) and the hole blocking layer (-3.2eV), which can effectively reduce the driving voltage.
  • the electron mobility of CuPc at an electric field of 3.0xl0 5 V/cm can be as high as possible.
  • the device provided by the above invention and the device provided by the comparative example are compared by experimental measurement.
  • the experimental measurements obtained Figures 2 and 3, wherein Figure 2 is a plot of current density-voltage-luminance for the two devices at different drive voltages.
  • Figure 3 is a plot of current efficiency versus current density for two devices at different current densities.
  • the current density and brightness of the device using the CuPc for the electron transport layer of the present invention are significantly increased, indicating that the electron injection of the device is remarkable. improve.
  • Device embodied as a maximum brightness from a 26700cd / m 2 to 56980 cd / m 2, to enhance the rate of about 113.4%; the maximum current efficiency from 8.98cd / A to increase the 11.3cd / A, to enhance the rate of about 26.2% . It can be seen from the above that the device for fabricating the electron transport layer by using CuPc has a much improved illumination performance than the device using Bphen for the electron transport layer.
  • a suitable energy level step is formed between the cathode and the light-emitting layer by selecting a metal chelate compound to form an electron transport layer, thereby improving electron injection efficiency.
  • the LUMO values of the above metal chelates are optimized according to the LUMO energy levels of the cathode and luminescent layers employed. For example, when the LUMO of the cathode or electron injecting layer is -4.2 eV and the LUMO of the light emitting layer is -2.5 eV, a metal chelate compound having a LUMO of -4.2 eV to 3.0 eV can be selected.
  • embodiments of the present invention further provide such an organic electroluminescent device: the lowest unoccupied orbital LUMO level of the organometallic chelate is greater than the lowest unoccupied orbital LUMO level of the cathode and less than the lowest unoccupied layer of the emissive layer
  • the orbital LUMO level, and the absolute value of the difference between the lowest unoccupied orbital LUMO level of the organometallic chelate and the lowest unoccupied orbital LUMO level of the cathode is less than or equal to 1.2 eV; or, the lowest of the organometallic chelate
  • the absolute value of the difference between the LUMO energy level of the orbital and the lowest unoccupied orbital LUMO energy level of the cathode is less than or equal to 0.9 eV; or the lowest unoccupied orbital LUMO energy level of the organometallic chelate compound and the lowest unoccupied orbital LUMO energy of the cathode
  • the absolute value of the difference between the levels is less than or equal to
  • the organic electroluminescent device in the embodiment of the present invention may also be a tandem stacked structure.
  • the serial stacked organic electroluminescent device shares an anode and a cathode, and a plurality of devices are connected in series, thereby improving the device. Luminous efficiency, extending the life of the device.
  • An embodiment of the present invention further provides a display device, where the display device includes the above organic electroluminescent device, and the display device may be an OLED display, an OLED display panel, a digital camera, a mobile phone, a tablet computer, or an electronic paper. A product or part that displays a function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件及显示装置,该有机电致发光器件,包括阳极(11),阴极(12),设置在该阳极(11)和阴极(12)之间的发光层(13);设置在该阴极(12)与该发光层(13)之间的电子传输层(15),该电子传输层(15)的材料为有机金属螯合物。

Description

有机电致发光器件及显示装置 技术领域
本发明的实施例涉及一种有机电致发光器件及显示装置。 背景技术
有机电致发光器件 ( Organic Light Emitting Device, 筒称 OLED )由阴极 和阳极, 以及设置在所述阳极和阴极之间的空穴传输层、 发光层与电子传输 层组成。 当阳极和阴极上的电压加载至适当值时, 阳极产生的空穴和阴极产 生的电子就会分别通过空穴传输层和电子传输层在发光层中复合, 使发光层 产生光亮, 依发光层配方不同产生红、 绿和蓝 RGB三原色的光, 构成显示 的基本色彩。
由于电子传输层的电子迁移率较低或者电子由阴极注入到电子传输层的 能级势垒太高, 导致有机电致发光器件的发光层中的电子数量较少, 往往是 空穴数多于电子数, 空穴和电子的数量不匹配, 这就造成有机电致发光器件 的发光效率较低。 发明内容
本发明的实施例提供一种有机电致发光器件, 包括阳极, 阴极, 设置在 所述阳极和阴极之间的发光层; 还包括:
设置在所述阴极与所述发光层之间的电子传输层, 所述电子传输层的材 料包括有机金属螯合物。
在一个示例中, 所述有机金属螯合物的最低未占轨道 LUMO 能级为
Figure imgf000002_0001
在一个示例中, 所述有机金属螯合物的最高已占轨道 HOMO 能级为大 于等于 -6.0eV, 所述发光层和所述电子传输层之间还设置有空穴阻挡层。
在一个示例中, 所述有机金属螯合物的最高已占轨道 HOMO 能级为小 于 -6.0eV, 所述发光层和所述电子传输层直 触。
在一个示例中, 所述有机金属螯合物的最低未占轨道 LUMO 能级为 -3.9eV〜- 3.3eV。
在一个示例中,所述有机金属螯合物的最低未占轨道 LUMO能级大于所 述阴极的最低未占轨道 LUMO 能级且小于所述发光层的最低未占轨道 LUMO能级, 且所述有机金属螯合物的最低未占轨道 LUMO能级与所述阴 极的最低未占轨道 LUMO能级之差的绝对值小于或等于 1.2eV。
在一个示例中,所述有机金属螯合物的最低未占轨道 LUMO能级与所述 阴极的最低未占轨道 LUMO能级之差的绝对值小于或等于 0.9eV。
在一个示例中,所述有机金属螯合物的最低未占轨道 LUMO能级与所述 阴极的最低未占轨道 LUMO能级之差的绝对值小于或等于 0.6eV。
在一个示例中, 所述有机金属螯合物包括 CuPc或 ZnPc。
在一个示例中, 所述阳极为氧化铟锡 ITO图案层。
在一个示例中, 该有机电致发光器件还包括:
设置在所述阳极与所述发光层之间的空穴传输层; 设置在所述阳极与所 述空穴传输层之间的空穴注入层, 设置在所述电子传输层与所述阴极之间的 电子注入层。
在一个示例中, 所述有机电致发光器件为串联叠层式结构。
本发明的另一个实施例提供一种显示装置, 包括上述的有机电致发光器 件。
本发明实施例提供的有机电致发光器件及显示装置, 通过采用金属螯合 物做为电子传输层的材料,可以明显提高 OLED器件的电子注入与传输效率, 进而平衡发光层中的空穴和电子数量, 明显提高器件的发光效率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为本发明实施例提供的一种有机电致发光器件的剖面结构示意图; 图 2为在不同的驱动电压下, 两种器件的电流密度-电压-亮度曲线示意 图;
图 3为在不同电流密度下, 两种器件的电流效率-电流密度曲线示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种有机电致发光器件, 如图 1所示, 所述有机电 致发光器件包括阳极 11 , 阴极 12,设置在所述阳极 11和阴极 12之间的发光 层 13;设置在所述阳极 11与所述发光层 13之间的空穴传输层 14,设置在所 述阴极 12与发光层 13之间的电子传输层 15。 所述空穴传输层 14用于将阳 极 11产生的空穴传输至所述发光层 13 , 所述电子传输层 15用于将阴极 12 产生的电子传输至发光层 13。在本发明实施例中所述电子传输层的材料包括 有机金属螯合物。
本发明实施例提供的有机电致发光器件, 采用了金属螯合物做为电子传 输层的材料, 可以明显提高 OLED器件的电子注入与传输效率, 进而平衡发 光层中的空穴和电子数量, 明显提高器件的发光效率。
在一个示例中, 所述有机金属螯合物的 LUMO ( Lowest Unoccupied Molecular Orbital, 最低未占轨道) 能级为 -4.2eV〜- 3.0eV, HOMO ( Highest Occupied Molecular Orbital, 最高已占轨道) 能级为大于等于 -6.0eV。 此时, 由于所述有机金属螯合物的 HOMO能级不能很好地阻挡空穴, 故如图 1所 示, 所述发光层 13和所述电子传输层 15之间还设置有空穴阻挡层 16。 在这 里需要说明的是, 所述 LUMO为电子传输能级, 所述 HOMO为空穴传输能 级。
在一个示例中, 所述有机金属螯合物的 LUMO 能级为 -4.2eV〜- 3.0eV, HOMO能级为小于 -6.0eV, 当有机金属螯合物的 HOMO能级低于 -6.0eV时, 电子传输层阻挡空穴的能力较高, 并不需要空穴阻挡层, 所述发光层和所述 电子传输层直接接触。
上述有机金属螯合物的 LUMO能级为 -4.2eV〜- 3.0eV。然而,为了更好地 在阴极和发光层之间形成合适的能级台阶,该有机金属螯合物的 LUMO能级 例如可以为 -3.9eV〜- 3.3eV; 或者, -3.8eV〜- 3.4eV; 或者, -3.7eV〜- 3.5eV; 或 者 -3.6eV。
例如, 所述有机金属螯合物可以是 CuPc或 ZnPc等。
例如, 所述阳极为 ITO ( Indium Tin Oxides, 氧化铟锡) 图案层, 由于 作为阳极的 ITO被图案化, 其表面高低不平可以将本来发生全反射无法出射 的光, 使其无法发生全反射而从玻璃中射出, 从而可以增强光输出。
可选的, 如图 1所示, 所述有机电致发光器件还包括: 设置在所述阳极 11与所述空穴传输层 14之间的空穴注入层 17, 设置在所述电子传输层 15 与所述阴极 12之间的电子注入层 18。
示例的, 所述阳极 11为带有 ITO图案的玻璃基板。 所述空穴注入层 17 的材料可以是 Mo03或 F4-TCNQ等。所述空穴传输层 14的材料可以是 NPB 或 TPD等。 所述发光层 13的材料可以是有机高分子聚合物、 有机小分子荧 光或磷光材料等, 所述发光层即可采用非掺杂其他单色、 混合色以及白色的 发光层, 也可以采用掺杂其他单色、 混合色以及白色的发光层。 所述空穴阻 挡层 16的材料可以是 BCP等具有低 LUMO能级的电子传输型材料。所述电 子传输层 15的材料可以是有机金属螯合物,如 CuPc等。所述电子注入层 18 的材料可以是 LiF、 Liq、 CsF或 Cs2C03等常见电子注入材料等。 所述阴极 12的材料可以是 Al。 在这里需要说明的是, 电子传输层 CuPc的 HOMO能 级为 -5.2eV (大于 -6.0eV ) , 故需要在电子传输层 15与所述发光层 13之间设 置空穴阻挡层 16来阻挡空穴的传输。
在本发明实施例中, 以掺杂蓝色的发光层为例, 蓝光发光层掺杂主体为
MAND ( 2-methyl-9, 10-bis(naphthalen-2-yl) anthracene ) , 蓝光发光层掺杂 客体为 DSA-Ph ( l-4-di-[4-(N, N-diphenyl)amino] styryl-benzene )。 在一个示 例中,所述阳极为 ITO图案层,厚度为 150nm;所述空穴注入层材料为 Mo03, 厚度为 5nm; 空穴传输层材料为 NPB, 厚度为 40nm; 蓝色发光层材料为 MAND:DSA-Ph, 厚度为 30nm; 空穴阻挡层材料为 BCP, 厚度为 10nm; 电 子传输层材料为 CuPc厚度为 35nm, 电子注入层材料为 LiF厚度为 lnm, 阴 极材料为 A1, 厚度为 120nm。
上述有机发光器件的制作方法如下: 带有 ITO (其面电阻 <30Ω/口)的透明 玻璃基底,经过光刻形成 ΙΤΟ图案层,然后依次将 ΙΤΟ玻璃基底在去离子水、 丙酮和无水乙醇中超声环境中清洗, 结束后用 Ν2吹干并进行 02 plasma (等 离子体) 的处理。 最后将处理好的基片置于蒸镀腔室中, 待真空度低于
5xl(T4Pa后, 通过真空热蒸镀的方式, 在 ITO图案层上依次沉积空穴注入层 Mo03(5nm) , 空穴传输层 NPB(40nm) , 蓝光发光层 MAND:DSA-Ph(3%) (30nm) , 空穴阻挡层 BCP(lOnm) , 电子传输层 CuPc(35nm), 电子注入层 LiF(l匪),阴极 Al(120nm)。上述蒸镀过程中,除 A1使用金属阴极掩膜板( metal mask )且蒸发速率为 0.3nm/s夕卜, 其余各层均使用开^掩膜板 (open mask)且 蒸发速率为 0.1nm/s; 器件的发光面积为 3mmx3mm。
为了进行比较, 提供了一种有机电致发光器件, 除了该器件采用 Bphen 制作电子传输层,且不设置空穴阻挡层(由于 Bphen的 HOMO能级为 -6.4eV 小于 -6.0eV, 可以 4艮好地阻挡空穴, 故并不需要设置空穴阻挡层)夕卜, 其他 各功能层都与上述采用 CuPc制作电子传输层的有机电致发光器件中的相同。 将上述采用 CuPc 制作电子传输层的有机电致发光器件, 与比较例的采用 Bphen制作电子传输层的有机电致发光器件进行比较。
比较例提供的采用 Bphen制作电子传输层的有机电致发光器件中, 阴极 ( A1 ) 以及电子注入层(LiF ) 的 LUMO 能级大约为 -4.2eV, 电子传输层 ( Bphen )的 LUMO能级为 -2.9 eV, 发光层( MAND:DSA-Ph )的 LUMO能 级大约为 -2.5eV; 电子传输层 Bphen ( -2.9 eV )与电子注入层 LiF ( -4.2eV ) 之间的能级台阶太高, 需要比较大的驱动电压。 而本发明提供的有机电致发 光器件中, 阴极(A1 ) 以及电子注入层 ( LiF )的 LUMO能级大约为 -4.2eV, 电子传输层(CuPc ) 的 LUMO能级为 -3.6 eV左右, 空穴阻挡层( BCP ) 的 LUMO能级大约为 -3.2eV, 发光层 ( MAND:DSA-Ph )的 LUMO能级大约为 -2.5eV; 本发明提供的电子传输层 CuPc ( -3.6eV ) 正好可以在电子注入层 ( -4.2eV )与空穴阻挡层(-3.2eV )之间形成合适的电子传输能级台阶, 可以 有效降低驱动电压。
更加重要的是, CuPc 在 3.0xl05V/cm 的电场下的电子迁移率可高达
9.04x1 (T4cm2/Vs, 而现有常用的电子传输材料 Bphen在 3.0xl05 V/cm 的电场 下的电子迁移率为 4.2xl(T4cm2/Vs,两者相比可知 CuPc的电子传输能力 4艮好, 即采用 CuPc制作电子传输层的有机电致发光器件的电子注入与传输效率更 好。
下面通过实验测量对上述本发明提供的器件和比较例提供的器件进行比 较, 实验测量获得图 2和图 3 , 其中, 图 2为在不同的驱动电压下, 两种器 件的电流密度-电压-亮度曲线图。 图 3为不同电流密度下, 两种器件的电流 效率 -电流密度曲线图。从图中可以看出,相对于采用 Bphen制作电子传输层 的器件, 本发明的采用 CuPc制作电子传输层的器件, 其电流密度和亮度有 了很明显的增加, 说明器件的电子注入得到了显著提高。 具体表现为器件的 最大亮度从 26700cd/m2提高到了 56980 cd/ m2, 提升幅度约为 113.4%; 而最 大电流效率则从 8.98cd/A提高到了 11.3cd/A, 提升幅度约为 26.2%。 由上可 知, 采用 CuPc制作电子传输层的器件, 要比采用 Bphen制作电子传输层的 器件, 其发光性能有了很大的提升。
在上述实施例中, 通过选择金属螯合物形成电子传输层而在阴极和发光 层之间形成合适的能级台阶, 从而提高电子的注入效率。 以上金属螯合物的 LUMO数值根据所采用的阴极和发光层的 LUMO能级而优化。 例如, 阴极 或电子注入层的 LUMO为 -4.2eV, 且发光层的 LUMO为 -2.5eV时, 可以选 择 LUMO为 -4.2eV〜- 3.0eV范围内的金属螯合物。 然而, 根据本发明实施例 实施例还提供这样的有机电致发光器件: 有机金属螯合物的最低未占轨道 LUMO能级大于阴极的最低未占轨道 LUMO能级且小于发光层的最低未占 轨道 LUMO能级, 且有机金属螯合物的最低未占轨道 LUMO能级与阴极的 最低未占轨道 LUMO能级之差的绝对值小于或等于 1.2eV; 或者, 有机金属 螯合物的最低未占轨道 LUMO能级与阴极的最低未占轨道 LUMO能级之差 的绝对值小于或等于 0.9eV; 或者, 有机金属螯合物的最低未占轨道 LUMO 能级与阴极的最低未占轨道 LUMO能级之差的绝对值小于或等于 0.6eV。
例如,本发明实施例中的有机电致发光器件还可以是串联叠层式的结构, 串联叠层式的有机电致发光器件共用阳极和阴极, 将多个器件串联起来, 这 样可以提高器件的发光效率, 延长器件的寿命。
本发明实施例还提供了一种显示装置, 所述显示装置包括上述的有机电 致发光器件, 所述显示装置可以为 OLED显示器、 OLED显示面板、 数码相 机、 手机、 平板电脑或电子纸等具有显示功能的产品或者部件。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种有机电致发光器件, 包括阳极, 阴极, 设置在所述阳极和阴极之 间的发光层; 该有机电致发光器件还包括:
设置在所述阴极与所述发光层之间的电子传输层, 所述电子传输层的材 料包括有机金属螯合物。
2、根据权利要求 1所述的有机电致发光器件, 其中, 所述有机金属螯合 物的最低未占轨道 LUMO能级为 -4.2eV〜- 3.0eV。
3、根据权利要求 2所述的有机电致发光器件, 其中, 所述有机金属螯合 物的最高已占轨道 HOMO能级为大于等于 -6.0eV,所述发光层和所述电子传 输层之间还设置有空穴阻挡层。
4、根据权利要求 2所述的有机电致发光器件, 其中, 所述有机金属螯合 物的最高已占轨道 HOMO能级为小于 -6.0eV,所述发光层和所述电子传输层 直接接触。
5、根据权利要求 2所述的有机电致发光器件, 其中, 所述有机金属螯合 物的最低未占轨道 LUMO能级为 -3.9eV〜- 3.3eV。
6、根据权利要求 1所述的有机电致发光器件, 其中, 所述有机金属螯合 物的最低未占轨道 LUMO能级大于所述阴极的最低未占轨道 LUMO能级且 小于所述发光层的最低未占轨道 LUMO能级,且所述有机金属螯合物的最低 未占轨道 LUMO能级与所述阴极的最低未占轨道 LUMO能级之差的绝对值 小于或等于 1.2eV。
7、根据权利要求 6所述的有机电致发光器件, 其中, 所述有机金属螯合 物的最低未占轨道 LUMO能级与所述阴极的最低未占轨道 LUMO能级之差 的绝对值小于或等于 0.9eV。
8、根据权利要求 6所述的有机电致发光器件, 其中, 所述有机金属螯合 物的最低未占轨道 LUMO能级与所述阴极的最低未占轨道 LUMO能级之差 的绝对值小于或等于 0.6eV。
9、 根据权利要求 1-8任意一项所述的有机电致发光器件, 其中, 所述有 机金属螯合物包括 CuPc或 ZnPc。
10、 根据权利要求 1-9任意一项所述的有机电致发光器件, 其中, 所述 阳极为氧化铟锡 ITO图案层。
11、 根据权利要求 1-10任意一项所述的有机电致发光器件, 还包括: 设置在所述阳极与所述发光层之间的空穴传输层; 设置在所述阳极与所 述空穴传输层之间的空穴注入层, 设置在所述电子传输层与所述阴极之间的 电子注入层。
12、 根据权利要求 1-11任意一项所述的有机电致发光器件, 其中, 所述 有机电致发光器件为串联叠层式结构。
13、一种显示装置, 包括权利要求 1-12任意一项所述的有机电致发光器 件。
PCT/CN2013/087039 2013-05-21 2013-11-13 有机电致发光器件及显示装置 WO2014187082A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13840127.8A EP3001473B1 (en) 2013-05-21 2013-11-13 Organic electroluminescent component and display device
JP2016514245A JP6339181B2 (ja) 2013-05-21 2013-11-13 有機elデバイス及びディスプレイ装置
KR1020147010145A KR101686718B1 (ko) 2013-05-21 2013-11-13 유기 발광 장치 및 디스플레이 장치
US14/347,866 US9755162B2 (en) 2013-05-21 2013-11-13 Organic light emitting device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013101902450A CN103296215A (zh) 2013-05-21 2013-05-21 一种有机电致发光器件及显示装置
CN201310190245.0 2013-05-21

Publications (1)

Publication Number Publication Date
WO2014187082A1 true WO2014187082A1 (zh) 2014-11-27

Family

ID=49096781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087039 WO2014187082A1 (zh) 2013-05-21 2013-11-13 有机电致发光器件及显示装置

Country Status (6)

Country Link
US (1) US9755162B2 (zh)
EP (1) EP3001473B1 (zh)
JP (1) JP6339181B2 (zh)
KR (1) KR101686718B1 (zh)
CN (1) CN103296215A (zh)
WO (1) WO2014187082A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296215A (zh) * 2013-05-21 2013-09-11 京东方科技集团股份有限公司 一种有机电致发光器件及显示装置
CN103500802A (zh) * 2013-10-12 2014-01-08 京东方科技集团股份有限公司 有机电致发光器件
JP6815294B2 (ja) * 2016-09-30 2021-01-20 株式会社Joled 有機el素子、および有機elパネル
CN109004008B (zh) * 2018-08-01 2020-04-07 上海天马有机发光显示技术有限公司 一种有机发光显示面板及其显示装置
US11968852B2 (en) * 2020-09-21 2024-04-23 Boe Technology Group Co., Ltd. Light-emitting device and method of manufacturing the same, light-emitting substrate and method of manufacturing the same, and light-emitting apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296215A (zh) * 2013-05-21 2013-09-11 京东方科技集团股份有限公司 一种有机电致发光器件及显示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248458B1 (en) * 1997-11-17 2001-06-19 Lg Electronics Inc. Organic electroluminescent device with improved long-term stability
US6097147A (en) * 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
JP2000340364A (ja) * 1999-05-25 2000-12-08 Tdk Corp 有機el素子
WO2002071813A1 (en) * 2001-03-02 2002-09-12 The Trustees Of Princeton University Double doped-layer, phosphorescent organic light emitting devices
JP2002359086A (ja) * 2001-06-01 2002-12-13 Toyota Central Res & Dev Lab Inc 有機電界発光素子
US6797129B2 (en) * 2002-06-03 2004-09-28 Eastman Kodak Company Organic light-emitting device structure using metal cathode sputtering
US6902833B2 (en) 2003-04-01 2005-06-07 University Of Southern California Materials and structures for enhancing the performance or organic light emitting devices
US6875320B2 (en) * 2003-05-05 2005-04-05 Eastman Kodak Company Highly transparent top electrode for OLED device
US7154114B2 (en) * 2004-05-18 2006-12-26 Universal Display Corporation Cyclometallated iridium carbene complexes for use as hosts
KR101215860B1 (ko) * 2004-05-21 2012-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자 및 그 소자를 사용하는 발광 장치
JP2006114452A (ja) 2004-10-18 2006-04-27 Seiko Epson Corp 有機el素子及びその製造方法、並びに有機el装置
JP4969086B2 (ja) * 2004-11-17 2012-07-04 富士フイルム株式会社 有機電界発光素子
JP4844030B2 (ja) * 2005-07-15 2011-12-21 セイコーエプソン株式会社 発光素子および電子機器
EP1994118B1 (en) * 2006-03-14 2018-10-17 LG Chem, Ltd. Organic light emitting diode having high efficiency and process for fabricating the same
TWI540939B (zh) * 2010-09-14 2016-07-01 半導體能源研究所股份有限公司 固態發光元件,發光裝置和照明裝置
EP2663599A1 (en) * 2011-01-14 2013-11-20 Solvay Sa Phthalocyanine dyes, method of making them, and their use in dye sensitized solar cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296215A (zh) * 2013-05-21 2013-09-11 京东方科技集团股份有限公司 一种有机电致发光器件及显示装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIAO, ZHIQIANG ET AL.: "Improved performance of organic light-emitting diodes with dual electron transporting layers.", CHIN. PHYS. B, vol. 21, no. 6, June 2012 (2012-06-01), pages 067202 - 067202-3, XP020224580 *
LIN, CHIHCHIH ET AL.: "The Study of Blue Organic Light Emitting Diodes with A CuPc Electron Transporting Layer.", LASERS AND ELECTRO-OPTICS, 2003. CLEO/PACIFIC RIM 2003. THE 5TH PACIFIC RIM CONFERENCE ON DECEMBER 2003, vol. 2, pages 722, XP010690140 *
See also references of EP3001473A4 *

Also Published As

Publication number Publication date
CN103296215A (zh) 2013-09-11
KR101686718B1 (ko) 2016-12-14
JP2016518729A (ja) 2016-06-23
US20150144894A1 (en) 2015-05-28
EP3001473A4 (en) 2016-08-24
JP6339181B2 (ja) 2018-06-06
KR20140146572A (ko) 2014-12-26
EP3001473B1 (en) 2023-04-05
EP3001473A1 (en) 2016-03-30
US9755162B2 (en) 2017-09-05

Similar Documents

Publication Publication Date Title
US9088001B2 (en) Organic light emitting display and method for fabricating the same
KR101429537B1 (ko) 유기발광소자
JP6060361B2 (ja) 有機発光素子
JP2006157022A (ja) 有機elダイオード及び有機elダイオードの効率改善方法
CN104241540A (zh) 一种有机电致发光显示器件、其制作方法及显示装置
WO2014187082A1 (zh) 有机电致发光器件及显示装置
WO2022062700A1 (zh) 有机电致发光器件、显示面板及显示装置
KR100844788B1 (ko) 유기발광소자의 제조방법 및 이에 의하여 제조된유기발광소자
WO2022062699A1 (zh) 有机电致发光器件、显示面板及显示装置
WO2014187084A1 (zh) 一种有机电致发光器件及显示装置
KR101973207B1 (ko) 금속 산화물이 함유된 양극 및 상기 양극을 포함하는 유기발광소자
TWI447982B (zh) 有機發光裝置
JP6387547B2 (ja) 有機el素子とその製造方法、および金属酸化物膜の成膜方法
Bao et al. Correlation between the electronic structures of transition metal oxide-based intermediate connectors and the device performance of tandem organic light-emitting devices
US11581512B2 (en) Display panel and method of fabricating the same
CN109346500B (zh) 一种有机电致发光装置
JP2011146610A (ja) 有機エレクトロルミネッセンス表示装置とその製造方法
WO2015182130A1 (ja) 有機el素子及び有機el発光装置
Chang et al. ITO-free large-area top-emission organic light-emitting diode by blade coating
WO2015190550A1 (ja) 有機素子
US20240107787A1 (en) Display panel and manufacturing method thereof
CN105185916A (zh) 有机电致发光器件及其制作方法、显示装置
CN115513388A (zh) 电子传输材料、显示器件及显示器件制备方法
JP2006040583A (ja) 有機エレクトロルミネセンス素子及びその製造方法、並びに、有機エレクトロルミネセンス表示装置
CN103500802A (zh) 有机电致发光器件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016514245

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14347866

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013840127

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147010145

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE