WO2014185409A1 - 電流計測装置及び電流算出方法 - Google Patents

電流計測装置及び電流算出方法 Download PDF

Info

Publication number
WO2014185409A1
WO2014185409A1 PCT/JP2014/062715 JP2014062715W WO2014185409A1 WO 2014185409 A1 WO2014185409 A1 WO 2014185409A1 JP 2014062715 W JP2014062715 W JP 2014062715W WO 2014185409 A1 WO2014185409 A1 WO 2014185409A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
detection coils
pair
detection
terminal block
Prior art date
Application number
PCT/JP2014/062715
Other languages
English (en)
French (fr)
Inventor
弘晃 小竹
吉秋 小泉
正裕 石原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/781,326 priority Critical patent/US9995772B2/en
Priority to EP14798426.4A priority patent/EP2998748B1/en
Priority to CN201480027339.9A priority patent/CN105264389B/zh
Publication of WO2014185409A1 publication Critical patent/WO2014185409A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/181Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using coils without a magnetic core, e.g. Rogowski coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers

Definitions

  • the present invention relates to a technique for measuring an alternating current flowing through a current-carrying body such as a conductive plate or an electric wire.
  • Patent Document 1 this type of current measuring device is disclosed in Patent Document 1.
  • the current measuring device of Patent Document 1 includes an energizing body that generates a magnetic field around an alternating current that is energized, and two detection coils that output an induced electromotive voltage signal corresponding to the magnetic field.
  • one detection coil is disposed on the surface of the current-carrying member via an insulating sheet.
  • the other detection coil is arranged away from the current-carrying member so as not to be affected by the magnetic field generated from the current-carrying member.
  • One detection coil generates an induced electromotive voltage signal corresponding to a change in a magnetic field obtained by adding a magnetic field generated from a current-carrying member and an external magnetic field that is magnetic noise.
  • an induced electromotive voltage signal corresponding to only the external magnetic field is generated.
  • the two detection coils are connected in series with opposite polarities. That is, the two detection coils are connected so that the change in the induced electromotive voltage signal generated by the external magnetic field is reversed.
  • the external magnetic field component is canceled and the induced electromotive voltage signal corresponding to the magnetic field generated by the energizing body is output as the current detection signal. Then, the alternating current value of the energization body is calculated based on the current detection signal.
  • one detection coil is arranged on the surface of the current-carrying member via an insulating sheet so that the other detection coil is not affected by the magnetic field generated from the current-carrying member. It arrange
  • Patent Document 1 discloses a configuration in which detection coils are arranged on the front and back surfaces of the current-carrying member via insulating sheets, and both the detection coils are connected in series with opposite polarities.
  • a current measuring device configured to output an induced electromotive voltage signal in which an external magnetic field component is canceled and a magnetic field component by an energization body is added.
  • the detection coil on the front surface side is exposed in a state where the current conductor is fixed to the terminal block, whereas the detection coil on the back surface side is hidden between the power supply unit and the terminal block. For this reason, the influence of the external magnetic field on both detection coils is different, and the removal of the external magnetic field component is not suitably performed, and there is a problem that the current detection accuracy is low.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a current measurement device and a current calculation method capable of performing highly accurate current measurement with a simple configuration.
  • a current measuring device is: A conducting body through which a current to be measured flows; A base having an arrangement surface on which the current-carrying member is arranged; A pair of detection coils having the same configuration arranged in an insulating distance across the current-carrying member on the arrangement surface of the base, and connected in series with opposite polarity; A calculation unit for calculating a measured current value based on an induced electromotive voltage signal from the pair of detection coils; Is provided.
  • the pair of detection coils are arranged on the arrangement surface of the base on which the electric current body is arranged with an insulation distance from the electric current body, an insulating sheet is unnecessary, and a simple configuration can do. Moreover, since a pair of detection coils are arrange
  • FIG. 3 is a plan view of a first terminal block of the current measuring device according to Embodiment 1.
  • FIG. 3 is a side view of the first terminal block of the current measuring device according to Embodiment 1.
  • FIG. It is a figure which shows the detection coil which concerns on Embodiment 1, and a circular detection coil.
  • the electric current body which concerns on Embodiment 1 is the shape which surrounds one detection coil.
  • the electricity supply body which concerns on a modification is the shape surrounding one circular detection coil.
  • It is a block diagram of the electric current measurement apparatus which concerns on Embodiment 2 of this invention.
  • FIG. 5 is a configuration diagram of a first terminal block of a current measuring device according to Embodiment 2.
  • FIG. 6 is a connection diagram of detection coils according to Embodiment 2.
  • FIG. It is a figure which shows the example which changes the winding number of the detection coil which concerns on a modification. It is a figure which shows that the electric current body which concerns on Embodiment 2 is the shape which surrounds the detection coil of one side.
  • FIG. 10 is a connection diagram when a pair of detection coils is n sets in the second embodiment.
  • the current measuring device 10 As shown in FIG. 1, the current measuring device 10 according to Embodiment 1 of the present invention measures each alternating current flowing through a single-phase three-wire L1 phase electric wire 20 and an L2 phase electric wire 30 in a non-contact manner. is there.
  • the current measuring device 10 includes an AC current flowing through the first terminal block 100 to which the L1 phase electric wire 20 is connected, the second terminal block 200 to which the L2 phase electric wire 30 is connected, and the L1 phase electric wire 20 and the L2 phase electric wire 30.
  • a current calculation unit 300 for calculating each value and a power supply circuit 400 for generating a power supply voltage are provided.
  • the current measuring device 10 transmits the alternating current value calculated by the current calculating unit 300, that is, the display unit 340 that displays the measured current value, and data such as the measured current value to other devices such as a computer. And a communication unit 350.
  • the first terminal block 100 is provided with a current-carrying body 110 such as a conductive plate.
  • the L1 phase electric wire 20 as a primary side electric wire is connected to the one end 110a of the electric current body 110.
  • the secondary side electric wire 25 is connected to the other end 110 b of the energization body 110.
  • the first terminal block 100 is provided with a detection coil 120 comprising a pair of detection coils 120a and 120b.
  • An induced electromotive voltage signal corresponding to a magnetic field generated around the AC current flowing through the energization body 110 is output from the detection coil 120 to the current calculation unit 300.
  • the second terminal block 200 is configured in the same manner as the first terminal block 100. That is, the second terminal block 200 is provided with the energization body 110.
  • the L2 phase electric wire 30 as a primary side electric wire is connected to the one end 110a of the electric current body 110.
  • a secondary-side electric wire 35 is connected to the other end 110b of the energization body 110, and a detection coil 130 including a pair of detection coils 130a and 130b is disposed.
  • An induced electromotive voltage signal corresponding to a magnetic field generated around by an alternating current flowing through the energization body 110 of the second terminal block 200 is output from the detection coil 130 to the current calculation unit 300. Since the detection coil 130 is configured in the same manner as the detection coil 120, the detection coil 120 will be mainly described.
  • the current calculation unit 300 includes a differential amplifier 310a and an A / D (analog / digital) converter 320a for the first terminal block 100, a differential amplifier 310b and an A / D converter 320b for the second terminal block 200, and an arithmetic operation. And a processing unit 330.
  • the differential amplifier 310a differentially amplifies the induced electromotive voltage signal from the detection coil 120.
  • the A / D converter 320a converts the analog signal differentially amplified by the differential amplifier 310a into a digital signal.
  • the differential amplifier 310b differentially amplifies the induced electromotive voltage signal from the detection coil 130.
  • the A / D converter 320b converts the analog signal differentially amplified by the differential amplifier 310b into a digital signal.
  • Arithmetic processing unit 330 performs arithmetic processing on each digital signal from A / D converters 320a and 320b, and calculates an alternating current value of each current-carrying body 110 of first terminal block 100 and second terminal block 200, respectively. It is a processor. Specifically, the arithmetic processing unit 330 performs arithmetic processing on each digital signal that has been A / D converted by the A / D converters 320a and 320b using an arithmetic expression that will be described later, whereby the L1 phase electric wire 20 and the L2 phase electric wire are processed. Each AC current value flowing through 30 is calculated.
  • the power supply circuit 400 rectifies and smoothes the power supply voltage from the L1 phase electric wire 20 connected to the first terminal block 100 to generate a power supply voltage necessary for driving the current calculation unit 300.
  • the first terminal block 100 has an electrically insulating disposition surface F on which the electric conductor 110 is disposed.
  • the current-carrying body 110 is formed of a metal material such as copper and has an elongated plate shape.
  • the current-carrying body 110 is fixed on the arrangement surface F by screwing.
  • the height H1 of the conductive body 110 is longer than the lateral width W1 as shown in FIG. 2B.
  • the L1-phase electric wire 20 has one end of the current-carrying body 110 by screwing a screw 80 inserted into the crimp terminal 21 at the tip of the L1-phase electric wire 20 into a connecting female screw hole TH formed in one end 110a of the current-carrying body 110. 110a.
  • the secondary side electric wire 25 has the screw 80 inserted into the crimp terminal 21 at the tip thereof screwed into the connecting female screw hole TH formed in the other end 110 b of the current carrying member 110, whereby the current carrying member 110. Is connected to the other end 110b.
  • a pair of detection coils 120a and 120b are arranged symmetrically with the electric conductor 110 interposed therebetween.
  • the detection coil 120 and the detection coil 130 are so-called air-core coils that do not have a magnetic metal or the like in the core material.
  • the pair of detection coils 120 a and 120 b may be asymmetrically arranged with the current-carrying member 110 interposed therebetween.
  • the pair of detection coils 120a and 120b has the same configuration. That is, the parameters that determine coil characteristics such as the number of turns, coil cross-sectional area, winding height, winding direction, and winding material (hereinafter referred to as “coil parameters”) are the same coil. Further, the winding shape (that is, the coil cross-sectional shape) is a rectangular shape as shown in FIG. 2A. Further, as shown in FIG. 2B, the winding height H2 of the detection coil 120a and the detection coil 120b is approximately the same as the height H1 longer than the lateral width W1 of the conductive body 110.
  • the detection coil 120a and the detection coil 120b have the long side LS parallel to the energization direction of the energization body 110, and the arrangement of the first terminal block 100 with an insulation distance d1 for insulation from the energization body 110. Arranged on the surface F. Therefore, it is not necessary to dispose an insulating sheet or the like between the detection coil 120a and the detection coil 120b and the energization body 110.
  • the detection coil 120a and the detection coil 120b are connected in series with opposite polarities so that the change of the induced electromotive voltage signal generated by the energization body 110 is reversed.
  • One end ED of the detection coil 120a and one end ED of the detection coil 120b are connected to each other on the back surface of the first terminal block 100, as indicated by a wavy line in FIGS. 2A and 2B.
  • the other ends of the detection coil 120a and the detection coil 120b are connected to an output terminal OUT to the current calculation unit 300 as shown in FIG. 2A.
  • the one ends ED of the detection coils 120a and 120b may be connected not only to the back surface of the first terminal block 100 but also inside the first terminal block 100 or on the arrangement surface F side.
  • the detection coil 120a and the detection coil 120b include an interlinkage magnetic flux generated around the current-carrying member 110 in direct proportion to the magnitude of time differentiation of the current supplied to the L1-phase electric wire 20, and an external magnetic field that is magnetic noise. And an induced electromotive voltage signal corresponding to a change in the interlinked magnetic flux is generated.
  • the detection coil 120a and the detection coil 120b are coils having the same coil parameter. Therefore, the absolute value of the induced electromotive voltage signal generated in the detection coil 120 and the detection coil 130 due to the change of the magnetic field generated by the current conducting body 110 is the same, and the direction of the interlinkage magnetic flux of the annular arrow Sb by the current conducting body 110 is as shown in FIG. Since the detection coil 120 and the detection coil 130 are opposite to each other, the phase of the induced electromotive voltage signal is opposite.
  • the magnetic flux of the external magnetic field which is magnetic noise, is linked to the detection coil 120 and the detection coil 130 in the same direction as indicated by a wavy arrow Sc in FIG. 2B. Since the peripheral device as the source of the external magnetic field, the current calculation unit 300, the power supply circuit 400, and the like are located farther from the distance between the pair of detection coils 120a and 120b, the magnetic flux of the external magnetic field is paired with the pair of detection coils. It is linked to 120a and 120b in the same direction.
  • the pair of detection coils 120a and 120b are placed under a common external magnetic field and have the same coil parameters as described above. For this reason, the absolute value of the induced electromotive voltage signal generated in the detection coil 120a and the detection coil 120b by the external magnetic field is the same, and the external magnetic field is the same as shown by the wavy arrow in FIG. 2B.
  • the phase of the signal is the same phase.
  • the detection coil 120a and the detection coil 120b are connected in series with opposite polarities, and the induced electromotive voltage signals generated in the detection coil 120a and the detection coil 120b are added. That is, the output level of the induced electromotive voltage signal due to the magnetic field generated by the energizer 110 is twice as large as that of the detection coil 120 and the detection coil 130 alone, and the induced electromotive voltage signal due to the external magnetic field is canceled out. .
  • the induced electromotive voltage signal V at the output terminal OUT of the first terminal block 100 is expressed by the following equation (1).
  • V (V1 + Vno) ⁇ ( ⁇ V1 + Vno) (1)
  • the first term on the right side of Equation (1) indicates the induced electromotive voltage signal generated in the detection coil 120a
  • the second term on the right side of Equation (1) indicates the induced electromotive voltage signal generated in the detection coil 120b.
  • V1 is an induced electromotive voltage due to the interlinkage magnetic flux of the conducting body 110
  • Vno is an induced electromotive voltage due to an external magnetic field.
  • the induced electromotive voltage signal V at the output terminal OUT of the first terminal block 100 is input to the current calculation unit 300 as shown in FIG.
  • the current calculation unit 300 calculates the value of the alternating current flowing through the L1-phase electric wire 20 based on the induced electromotive voltage signal V.
  • the induced electromotive voltage signal V is differentially amplified by the differential amplifier 310a.
  • the amplified signal is A / D converted by the A / D converter 320a.
  • Arithmetic processing unit 330 performs arithmetic processing on the digital signal after the A / D conversion, and calculates an alternating current value energized in L1-phase electric wire 20.
  • the arithmetic processing unit 330 calculates the AC current value that is supplied to the L1-phase electric wire 20 from the induced electromotive voltage signal at the output terminal OUT of the first terminal block 100 using Bio-Savart's law and Faraday's law. To do.
  • Equation (2) shows the magnetic field H at a point P around an infinitely long linear current I (t).
  • the distance r is between the linear current I (t) and the point P.
  • H I (t) / 2 ⁇ r (2)
  • the magnetic flux density B is expressed by the formula (3) in a vacuum.
  • ⁇ 0 is the permeability in vacuum.
  • B ⁇ 0 ⁇ H (3)
  • Equation (2) ⁇ 0 ⁇ I (t) / 2 ⁇ r (4)
  • the magnetic flux ⁇ interlinked with the coil is obtained by integrating the magnetic flux density B with the coil opening area. Assuming that the opening of the coil interlinking in the magnetic flux is formed over a length L 0 along the current path and a length extending from a distance r 1 far from the current path to a distance r 2 further away from the current path. The integration of the opening of the coil may be integrated over 0 to L 0 for the current path L and r 1 to r 2 for the distance r.
  • the integral formula is the following formula (5). When this equation (5) is solved, equation (6) is derived.
  • Expression (8) which is a relational expression between the induced electromotive force V (t) and the conduction current I (t), is obtained.
  • equation (9) is derived.
  • the energization current I (t) is expressed as I 0 ⁇ sin ⁇ t.
  • V (t) is expressed as V 0 ⁇ cos ⁇ t, and when this is substituted into Expression (9) to arrange both sides, Expression (10) is obtained.
  • the current calculation unit 300 energizes the L2-phase electric wire 30 by processing the induced electromotive voltage signal V from the output terminal OUT of the second terminal block 200 in the same manner as in the case of the first terminal block 100 described above.
  • the alternating current value I 0 is calculated.
  • the display unit 340 displays the alternating current value of the L1 phase electric wire 20 and the alternating current value of the L2 phase electric wire 30 calculated by the current calculating unit 300.
  • the communication part 350 transmits data, such as the measured alternating current value of the L1 phase electric wire 20, the alternating current value of the L2 phase electric wire 30, to other information processing apparatuses, such as a computer.
  • the pair of detection coils 120a and 120b having the same configuration is connected to the current-carrying body 110 on the arrangement surface F of the first terminal block 100. They are arranged symmetrically with respect to each other, and are arranged at positions close to the current-carrying body 110 with an insulation distance d1. Therefore, an insulating sheet is unnecessary and a simple configuration can be achieved. Further, the second terminal block 200 has the same effect as the first terminal block 100.
  • both the pair of detection coils 120a and 120b are arranged symmetrically with the conductive member 110 sandwiched between the arrangement surface F of the first terminal block 100, the influence of the external magnetic field on the pair of detection coils 120a and 120b is the same. Can be. That is, it is possible to improve that the influence of the external magnetic field is different between the detection coil on the front surface side and the detection coil on the back surface side. Since the pair of detection coils 120a and 120b are connected in series with opposite polarities, the external magnetic field can be effectively canceled out, and the magnitude of time differentiation of the alternating current of the L1 phase electric wire 20 connected to the first terminal block 100 is large. An induced electromotive voltage signal proportional to the height can be obtained with high accuracy.
  • the alternating current of the L1 phase electric wire 20 of the conducting body 110 can be calculated with high accuracy based on this induced electromotive voltage signal.
  • the second terminal block 200 has the same effect as that of the first terminal block 100, and the AC current of the L2 phase electric wire 30 of the current conductor 110 can be calculated with high accuracy.
  • the pair of detection coils 120a and 120b having the same configuration has the current conductor 110 sandwiching the current conductor 110 between the arrangement surface F of the first terminal block 100.
  • a pair of detection coils 120a and 120b are connected in series with opposite polarities.
  • the current calculation unit 300 calculates the measured current value based on the induced electromotive voltage signals from the pair of detection coils 120a and 120b. Therefore, an insulating sheet is not required, a simple configuration can be achieved, and highly accurate current measurement can be performed.
  • the height H1 of the current-carrying body 110 is longer than the lateral width W1. For this reason, the winding height H2 of the detection coil 120 and the detection coil 130 can be made longer in the same direction as the height H1 of the current-carrying body 110.
  • the detection coils 120 a and 120 b have a rectangular cross-sectional shape, and the detection coils 120 a and 120 b are arranged in the vicinity of the energization body 110 so that the long side LS is parallel to the energization direction of the energization body 110. Is done. For this reason, the signal-to-noise ratio (S / N ratio) of the induced electromotive voltage signals of the detection coils 120a and 120b is increased. That is, the output level of the induced electromotive voltage signal output by the external magnetic field can be reduced, and the output level of the induced electromotive voltage signal output by the energizing body 110 can be increased. The reason will be described below.
  • the rectangular detection coils 120a and 120b and the circular detection coil 40 are arranged at the same distance from the current-carrying member 110 as shown in FIG.
  • the circular detection coil 40 differs from the detection coils 120a and 120b only in the coil shape, and the other coil parameters are the same.
  • the strength of the magnetic field generated by the current-carrying body 110 is inversely proportional to the distance from the current-carrying body 110, the change in the magnetic flux linked to the detection coils 120a and 120b is changed by the change in the magnetic flux linked to the circular detection coil 40. Bigger than a minute. Therefore, the output level of the induced electromotive voltage signal output by the detection coils 120a and 120b is larger than that of the circular detection coil 40. That is, the cross-sectional shape of the detection coils 120a and 120b is rectangular, and the detection coil 120a and 120b are arranged in the vicinity of the energization body so that the long side LS of the detection coil is parallel to the energization direction of the energization body 110. Compared to the detection coil 40, the S / N ratio can be increased, and highly accurate current detection can be performed.
  • the detection coil having the same S / N ratio can be made smaller than the circular detection coil 40 by making the cross-sectional shape of the detection coils 120a, 120b into a rectangular shape extending in the direction of the long side LS of the current-carrying member 110. it can.
  • both detection coils 120a and 120b are arranged on the arrangement surface F of the first terminal block 100 in the vicinity of the current-carrying member 110, both detection coils can be easily mounted. Further, there is no need for a specially shaped terminal block that protects the detection coil 120 on the back side of the current-carrying member 110, and the assembly work is not complicated.
  • the shape of the electric current body 110 of this Embodiment is not limited to the linear form as shown to FIG. 2A.
  • the energization body 110 may have a shape that surrounds the outer periphery of the detection coil 130.
  • the interlinkage magnetic flux generated around each portion 110c extending in the X-axis positive direction and the X-axis negative direction of the energizing body 110 and the portion 110d extending in the Y-axis negative direction of the energizing body 110 is also detected in the detection coil 120b. Interlink.
  • the output level of the induced electromotive voltage signal of the detection coil 120b by the magnetic field generated by the energizing body 110 can be increased as compared with the case where the energizing body 110 is linear as shown in FIG. 2A.
  • the electric current body 110 may have a shape surrounding the outer periphery of the detection coil 120a.
  • the detection coil 120 b (which may be the detection coil 120 a) is changed to the circular detection coil 40, and the energization body 110 may have a shape surrounding the outer periphery of the circular detection coil 40.
  • Magnetic flux generated around each portion 110 c extending in the X-axis positive direction and X-axis negative direction of the current-carrying member 110 and a portion 110 d extending in the Y-axis negative direction of the current-carrying member 110 also links to the detection coil 40. For this reason, the output level of the induced electromotive voltage signal can be increased by the amount surrounded by the current-carrying body 110, compared to the circular detection coil 40 shown in FIG.
  • the detection coils 120a and 120b are rectangular as shown in FIG. 2A, but may be square.
  • the S / N ratio is lower than that of a rectangular coil having the same coil parameter, but the aspect ratio of the coil cross section can be reduced, and there is an advantage that processing is easy. is there.
  • the current measuring device 10 includes a pair of detection coils 120 a and 120 b arranged on the first terminal block 100 and a pair of detection coils on the second terminal block 200. Only one set of coils 130a and 130b is arranged.
  • two pairs of detection coils 120 a and 120 b are arranged on the first terminal base 101 along the electric current body 110.
  • a first connection changeover switch 500 that switches the connection between the two pairs of detection coils 120a and 120b is provided.
  • the second terminal block 201 is configured similarly to the first terminal block 101.
  • the second terminal block 201 includes a second connection changeover switch 600 in which two pairs of detection coils 130a and 130b are arranged along the current-carrying body 110 and switches the connection between the two pairs of detection coils 130a and 130b.
  • the current measuring device 11 includes a first terminal block 101 to which the L1 phase electric wire 20 is connected, a second terminal block 201 to which the L2 phase electric wire 30 is connected, and L1.
  • a current calculation unit 301 for calculating the AC current values of the phase electric wire 20 and the L2 phase electric wire 30; a power supply circuit 400 for generating a power supply voltage; a first connection changeover switch 500 disposed on the first terminal block 101; And a second connection changeover switch 600 disposed on the second terminal block 201.
  • the first connection changeover switch 500 switches whether the two detection coils 120 arranged on the first terminal block 101 are only one detection coil 120 or two detection coils 120. That is, it is switched between a pair of detection coils 120a and 120b, or a pair of two detection coils 120a and 120b.
  • the two sets of connections are the two detection coils 120a on the left side of the conducting body 110 connected in series with the same polarity, and the two detection coils 120b on the right side of the conducting body 110 are connected in series with the same polarity.
  • the two detection coils 120a on the left side and the two detection coils 120b on the left side are connected in reverse polarity.
  • the second terminal block 201 is also provided with two detection coils 130.
  • the second connection changeover switch 600 switches whether the two detection coils 130 arranged on the second terminal block 201 are only one detection coil 130 or two detection coils 130. That is, it is switched between one set connection including only a pair of detection coils 130a and 130b or two set connection where two pairs of detection coils 130a and 130b are connected.
  • the current calculation unit 301 includes differential amplifiers 310a and 310b that differentially amplify the induced electromotive voltage signals from the output terminals OUT of the first terminal block 101 and the second terminal block 201, and the differentially amplified analog signals.
  • a / D converters 320a and 320b that respectively convert to digital signals, and arithmetic processing for calculating the AC current values of the respective electric conductors 110 of the first terminal block 101 and the second terminal block 201 by calculating the digital signals.
  • an arithmetic processing unit 330 such as a processor.
  • the power supply circuit 400 is the same as that of the first embodiment, and is necessary for driving the current calculation unit 301 by rectifying and smoothing the power supply voltage from the L1-phase electric wire 20 connected to the first terminal block 101. Generate power supply voltage.
  • the first connection changeover switch 500 is a hardware switch that switches the pair of detection coils 120a and 120b arranged on the first terminal block 101 to one set connection or two sets connection based on a control signal from the current calculation unit 301. is there.
  • the second connection changeover switch 600 is a hardware switch that switches the pair of detection coils 130a and 130b arranged on the second terminal block 201 to one set connection or two sets connection based on a control signal from the current calculation unit 301. is there.
  • the first terminal block 101 has an insulating arrangement surface F on which the electric conductor 110 is arranged.
  • the arrangement surface F two pairs of detection coils 120 a and 120 b are arranged symmetrically with the current-carrying member 110 in between.
  • the first pair of detection coils 120a and 120b is located on the Y axis positive direction side with respect to the second pair of detection coils 120a and 120b.
  • the first pair of detection coils 120a and 120b and the second pair of detection coils 120a and 120b are arranged such that their long sides LS are parallel to the energization direction of the energization body 110, and On the other hand, it is arranged on the arrangement surface F of the first terminal block 101 with an insulation distance d1. Therefore, it is not necessary to arrange an insulating sheet or the like between the pair of detection coils 120a and 120b of each set and the current-carrying body 110.
  • the first connection changeover switch is connected in series with the reverse polarity so that the change of the induced electromotive voltage signal generated by the current-carrying body 110 is opposite to the first set of detection coils 120a and 120b.
  • the first connection changeover switch 500 in a state where the second detection coils 120a and 120b are also connected in series with opposite polarity so that the change of the induced electromotive voltage signal generated by the energizer 110 is reversed. It is connected to the.
  • the first connection changeover switch 500 is switched as indicated by the alternate long and short dash line, the first pair of detection coils 120a and 120b and the second pair of detection coils 120a and 120b are connected. It becomes a state.
  • the two detection coils 120a on one side (for example, the left side) of the current conducting body 110 are connected in series with the same polarity, and the two detection coils 120b on the other side (for example, the right side) of the current conducting body 110 are connected.
  • the second detection coils 120a and 120b are connected in series with opposite polarity. That is, the two detection coils 120a on the left side of the current-carrying body 110 and the two detection coils 120b on the right side of the current-carrying body 110 have opposite polarities.
  • the first connection changeover switch 500 is connected to the first contact P1 as shown by a solid line in FIG. 8, and the first pair of detection coils 120a and 120b are connected in series with opposite polarities. Although the second pair of detection coils 120a and 120b are also connected in series with opposite polarity, they are not connected to the first pair of detection coils 120a and 120b.
  • FIG. 1 In the first pair of detection coils 120a and 120b, the magnetic field generated in direct proportion to the magnitude of the alternating current of the current-carrying body 110 and the magnetic flux of the external magnetic field, which is magnetic noise, are interlinked, and the magnetic flux is interlinked. An induced electromotive voltage signal is generated that is directly proportional to the amount of change.
  • the current calculation unit 300 calculates the alternating current value flowing through the L1-phase electric wire 20 based on the induced electromotive voltage signal V.
  • the induced electromotive voltage signal V is differentially amplified by the differential amplifier 310a.
  • the amplified signal is A / D converted by the A / D converter 320a.
  • Arithmetic processing unit 330 performs arithmetic processing on the digital signal after the A / D conversion, and calculates an alternating current value energized in L1-phase electric wire 20.
  • the current calculation unit 301 includes a determination unit 335 that determines whether or not the calculated alternating current value is larger than a reference value.
  • this reference value is an alternating current value obtained when the value is half or less of the maximum induced electromotive voltage signal value that can be detected by the pair of detection coils 120a and 120b.
  • the current calculation unit 301 outputs a control signal, and the first connection
  • the changeover switch 500 switches the connection to the second contact P2 based on the control signal from the current calculation unit 301, as shown by a one-dot chain line in FIG. 8, and the first pair of detection coils 120a and 120b and two sets.
  • the pair of detection coils 120a and 120b in the eye are connected.
  • two detection coils 120a on the left side of the current-carrying body 110 are connected in series with the same polarity
  • two detection coils 120b on the right side of the current-carrying body 110 are connected in series with the same polarity.
  • the eye detection coils 120a and 120b are connected in series with opposite polarity. That is, a larger induced electromotive voltage signal can be acquired by the amount of increase of the detection coil.
  • the set value indicating how many pairs of detection coils 120a and 120b are connected is “1” when one pair of detection coils 120a and 120b is connected, and two pairs of detection coils 120a and 120b are connected.
  • the set value is “2”.
  • the induced electromotive voltage signal output due to the magnetic field generated by the current-carrying body 110 is canceled out by the number of connected groups compared to the first embodiment while canceling the external magnetic field. (2 times here). Therefore, even when the alternating current supplied to the L1-phase electric wire 20 is small, an induced electromotive voltage signal that is directly proportional to the magnitude of the current can be obtained with high accuracy.
  • the AC current value is calculated based on this induced electromotive voltage signal. The value divided by is calculated as the final AC current value.
  • the current calculation unit 301 calculates the alternating current from the A / D conversion value based on the set values of the first connection changeover switch 500 and the second connection changeover switch 600, that is, the number of sets in which the pair of detection coils 120a and 120b are connected in series. Switch analysis parameters such as quantization coefficient when calculating values.
  • the first connection changeover switch 500 of the first terminal block 101 has the two detection coils 120a on the left side of the current conductor 110.
  • the two detection coils 120b on the right side of the current-carrying body 110 are connected in series with the same polarity, and the second detection coil 120a on the left side and the second detection coil 120b on the right side are connected in series with the same polarity.
  • the second connection selector switch 600 also performs the same connection switching).
  • size is also sufficient even when the alternating current supplied to the L1 phase electric wire 20 connected to the 1st terminal block 101 and the 2nd terminal block 201 and the L2 phase electric wire 30 is small, canceling out the influence of an external magnetic field. Can be obtained with high accuracy.
  • the output level of the measurement current signal can be adjusted by switching the first connection changeover switch 500 and the second connection changeover switch 600. Thereby, the input range of the measurement current signal input to the current calculation unit 301 can be made constant regardless of whether the current supplied to the L1-phase electric wire 20 is a large current or a small current.
  • the first connection changeover switch 500 and the second connection changeover switch 600 increase or decrease the number of connection pairs of the pair of detection coils 120a and 120b in units of the pair of detection coils 120a and 120b.
  • the winding number switching unit 700 may switch the number of windings of the pair of detection coils 120 a and 120 b in the same manner. For example, when the number of turns switching unit 700 doubles the number of turns N, the number of turns of the detection coil 120b corresponds to changing the number of turns N of the detection coil 120a to “2N”, which is twice that number. N is also changed to “2N”.
  • the interlinkage magnetic flux of the detection coils 120a and 120b changes in proportion to the number of turns of the coil. For this reason, the output level of the measurement current signal can be adjusted by switching the number of turns of the detection coils 120 a and 120 b under the control of the current calculation unit 301.
  • the current calculation unit 301 calculates the measured current value by performing arithmetic processing on the induced electromotive voltage signals from the detection coils 120a and 120b based on the changed value of the winding number switching unit 700.
  • the detection coils 120a and 120b are switched so that the coil parameters are the same, and the detection coils 120a and 120b are connected in series with opposite polarities as in the first embodiment.
  • ⁇ Electrical body 110 of the second embodiment is not limited to a linear shape as shown in FIG.
  • the energization body 110 may have a shape that surrounds the two detection coils 120 b.
  • the interlinkage magnetic flux generated around each portion 110c extending in the X-axis positive direction and the X-axis negative direction of the energizing body 110 and the portion 110d extending in the Y-axis negative direction of the energizing body 110 is also detected in the detection coil 120b. Interlink.
  • the output level of the induced electromotive voltage signal of the two detection coils 120b can be increased as compared with the case where the energization body 110 is linear as shown in FIG.
  • the energization body 110 may have a shape surrounding the two detection coils 120a.
  • the detection coils 120a and 120b have a rectangular shape, but may have a square shape.
  • the S / N ratio is lower than that of the rectangular detection coils 120a and 120b having the same coil parameters, but the aspect ratio of the coil cross section can be reduced and processed. There is an advantage which becomes easy.
  • the first terminal block 101 (the same applies to the second terminal block 201) includes n pairs of detection coils 120a and 120b along the current-carrying body 110 (where n is a natural number of 3 or more). M detection coils on one side (for example, the left side) of the current-carrying body 110 with respect to a pair of detection coils of m sets (where m is a natural number and 3 ⁇ m ⁇ n) of n sets.
  • a first connection changeover switch 500 and a second connection changeover switch 600 that perform connection switching so as to connect m pairs of a pair of detection coils by connecting the mth detection coil 120b on the side in series with reverse polarity are provided.
  • the induced electromotive voltage signal output by the magnetic field generated by the current-carrying body 110 can be performed while canceling the influence of the external magnetic field. It can be added to the number of connected sets (m times here) compared to the first mode. Therefore, even when the current supplied to the L1-phase electric wire 20 is small, an induced electromotive voltage that is directly proportional to the magnitude of the current can be obtained with high accuracy.
  • the electric current body 110 is fastened and fixed on the arrangement
  • the current-carrying body 110 may be in various fixing modes such as locking and fixing with a locking claw or the like, press-fitting and fixing.
  • the electrically-conductive body 110 is a conductive plate, it is not limited to this, A conductor wiring, a conductor wire, a conductor plate, etc. may be sufficient.
  • the power supply circuit 400 generates a power supply voltage by rectifying and smoothing a part of the power supply voltage from the L1-phase electric wire 20, but the present invention is not limited to this.
  • the power supply circuit 400 may generate a power supply voltage by rectifying and smoothing a part of the power supply voltage from the L2 phase electric wire 30 connected to the second terminal block 200.
  • the current calculation units 300 and 301 are exemplified as an example of the calculation unit in the present invention.
  • the current value is calculated based on the induced electromotive voltage signal from the output terminal OUT. If so, a configuration other than the current calculation units 300 and 301 may be adopted.
  • the first terminal block 101 includes the first connection changeover switch 500 and the second terminal block 201 includes the second connection changeover switch 600.
  • the current calculation unit 301 may include the first connection changeover switch 500 and the second connection changeover switch 600 so as to switch the n sets of the pair of detection coils 120a and 120b.
  • the first connection changeover switch 500 and the second connection changeover switch 600 are hardware switches that are switch-controlled based on a control signal from the current calculation unit 301, but the present invention is not limited thereto. Is not to be done. A software switch may be sufficient and the manual switch which can be operated by the operator who installs the electric current measurement apparatus 11 may be sufficient.
  • the current calculation unit 301 sets the set values of the first connection changeover switch 500 and the second connection changeover switch 600 based on the calculated alternating current value, that is, the number of sets in which the pair of detection coils 120a and 120b are connected in series. Although it has changed, it is not limited to this. For example, when the operator operates a manual switch, the number of sets in which the pair of detection coils 120a and 120b are connected in series can be manually changed, and the number of sets can be read by the current calculation unit 301. 301 may calculate the alternating current value according to the number of sets.
  • the present invention can be suitably employed in a current measuring device that measures power consumption in factories and homes.

Abstract

 電流計測装置(10)は、通電体(110)と第一端子台(100)と一対の検出コイル(120a,120b)と電流算出部(300)とを備える。通電体(110)は、通電された被測定電流の大きさに比例した磁界が周囲に発生する。第一端子台(100)は、通電体(110)が配置される配置面(F)を有する。一対の検出コイル(120a,120b)は、逆極性で直列接続される同一構成の検出コイルであって、第一端子台(100)の配置面(F)に通電体(110)を挟んで絶縁距離を空けて配置され、通電体(110)が発生させた磁界と磁気的ノイズである外部磁界とにより誘導起電圧信号を出力する。電流算出部(300)は、一対の検出コイル(120a,120b)からの誘導起電圧信号に基づいて被測定電流値を算出する。

Description

電流計測装置及び電流算出方法
 本発明は、導電板や電線などの通電体を流れる交流電流を計測する技術に関する。
 近年、工場や家庭等の消費電力を計測するために、分電盤等の電線に通電される交流電流を非接触で測定する電流計測装置が用いられる。
 この種の電流計測装置としては、例えば特許文献1に記載されているものがある。特許文献1の電流計測装置は、通電される交流電流によって周囲に磁界を発生する通電体と、磁界に応じた誘導起電圧信号を出力する二つの検出コイルとを備える。
 二つ検出コイルのうち、一方の検出コイルは通電体の表面に絶縁シートを介して配置される。その他方の検出コイルは、通電体から発生する磁界の影響を受けないように、この通電体から離れて配置される。一方の検出コイルには、通電体から発生する磁界と磁気的ノイズである外部磁界とを加算した磁界の変化に応じた誘導起電圧信号が発生する。他方の検出コイルでは、外部磁界のみに応じた誘導起電圧信号が発生する。二つの検出コイルは逆極性で直列に接続されている。つまり、外部磁界により発生する誘導起電圧信号の変化が逆となるように、二つの検出コイルが接続されている。このため、外部磁界分が相殺され且つ通電体による磁界分の誘導起電圧信号が電流検出信号として出力される。そして、この電流検出信号に基づいて通電体の交流電流値が算出される。
特開2011-220952号公報
 特許文献1に開示された電流計測装置では、一方の検出コイルが、通電体の表面に絶縁シートを介して配置され、他方の検出コイルが、通電体から発生する磁界の影響を受けないようにこの通電体から離れて配置されている。このため、装置構成が複雑である。また、両検出コイルに対する外部磁界の影響が異なることがあり、外部磁界成分の除去が好適になされず、電流検出精度が低いという問題がある。
 さらに特許文献1には、通電体の表面及び裏面に絶縁シートを介して検出コイルをそれぞれ配置し、この両検出コイルを逆極性で直列に接続した構成も開示されている。この構成では、外部磁界分が相殺され且つ通電体による磁界分が加算された誘導起電圧信号を出力させる構成の電流計測装置も記載されている。この構成では、通電体が端子台に固定された状態において、表面側の検出コイルが露出するのに対して、裏面側の検出コイルが通電体と端子台との間に隠れてしまう。このため、両検出コイルに対する外部磁界の影響が異なり、外部磁界成分の除去が好適になされず、電流検出精度が低いという問題がある。
 本発明は、上記課題を解決するためになされたものであり、簡易な構成で精度の高い電流計測を行うことができる電流計測装置及び電流算出方法を提供することを目的とする。
 上記目的を達成するため、本発明に係る電流計測装置は、
 被測定電流が流れる通電体と、
 前記通電体が配置された配置面を有する基台と、
 前記基台の配置面に前記通電体を挟んで絶縁距離を空けて配置され、逆極性で直列接続された同一構成の一対の検出コイルと、
 前記一対の検出コイルからの誘導起電圧信号に基づいて被測定電流値を算出する算出部と、
 を備える。
 本発明によれば、通電体が配置される基台の配置面に、一対の検出コイルが通電体に対して絶縁距離を空けて配置されるので、絶縁シートが不要であり、簡易な構成とすることができる。また、一対の検出コイルが、通電体を挟んで配置され且つ逆極性で直列接続されるので、精度の高い電流計測を行うことができる。
本発明の実施の形態1に係る電流計測装置の構成図である。 実施の形態1に係る電流計測装置の第一端子台の平面図である。 実施の形態1に係る電流計測装置の第一端子台の側面図である。 実施の形態1に係る検出コイルと円形の検出コイルを示す図である。 実施の形態1に係る通電体が一方の検出コイルを取り囲む形状であることを示す図である。 変形例に係る通電体が一方の円形検出コイルを取り囲む形状であることを示す図である。 本発明の実施の形態2に係る電流計測装置の構成図である。 実施の形態2に係る電流計測装置の第一端子台の構成図である。 実施の形態2に係る検出コイルの接続図である。 変形例に係る検出コイルの巻き数を変更する例を示す図である。 実施の形態2に係る通電体が一方側の検出コイルを取り囲む形状であることを示す図である。 実施の形態2において一対の検出コイルをn組とした場合の接続図である。
 以下、本発明の実施の形態に係る電流計測装置について図面を参照して詳細に説明する。
(実施の形態1)
 本発明の実施の形態1に係る電流計測装置10は、図1に示すように、単相3線式のL1相電線20とL2相電線30に流れる各交流電流を非接触で計測するものである。電流計測装置10は、L1相電線20が接続される第一端子台100と、L2相電線30が接続される第二端子台200と、L1相電線20とL2相電線30とを流れる交流電流値をそれぞれ算出する電流算出部300と、電源電圧を生成する電源回路400とを備える。
 さらに、電流計測装置10は、電流算出部300で算出された交流電流値、つまり、測定した電流値を表示する表示部340と、測定した電流値などのデータをコンピュータなどの他の装置に送信する通信部350とを備える。
 第一端子台100には、例えば導電板などの通電体110が配設される。通電体110の一端110aには、一次側電線としてのL1相電線20が接続される。通電体110の他端110bには、二次側電線25が接続される。また、第一端子台100には、一対の検出コイル120a,120bからなる検出コイル120が配設される。通電体110に流れる交流電流によって周囲に発生する磁界に応じた誘導起電圧信号が、検出コイル120から電流算出部300に出力される。
 第二端子台200も、第一端子台100と同様に構成される。つまり、第二端子台200には、通電体110が配設される。通電体110の一端110aには、一次側電線としてのL2相電線30が接続される。通電体110の他端110bには、二次側電線35が接続され、一対の検出コイル130a,130bからなる検出コイル130が配設される。第二端子台200の通電体110に流れる交流電流によって周囲に発生する磁界に応じた誘導起電圧信号が、検出コイル130から電流算出部300に出力される。なお、検出コイル130は、検出コイル120と同様に構成されるため、検出コイル120を中心に説明する。
 電流算出部300は、第一端子台100用の差動アンプ310aとA/D(アナログ/デジタル)コンバータ320aと、第二端子台200用の差動アンプ310bとA/Dコンバータ320bと、演算処理部330とを備える。
 差動アンプ310aは、検出コイル120からの誘導起電圧信号を差動増幅する。A/Dコンバータ320aは、差動アンプ310aにて差動増幅されたアナログ信号をデジタル信号に変換する。
 差動アンプ310bは、検出コイル130からの誘導起電圧信号を差動増幅する。A/Dコンバータ320bは、差動アンプ310bにて差動増幅されたアナログ信号をデジタル信号に変換する。
 演算処理部330は、A/Dコンバータ320a,320bからの各デジタル信号をそれぞれ演算処理して第一端子台100、第二端子台200の各通電体110の交流電流値をそれぞれ算出する演算処理プロセッサである。詳しくは、演算処理部330は、A/Dコンバータ320a,320bにてA/D変換された各デジタル信号を、後述する演算式を用いて演算処理することにより、L1相電線20、L2相電線30に流れる各交流電流値を算出する。
 電源回路400は、第一端子台100に接続されたL1相電線20からの電源電圧を整流、平滑等して、電流算出部300を駆動するのに必要な電源電圧を生成する。
 ここで、第一端子台100の構成について説明する。第一端子台100は、図2A、図2Bに示すように、通電体110が配置される、電気絶縁性の配置面Fを有する。通電体110は、銅などの金属材料で形成され、細長板形状である。通電体110は、ネジ止めによって配置面F上に固定される。また、通電体110の高さH1は、図2Bに示すように、横幅W1よりも長い。
 また、L1相電線20は、その先端の圧着端子21に挿入したネジ80が、通電体110の一端110aに形成された接続用雌ネジ孔THに螺入されることにより、通電体110の一端110aに接続される。また、二次側電線25は、その先端の圧着端子21に挿入したネジ80が、通電体110の他端110bに形成された接続用雌ネジ孔THに螺入されることにより、通電体110の他端110bに接続される。
 また、第一端子台100の配置面F上には、一対の検出コイル120a,120bが通電体110を挟んで対称に配置されている。検出コイル120と検出コイル130とは、図2Aに示すように、芯材に磁性体金属等を有しない、いわゆる空芯コイルである。なお、一対の検出コイル120a,120bが、通電体110を挟んで非対称に配置されてもよい。
 例えば、L1相電線20からの交流電流が通電体110を図2A、図2Bの矢印Saの方向に流れたときには、その電流の大きさに正比例した磁界が通電体110の周囲に発生する。つまり、図2A、図2Bに環状矢印Sbで示す磁束が検出コイル120a,120bに鎖交する。
 一対の検出コイル120aと検出コイル120bとは、同一構成である。つまり、巻き数、コイル断面積、巻き線高さ、巻き線方向、巻き線材料などのコイル特性を決定するパラメータ(以下、「コイルパラメータ」と呼ぶ)が同じコイルである。また、その巻き形状(つまり、コイル断面形状)が図2Aに示すように長方形形状である。また、図2Bに示すように、検出コイル120aと検出コイル120bの巻き高さH2は、通電体110の横幅W1よりも長い高さH1と同程度である。
 さらに、検出コイル120aと検出コイル120bとは、その長辺LSが通電体110の通電方向と平行で、且つ、通電体110と絶縁するための絶縁距離d1を空けて第一端子台100の配置面F上に配置される。従って、検出コイル120a及び検出コイル120bと通電体110との間には、絶縁シートなどを配置する必要がない。
 また、検出コイル120aと検出コイル120bとは、通電体110により発生する誘導起電圧信号の変化が逆となるように逆極性で直列に接続されている。検出コイル120aの一端EDと検出コイル120bの一端EDとは、図2A、図2Bに波線で示すように、第一端子台100の裏面で接続されている。検出コイル120aと検出コイル120bの各他端は、図2Aに示すように、電流算出部300への出力端子OUTに接続されている。なお、検出コイル120a,120bの一端ED同士が、第一端子台100の裏面に限らず、第一端子台100の内部や配置面F側で接続されるようにしてもよい。
 次に、上記のように構成された電流計測装置10による電流計測について説明する。検出コイル120aと検出コイル120bとには、L1相電線20に通電される電流の時間微分の大きさに正比例して通電体110の周囲に発生する鎖交磁束と、磁気的ノイズである外部磁界の磁束とが鎖交し、鎖交した磁束の変化分に応じた誘導起電圧信号が発生する。
 図2A、図2Bに示すように、通電体110にY軸正方向である矢印Saの方向に電流が流れるときには、通電体110の周囲で、通電体110に直交する各X-Z面内にこの通電体110を中心として矢印Saの方向視で時計回りの環状矢印Sbの鎖交磁束が発生する。図2Bに示すように、検出コイル120aにはZ軸正方向の磁束が鎖交し、検出コイル120bにはZ軸負方向の磁束が鎖交する。
 検出コイル120aと検出コイル120bとは、コイルパラメータが同一のコイルである。よって、通電体110が発生させる磁界の変化によって検出コイル120と検出コイル130に生じる誘導起電圧信号の絶対値は同じであり、通電体110による環状矢印Sbの鎖交磁束の向きが、図2Bに示すように、検出コイル120と検出コイル130とで逆であるため、その誘導起電圧信号の位相は逆位相となる。
 また、磁気的ノイズである外部磁界の磁束は、図2Bに波線矢印Scで示すように検出コイル120と検出コイル130に同一方向に鎖交している。外部磁界の発生源としての周辺機器や電流算出部300及び電源回路400等が一対の検出コイル120a,120bの距離より比べて遠方に存在していることから、外部磁界の磁束が一対の検出コイル120a,120bに対して同一方向に鎖交している。
 一対の検出コイル120a,120bは、共通の外部磁界下に置かれており、前述したようにコイルパラメータが同一のコイルである。このため、外部磁界によって検出コイル120aと検出コイル120bに発生する誘導起電圧信号の絶対値は同じであり、外部磁界が図2Bに波線矢印で示すように同じであることから、その誘導起電圧信号の位相は同位相となる。
 前述したように、検出コイル120aと検出コイル120bとは逆極性で直列に接続されており、検出コイル120aと検出コイル120bに発生した誘導起電圧信号は加算される。つまり、通電体110が発生させた磁界による誘導起電圧信号の出力レベルは、検出コイル120、検出コイル130単体に比べて2倍の大きさを持ち、外部磁界による誘導起電圧信号が相殺される。
 第一端子台100の出力端子OUTの誘導起電圧信号Vは、次の式(1)で表される。
   V=(V1+Vno)-(-V1+Vno)・・・(1)
 なお、式(1)の右辺の第一項は、検出コイル120aに発生する誘導起電圧信号を示し、式(1)の右辺の第二項は、検出コイル120bに発生する誘導起電圧信号を示す。V1は、通電体110の鎖交磁束による誘導起電圧であり、Vnoは外部磁界による誘導起電圧である。
 第一端子台100の出力端子OUTの誘導起電圧信号Vは、図1に示すように、電流算出部300に入力される。電流算出部300は、誘導起電圧信号Vに基づいて、L1相電線20に流れる交流電流値を算出する。詳しくは、誘導起電圧信号Vが差動アンプ310aにて差動増幅される。その増幅信号がA/Dコンバータ320aにてA/D変換される。演算処理部330は、そのA/D変換後のデジタル信号を演算処理し、L1相電線20に通電されている交流電流値を算出する。
 演算処理部330は、第一端子台100の出力端子OUTの誘導起電圧信号を、ビオ・サバールの法則とファラデーの法則とを用いて、L1相電線20に通電されている交流電流値を算出する。
 ビオ・サバールの法則による式(2)は、無限に長い直線電流I(t)の周りのある点Pの磁場Hを示す。直線電流I(t)と点Pまでを距離rとする。
   H = I(t)/2πr   ・・・(2)
 そして、磁束密度Bは真空中では式(3)となる。μは真空中の透磁率である。
   B = μ・H   ・・・(3)
 式(3)に式(2)を代入すると式(4)となる。
   B =μ・I(t)/2πr   ・・・(4)
 コイルに鎖交する磁束φは磁束密度Bをコイル開口面積で積分することにより得られる。磁束中に鎖交するコイルの開口部が、電流路に沿う長さLと、電流路から離れた距離rからさらに離れた距離rまでにわたる長さにわたって形成されているとすると、このコイルの開口部の積分は電流路Lについては0~L、距離rについてはr~rにわたって積分すればよい。その積分式は次の式(5)となる。この式(5)を解くと、式(6)が導き出される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 次に、ファラデーの法則による次式(7)は、コイルに生じる誘導起電力Vが、コイルを貫く磁束φの単位時間当たりの変化に比例することを示す。但し、kはコイルの巻き数である。
   V(t) =-k・dφ(t)/dt   ・・・(7)
 そして、この式(7)に式(6)の磁束φを代入することで、誘導起電力V(t)と通電電流I(t)との関係式である式(8)となる。この式(8)を解くと、式(9)が導き出される。なお、通電電流I(t)はI・sinωtと表される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 また、V(t)はV・cosωtと表され、これを式(9)に代入して両辺を整理すると、式(10)となる。
Figure JPOXMLDOC01-appb-M000005
 そして、この式(10)の誘導起電力Vに、第一端子台100の出力端子OUTから得られた誘導起電圧値を代入することで、L1相電線20に通電されている交流電流値Iが算出される。
 また、電流算出部300は、第二端子台200の出力端子OUTからの誘導起電圧信号Vを、前述の第一端子台100の場合と同様に処理することにより、L2相電線30に通電されている交流電流値Iを算出する。
 また、表示部340は、電流算出部300で算出されたL1相電線20の交流電流値やL2相電線30の交流電流値を表示する。また、通信部350は、測定したL1相電線20の交流電流値、L2相電線30の交流電流値などのデータをコンピュータなどの他の情報処理装置に送信する。
 以上説明したように、本発明の実施の形態1に係る電流計測装置10によれば、同一構成とした一対の検出コイル120a,120bを、第一端子台100の配置面Fに通電体110を挟んで対称に配置するとともに、通電体110に対して絶縁距離d1を空けた近接する位置に配置している。従って、絶縁シートが不要であり、簡易な構成とすることができる。また、第二端子台200についても第一端子台100と同様の効果を有する。
 また、一対の検出コイル120a,120bを両方とも第一端子台100の配置面Fに通電体110を挟んで対称に配置しているので、一対の検出コイル120a,120bに対する外部磁界の影響を同一のものとすることができる。つまり、表面側の検出コイルと裏面側の検出コイルとで外部磁界の影響が異なることを改善できる。そして、一対の検出コイル120a,120bを逆極性で直列接続しているので、外部磁界を効果的に相殺でき、第一端子台100に接続されたL1相電線20の交流電流の時間微分の大きさに比例した誘導起電圧信号を高精度で取得することができる。従って、この誘導起電圧信号に基づいて通電体110のL1相電線20の交流電流を高精度に算出できる。また、第二端子台200についても第一端子台100と同様の効果を有し、通電体110のL2相電線30の交流電流を高精度に算出できる。
 また、本発明の実施の形態1に係る電流算出方法によれば、同一構成とした一対の検出コイル120a,120bが、第一端子台100の配置面Fに通電体110を挟んで通電体110に対して絶縁距離d1を空けて配置されるとともに、一対の検出コイル120a,120bが逆極性で直列接続される。電流算出部300が、一対の検出コイル120a,120bからの誘導起電圧信号に基づいて被測定電流値を算出する。従って、絶縁シートが不要になり、簡易な構成とすることができ、精度の高い電流計測を行うことができる。
 また、図2Bに示すように、通電体110の高さH1は、横幅W1よりも長い。このため、検出コイル120及び検出コイル130の巻き高さH2を、通電体110の高さH1と同方向に長くとることができる。
 図2Aに示すように、検出コイル120a,120bの断面形状を長方形形状とし、検出コイル120a,120bはその長辺LSが通電体110の通電方向と平行となるように通電体110の近傍に配置される。このため、検出コイル120a,120bの誘導起電圧信号の信号対雑音比(S/N比)が高くなる。つまり、外部磁界により出力される誘導起電圧信号の出力レベルを下げ、通電体110により出力される誘導起電圧信号の出力レベルを上げることができる。その理由を以下に説明する。
 長方形の検出コイル120a,120bと円形検出コイル40とが、図3に示すように、通電体110から同一距離の位置に配置されているとする。円形検出コイル40は、検出コイル120a,120bに対してコイル形状のみ異なり、それ以外のコイルパラメータは同じである。
 通電体110により発生する磁界の強さは、通電体110からの距離に反比例するため、検出コイル120a,120bに鎖交する磁束の変化分の方が円形検出コイル40に鎖交する磁束の変化分に比べ大きい。そのため、検出コイル120a,120bの方が円形検出コイル40に比べて出力する誘導起電圧信号の出力レベルは大きい。つまり、検出コイル120a,120bの断面形状を長方形形状とし、検出コイルの長辺LSが通電体110の通電方向と平行となるように通電体の近傍に配置することで、コイルパラメータが同様の円形検出コイル40に比べてS/N比を高くでき、高精度の電流検出を行うことができる。
 さらに、検出コイル120a,120bの断面形状を通電体110の長辺LS方向に伸びた長方形形状とすることで、同じS/N比の検出コイルを、円形検出コイル40に比べ小型化することができる。
 また本実施の形態では、一対の検出コイル120a,120bを通電体110の近傍で第一端子台100の配置面Fに配置するので、両検出コイルを簡単に装着することができる。また、通電体110の裏面側の検出コイル120を保護するような特殊形状の端子台が必要となったり、組み付け作業が複雑化したりすることがない。
 なお、本実施の形態の通電体110の形状は、図2Aに示すような直線状に限定されない。通電体110は、図4に示すように検出コイル130の外周を取り囲むような形状であってもよい。この場合には、通電体110のX軸正方向とX軸負方向に延びる各部位110cと、通電体110のY軸負方向に延びる部位110dの周囲に発生する鎖交磁束も検出コイル120bに鎖交する。このため、通電体110が発生させる磁界による検出コイル120bの誘導起電圧信号の出力レベルが、通電体110が図2Aに示す直線状である場合に比べて、大きくすることができる。また、通電体110は、検出コイル120aの外周を取り囲むような形状であってもよい。
 また、図5に示すように、検出コイル120b(検出コイル120aであってもよい)が円形検出コイル40に変更され、通電体110が、円形検出コイル40の外周を取り囲む形状であってもよい。通電体110のX軸正方向とX軸負方向に延びる各部位110cと、通電体110のY軸負方向に延びる部位110dの周囲に発生する磁束も検出コイル40に鎖交する。このため、通電体110で取り囲まれない図3に示す円形検出コイル40に比べて、通電体110で取り囲まれる分だけ誘導起電圧信号の出力レベルを大きくすることができる。
 また本実施の形態では、検出コイル120a,120bは、図2Aに示すように長方形形状としているが、正方形形状であってもよい。正方形の検出コイルとした場合には、コイルパラメータが同様の長方形形状のコイルに比べて、S/N比は低下するが、コイル断面のアスペクト比を小さくすることができ、加工し易くなる利点がある。
 (実施の形態2)
 続いて、本発明の実施の形態2に係る電流計測装置11について説明する。なお、以下の説明において、実施の形態1と共通する構成要素等については、同一の符号を付す。
 前述の実施の形態1に係る電流計測装置10は、図1に示すように、第一端子台100に一対の検出コイル120a,120bが一組だけ配置され、第二端子台200に一対の検出コイル130a,130bが一組だけ配置された構成である。これに対して、実施の形態2に係る電流計測装置11は、図7に示すように、第一端子台101に、二対の検出コイル120a,120bが通電体110に沿って配置されるとともに、図6に示すように、二対の検出コイル120a,120bの接続を切り替える第一接続切替スイッチ500を備える。また、第二端子台201も第一端子台101と同様に構成されている。詳しくは、第二端子台201に、二対の検出コイル130a,130bが通電体110に沿って配置され、二対の検出コイル130a,130bの接続を切り替える第二接続切替スイッチ600を備える。
 実施の形態2に係る電流計測装置11は、図6に示すように、L1相電線20が接続される第一端子台101と、L2相電線30が接続される第二端子台201と、L1相電線20及びL2相電線30の交流電流値をそれぞれ算出する電流算出部301と、電源電圧を生成する電源回路400と、第一端子台101に配設された第一接続切替スイッチ500と、第二端子台201に配設された第二接続切替スイッチ600とを備える。
 第一端子台101には、2個の検出コイル120が配置される。第一接続切替スイッチ500は、第一端子台101に配置された2個の検出コイル120を、1個の検出コイル120のみとするか、2個の検出コイル120とするかを切り替える。つまり、一対の検出コイル120a,120bのみとした1組接続にするか、二対の検出コイル120a,120bを接続した2組接続にするかを切り替える。2組接続とは、図8に示すように、通電体110の左側の2個の検出コイル120aを同極性で直列接続し、通電体110の右側の2個の検出コイル120bを同極性で直列接続し、左側の2個の検出コイル120aと側の2個の検出コイル120bとを、逆極性に接続することである。
 第二端子台201も、2個の検出コイル130が配置される。第二接続切替スイッチ600は、第二端子台201に配置された2個の検出コイル130を、1個の検出コイル130のみとするか、2個の検出コイル130とするかを切り替える。つまり、一対の検出コイル130a,130bのみとした1組接続にするか、二対の検出コイル130a,130bを接続した2組接続にするかを切り替える。
 電流算出部301は、第一端子台101と第二端子台201の出力端子OUTからの誘導起電圧信号をそれぞれ差動増幅する各差動アンプ310a,310bと、その差動増幅したアナログ信号をデジタル信号にそれぞれ変換する各A/Dコンバータ320a,320bと、そのデジタル信号を演算処理して第一端子台101と第二端子台201の各通電体110の交流電流値をそれぞれ算出する演算処理プロセッサなどの演算処理部330とを備える。
 電源回路400は、実施の形態1と同様であり、第一端子台101に接続されたL1相電線20からの電源電圧を整流、平滑等して、電流算出部301を駆動するのに必要な電源電圧を生成する。
 第一接続切替スイッチ500は、電流算出部301からの制御信号に基づいて、第一端子台101に配置された一対の検出コイル120a,120bを1組接続又は2組接続に切り替えるハードウエアスイッチである。第二接続切替スイッチ600は、電流算出部301からの制御信号に基づいて、第二端子台201に配置された一対の検出コイル130a,130bを1組接続又は2組接続に切り替えるハードウエアスイッチである。
 第一端子台101は、図7に示すように、通電体110が配置される絶縁性の配置面Fを有する。この配置面F上には、2組の一対の検出コイル120a,120bが通電体110を挟んで対称に配置される。1組目の一対の検出コイル120a,120bは、2組目の一対の検出コイル120a,120bよりもY軸正方向側に位置している。
 1組目の一対の検出コイル120a,120bと、2組目の一対の検出コイル120a,120bとは、その長辺LSが通電体110の通電方向と平行に配置されるとともに、通電体110に対して絶縁距離d1を空けて第一端子台101の配置面F上に配置されている。従って、各組の一対の検出コイル120a,120bと通電体110との間には絶縁シートなどを配置する必要がない。
 図8に示すように、1組目の検出コイル120a,120bとは通電体110により発生する誘導起電圧信号の変化が逆となるように逆極性で直列に接続した状態で第一接続切替スイッチ500に接続されるとともに、2組目の検出コイル120a,120bも通電体110により発生する誘導起電圧信号の変化が逆となるように逆極性で直列に接続した状態で第一接続切替スイッチ500に接続されている。そして、第一接続切替スイッチ500を一点鎖線で示すようにスイッチ切替を行うと、1組目の一対の検出コイル120a,120bと、2組目の一対の検出コイル120a,120bとが接続された状態となる。詳しくは、通電体110の一方側(例えば左側)にある2個の検出コイル120aが同極性で直列に接続されるとともに、通電体110の他方側(例えば右側)にある2個の検出コイル120bが同極性で直列に接続され、2組目の検出コイル120a,120bとが逆極性で直列接続された状態となる。つまり、通電体110の左側の2個の検出コイル120aと、通電体110の右側の2個の検出コイル120bとは、逆極性となる。
 次に、上記のように構成された電流計測装置11による電流計測について説明する。
 まず、第一接続切替スイッチ500は、図8に実線で示すように第1接点P1に接続され、1組目の一対の検出コイル120a,120bを逆極性で直列接続する。なお、2組目の一対の検出コイル120a,120bも逆極性で直列接続された状態ではあるものの、1組目の一対の検出コイル120a,120bに対して非接続状態である。
 そして、L1相電線20に交流電流が供給されて、交流電流に応じた磁界が通電体110の周囲に発生する。1組目の一対の検出コイル120a,120bは、通電体110の交流電流の大きさに正比例して発生する磁界と、磁気的ノイズである外部磁界の磁束とが鎖交し、鎖交した磁束の変化分に正比例した誘導起電圧信号が発生する。1組目の一対の検出コイル120a,120bが実施の形態1と同様に逆極性で直列接続されているので、外部磁界による影響が相殺され、通電体110が発生させた磁界による誘導起電圧信号出力が足し合わされる。つまり、L1相電線20に通電される交流電流の時間微分の大きさに正比例した誘導起電圧信号Vが、図6に示すように、第一端子台101の出力端子OUTから電流算出部300に入力される。
 電流算出部300は、誘導起電圧信号Vに基づいて、L1相電線20に流れる交流電流値を算出する。詳しくは、誘導起電圧信号Vが、差動アンプ310aで差動増幅される。その増幅信号がA/Dコンバータ320aにてA/D変換される。演算処理部330は、そのA/D変換後のデジタル信号を演算処理し、L1相電線20に通電されている交流電流値を算出する。
 また、電流算出部301は、その算出した交流電流値が基準値より大きいか否かを判定する判定部335を備えている。例えばこの基準値は、1組の検出コイル120a,120bで検出可能な最大の誘導起電圧信号値の半分以下の値の場合に得られる交流電流値である。例えば、電流算出部301で算出された交流電流値が基準値よりも低い場合、つまり、通電体110への交流電流が小さい場合には、電流算出部301は制御信号を出力し、第一接続切替スイッチ500は、電流算出部301からの制御信号に基づいて、図8に一点鎖線で示すように第2接点P2に接続を切り替え、1組目の一対の検出コイル120a,120bと、2組目の一対の検出コイル120a,120bとを接続した状態にする。
 つまり、通電体110の左側にある2個の検出コイル120aが同極性で直列に接続されるとともに、通電体110の右側にある2個の検出コイル120bが同極性で直列に接続され、2組目の検出コイル120a,120bとが逆極性で直列接続された状態となる。つまり、検出コイルが増加した分だけ、より大きな誘導起電圧信号を取得することができる。
 一対の検出コイル120a,120bを何組接続するかを示す設定値は、一対の検出コイル120a,120bを1組接続する場合には「1」とし、一対の検出コイル120a,120bを2組接続する場合には設定値を「2」とする。設定値を「1」から「2」に変更させることで、外部磁界を相殺しつつ、通電体110が発生させた磁界による誘導起電圧信号出力を、実施の形態1に比べて接続組数倍(ここでは2倍)にすることができる。従って、L1相電線20に通電される交流電流が小さい場合でもその電流の大きさに正比例した誘導起電圧信号を高精度に得ることができる。電流算出部301では、一対の検出コイル120a,120bの接続組数を「2」としているため、この誘導起電圧信号に基づいて交流電流値を算出するが、その値を接続組数「2」で割った値を最終の交流電流値として算出する。
 電流算出部301は、第一接続切替スイッチ500、第二接続切替スイッチ600の設定値、つまり、一対の検出コイル120a,120bを直列接続する組数に基づいて、A/D変換値から交流電流値を算出する際の量子化係数などの解析パラメータを切り替える。
 以上説明したように、本発明の実施の形態2に係る電流計測装置11によれば、第一端子台101の第一接続切替スイッチ500は、通電体110の左側の2個の検出コイル120aを同極性で直列接続し、且つ、通電体110の右側の2個の検出コイル120bを同極性で直列に接続するとともに、左側の2組目の検出コイル120aと右側の2組目の検出コイル120bとを逆極性で直列接続することで一対の検出コイル120a,120bを2個接続するように接続切り替えを行う(第二接続切替スイッチ600も同様の接続切り替えを行う)。これにより、外部磁界の影響を相殺しつつ、第一端子台101、第二端子台201に接続されたL1相電線20、L2相電線30に通電される交流電流が小さい場合にもその大きさに比例した誘導起電圧信号を高精度で取得することができる。
 また、第一接続切替スイッチ500、第二接続切替スイッチ600を切り替えることで、測定電流信号の出力レベルを調節することができる。これにより、L1相電線20に通電される電流が大電流であっても小電流であっても電流算出部301に入力される測定電流信号の入力範囲を一定とすることができる。
 このことから、電流算出部301でA/D変換を行う際の分解能を調節することができるため、大電流から小電流まで高精度な電流測定を実現できる。
 実施の形態2では、第一接続切替スイッチ500、第二接続切替スイッチ600により、一対の検出コイル120a,120bの接続組数を、一対の検出コイル120a,120bの組単位で増加させたり減少させたりするように切り替え可能であるが、これに限定されない。図9に示すように、巻き数切替部700が、一対の検出コイル120a,120bのコイルの巻き数を両方とも同一に切り替えるようにしてもよい。例えば、巻き数切替部700が巻き数Nを2倍にする場合には、検出コイル120aの巻き数Nをその2倍である「2N」に変更するのに対応して検出コイル120bの巻き数Nも「2N」に変更する等が挙げられる。
 検出コイル120a,120bの鎖交磁束はコイルの巻き数に比例して変化する。このため、電流算出部301からの制御によって検出コイル120a,120bの巻き数を切り替えることで、測定電流信号の出力レベルを調節できる。電流算出部301は、巻き数切替部700の変更値に基づいて検出コイル120a,120bからの誘導起電圧信号を演算処理して被測定電流値を算出する。なお、検出コイル120a,120bはコイルパラメータは同じになるように切り替えを行うとともに、検出コイル120a,120bは前述の実施の形態1と同様に逆極性で直列接続されている。
 実施の形態2の通電体110は、図7に示すような直線状に限定されない。通電体110は、図10に示すように2個の検出コイル120bを取り囲むような形状であってもよい。この場合には、通電体110のX軸正方向とX軸負方向に延びる各部位110cと、通電体110のY軸負方向に延びる部位110dの周囲に発生する鎖交磁束も検出コイル120bに鎖交する。このため、2個の検出コイル120bの誘導起電圧信号の出力レベルが、通電体110が図7に示す直線状である場合に比べて、大きくすることができる。また、通電体110は、2個の検出コイル120aを取り囲むような形状であってもよい。
 この実施の形態2では、検出コイル120a,120bは長方形形状であったが、正方形形状であってもよい。正方形形状の検出コイルの場合には、コイルパラメータが同様の長方形形状の検出コイル120a,120bに比べて、S/N比は低下するが、コイル断面のアスペクト比を小さくすることができ、加工し易くなる利点がある。
 なお、本発明は、上記各実施の形態に限定されず、本発明の要旨を逸脱しない範囲での種々の変更は勿論可能である。
 上記実施の形態2では、一対の検出コイル120a,120bを2組としているが、3組以上のn組としてもよい。図11に示すように、第一端子台101(第二端子台201も同様)には、一対の検出コイル120a,120bが通電体110に沿ってn組(但し、nは3以上の自然数)配置され、n組のうちのm組(但し、mは自然数であり、3≦m≦nである)の一対の検出コイルについて、通電体110の一方側(例えば左側)のm個の検出コイル120aを同極性で直列接続し、且つ、通電体110の他方側(例えば右側)のm個の検出コイル120bを同極性で直列に接続するとともに、一方側のm個目の検出コイル120aと他方側のm個目の検出コイル120bとを逆極性で直列接続することで一対の検出コイルをm組接続するように接続切り替えを行う第一接続切替スイッチ500、第二接続切替スイッチ600を備えるようにしてもよい。
 このように一対の検出コイル120a,120bの接続組数をm個に増加させることで、外部磁界による影響を相殺しつつ、通電体110が発生させた磁界による誘導起電圧信号出力を、実施の形態1に比べて接続組数倍(ここではm倍)に足し合わせることができる。従って、L1相電線20に通電される電流が小さい場合でもその電流の大きさに正比例した誘導起電圧を高精度に得ることができる。
 なお、前述した各実施の形態では、通電体110を第一端子台100の配置面F上にネジ止めによって締結固定しているが、これに限定されない。通電体110は、係止爪等によって係止固定したり、圧入固定したり、接着固定したりするなど種々の固定態様であってもよい。また、前述した各実施の形態では、通電体110は導電板であるが、これに限定されるものではなく、導体配線、導体線、導体板などであってもよい。
 なお、前述した各実施の形態では、電源回路400は、L1相電線20からの電源電圧の一部を整流、平滑等して電源電圧を生成しているが、これに限定されない。電源回路400は、第二端子台200に接続されたL2相電線30からの電源電圧の一部を整流、平滑等して電源電圧を生成してもよい。
 また、前述した各実施の形態では、本発明における算出部の一例として電流算出部300,301を例に挙げているが、出力端子OUTからの誘導起電圧信号に基づいて電流値を算出する構成であれば電流算出部300,301以外の構成を採用してもよい。
 また、前述した実施の形態2では、第一端子台101は第一接続切替スイッチ500を、第二端子台201は第二接続切替スイッチ600を備えているが、これに限定されない。電流算出部301が、第一接続切替スイッチ500及び第二接続切替スイッチ600を備えるようにして一対の検出コイル120a,120bのn組接続を切り替えるようにしてもよい。
 なお、前述した実施の形態2では、第一接続切替スイッチ500、第二接続切替スイッチ600は、電流算出部301からの制御信号に基づいて切替制御されるハードウエアスイッチとしているが、これに限定されるものではない。ソフトウェアスイッチであってもよいし、電流計測装置11を設置する作業者が操作可能な手動スイッチであってもよい。
 また、電流算出部301は、算出した交流電流値に基づいて、第一接続切替スイッチ500、第二接続切替スイッチ600の設定値、つまり、一対の検出コイル120a,120bを直列接続する組数を変更しているが、これに限定されるものではない。例えば、操作者が手動スイッチを操作することで、一対の検出コイル120a,120bを直列接続する組数が手動変更可能であり、その組数を電流算出部301で読み取り可能であり、電流算出部301は、その組数に応じて交流電流値を算出するようにしてもよい。
 本発明は、広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能である。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本出願は、2013年5月15日に出願された日本国特許出願2013-102889号に基づく。本明細書中に、その明細書、特許請求の範囲及び図面全体を参照して取り込むものとする。
 本発明は、工場や家庭等の消費電力を計測する電流計測装置等に好適に採用され得る。
 10,11 電流計測装置、 20 L1相電線、 25 二次側電線、 30 L2相電線、 35 二次側電線、 40 円形検出コイル、 80 ネジ、 100,101 第一端子台(基台)、 110 通電体、 110a 一端、 110b 他端、 110c、110d 部位、 120、120a、120b 検出コイル、 130、130a、130b 検出コイル、 200,201 第二端子台(基台)、 300,301 電流算出部(算出部)、 310a,310b 差動アンプ、 320a,320b A/Dコンバータ、 330 演算処理部、 335 判定部、 340 表示部、 350 通信部、 400 電源回路、 500 第一接続切替スイッチ、 600 第二接続切替スイッチ、 700 巻き数切替部、 d1 絶縁距離、 ED 一端、 F 配置面、 LS 長辺、 OUT 出力端子、 P1 第1接点、 P2 第2接点、 TH 接続用雌ネジ孔

Claims (8)

  1.  被測定電流が流れる通電体と、
     前記通電体が配置された配置面を有する基台と、
     前記基台の配置面に前記通電体を挟んで絶縁距離を空けて配置され、逆極性で直列接続された同一構成の一対の検出コイルと、
     前記一対の検出コイルからの誘導起電圧信号に基づいて被測定電流値を算出する算出部と、
     を備える、電流計測装置。
  2.  前記基台には、前記一対の検出コイルが前記通電体に沿ってn個(但し、nは2以上の自然数)配置され、
     前記n個のうちのm個(但し、mは自然数であり、2≦m≦nである)の一対の検出コイルについて、前記通電体の一方側のm個の検出コイルを同極性で直列接続し、且つ、前記通電体の他方側のm個の検出コイルを同極性で直列に接続するとともに、一方側のm個目の検出コイルと他方側のm個目の検出コイルとを逆極性で直列接続することで前記一対の検出コイルをm個接続するように接続切り替えを行う接続切替スイッチを備え、
     前記算出部は、前記接続切替スイッチの設定値に基づいて前記検出コイルからの誘導起電圧信号を演算処理して被測定電流値を算出する、請求項1に記載の電流計測装置。
  3.  前記一対の検出コイルの巻き数を切り替える巻き数切替部を備え、
     前記算出部は、前記巻き数切替部の変更値に基づいて前記検出コイルからの誘導起電圧信号を演算処理して被測定電流値を算出する、請求項1に記載の電流計測装置。
  4.  前記一対の検出コイルは、そのコイル断面が長方形形状であり、その長辺が前記通電体の通電方向と平行である、請求項1から3の何れか1項に記載の電流計測装置。
  5.  前記通電体の形状は、前記一対の検出コイルのうち一方の検出コイルの外周を取り囲む形状である、請求項1から4の何れか1項に記載の電流計測装置。
  6.  前記一方の検出コイルはそのコイル断面形状が円形である、請求項5に記載の電流計測装置。
  7.  前記基台は、一次側電線と前記通電体の一端とを接続し且つ二次側電線と前記通電体の他端とを接続するための端子台である、請求項1から6の何れか1項に記載の電流計測装置。
  8.  通電体に流れる被測定電流値を算出する電流算出方法であって、
     前記通電体が基台の配置面に配置され、
     同一構成の一対の検出コイルが、前記基台の配置面に前記通電体を挟んで絶縁距離を空けて配置されるとともに、前記一対の検出コイルが逆極性で直列接続され、
     算出部が、前記一対の検出コイルからの誘導起電圧信号に基づいて被測定電流値を算出する、電流算出方法。
PCT/JP2014/062715 2013-05-15 2014-05-13 電流計測装置及び電流算出方法 WO2014185409A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/781,326 US9995772B2 (en) 2013-05-15 2014-05-13 Current measurement device and current calculation method
EP14798426.4A EP2998748B1 (en) 2013-05-15 2014-05-13 Current measurement device and current calculation method
CN201480027339.9A CN105264389B (zh) 2013-05-15 2014-05-13 电流测量装置以及电流计算方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-102889 2013-05-15
JP2013102889A JP5814976B2 (ja) 2013-05-15 2013-05-15 電流計測装置

Publications (1)

Publication Number Publication Date
WO2014185409A1 true WO2014185409A1 (ja) 2014-11-20

Family

ID=51898386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062715 WO2014185409A1 (ja) 2013-05-15 2014-05-13 電流計測装置及び電流算出方法

Country Status (5)

Country Link
US (1) US9995772B2 (ja)
EP (1) EP2998748B1 (ja)
JP (1) JP5814976B2 (ja)
CN (1) CN105264389B (ja)
WO (1) WO2014185409A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108316B2 (ja) * 2014-01-07 2017-04-05 アイ トゥー ユー 電力効率改善装置
US9958480B2 (en) * 2015-02-10 2018-05-01 Qualcomm Incorporated Apparatus and method for a current sensor
CN105092928B (zh) * 2015-07-23 2018-04-20 深圳市华谊智测科技股份有限公司 数字钳型表及其自动测量方法
CN107102280B (zh) * 2017-06-13 2023-04-28 武汉普瑞通科技有限公司 一种核磁共振信号接收线圈、装置以及核磁共振超前探测方法
CN108761164B (zh) * 2018-04-19 2020-09-25 江苏大学 一种用于脉冲电流测量的空心差分线圈及其测量方法
KR102029009B1 (ko) * 2019-08-20 2019-10-07 주식회사 조이테크 배전선로 자동화의 시스템
CN116930832A (zh) * 2023-07-24 2023-10-24 西南交通大学 一种超导电动磁浮轨道故障检测装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159449A (ja) * 1993-12-03 1995-06-23 Asahi Electric Works Ltd 電流測定方法および電流測定装置
JP2000147023A (ja) * 1998-11-11 2000-05-26 Nippon Telegr & Teleph Corp <Ntt> 感度調整機能付き大口径電流プローブ
JP2003510612A (ja) * 1999-09-30 2003-03-18 ダイムラークライスラー アクチエンゲゼルシャフト 少なくとも2つのホールセンサから成る磁界感知可能な差分センサを備えた電流を測定するための装置
JP2011220952A (ja) 2010-04-14 2011-11-04 Toshiba Toko Meter Systems Co Ltd 電流検出装置及びこれを用いた電力量計

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4400418A1 (de) 1993-01-14 1994-08-04 Schlumberger Ind Inc Luftgekoppelter Stromtransformator
US5642041A (en) * 1994-11-21 1997-06-24 General Electric Company Alternating current sensor employing parallel plates and having high dynamic range and accuracy
CH691846A5 (fr) * 1997-06-20 2001-11-15 Ecole Polytech Implant de dilatation intravasculaire à déflecteur.
US6177806B1 (en) * 1997-09-03 2001-01-23 International Business Machines Corp. Signal sensor for rf integrated systems
US6094043A (en) * 1998-04-15 2000-07-25 Square D Company ARC detection sensor utilizing discrete inductors
DE19821492A1 (de) * 1998-05-14 1999-11-25 Daimler Chrysler Ag Verfahren zur berührungslosen Messung eines einen Leiter durchfließenden Stromes mittels eines Hallsensors sowie Hallsensoranordnung
EP1074846B1 (fr) * 1999-08-04 2007-02-14 Schneider Electric Industries SAS Capteur de courant pour appareil électrique
JP2003315373A (ja) * 2002-04-18 2003-11-06 Toshiba Corp 電流検出装置及び半導体装置
IES20040206A2 (en) * 2003-03-27 2004-10-20 Suparules Ltd An apparatus for measuring an A.C. current in a cable
SI21629A (sl) 2003-09-12 2005-04-30 Iskraemeco, D.D. Induktivni senzor električnega toka
JP2007183221A (ja) * 2006-01-10 2007-07-19 Denso Corp 電流センサ
KR100748511B1 (ko) 2006-05-12 2007-08-14 엘지전자 주식회사 코일형 센서 모듈
JP2008170244A (ja) * 2007-01-11 2008-07-24 Akebono Brake Ind Co Ltd 電流センサ
CN201035065Y (zh) 2007-02-08 2008-03-12 长沙威胜电子有限公司 Rogowski仪用电流互感器
JP5633917B2 (ja) * 2009-03-03 2014-12-03 東光東芝メーターシステムズ株式会社 電流検出装置およびこれを用いた電力量計
JP5562054B2 (ja) 2010-01-29 2014-07-30 富士通株式会社 テーブルタップ及び電力測定システム
JP2012018024A (ja) * 2010-07-07 2012-01-26 Alps Green Devices Co Ltd 電流センサ
WO2012011306A1 (ja) * 2010-07-20 2012-01-26 アルプス・グリーンデバイス株式会社 電流センサ
US8922193B2 (en) * 2011-12-05 2014-12-30 Brandeis University Current meter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159449A (ja) * 1993-12-03 1995-06-23 Asahi Electric Works Ltd 電流測定方法および電流測定装置
JP2000147023A (ja) * 1998-11-11 2000-05-26 Nippon Telegr & Teleph Corp <Ntt> 感度調整機能付き大口径電流プローブ
JP2003510612A (ja) * 1999-09-30 2003-03-18 ダイムラークライスラー アクチエンゲゼルシャフト 少なくとも2つのホールセンサから成る磁界感知可能な差分センサを備えた電流を測定するための装置
JP2011220952A (ja) 2010-04-14 2011-11-04 Toshiba Toko Meter Systems Co Ltd 電流検出装置及びこれを用いた電力量計

Also Published As

Publication number Publication date
EP2998748A4 (en) 2017-02-01
CN105264389B (zh) 2017-12-05
JP2014224695A (ja) 2014-12-04
US20160054359A1 (en) 2016-02-25
EP2998748A1 (en) 2016-03-23
JP5814976B2 (ja) 2015-11-17
US9995772B2 (en) 2018-06-12
EP2998748B1 (en) 2020-09-09
CN105264389A (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2014185409A1 (ja) 電流計測装置及び電流算出方法
CN1161619C (zh) 电流检测器
US20120200293A1 (en) Non-contact current and voltage sensing method
JP5885138B2 (ja) 電圧検出装置及び電力検出装置
JP2013152221A (ja) 電流センサ
US20160131682A1 (en) Current sensor arrangement
JP2005321206A (ja) 電流検出装置
CN103575958A (zh) 用于测量交流电的直流分量的装置
JP4755791B2 (ja) 電流または電力センサ
US20160124025A1 (en) Current sensor arrangement with measuring coils
Nibir et al. Performance study of magnetic field concentration techniques on magnetoresistor/rogowski contactless current sensor
JP7036222B2 (ja) 位置ずれ検出装置およびコイル装置
JP5633917B2 (ja) 電流検出装置およびこれを用いた電力量計
JP2014085248A (ja) 電流センサおよび電流検出方法
US20200158761A1 (en) Current sensing device and method
CN202815087U (zh) 一种能够降低交变电磁干扰的电子式电能表
JP2015184175A (ja) 電流センサ及び電流センサセット
JP5869785B2 (ja) 電流検出装置及び電力量計
US20240118319A1 (en) Current detection device and related devices, systems and methods thereof
JP2012002689A (ja) 電流センサ
JP2008267832A (ja) 電流測定装置
JP4215244B2 (ja) コイル損失状態監視システム及びコイル損失測定方法
US20200333383A1 (en) Current detecting module and current tester
Bae et al. ICT Diagnosis Technology of the Electrical Equipment Using Magnetic Energy Harvesting (MEH)
JPS5939774Y2 (ja) 水冷ケ−ブル電流検出器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480027339.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798426

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14781326

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014798426

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE