JP4215244B2 - コイル損失状態監視システム及びコイル損失測定方法 - Google Patents

コイル損失状態監視システム及びコイル損失測定方法 Download PDF

Info

Publication number
JP4215244B2
JP4215244B2 JP2003096928A JP2003096928A JP4215244B2 JP 4215244 B2 JP4215244 B2 JP 4215244B2 JP 2003096928 A JP2003096928 A JP 2003096928A JP 2003096928 A JP2003096928 A JP 2003096928A JP 4215244 B2 JP4215244 B2 JP 4215244B2
Authority
JP
Japan
Prior art keywords
coil
measured
loss
metal member
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003096928A
Other languages
English (en)
Other versions
JP2004301757A (ja
Inventor
文夫 住吉
奉文 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2003096928A priority Critical patent/JP4215244B2/ja
Publication of JP2004301757A publication Critical patent/JP2004301757A/ja
Application granted granted Critical
Publication of JP4215244B2 publication Critical patent/JP4215244B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力貯蔵装置,変圧器,半導体単結晶引き上げ装置、限流器,MRI(磁気共鳴映像装置),発電機,電動機などのコイル応用装置の動作時における超伝導コイルや常伝導コイルのコイル全体の損失を測定すると共に、このコイル応用装置の動作中におけるコイル全体の損失の経時的変化の監視、又は損失を生じたコイル部分の検出とその箇所に生じた損失を監視するようにしたコイル損失測定方法及びコイル損失監視システムに関するものである。
【0002】
【従来の技術】
コイルを応用した装置の基本性能の一つであるコイル損失を測定することは、コイル応用装置の効率の評価やコイル巻線の冷却方法の検討など、装置設計上重要である。また、コイル応用装置の運転初期または運転中におけるコイル損失の発生状況、またはコイル周辺の発生磁界分布を監視することは、コイル応用装置の正常な動作状態、所謂健全性を把握する上で重要である。 コイル損失の測定法には、電気的測定法と熱的測定法がある。(例えば非特許文献1、p.297−300参照。)前者の電気的測定法としては、無誘導巻コイル法,ポインチングベクトル測定法,マグネット損失の電気的測定法,tanδ計法があり、この電気的測定法は一般に感度が良いとされるが、高い測定技術を必要とし、面倒なこともあって汎用的でない。一方後者の熱的測定法は、感度は悪いが簡便な方法があり汎用的である。
【0003】
また、誘導コイルの損失測定法としては、同一交流電源に接続した被測定誘導コイルと、損失角が既知の標準コンデンサに得られる電気量の位相差角を時間に換算して測定し、この測定値から求めた位相差角から既知である前記標準コンデンサの損失角を減算した角度が、前記被測定誘導コイルの損失角を与えることを利用して誘導コイルの損失を測定する方法がある。(例えば特許文献1参照。)
【0004】
超伝導コイルは、運転中突然に、その巻線中に常伝導領域が生じる不安定現象により発熱し、さらに進むと、超伝導コイルとしての機能が損なわれる深刻な事態(クエンチと呼ばれる)に至る。このような場合は成るべく早くコイルへの通電を止めることが重要で、そのタイミングが遅れると、コイル自体の焼損や絶縁破壊などの損傷に至る可能性がある。そのため、超伝導コイル装置には、その運転中の健全性を常時監視する装置と、異常が検出されたとき速やかにコイルを保護する装置の両方が不可欠である。
【0005】
このようなコイル応用装置の運転中に生じるコイル損失の異常を監視する装置としては、例えば、超伝導コイルのコイル巻線を2つの部分に分け、そのほぼ中間のタップから引出した電圧リードを利用して、2つの部分のコイル端子間電圧のバランスのずれ(バランス電圧)を見ている。そのバランス電圧は、平常時にゼロ電圧に近づくよう設定されており、もし片方に突然常伝導領域が生じると大きな電圧が観測され、その異常状態の発生を知ることができる。(例えば非特許文献1、p.214、図6.13(a)参照。)
またそれに類する方法として、コイルの内側の穴の部分に、コイル両端の電圧端子とは絶縁された独立のピックアップコイルを2個設置して、それらのバランス電圧を観測する監視システムがある。
【0006】
また、小さなコイルの場合には、電源自体がコイルの両端電圧の急激な変化を検出して、自動的に運転を中止するシステムも採用されている。
また、常伝導コイルや伝導冷却による超伝導コイルのように、コイル巻線部分の損失増大や常伝導領域が生じると、異常発熱となって結果的にコイルやそれに付随する構造材などの温度が上昇する。この温度変化を調べる監視システムもある。
また、アコースティックエミションによる監視システムの開発も行われている。これはコイルから発生する音の変化を利用したものである。現段階ではまだ、補助システムとしては使われているが、主システムとしての信頼性は得られていない。
【0007】
【非特許文献1】
船木和夫・住吉文夫共著、「多芯線と導体」発行所産業図書株式会社、1995年4月3日、p.214、図6.13(a),p285−300
【特許文献1】
特公平8−27310号公報(第1−2頁)
【0008】
【発明が解決しようとする課題】
しかしながら、従来コイル損失の異常を検知する監視システムは、例えば超伝導コイルのように容器内が極低温の場合のコイル損失を、容器の外から電気的に測定することはできなかった。また、1個又は複数のコイルの一部分で発生するコイル損失を選択的に電気的に測定することもできなかった。即ち、1個のコイルの一部分(例えば、2個のコイルが連結されて1個のコイル組立として構成されているものの一方のコイル)、又は複数のコイルが接続されている内の一部のコイルで発生する損失について、コイルの何処の箇所で異常が発生しているかを検知することはできなかった。また、従来はコイル自体に影響を及ぼすような測定方法により耐電圧性能を劣化させる場合があるなどの問題があった。
本発明は、これらの問題をすべて解決することができたコイル損失状態監視システム及びコイル損失測定方法を提供するものであり、これによりコイル又はコイル装置の健全性を調べることができる。
【0009】
【課題を解決するための手段】
本願の第1の発明によるコイル損失状態監視システムは、コイル応用装置の運転状態における1個のコイル又は複数個のコイルが接続されたコイルの全部若しくは一部のコイルの被測定コイルの周囲を金属製部材で囲み、該金属製部材周面の複数の適宜の対象領域に磁界ベクトルと電界ベクトルの外積として得られるポインチングベクトルを測定するセンサーを配置し、該複数のセンサーにより検出されるポインチングベクトル値から前記被測定コイルのコイル損失状態を監視するようにしたものである。
【0010】
本願の第2の発明によるコイル損失状態監視システムは、コイル応用装置の運転状態における1個のコイル又は複数個のコイルが接続されたコイルの全部若しくは一部のコイルの被測定コイルの周囲を金属製部材で囲み、該金属製部材周面の複数の適宜の対象領域に磁界ベクトルと電界ベクトルの外積として得られるポインチングベクトルを測定するセンサーを配置し、該複数のセンサーにより検出されるポインチングベクトル値の総和を所要のタイミングで検出し、該ポインチングベクトル値の総和から前記被測定コイルのコイル損失状態を監視するようにしたものである。
【0011】
本願の第3の発明によるコイル損失状態監視システムは、コイル応用装置の運転状態における1個のコイル又は複数個のコイルが接続されたコイルの全部若しくは一部のコイルの被測定コイルの周囲を金属製部材で囲み、該金属製部材周面の複数の適宜の対象領域に磁界ベクトルと電界ベクトルの外積として得られるポインチングベクトルを測定するセンサーを配置し、該複数のセンサーの各出力を所要のタイミングで切り替えて該複数箇所のポインチングベクトル値を表示装置に該複数箇所毎に繰り返し表示するようにして、該複数箇所のポインチングベクトル値から前記被測定コイルのコイル損失状態を監視するようにしたものである。
【0012】
本願の第4の発明によるコイル損失測定方法は、コイル応用装置の運転状態における1個のコイル又は複数個のコイルが接続されたコイルの全部若しくは一部のコイルの被測定コイルの周囲を金属製部材で囲み、該金属製部材周面の複数の適宜の対象領域に磁界ベクトルと電界ベクトルの外積として得られるポインチングベクトルを測定するセンサーを配置し、該複数のセンサーにより検出される各ポインチングベクトル値と該各ポインチングベクトルの対象領域の面積とから各ポインチングベクトル部のコイル損失を求め、該各ポインチングベクトル部のコイル損失の総和から前記被測定コイルの損失を求めるようにしたものである。
【0013】
【発明の実施の形態】
図1に、本発明によるコイル損失測定法及びコイル損失監視システムの基本的概念を説明する模式図を示す。図1において、1はコイル損失の測定対象の被測定コイル、2は被測定コイル1の周囲に設けられた球状(地球儀状)の金属製部材であり、例えば銅ホイルなどのように導電性の良い薄い金属が望ましい。ただし、他の金属であって、その板厚が薄くなくても測定はできる。
この球状の金属製部材2の外周面には、磁界ベクトルと電界ベクトルの外積からポインチングベクトルを測定するための磁界と電界を検出するセンサー3を複数設けてある。この球状の金属製部材2には、説明を容易にするため、図面に向かって上側を北極(North Pole),下側を南極(South Pole),右側を東(East),左側を西(West)として表してある。
【0014】
ポインチングベクトルPは、単位時間に単位面積を通過するエネルギーの流れの大きさであり、P=E(電界)×H(磁界)で表される。従って、図2(a)に示すポインチングベクトルPを検出するセンサー3は、図2(b)(c)に示すように、西向の電界Ewと北向の磁界Hnとの外積であるポインチングベクトルP1 を測定するセンサー31(図2(b))と、北向の電界と東向の磁界Heとの外積であるポインチングベクトルP2 を測定するセンサー32(図2(c))とにより構成されているものであり、ポインチングベクトルP1 とP2 とを積算したものである。このセンサー3を球状の金属製部材2の外周面に適宜数を配置して、センサー3を配置した各領域のポインチングベクトルの変化の有無により、コイル又はコイル応用装置の健全性を監視するものである。また、センサー3を配置した各領域の各ポインチングベクトル値とその対象領域の面積とからコイル損失を求め、各領域のコイル損失の総和から被測定コイル1全体のコイル損失を測定するものである。
【0015】
次に、本発明の実施例に基づきコイル損失の測定方法を説明する。図3は被測定コイル1の周囲を球状の金属製部材2で囲ったもので、この金属製部材2の表面に、磁界を検出するピックアップコイル5a,5bと、電界を検出する電圧リード6a,6bとを、その一部についての配置を示したものである。
図3(a)は前述したポインチングベクトルP1 の測定と、図3(b)はポインチングベクトルP2 の測定とを示すものであり、細い矢印は磁界の方向で太い矢印は電界の方向を示している。なお、金属製部材2の軸方向(北極と南極間)に1カ所だけスリット4を設けてある。このスリット4は、ポインチングベクトルP1 の電界を検出する距離が短くなるため、ほぼ全周に亘って電界を測定するように設けたものである。また、金属製部材2の赤道部分に、例えばゴムなどの絶縁部材9を挟み、北半球と南半球とを電気的に分離するようにし、被測定コイル1の抵抗で発生する電界を測定する。
【0016】
図3(a)におけるポインチングベクトルP1 の測定においては、磁界Hnを測定するピックアップコイル5a、…は横の円周方向に複数段設けられ、電界Ewを測定する電圧リード6a、6b,…はピックアップコイル5a,…設置位置とほぼ重なる箇所の円周方向の電界を測定するように各段毎に設けられている。この実施例の場合は金属製部材2が球状であるため、ポインチングベクトルP1 の測定における円周各位値の磁界Hnと電界Ewがほぼ均一であることから、それぞれ1個のピックアップコイル5aと電圧リード6aで測定するようにしているものである。ただし、基本的には金属製部材2の形状に基づいてポインチングベクトルを測定する箇所毎にピックアップコイル5aと電圧リード6aを設けることである。
【0017】
図3(b)におけるポインチングベクトルP2 の測定においては、磁界Heを測定するピックアップコイル7a,7b,…と電界Enを測定する電圧リード8a,8b,…は、前述のポインチングベクトルP1 を測定するピックアップコイル5aと電圧リード6aと合致する位置に個々に設けられているものである。即ち、ポインチングベクトルP1 とP2 とは同一地域を対象として測定するようにしているものである。なお、P2 の測定における赤道部分の電界Enは、絶縁部材9で挟んで電圧リードが設けられ、その間の電界を測定するものである。
【0018】
次に、図3に示した被測定コイル1を球状の金属製部材2により囲んで測定する場合の具体的測定方法を説明する。なお、図4に測定回路を示す。図4において、1は被測定コイル、2は球状の金属製部材でその断面図を示す。11はピックアップコイルであり、前述の磁界Hn,Heを検出するピックアップコイル5a,…と7a,7b,…とを総称して示す。12は電圧リードであり、前述の電界Ew,Enを検出する電圧リード6a,6b,…と8a,8b,…とを総称して示す。なお、各ピックアップコイル11(5,7)と各電圧リード12(6,8)は、所要のタイミングで端子13a,13b,13c,13dで切換えて、測定回路に接続されるようになっている。14はオシレータであり、被測定コイルに対する交流信号として、例えば100Hz又は200Hzの信号がそれぞれ出力すると共に、ロックイン増幅器15にアイソレーション増幅器16を介して参照信号を出力するものである。
【0019】
17は電力増幅器であり、オシレータ14からアイソレーション増幅器18を介して入力される交流信号100Hz,200Hzを増幅し、被測定コイル1に所要の電流を供給するものである。19はシャント抵抗、20は電圧計、21は可変抵抗VR1 ,VR2 からなるキャンセルボックス、22は差動増幅器である。
【0020】
この実施例における測定装置の諸元は、次の表1に記載の通りである。
【表1】
Figure 0004215244
【0021】
球状の金属製部材2は、プラスチックの球(半径107mm)の中央にコイル長107mmの被測定コイルを置き、プラスチックの球面上は金属製部材(薄い銅ホイル又はテープ)で覆っている。
P1 の測定は、北緯80°〜南緯80°まで10°毎に電界検出用の電圧リード6と磁界検出用のピックアップコイル5のセットを球面上に設置してある。P2 測定は緯度10°間に電界検出用の電圧リード8とその間に磁界検出用のピックアップコイル7とのセットを北緯90°〜南緯90°まで10°毎に設置してある。球面の全体に渡り36点のポインチングベクトルPを測定する。そして、P1 とP2 の和とその測定面の表面積の積が見掛上のコイル損失になる。球面のコイル損失値の総和が装置内部で発生するコイル損失値である。
【0022】
また、交流損失測定の感度を高めるためキャンセルボックス21とロックイン増幅器15による位相差測定を用いている。ポインチングベクトルPを球面全体に渡って測定する際、球面の測定をP1 の測定とP2 の測定を合わせて36分割している。その各測定点における電圧リード12の拾う信号電圧とピックアップコイル11の拾う信号電圧をそれぞれVe ,Vh とする。このとき通電電流Iと磁界Hを基準に取ったベクトル図が図5(a)である。Ve は損失成分Ve1と蓄積エネルギ成分Ve2の合成ベクトルである。そこでまず、Ve に含まれるVe2と同相の信号電圧をVe に加える(実際は差し引く)ことで、余分なVe2を可能な限り小さくする。その結果、図5(b)に示すようにVe ’とVe1の位相差は90°より十分小さくなり、Ve1が測定可能となる。このように、信号電圧から損失成分でない余分な成分を引いてやることを、ここではキャンセリングと呼ぶことにしている。
【0023】
次に、Ve ’からVe1を取り出し、損失成分の電界を求めるためにロックイン増幅器15を用いる。ロックイン増幅器15は、オシレータ14からの参照信号を基準とし測定信号に含まれる参照信号と同相または90度ずれた成分の微小信号のみを検出する。参照信号(REF)はオシレータ14の同期信号出力から出る方形波をロックイン増幅器15に入力し、ロックイン増幅器自体でVh と同相にする。これは、図5で示するようにVe1が通電電流Iと同相であり、Vh は通電電流Iに対して確実に90度ずれているため、参照信号としては適しているからである。測定においてキャンセル比を調節していくと、位相差φ’はほとんど0度になり、Ve ’はVe1となる。よって、非常に測定が困難であったVe1を精度良く求めることができる。
【0024】
次に、計算方法について述べる。測定した電界,磁界の信号電圧は、以下のように処理をされ、交流損失が得られる。前述の説明の通り、ポインチングベクトルPはエネルギーの流れであり、電界E〔V/m〕と磁界H〔A/m〕の外積で表される。
【数1】
Figure 0004215244
ここで各測定点における電界と磁界を以下のように定義する。
【0025】
【数2】
Figure 0004215244
ピックアップコイル11が拾う磁界の信号電圧をVh 〔V〕、電圧リード12が拾う信号電圧Ve 〔V〕とすると、
【数3】
Figure 0004215244
と表すことができる。
【0026】
ただし、Nはピックアップコイル11のターン数、φは磁束、μ0 は真空の透磁率、Sはピックアップコイルの断面積、dは電圧リードの端子間距離である。Ve の基本波成分には、空間の蓄積エネルギー成分が含まれているため、Vh を蓄積エネルギー成分を差し引くための基準信号とすることでキャンセルを行う。このときのキャンセル比をk、キャンセル後の電界Ve ’と磁界の位相差をφ’とすると、キャンセル後の電界信号Ve ’は(3)式及び(4)式から
【0027】
【数4】
Figure 0004215244
となる。
ただし
【数5】
Figure 0004215244
である。
【0028】
一方、参照信号Vr にはオシレータ14の同期信号出力から、出力電圧と同期している方形波を入力する。
【数6】
Figure 0004215244
今回は、参照信号Vr の位相を蓄積エネルギーと同じ成分にするため、ロックイン増幅器15において90度ずらす。
【数7】
Figure 0004215244
【0029】
それぞれの信号はロックイン増幅器15内のPSD(位相検波器)においてミキサされ、同相成分が直流電圧で出力される。PSDの出力をV0 とすると、
【数8】
Figure 0004215244
ここで、バンドパスフィルタをかけることにより、V0 から直流成分V0dc のみ取り出すことができる。
【数9】
Figure 0004215244
【0030】
ポインチングベクトルPは電界と磁界の外積であり、これを時間積分することでコイル損失が求められる。電界と磁界は、
【数10】
Figure 0004215244
であり、それぞれ測定信号との関係は、
【数11】
Figure 0004215244
と表すことができる。
【0031】
ここで、測定試料単位長さ当たり、巻線間全体のコイル損失をWとすると、
【数12】
Figure 0004215244
と表すことができる。
【0032】
今回の測定ではポインチングベクトルを球面上36点に渡り測定することら、各測定点(i番目)の電界と磁界をそれぞれE(i)、H(i)、巻線中心間距離をwとすると(12)式は、
【数13】
Figure 0004215244
と近似できる。ここで、
【数14】
Figure 0004215244
である。
【0033】
さらに(10)式、(12)式より
【数15】
Figure 0004215244
となることより、最終的に測定装置内のコイル損失は、
【数16】
Figure 0004215244
と表される。
【0034】
次に、被測定コイル1の通電電流Iはオシレータ14で制御する。ピックアップコイル11が拾う磁界信号を抵抗分圧することでキャンセルを行い、ロックインアンプ15を用いることで電界の損失成分を得る。今回のピックアップコイル11の信号電圧が少なかったために、電圧リード12の信号電圧を分圧した測定個所がある。このため、測定電圧はキャンセル比の分だけ小さくなっているが、損失計算時にキャンセル比で補正してある。なお、P2 の電界測定の赤道部分は電圧リードの信号電圧が大きいため、キャンセルボックス21の可変抵抗を2段にしてキャンセル処理を行ったものである。
【0035】
【実施例】
次に被測定コイル1として、表2に示す諸元の被測定コイル1を室温空間で通電してコイル損失測定を行った実施例を説明する。
【表2】
Figure 0004215244
【0036】
被測定コイル1の電流値Iを5A、周波数を100Hz,200Hzに変化させて測定した。この測定における各測定領域の磁界,電界,ポインチングベクトル,コイル損失の各測定データを、後述する被測定コイル1に他のコイルを接続した状態で、被測定コイル1のコイル損失を測定した測定結果と共に表示した、図6乃至図9に基づいて説明する。なお、この測定における100Hzの測定データは白丸で示し、200Hzの測定データは白四角で示してある。この測定における磁界の測定結果を図6(a)(b)、電界の測定結果を図7(a)(b)に示す。図6及び図7の横軸は測定の位置を緯度で示している。図6(a)(b)より磁界の測定は周波数の依存性がなく左右対称で測定に問題がない。磁界Hnは北緯60°と南緯60°の部分でピークになっている。これは、被測定コイル1とピックアップコイル5が接近しているためである。また、磁界Heは北緯80°と南緯80°の部分でピークになっているのは、リード線とピックアップコイル7が接近しているためである。また、図7(b)から電界Enは、赤道部分でコイルの抵抗により発生する電位差が計測されている。
【0037】
次に図8(a)(b)は各ポインチングベクトル計測箇所のP1 ,P2 の測定結果であり、図9(a)(b)は各ポインチングベクトル計測箇所のP1 ,P2 に基づく見掛上のコイル損失の測定結果である。この測定空間内の抵抗は、四端子法による測定により0.43Ωであった。この抵抗値よりコイル損失の理論値は、5.41Wである。測定結果は、100Hzが5.32W、200Hzが5.75Wであった。この測定結果は、図9(b)に現れているように、P2 の赤道部分のみで決まっている。そのため、被測定コイル1の抵抗成分の損失は、P2 の赤道部分のみで測定している。そして、P2 の赤道部分以外の部分とP1 の損失値の和は、100Hzで5.22×10-3〔W〕、200Hzで1.62×10-2〔W〕である。これは、被測定コイル1の渦電流損失と考えられる。
【0038】
また、被測定コイル1で発生する渦電流損失の理論値は、
【数17】
Figure 0004215244
より求めた結果、100Hzは1.012×10-4〔W〕、200Hzは2.024×10-4〔W〕になった。
【0039】
前述の被測定コイル1の室温空間での理論計算によるコイル損失と、実際の測定結果におけるコイル損失を表3に示す。
【表3】
Figure 0004215244
【0040】
次に前述した被測定コイル1に他のコイル23を接続した状態で、被測定コイル1の損失を測定した実施例について説明する。即ち、複数のコイルの一部分で発生するコイル損失だけを選択的に測定できる実施例としたものである。この測定においては、図10に示すように、被測定コイル1と他のコイル23とを直列に配置し、他のコイル23を測定システムの外側に置き、被測定コイル1の測定を行ったものである。なお、この測定においては、円周方向の磁界と電界が一定のときのみ測定可能であるため、2つのコイルは同軸上に配置して測定したものである。また被測定コイル1に接続した他のコイル23の諸元は、表4に示す通りである。
【0041】
【表4】
Figure 0004215244
【0042】
この実施例における測定においても、周波数を100Hz,200Hzに変化させて測定し、その測定結果を、前述したように被測定コイル1を単独に測定した測定値と重ね合わせて、図6乃至図9に100Hzの測定データは白丸で示し、200Hzの測定データは白四角で表示してある。即ち、この測定における各測定領域の磁界の測定結果を図6(a)(b)、電界の測定結果を図7(a)(b)、ポインチングベクトルの測定結果を図8(a)(b)、コイル損失の測定結果を図9(a)(b)に示してある。この測定による被測定コイル1の測定結果は、表5に示す通りである。
【0043】
【表5】
Figure 0004215244
【0044】
この表5から明らかなように、銅コイルを2個直列に接続して、100Hzの交流電流を磁界の発生が同じ向きになるように通電して測定した結果、全測定値は理論値とほぼ一致していることが確認された。なお、渦電流損失の測定は、他のコイル23に近い半球で測定値が増加している。これは、他のコイル23で発生する磁界の影響を受けて増加しているものである。
【0045】
前述した測定結果は、図4に示した測定回路により、球状の金属製部材2の表面の各部に設置されたセンサーとしてのピックアップコイルによる磁界の測定と、電圧リードによる電界の測定とを各設置部毎に切換えて行い、その各設置部のポインチングベクトルを測定することにより、その各設置部に対応する見掛上のコイル損失を測定するものである。また、それと共に各センサー設置部の測定値の総和が被測定コイル全体のコイル損失となる。
【0046】
従って、各設置部のセンサーを所要のタイミングにより切換えて測定し、その測定結果を表示装置上に繰り返し表示することにより、いずれかのセンサー設置部でコイル損失値の増加が検知された場合、そのセンサー設置部に対応するコイル位置で異常な発熱が生じたことを検出することができるものである。被測定コイルが超伝導コイルの場合は、コイルの一部で常伝導化したことを検出することができるし、その変化の程度についても測定することができる。勿論、被測定コイルの全体の損失が、予め計算された理論値に比較してどの程度の差異を有しているか、或いは全体のコイル損失の変化の検出により、被測定コイルの異常の発生を検出することもできる。
【0047】
前述した実施例では、被測定コイルの周囲を囲む金属製部材を、銅ホイルのような薄い金属を用いた実施例により説明したが、金属製部材を図15に示すように例えば銅線による網状金属製部材24にして、渦電流損失の低減を図るようにしてもよい。また、薄い銅板等の金属板に多数の孔を開けたパンチングメタルにより囲むようにしてもよい。また、被測定コイルが超伝導コイルのように冷却用容器に収容されているような場合で、冷却用容器が金属の場合は金属の外周面に磁界及び電界を測定するセンサーを、その金属容器に直接設置してもよい。また、冷却用容器がプラスチックのような場合は、そのプラスチック容器の周囲を前述した金属製部材で囲み、その周囲にセンサーを設けるようにすればよい。
【0048】
また、前述した実施例では、被測定コイルの周囲を囲む金属製部材を球状に形成して構成したが、被測定コイルの形状に基づいて様々な形状に形成してもよい。この金属製部材の形状によって、センサーの設置する位置と設置個数を考慮して、測定精度が維持できるように配置することが重要である。
【0049】
前述した実施例では、室温空間で被測定コイル1を単体で測定した場合と、被測定コイル1に他のコイル23を接続した状態で被測定コイル1のみを金属製部材2により囲んで、適宜箇所にセンサーを配置し、各領域のポインチングベクトルを測定した場合について説明したが、被測定コイルコイルの態様は色々ある。例えば、前述したように、2個のコイルが連結されて1個のコイル組立として構成されている場合、このコイル組立全体を金属製部材で囲み全体を測定多少としてもよいし、2個の内の1個のコイルを金属製部材で囲み、そのコイル組立の一部分のコイル損失を測定することもできる。また、複数個のコイルが接続されている場合、その複数個のコイルの内1個のコイル又は2個以上の複数個、或いは複数個のコイル全部について金属製部材で囲み、当該部分のコイル損失を測定することもできるし、測定対象のコイルの健全性の監視と異常状態の発生箇所の検出を行うことができる。
【0050】
【発明の効果】
以上本発明を詳細に説明したが、本発明は次のような効果を奏するものである。
(1)1個または複数のコイルを含む装置について、1個のコイルの一部分、又は複数のコイルの一部分で発生する損失を選択的に、かつ高感度で電気的に測定できる。これにより、コイル又はコイル応用装置の健全性を監視することができる。
(2)コイル損失の測定は、金属製部材を使用するため、任意の形状をもつコイルやコイル容器に適用可能であって、例えコイル容器内が極低温でも、測定は容器の外周を囲む金属製部材に対して行うので、室温空間に置かれた多数個の電界および磁界センサーで測定でき、ハンドリングばかりでなくメンテナンスもし易い。
(3)コイル応用装置の運転開始時におけるコイル損失の正常か否かの確認、及び運転状態におけるコイル損失の変化の監視を、コイル応用装置の耐電圧性能を劣化させることなく、或いは劣化のリスクが小さい状況下で可能となる。
【図面の簡単な説明】
【図1】本発明によるコイル損失状態監視システム及びコイル損失測定方法の基本的概念を説明する模式図である。
【図2】本発明に係るポインチングベクトルを測定する磁界及び電界のセンサーを説明する模式図である。
【図3】本発明に係るポインチングベクトルを測定する磁界及び電界のセンサーの金属製部材への配置を示す模式図である。
【図4】本発明に係るポインチングベクトルを測定する一実施例の回路図である。
【図5】本発明に係るポインチングベクトルの測定を説明するベクトル図である。
【図6】本発明に係るポインチングベクトルの要素である磁界の測定例を示す特性図である。
【図7】本発明に係るポインチングベクトルの要素である電界の測定例を示す特性図である。
【図8】本発明に係るポインチングベクトルの測定例を示す特性図である。
【図9】本発明に係るコイル損失の測定例を示す特性図である。
【図10】本発明によるコイル損失測定方法の他の実施例を説明する模式図である。
【図11】本発明に係るポインチングベクトルを測定するための被測定コイルを囲む金属製部材の他の例を説明する模式図である。
【符号の説明】
1 被測定コイル
2 金属製部材
3 センサー(ポインチングベクトルP測定用)
4 金属製部材に設けられたスリット
5 ピックアップコイル(ポインチングベクトルP1 測定用)
6 電圧リード(ポインチングベクトルP1 測定用)
7 ピックアップコイル(ポインチングベクトルP2 測定用)
8 電圧リード(ポインチングベクトルP2 測定用)
11 ピックアップコイル
12 電圧リード
13 端子
14 オシレータ
15 ロックイン増幅器
16,18 アイソレーション増幅器
17 電力増幅器
19 シャント抵抗
20 電圧計
21 キャンセルボックス
22 差動増幅器
23 他のコイル
24 網状金属製部材

Claims (16)

  1. コイル応用装置の運転状態における1個のコイル又は複数個のコイルが接続されたコイルの全部若しくは一部のコイルの被測定コイルの周囲を金属製部材で囲み、該金属製部材周面の複数の適宜の対象領域に磁界ベクトルと電界ベクトルの外積として得られるポインチングベクトルを測定するセンサーを配置し、該複数のセンサーにより検出されるポインチングベクトル値から前記被測定コイルのコイル損失状態を監視するようにしたコイル損失状態監視システム。
  2. コイル応用装置の運転状態における1個のコイル又は複数個のコイルが接続されたコイルの全部若しくは一部のコイルの被測定コイルの周囲を金属製部材で囲み、該金属製部材周面の複数の適宜の対象領域に磁界ベクトルと電界ベクトルの外積として得られるポインチングベクトルを測定するセンサーを配置し、該複数のセンサーにより検出されるポインチングベクトル値の総和を所要のタイミングで検出し、該ポインチングベクトル値の総和から前記被測定コイルのコイル損失状態を監視するようにしたコイル損失状態監視システム。
  3. コイル応用装置の運転状態における1個のコイル又は複数個のコイルが接続されたコイルの全部若しくは一部のコイルの被測定コイルの周囲を金属製部材で囲み、該金属製部材周面の複数の適宜の対象領域に磁界ベクトルと電界ベクトルの外積として得られるポインチングベクトルを測定するセンサーを配置し、該複数のセンサーの各出力を所要のタイミングで切り替えて該複数箇所のポインチングベクトル値を表示装置に該複数箇所毎に繰り返し表示するようにして、該複数箇所のポインチングベクトル値から前記被測定コイルのコイル損失状態を監視するようにしたコイル損失状態監視システム。
  4. コイル応用装置の運転状態における1個のコイル又は複数個のコイルが接続されたコイルの全部若しくは一部のコイルの被測定コイルの周囲を金属製部材で囲み、該金属製部材周面の複数の適宜の対象領域に磁界ベクトルと電界ベクトルの外積として得られるポインチングベクトルを測定するセンサーを配置し、該複数のセンサーにより検出される各ポインチングベクトル値と該各ポインチングベクトルの対象領域の面積とから各ポインチングベクトル部のコイル損失を求め、該各ポインチングベクトル部のコイル損失の総和から前記被測定コイルの損失を求めるようにしたコイル損失測定方法。
  5. 前記被測定コイルの周囲を囲む前記金属製部材は薄い金属箔により構成された請求項1,2又は3に記載のコイル損失状態監視システム。
  6. 前記被測定コイルの周囲を囲む前記金属製部材は金属製網又はパンチングメタルにより構成された請求項1,2,3又は5に記載のコイル損失状態監視システム。
  7. 前記被測定コイル封入する金属製容器周面の適宜箇所にポインチングベクトルを測定する前記センサーを配置するようにした請求項1,2又は3に記載のコイル損失状態監視システム。
  8. 前記被測定コイル封入する非金属製容器の周囲を前記金属製部材で囲むようにした請求項1,2,3,5又は6に記載のコイル損失状態監視システム。
  9. 前記被測定コイルが超伝導の導体で巻線されたコイルを含んでいる請求項1,2,3,5,6,7又は8に記載のコイル損失状態監視システム。
  10. 前記被測定コイルへの定格通電電流が1kA以上の大電流による通電状態としてコイル損失の測定又はコイル損失の変化を監視するようにした請求項1,2,3,5,6,7,8又は9に記載のコイル損失状態監視システム。
  11. 前記被測定コイルの周囲を囲む前記金属製部材は薄い金属箔により構成された請求項4に記載のコイル損失測定方法。
  12. 前記被測定コイルの周囲を囲む前記金属製部材は金属製網又はパンチングメタルにより構成された請求項4又は11に記載のコイル損失測定方法。
  13. 前記被測定コイル封入する金属製容器周面の適宜箇所にポインチングベクトルを測定する前記センサーを配置するようにした請求項4に記載のコイル損失測定方法。
  14. 前記被測定コイル封入する非金属製容器の周囲を前記金属製部材で囲むようにした請求項4,11又は12に記載のコイル損失測定方法。
  15. 前記被測定コイルが超伝導の導体で巻線されたコイルを含んでいる請求項4,11,12,13又は14に記載のコイル損失測定方法。
  16. 前記被測定コイルへの定格通電電流が1kA以上の大電流による通電状態としてコイル損失の測定又はコイル損失の変化を監視するようにした請求項4,11,12,13,14又は15に記載のコイル損失測定方法。
JP2003096928A 2003-03-31 2003-03-31 コイル損失状態監視システム及びコイル損失測定方法 Expired - Fee Related JP4215244B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096928A JP4215244B2 (ja) 2003-03-31 2003-03-31 コイル損失状態監視システム及びコイル損失測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096928A JP4215244B2 (ja) 2003-03-31 2003-03-31 コイル損失状態監視システム及びコイル損失測定方法

Publications (2)

Publication Number Publication Date
JP2004301757A JP2004301757A (ja) 2004-10-28
JP4215244B2 true JP4215244B2 (ja) 2009-01-28

Family

ID=33408846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096928A Expired - Fee Related JP4215244B2 (ja) 2003-03-31 2003-03-31 コイル損失状態監視システム及びコイル損失測定方法

Country Status (1)

Country Link
JP (1) JP4215244B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063930A (zh) * 2012-12-27 2013-04-24 保定天威集团有限公司 一种变压器结构件损耗和温升的测量系统及测量方法
CN114325126B (zh) * 2022-03-04 2022-05-17 浙江富特科技股份有限公司 一种电感的绕组损耗测量方法及系统

Also Published As

Publication number Publication date
JP2004301757A (ja) 2004-10-28

Similar Documents

Publication Publication Date Title
EP1102998B1 (en) Closely-coupled multiple-winding magnetic induction-type sensor
US5933012A (en) Device for sensing of electric discharges in a test object
US7304478B2 (en) Magnetic resonance imaging apparatus provided with means for preventing closed loop circuit formation across and between inside and outside of cryostat
US9389282B2 (en) Magnetism detection device
JPS62173948A (ja) 3相発電機用の装置
EP2998748B1 (en) Current measurement device and current calculation method
CN106249116A (zh) 高频电流传感器
JP6265836B2 (ja) 電流センサ検査システム、電流センサ検査方法
Beltle et al. Usability of vibration measurement for power transformer diagnosis and monitoring
JP5998824B2 (ja) 超電導コイルの交流損失測定方法
US20210208207A1 (en) Method and device for identifying an inter-turn short circuit in parallel windings
JP2020173230A (ja) 透磁率測定装置
JP4215244B2 (ja) コイル損失状態監視システム及びコイル損失測定方法
JP2002311061A (ja) 電力用処理装置
EP0302746B1 (en) Apparatus for and method of discriminating signals
JP2019211422A (ja) 磁界検出コイルおよびemiアンテナ
JPH0670665B2 (ja) 非接触電界磁界センサ
US20200348372A1 (en) No-switching AC magnetic Hall-effect measurement method
JPH09297168A (ja) 超伝導線材の交流損失の測定法および測定装置
JP2831355B2 (ja) 絶縁状態の検知方法
JPH08160082A (ja) 絶縁劣化検出方法とその装置
JP4835038B2 (ja) Mri用信号検出装置
JP2869067B2 (ja) 絶縁状態の検知装置
JP6985317B2 (ja) 放電測定回路
JP2836743B2 (ja) 絶縁状態の検知方法、及びその検知装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees