WO2014183649A1 - 针对低免疫原性蛋白的表位疫苗及其制法和用途 - Google Patents

针对低免疫原性蛋白的表位疫苗及其制法和用途 Download PDF

Info

Publication number
WO2014183649A1
WO2014183649A1 PCT/CN2014/077522 CN2014077522W WO2014183649A1 WO 2014183649 A1 WO2014183649 A1 WO 2014183649A1 CN 2014077522 W CN2014077522 W CN 2014077522W WO 2014183649 A1 WO2014183649 A1 WO 2014183649A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
dtt
amino acid
epitope
seq
Prior art date
Application number
PCT/CN2014/077522
Other languages
English (en)
French (fr)
Inventor
李荣秀
张丽
仲从浩
程超
张莉
徐爱章
卢悟广
Original Assignee
上海亨臻实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海亨臻实业有限公司 filed Critical 上海亨臻实业有限公司
Priority to EP14797306.9A priority Critical patent/EP2998322A4/en
Priority to CN201480027977.0A priority patent/CN105705522B/zh
Priority to US14/891,351 priority patent/US20160206732A1/en
Priority to JP2016513220A priority patent/JP6549560B2/ja
Publication of WO2014183649A1 publication Critical patent/WO2014183649A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • A61K39/001103Receptors for growth factors
    • A61K39/001104Epidermal growth factor receptors [EGFR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • A61K39/001103Receptors for growth factors
    • A61K39/001106Her-2/neu/ErbB2, Her-3/ErbB3 or Her 4/ErbB4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/00113Growth factors
    • A61K39/001135Vascular endothelial growth factor [VEGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001136Cytokines
    • A61K39/001138Tumor necrosis factors [TNF] or CD70
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001136Cytokines
    • A61K39/00114Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/12Antidiuretics, e.g. drugs for diabetes insipidus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/485Epidermal growth factor [EGF] (urogastrone)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/525Tumour necrosis factor [TNF]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/485Exopeptidases (3.4.11-3.4.19)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6443Coagulation factor XIa (3.4.21.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6451Coagulation factor XIIa (3.4.21.38)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6037Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/55Fusion polypeptide containing a fusion with a toxin, e.g. diphteria toxin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/14Dipeptidyl-peptidases and tripeptidyl-peptidases (3.4.14)
    • C12Y304/14005Dipeptidyl-peptidase IV (3.4.14.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21026Prolyl oligopeptidase (3.4.21.26), i.e. proline-specific endopeptidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21027Coagulation factor XIa (3.4.21.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21038Coagulation factor XIIa (3.4.21.38)

Definitions

  • the present invention is in the field of biology and medicine, and in particular relates to vaccines against epitope antigens of low immunogenic proteins, methods for their preparation and use.
  • the present invention is effective for stimulating the body to produce an immune response against a specific epitope of a low immunogenic protein. Background technique
  • Chronic diseases include cardiovascular and cerebrovascular diseases and cancer.
  • cardiovascular and cerebrovascular diseases and cancer With the continuous development of economic development and living nutrient levels, their morbidity and mortality are rapidly increasing, which is the main cause of human disease and death.
  • monoclonal antibody drugs is the target. The point is clear, the curative effect is exact, but the need for large doses, repeated times and high treatment costs.
  • vaccine antigens are derived from pathogens and are external to human organisms.
  • the source material naturally stimulates the body's immune protective response.
  • the cause of chronic diseases and therapeutic intervention targets are their own substances.
  • the vaccine can also be designed to actively immunize and stimulate the body to produce an immune response, it is a very attractive therapeutic route to produce autoantibodies with similar therapeutic effects to monoclonal antibody drugs. With long duration of treatment, low cost of treatment, convenient and economical medication, it also has the potential to prevent disease.
  • TNFalpha kinoid vaccination-induced neutral iz ing ant ibodies to TNF alpha protect mi ce from autologous TNFalpha-driven chronic and acute inflammation. Proc Natl Acad Sci USA 2006 ; 103 (51) : 19442-7]. Although the effectiveness of this vaccine has been partially verified, the complex floc substances formed by the coupling of dozens of human protein molecules with KLH molecules and long-term treatment with formaldehyde are clear in meeting the requirements of clinical drug requirements. There are many difficulties and difficult to explain security risks in terms of structure and quality control.
  • a recombinant protein carrying an epitope having a structural skeleton derived from a carrier protein, and the carrier protein has at least one T cell epitope, and wherein the vector is provided At least one molecular surface amino acid residue region of the protein is introduced into the epitope by splicing, substitution, and/or insertion.
  • the "molecular surface amino acid residue region” includes a loop region, a beta-tum region, an N-terminus or a C-terminus.
  • the recombinant protein induces an immune response against the epitope.
  • the antigenic epitope is a B cell epitope or a T cell epitope.
  • the carrier protein is a pathogen protein, including a viral protein, a bacterial protein, a Chlamydia protein, a Mycoplasma protein, or a combination thereof.
  • the antigen is not derived from the carrier protein.
  • the epitope is derived from a mammalian protein.
  • the epitope is selected from the group consisting of:
  • an epitope of a single epitope preferably, the single epitope has an epitope (peptide) of 5 to 30, preferably 6 to 15 amino acids; or
  • an epitope of a multi-epitope preferably, the epitope of the multi-epitope has a length of 15-500, preferably 20-300, more preferably 30-200 Amino acids.
  • the epitope (peptide) of the polyepitope is introduced at the C or N terminus of the carrier protein.
  • the human when the recombinant protein is administered to a human, the human is induced to produce an immune response against the epitope.
  • the replacing comprises partially or completely replacing the amino acid sequence of the surface amino acid residue region of the carrier protein.
  • the partial replacement comprises replacing 1 - 15 amino acids, preferably 2 - 10 amino acids, in the sequence of the surface amino acid residue region of the carrier protein.
  • the epitope is an epitope of a low immunogenic protein.
  • the low immunogenic proteins include proteins of human and non-human mammals.
  • the low immunogenic protein comprises: an autoimmune disease-associated protein, a tumor-associated protein, and a cardiovascular disease-associated protein.
  • the low immunogenic protein comprises:
  • VEGF vascular endothelial growth factor
  • TNF-o Her2 protein clotting factor
  • interleukin clotting factor
  • FAP Fibroblast Activation Protein
  • (b) A protein formed by substituting, deleting or adding a protein of (a) with one or more amino acid residues and recombining with a carrier protein to induce an immune response against the low immunogenic protein.
  • the low immunogenic protein is TNF-cx or the TNF-cx is formed by substitution, deletion or addition of one or more amino acid residues and can be induced against the carrier protein.
  • the protein of the immune response of TNF-cx is TNF-cx or the TNF-cx is formed by substitution, deletion or addition of one or more amino acid residues and can be induced against the carrier protein.
  • the epitope is derived from TNF-cx and has two point mutations A145R and Y87H in TNF-cx.
  • the epitope is derived from TNF-cx and is selected from the group consisting of:
  • the epitope is selected from one or more of the group consisting of:
  • the low immunogenic protein is a blood coagulation factor.
  • the blood coagulation factor is FXI.
  • the epitope is selected from one or more of the group consisting of:
  • the epitope comprises a catalytic domain in which the blood coagulation factor is FXI.
  • the catalytic domain of the FXI is selected from the group consisting of:
  • polypeptide derived from (a) which is formed by substitution, deletion or addition of the amino acid sequence of SEQ ID NO.: 45 with one or more amino acid residues, and which has a function of inducing an immune response after fusion with a carrier protein.
  • the blood coagulation factor is FXII.
  • the epitope is selected from one or more of the group consisting of:
  • the epitope comprises a catalytic domain in which the blood coagulation factor is FXII.
  • the catalytic domain of the FXII is selected from the group consisting of:
  • the epitope peptide is derived from FAP and the epitope peptide comprises YGDEQYPR.
  • the low immunogenic protein is FAP.
  • the epitope is derived from FAP and the epitope comprises YGDEQYPR. In another preferred embodiment, the epitope is derived from a FAP catalytic domain.
  • the FAP catalytic domain is selected from the group consisting of:
  • polypeptide derived from (a) which is formed by substitution, deletion or addition of the amino acid sequence of SEQ ID NO.: 108 by one or more amino acid residues and which is fused to a carrier protein to induce an immune response.
  • amino acid sequence of the recombinant protein is selected from the group consisting of:
  • polypeptide derived from (a) which is formed by substituting, deleting or adding a polypeptide of (a) via one or more amino acid residues, and having an immune response-inducing function.
  • the epitope is derived from VEGF.
  • the epitope is selected from the group consisting of:
  • polypeptide derived from (a) which is formed by substitution, deletion or addition of the amino acid sequence of SEQ ID NO.: 63 by one or more amino acid residues, and which has a function of inducing an immune response after fusion with a carrier protein.
  • amino acid sequence of the recombinant protein is selected from the group consisting of:
  • polypeptide derived from (a) which is formed by substitution, deletion or addition of the amino acid sequence of SEQ ID NO.: 62 with one or more amino acid residues and which has an immune response promoting function.
  • the epitope is derived from PDL1.
  • the epitope is derived from PDL1E.
  • the epitope is selected from the group consisting of:
  • polypeptide derived from (a) which is formed by substituting, deleting or adding a polypeptide of (a) with one or more amino acid residues, and having a function of inducing an immune response after fusion with a carrier protein.
  • the recombinant protein is selected from the group consisting of:
  • polypeptide derived from (a) which is formed by substituting, deleting or adding a polypeptide of (a) with one or more amino acid residues, and having a function of inducing an immune response after fusion with a carrier protein.
  • the epitope is derived from the epidermal growth factor receptor EGFR.
  • the epitope is derived from the I I subregion of the epidermal growth factor receptor EGFR.
  • the epitope is derived from the epidermal growth factor receptor EGFR, and the epitope peptide is selected from the group consisting of:
  • the antigenic epitope of the recombinant protein is derived from the epidermal growth factor receptor EGFR and comprises at least one of the amino acid sequences set forth in SEQ ID NO.: 83 or SEQ ID NO.: 109. , with
  • At least one of SEQ ID NO.: 110 and SEQ ID NO.: 111 At least one of SEQ ID NO.: 110 and SEQ ID NO.: 111.
  • the recombinant protein is selected from the group consisting of
  • polypeptide derived from (a) which is formed by substituting, deleting or adding a polypeptide of (a) with one or more amino acid residues, and having a function of inducing an immune response after fusion with a carrier protein.
  • the epitope is 5-40 amino acids in length, preferably 8-30 amino acids.
  • the carrier protein comprises diphtheria toxin DT, transmembrane domain DTT of diphtheria toxin, rotavirus VP7, heat shock protein of Leishmania, Campylobacter jejuni flagellin, and Chlamydia trachomatis.
  • Membrane protein hemocyanin (Keyhole Limpet Hemocyanin, KLH), bovine serum albumin (BSA), chicken ovalbumin (OVA), fibrinogen, polylysine (PLL;).
  • the surface amino acid residue region is between amino acids 287-299 on DTT or the C-terminus or N-terminus of DTT, preferably the surface amino acid residue region is selected from the group consisting of: DTT 290-297 amino acids, 291-297 amino acids on DTT, 292-297 amino acids on DTT, 293-297 amino acids, 294-297 amino acids, 295-297 amino acids on DTT, 296 on DTT -297 amino acids.
  • the surface amino acid residue region is selected from the group consisting of amino acids 305-310 and amino acids 295-310 on DTT.
  • an epitope is introduced in the 1-5 (preferably 1-3) surface amino acid residue regions.
  • the surface amino acid residue region comprises the C-terminus of the carrier protein.
  • the surface amino acid residue region comprises the N-terminus of the carrier protein.
  • the epitope is linked to the C-terminus and/or N-terminus of the carrier protein.
  • a linker peptide is provided between the epitope and the carrier protein.
  • the ligated peptide is 3-30 amino acids in length. More preferably, the linker peptide is 4-20 amino acids in length. Most preferably, the linker peptide is 5-10 amino acids in length.
  • the antigenic epitope and the carrier protein do not have a linker peptide.
  • the epitope replaces 1-50 amino acids at the C-terminus or N-terminus of the carrier protein. Preferably, the epitope replaces 5-30 amino acids of the C-terminus or N-terminus of the carrier protein. More preferably, the epitope replaces 10-20 amino acids at the C-terminus or N-terminus of the carrier protein.
  • the carrier protein is a transmembrane domain DTT of diphtheria toxin, and the surface amino acid residue region of the insertable epitope comprises:
  • DTT Diphtheria toxin transmembrane domain
  • a polynucleotide is provided, the polynucleotide encoding the recombinant protein of the first aspect.
  • an expression vector comprising the polynucleotide of the fourth aspect is provided.
  • a host cell comprising the expression vector of the third aspect, or the polynucleotide of the second aspect integrated in the genome, is provided.
  • the host cell comprises a prokaryotic cell and a eukaryotic cell.
  • the host cell comprises Escherichia coli, yeast, CHO cells, DC cells, and the like.
  • a pharmaceutical composition comprising the recombinant protein of the first aspect, the polynucleotide of the second aspect, or the expression vector of the third aspect or the fourth aspect is provided.
  • the host cell of the aspect and a pharmaceutically acceptable carrier and/or adjuvant.
  • composition is a vaccine.
  • a sixth aspect of the invention provides a vaccine composition, comprising the recombinant protein of the first aspect, the polynucleotide of the second aspect, or the expression vector of the third aspect or the fourth Host cells as described in the aspects, as well as immunologically acceptable carriers and/or adjuvants.
  • the vaccine composition further comprises an adjuvant.
  • the vaccine composition is a nucleic acid vaccine composition comprising the polynucleotide of the second aspect or the expression vector of the third aspect.
  • the adjuvant comprises alumina, saponin, quil A, muramyl dipeptide, mineral oil or vegetable oil, vesicle-based adjuvant, nonionic block copolymer or DEAE dextran , cytokines (including L-1, L-2, ⁇ -r, GM-CSF, !L-6 « L- 12, if CpG).
  • a seventh aspect of the invention provides the use of the recombinant protein carrying an epitope described in the first aspect, (a) for preparing an antibody against the epitope; and/or (b) for preparing a treatment and A drug for the disease associated with the epitope.
  • the disease includes: an autoimmune disease (such as rheumatoid arthritis), a tumor, a cardiovascular disease, and the like.
  • an autoimmune disease such as rheumatoid arthritis
  • a method of treatment is provided, wherein the recombinant protein of the first aspect, the pharmaceutical composition of the fourth aspect, or the vaccine composition of the third aspect is administered to a subject in need thereof.
  • the amino acid sequence length of the antigenic epitope peptide is 5-100% of the total length of the corresponding low immunogenic protein (preferably, the amino acid sequence length of the antigenic epitope peptide is 5 of the corresponding full length of the low immunogenic protein) More preferably, the amino acid sequence length of the epitope peptide is 5-50% of the total length of the corresponding low immunogenic protein; most preferably, the amino acid sequence length of the epitope peptide is correspondingly low 5-30% of the full length of the immunogenic protein, such as 10%, 15%, 20%, 25%), and the epitope peptide is 5 to 500 amino acids in length; and the epitope peptide and The recombinant protein formed by the carrier protein of the present invention induces an immune response against the low immunogenic protein of the same species of the mammal.
  • the epitope peptide amino acid sequence has a length of from 3 to 57. More preferably, the epitope amino acid sequence length is 5-17.
  • the low immunogenic protein comprises: VEGF, TNF-o Her2 protein, clotting factor, interleukin, FAP, PDL1, EGFR.
  • the epitope peptide is derived from TNF-cx and is selected from the group consisting of:
  • the epitope peptide is derived from TNF-cx and the epitope peptide is selected from the group consisting of:
  • the epitope peptide is derived from the factor FXI, and the epitope peptide is selected from the group consisting of:
  • the epitope peptide comprises a catalytic domain of FXI or a homologous sequence thereof.
  • protein sequence of the catalytic domain of FXI is as shown in SEQ ID NO.:45.
  • the epitope peptide is derived from a blood coagulation factor of FXI, and the epitope peptide is selected from the group consisting of:
  • the epitope peptide is derived from FXII.
  • the epitope peptide is selected from one or more of the group consisting of:
  • the epitope peptide comprises a catalytic domain in which the blood coagulation factor is FXII.
  • the catalytic domain of the FXII is selected from the group consisting of:
  • polypeptide derived from (a) which is formed by substituting, deleting or adding an amino acid sequence of (a) with one or more amino acid residues, and having a function of inducing an immune response after fusion with a carrier protein.
  • the epitope peptide is derived from a FAP catalytic domain.
  • the FAP catalytic domain is selected from the group consisting of:
  • polypeptide derived from (a) which is formed by substitution, deletion or addition of the amino acid sequence of SEQ ID NO.: 108 by one or more amino acid residues and which is fused to a carrier protein to induce an immune response.
  • the epitope peptide is derived from FAP, and the epitope peptide is selected from the group consisting of:
  • polypeptide represented by SEQ ID NO.: 49 which is formed by substitution, deletion or addition of one or more amino acid residues, and which has a function of inducing an immune response after being fused to a carrier protein, derived from (a) Peptide.
  • the epitope peptide is derived from VEGF.
  • the epitope peptide is selected from the group consisting of:
  • polypeptide derived from (a) which is formed by substitution, deletion or addition of the amino acid sequence of SEQ ID NO.: 63 by one or more amino acid residues, and which has a function of inducing an immune response after fusion with a carrier protein.
  • the epitope peptide is derived from PDL1.
  • the epitope peptide is derived from PDL1E.
  • the epitope peptide is derived from PDL1 and the epitope peptide is selected from the group consisting of:
  • polypeptide derived from (a) which is formed by substituting, deleting or adding an amino acid sequence of (a) with one or more amino acid residues, and having a function of inducing an immune response after fusion with a carrier protein.
  • the epitope peptide is derived from the epidermal growth factor receptor EGFR.
  • the epitope peptide is derived from a third subregion of the epidermal growth factor receptor EGFR. In another preferred embodiment, the epitope peptide is derived from the epidermal growth factor receptor EGFR, and the epitope peptide is selected from the group consisting of:
  • the epitope peptide is derived from the epidermal growth factor receptor EGFR and comprises the amino acid sequence set forth in SEQ ID NO.: 83, and
  • At least one of SEQ ID NO.: 110 and SEQ ID NO.: 111 there is provided a fusion protein which is formed by fusing an epitope peptide of the ninth aspect of the invention with a carrier protein.
  • the carrier protein and the antigenic peptide are not derived from the same protein, and the carrier protein comprises at least one T cell epitope, and the carrier protein can enhance immunogenicity of the epitope peptide .
  • the carrier protein comprises diphtheria toxin DT, transmembrane domain DTT of diphtheria toxin, rotavirus VP7, heat shock protein of Leishmania, Campylobacter jejuni flagellum, major outer membrane of Chlamydia trachomatis Protein, hemocyanin (Keyhole Limpet Hemocyanin, KLH), Bovine Serum Albumin (BSA), Ovalbumin (OVA), fibrinogen.
  • diphtheria toxin DT transmembrane domain DTT of diphtheria toxin
  • rotavirus VP7 heat shock protein of Leishmania, Campylobacter jejuni flagellum
  • major outer membrane of Chlamydia trachomatis Protein hemocyanin (Keyhole Limpet Hemocyanin, KLH), Bovine Serum Albumin (BSA), Ovalbumin (OVA), fibrinogen.
  • the fusion protein is formed by introducing the epitope peptide by splicing, substitution and/or insertion of at least one molecular surface amino acid residue region of the carrier protein.
  • the "molecular surface amino acid residue region” includes a loop region, a beta-tum region, an N-terminus or a C-terminus.
  • the epitope peptide is linked to the C-terminus and/or N-terminus of the carrier protein to form the fusion protein.
  • a linker peptide is provided between the epitope and the carrier protein.
  • the ligated peptide is 3-30 amino acids in length. More preferably, the linker peptide is 4-20 amino acids in length. Most preferably, the linker peptide is 7-17 amino acids in length.
  • the antigenic epitope and the carrier protein do not have a linker peptide.
  • the fusion protein is selected from the group consisting of:
  • (a) has SEQ ID NO.: 9, 11, 13, 35, 37, 39, 42, 43, 44, 50, 51, 62, 69, 70, 84, 85, 86, 87, 112, 119, 120 a polypeptide of the amino acid sequence shown in 126 or 127;
  • Figure 1 shows an amplification schematic based on overlapping PCR in the examples.
  • Fig. 2 shows the effect of inhibition of the onset of mTNF vaccine in Example 1.
  • Figure 2A shows the relative TNF28 relative to
  • FIG. 2B shows the mean morbidity scores during immunization and onset of each group of mice. It can be seen that the mTNF28 group showed significant lag in morbidity and reduced inflammatory treatment compared with the control group Alum.
  • Figure 2C shows the biological activity of each fusion protein.
  • Figure 2D shows the mean morbidity scores during the immunization and onset of each group of mice. It can be seen that the DTT-mTNFt group has a clear onset score relative to the control group. Significantly inhibit the onset of the disease.
  • Fig. 3 shows the effect of eliciting an immune response of the mTNF28-1 antigen protein in Example 2.
  • Fig. 3A shows that the blood of the mice was taken for antibody typing 60 days after the fourth boost of mTNF28-1, and it was found that the titer against I gG 1 was more than 10,000.
  • Figure 3B shows the mean morbidity scores during the immunization and onset of each group of mice. It can be seen that the mTNF28-l group has a significant inhibitory effect on the onset score relative to the control group.
  • Figure 4 shows the antithrombotic effect of the FXI vaccine of Example 3.
  • Figure 4A shows the survival rate of mice in a model of lethal pulmonary embolism after immunization with each group of antigens.
  • Figure 4B shows the time from the onset of human placental leachate to the beginning of dyspnea in mice.
  • Figure 4C and Figure 4D show the morphology (C) and wet weight (D) of thrombus in mice immunized with antigen No. 29.
  • Figure 5 shows that the antibody of FXI vaccine-immunized mice in Example 3 prolonged normal human plasma APTT (A) and FXI (B) specific plasma APTT values.
  • Figure 6 shows the morphology (A) and wet weight (B) of thrombus in mice immunized with FXI I vaccine in Example 4.
  • Fig. 7 shows the inhibitory effect of the fusion vaccine DTT-FAP of Example 5 on tumor growth.
  • Figure 7A shows the survival rate of mice after tumor inoculation.
  • Figure 7B shows the trend of changes in tumor volume.
  • Figure 7C shows the size of the tumor after 4 weeks of inoculation.
  • Figure 8 shows that the survival time of tumor-bearing mice can be significantly prolonged after DTT-VEGF immunization in Example 6.
  • Fig. 9 is a graph showing the trends of vascular conditions, tumor pathology, tumor weight and tumor volume in the tumors of different experimental groups in Example 6.
  • Fig. 10 shows the inhibitory effect of the DTT-PDL1E and DTT-PDL1E recombinant protein vaccines on tumor growth in Example 7.
  • Figure 10A shows tumor volume changes in immunotherapeutic mice.
  • Figure 10B, Figure 10C and Figure 10D show tumor weight changes in mice immunized with DTT-PDL1E and DTT-PDL1E recombinant protein vaccines in Example 7 (Figure 10B), body weight of tumor-bearing mice (Figure 10C) and tumor tumors, respectively. Body weight ratio to tumor-bearing mice (Fig. 10D). detailed description
  • splicing, substitution and/or insertion is introduced at at least one surface amino acid residue region of the carrier protein.
  • a novel class of recombinant proteins can be made.
  • the recombinant protein not only effectively stimulates the immune response of the organism (e.g., a mammal) to the recombinant protein, but also effectively targets the immune response from the low immunogenic protein peptide, including the production of antibodies.
  • the present invention has been completed on this basis. the term
  • carrier protein refers to a protein that is the backbone of a protein structure in the recombinant protein of the present invention.
  • the carrier protein is a more immunogenic protein, such as a pathogen protein.
  • Representative examples include, but are not limited to, viral proteins, bacterial proteins, Chlamydia proteins, Mycoplasma proteins, and the like.
  • epitope refers to a peptide of another protein that is intended to induce an immune response in an animal, and the epitope relative to the carrier protein does not refer to a peptide in which the carrier protein itself is capable of eliciting an immune response.
  • an epitope refers to a peptide to be targeted by an immune response, preferably a peptide derived from a mammalian (e. g., human) protein, rather than from the carrier protein.
  • .pdb refers to a protein tertiary structure data file from Protein Data. B ank (www .pdb.org);
  • DTT refers to the transmembrane domain of diphtheria toxin
  • T cell epitope refers to a T cell epitope, also known as a T cell epitope, which is a peptide produced by enzymatic processing of antigen molecules in antigen presenting cells, and can be composed of major histocompatibility complexes.
  • MHC Major histocompatibility complexes.
  • TCR T cell receptor
  • low immunogenic protein refers to a protein that immunizes an animal alone and does not elicit a sufficient immune response.
  • molecular surface amino acid residue region or “surface amino acid residue region” refers to a region consisting of amino acid residues at the surface of a protein molecule, preferably, the "molecular surface amino acid residue region” includes loop Zone, beta-tum zone, N-terminus or C-terminus.
  • Diphtheria toxin is a corynebacterium diphtheria infected with beta phage
  • the exotoxin produced by (Corynebacterium diphtheriae) is present in the clinically used DTP vaccine component. Safety has been proven clinically for many years, rare serious adverse reactions, and there are no reports of allergic reactions caused by diphtheria.
  • diphtheria toxin molecule consists of 535 amino acid residues and is spatially relatively independent of the catalytic domain.
  • transmembrane domain (1-193 AAs), transmembrane domain C205-378AAs) and receptor binding domain C386-535AAs); the transmembrane domain and the receptor binding domain are themselves non-toxic, their function is through cell surface receptor binding, The catalytic domain is transduced into the cell.
  • diphtheria toxin amino acid sequence (P00588, DTX_C0RBE) is as follows:
  • T-helper epitopes in diphtheria toxin molecules can be recognized by up to 80% of human ⁇ C c lass II ij.
  • four T-helper epitopes are located in the transmembrane domain (T-region, DTT) of diphtheria toxin, which are DTT-Th epitope 271-290 (271-PVFAGANYAAWAVNVAQVID-290), DTT-Th epitope 321 -340 (321-VHHNTEEIVAQSI AL SSLMV-340), DTT-Th epitope 331-350 (QSIALSSLMVAQAIPLVGEL-350), DTT-Th epitope 351-370 (351-
  • VD I GFAA YNFVES 11 NLFQV-370 mainly distributed in three-stage long alpha helix structure (276-ANYAAWAVNVA-286; 327-EIVAQSIALSSLMVAQAIPLV-347; 353 - IGFAA YN FV ESI INUWVHNSYN - 376).
  • the present inventors simulated the protein structure of diphtheria toxin, and retained the ⁇ -helix and ⁇ -sheet elements and the sputum cell epitopes required for structural stability, and the positions of the surface amino acid residue regions which can be replaced by the implanted epitopes are listed in the following table.
  • diphtheria toxin transmembrane domain itself is non-toxic, consisting mainly of alpha helical elements that form the core backbone, and the helical elements are connected by a flexible loop region.
  • the DTT amino acid sequence (1F0L. pdb: 202 - 378) is as follows:
  • the peptide of the target protein to be intervened by the drug may be selected for transplantation onto the DTT and replace the surface amino acid residue region of the DTT, including between the alpha helical elements Ring region amino acid residues.
  • DTT diphtheria toxin transmembrane structure with peptide fragments derived from the target protein does not or substantially affect the respective folding.
  • DTT is used as a protein skeleton, and after the target protein peptide is transplanted onto DTT, the animal can be induced to produce an immune response against the target protein. Therefore DTT is a very suitable protein skeleton.
  • the invention also provides a composition comprising: (i) a recombinant protein of the invention or a polynucleotide encoding a recombinant protein of the invention, and (ii) a pharmaceutically or immunologically acceptable excipient Or adjuvant.
  • the term "containing” means that the various ingredients may be applied together or present in the composition of the present invention. Therefore, the terms “consisting mainly of . . . and consisting of " . . . are included in the term “contains”.
  • compositions of the invention include pharmaceutical compositions and vaccine compositions.
  • compositions of the invention may be monovalent (containing only one recombinant protein or polynucleotide) or multivalent (containing a plurality of recombinant proteins or polynucleotides).
  • the pharmaceutical composition or vaccine composition of the present invention can be prepared into various conventional dosage forms including, but not limited to, injections, granules, tablets, pills, suppositories, capsules, suspensions, sprays and the like.
  • compositions of the invention comprise (or comprise) a therapeutically effective amount of a recombinant protein or polynucleotide of the invention.
  • therapeutically effective amount refers to an amount of a therapeutic agent that treats, alleviates or prevents a target disease or condition, or an amount that exhibits a detectable therapeutic or prophylactic effect. This effect can be detected by, for example, antigen level. Therapeutic effects also include a reduction in physiological symptoms.
  • the precise effective amount for a subject will depend on the size and health of the subject, the nature and extent of the condition, and the combination of therapeutic and/or therapeutic agents selected for administration. Therefore, it is useless to specify an accurate effective amount in advance. However, for a given situation, routine experimentation can be used to determine the effective amount.
  • an effective dose is about 0.001 mg/kg to 1000 mg/th. Grams, preferably from about 0.01 mg/kg to 100 mg/kg body weight of recombinant protein.
  • the pharmaceutical composition may also contain a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier refers to a carrier for administration to a therapeutic agent, such as a recombinant protein of the invention.
  • the term refers to pharmaceutical carriers which do not themselves induce the production of antibodies harmful to the individual receiving the composition and which are not excessively toxic after administration.
  • Suitable carriers can be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acid, polyglycolic acid and the like. These vectors are well known to those of ordinary skill in the art. A full discussion of pharmaceutically acceptable carriers or excipients can be found in Remington's Pharmaceutical Sciences (Mack Pub. Co., N. J. 1991).
  • the pharmaceutically acceptable carrier in the composition may include liquids such as water, saline, glycerol and ethanol.
  • auxiliary substances such as wetting or emulsifying agents, pH buffering substances and the like may also be present in these carriers.
  • the compositions may be in the form of injectables, such as liquid solutions or suspensions; solid forms suitable for solution or suspension, liquid excipient prior to injection. Liposomes are also included in the definition of pharmaceutically acceptable carriers.
  • the vaccine (composition) of the present invention may be prophylactic (i.e., prevent disease) or therapeutic (i.e., treat disease after illness).
  • These vaccines comprise an immunological antigen (including recombinant proteins of the invention) and are typically combined with a "pharmaceutically acceptable carrier” which includes any carrier which does not itself induce the production of antibodies harmful to the individual receiving the composition.
  • Suitable carriers are generally large, slow-metabolizing macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, amino acid polymers, amino acid copolymers, lipid agglutins (such as oil droplets or liposomes) and the like. These vectors are well known to those of ordinary skill in the art. Additionally, these carriers can function as immunostimulants ("adjuvants").
  • the antigen can also be coupled to bacterial toxoids such as toxoids of pathogens such as diphtheria, tetanus, cholera, and Helicobacter pylori.
  • Preferred adjuvants for enhancing the effect of the immunological composition include, but are not limited to: (1) aluminum salts (alum) such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, and the like; (2) oil-in-water emulsion formulations, for example, (a) MF59 (see W0 90/14837), (b) SAF, and (c) RibiTM Adjuvant System (RAS) (Ribi Immunochem, Hami lton, MT), (3) saponin adjuvant; (4) Freund Complete Adjuvant (CFA) and Freund incomplete adjuvant (IFA); (5) cytokines, such as interleukins (such as IL-1, IL-2, IL-4, IL_5, IL_6, IL_7, IL-12, etc.), interference (such as gamma interferon), macrophage colony stimulating factor (M-CFS), tumor necrosis factor (TNF), etc.; (6) bacterial ADP-ribosylating toxin (such
  • Vaccine compositions including immunogenic compositions (e.g., can include antigens, pharmaceutically acceptable carriers, and adjuvants), typically contain a diluent such as water, saline, glycerol, ethanol, and the like.
  • a diluent such as water, saline, glycerol, ethanol, and the like.
  • auxiliary substances such as wetting or emulsifying agents, pH buffering substances and the like may be present in such carriers.
  • vaccines including immunogenic compositions, comprise an immunologically effective amount of an immunogenic polypeptide, as well as other desired components as described above.
  • immunologically effective amount means that the amount administered to a subject in a single dose or in a continuous dose is effective for treatment or prevention. The amount may be based on the health and physiological condition of the individual being treated, the type of individual being treated (eg, human), the ability of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the assessment of the medical condition by the treating physician, And other relevant factors. It is expected that this amount will be in a relatively wide range. Within the circumference, it can be determined by routine experimentation.
  • the vaccine composition or immunogenic composition can be formulated as an injectable preparation, such as a liquid solution or suspension; it can also be formulated as a solid form suitable for solution or suspension, liquid excipient prior to injection.
  • the formulation may also be emulsified or encapsulated in liposomes to enhance the adjuvant effect.
  • the vaccine composition of the invention may be a monovalent or multivalent vaccine.
  • composition of the invention can be administered directly to the subject.
  • the subject to be treated may be a mammal, especially a human.
  • the recombinant protein of the present invention can be directly administered to an individual by a known method.
  • These vaccines are typically administered using the same route of administration as the conventional vaccine and/or mimicking the path of pathogen infection.
  • Routes for administering a pharmaceutical composition or vaccine composition of the invention include, but are not limited to, intramuscular, subcutaneous, intradermal, intrapulmonary, intravenous, nasal, oral or other parenteral routes of administration. If desired, the route of administration can be combined or adjusted depending on the condition of the disease.
  • the vaccine composition can be administered in a single dose or in multiple doses and can include administration of a booster dose to elicit and/or maintain immunity.
  • the recombinant protein vaccine should be administered in an "effective amount", i.e., the amount of recombinant protein is sufficient to elicit an immune response in the chosen route of administration, and is effective in promoting protection of the host against the associated disease.
  • Representative diseases include (but are not limited to): autoimmune diseases, tumors, and the like.
  • the amount of recombinant protein selected for each vaccine dosage will be determined by the amount that will elicit an immunoprotective response without significant side effects.
  • the vaccine of each dose is sufficient to contain from about 1 g to 1000 mg, preferably from 1 ⁇ g to 100 mg, more preferably from 10 ⁇ g to 50 mg of protein.
  • the optimal amount of a particular vaccine can be determined using standard research methods including antibody titers and other reactions in the subject.
  • the level of immunity provided by the vaccine can be monitored to determine if an increased dose is needed. After assessing antibody titers in serum, booster vaccination may be required.
  • Administration of an adjuvant and/or an immunostimulant increases the immune response to the protein of the invention.
  • a preferred method is to administer the immunogenic composition by injection from the parenteral (subcutaneous or intramuscular) route.
  • the vaccine of the present invention may be administered in combination with other immunomodulators or with other therapeutic agents.
  • the main advantages of the invention are:
  • the recombinant protein carrying the antigenic epitope is low in preparation cost and convenient for administration.
  • the antigen structure is exact, the quality is controllable, and it is safer than the preparation chemically coupled to the carrier protein.
  • the invention is further illustrated below in conjunction with specific embodiments. It is to be understood that the examples are merely illustrative of the invention and are not intended to limit the scope of the invention.
  • the experimental methods in the following examples which do not specify the specific conditions are usually prepared according to the conditions described in the conventional conditions, for example, Sambrook et al., Molecular Cloning: Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989), or according to the manufacturing conditions. The conditions recommended by the manufacturer. Unless otherwise stated, percentages and parts are by weight and parts by weight. experimental method:
  • the single-epitope recombinant protein antigen structure is designed to be transplanted to the epitope display site of DTT by the epitope peptide amino acid sequence of the target protein and replaced with the amino acid residue at the home position to form a new protein structure; the multi-epitope recombinant protein antigen structure design target
  • the multi-epitope peptide or domain of the protein is inserted into the C-terminus of DTT or inserted into the C-terminus of DTT via a l inker to form a new protein structure.
  • DTT gene primers DTT-F and DTT-R
  • target protein gene primers were designed, and the principle of overlapping PCR was used in DTT.
  • the epitope display site introduces the sequence of the epitope region, and introduces the restriction sites BamHI and XhoI at the head and tail, introducing three protective bases (Fig. 1). Each primer was synthesized by Nanjing Kingsray Biotechnology Co., Ltd.
  • Recombinant protein expression vector inserted/replaced from the middle of DTT using DTT gene DNA as template, primer DTT-F (containing BanR I cleavage site and) and target protein_2R for the first round PCR amplification; using DTT gene DNA as a template, primers were amplified by PCR with primers DTT-R (including Xhol cleavage site) and target protein-3F; after mixing the above two amplification products, primer DTT- was taken. F and DTT-R were used for PCR amplification of recombinant protein genes.
  • the recombinant protein gene was digested with BaiM I and Xho I to the plasmid pGEX 6p-l to reach the expression plasmid pGEX-DTT-target protein epitope, and the correctness was confirmed by sequencing.
  • the PCR system was denatured at 94 ° C for 2 min; 94 ° C for 15 s, 55 ° C for 30 s, 68 ° C for 2 min, 35 cycles; 68 ° C for 10 min.
  • 2 ⁇ of the amplified product was subjected to electrophoresis, and the target band appeared after Goldview staining.
  • the PCR product and the pEGX-6P-l vector were double-digested and purified, and cleaned with an AXYGEN Gel Cleaning Kit.
  • the ligation reaction was carried out on a PCR machine using a T4 ligase ligation at 16 ° C for 5 h. The ligation product was heat-transformed into E.
  • coli and 5 uL of the ligation product was added to the competent cells and gently mixed. After ice bath for 20 min, it was transferred to a 42 ° C water bath for 90 s, then ice bath for 2 min, and 900 ⁇ L 37 ° C.
  • the LB medium was pre-warmed and resuscitated at 37 ° C for 45 h at 150 rpm. 200 ⁇ L was applied to a plate containing Amp antibiotic LB, and cultured at 37 ° C for 20 h.
  • the extracted vector plasmid was amplified by PCR with the head and tail primers, and the identified positive clones were added to a final concentration of 15% sterile glycerol, and stored in an ultra-low temperature refrigerator at -80 ° C for use as an E. coli strain containing the recombinant protein expression plasmid. Positive clones were compared to theoretical sequences by sequencing to determine if the connection was successful.
  • the mixed, supernatant and precipitated samples were quantitatively determined by Coomassie Brilliant Blue method and diluted to a certain concentration. Then 200 uL was added to 50 uL of 5 X loading buffer, boiled for 5 min, taken out and cooled at 12 000 rpm for 8 min and added. 20 ⁇ L of the above mixture was taken with a micro-injector, and the molecular weight and expression amount of the induced protein were analyzed by SDS-PAGE electrophoresis, and the molecular weight consistency and expression solubility were judged.
  • the GE 5mL GST prepacked column was first equilibrated with lxPBS (140 mM NaCl, 2. 7 mM KC1, 10 mM N3 ⁇ 4 HP0 4 , 2 mM KH 2 P0 4 ), the flow rate was set at 4 mL/min, and the balance was 5 column volumes.
  • the fusion protein antigen was diluted to 0.5 mg/mL and mixed with a dilution of 2 mg/mL of aluminum hydroxide (sigma) adjuvant or Freund's adjuvant.
  • the back was subcutaneously injected at multiple times, and the boost was boosted every other week.
  • the mice were bled in the eyelids, and after standing at 37 ° C for 2 h, centrifuged at 4000 rpm for 10 min, and the supernatant serum was taken for use.
  • a coating buffer 50 mmol/L bicarbonate buffer, pH 9. 6
  • a polystyrene 96-well plate (plus ⁇ per well).
  • PBST 0.02 M phosphate, 0.15 M NaCl, 0.15% Tween-20, pH 7.4
  • An additional 300 ⁇ l skim milk powder (dissolved in PBST, protein concentration 5%) was added and incubated at 37 ° C for 2 hours for blocking.
  • the model of rheumatoid arthritis was started.
  • Scoring criteria The degree of disease in mice was judged by a 4-point scale: 0 points: no evidence of redness and swelling; 1 point: erythema and mild swelling were confined to the mid-segment (tibia) or ankle joint (a slight redness on one toe) 2 points: erythema and mild swelling from the ankle joint to the middle of the foot (two or more toes red and swollen); 3 points: erythema and moderate swelling from the ankle joint to the ankle joint (ankle or hip joint) Redness); 4 points: erythema and severe swelling include sputum, feet and toes (all joints and toes are red and swollen and cannot be bent). All limbs are scored separately, so the highest score is 16 points.
  • the original sample is generally loaded with 20-30ug of current intensity at an initial voltage of 45V. When the voltage reaches 65V, it is changed to steady-state electrophoresis, and the target protein moves to more than 1cm from the lower edge of the gel.
  • the gel was immersed in the transfer buffer to equilibrate lOmin. Cut 6 pieces of membrane and filter paper according to the size of the gel, and put it in transfer buffer to balance lOmin. If PVDF membrane is used, it should be saturated with pure methanol for 3-5 seconds. Assembling transfer sandwich: Sponge 3 layers of filter paper 3 layers of filter paper Sponge, after each layer is placed, use the test tube to remove air bubbles.
  • the membrane was taken out from the electrorotation tank, and the deionized water was slightly rinsed with TTBS, immersed in the blocking solution and slowly shaken for 1 h.
  • the diluted primary antibody was loaded into a 10 mL or 50 mL inlet centrifuge tube.
  • the Western membrane was removed from the blocking solution, the filter paper was slightly blotted, and the front side was applied to the primary antibody and allowed to stand overnight at 4 ° C (marked with a pencil on the front and bottom). After the incubation of the primary antibody, the membrane was rinsed with TTBS and then immersed three times for 10 minutes each time.
  • the cell pellet was washed once more with PBS.
  • the cells were adjusted to 5 X 107 ml with 10% FCS 1640, plated at 100 ⁇ L per well, and the final concentration was 10 ⁇ g per well.
  • /ml antigen stimulation 5% C02 37 degree culture for 72 hours; add 10 ⁇ L ⁇ continue to culture for 4 hours, aspirate the culture supernatant and suspended cells; add 100 dimethyl sulfoxide, shake the blue precipitate at room temperature; 550
  • the absorbance is read at nm, 630 nm to 0D 57 . _0D 63 .
  • the antigen stimulation group-blank control group value was used as the cell proliferation activity.
  • CFSE staining buffer and P 7AAD staining buffer were prepared according to the instructions of 7AAD/CFSE Cel l-mediated cytotoxicity Assay kit (Abnova, US).
  • Labeling target cells After the tumor cells were digested with trypsin, discard the supernatant at 1000 rpm for 5 min; add 3 ml Cel l-Based Assay Buffer and resuspend, count and discard the supernatant at 1000 rpm for 5 min; according to 10 6 cel ls/ Mol was resuspended in CFSE staining buffer, control cells were resuspended in the same volume of Cel l-Based Assay Buffer, incubated at room temperature for 15 min in the dark; centrifuged at 1000 rpm for 5 min, and the cells were incubated with 10% FBS at 10 6 cel ls/ml.
  • +1640 resuspend; centrifuge the supernatant at 1000 rpm for 5 min, and resuspend the cells at 10 6 cel ls/ml with 10% FBS + 1640. Place in a cell culture incubator for 30 min-l hours; separate the spleen lymphocytes according to the method of T cell proliferation experiment, and spread 6-well plates at 10 7 cel ls/ml, 2 ml per well; add a final concentration of 10 ⁇ g/ The ml antigen peptide and 10 unit/ml IL-2 were stimulated, 5% C0 2 , and cultured at 37 degrees for 5 days.
  • Labeled target cells were plated in 96-well plates at 10 4 ce l ls/ we ll.
  • the stimulating effector cells are added to the target cells according to the ratio of the target ratio of 10:1, 20:1, 50:1, and the medium is supplemented to a total volume of 200 ⁇ L per well, and incubated at 5% C0 2 37 degrees for 6 hours. .
  • the cell pellet was collected at 400 g/5 min, and 50 ul of 7-AAD Staining Solution was added to each tube to resuspend the cells.
  • Cell and tumor inoculation Materials included DMEM medium, 1640 medium, fetal bovine serum, antibiotics, trypsin, all purchased from Invitrogen, PBS (refer to Taba instructions). Binder cell incubator, Flying pigeon centrifuge, 10,000 and metal water bath.
  • Tumor cell culture and transplantation CT26, B16 F10, Lewis and other tumor cells were purchased from the Shanghai Cell Bank of the Chinese Academy of Sciences. They were subcultured according to the characteristics of different tumor cells, cultured in a 5 % C0 2 incubator at 37 °C. When the degree of cell fusion reached 90%, the cells were digested with 0.25 % trypsin, and the cells were collected in serum-free medium, gently shaken, 500 g, centrifuged for 5 min, washed once, and resuspended in PBS to adjust the concentration to 10 6 . After trypan blue staining, and counting with a blood cell counting plate, the ratio of viable cells was above 95%. According to the experimental requirements, solid tumors were inoculated in the forelimbs of 10 5 -10 6 / only.
  • Tumor inoculation for about 7 days different types of tumors are slightly different
  • Anti-TNF-oc monoclonal antibody drugs have achieved great success in the field of clinical treatment of rheumatoid arthritis, but the use of large doses of antibody drugs, frequent use, and high cost of medication have prevented a wider range of uses from benefiting more patients.
  • This example develops a recombinant protein vaccine targeting TNF-oc for the prevention and treatment of rheumatoid arthritis.
  • the mTNF epitope sequence in the table was transplanted and replaced with the position where the DTT was replaced, and the corresponding antigens were composed of mTNF28, mTNF31, mTNF37, mTNF25, DTT_mTNFt and DTT_hTNFt.
  • the C-terminus of DTT constitutes the recombinant antigens DTT_mTNFt and DTT-mTNFt.
  • Table 2 The structure transplantation information of the remaining recombinant antigens used in this example is shown in Table 2.
  • VYFGVIAL (SEQ ID NO.: 10) - hTNFt (A145R/Y87H) antigenic protein amino acid sequence:
  • the nucleic acid sequence of the antigenic protein of mTNF28 is SEQ ID NO.: 121. Step 2 Expression and purification of recombinant protein and observation of immunogenicity
  • the expression plasmids of the respective antigens were constructed by using the TNF recombinant antigen gene primers of Table 3, and the sequencing proved to be correct.
  • the DTT-mTNFt (A145R/Y87H) antigenic protein gene sequence is shown in SEQ ID NO.: 14.
  • the DTT-hTNFt (A145R/Y87H) antigenic protein gene sequence is shown in SEQ ID NO.: 15.
  • the second half is forward GGTAGCGTAATGGGCATTGCAGAC (SEQ ID NO. : 24) -P2
  • mT142- 150 TTAGACTTTGCGGAGTCCGGGCAGGTCGGTAGCGTAATGGGCATTGCAG (positive -P4 NO. : 25 under SEQ ID)
  • recombinant protein antigens having a purity of 90% to 95% were prepared.
  • the mouse immunization operation was carried out according to Method 4, and the antigen was coated with mTNF.
  • the final ELISA results showed that TNF28 was directed against 0D 45 of mTNF after the antiserum was diluted 100-fold.
  • the mean is 0 ⁇ 33, and mTNF31 is directed against 0D 45 of mTNF.
  • the mean is 0 ⁇ 09, mTNF37 is 0D 45 for mTNF.
  • the mean is 0 ⁇ 11 and Alum is 0D 45 for mTNF.
  • TNF28 produced better antibodies against mTNF than mTNF31 and mTNF37 compared to the control Alum group.
  • Serum western results after immunization showed that the TNF28 group had a distinct antibody band compared to the DTT group (single DTT-immunized mouse serum), and the human TNF band was more strongly signaled than the mouse TNF band (Fig. 2A).
  • Step 3 Determination of biological activity after protein mutation
  • L292 cells in logarithmic growth phase 25 cm 2 flask cultured for 2 d
  • the culture solution was drained, washed twice with lxPBS, and the lxPBS was aspirated, and then added to 0. 7 mL of the digestive juice for 3 min at 37 ° C, and centrifuged at 1000 rpm / min for 4 min.
  • the digest was aspirated, and the cells were washed twice with 5 mL of 1640 medium to remove trypsin.
  • Adjust the cell concentration to 2xl07ml with 1640 medium take a 96-well cell culture plate, add 0.1 ml of L929 cell suspension to each well, and incubate overnight or 24 hours in a C0 2 incubator until the cells are over 95% of the plate. , can be added.
  • the TNF to be tested was diluted 10 times with AcD-1640 medium according to the situation. Add 100 uL of dilution to each well, 3 replicate wells per dilution, incubate for 20 h in C0 2 incubator, and add 20 uL MTT directly to each well.
  • Step 4 Observation of collagen-induced mouse arthritis model
  • a collagen-induced mouse arthritis model was constructed following the procedure in Method 5.
  • the onset score was 3-4 points from 60-120 days, mTNF31 and The mTNF37 group differed only by 1 2 points, and mTNF28 showed a therapeutic effect due to mTNF31 and mTNF37 (Fig. 2B).
  • Example 1 It can be seen from Example 1 that mTNF28 with the TNF80-96 epitope works well, so the epitope is improved in this example.
  • the same procedure as in Example 1 was employed except that the mTNF21, mTNF26, mTNF28, mTNF30, mTNF32, mTNF28_l, mTNF29 series recombinant proteins were constructed using the protein epitopes and substitution positions shown in the table below.
  • the 90-96 amino acid sequence on hTNF is:
  • the 90-97 amino acid sequence on hTNF is:
  • AQAIPLVGELVDIGFAAYNFVESI INLFQVVHNSYNRP (SEQ ID NO.: 35)
  • the gene sequence of hTNF28-1 antigenic protein can be found in SEQ ID NO.: 36-l antigenic protein amino acid sequence
  • AQAIPLVGELVDIGFAAYNFVESI INLFQVVHNSYNRP (SEQ ID NO.: 37)
  • the gene sequence of the mTNF28-1 antigen protein can be found in SEQ ID NO.: 38
  • AQAIPLVGELVDIGFAAYNFVESI INLFQVVHNSYNRP (SEQ ID NO.: 39) Step 2 Expression and purification of recombinant protein and observation of immunogenicity
  • Tm Tm value by DSC
  • mTNF28_l differs from mTNF28 protein by only one amino acid, mTNF28_l does show higher stability in structural stability.
  • the titer of the serum produced after antigen immunization was operated as in Method 4, and the coated antigens were mTNF and DTT, respectively.
  • the percentage of responding mice was 80% of mTNF28-l, and the anti-serum of mTNF protein was diluted by 100-fold titer to 0D 45 .
  • the average value of 0. 28 mTNF32 was 50% and 0.22, respectively, mTNF21 and mTNF28 were 25% and 0. 17, and 25% and 0.15; mTNF28-l is the most antigenic.
  • the immunization results showed that mTNF28_l showed better immune effect than other transplants.
  • the blood of the mice was taken for antibody typing 60 days after the fourth booster immunization.
  • the results are shown in Fig. 3A.
  • the results showed that the antibody type against mTNF in mice was mainly IgGl 60 days after booster immunization, and the titer was also There are 10,000. It is explained that the immune response caused by the recombinant protein of the present invention can be maintained in the body for a long time.
  • the therapeutic effect of mTNF28-1 on the collagen-induced mouse arthritis model was determined by the method of Method 4, as shown in Figure 3B. From the 55th to the 80th day, the mTNF28-1 treatment group was compared with the Alum adjuvant group and the DTT carrier protein group. The inhibition rate of arthritis in mice is over 40%.
  • Example 3 Antithrombotic vaccine targeting clotting factor FXI
  • FXI is a coagulation factor involved in the endogenous coagulation pathway. Recent literature and pathological statistics support that FXI deficiency can help the body resist thrombosis, but only cause slight bleeding in the body, so FXI is considered to be a safe and effective antithrombotic target.
  • This example constructs an antithrombotic vaccine against the clotting factor FXI, and tests its immunogenicity and antithrombotic effect. Step 1: Design of recombinant antigen
  • the antigen used in this example was constructed by transplanting the candidate epitope sequence of human FXI to the site to be transplanted of DTT.
  • the antigen No. 17 was constructed by replacing the TNEECQKRYRGHKITH (SEQ ID NO.: 40) amino acid sequence of human FXI (523-538aa) with the 291-297 position of DTT, and the antigen No. 20 was TTKIKPRIVGGTASVRGE (SEQ ID) of human FXI (363_380aa) NO.: 41)
  • the amino acid sequence was replaced by the 291-297 position of DTT.
  • the antigen No. 29 was constructed by grafting the catalytic domain of human FXI (381-625aa) to the C-terminus of DTT.
  • the amino acid sequence of the specific antigen is as follows:
  • VAQAIPLVGELVDIGFAAYNFVESI INLFQVVHNSYNRP (SEQ ID NO. : 43)
  • Amino acid sequence of antigen No. 29 NEVWHLVGITSWGEGCAQRERPGVYTNVVEYVDWILEKTQAV (SEQ ID NO. : 44)
  • VYTNVVEYVDWILEKTQAV (SEQ ID NO. : 45)
  • the gene sequence of the antigenic protein No. 17 is shown in SEQ ID NO.: 46.
  • Step 2 Recombinant antigen vector construction, protein expression identification and scale preparation
  • the gene of the recombinant antigen was constructed according to Method 2, and the recombinant protein was identified and prepared by Method 3.
  • the molecular weight of recombinant antigen 29 was about 45 KD by 12% SDS-PAGE.
  • the molecular weight of antigen No. 17 and antigen No. 29 was about 20 KD, which was consistent with the theoretical molecular weight, and the antigen purity was over 90%.
  • Step 3 Animal Immunity and Antibody Titer Detection
  • mice immunization method and the antibody reaction assay were carried out in accordance with Method 4, in which the mice used were female C57BL/6J (purchased from Shanghai Slack), and the immunization dose was 30 ng/mouse, and 8 mice per group. Blood was collected one week after the second booster immunization to prepare serum, and the antibody response against FXI was detected by ELISA.
  • Human FXI was used as an ELISA coating antigen, and the antiserum of mice immunized with No. 17, 20, and 29 antigens was diluted 1 to 100, and the ELISA results were 0D 45 .
  • the values are 0. 52 ⁇ 0. 11, 0. 43 ⁇ 0. 08, 2. 52 ⁇ 0. 3 (the value of negative serum is 0. 14 ⁇ 0. 03), indicating No. 17, 20, 29
  • the antigen stimulates the mouse to produce antibodies that recognize human FXI.
  • the mouse FXI was used as the ELISA coating antigen, and the antiserum of the mouse immunized with the antigen No. 29 was diluted 1 to 100, and the ELISA result was 0D 45 .
  • the value was 1.87 ⁇ 0.5 (the value of the negative serum was 0. 14 ⁇ 0. 03), indicating that the antibody produced by the mouse antigen No. 29 can recognize the FXI of the mouse by cross-reaction.
  • Step 4 Effect of immunization on clotting time in mice
  • mice were anesthetized with sodium pentobarbital (100 mg/kg intraperitoneally). Along the midline of the abdomen, the viscera is opened to expose the inferior vena cava. Drain 450 ul of blood with a syringe containing 50 ul of 3. 2% sodium citrate. Gently turn the syringe to mix the blood and anticoagulant. All samples were centrifuged at 3000 g for 15 min to prepare platelet-free plasma.
  • the APTT value and the PT value were respectively determined by the activated partial thromboplastin time assay kit (ellagic acid) within 4 hours (coagulation method), prothrombin time assay kit (coagulation method) (Shanghai Sun Biotechnology Co., Ltd.) in thromboscreen 400c (pacific hemostasis) was determined on a semi-automatic coagulation analyzer.
  • mice were immunized with PBS, DTT, antigen No. 17, antigen No. 29, and the APTT values were 25.2 ⁇ 1. 8s, 24. 5 ⁇ 2. Is, 26. 7 ⁇ 1. 8s, 30. 3 ⁇ 2. 5s.
  • the APTT values of mice immunized with PBS were similar to those of wild-type mice (the APTT value of wild-type mice was 25. ls), indicating that PBS did not interfere with the function of the in vivo coagulation pathway.
  • the APTT value of mice immunized with antigen No. 29 was extended by 1.2 times compared with the value of PBS group mice (p ⁇ 0.05, t-test), indicating that the antigen can inhibit the endogenous coagulation pathway involved in FXI.
  • mice immunized with PBS, DTT, antigen No. 17, and antigen No. 29 were 10. 4 ⁇ 0. 2s, 10. 6 ⁇
  • the reconstituted thromborel s was injected into the inferior vena cava within 3 s according to the weight of 7.5 ul/g. Immediately, the animals were observed for breathing. The animals were considered to survive if the animals did not stop breathing for 20 minutes.
  • mice immunized with PBS, DTT, No. 17, 20, and 29 antigens had survival rates at 20 minutes, 0%, 37.5%, 25%, 50%, respectively. It is shown that antigens No. 17 and No. 29 can help mice to resist pulmonary embolism.
  • mice used were female C57BL/6J (purchased from Shanghai Slack), and the immunization dose was 30 ng/mouse, 14 mice per group.
  • the antithrombotic effect of antigen No. 29 was evaluated by a pulmonary embolism model 14 days after the second booster immunization.
  • the mice were anesthetized with 50 mg/kg of intraperitoneal injection of sodium pentobarbital, and the inferior vena cava was separated.
  • the inferior vena cava was injected at a dose of 30 ug of placental leachate/g body weight, and the time to start dyspnea in each group of mice was recorded.
  • mice immunized with PBS, DTT, and No. 29 antigens experienced dyspnea at 121 ⁇ 21 s, 118 ⁇ 35 s, and 182 ⁇ 33 s, respectively, and mice immunized with antigen 29 developed dyspnea.
  • the time was extended by 1.5 times (p ⁇ 0.01, t test), indicating that antigen No. 29 can help mice to resist pulmonary embolism.
  • Step 6 Antigen prevention of inferior vena cava stenosis
  • mice used were female C57BL/6J (purchased from Shanghai Slack), and the immunization dose was 30 ng/mouse, and 6 mice per group.
  • the antithrombotic effect of antigen No. 29 was evaluated by the inferior vena cava thrombosis model 14 days after the second booster immunization.
  • the specific steps are as follows: The mice were weighed, anesthetized with sodium pentobarbital at 100 mg/kg body weight, shaved in the abdomen, and disinfected with iodophor.
  • the emboli of mice immunized with PBS, DTT, and 29 antigens were 11. 2 ⁇ 2. lmg, respectively. 8. 2 ⁇ 4. 5mg, 4. 5 ⁇ 2. 3mg, the emboli in mice immunized with antigen No. 29 was reduced by 60% compared to the control group, indicating that antigen 29 could help small The rat prevents thrombosis of the inferior vena cava. Step 7 Effect of antibody on APTT value and PT value of human blood paddle
  • mice immunized with each antigen were purified by protein A-sepharose medium, quantified by BCA quantification kit, diluted with 10 mM PBS (pH 7.4), and mixed with human plasma in a ratio of 1 to 1 volume.
  • APTT value, PT value, and FXI activity were purified by protein A-sepharose medium, quantified by BCA quantification kit, diluted with 10 mM PBS (pH 7.4), and mixed with human plasma in a ratio of 1 to 1 volume.
  • APTT value, PT value, and FXI activity were purified by protein A-sepharose medium, quantified by BCA quantification kit, diluted with 10 mM PBS (pH 7.4), and mixed with human plasma in a ratio of 1 to 1 volume.
  • the antibody produced by the antigen No. 29 can significantly prolong the APTT value of normal human plasma, and the inhibitory effect has a significant dose-effect relationship (as shown in Fig. 5A), and the final concentration of the antibody is 0.75 mg/ml.
  • the APTT value of plasma was extended to 151 s and the control group was 54 s.
  • the antibody produced by the antigen No. 29 stimulated the mouse significantly inhibited the activity of human FXI, and the inhibitory effect was in a dose-effect relationship (as shown in Fig. 5B), and the antibody (0.75 mg/ml final concentration) was mixed with normal human plasma. Thereafter, the antibody plasma mixture was added to the depleted FXI human plasma, and the latter APTT value was extended to 121 s, and the control group value was 63 s.
  • the normal human plasma was incubated with antibodies produced by the 29th antigen and DTT-stimulated mice, and the PT values were 41s and 42s, respectively.
  • the antibody produced by the surface antigen No. 29 did not interfere with the foreign origin necessary for normal hemostasis.
  • the function of the coagulation pathway was not interfere with the foreign origin necessary for normal hemostasis.
  • antigen No. 29 did not affect the function of the exogenous coagulation pathway in mice, indicating that this antigen has no hemorrhagic side effects.
  • the present invention examined the presence or absence of bleeding on the surface and viscera of the mouse. By anatomical comparison, it was found that there was no abnormal bleeding point in the viscera (heart, liver, spleen, lung, kidney, stomach, etc.) of DTT, No. 29 antigen-immunized group. In addition, the morphological color of the liver of the mouse was examined. Visual observation showed that the morphology and color of the liver of the No. 29 antigen-immunized group were not different from those of the DTT-immunized group.
  • Example 4 Antithrombotic vaccine targeting clotting factor FXII
  • FXII is a coagulation factor involved in the endogenous coagulation pathway. Supported by recent literature and pathological statistics, FXII deficiency can help the body to resist thrombosis, but the body has no abnormal bleeding, so FXII is considered to be a safe and effective antithrombotic target.
  • This example constructs an antithrombotic vaccine against coagulation factor FXII, and tests its immunogenicity and antithrombotic effect. Step 1: Design of recombinant antigen
  • the antigen used in this example was constructed by transplanting the candidate epitope sequence of human FXII to the site to be transplanted of DTT. Is the No. 38 antigen a person? 11 of £? 8? 8 ⁇ ( ⁇ 101 ⁇ ( 79-91 ) (SEQ ID NO.: 128) amino acid sequence was replaced by the 295-297 position of DTT, and the 48th antigen was the catalytic domain of human FXII (345-596) Transplanted to the C-terminus of DTT. mFXII79-91 amino acid
  • EGF S SIT YQHDL A (SEQ ID NO.: 131) catalytic domain of hFXII (345-596)
  • GDRNKPGVYTDVAYYLAWIREHTVS (SEQ ID NO.: 129) catalytic domain of mFXII (345-596)
  • GDRNKPGVYTDVANYLAWIQKHIAS (SEQ ID NO. :130)
  • the gene of the recombinant antigen was constructed according to Method 2, and the recombinant protein was identified and prepared by Method 3. by
  • the molecular weight of recombinant antigen 48 was about 45KD by 12% SDS-PAGE.
  • the molecular weight of antigen 38 was about 20KD, which was consistent with the theoretical molecular weight, and the antigen purity was over 90%.
  • Human FXII was used as the ELISA coating antigen, and the antiserum of mice immunized with No. 38 and No. 48 antigens was diluted 1 to 100, and the value of 00 450 was 0.38 ⁇ 0.07, 1.32 ⁇ 0.51 (the value of negative serum was 0.11 ⁇ 0.03). ), indicating 38 No. 48 antigen stimulates mice to produce antibodies that recognize human FXII.
  • Mouse FXII was used as the ELISA coating antigen, and the antiserum of mice immunized with No. 38 and No. 48 antigens was diluted 1:100, and the value of 00 450 was 0.11 ⁇ 0.04, 1.75 ⁇ 0.21 (the value of negative serum was 0.12 ⁇ 0.03), indicating that the antibody produced by the 48-antigen-excited mouse can recognize the FXII of the mouse by cross-reaction.
  • Step 4 Effect of immunization on clotting time in mice
  • mice immunized with PBS, DTT, No. 38 antigen, and No. 48 antigen were 25.2 ⁇ 1.8 s, 24.5 ⁇ 2. Is, 31.2 ⁇ 3.2 s, 27.1 ⁇ 5.1 s, respectively.
  • the APTT values of mice immunized with PBS or DTT were similar to those of wild-type mice (the APTT value of wild-type mice was 25. Is), indicating that PBS or DTT did not interfere with the function of the in vivo coagulation pathway.
  • the APTT value of mice immunized with antigen No. 38 was 1.24 times longer than that of the PBS group (p ⁇ 0.05, t-test), indicating that the antigen inhibits the function of the endogenous coagulation pathway involved in FXII.
  • mice immunized with PBS, DTT, No. 38 antigen, and No. 48 antigen were 10.4 ⁇ 0.2 s, 10.6 ⁇ 0.1 s, 10.1 ⁇ 0.5 s, 10.2 ⁇ 0.4 s, respectively.
  • the PT values of mice immunized with PBS or DTT were similar to those of wild-type mice (the PT value of wild-type mice was 10.6 s), indicating that PBS or DTT did not interfere with the function of the coagulation pathway outside the body.
  • the PT values of mice immunized with antigen No. 38 or No. 48 were not significantly prolonged, indicating that the designed recombinant antigen did not interfere with the function of the exogenous coagulation pathway in mice.
  • Step 5 Prevention of pulmonary embolism by antigen
  • Mouse immunization method reference and antibody reaction detection reference method 4 pulmonary embolism thrombus test operation according to step 3 of Example 3.
  • the experimental results are shown in Figure 6.
  • the emboli of mice immunized with PBS, DTT, 38, 48 antigen were 11.2 ⁇ 2.1 mg, 8.2 ⁇ 4.5 mg, 4.7 ⁇ 2.7 mg, 4.8 ⁇ 2.5 mg, respectively.
  • the emboli in mice immunized with antigen No. 48 decreased by 58% and 57%, respectively, relative to the emboli of PBS control mice, indicating No. 38,
  • Antigen 48 can help mice prevent thrombosis of the inferior vena cava.
  • Example 5 Tumor Vaccine Development Targeted by FAP
  • Fibroblast activation protein is a membrane protein specifically expressed in carnicinoma associated fibroblasts (CAFs). Its cytoplasmic region is a short peptide chain of 6 amino acids. The membrane region is a 19 amino acid hydrophobic fragment, and the extracellular region contains a The ⁇ helix region and an ⁇ ⁇ hydrolase region (amino acid sequence 500 to 760). FAP is specifically expressed in the matrix of malignant epithelial tumors (including breast cancer, lung cancer, colon cancer, etc.), but not in normal human tissues. The expression of FAP on tumor-associated fibroblasts is important for the microenvironment that forms tumor growth.
  • CAFs carnicinoma associated fibroblasts
  • the catalytic domain of human FAP (amino acid sequence 500 ⁇ 760) was fused with the C-terminus of DTT, and the domain vaccine DTT-FAP was designed.
  • the single epitope vaccine DTT_4B was designed by referring to Method 1 by substituting FAP epitope sequence 239-246 (YGDEQYPR (SEQ ID NO.: 49)) for DTT amino acid sequence 291-297 (SETADNLE).
  • the amino acid sequence of the antigen is as follows: -FAP amino acid sequence
  • DDDK is a enterokinase cleavage site, which promotes the soluble expression of the fusion protein prokaryotic; GGGGG 5 glycine residues, as 1 inker.
  • VDIGFAAYNFVESI INLFQVVHNSYNRP (SEQ ID NO. : 51)
  • the pGEX-6p-1 plasmid containing the DTT gene was used as a template, and primer 1 and primer 2 were used.
  • the DTT gene was obtained by PCR.
  • the FAP domain gene was obtained by PCR using primer 3 and primer 4 using the synthetic FAP catalytic domain gene sequence as a template. Using the DTT gene and the FAP domain gene obtained in the above procedure as a template, primer 1 and primer 4 were used for overlapping PCR to construct a DTT-FAP fusion protein gene sequence.
  • primers 5 and primers 6, primers 7 and primers 8 were used to amplify the upper and lower half genes of DTT, respectively, using primer 5 and primers. 7 Perform overlapping PCR to obtain the gene of DTT-4B.
  • the size of DTT-FAP and DTT-4B genes were 1300 bp and 520 bp, respectively, which were consistent with the theoretical values. Sequencing showed that the fusion gene sequence was correct.
  • the recombinant protein sequence and primer sequences are as follows:
  • Primer 1 DTT forward CGCGGATCCGATGATGATGATAAGATAAATCTTGATTGGGATGTCATAAGG (SEQ ID NO:
  • Primer 3 FAP forward GTGGTGGl ID
  • Primer 4 FAP reverse CCGCTCGAGCTAGTCTGACAAAGAGAAACAC (SEQ ID NO.: 56)
  • Primer 5 DTT (positive) CGCGGATCCCTGGAAGTTCTGTTCCAGGGGCCCATAAATCTTGATTGGGAT
  • GTC (SEQ ID NO.: 58)
  • Primer 6 DTT (reverse) CCGCTCGAGCTAGGGACGATTATACGAATTATG (SEQ ID NO.: 59)
  • Primer 7 4B-1 (reverse) CACGCGGGTACTGTTCGTCACCGTAATCGATAACTTGCGCAACGTTTACTG
  • Primer 8 ( ⁇ ) TTACGGTGACGAACAGTACCCGCGTGATAATTTGGAAAAGACAACTGCTGC
  • mice were immunized, wherein the mice used were female Balb/C (purchased from Changzhou Cavans), DTT-FAP Groups, DTT-4B combined control group, 10, 8, and 8 mice, respectively, using Freund's adjuvant, the immune dose was 30 ng antigen / dose. Blood was collected one week after the third booster to prepare serum.
  • an ELISA test was performed.
  • a human FAP purchased from the American R&D System
  • a mouse antiserum sample was diluted 100-fold as a primary antibody
  • a 45 of the DTT-FAP and DTT-4B groups were determined by ELISA.
  • the values are 0. 55 ⁇ 0. 3 and 0. 48 ⁇ 0.5, respectively, while the negative serum has a value of 0.16 ⁇ 0. 06 (p ⁇ 0.01), indicating that both DTT-FAP and DTT-4B can
  • the mouse is challenged against antibodies to human FAP.
  • the serum sample was diluted 100 times, 500 times, 1000 times, 5000 times, 10000 times, 50000 times, and 1000000 times, respectively, with a diluent.
  • Reference method 9 The mice were inoculated with a colon cancer CT26 tumor one week after the third booster immunization.
  • the tumor formation rate of the DTT-FAP group was slower than that of the control group. After 12 days of tumor formation, the tumor formation rate of DTT-FAP was only 90%, while the control composition rate was 100%. After 7 days of tumor inoculation, the length and width of the tumor were measured with vernier calipers, and the tumor volume was calculated and the survival curve was calculated (Fig. 7B). After 18 days of tumor attachment, the tumor volume of the DTT-FAP group was only 53.8% of the control (p ⁇ 0. 01 ). Twenty-seven days after tumor inoculation, the mice were sacrificed, tumors were removed and photographs were taken.
  • the tumors of the DTT-FAP group were significantly smaller than those of the DTT group (Fig. 7C).
  • the survival rate of the DTT-FAP group was 80% 27 days after tumor formation, while the survival rate of the other two groups was below 30% (p ⁇ 0.01) (Fig. 7A).
  • the above results indicate that the DTT-FAP vaccine has a significant anti-tumor effect (Example 6 VEGF-targeted anti-tumor vaccine)
  • Anti-tumor drugs targeting VEGF have prolonged the lives of many cancer patients clinically.
  • the inventors of the present invention developed a DTT-VEGF vaccine antigen targeting VEGF, which was confirmed to have a significant antitumor effect in a mouse tumor model.
  • Step 1 DTT-VEGF antigen protein structure design
  • VEGF 8-109 to insert the C-terminus of DTT (202-378) to form the DTT-VEGF antigen protein, designated DTT-VEGF.
  • VEGF 8-109 amino acid sequence:
  • the expression plasmid pGEX-DTT-VEGF was constructed by using primers for VEGF-F and VEGF-R as target protein gene primers, and the sequencing data proved correct.
  • the expression plasmid pGEX_DTT_VEGF was transferred to ⁇ : co7i BL21 and cultured. Induction, SDS-PAGE analysis of protein molecular weight of about 30KD, proved to be able to express DTT-VEGF protein.
  • the culture was amplified to 1 L, and DTT-VEGGF protein was prepared according to Method 3. The purity was determined to be 90% by 12% SDS_PAGE electrophoresis.
  • the immunization was carried out according to Method 4, and the recombinant hVEGF protein (purchased from Beijing Yiqiao Shenzhou Biotechnology Co., Ltd.) was coated with an antigen of 0.1 ⁇ g/L.
  • the ELISA results showed that after the DTT-VEGF immunization of the mouse antiserum was diluted 100-fold, the 0D450 against hVEGF165 reached 1.3, while the anti-serum 0D450 after VEGF immunization alone was only 0.1 or so, the control DTT and the Alum adjuvant group. 05 ⁇ The antiserum 0D450 was less than 0.05.
  • DTT-VEGF as an adjuvant of aluminum hydroxide, and found that it can stimulate high-intensity antibodies against hVEGF165, and the antibody also cross-reacts with VEGF in mice. .
  • the antibody is effective in neutralizing the binding of VEGF to the receptor VEGF2. If VEGF is not fused to DTT, the production of antibodies cannot be stimulated. It indicates that the Th epitope on DTT plays a key role in the body's breakthrough of B cell immune tolerance of VEGF.
  • mice were sacrificed and spleen cells were taken.
  • the cells were added to a 6-well plate at a concentration of 106 cells, and the corresponding antigen was added at a final concentration of 25 g/ml, and cultured for 3 days as an effector cell.
  • B16-F10 tumor cells were used as target cells.
  • mice were randomly divided into 4 groups of 8 animals each, Group A: D23V, Group B: VEGF (8-109), Group C: DTT, Group D: adjuvant.
  • the back subcutaneous immunization was performed at a dose of 0.03 mg/mouse, and the immunization was boosted once every 2 weeks for 3 times.
  • blood was taken through the tail vein, and stored at -70 °C for later use.
  • the subcutaneous B16-F10 cell suspension (10 5 ce l ls/only) was injected into the tail vein to observe the tumor appearance, and the survival rate and other abnormalities were recorded.
  • Mouse melanoma B16-F10 cells were cultured in DMEM containing 10% fetal calf serum, 100 U/ml penicillin and 100 ⁇ l/ml streptomycin in a 5% CO 2 incubator and cultured at 37 °C.
  • the cells in the exponential phase were digested with 0.25 % trypsin, collected in serum-free medium, gently shaken, 500 g, centrifuged for 5 min, washed once, resuspended in PBS, adjusted to a concentration of 10 6 , stained with trypan blue , the cell viability is above 95%.
  • the B16-F10 mouse melanoma cells inoculated with the adjusted density were subcutaneously inoculated with 100 ⁇ 1 per animal and 10 5 cells per mouse (pre-experiment confirmed 10 5 cel ls/ can only be 100% to the tumor, that is, a tumor has been obtained.
  • the vaccine is started at a dose of 0.03 mg/mouse, once a week for 3 weeks. After inoculation of the tumor, the appearance of the tumor was observed every day, and the survival rate and other abnormalities were recorded.
  • Balb/C mice Forty-eight 6-8 weeks old Balb/C mice were randomly divided into 2 groups, 20 in each group. The first group was treated with DTT-VEGF at a dose of 0.03 mg/mouse, and the subcutaneous immunization was performed every 2 weeks. One time, a total of 3 times, the other 20 were immunized with PBS according to the same procedure as a control. Blood was taken from the tail vein one week after each immunization and stored at -70 °C for later use. Second immunization
  • the prophylactic efficacy of the B16-F10 model showed that the average survival time of mice was extended from 25 days in the control group.
  • the survival time of the DTT-VEGF group for 35 days was greatly improved.
  • the survival time of the DTT-VEGF group was significantly prolonged, and the average survival time was extended from 25 days in the control group to 32 days (Fig. 8E, F).
  • DTT-VEGF as a vaccine significantly inhibited the growth of tumor cells (Fig. 9G).
  • the average survival time of mice was also extended from 25 days in the control group to 35 days in the DTT-VEGF group, demonstrating DTT- After VEGF immunization, the survival time of tumor-bearing mice can be significantly prolonged.
  • the lymphocyte infiltration in the tumor was further analyzed.
  • Anti-CDS antibody staining showed that there was a large area of CD8 + cell infiltration in the DTT-VEGF group, whereas only scattered CD8 + lymphocytes were found in the control group (Fig. 9D).
  • Activation of the PDL1 and PD1 pathways can inhibit T lymphocyte activation and reduce the secretion of immune-related cytokines.
  • Immunoregulatory signaling pathways such as PDL1/PD1 can reduce the recognition of tumor markers by the immune system, thereby allowing tumors to escape from immunity.
  • the monoclonal antibody against PDL1 has entered the clinical stage, and the patented design of the recombinant vaccine against PDL1 also has a good tumor suppressing effect.
  • the extracellular domain PDL1E of PDL1 and the extracellular domain PDL1E1 of PDL1 and PD1 non-binding sites were selected, and PDL1E and PDL1E1 were inserted into the C-terminus of DTT, respectively, to obtain DTT-PDL1E recombinant protein and DTT-PDL1E1 recombinant. protein.
  • NEIFYCTFRRLDPEENHTAELVIPEL 10 (SEQ ID NO.: 68)
  • DTT-PDL1E1 recombinant protein full sequence TTNSKREEKLFNVTSTLRINTTTNEIFYCTFRRLDPEENHTAELVIPEL (SEQ ID NO.: 70) PDL1 amino acid sequence:
  • NEIFYCTFRRLDPEENHTAELVIPEL (SEQ ID NO.: 125) - hPDL1E recombinant protein full sequence:
  • Competent BL2U ToplO was purchased from TransGen Biotech, and the vectors pGEX_6p_l, PMD18_T, ExTaq enzyme, T4 ligase, and reverse transcription kit were purchased from TaKaRa.
  • the PDL1 gene is highly expressed in melanoma, colon cancer, lung cancer cells, resuscitation CT26, B16-F10, subculture, collection of cells, freeze-thaw disruption, mRNA extraction, and reverse transcription of cDNA.
  • PCR was performed on PI P2, and the correct full-length s_PDLl gene was obtained by sequencing.
  • mice with a body weight of 21 ⁇ 1 were selected as experimental subjects and randomly divided into 3 groups, DTT group, DTT-PDL1E group and DTT-PDL1E1 group, with 6 rats in each group.
  • Animals were immunized according to Method 4 serum was collected prior to immunization, and serum was collected one day prior to each immunization.
  • the epidermal growth factor receptor is a multifunctional glycoprotein widely distributed on the cell membrane of various tissues of human body. Inhibitors such as gefitinib and erlotinib and monoclonal antibodies such as cetuximab and panitumumab have been marketed for the treatment of advanced colon cancer.
  • the extracellular domain of EGFR consists of four sub-regions I, II, III and IV. The III subregion interacts with the ligand through a major conserved amino acid residue. The II subregion is the major site that mediates the formation of dimers.
  • the present inventors fused the EGFR III subregion to the C-terminus of DTT and participated in the major epitope of dimer formation in the second subregion (hEGFR 237-267 DTCPPLMLYNPTTYQMDVNPEGKYSFGATCV (SEQ ID NO.: 83), PPLMLYNPTTYQMDVNPE (SEQ ID NO. : 109) ), the epitope peptide was transplanted into the appropriate position of DTT by the principle of similar C-terminal-N distance, and designed as a multi-epitope vaccine. See step 1 for the design steps.
  • DTT-mEGFRIII-pep DTT_p-mEGFRIII.
  • amino acid sequence after fusion is as follows:
  • TPNQKTKIMNNRAEKDCKAVNHV (SEQ ID NO.: 110) - amino acid sequence of hEGFRI 11 antigen protein:
  • hEGFR III subregion amino acid sequence TSGQKTKI ISNRGENKCKATGQV (SEQ ID NO.: 111) - amino acid sequence of mEGFRI II-pep antigen protein:
  • GATCV (SEQ ID NO.: 86) - amino acid sequence of hEGFRI II-pep antigen protein:
  • Step 2 Vector construction, fusion protein expression and purification
  • primers were designed to introduce a B epitope at the corresponding position in the T domain of DT by the principle of overlapping PCR.
  • Primer And the template was synthesized by Nanjing Kingsray Biotechnology Co., Ltd.
  • PCR products were prepared by overlapping PCR. Each protein was probed with 1F and 3R, 2F and 4R for the first round of PCR, and IF and 4R primers for the second round of PCR. The PCR and vector construction steps are shown in Method 2.
  • the plasmid was extracted and identified by PCR.
  • the PCR products of the four antigenic proteins (DTT-mEGFRI 11, DTT-hEGFRI 11, DTT-mEGFRI I-pep and DTT_p-mEGFRI II) were all identified at 1200KD, which was in line with expectations. .
  • Positive clones were sequenced by Kingsley Sequencing and the sequencing results were consistent with the expected design.
  • the recombinant protein expression and preparation steps are shown in Method 3. Protein detection by SDS-PAGE showed that DTT-mEGFR, DTT-hEGFR, DTT-pep-mEGFR ; DTT-mEGFR-pep molecular weight was about 40KD, which was in line with expectations.
  • the protein purity is above 90%.
  • the nucleic acid and primer sequences corresponding to the four antigenic proteins designed in this patent are as follows:
  • the gene sequence of the DTT-mEGFRI I I antigen protein can be found in (SEQ ID NO.: 104).
  • the gene sequence of the DTT-hEGFRI I I antigen protein is shown in SEQ ID NO.: 105.
  • the gene sequence of the DTT-p-mEGFRI I I antigen protein is shown in SEQ ID NO.: 106.
  • mEGFR standard purchased from Beijing Yiqiao Shenzhou Biotechnology Co., Ltd.
  • the specific steps are as shown in Method 4.
  • ELISA showed that the mean value of the PBS group was 0.31, the average value of the DTT group was 0.34, the average value of DTT-mEGFR was 1.84, and the average value of DTT-hEGFR was 1.65, the average value of DTT-p-mEGFR.
  • the average value of the DTT-mEGFR-p print is 1.31.
  • Four groups of experimental groups produced better antibodies against mEGFR, indicating that the method of this patent successfully broke through immune tolerance and produced antibodies against mEGFR (p ⁇ 0.05).
  • the Herl standard was coated, and the ELISA results showed that the average value of the PBS group was 0. 17.
  • the average value of the DTT group was 0.20.
  • the mean value of DTT-mEGFR is 0.60, the average value of DTT-hEGFR is 1.25, the average value of DTT-pep-mEGFR is 0.87, and the average value of DTT-mEGFR-pep is 0.29.
  • Four groups of experimental groups produced better antibodies against mEGFR, indicating that our method successfully broke through immune tolerance and produced antibodies against self-protein (p ⁇ 0.05).
  • the mEGFR needle also has antibodies to Herl, and Herl also has better antibodies against mEGFR, indicating a cross-reactivity.
  • the mouse immunization step is shown in Method 4.
  • the specific steps of tumor cell culture, transplantation and apparent effect evaluation are shown in Method 9.
  • a Lewis model of lung cancer cells was selected to establish a tumor model with an inoculation amount of 5 ⁇ 10 5 per mouse. Taking the number of days of inoculation as the abscissa and the tumor volume as the ordinate, the tumor growth curve was made. The results showed that from the 16th day, the four experimental groups of this patent were significantly different from the PBS and DTT control groups (p ⁇ 0.05).
  • the tumor inhibition rate was 16% in the DTT-mEGFR group relative to the PBS group.
  • the tumor inhibition rate was 32% in the DTT-hEGFR group relative to the PBS group.
  • the tumor inhibition rate was 21% in the DTT-mEGFR-pep group relative to the PBS group.
  • the tumor inhibition rate was 37% in the DTT-p-mEGFR group relative to the PBS group.
  • the results show that our vaccine can break the autoimmune tolerance and have better tumor inhibition effect.
  • the mEGFR standard (purchased from Beijing Yiqiao Shenzhou Biotechnology Co., Ltd.) was used as an antigen to stimulate the spleen cells.
  • the experimental procedure is shown in Method 7.
  • the average reading of the DX group was 0.12
  • the average reading of the DTT group was 0.12.
  • the average reading of the DTT-p-mEGFR group was 0.20, and the experimental group was significantly different from the two groups (p ⁇ 0.05). This indicates that the DTT-p-mEGFR vaccine can stimulate T cell proliferation and break the cellular immune tolerance.
  • the mEGFR standard (purchased from Beijing Yiqiao Shenzhou Biotechnology Co., Ltd.) was used as an antigen to stimulate the spleen cells, and Lewi s mouse lung cancer cells were used as target cells.
  • the specific steps of the experiment are shown in Method 8. Three mice were selected from each group. The killing rate of Lewis cells was 4% in the PBS group, the average killing rate was 8% in the DTT group, and the average killing rate was 29.8% in the DTT_p-MEGFR group. There was a significant difference in the control group (p ⁇ 0.05). Description The DTT-p-mEGFR vaccine has a CTL killing effect on target cells.

Abstract

本发明提供了一种携带抗原表位的重组蛋白,所述重组蛋白具有源自载体蛋白的骨架结构,并在所述载体蛋白的至少一个分子表面氨基酸残基区通过拼接、替换和/或插入引入低免疫原性蛋白表位。所述载体蛋白具有至少一个T细胞表位,并且所述重组蛋白可有效激发机体针对所述低免疫原性蛋白表位的免疫反应。

Description

针对低免疫原性蛋白的表位疫苗及其制法和用途
技术领域
本发明属于生物和医药领域, 具体地涉及针对低免疫原性蛋白的表位抗原的疫 苗及其制法和用途。本发明可有效激发机体针对低免疫原性蛋白的特定表位产生免疫 反应。 背景技术
慢性病包括心脑血管疾病和癌症, 随着经济发展和生活营养水平的持续提高, 其 发病率和死亡率快速升高, 成为人类致病、 致死主要原因; 利用单克隆抗体药物治疗 的优点是靶点明确, 疗效确切, 但需要用药剂量大、 重复次数多治疗成本高。
预防用疫苗作为控制传染性疾病及其并发症的重要手段已经挽救了数亿人的生 命、 对人类健康做出了重大贡献; 传统上的疫苗的抗原源自病原体, 对人类机体来讲 是外源物质自然能够激发人体的免疫保护反应。而慢性病的病因和治疗干预靶点是自 身物质, 如果也能够设计疫苗通过主动免疫, 激发机体产生免疫反应, 产生与单克隆 抗体药物具有相似治疗效果的自身抗体是一条非常具有吸引力的治疗途径; 具有疗 效持续时间长, 治疗成本低, 用药既方便又经济, 还具有预防发病的潜力。
但是, 由于机体存在对自身物质具有免疫耐受的保护机制, 正常的健康状态下, 机体不会产生针对自身物质的免疫反应。 目前 Le Buanec 等人和法国 NeoVacs 公司 (http : //neovacs. fr/) , 将用戊二醛将几十个人蛋白(包括多种细胞因子、 生长因子) 与铜蓝蛋白(the keyhole l impet hemocyanin , KLH)偶联后, 再用甲醛长时间处理杀 灭人蛋白分子的生物活性, 制备了 kinoid 抗原疫苗; KLH 偶联 TNF-oc 制备的 TNFK 抗原在小鼠炎症模型中具有治疗作用,临床试验证明在人体中能够成功诱导免疫反应 [Le Buanec H, et al . TNFalpha kinoid vaccination-induced neutral iz ing ant ibodies to TNF alpha protect mi ce from autologous TNFalpha-driven chronic and acute inflammation. Proc Natl Acad Sci USA 2006 ; 103 (51) : 19442-7]。 虽然, 这种疫苗的有效性得到了部分验证, 但是这种几十个人蛋白分子与 KLH分子偶联、 再 加上甲醛长时间处理形成的复杂的凝絮物质, 在满足临床药品要求的成份清楚、 结构 明确、 质量可控方面存在诸多的难度和难以说明的安全风险。
因此, 本领域迫切需要开发能够有效激发机体产生针对低免疫原性蛋白的免疫 应答的疫苗抗原技术, 同时满足临床药品成份清楚、 结构明确、 质量可控的要求。 发明内容
本发明的目的就是提供一种可有效激发机体产生针对低免疫原性蛋白的免疫应 答的方法以及相关的重组蛋白和组合物(如疫苗组合物)。 在本发明的第一方面,提供一种携带抗原表位的重组蛋白,所述重组蛋白具有源自 载体蛋白的结构骨架, 并且所述载体蛋白具有至少一个 T细胞表位, 并且在所述载体蛋白 的至少一个分子表面氨基酸残基区通过拼接、 替换、 和 /或插入而引入所述的抗原表位。
在另一优选例中, 所述 "分子表面氨基酸残基区"包括 loop区、 beta-tum区、 N末端 或 C末端。
在一优选例中, 所述重组蛋白诱导产生针对所述抗原表位的免疫应答。
在另一优选例中, 所述抗原表位是 B细胞表位或 T细胞表位。
在另一优选例中, 所述的载体蛋白是病原体蛋白, 包括病毒蛋白、 细菌蛋白、 衣原 体蛋白、 支原体蛋白、 或其组合。
在另一优选例中, 所述的抗原不来自所述载体蛋白。
在另一优选例中, 所述的抗原表位是来源于哺乳动物蛋白。
在另一优选例中, 所述的抗原表位选自下组:
(a) 单表位的抗原表位; 较佳地, 所述的单表位的抗原表位 (肽)的长度为 5-30个, 较 佳地 6-15个氨基酸; 或
(b) 多表位的抗原表位; 较佳地, 所述的多表位的抗原表位 (肽)的长度为 15-500个, 较佳地 20-300个, 更佳地 30-200个氨基酸。
在另一优选例中,在所述的载体蛋白的 C或 N末端引入所述的多表位的抗原表位 (肽)。 在另一优选例中, 当所述的重组蛋白被施用于人时, 诱导人产生针对所述抗原表位 的免疫应答。
在另一优选例中, 所述的替换包括部分替换或全部替换所述载体蛋白的所述表 面氨基酸残基区的氨基酸序列。
在另一优选例中, 所述的部分替换包括替换所述载体蛋白的表面氨基酸残基区序列 中的 1 - 15个氨基酸, 较佳地 2- 10个氨基酸。
在另一优选例中, 所述抗原表位是低免疫原性蛋白的表位。 优选地所述的低免 疫原性蛋白包括人和非人哺乳动物的蛋白。
在另一优选例中, 所述的低免疫原性蛋白包括: 自身免疫疾病相关蛋白、 肿瘤 相关蛋白、 心血管疾病相关蛋白。
在另一优选例中, 所述的低免疫原性蛋白包括:
(a) VEGF、 TNF-o Her2蛋白、 凝血因子、 白细胞介素、 成纤维细胞活化蛋白 (Fibroblast Activation Protein , FAP)、 EGFR、 PDL 1或其组合;
(b) 将(a)中蛋白经过一个或多个氨基酸残基的取代、 缺失或添加而形成的并且 与载体蛋白重组后能够诱发针对该低免疫原性蛋白的免疫反应的蛋白。
在另一优选例中, 所述低免疫原性蛋白为 TNF-cx或者将 TNF-cx经过一个或多个氨 基酸残基的取代、 缺失或添加而形成的并且与载体蛋白重组后能够诱发针对该 TNF-cx 的免疫反应的蛋白。
在另一优选例中,所述抗原表位源自 TNF-cx,且在 TNF-cx中具有两个点突变 A145R 禾口 Y87H。
在另一优选例中, 所述抗原表位源自 TNF-cx, 并且选自下组:
(l)SEQ ID ^«). : 10或8£0 ID NO. : 12所示的氨基酸序列; (2)将 SEQ ID NO. : 10或 SEQ ID NO. : 12氨基酸序列经过一个或多个氨基酸残基的 取代、 缺失或添加而形成的, 且与载体蛋白融合后具有诱发免疫反应功能的衍生的多 肽。
在另一优选例中, 所述抗原表位选自下组中的一个或多个:
(1) VSRFAISYQEKVNLLSA;
(2) LDFAESGQV;
(3) WLNRRANA;
(4) GMDLKDNQLVV;
(5) VSRFAISYQEKVNLLSAV;
(6) ISRIAVSYQTKVNLLSA;
(7) ISRIAVSYQTKVNLLSAI ; 禾口
(8) 其他 TNF-cx蛋白中与 (1 (7)表位序列对应的肽段。 在另一优选例中, 所述低免疫原性蛋白为凝血因子。
在另一优选例中, 所述凝血因子为 FXI。
在另一优选例中, 所述抗原表位选自下组中的一个或多个:
(1) FYGVESPK;
(2) QYKMAESGYDI ;
(3) WGYRKLRDKIQ;
(4) TNEECQKRYRGHKITH;
(5) ACIRDIF;
(6) TTKIKPRIVGGTASVRGE ; 禾口
(7) 其他 FXI蛋白中与(1)〜(6)表位序列对应的肽段。
在另一优选例中, 所述抗原表位包括凝血因子为 FXI的催化结构域。
在另一优选例中, 所述 FXI的催化结构域选自下组:
(a)具有 SEQ ID NO. : 45氨基酸序列的多肽;
(b)将 SEQ ID NO. : 45氨基酸序列经过一个或多个氨基酸残基的取代、 缺失或添加 而形成的, 且与载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。
在另一优选例中, 所述凝血因子为 FXII。
在另一优选例中, 所述抗原表位选自下组中的一个或多个:
(1) EAFSPVSYQHDLA;
(2) EGFSSITYQHDLA; ; 禾口
(3) 其他 FXI I蛋白中与(1)、 (2)表位序列对应的肽段。
在另一优选例中, 所述抗原表位包括凝血因子为 FXII的催化结构域。
在另一优选例中, 所述 FXII的催化结构域选自下组:
(a)具有 SEQ ID NO. : 129或 SEQ ID NO. : 130氨基酸序列的多肽;
(b)将(a)中氨基酸序列经过一个或多个氨基酸残基的取代、 缺失或添加而形成 的, 且与载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。 在另一优选例中,所述抗原表位肽源自 FAP,并且所述抗原表位肽包括 YGDEQYPR。 在另一优选例中, 所述低免疫原性蛋白为 FAP。
在另一优选例中, 所述抗原表位源自 FAP, 并且所述抗原表位包括 YGDEQYPR。 在另一优选例中, 所述抗原表位源自 FAP催化结构域。
在另一优选例中, 所述 FAP催化结构域选自下组:
(a)具有 SEQ ID NO. : 108氨基酸序列的多肽;
(b)将 SEQ ID NO. : 108氨基酸序列经过一个或多个氨基酸残基的取代、 缺失或添 加而形成的, 且与载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。
在另一优选例中, 所述重组蛋白的氨基酸序列选自下组:
(a)具有 SEQ ID NO. : 50或 SEQ ID NO. : 51氨基酸序列的多肽;
(b)将(a)中多肽经过一个或多个氨基酸残基的取代、 缺失或添加而形成的, 且具 有诱发免疫反应功能的由(a)衍生的多肽。
在另一优选例中, 所述抗原表位源自 VEGF。
在另一优选例中, 所述抗原表位选自下组:
(a)具有 SEQ ID NO. : 63氨基酸序列的多肽;
(b)将 SEQ ID NO. : 63氨基酸序列经过一个或多个氨基酸残基的取代、 缺失或添加 而形成的, 且与载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。
在另一优选例中, 所述重组蛋白的氨基酸序列选自下组:
(a)具有 SEQ ID NO. : 62氨基酸序列的多肽;
(b)将 SEQ ID NO. : 62氨基酸序列经过一个或多个氨基酸残基的取代、 缺失或添加 而形成的, 且具有诱发免疫反应功能的由(a)衍生的多肽。
在另一优选例中, 所述抗原表位源自 PDL1。
在另一优选例中, 所述抗原表位源自 PDL1E。
在另一优选例中, 所述抗原表位选自下组:
(a)具有 SEQ ID NO. : 67、 SEQ ID NO. : 68、 SEQ ID NO. : 122、 SEQ ID NO. : 123、
SEQ ID NO. : 124或 SEQ ID NO. : 125所示氨基酸序列的多肽;
(b)将(a)中多肽经过一个或多个氨基酸残基的取代、 缺失或添加而形成的, 且与 载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。
在另一优选例中, 所述重组蛋白选自下组:
(a)具有 SEQ ID NO. : 69、 SEQ ID NO. : 70、 SEQ ID NO. : 126或 SEQ ID NO. : 127所 示氨基酸序列的多肽;
(b)将(a)中多肽经过一个或多个氨基酸残基的取代、 缺失或添加而形成的, 且与 载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。
在另一优选例中, 所述抗原表位源自表皮生长因子受体 EGFR。
在另一优选例中, 所述抗原表位源自表皮生长因子受体 EGFR的第 I I I亚区。
在另一优选例中,所述抗原表位源自表皮生长因子受体 EGFR,并且所述抗原表位肽 选自下组:
(a)具有 SEQ ID NO. : 83、 SEQ ID NO. : 109、 SEQ ID NO. : 110、 SEQ ID NO. : 111 所示氨基酸序列的多肽; (b)将(a)中多肽经过一个或多个氨基酸残基的取代、 缺失或添加而形成的, 且与 载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。
在另一优选例中, 所述重组蛋白的所述抗原表位源自表皮生长因子受体 EGFR, 并 且包括 SEQ ID NO. : 83或 SEQ ID NO.: 109所示的氨基酸序列的至少一种, 和
SEQ ID NO. : 110和 SEQ ID NO. : 111中的至少一种。
在另一优选例中, 所述重组蛋白选自:
(a)具有 SEQ ID NO. : 84、 SEQ ID NO. : 85、 SEQ ID NO. : 86、 SEQ ID NO. : 87、 SEQ ID NO. : 119或 SEQ ID NO. : 120所示氨基酸序列的多肽;
(b)将(a)中多肽经过一个或多个氨基酸残基的取代、 缺失或添加而形成的, 且与 载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。 在另一优选例中, 所述的抗原表位的长度为 5-40个氨基酸, 较佳地为 8-30个氨基 酸。
在另一优选例中, 所述的载体蛋白包括白喉毒素 DT、 白喉毒素的跨膜结构域 DTT、 轮状病毒 VP7、 利什曼原虫的热休克蛋白、 空肠弯曲菌鞭毛蛋白、 沙眼衣原体主要外膜 蛋白、 血蓝蛋白 (Keyhole Limpet Hemocyanin , KLH)、 牛血清白蛋白 (Bovine Serum Albumin, BSA), 鸡卵白蛋白 (Ovalbumin, OVA), 纤维蛋白原、 多聚赖氨酸 (PLL;)。
在另一优选例中, 所述的表面氨基酸残基区在 DTT上的 287-299位氨基酸之间或 DTT 的 C末端或 N末端, 优选地所述表面氨基酸残基区选自下组: DTT上的 290-297位氨基酸、 DTT上的 291-297位氨基酸、 DTT上的 292-297位氨基酸、 293-297位氨基酸、 294-297位氨 基酸、 DTT上的 295-297位氨基酸、 DTT上的 296-297位氨基酸。
在另一优选例中, 所述表面氨基酸残基区选自下组: DTT上的 305-310位氨基酸和 295-310位氨基酸。
在另一优选例中, 在 1-5个 (较佳地 1-3个) 表面氨基酸残基区引入抗原表位。
在另一优选例中, 所述的表面氨基酸残基区包括载体蛋白的 C末端。
在另一优选例中, 所述的表面氨基酸残基区包括载体蛋白的 N末端。
在另一优选例中, 所述抗原表位连接于所述载体蛋白的 C末端和 /或 N末端。
在另一优选例中, 所述抗原表位和所述载体蛋白之间具有连接肽。 优选地, 所述连 接肽长度为 3-30个氨基酸。 更优选地, 所述连接肽长度为 4-20个氨基酸。 最优选地, 所述 连接肽长度为 5-10个氨基酸。
在另一优选例中, 所述抗原表位和所述载体蛋白之间不具有连接肽。
在另一优选例中, 所述抗原表位替换所述载体蛋白的 C末端或 N末端的 1-50个氨基 酸。 优选地, 所述抗原表位替换所述载体蛋白的 C末端或 N末端的 5-30个氨基酸。 更优选 地, 所述抗原表位替换所述载体蛋白的 C末端或 N末端的 10-20个氨基酸。 在另一优选例中, 所述的载体蛋白为白喉毒素的跨膜结构域 DTT, 并且所述的可插 入抗原表位的表面氨基酸残基区包括:
白喉毒素跨膜结构域 (DTT ) 可植入抗原表位的表面氨基酸残基区
lFOL. pdb中氨基酸编号 lFOL. pdb中氨基酸序列 DTT-1 221-225 KEHGP
DTT-2 230-241 MSESPNKTVSEE
DTT-3 255-261 LEHPELS
DTT-4 267-277 TGTNPVFAGAN
DTT-5 287-299 QVIDSETADNLEK
DTT-6 305-311 SILPGIG
DTT-7 317-325 ADGAVHHNT 本发明的第二方面, 提供一种多核苷酸, 所述的多核苷酸编码第一方面所述的 重组蛋白。 本发明的第三方面, 提供一种表达载体, 所述表达载体含有第四方面所述的多 核苷酸。
本发明的第四方面, 提供一种宿主细胞, 所述的宿主细胞含有第三方面所述的 表达载体, 或者在基因组中整合有第二方面所述的多核苷酸。
在另一优选例中, 所述的宿主细胞包括原核细胞和真核细胞。
在另一优选例中, 所述的宿主细胞包括大肠杆菌、 酵母、 CHO细胞、 DC细胞等。 本发明的第五方面, 提供一种药物组合物, 所述的组合物含有第一方面所述的 重组蛋白、第二方面所述的多核苷酸或者第三方面所述的表达载体或者第四方面所述 的宿主细胞, 以及药学上可接受的载体和 /或辅料。
在另一优选例中, 所述的组合物为疫苗。 本发明的第六方面, 提供一种疫苗组合物, 所述的组合物含有第一方面所述的 重组蛋白、第二方面所述的多核苷酸或者第三方面所述的表达载体或者第四方面所述 的宿主细胞, 以及免疫学上可接受的载体和 /或辅料。
在另一优选例中, 所述的疫苗组合物还含有佐剂。
在另一优选例中, 所述疫苗组合物为核酸疫苗组合物, 所述核酸疫苗组合物中 包含第二方面所述的多核苷酸或者第三方面所述的表达载体。
在另一优选例中, 所述的佐剂包括氧化铝、 皂苷、 quil A、 胞壁酰二肽、 矿物油 或植物油、基于囊泡的佐剂、非离子嵌段共聚物或 DEAE葡聚糖、 细胞因子 (包括 L- 1、 L- 2、 『 - r、 GM-CSF , !L-6 « L- 12、 if CpG)。 本发明的第七方面, 提供第一方面所述的携带抗原表位的重组蛋白的用途, (a) 用于制备针对所述抗原表位的抗体; 和 /或 (b)用于制备治疗与所述抗原表位相关的疾 病的药物。
在另一优选例中, 所述的疾病包括: 自身免疫疾病 (如类风湿关节炎)、 肿瘤、 心 血管疾病等。 本发明的第八方面, 提供一种治疗方法, 给需要的对象施用第一方面所述的重 组蛋白、 第四方面所述的药物组合物或第三方面的疫苗组合物。 本发明的第九方面, 提供一种抗原表位肽, 所述抗原表位肽源自哺乳动物 (如人) 的低免疫原性蛋白且包含一个或多个抗原表位,
并且所述抗原表位肽氨基酸序列长度为相应的低免疫原性蛋白全长的 5-100% (优选地, 所述抗原表位肽氨基酸序列长度为相应的低免疫原性蛋白全长的 5-70%; 更优选地, 所述抗原表位肽氨基酸序列长度为相应的低免疫原性蛋白全长的 5-50%; 最优选地, 所述抗原表位肽氨基酸序列长度为相应的低免疫原性蛋白全长的 5-30%, 如 10 %、 15 %、 20 %、 25 % ), 且所述抗原表位肽的长度为 5-500个氨基酸; 并且所述抗原表位肽与本发明载体蛋白形成的重组蛋白可诱发同一种类的所述 哺乳动物产生针对该低免疫原性蛋白的免疫反应。
优选地, 所述抗原表位肽氨基酸序列长度为 3-57。 更优选地, 所述抗原表位肽氨 基酸序列长度为 5-17。
在另一优选例中, 所述的低免疫原性蛋白包括: VEGF、 TNF-o Her2蛋白、 凝 血因子、 白细胞介素、 FAP、 PDL1、 EGFR。
在另一优选例中, 所述抗原表位肽源自 TNF-cx, 并且选自下组:
(1) SEQ ID ^«).: 10或8£0 ID NO. : 12所示的氨基酸序列;
(2)将 SEQ ID NO. : 10或 SEQ ID NO. : 12氨基酸序列经过一个或多个氨基酸残基的 取代、 缺失或添加而形成的, 且与载体蛋白融合后具有诱发免疫反应功能的衍生的多 肽。
在另一优选例中,所述的抗原表位肽源于 TNF-cx,并且所述抗原表位肽选自下组:
(a) SEQ ID NO.: 5-8 SEQ ID NO. :34、 SEQ ID NO. : 117或 SEQ ID NO. : 118所示的 多肽;
(b) 将 SEQ ID NO. : 5-8或 SEQ ID NO. :34所示的多肽经过一个或多个氨基酸残基 的取代、 缺失或添加而形成的, 且与载体蛋白融合后具有诱发针对 TNF-cx免疫反应功 能的由(a)衍生的多肽。
在另一优选例中, 所述抗原表位肽源于凝血因子 FXI, 并且所述抗原表位肽选自 下组:
(a) SEQ ID NO.: 40或 SEQ ID NO. :41所示的多肽;
(b) 将 SEQ ID NO. : 40或 SEQ ID NO. :41所示的多肽经过一个或多个氨基酸残基 的取代、 缺失或添加而形成的, 且与载体蛋白融合后具有诱发免疫反应功能的由(a) 衍生的多肽。
在另一优选例中, 所述抗原表位肽包括 FXI的催化结构域或其同源序列。
在另一优选例中, 所述 FXI的催化结构域的蛋白序列如 SEQ ID NO.:45所示。
在另一优选例中, 所述抗原表位肽源自凝血因子为 FXI, 并且所述抗原表位肽选 自下组:
(a) SEQ ID NO.: 45所示的多肽;
(b) 将 SEQ ID NO. : 45所示的多肽经过一个或多个氨基酸残基的取代、 缺失或添 加而形成的, 且与载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。
在另一优选例中, 所述抗原表位肽源自 FXII。
在另一优选例中, 所述抗原表位肽选自下组中的一个或多个:
(1) EAFSPVSYQHDLA;
(2) EGFSSITYQHDLA; ; 禾口
(3) 其他 FXI I蛋白中与(1)、 (2)表位序列对应的肽段。
在另一优选例中, 所述抗原表位肽包括凝血因子为 FXII的催化结构域。
在另一优选例中, 所述 FXII的催化结构域选自下组:
(a)具有 SEQ ID NO. : 129或 SEQ ID NO. : 130氨基酸序列的多肽;
(b)将(a)中氨基酸序列经过一个或多个氨基酸残基的取代、 缺失或添加而形成 的, 且与载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。
在另一优选例中, 所述抗原表位肽源自 FAP催化结构域。
在另一优选例中, 所述 FAP催化结构域选自下组:
(a)具有 SEQ ID NO. : 108氨基酸序列的多肽;
(b)将 SEQ ID NO. : 108氨基酸序列经过一个或多个氨基酸残基的取代、 缺失或添 加而形成的, 且与载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。
在另一优选例中, 所述抗原表位肽源于 FAP, 并且所述抗原表位肽选自下组:
(a) SEQ ID NO.: 49所示的多肽;
(b) 将 SEQ ID NO. : 49所示的多肽经过一个或多个氨基酸残基的取代、 缺失或添 加而形成的, 且与载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。
在另一优选例中, 所述抗原表位肽源自 VEGF。
在另一优选例中, 所述抗原表位肽选自下组:
(a)具有 SEQ ID NO. : 63氨基酸序列的多肽;
(b)将 SEQ ID NO. : 63氨基酸序列经过一个或多个氨基酸残基的取代、 缺失或添加 而形成的, 且与载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。
在另一优选例中, 所述抗原表位肽源自 PDL1。
在另一优选例中, 所述抗原表位肽源自 PDL1E。
在另一优选例中, 所述抗原表位肽源自 PDL1 , 并且所述抗原表位肽选自下组:
(a)具有 SEQ ID NO. : 67、 SEQ ID NO. : 68、 SEQ ID NO. : 122、 SEQ ID NO. : 123、 SEQ ID NO. : 124或 SEQ ID NO. : 125氨基酸序列的多肽;
(b)将(a)中氨基酸序列经过一个或多个氨基酸残基的取代、 缺失或添加而形成 的, 且与载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。
在另一优选例中, 所述抗原表位肽源自表皮生长因子受体 EGFR。
在另一优选例中, 所述抗原表位肽源自表皮生长因子受体 EGFR的第 III亚区。 在另一优选例中,所述抗原表位肽源自表皮生长因子受体 EGFR,并且所述抗原表位 肽选自下组:
(a)具有 SEQ ID NO. : 83、 110、 111所示氨基酸序列的多肽;
(b)将(a)中多肽经过一个或多个氨基酸残基的取代、 缺失或添加而形成的, 且与 载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。 在另一优选例中, 所述抗原表位肽源自表皮生长因子受体 EGFR, 并且包括 SEQ ID NO. : 83所示的氨基酸序列, 和
SEQ ID NO. : 110和 SEQ ID NO. : 111中的至少一种。 本发明的第十方面, 提供一种融合蛋白, 所述融合蛋白是如本发明第九方面的 抗原表位肽与载体蛋白融合所形成的。
在另一优选例中, 所述载体蛋白与所述抗原肽段不是来自同一个蛋白, 所述载 体蛋白包含至少一个 T细胞表位, 所述载体蛋白可以增强所述表位肽的免疫原性。
在另一优选例中, 所述载体蛋白包括白喉毒素 DT、 白喉毒素的跨膜结构域 DTT、 轮状病毒 VP7、 利什曼原虫的热休克蛋白、 空肠弯曲菌鞭毛蛋白、 沙眼衣原体主要外膜 蛋白、 血蓝蛋白 (Keyhole Limpet Hemocyanin , KLH)、 牛血清白蛋白 (Bovine Serum Albumin, BSA), 鸡卵白蛋白 (Ovalbumin, OVA), 纤维蛋白原。
在另一优选例中, 在所述载体蛋白的至少一个分子表面氨基酸残基区通过拼接、 替 换和 /或插入引入所述抗原表位肽形成所述融合蛋白。
在另一优选例中, 所述 "分子表面氨基酸残基区"包括 loop区、 beta-tum区、 N末端 或 C末端。
在另一优选例中, 所述抗原表位肽连接于所述载体蛋白的 C末端和 /或 N末端形成所 述融合蛋白。
在另一优选例中, 所述抗原表位和所述载体蛋白之间具有连接肽。 优选地, 所述连 接肽长度为 3-30个氨基酸。 更优选地, 所述连接肽长度为 4-20个氨基酸。 最优选地, 所述 连接肽长度为 7-17个氨基酸。
在另一优选例中, 所述抗原表位和所述载体蛋白之间不具有连接肽。
在另一优选例中, 所述融合蛋白选自:
(a)具有 SEQ ID NO. : 9、 11、 13、 35、 37、 39、 42、 43、 44、 50、 51、 62、 69、 70、 84、 85、 86、 87、 112、 119、 120、 126或 127所示氨基酸序列的多肽;
(b)将(a)中多肽经过一个或多个氨基酸残基的取代、 缺失或添加而形成的, 且与 载体蛋白融合后具有诱发免疫反应功能的由(a)衍生的多肽。 应理解, 在本发明范围内中, 本发明的上述各技术特征和在下文(如实施例)中 具体描述的各技术特征之间都可以互相组合, 从而构成新的或优选的技术方案。 限于 篇幅, 在此不再一一累述。 附图说明
图 1显示了实施例中基于重叠 PCR的扩增原理图。
图 2显示了实施例 1中 mTNF疫苗抑制发病的效果。 图 2A显示了免疫后 TNF28相对于
DT抗血清针对小鼠和人的 TNF蛋白的蛋白杂交实验。 图 2B显示每组老鼠免疫与发病期 间的平均发病分数,可以看到 mTNF28组相对于对照组 Alum在发病率上表现出明显的滞 后和减轻炎症的治疗作用。 图 2C显示各融合蛋白的生物活性。 图 2D显示每组老鼠免疫 与发病期间的平均发病分数, 可以看到 DTT-mTNFt组相对于对照组在发病分数上有明 显抑制发病的效果。
图 3显示了实施例 2中 mTNF28-l抗原蛋白的引发免疫反应的效果。 图 3A显示 mTNF28-l第四次加强免疫之后 60天取小鼠的血来做抗体分型,发现针对 I gG 1的滴度还 有 10000以上。 图 3B显示了每组老鼠免疫与发病期间的平均发病分数, 可以看到 mTNF28-l组相对于对照组在发病分数上有明显抑制发病的效果。
图 4显示了实施例 3中 FXI疫苗的抗血栓效果。 图 4A显示各组抗原免疫后小鼠在致 死肺栓塞模型中的存活率。图 4B显示从注射人胎盘浸出液到小鼠开始出现呼吸困难的 时间。 图 4C和图 4D显示 29号抗原免疫后小鼠血栓的形态 (C) 和湿重 (D) 。
图 5 显示了实施例 3中 FXI疫苗免疫小鼠的抗体延长了正常人血浆 APTT值 (A) 及 FXI ( B) 特异的血浆 APTT值。
图 6 显示了实施例 4中 FXI I疫苗免疫后小鼠血栓的形态 (A) 和湿重 (B ) 。
图 7显示了实施例 5中融合疫苗 DTT-FAP对肿瘤生长的抑制效果。 图 7A为肿瘤接种 后小鼠的存活率。 图 7B显示了肿瘤体积的变化趋势。 图 7C显示接种 4周后肿瘤的大小。
图 8显示了实施例 6中 DTT-VEGF免疫后可以显著延长荷瘤小鼠的生存时间。
图 9显示了实施例 6中不同实验组肿瘤周围血管状况、 瘤体内部病理形态、 肿瘤 重量和肿瘤体积的变化趋势。
图 10显示了实施例 7中 DTT-PDL1E和 DTT-PDL1E重组蛋白疫苗对肿瘤生长的抑制 效果。 图 10A显示了免疫治疗小鼠肿瘤体积变化。
图 10B、 图 10C和图 10D分别显示了实施例 7中 DTT-PDL1E和 DTT-PDL1E重组蛋白疫 苗免疫治疗小鼠肿瘤重量变化 (图 10B) 、 荷瘤小鼠的体重 (图 10C) 和肿瘤肿瘤与荷 瘤小鼠的体重比值 (图 10D ) 。 具体实施方式
本发明人经过广泛而深入的研究, 首次意外地发现, 以合适的载体蛋白的结构 骨架为基础, 在所述载体蛋白的至少一个表面氨基酸残基区处通过拼接、 替换和 /或 插入而引入来自低免疫原性蛋白的肽段, 可以制得一类新颖的重组蛋白。所述重组蛋 白不仅可有效激发机体(如哺乳动物)对所述重组蛋白的免疫应答,而且可以有效地产 生针对所述来自低免疫原性蛋白肽段的免疫反应, 包括产生抗体。在此基础上完成了 本发明。 术语
如本文所用, 术语 "载体蛋白" 指在本发明的重组蛋白中作为蛋白结构骨架的 蛋白。 通常, 所述的载体蛋白是免疫原性较强的蛋白, 例如病原体蛋白, 代表性的例 子包括(但并不限于): 病毒蛋白、 细菌蛋白、 衣原体蛋白、 支原体蛋白等。
如本文所用, 术语 "抗原表位(肽)" 指拟诱导动物产生免疫反应的其它蛋白的 一段肽, 该表位相对于载体蛋白而言的不是指载体蛋白本身能够引起免疫反应的肽 段。 通常, 抗原表位指免疫反应拟靶向的肽段, 较佳地来源于哺乳动物(如人)蛋白的 一段肽, 而不是来自所述载体蛋白。
如本文所用, 术语 .pdb专指蛋白质三级结构数据文件, 来自 Protein Data B ank(www .pdb.org);
如本文所用, 术语 DTT指白喉毒素的跨膜结构域;
如本文所用, 术语 T细胞表位是指 T细胞表位, 又称为 T细胞抗原表位, 是抗原分 子经过抗原呈递细胞中酶解加工产生的一段肽, 能够由主要组织相容性复合体(MHC) 分子结合, 呈递在细胞表面被 T细胞受体(TCR)结合, 激活 T细胞, 包括 T辅助细胞表位 等。
如本文所用, 术语 "低免疫原性蛋白" 是指单独免疫动物不能引起足够的免疫 反应的蛋白
如本文所用, 术语 "分子表面氨基酸残基区" 或 "表面氨基酸残基区" 是指位于 蛋白分子表面的氨基酸残基组成的区域, 优选地, 所述 "分子表面氨基酸残基区"包 括 loop区、 beta-tum区、 N末端或 C末端。
代表性的载体蛋白
1. 白喉毒素及其跨膜结构域
白喉毒素(diphtheria toxin, DT)是感染了 beta噬菌体的白喉棒状杆菌
(Corynebacterium diphtheriae ) 产生的外毒素, 存在于临床使用的百白破疫苗成份中。 安全性得到多年临床使用的验证, 罕见严重不良反应, 目前尚无由白喉成份引起过敏 反应的报道。
白喉毒素分子由 535个氨基酸残基构成, 空间上相对独立的催化结构域
(1-193 AAs) 、跨膜结构域 C205-378AAs)和受体结合域 C386-535AAs)组成; 跨膜结构域 和受体结合域本身无毒性, 其功能是通过细胞表面受体结合, 将催化结构域转导进入 细胞内。
白喉毒素氨基酸序列(P00588, DTX_C0RBE)如下所示:
GADDVVDSSK SFVMENFSSY HGTKPGYVDS IQKGIQKPKS GTQGNYDDDW KGFYSTDNKY
DAAGYSVDNE NPLSGKAGGV VKVTYPGLTK VLALKVDNAE TIKKELGLSL TEPLMEQVGT EEFIKRFGDG ASRVVLSLPF AEGSSSVEYI NNWEQAKALS VELEINFETR GKRGQDAMYE YMAQACAGNR VRRSVGSSLS CINLDWDVIR DKTKTKIESL KEHGPIKNKM SESPNKTVSE EKAKQYLEEF HQTALEHPEL SELKTVTGTN PVFAGANYAA WAVNVAQVID SETADNLEKT TAALSILPGI GSVMGIADGA VHHNTEEIVA QSIALSSLMV AQAIPLVGEL VDIGFAAYNF VESI INLFQV VHNSYNRPAY SPGHKTQPFL HDGYAVSWNT VEDSI IRTGF QGESGHDIKI TAENTPLPIA GVLLPTIPGK LDVNKSKTHI SVNGRKIRMR CRAIDGDVTF CRPKSPVYVG NGVHANLHVA FHRSSSEKIH SNEISSDSIG VLGYQKTVDH TKVNSKLSLF FEIKS
(SEQ ID No.: 1)
白喉毒素分子中的存在 5个 T-辅助细胞表位可被高达 80%以上的人匪 C c lass II识 另 ij。 其中,四个 T-辅助细胞表位位于白喉毒素的跨膜结构域(T区, DTT)上,分别为 DTT-Th表位 271-290 (271-PVFAGANYAAWAVNVAQVID-290) , DTT-Th表位 321-340 (321-VHHNTEEIVAQSI AL SSLMV-340) , DTT-Th 表 位 331-350 (QSIALSSLMVAQAIPLVGEL-350) , DTT-Th 表 位 351-370 (351-
VD I GFAA YNFVES 11 NLFQV-370),主要分布在三段长 α螺旋结构(276-ANYAAWAVNVA-286 ; 327-EIVAQSIALSSLMVAQAIPLV-347 ; 353 - IGFAA YN FV ESI INUWVHNSYN - 376)。 本发明人对白喉毒素的蛋白结构进行模拟,保留结构稳定需要的 α螺旋和 β折叠 元件和 Τ细胞表位, 能够被替换植入抗原表位的表面氨基酸残基区位置列于下表中。
白喉毒素(DT) 表面氨基酸残基区可植入位置汇总
表位植入位置
序号 被替代残基数
(氨基酸残基)
DT-1 6-10 5
DT-2 26-34 9
DT-3 26-43 18
DT-4 26-48 23
DT-5 68-76 9
DT-6 86-88 3
DT-7 107-112 6
DT-8 129-133 5
DT-9 169-177 9
DT-10 222-224 3
DT-1 1 232-239 8
DT-12 256-258 3
DT-13 268-271 4
DT-14 289-296 8
DT-15 317-320 4
DT-16 348-354 7
DT-17 438-440 3
DT-18 463-467 5
DT-19 495-502 8
DT-15 516-523 8 白喉毒素跨膜结构域 (DTT)本身无毒, 主要由 α螺旋元件构成核心骨架, 螺旋元件之 间由灵活性的环区连接。
DTT氨基酸序列(1F0L. pdb : 202 - 378)如下所示:
202 INLDWDVIRD KTKTKIESLK EHGPIKNKMS ESPNKTVSEE KAKQYLEEFH QTALEHPELS
262 ELKTVTGTNP VFAGANYAAW AVNVAQVIDS ETADNLEKTT AALSILPGIG SVMGIADGAV
322 HHNTEEIVAQ SIALSSLMVA QAIPLVGELV DIGFAAYNFV ESI INLFQVV HNSYNRP (SEQ ID No.: 2) 本发明人对 DTT的蛋白结构进行模拟,保留结构稳定需要的 α螺旋和 β折叠元件 和 Τ细胞表位, 能够被替换植入抗原表位的位置列于下表中。 DTT可植入抗原表位的表面氨基酸残基区汇总
通用的可植入位 优选的可植入位 优选的可替代
序号
置(氨基酸残基) 置(氨基酸残基) 残基数
DTT-1 220-226 222-224 3
DTT-2 228-241 230-239 10
DTT-3 253-262 255-260 6
DTT-4 265-276 267-274 8
DTT-5 285-298 287-296 10
DTT-6 303-312 305-310 6
DTT-7 313-327 315-325 1 1
DTT-8 315-322 317-320 4 在本发明的优选例中, 可选择药物拟干预的靶蛋白的肽段移植到 DTT上, 并替换 DTT的表面氨基酸残基区, 包括 α螺旋元件之间环区氨基酸残基。
本发明的研究表明, 白喉毒素跨膜结构与来自靶蛋白的肽段整合后, 不会或基本 上不会影响各自的折叠。 在重组蛋白中, DTT作为蛋白骨架, 靶蛋白肽段移植到 DTT 上后, 可以诱导动物产生针对所述靶蛋白的免疫反应。 因此 DTT是一种非常合适的蛋 白骨架。 组合物和施用方法
本发明还提供了一种组合物, 它含有: (i)本发明的重组蛋白或本发明的可编码重 组蛋白的多核苷酸, 以及 (ii)药学上或免疫学上可接受的赋形剂或佐剂。
本发明中,术语"含有"表示各种成分可一起应用于或存在于本发明的组合物中。 因此, 术语 "主要由. . .组成"和 "由. . .组成"包含在术语 "含有" 中。
本发明的组合物包括药物组合物和疫苗组合物。
本发明的组合物可以是单价的(仅含有一种重组蛋白或多核苷酸), 也可以是多价 的 (含有多种重组蛋白或多核苷酸)。
本发明的药物组合物或疫苗组合物可制备成各种常规剂型, 其中包括(但并不限 于): 注射剂、 粒剂、 片剂、 丸剂、 栓剂、 胶囊、 悬浮液、 喷雾剂等。
(1)药物组合物
本发明的药物组合物包含(或含有)治疗有效量的本发明重组蛋白或多核苷酸。 本文所用的术语 "治疗有效量" 指治疗剂治疗、 缓解或预防目标疾病或状况的 量, 或是表现出可检测的治疗或预防效果的量。 该效果可通过例如抗原水平来检测。 治疗效果也包括生理性症状的减少。对于某一对象的精确有效量取决于该对象的体型 和健康状况、 病症的性质和程度、 以及选择给予的治疗剂和 /或治疗剂的组合。 因此, 预先指定准确的有效量是没用的。 然而, 对于某给定的状况而言, 可以用常规实验来 确定该有效量。
为了本发明的目的, 有效的剂量为给予个体约 0. 001毫克 /千克至 1000毫克 /千 克, 较佳地约 0. 01毫克 /千克至 100毫克 /千克体重的重组蛋白。
药物组合物还可含有药学上可接受的载体。 术语 "药学上可接受的载体" 指用 于治疗剂(例如本发明的重组蛋白)给药的载体。 该术语指这样一些药剂载体: 它们本 身不诱导产生对接受该组合物的个体有害的抗体, 且给药后没有过分的毒性。合适的 载体可以是大的、 代谢缓慢的大分子, 如蛋白质、 多糖、 聚乳酸(polylactic acid)、 聚乙醇酸等。 这些载体是本领域普通技术人员所熟知的。 在 Remington ' s Pharmaceutical Sciences (Mack Pub. Co., N. J. 1991)中可找至 lj关于药学上可接受 的载体或赋形剂的充分讨论。
组合物中药学上可接受的载体可包括液体, 如水、 盐水、 甘油和乙醇。 另外, 这些载体中还可能存在辅助性的物质, 如润湿剂或乳化剂、 pH 缓冲物质等。 通常, 可将组合物制成可注射剂, 例如液体溶液或悬液; 还可制成在注射前适合配入溶液或 悬液、 液体赋形剂的的固体形式。 脂质体也包括在药学上可接受的载体的定义中。
(ii)疫苗组合物
本发明的疫苗(组合物)可以是预防性的(即预防疾病)或治疗性的(即在患病后 治疗疾病)。
这些疫苗包含免疫性抗原(包括本发明重组蛋白), 并且通常与 "药学上可接受 的载体"组合, 这些载体包括本身不诱导产生对接受该组合物的个体有害的抗体的任 何载体。 合适的载体通常是大的、 代谢缓慢的大分子, 如蛋白质、 多糖、 聚乳酸、 聚 乙醇酸、 氨基酸聚合物、 氨基酸共聚物、 脂质凝集物(如油滴或脂质体)等。 这些载体 是本领域普通技术人员所熟知的。 另外, 这些载体可起免疫剌激剂( "佐剂" )作用。 另外, 抗原也可以和细菌类毒素(如白喉、 破伤风、 霍乱、 幽门螺杆菌等病原体的类 毒素)偶联。
增强免疫组合物效果的优选佐剂包括但不限于: (1)铝盐(alum) , 如氢氧化铝、 磷酸铝、硫酸铝等;(2)水包油型乳剂配方,例如,(a) MF59 (参见 W0 90/14837), (b) SAF, 禾口(c) Ribi™佐剂系统(RAS) (Ribi Immunochem , Hami lton , MT), (3)皂素佐剂; (4) Freund完全佐剂(CFA)和 Freund不完全佐剂(IFA) ; (5)细胞因子, 如白介素(如 IL-1、 IL-2、 IL-4、 IL_5、 IL_6、 IL_7、 IL-12等)、 干扰素(如 γ干扰素)、 巨噬细胞 集落剌激因子 (M-CFS)、 肿瘤坏死因子(TNF)等; (6)细菌 ADP-核糖基化毒素(如大肠 杆菌热不稳定毒素 LT)的脱毒变异体; 以及(7)作为免疫剌激剂来增强组合物效果的 其它物质。
包括免疫原性组合物在内的疫苗组合物(例如, 可包括抗原、 药学上可接受的载 体以及佐剂), 通常含有稀释剂, 如水, 盐水, 甘油, 乙醇等。 另外, 辅助性物质, 如润湿剂或乳化剂、 PH缓冲物质等可存在于这类运载体中。
更具体地, 包括免疫原性组合物在内的疫苗, 包含免疫学有效量的免疫原性多 肽, 以及上述其它所需的组分。 "免疫学有效量"指以单剂或连续剂一部分给予个体 的量对治疗或预防是有效的。 该用量可根据所治疗个体的健康状况和生理状况、所治 疗个体的类别(如人)、个体免疫系统合成抗体的能力、所需的保护程度、疫苗的配制、 治疗医师对医疗状况的评估、及其它的相关因素而定。预计该用量将在相对较宽的范 围内, 可通过常规实验来确定。
通常, 可将疫苗组合物或免疫原性组合物制成可注射剂, 例如液体溶液或悬液; 还可制成在注射前适合配入溶液或悬液、 液体赋形剂的固体形式。 该制剂还可乳化或 包封在脂质体中, 以增强佐剂效果。
此外, 本发明的疫苗组合物可以是单价的或多价疫苗。
(i ii)给药途径和剂量
一旦配成本发明的组合物, 可将其直接给予对象。 待治疗的对象可以是哺乳动 物, 尤其是人。
当用作疫苗时,可用已知的方法将本发明的重组蛋白直接施用于个体。通常采用与 常规疫苗相同的施用途径和 /或模拟病原体感染路径施用这些疫苗。
给予本发明药物组合物或疫苗组合物的途径包括 (但并不限于):肌内、皮下、皮内、 肺内、 静脉内、 经鼻、 经口服或其它肠胃外给药途径。 如果需要, 可以组合给药途径, 或根据疾病情况进行调节。 疫苗组合物可以单剂量或多剂量给予, 且可以包括给予加强 剂量以引发和 /或维持免疫力。
应以 "有效量"给予重组蛋白疫苗, 即重组蛋白的量在所选用的给药路径中足以引 发免疫应答, 能有效促使保护宿主抵抗相关的疾病。
代表性的疾病包括 (但并不限于): 自身免疫性疾病、 肿瘤等。
在各疫苗剂份中所选用的重组蛋白的量,是按可引发免疫保护性应答而无明显的副 作用的量而定。 通常, 在感染宿主细胞后, 各剂的疫苗足以含有约 l g-1000mg, 较佳 地为 1 μ g-100mg, 更佳地 10 μ g_50mg蛋白质。 可用包括观察对象中的抗体滴定度和其 它反应的标准研究方法来确定具体疫苗的最佳用量。可通过监控疫苗提供的免疫力水平 来确定是否需要增强剂量。 在评估了血清中的抗体滴定度后, 可能需要选用增强剂量免 疫接种。 施用佐剂和 /或免疫剌激剂就可提高对本发明的蛋白质的免疫应答。
优选方法是从肠胃外(皮下或肌内)途径通过注射给予免疫原性组合物。
此外, 本发明的疫苗可以结合其它免疫调节剂一起给予, 或者与其他治疗剂一 起给予。 本发明的主要优点在于:
(1) 可有效激发机体针对低免疫原性靶点的特定表位免疫反应。
(2) 携带抗原表位的重组蛋白的制备成本低, 给药方便。
(3) 相对于与载体蛋白化学偶联的制剂, 抗原结构确切、 质量可控, 更安全。 下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明本发明而 不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件, 例如 Sambrook等人, 分子克隆: 实验室手册 (New York : Cold Spring Harbor Laboratory Press, 1989)中所述的条件, 或按照制造厂商所建议的条件。 除非另外说明, 否则百分比 和份数是重量百分比和重量份数。 实验方法:
方法 1 重组蛋白抗原结构设计
单表位重组蛋白抗原结构设计用靶蛋白的抗原表位肽氨基酸序列移植到 DTT 的表位 展示位置并替换原位置氨基酸残基完成,形成新蛋白结构;多表位重组蛋白抗原结构设计 将靶蛋白的多抗原表位肽段或结构域插入 DTT的 C末端, 或通过一段 l inker插入到 DTT 的 C末端完成, 形成新蛋白结构。 方法 2重组蛋白的表达载体构建
根据 GeneBank中 DTT基因 mRNA和靶蛋白基因 mRNA的开放阅读框的抗原表位区序列, 设计 DTT基因引物 (DTT-F和 DTT-R) 和靶蛋白基因引物, 通过重叠 PCR的原理在 DTT相 应的表位展示位置引入抗原表位区序列, 并在头尾引入酶切位点 BamHI和 XhoI, 引入 3 个保护碱基 (图 1 )。 各引物由南京金斯瑞生物科技有限公司合成。
( 1 )抗原表位从 DTT中间插入 /替换的重组蛋白表达载体构建: 以 DTT基因 DNA为模 板, 取引物 DTT-F (含 BanR I 酶切位点和) 和靶蛋白 _2R进行第一轮 PCR扩增; 同时以 DTT基因 DNA为模板,取引物用引物 DTT-R (含 Xhol酶切位点)和靶蛋白 -3F进行 PCR扩增; 以上两种扩增产物混合后, 取引物 DTT-F和 DTT-R进行 PCR扩增重组蛋白基因。
( 2 )抗原表位从 DTT的 C末端插入 /替换的重组蛋白表达载体构建: 以 DTT基因 DNA 为模板, 引物对 DTT-F (含 BanR I 酶切位点和肠激酶切位点 DDDDK的序列) 进行第一轮 PCR扩增; 再以靶蛋白基因引物对 (反向引物含 ¾o I 酶切位点序列) PCR扩增靶蛋白抗 原表位基因; 以上两种扩增产物混合后以引物对 DTT-F和靶蛋白基因反向引物进行 PCR 扩增重组蛋白基因。
重组蛋白基因用 BaiM I 和 Xho I 酶切连接到质粒 pGEX 6p-l 达到表达质粒 pGEX-DTT-靶蛋白抗原表位, 通过测序确认正确性。
PCR体系配制后, 94° C变性 2 min; 94° C 15s , 55° C 30s, 68° C 2 min, 35个 循环; 68° C 10 min。 取 2μί扩增产物进行电泳, Goldview染色观察后出现目的带。 PCR 产物和 pEGX-6P-l载体双酶切的回收纯化, 用 AXYGEN凝胶清洁试剂盒清洁后。 在 PCR仪 上采用 T4连接酶连接进行连接反应 16° C 5 h。 连接产物热激转化大肠杆菌, 将 5 uL的 连接产物加入感受态细胞中轻轻混匀,冰浴 20 min再转入 42° C水浴 90s,再冰浴 2 min, 加 900 μ L 37° C预热 LB培养基, 于 37° C摇床 150rpm复苏 lh, 取 200 μ L涂布于含 有 Amp抗菌素 LB平板, 37° C培养 20 h, 进步一鉴定筛选转化子。 提取的载体质粒用头 尾引物 PCR扩增后经鉴定的阳性克隆加入终浓度为 15%的无菌甘油,于 -80° C超低温冰箱 保存备用,为含有重组蛋白表达质粒的大肠杆菌菌种。阳性克隆通过测序与理论序列比较 判断是否连接成功。
表 1 DTT基因 C端插入表位的通用引物表
Figure imgf000017_0001
方法 3重组蛋白的表达鉴定与规模制备 将含有重组表达质粒蛋白的大肠杆菌单菌落接种到 5mL LB培养基, 37° C培养过夜。 然后以 1 : 50稀释到含有 50ng/L Amp, LB培养基 50mL中, 培养约 4小时使其 0D6。。值约 为 0. 6, 加 IPTG至终浓度为 lmM, 在 37° C诱导 4小时时取出鉴定表达情况。 取 50 mL 诱导的培养物,冰上放置 30 min, 12000rpm离心 8 min, 收集菌体,弃上清; 沉淀用 lxPBS ( 5mL/100mL培养物)加等体积冰冷的无菌水打散重悬; 加入 300 μ g/mL的溶菌酶, 冰上 轻摇 30 min后, 置 -70° C冻存 12h; 把样品用流动的水融化后加入蛋白酶抑制剂, 冰浴 中超声破碎(200W功率), 间歇破碎, 每破碎 5s, 间隔 5s, 反复破碎共 8min, (可在显微 镜下观察破碎结果)。 混合物在 4° C用 12,000g的转速离心 12min; 取混合、 上清、 沉淀 样品保存 4° C备用。
取混合,上清,沉淀样品分别用考马斯亮蓝法定量测定蛋白含量并稀释到一定浓度后 取 200uL加入 50uL 5 X上样 buffer, 煮沸 5min, 取出冷却后 12, 000 rpm离心 8min并加 样。 用微量进样器取 20 μ L上述混合液, 用 SDS-PAGE电泳分析诱导表达的蛋白分子量和 表达量, 判断与理论分子量一致性和表达可溶性。
挑取表达阳性的菌种,接种于 50mL选择性 Amp LB液体培养基中, 37° C, 200rpm/min 振摇过夜,第二天取 lmL接种到 1L LB液体培养基中,同样的操作一共 4瓶, 37° C, 180rpm 培养 4h后, 取一管不加 IPTG样本作为对照, 其余加入 1 mol/L IPTG于菌液中至终浓度 为 1 mM, 继续培养 10小时。 全部诱导后菌液 6000rpm离心 8 min收集菌体沉淀, 用 lmL PBS (pH = 7. 3 ) 重悬洗涤一次离心收集菌体, 加入体积 250 mL PBS (pH = 7. 3 ) 重悬后 超声破碎, 15min, 脉冲破碎后用 50 mL离心管离心, 15000rpm, 40min后, 小心取上清, 4°C存放备用。
GE 5mL GST预装柱先 lxPBS (140mM NaCl , 2. 7mM KC1, lOmM N¾HP04, 2mM KH2P04)平 衡, 流速设为 4mL/min左右,平衡 5个柱体积, 将上述处理好的蛋白上样, 流速 lmL/min; 上样结束后,用 lxPBS洗杂,流速为 4mL/min,洗脱至少 10个柱体积;之后用 lxPSP buffer 平衡柱子至少 5个体积后, 用 800 ul的 PSP酶切割流穿 GST柱子, 使其均匀充满整个柱 子, 于 4°C切割 12-16小时后用含有洗脱液 (50mM Tris-HCl , 10m GSH, pH8. 0 ) 洗脱蛋 白 2-3个柱体积, 洗脱流速为 2mL/min, 用过的柱子用 20%乙醇冲洗柱子和仪器。 之后将 蛋白透析到生理盐水中, 定量后将蛋白稀释成 0. 5mg/mL, 电泳检测纯度达到 90%以上。将 蛋白用生理盐水透析后 -20°C冰箱保存备用。 所制备的三种蛋白纯度都在 90%以上。 方法 4融合蛋白的动物免疫和抗原滴度的检测
将融合蛋白抗原稀释成 0. 5mg/mL后与稀释后浓度为 2mg/mL的氢氧化铝 (sigma) 佐 剂或弗氏佐剂混匀后背部皮下多点注射, 隔周加强免疫,如此加强免疫 2次后小鼠眼眶取 血, 37°C静置 2h后, 4000rpm离心 lOmin后, 取上清血清备用。
用包被缓冲液 (50mmol/L碳酸氢盐缓冲液, pH 9. 6 ) 将靶蛋白或靶细胞的稀释到浓 度为 lOOng/ΙΟθμΙ, 然后转移到聚苯乙烯 96孔板上 (每孔加 Ιθθμΐ ), 4°C孵育过夜, 用 PBST (0. 02 M磷酸盐, 0. 15 M NaCl, 0. 15% Tween-20, pH 7· 4)洗 6次, 每次洗 5分钟。 再加入 300μ1脱脂奶粉(溶于 PBST, 蛋白浓度为 5%), 37°C孵育 2小时进行封闭。用 PBST ( 0. 02 M磷酸盐, 0. 15 M NaCl, 0. 15% Tween-20, pH 7. 4) 洗 6次, 每次洗 5分钟。 然 后用脱脂奶粉(溶于 PBST, 蛋白浓度为 5%)将免疫血清稀释一定的倍数后每孔加 Ιθθμΐ , 37°C孵育 1小时, 用 PBST (0. 02 M磷酸盐, 0· 15 M NaCl, 0. 15% Tween-20, pH 7. 4) 洗 6次, 每次洗 5分钟。 加入 Ιθθμΐ羊抗鼠 -IgG-辣根过氧化物酶交联物 (1 : 5, 000稀释), 37°C孵育 1小时, 用 PBST (0. 02 M磷酸盐, 0· 15 M NaCl, 0. 15% Tween-20, pH 7. 4) 洗 6次,每次洗 5分钟。最后加入 Ιθθμΐ底物溶液(10ml底物溶液含 lmg四甲基联苯胺(TMB), 0. 0969g柠檬酸钠, 0. 3496g Ν¾ΗΡ04 · 12Η02, 32 μΐ 0. 75% Η202, 37°C孵育 30分钟。 加 入 50μ1 2mol/L H2S04终止反应。 在酶标仪上对每个孔测 450nm处的值。 实验 5 小鼠胶原模型的构建
当小鼠 3次免疫之后, 开始造类风湿关节炎模型, 具体操作过程: 第 42天将牛的 II 型胶原(2mg/mL)与 CFA(内含 lmg/mL的 M. tuberculosis)l: 1冰上背部多点注射共 200uL; 第 63次将牛的 II型胶原(4mg/mL) 与 CFA (内含 lmg/mL的 M. tuberculosis) 1: 1比例, 低温冰上用枪头吹打乳化 (以滴一滴在清水上, 不立即散开为乳化好的标准), 在距离小 鼠尾根部 1. 5cm处注射 50uL; 第 70天将牛的 II型胶原(4mg/mL) 与 CFA (内含 lmg/mL的 M. tuberculosis, 且每 ml CFA中新力口入 3mg的 M. tuberculosis) 1 : 1比例, 低温冰上 乳化后在距离小鼠尾根部 1. 5cm处注射 50uL。 以后每周两次来检测老鼠的体重和发病情 况并做好记录。
评分标准: 用 4分制评判小鼠的发病程度: 0分: 无红肿和肿胀的证据; 1分: 红斑 和轻度肿胀局限于足中段(跗骨) 或 踝关节 (一个脚趾有轻微红肿); 2分: 红斑和轻度 肿胀从踝关节蔓延至足中段 (有 2个或者 2个以上的脚趾红肿); 3分: 红斑和中度肿胀 从踝关节蔓延至跖关节 (踝关节或髋关节红肿); 4 分: 红斑和重度肿胀包括了踝, 足和 趾(所有的关节和脚趾均红肿, 不能弯曲)。 所有的四肢均单独计分, 故最高分为 16分。 方法 6 Western鉴定
原始样品一般上样量为 20-30ug以初始电压为 45V时的电流强度进行稳流电泳,当电 压达 65V时改为稳压电泳,在目的蛋白泳动至距胶下缘 1cm以上结束。 将胶浸于转移缓冲 液中平衡 lOmin。 依据胶的大小剪取膜和滤纸 6片, 放入转移缓冲液中平衡 lOmin。 如 用 PVDF膜需用纯甲醇浸泡饱和 3-5秒钟。 装配转移三明治: 海绵 3层滤纸胶膜 3层滤纸 海绵, 每层放好后, 用试管赶去气泡。 将转移槽置于冰浴中, 放入三明治(黑色面对黑色 面), 加转移缓冲液, 插上电极, 10mA过夜或者 100V, lh。 (注意调整时间)转膜结束后, 切断电源, 取出杂交膜。
将膜从电转槽中取出, 去离子水与 TTBS稍加漂洗, 浸没于封闭液中缓慢摇荡 lh。 将 稀释好的一抗装入 10mL的或者 50mL的进口离心管。将 Western膜从封闭液中取出,滤纸 贴角稍吸干, 正面朝下贴在一抗上, 4°C静置过夜(正面上下用铅笔做好标记)。一抗孵育 结束后, 用 TTBS漂洗膜后再浸洗三次, 每次 10min。 根据一抗来源选择合适的二抗, 根 据鉴定方法选择 HRP标记的抗体, 按相应比例稀释 (1 : 5000), 室温轻摇 lh。 二抗孵育结 束后, 用 TTBS漂洗膜后再浸洗三次, 每次 10min。 将 A、 B发光液按比例稀释混合。 膜用 去离子水稍加漂洗, 滤纸贴角吸干, 反贴法覆于 A、 B混合液滴上, 置于保鲜膜内固定于 片盒中, 迅速盖上胶片, 关闭胶盒, 调节曝光强度。 方法 7 T细胞增殖实验
50ml离心管 8只, 洗净, 灭菌; 15 ml 离心管 16只, 洗净, 灭菌。 无菌细胞筛网 8 只, 300 ml 75%酒精, 灭菌镊子两把, 小剪刀两把, 灭菌 PBS, RPM1640+20%FCS, 各一瓶。 6孔培养板两只, 10ml—次性注射器 8个。 小鼠脱颈处死后, 放入 75%乙醇中浸泡 15分 钟, 浸泡期间, 取出淋巴细胞分离液室温平衡, 超净台内取出灭菌的剪刀镊子, 用酒精棉 擦拭后摆放在 10cm细胞培养皿中, 准备好 6孔板, 将滤器套在 50ml离心管上。
将浸泡好的小鼠仰卧尾朝外平放在平皿中, 从右侧腹股沟上方一厘米剪开腹腔, 用小 镊子拨开肝脏后小心拉出脾脏, 放在 6孔板的孔中, 孔中预先加入 2 ml PBS; 用注射器 的活塞柄头小心的压碎脾脏,并进行旋转研磨至完全散开。将得到的细胞悬液小心的吸到 离心管上的滤器中, 至细胞悬液全部滤过, 加 lml PBS冲洗下板孔并吸出冲洗滤网一次; 准备好 15ml离心管,预先加入 3ml淋巴细胞分离液,按照说明书进行操作分离淋巴细胞; 细胞沉淀用 PBS再清洗一次,用含有 10%FCS 1640将细胞调整至 5 X 107ml, 按照每孔 100 μ L铺板, 每孔加终浓度为 10 μ g/ml抗原剌激, 5% C02 37度培养 72小时; 加入 10 μ L ΜΤΤ 继续培养 4小时, 吸弃培养上清及悬浮的细胞; 加入 100 二甲亚砜, 室温震荡 溶解蓝色沉淀; 550 nm、 630 nm读取吸光值, 以 0D57。_0D63。作为最终数值, 判断每孔的活 细胞数目。 用抗原剌激组-空白对照组数值作为细胞增殖活性。 方法 8 CTL杀伤实验
CFSE staining buffer 禾 P 7AAD staining buffer 按照 7AAD/CFSE Cel l-mediated cytotoxicity Assay kit (Abnova, US) 说明书准备。
标记靶细胞: 肿瘤细胞用胰酶消化后, 1000 rpm 5 min 离心弃上清; 加入 3 ml Cel l-Based Assay Buffer 重悬, 计数后 1000 rpm 5 min离心弃上清; 按照 106cel ls/ml 用 CFSE staining buffer重悬, 对照细胞用同体积 Cel l-Based Assay Buffer 重悬, 室温避光孵育 15min; 1000 rpm 5 min离心弃上清,细胞按照 106cel ls/ml用含 10%FBS+1640 重悬; 1000 rpm 5 min离心弃上清,细胞按照 106cel ls/ml用含 10%FBS+1640重悬。 放置 细胞培养箱中培养 30min-l小时备用; 按照 T细胞增殖实验中的方法分离脾脏淋巴细胞, 按照 107cel ls/ml铺 6孔板,每孔 2 ml ;加入终浓度为 10 μ g/ml抗原肽和 10 unit/ml IL-2 剌激, 5% C02, 37度培养 5天后备用。
检测: 将标记好的靶细胞按照 104 cel ls/wel l铺 96孔板中。 剌激好的效应细胞按照 效靶比 10 : 1, 20 : 1, 50 : 1 加入到靶细胞中, 并补足培养基至每孔总体积为 200 μ L, 5% C02 37度孵育 6小时。 400g/5min收集细胞沉淀,每管加入 50ul 7-AAD Staining Solution, 重悬细胞。 4度避光孵育 15min; 400g/5min 收集细胞; 加入 0. 2ml Assay Buffer重悬, 400g/5min收集细胞; 加入 0. 2ml Assay Buffer重悬,上流式检测,记录数据;收集 20000 个细胞。 计算双阳性细( CFSE+7AAD+)占 CFSE阳性细胞 (CFSE+)的百分比作为最终的杀伤 率。 方法 9 肿瘤细胞培养与小鼠移植癌症模型的建立与免疫治疗效果评价
细胞与肿瘤接种: 材料包括 DMEM培养基、 1640培养基、 胎牛血清、 抗生素、 胰蛋 白酶、 均购自 Invitrogen公司, PBS (参考 Takara说明书配制)。 Binder细胞培养箱、 飞鸽离心机、 万和金属水浴锅。
肿瘤细胞培养与移植: CT26、 B16 F10、 Lewis 等肿瘤细胞均购自中科院上海细胞 库, 根据不同肿瘤细胞特性常规传代培养, 5 % C02培养箱,37 °C培养。 当细胞融合度达 到 90%时,经 0. 25 %胰酶消化, 收集细胞于无血清的培养液中,轻轻摇动, 500g,离心 5min, 洗涤一次, PBS重悬, 调整浓度为 106, 经台盼蓝染色, 并用血球计数板计数, 检测活细 胞比例在 95 %以上。 根据实验要求, 实体瘤接种在前肢腋下 105-106个 /只。
表观效果评价: 肿瘤接种 7天左右 (不同类型肿瘤略有差异) 隔天游标卡尺测定肿 瘤长和宽, 利用肿瘤体积计算公式: Tumor V0lume=Width2Jength^ /2。 肿瘤体积大于 2000讓3或 3000讓3 (不同类型肿瘤略有差异)理论上判断小鼠死亡, 统计存活情况, 制定 生存曲线。 在接种肿瘤 (20-30 天) 剖杀小鼠, 称量瘤重, 根据公式: 抑制率 = (对照组 平均肿瘤重量-实验平均组肿瘤重量) /对照组平均肿瘤重量 J00%。 小鼠在分组前和剖杀 前, 电子天平称量小鼠体重并记录, 计算瘤重体重比。 实施例 1 靶向 TNF-α的重组蛋白疫苗
抗 TNF-oc单克隆抗体药物在临床治疗类风湿关节炎领域获得了巨大成功,但是抗体药 物用药剂量大、使用频繁、用药成本高阻碍了更大范围的使用惠及更多患者。本实施例开 发了预防和治疗类风湿关节炎的靶向 TNF-oc的重组蛋白疫苗。
步骤 1 抗原结构设计
将表中 mTNF抗原表位序列移植替换到 DTT被替换的位置处构成, 组成相应的抗原依 次为 mTNF28、 mTNF31、 mTNF37、 mTNF25、 DTT_mTNFt、 DTT_hTNFt。 将 TNF分子的 87位酪 氨酸 Y突变为组氨酸 Η、 145位丙氨酸 Α突变为精氨酸 R得到 TNF-生物活性极低的突变体 mTNFt 和 hTNFt ( t 为定点突变), 移植到 DTT 的 C 末端构成重组抗原 DTT_mTNFt 和 DTT-mTNFt。 本实施例中所用的其余重组抗原的结构移植信息参见表 2。
TNF重组抗原设计
Figure imgf000021_0002
-mTNFt (A145R/Y87H) 抗原蛋白氨基酸序列:
Figure imgf000021_0001
EKGDQLSAEVNLPKYLDFRESGQVYFGVIAL(SEQ ID NO. :9)
Figure imgf000022_0001
VYFGVIAL (SEQ ID NO. :10) - hTNFt (A145R/Y87H) 抗原蛋白氨基酸序列:
Figure imgf000022_0002
LEKGDRLSAEINRPDYLDFRESGQVYFGI IAL (SEQ ID NO. :11)
Figure imgf000022_0003
QVYFGIIAL(SEQ ID NO. :12)
Figure imgf000022_0004
GELVDIGFAAYNFVESI INLFQVVHNSYNRP (SEQ ID NO. :13)
Figure imgf000022_0005
mTNF28的抗原蛋白的核酸序列如 SEQ ID NO. :121。 步骤 2重组蛋白的表达纯化及免疫原性观察
按照方法 2操作, 用表 3 TNF重组抗原基因引物分别构建各抗原的表达质粒, 测序 证明正确。
DTT- mTNFt (A145R/Y87H)抗原蛋白基因序列请见 SEQ ID NO. :14。
DTT- hTNFt (A145R/Y87H)抗原蛋白基因序列请见 SEQ ID NO. :15。
mTNF32抗原蛋白基因序列请见 SEQ ID NO. :16。 mTNF31抗原蛋白基因序列请见 SEQ ID NO. : 17。 表 3 TNF重组抗原基因引物
抗原名
引物名称 引物序列
CGCGGATCCCTGGAAGTTCTGTTCCAGGGGCCCATAAATCTTGATTGGGATGTC
DTT-F
DTT3 (SEQ ID NO.: 18)
DTT-R CCGCTCGAGCTAGGGACGATTATACGAATTATG (SEQ ID NO. : 19) mT80- 96下
GAAAAGACAACTGCTGCTC (SEQ ID NO. : 20)
半段正 -P2
mT80- 96下
TCAACCTCCTCTCTGCCGAAAAGACAACTGCTGCTC (SEQ ID NO. : 21) 正向 -P4
mTNF28
mT80-96上 TCCTGGTATGAGATAGCAAATCGGCTGACAGCTGTTTCGCTATCGATAACTT (SEQ 反向 -P3 ID NO. : 22)
mT80-96上
AGCTGTTTCGCTATCGATAACTTGC (SEQ ID NO. : 23) 半段反 -PI
mT142- 150
下半段正向 GGTAGCGTAATGGGCATTGCAGAC (SEQ ID NO. : 24) -P2
mT142- 150 TTAGACTTTGCGGAGTCCGGGCAGGTCGGTAGCGTAATGGGCATTGCAG (SEQ ID 下正向 -P4 NO. : 25)
mTNF31
mT142- 150 GACCTGCCCGGACTCCGCAAAGTCTAAAAGAGCAGCAGTTGTCTTTTCCAAATT (SEQ 上反向 -P3 ID NO. : 26)
mT142- 150
上半段反向 AAGAGCAGCAGTTGTCTTTTCC (SEQ ID NO. : 27)
-PI
mT28-35下
半段正向 GAAAAGACAACTGCTGCTCTTTCGATACT (SEQ ID NO. : 28)
-P2
mT28-35下 TGGCTGAGCCAGCGCGCCAACGCCGAAAAGACAACTGCTGCTCTTTCGATACT (SEQ mTNF37 正向 -P4 ID NO. : 29)
mT28-35上 GGCGTTGGCGCGCTGGCTCAGCCAATCGATAACTTGCGCAACGTTT (SEQ ID 反向 -P3 NO. : 30)
mT28-35上
ATCGATAACTTGCGCAACGT (SEQ ID NO. : 31)
半段反 -PI
上半段反 CACTAGTTGGTTGTCTTTGAGATCCATGCCAGCTGTTTCGCTATCG (SEQ ID -PI NO. : 32)
mTNF25
下半段正 GGATCTCAAAGACAACCAACTAGTGGTGGAAAAGACAACTGCTGCTC (SEQ ID
-P2 NO. : 33) 重组蛋白抗原的表达纯化按照方法 3操作, 制备出纯度达到 90%_95%的重组抗原。 小 鼠免疫操作按照方法 4, 包被抗原用 mTNF, 最终 ELISA结果显示, 抗血清稀释 100倍后, TNF28针对 mTNF的 0D45。平均值为 0· 33, mTNF31针对 mTNF的 0D45。平均值为 0· 09, mTNF37 针对 mTNF的 0D45。平均值为 0· 11,而 Alum针对 mTNF为 0D45。平均值 0. 05, TNF28比对照的 Alum组产生针对 mTNF的抗体比 mTNF31、 mTNF37都要好。 免疫之后血清 western结果显 示 TNF28组对比 DTT组(单用 DTT免疫的小鼠血清)有明显的抗体条带, 并且人 TNF条带 比小鼠 TNF条带反应信号更强 (图 2A) 。
步骤 3 蛋白突变之后的生物活性测定
取对数生长期的 L292细胞(25cm2培养瓶培养 2d),倒掉培养液后用 lxPBS洗涤两次, 吸净 lxPBS后加入 0. 7mL 消化液 37°C消化 3min, 1000rpm/min离心 4min, 吸去消化液, 用 5mL的 1640培养液洗涤细胞 2次,以去除胰酶。用 1640培养液调整细胞浓度至 2xl07ml, 取 96孔细胞培养板, 每孔中加 0. lml L929细胞悬浮液, 在 C02培养箱中培养过夜或 24 小时, 待细胞贴满板壁 95%以上时, 方可加样。 用 AcD-1640培养基根据情况 10倍系列稀 释待测 TNF, 每孔加入稀释物 100uL, 每个稀释度 3个重复孔, 在 C02培养箱中培养 20h, 直接于每孔加入 20uL MTT (碧云天), 37°C下孵育 4h, 用酶标仪检测波长 450nm, 参考波 长 600-650nm, 测各孔 0D 值。 杀伤率计算公式: (对照组 0D45。-实验组 0D45。) /对照组 0D45。x l00%。 最大杀伤浓度从 0. 2ng/ml降低到 100000以上(已经做到的最大浓度), 定点 突变后, 重组蛋白的活性下降了 100000倍以上 (图 2C)。
步骤 4胶原诱导小鼠关节炎模型的观察
按照方法 5 中的步骤构建胶原诱导的小鼠关节炎模型。 针对靶抗原 mTNF28, mTNF31, mTNF37,利用改造后的表位移植蛋白 mTNF28在小鼠关节炎动物模型上相对于 Alum 对照组, 在发病分数上从 60-120天期间低 3-4分, mTNF31和 mTNF37组只相差 1_2分, mTNF28显示出由于 mTNF31和 mTNF37的治疗效果 (图 2B)。 利用定点突变后的融合蛋白 DTT-mTNFt在小鼠关节炎动物模型上相对于 Alum对照组如图 2D, 在发病分数上从 20-32 天期间低 5-6分。 DTT-mTNFt相对于 Alum对照组在发病分数上有明显抑制发病的效果。 实施例 2 TNF80-96表位疫苗的优化
步骤 1 抗原结构设计
从实施例 1中可以看出带有 TNF80-96表位的 mTNF28效果较好,因此本实施例中对该 表位进行改进。采用与实施例 1相同的方法,不同点在于采用下表所示的蛋白表位和替换 的位置构建 mTNF21、 mTNF26、 mTNF28、 mTNF30、 mTNF32、 mTNF28_l、 mTNF29系列重组蛋 白。
表 4 表位和替换的位置
Figure imgf000024_0001
mTNF32 80-96 291-297 VSRFAISYQEKVNLLSA
VSRFAISYQEKVNLLSAV (S mTNF28-l 80-97 290-297
EQ ID NO. : 34)
mTNF29 80-96 c VSRFAISYQEKVNLLSA
hTNF上 90-96氨基酸序列为:
ISRIAVSYQTKVNLLSA (SEQ ID NO. : 117)
hTNF上 90-97氨基酸序列为:
ISRIAVSYQTKVNLLSAI (SEQ ID NO. : 118) -l抗原蛋白的氨基酸序列
Figure imgf000025_0001
AQAIPLVGELVDIGFAAYNFVESI INLFQVVHNSYNRP (SEQ ID NO. : 35) hTNF28- 1抗原蛋白的基因序列请见 SEQ ID NO. : 36 -l抗原蛋白的氨基酸序列
Figure imgf000025_0002
AQAIPLVGELVDIGFAAYNFVESI INLFQVVHNSYNRP (SEQ ID NO. : 37) mTNF28-l 抗原蛋白的基因序列请见 SEQ ID NO. : 38
Figure imgf000025_0003
AQAIPLVGELVDIGFAAYNFVESI INLFQVVHNSYNRP (SEQ ID NO. : 39) 步骤 2重组蛋白的表达纯化及免疫原性观察
具体重组蛋白抗原的构建和表达纯化方法参见方法 2 3。 制备的重组蛋白纯度都在 95%以上系列重组蛋白, 4°C放置 2天和 10天后, SDS-PAGE电泳结果表明 mTNF28_l的结 构稳定性要远优于其他蛋白。 对比 mTNF28-l和 DTT圆二色谱, 结果表明两个蛋白整个结 构式一致, 蛋白核心骨架没有变化。 针对 80-96 表位进行优化所得的一系列蛋白, 通过 DSC做的 Tm值, mTNF28-l (Tm=66. 58)与 DTT (Tm=69. 85)的 Tm值比较接近,远高于 mTNF28 (Tm=61. 01 ) 的 Tm值。 虽然 mTNF28_l与 mTNF28蛋白仅差一个氨基酸, 但是 mTNF28_l 在结构稳定性上确表现出了更高的稳定性。
抗原免疫后产生的血清的滴度如方法 4操作, 包被抗原分别为 mTNF和 DTT。 第三次 加强免疫后, 产生能应答小鼠百分比 mTNF28-l为 80%, 对 mTNF蛋白的抗血清稀释 100倍 滴度后的 0D45。平均值 0. 28 mTNF32 分别为 50%和 0. 22, mTNF21和 mTNF28分别为 25%和 0. 17, 以及 25%和 0. 15; mTNF28-l抗原性最高。 免疫结果表明, mTNF28_l相比于其他的 移植表现出了更好的免疫效果。 步骤 3胶原诱导小鼠关节炎模型的观察
第 4次加强免疫之后 60天取小鼠的血来做抗体分型,结果如图 3A所示,结果表明加 强免疫之后 60天, 小鼠体内针对 mTNF的抗体类型主要为 IgGl, 并且滴度还有 10000。说 明本发明的重组蛋白引起的免疫反应能够在体内维持较长时间。按照方法 4的方法测定了 mTNF28-l 对胶原诱导小鼠关节炎模型的治疗效果, 如图 3B 发现从第 55-80 天期间, mTNF28-l治疗组相对于 Alum佐剂组和 DTT载体蛋白组对小鼠关节炎发病抑制率达 40%以 上。 实施例 3靶向凝血因子 FXI的抗血栓疫苗
FXI为参与内源凝血途径的凝血因子,近年来的文献及病理统计数据支持, FXI缺失能 帮助机体抗血栓, 但是仅造成机体轻微出血, 因此 FXI被认为是安全有效的抗血栓靶点。 本实施例构建针对凝血因子 FXI的抗血栓疫苗, 检验其免疫原性及抗血栓效果。 步骤 1 : 重组抗原的设计
本实施例用的抗原为将人 FXI 的候选表位序列移植替换到 DTT的待移植位置构建而 成。 17号抗原为将人 FXI ( 523-538aa)氨基酸序列的 TNEECQKRYRGHKITH (SEQ ID NO. : 40) 移植替换到 DTT 的 291-297 位置构成, 20 号抗原为将人 FXI ( 363_380aa ) 的 TTKIKPRIVGGTASVRGE (SEQ ID NO.: 41)氨基酸序列移植替换到 DTT的 291-297位置构成。 29 号抗原为将人 FXI ( 381-625aa) 的催化结构域移植到 DTT的 C末端构成。 具体抗原的氨基酸序列如下:
Figure imgf000026_0001
QAIPLVGELVDIGFAAYNFVESI INLFQVVHNSYNRP (SEQ ID NO. : 42)
Figure imgf000026_0002
VAQAIPLVGELVDIGFAAYNFVESI INLFQVVHNSYNRP (SEQ ID NO. : 43)
29号抗原氨基酸序列: NEVWHLVGITSWGEGCAQRERPGVYTNVVEYVDWILEKTQAV (SEQ ID NO. : 44)
人 FXI ( 381-625aa) 的催化结构域氨基酸序列:
VYTNVVEYVDWILEKTQAV (SEQ ID NO. : 45)
17号抗原蛋白的基因序列请见 SEQ ID NO. : 46。
20号抗原蛋白的基因序列请见 SEQ ID NO. : 47。
29号抗原蛋白的基因序列请见 SEQ ID NO. : 48。
步骤 2: 重组抗原载体构建, 蛋白表达鉴定及规模化制备
按方法 2构建重组抗原的基因, 通过方法 3对重组蛋白进行表达鉴定及制备。 通过 12% SDS-PAGE检测, 重组抗原 29的分子量约为 45KD, 17号抗原和 29号抗原的分子量约 为 20KD, 与理论分子量相符, 抗原纯度均为 90%以上。
步骤 3: 动物免疫和抗体滴度检测
小鼠免疫方法及抗体反应检测按照方法 4进行, 其中所用小鼠为雌性 C57BL/6J (购 自上海斯莱克), 免疫剂量为 30ng/只小鼠, 每组 8只小鼠。 第二次加强免疫后一周采血 制备血清, 通过 ELISA检测针对 FXI的抗体反应。
以人 FXI作为 ELISA包被抗原, 被 17号, 20号, 29号抗原免疫的小鼠的抗血清按 1 比 100稀释, ELISA结果 0D45。值分别为 0. 52 ±0. 11, 0. 43 ±0. 08, 2. 52 ±0. 3 (阴性血清 的值为 0. 14±0. 03),表明 17号, 20号, 29号抗原能激发小鼠产生能识别人 FXI的抗体。
以小鼠 FXI作为 ELISA包被抗原,被 29号抗原免疫的小鼠的抗血清按 1比 100稀释, ELISA结果 0D45。值为 1. 87 ±0. 5 (阴性血清的值为 0. 14±0. 03), 表明 29号抗原激发小鼠 产生的抗体能通过交叉反应识别小鼠的 FXI。 步骤 4: 免疫对小鼠凝血时间的作用
小鼠免疫方法参照及抗体反应检测参考方法 4,其中所用小鼠为雌性 C57BL/6J (购自 上海斯莱克), 免疫剂量为 30ng/只小鼠, 每组 5只小鼠。 第二次加强免疫后 14天, 小鼠 用戊巴比妥钠麻醉(100mg/kg经腹腔注射)。 沿腹中线切口, 翻开内脏暴露下腔静脉。 用 含 50ul 3. 2%枸橼酸钠的注射器抽取 450ul血液, 轻轻转动注射器使血液和抗凝剂混匀。 所有样品室温 3000g离心 15min制备不含血小板的血浆。 APTT值和 PT值在 4h内分别用 活化部分凝血活酶时间测定试剂盒(鞣花酸) (凝固法), 凝血酶原时间测定试剂盒(凝固 法) (上海太阳生物技术有限公司) 在 thromboscreen 400c (pacific hemostasis) 半自 动凝血分析仪上测定。
被 PBS, DTT, 17号抗原, 29号抗原免疫的小鼠的 APTT值分别为 25. 2 ± 1. 8s, 24. 5 ± 2. Is, 26. 7 ± 1. 8s, 30. 3 ± 2. 5s。被 PBS免疫的小鼠 APTT值与野生型小鼠的值相近(野 生型小鼠的 APTT值为 25. ls), 表明 PBS不会干扰机体内源凝血途径功能。 被 29号抗原 免疫的小鼠的 APTT值相对于 PBS组小鼠的值延长了 1. 2倍(p〈0. 05, t检验), 表明该抗 原能抑制 FXI所参与的内源凝血途径的功能。
被 PBS, DTT, 17号抗原, 29号抗原免疫的小鼠的 PT值分别为 10. 4 ± 0. 2s, 10. 6士
0. Is, 10. 2 ± 0. 2s, 11. 2 ± 0. ls。 被 17号抗原免疫的小鼠的 PT值没有显著延长, 而被 29号抗原免疫的小鼠的 PT仅轻微延长 (无临床意义), 表明所设计的重组抗原不会干扰 正常的外源凝血途径的功能。 步骤 5: 抗原对肺栓塞血栓的预防
小鼠免疫方法参照及抗体反应检测参考方法 4,其中所用小鼠为雌性 C57BL/6J (购自 上海斯莱克), 免疫剂量为 30ng/只小鼠, 每组 8只小鼠。 第二次加强免疫后 14天, 通过 致死肺栓塞模型评价各组小鼠抗血栓效果。 具体步骤如下: thromborel s (S i emens) 按 说明书要求用 10ml蒸熘水复溶。 小鼠用戊巴比妥钠按 50mg/kg腹腔注射麻醉后, 分离暴 露下腔静脉。 按 7. 5ul/g的体重将复溶后的 thromborel s在 3s内注入下腔静脉, 立刻计 时, 观察动物呼吸有无, 20分钟时动物呼吸不停止即认为动物存活。
如图 4A所示, 被 PBS, DTT, 17号, 20号, 29号抗原免疫的小鼠在第 20分钟的存活 率分别为 20%, 0%, 37. 5%, 25%, 50%, 表明 17号和 29号抗原能帮助小鼠抗肺栓塞。
小鼠免疫方法参照及抗体反应检测参考方法 4,其中所用小鼠为雌性 C57BL/6J (购自 上海斯莱克), 免疫剂量为 30ng/只小鼠, 每组 14只小鼠。 第二次加强免疫后 14天, 通 过肺栓塞模型评价 29号抗原的抗血栓效果。 小鼠用戊巴比妥钠按 50mg/kg腹腔注射麻醉 后, 分离暴露下腔静脉。 按 30ug人胎盘浸出液 /g体重的剂量从下腔静脉注射, 记录各组 小鼠开始出现呼吸困难的时间。
如图 4B所示,被 PBS, DTT及 29号抗原免疫的小鼠的发生呼吸困难的时间分别为 121 ± 21s, 118 ± 35s, 182 ± 33s, 被 29号抗原免疫的小鼠发生呼吸困难的时间延长 1. 5倍 (p<0. 01 , t检验), 表明 29号抗原能帮助小鼠抗肺栓塞。 步骤 6: 抗原对下腔静脉狭窄血栓的预防
小鼠免疫方法参照及抗体反应检测参考方法 4,其中所用小鼠为雌性 C57BL/6J (购自 上海斯莱克), 免疫剂量为 30ng/只小鼠, 每组 6只小鼠。 第二次加强免疫后 14天, 通过 下腔静脉狭窄血栓模型评价 29 号抗原的抗血栓效果。 具体步骤如下: 小鼠称重, 按 100mg/kg 体重用戊巴比妥钠麻醉, 腹部剃毛, 涂碘伏消毒。 用眼科剪小心开腹, 翻出内 脏用浸有生理盐水的纱布包好,暴露出下腔静脉,在左肾静脉支流下方分离下腔静脉和腹 主动脉, 用 6-0丝线(上海金环)将下腔静脉结扎到 30g针头上。 除去针头, 造成静脉狭 窄。在腰支流部位分离下腔静脉和腹主动脉,在结扎线下方及腰直流部位分别用两个血管 夹夹闭血管各 20s。并记录下操作时刻。将肠子有序放回腹腔, 用 5-0尼龙线(上海金环) 依次缝合肌肉和皮肤, 涂碘伏消毒后放回洁净笼子。 24h后取出栓子, 生理盐水漂洗后, 用 4%多聚甲醛固定 24h以上, 拍照。 用滤纸吸干后称湿重。
如 4C、 4D所示, 被 PBS, DTT, 29号抗原免疫的小鼠的栓子分别为 11. 2 ± 2. lmg, 8. 2 ± 4. 5mg, 4. 5 ± 2. 3mg, 被 29号抗原免疫的小鼠体内的栓子相对于对照组小鼠栓子的 重量减小 60%, 表明 29号抗原能帮助小鼠预防下腔静脉狭窄血栓。 步骤 7抗体对人血桨的 APTT值及 PT值的影响
被各抗原免疫的小鼠的血浆中的抗体用蛋白 A-sepharose介质纯化后用 BCA定量试 剂盒定量, 用 10mM PBS (pH7. 4) 稀释后, 跟人血浆 1比 1体积比混合后, 测 APTT值, PT值, 及 FXI的活性。
29号抗原激发小鼠产生的抗体能显著延长正常人血浆的 APTT值, 且该抑制效果存 在明显的量效关系 (如图 5A所示), 0. 75mg/ml终浓度的抗体能使正常人血浆的 APTT值 延长到 151s, 对照组值为 54s。 29号抗原激发小鼠产生的抗体能显著抑制人 FXI的活性, 且该抑制效果存在明显的量效关系 (如图 5B所示), 抗体(0. 75mg/ml终浓度)与正常人 血浆混合后, 抗体血浆混合物加入到乏 FXI人血浆中, 后者 APTT值延长到 121s, 对照组 值为 63s。
正常人血浆分别与被 29号抗原和 DTT激发小鼠产生的抗体孵育后测 PT值分别为 41s, 42s, 表面 29号抗原激发小鼠产生的抗体不会干扰人的正常止血所必须的外源凝血 途径的功能。
步骤 8 抗原安全性检测
通过 PT测试, 29号抗原不影响小鼠的外源凝血通路的功能, 表明这个抗原没有 出血毒副作用。 为了进一步说明抗原的安全性, 本发明检查了小鼠体表及内脏有无出 血。 通过解剖比较, 发现 DTT, 29号抗原免疫组小鼠各内脏 (心肝脾肺肾肠胃等) 上 均无异常出血点。 此外还检查了小鼠肝脏的形态色泽。 肉眼观察结果显示, 29号抗 原免疫组小鼠肝脏的形态和色泽与 DTT免疫组的小鼠无差异。 实施例 4靶向凝血因子 FXII的抗血栓疫苗
FXII为参与内源凝血途径的凝血因子, 近年来的文献及病理统计数据支持, FXII 缺失能帮助机体抗血栓, 但是机体无异常出血, 因此 FXII被认为是安全有效的抗血栓 靶点。本实施例构建针对凝血因子 FXII的抗血栓疫苗,检验其免疫原性及抗血栓效果。 步骤 1 : 重组抗原的设计
本实施例用的抗原为将人 FXII的候选表位序列移植替换到 DTT的待移植位置构 建而成。 38号抗原为将人? 11的£ ?8? 8¥(^101^ ( 79-91 ) (SEQ ID NO. : 128)氨基 酸序列移植替换到 DTT的 295-297位置构成, 48号抗原为将人 FXII的催化结构域 ( 345-596 ) 移植到 DTT的 C末端构成。 mFXII79-91位氨基酸
EGF S SIT YQHDL A(SEQ ID NO. : 131) hFXII的催化结构域 (345-596) GDRNKPGVYTDVAYYLAWIREHTVS (SEQ ID NO. :129) mFXII的催化结构域 (345-596)
GDRNKPGVYTDVANYLAWIQKHIAS (SEQ ID NO. :130)
Figure imgf000030_0001
(SEQ ID NO. :113)
Figure imgf000030_0002
LVCEDQAAERRLTLQGIISWGSGCGDRNKPGVYTDVAYYLAWIREHTVS (SEQ ID NO. :114) 编码 38号抗原的核酸序列请见 SEQ ID NO. :115。 编码 48号抗原的核酸序列请见 SEQ ID NO. :116。 步骤 2: 重组抗原载体构建, 蛋白表达鉴定及规模化制备
按方法 2构建重组抗原的基因, 通过方法 3对重组蛋白进行表达鉴定及制备。通过
12% SDS-PAGE检测,重组抗原 48的分子量约为 45KD, 38号抗原的分子量约为 20KD, 与理论分子量相符, 抗原纯度均为 90%以上。 步骤 3: 动物免疫和抗体滴度检测
小鼠免疫方法及抗体反应检测参考方法 4, 其中所用小鼠为雌性 C57BL/6J (购自 上海斯莱克) , 免疫剂量为 30ng/只小鼠, 每组 8只小鼠。 第二次加强免疫后一周采血 制备血清, 通过 ELIS A检测针对 FXII的抗体反应。
以人 FXII作为 ELISA包被抗原, 被 38号, 48号抗原免疫的小鼠的抗血清按 1比 100 稀释, 00450值分别为0.38±0.07, 1.32 ±0.51 (阴性血清的值为 0.11 ±0.03 ) , 表明 38 号, 48号抗原能激发小鼠产生能识别人 FXII的抗体。
以小鼠 FXII作为 ELISA包被抗原, 被 38号, 48号抗原免疫的小鼠的抗血清按 1比 100稀释, 00450值分别为0.11±0.04, 1.75±0.21 (阴性血清的值为 0.12 ± 0.03 ) , 表 明 48号抗原激发小鼠产生的抗体能通过交叉反应识别小鼠的 FXII。
步骤 4: 免疫对小鼠凝血时间的作用
小鼠免疫方法参照及抗体反应检测参考方法 4,无血小板的血浆制备和 APTT值和 PT值测定按照实施例 3步骤 4。
被 PBS, DTT, 38号抗原, 48号抗原免疫的小鼠的 APTT值分别为 25.2±1.8s, 24.5 ±2. Is, 31.2±3.2s, 27.1±5.1s。 被 PBS或 DTT免疫的小鼠 APTT值与野生型小鼠的值 相近 (野生型小鼠的 APTT值为 25. Is) , 表明 PBS或 DTT不会干扰机体内源凝血途径 功能。被 38号抗原免疫的小鼠的 APTT值相对于 PBS组小鼠的值延长了 1.24倍(p<0.05, t检验) , 表明该抗原能抑制 FXII所参与的内源凝血途径的功能。
被 PBS, DTT, 38号抗原, 48号抗原免疫的小鼠的 PT值分别为 10.4±0.2s, 10.6 ±0.1s, 10.1±0.5s, 10.2±0.4s。 被 PBS或 DTT免疫的小鼠 PT值与野生型小鼠的值相 近(野生型小鼠的 PT值为 10.6s),表明 PBS或 DTT不会干扰机体外源凝血途径的功能。 被 38号或 48号抗原免疫的小鼠的 PT值没有显著延长,表明所设计的重组抗原不会干扰 小鼠外源凝血途径的功能。 2.5mg华法林溶于 800ml饮用水中让小鼠自由饮用三天, 小 鼠的 PT值为 60.1±38.7s, 相对于野生型小鼠的 PT值延长了 5.7倍, 该结果表明相对于 临床上常用的抗凝药物华法林, 本专利抗原免疫不会造成机体异常出血。 步骤 5: 抗原对肺栓塞血栓的预防
小鼠免疫方法参照及抗体反应检测参考方法 4,肺栓塞血栓实验操作按照实施例 3 步骤 5。
被 PBS,DTT, 38号抗原免疫的小鼠在第 20分钟的存活率分别为 20%, 0%, 37.5%,, 表明 38号抗原能帮助小鼠抗肺栓塞。 步骤 6: 抗原对下腔静脉狭窄血栓的预防
小鼠免疫方法参照及抗体反应检测参考方法 4, 下腔静脉狭窄血栓实验按照实施 例 3步骤 6。
实验结果如图 6所示, 被 PBS, DTT, 38, 48号抗原免疫的小鼠的栓子分别为 11.2±2.1mg, 8.2±4.5mg, 4.7±2.7mg, 4.8±2.5mg, 被 38号, 48号抗原免疫的小 鼠体内的栓子相对于 PBS对照组小鼠栓子的重量分别减小 58%, 57%, 表明 38号,
48号抗原能帮助小鼠预防下腔静脉狭窄血栓。 实施例 5 以 FAP为靶点的肿瘤疫苗开发
成纤维细胞活化蛋白 (fibroblast activation protein, FAP) 是特异性表达于肿瘤 相关成纤维细胞 (carnicinoma associated fibroblasts, CAFs) 的一种膜蛋白, 其胞浆 区为一段 6个氨基酸的短肽链, 跨膜区为一段 19个氨基酸的疏水片段, 胞外区包含一个 β 螺旋区域和一个 α β 水解酶区域 (氨基酸序列 500〜760)。 FAP特异性表达于恶性上 皮肿瘤 (包括乳腺癌、 肺癌、 结肠癌等) 的基质中, 而在正常人体组织中无表达。 FAP在 肿瘤相关成纤维细胞上的表达对于形成肿瘤生长的微环境较为重要。研究表明过表达 FAP 会促进肿瘤微血管的生成并促进肿瘤生长,而敲除 FAP可以抑制肿瘤免疫逃逸,实现机体 对肿瘤的免疫应答。 此外, FAP与肿瘤抗原相比, 基因组更为稳定。 因此, 许多研究者选 取 FAP作为肿瘤治疗靶点。 FAP酶活性抑制剂在动物实验中表现出良好的抗肿瘤效果, 目 前已进入临床实验。靶向 FAP的 DNA疫苗在动物实验中激发了 CTL效应,表现出良好的抗 肿瘤效果。 因此, 本专利选取 FAP作为靶点, 开发肿瘤疫苗并研究其免疫原性及抗肿瘤效 果。 步骤 1重组抗原的设计
参照方法 1, 将人 FAP的催化结构域 (氨基酸序列 500〜760 ) 与 DTT的 C端融合, 设计了结构域疫苗 DTT-FAP。另外,参照方法 1将 FAP表位序列 239-246 (YGDEQYPR (SEQ ID NO. : 49) )替换 DTT的氨基酸序列 291-297 ( SETADNLE), 设计了单表位疫苗 DTT_4B。抗原 氨基酸序列如下: -FAP氨基酸序列
Figure imgf000032_0001
YLLIHGTADDNVHFQNSAQIAKALVNAQVDFQAMWYSDQNHGLSGLSTNHLYTHMTHFLKQCFSLSD (SEQ ID NO. : 50)
注: DDDK为肠激酶切位点, 为促进融合蛋白原核可溶表达; GGGGG 5个甘氨酸残基, 作为 1 inker。
〜760 )
Figure imgf000032_0002
AMWYSDQNHGLSGLSTNHLYTHMTHFLKQCFSLSD (SEQ ID NO. : 108)
-4B氨基酸序列
Figure imgf000032_0003
VDIGFAAYNFVESI INLFQVVHNSYNRP (SEQ ID NO. : 51)
注: 其中 YGDEQYPR为 FAP表位。 步骤 2重组抗原载体构建, 蛋白表达鉴定及规模化制备
参照方法 2, 以含 DTT 基因的 pGEX-6p-l质粒作为模板, 采用引物 1和引物 2进行 PCR获得 DTT基因。 以合成的 FAP催化结构域基因序列为模板, 采用引物 3和引物 4进行 PCR获得 FAP结构域基因。 以上述操作获得的 DTT基因和 FAP结构域基因为模板, 采用引 物 1和引物 4进行重叠 PCR, 构建 DTT-FAP融合蛋白基因序列。 类似的, 采用含 DTT基因 的 pGEX-6p-l质粒作为模板, 分别用引物 5和引物 6、 引物 7和引物 8扩增获得 DTT的上 半段基因和下半段基因, 采用引物 5和引物 7进行重叠 PCR获得 DTT-4B的基因。 经电泳 鉴定, DTT-FAP和 DTT-4B基因的大小分别为 1300 bp和 520 bp, 与理论值一致, 测序表 明融合基因序列正确。 重组蛋白序列及引物序列如下:
>DTT-FAP核酸序列请见 SEQ ID NO. :52。
>DTT-FAP引物序列
引物 序列 5' -3'
引物 1: DTT正向 CGCGGATCCGATGATGATGATAAGATAAATCTTGATTGGGATGTCATAAGG (SEQ ID
(含肠激酶切位 NO. :53)
点)
引物 2: DTT反向 ID
NO. :54)
引物 3: FAP正向 GTGGTGGl ID
NO. :55)
引物 4: FAP反向 CCGCTCGAGCTAGTCTGACAAAGAGAAACAC(SEQ ID NO. :56)
>DTT-4B核酸序列请见 SEQ ID NO. :57。
>DTT-4B引物序列
引物名称 序列 5' -3'
引物 5: DTT (正) CGCGGATCCCTGGAAGTTCTGTTCCAGGGGCCCATAAATCTTGATTGGGAT
GTC (SEQ ID NO. :58)
引物 6: DTT (反) CCGCTCGAGCTAGGGACGATTATACGAATTATG(SEQ ID NO. :59) 引物 7: 4B-1 (反) CACGCGGGTACTGTTCGTCACCGTAATCGATAACTTGCGCAACGTTTACTG
C(SEQ ID NO. :60)
引物 8: 4B-2 (正) TTACGGTGACGAACAGTACCCGCGTGATAATTTGGAAAAGACAACTGCTGC
(SEQ ID NO. :61) 将重组基因装载在 PGEX-6P-1载体中, 并通过 BL21 (DE3)进行原核表达。 参照方法 3, 进行重组蛋白表达, 经 GST-s印 harose亲和纯化, 电泳分析表明 DTT-FAP和 DTT-4B 抗原的大小分别为 51 kD和 20 kD, 与理论分子量一致, 且纯度均在 90%以上。 步骤 3动物免疫和抗体滴度检测
参照方法 4, 免疫小鼠, 其中所用小鼠为雌性 Balb/C (购自常州卡文斯), DTT-FAP 组、 DTT-4B组合对照组分别 10、 8、 8只小鼠, 采用弗氏佐剂, 免疫剂量为 30 ng抗原 / 剂。 第三次加强免疫后一周采血制备血清。
参照方法 4, 进行 ELISA检测。 以人 FAP (购自美国 R&D System) 作为包被抗原, 将 小鼠抗血清样品稀释 100倍作为一抗, ELISA测定 DTT-FAP和 DTT-4B组的 A45。值分别为 0. 55 ± 0. 3和 0. 48 ± 0. 5,而阴性血清的值为 0. 16 ± 0. 06(p<0. 01 ),表明 DTT-FAP和 DTT-4B 均能激发小鼠针对人 FAP的抗体。 将血清用样品用稀释液分别稀释 100倍、 500倍、 1000 倍、 5000倍、 10000倍、 50000倍、 1000000倍。 ELISA检测, 并做 A45。对稀释倍数的曲线 图。采用 A45。>0. 2且 P/N 2. 1时(即实验组与对照组的吸光值之比 1时)的最大稀释 倍数作为抗血清的滴度。 经测定, DTT-FAP和 DTT-4B组的滴度分别为 5000和 1000。 步骤 4抗肿瘤效果研究
参照方法 9, 第三次加强免疫后一周给小鼠接种鼠结肠癌 CT26肿瘤。 DTT-FAP组小 鼠的成瘤速度较对照组慢, 接瘤 12天后, DTT-FAP组成瘤率仅 90%, 而对照组成瘤率为 100%。肿瘤接种 7天后, 隔天用游标卡尺测定肿瘤长度和宽度, 计算肿瘤体积并绘制制定 生存曲线 (图 7B ) , 接瘤 18天后, DTT-FAP组肿瘤体积仅为对照的 53. 8% (p〈0. 01 )。 肿瘤接种 27天后, 处死小鼠, 取出肿瘤并观察拍照。 DTT-FAP组小鼠的肿瘤与 DTT组相 比, 明显偏小 (图 7C) 。 接瘤后 27天, DTT-FAP组小鼠的存活率为 80%, 而其他两组的 小鼠存活率均在 30%以下 (p〈0. 01 ) (图 7A) 。 以上结果表明, DTT-FAP疫苗具有显著 的抗肿瘤作用(。 实施例 6 以 VEGF为靶点的抗肿瘤疫苗
以 VEGF为靶点的抗肿瘤药物已经在临床上延长了众多癌症患者的生命。本专利发明 人开发了靶向 VEGF的 DTT-VEGF疫苗抗原,在小鼠肿瘤模型上证实具有显著的抗肿瘤效应。 步骤 1 DTT-VEGF抗原蛋白结构设计
按照方法 1操作,发明人选择 VEGF( 8-109 )插入 DTT( 202-378 )的 C末端组成 DTT-VEGF 抗原蛋白, 命名为 DTT-VEGF。
-VEGF抗原蛋白氨基酸序列
Figure imgf000034_0001
CGGCCNDEGLECVPTEESNITMQIMRIKPHQGQHIGEMSFLQHNKCECRPKKD (SEQ ID NO. : 62)
VEGF ( 8-109 ) 氨基酸序列:
IMRIKPHQGQHIGEMSFLQHNKCECRPKKD (SEQ ID NO. : 63) 步骤 2 抗原蛋白的制备
按照方法 2 具体地以引物对 VEGF-F和 VEGF-R 作为靶蛋白基因引物构建表达质粒 pGEX-DTT-VEGF,测序数据证明正确。表达质粒 pGEX_DTT_VEGF转入^: co7i BL21后培养, 诱导, SDS-PAGE分析蛋白分子量为 30KD左右, 证明能够表达 DTT-VEGF蛋白。 放大培养 至 1L, 按照方法 3制备 DTT-VEGGF蛋白, 12%SDS_PAGE电泳分析纯度达到 90%。
Figure imgf000035_0001
DTT-VEGF抗原基因序列请见 SEQ ID NO. : 66。 步骤 3 小鼠免疫
免疫按照方法 4进行, 包被抗原为 0. 1 μ g/L的重组 hVEGF蛋白 (购自北京义翘神 州生物技术有限公司)。 ELISA结果显示, 经 DTT-VEGF免疫后小鼠抗血清稀释 100倍后, 针对 hVEGF165的 0D450达到了 1. 3, 而单独 VEGF免疫后抗血清 0D450只有 0. 1左右, 对 照 DTT以及 Alum佐剂组抗血清 0D450均不到 0. 05。 该结果证明本专利中抗原设计相比 单独使用 VEGF免疫显著提高了针对 VEGF的抗原性。 此外, DTT-VEGF免疫后抗血清针对 小鼠 VEGF (mVEGF 164)的 0D450达到了 0. 4,证明 DTT-VEGF免疫后与小鼠 VEGF存在交叉反 应。 步骤 4体液免疫和细胞免疫反应检测
( 1 ) 体液免疫反应检测
为了验证设计的抗原是否能突破免疫耐受, 发明人将 DTT-VEGF以氢氧化铝为佐剂, 免疫小鼠后发现可以激发高强度的针对 hVEGF165的抗体,抗体对小鼠的 VEGF也有交叉反 应。抗体能有效中和 VEGF与受体 VEGF2的结合。如果未将 VEGF与 DTT融合则不能激发抗 体的产生。 表明 DTT上 Th表位对机体突破 VEGF的 B细胞免疫耐受起到了关键作用。
( 2 ) 毒性 T淋巴细胞检测
第三次免疫后一周, 处死小鼠, 取脾脏细胞。 以 106细胞的浓度加到 6孔板中, 并加入 终浓度 25 g/ml相应的抗原, 剌激培养 3天, 作为效应细胞。 B16-F10肿瘤细胞作为靶 细胞。按一共比例加入 96孔板中,37 ° C度培养箱共培养 4 h, 取 50 μ 1上清,用 CytoTox96 nonradioactive cytotoxicity assay (Promega)试齐 [J盒按标准程序测定 U)H的浓度, 并 按照说明书提供的公式计算裂解率。
CTL检测表明, 随着效应细胞: 靶细胞的比例逐步升高, 靶细胞裂解率逐步升高, 效靶 比为 5 : 1的时候, DTT-VEGF免疫组裂解率仅为 5%左右,当效靶比为 40 : 1的时候, DTT-VEGF 免疫组的裂解率达到了 40%, 对照 DTT 载体蛋白组仅为 15%。 两者具有显著差异。 证明 DTT-VEGF能诱发抗原特异性 CTL。 步骤 5 疫苗抑瘤疗效检测
1 ) B16-F10模型预防性疗效
小鼠随机分为 4组, 每组 8只, Group A : D23V, Group B: VEGF ( 8-109), Group C : DTT, Group D: 佐剂。 以 0. 03mg/鼠的剂量, 进行背部皮下免疫, 每 2周加强免疫一次, 共 3 次, 每次免疫后一周通过尾部静脉取血, -70°C保存备用。 第二次免疫 1周后, 通过皮下 和尾静脉注射 B16-F10细胞悬浮液(105 cel ls/只), 观察肿瘤出现情况, 记录存活率及其 他异常情况。
2 ) B16-F10模型治疗性疗效
小鼠黑色素瘤 B16-F10细胞培养用含 10%胎牛血清, 100 U/ml青霉素和 100 μ /ml链 霉素的 DMEM培养液中,置于 5 %C02培养箱, 37 °C培养。 指数增殖期细胞经 0. 25 %胰酶消 化,收集于无血清的培养液中,轻轻摇动, 500g,离心 5 min, 洗涤一次, PBS重悬, 调整浓 度为 106, 经台盼蓝染色, 检测细胞活力在 95 %以上。 75 %酒精消毒小鼠腋窝皮肤, 取已 经调整好密度的 B16-F10小鼠黑色素瘤细胞接种子皮下, 每只动物 100 μ 1, 及每只小鼠 接种 105个细胞 (预实验已经确认 105 cel ls/只可以 100%至瘤, 即假设已经得了肿瘤), 肿瘤接种后第二天, 以 0. 03 mg/鼠的剂量开始注射疫苗进行治疗, 每周一次, 连续 3周。 接种肿瘤后, 每天观察肿瘤出现情况, 记录存活率及其他异常情况。
3 ) CT26. WT治疗性疗效
40只 6-8周龄 Balb/C小鼠随机分为 2组,每组 20只,第一组用 DTT-VEGF,以 0. 03mg/ 鼠的剂量, 进行背部皮下免疫, 每 2周加强免疫一次, 共 3次, 另外 20只用 PBS按相同 的程序免疫作为对照。 每次免疫后一周通过尾部静脉取血, -70°C保存备用。 第二次免疫
1周后, 通过皮下注射 CT26. WT细胞悬浮液 (3 X 105 cel ls/只), 观察肿瘤出现情况, 记 录存活率及其他异常情况。
B16-F10模型预防性疗效结果显示, 小鼠平均生存时间由对照组的 25天延长到了
DTT-VEGF组的 35天(图 8 B、C)生存期大大提高。 B16-F10模型治疗实验中发现 DTT-VEGF 组小鼠生存期明显延长, 平均生存时间由对照组的 25天延长到了 32天 (图 8E、 F) 。 在 CT26肿瘤治疗模型中, DTT-VEGF作为疫苗能显著抑制肿瘤细胞的生长(图 9G) j ; 小鼠平均生存时间同样由对照组的 25天延长到了 DTT-VEGF组的 35天, 证明 DTT-VEGF 免疫后能显著延长荷瘤小鼠的生存期。 步骤 6 肿瘤组织病理切片
取肿瘤组织边缘无明显坏死的肿瘤组织, 做常规石蜡病理切片, HE 染色, CD8 及 CD31免疫组化。结果提示,在接种肿瘤 14天后, DTT-VEGF免疫组肿瘤平均重量不到 0. 5g, 而对照 PBS组达到了 lg ;在接种肿瘤 19天后, DTT-VEGF免疫组肿瘤平均重量达到 0. 5g, 而对照 PBS组超过了 2. 5g (图 9A)。这证明 DTT-VEGF免疫后显著抑制了肿瘤的生长。进一 步观测表明, DTT-VEGF 组肿瘤周围无明显的红色血管包围, 而对照组肿瘤周围存在大量 的的血管包围 (图 9B), 这证明 DTT-VEGF免疫后显著抑制了肿瘤血管的生成。 进一步 HE 切片显示, 经 DTT-VEGF免疫后瘤体内部细胞核与细胞膜界限不明显, 核膜与细胞膜不完 整, 大片细胞出现坏死 (图 9C)。 而对照组肿瘤内部细胞核质界限明显, 细胞形状规则, 绝大部分均为活细胞(图 9C)。 进一步分析了肿瘤内部的血管密度。 用 anti-CD31抗体做 免疫组化结果显示, DTT-VEGF组肿瘤内部血管密度仅为 3%, 而对照组达到了 8% (图 9E、 F)。
进一步分析了肿瘤内部淋巴细胞浸润的情况。 Anti-CDS抗体染色结果显示, DTT-VEGF 组肿瘤内部存在大片的 CD8+细胞浸润区域,而对照组肿瘤中只能发现散布的 CD8+淋巴细胞 (图 9D)。 以上结果提示, DTT-VEGF免疫后抑制了肿瘤血管生成, 促进了淋巴细胞浸润 和坏死。
实施例 7靶向 PDL1重组肿瘤疫苗
PDL1和 PD1通路激活后, 可以抑制 T淋巴细胞活化, 降低免疫相关细胞因子的分泌。 PDL1/PD1 等免疫负调节信号通路可以降低免疫系统对肿瘤标志物的识别, 从而让肿瘤产 生免疫逃避。针对 PDL1作为靶点单克隆抗体已经进入临床,本专利设计针对 PDL1的重组 疫苗也具有良好的肿瘤抑制效果。
步骤 1 : 抗原结构设计
按照方法 1, 选择 PDL1的胞外结构域 PDL1E、 以及 PDL1和 PD1非结合位点所在胞外 结构域 PDL1E1 , 分别将 PDL1E和 PDL1E1插入 DTT的 C末端, 得到 DTT-PDL1E重组蛋白和 DTT-PDL1E1重组蛋白。
mPDLl氨基酸序列:
Figure imgf000037_0001
NO.: 122)
Figure imgf000037_0002
mPDLlEl氨基酸序列
NEIFYCTFRRLDPEENHTAELVIPEL 10 (SEQ ID NO. : 68)
DTT-PDL1E重组蛋白全序列
Figure imgf000037_0003
ELIIPEL (SEQ ID NO. : 69)
DTT-PDL1E1重组蛋白全序列 TTNSKREEKLFNVTSTLRINTTTNEIFYCTFRRLDPEENHTAELVIPEL (SEQ ID NO. : 70) PDLl氨基酸序列:
Figure imgf000038_0001
NO.: 123) hPDLlE氨基酸序列:
Figure imgf000038_0002
NO.: 124) hPDLlEl氨基酸序列:
NEIFYCTFRRLDPEENHTAELVIPEL (SEQ ID NO. : 125) -hPDLlE重组蛋白全序列:
Figure imgf000038_0003
VDIGFAAYNFVESIINLFQWHNSYNRPFTVTVPKDLYWEYGS匪 TIECKFPVEKQLDLAALIVYWEMEDKNIIQF
Figure imgf000038_0004
AELVIPEL (SEQ ID NO. : 126)
DTT-hPDLlEl重组蛋白全序列
Figure imgf000038_0005
TTNSKREEKLFNVTSTLRINTTTNEIFYCTFRRLDPEENHTAELVIPEL (SEQ ID NO. : 127) 步骤 2质粒构建与蛋白表达
感受态 BL2U ToplO购自 TransGen Biotech, 载体 pGEX_6p_l、 PMD18_T、 ExTaq酶、 T4连接酶、 反转录试剂盒购自 TaKaRa 。 PDL1基因在黑色素瘤、 结肠癌、 肺癌细胞内高 表达, 复苏 CT26、 B16-F10,传代培养, 收集细胞, 冻融破碎, mRNA提取, 反转录 cDNA。 以 cDNA为模板, 弓 I物 PI P2进行 PCR, 测序验证得到了正确的皿 s_PDLl全长基因。 按照 方法 2, 以 DTT基因和 PDLl全长基因为模板, 引物 P3 P4 P5 P6 进行巢氏 PCR, 得到质 粒 mus-PDLl-DTT-El-pGEX-6p-l; 以 DTT基因和 PDL1全长基因为模板,引物 P7 P8 P9 P10 进行巢氏 PCR, 得到质粒 mus-PDLl-DTT-E- pGEX-6p-l; 以 PDLl全长基因为模板, 引物 Pll P12进行 PCR,得到质粒 mus-PDLl-E-pGEX-6p-l。以上质粒通过测序验证成功构建 PDL1 重组表达相关载体。按照方法 3,进行 DTT(20KD)、DTT-PDL1E(42KD)、DTT-PDL1E1 (30KD)、 PDL1E (23KD)等重组蛋白纯化, 并用 SDS-page进行检测, 结果得到目标蛋白大小的单一 条带, 分析纯度达到 90%以上, 可作疫苗进行动物免疫。 引物列表
Figure imgf000039_0001
步骤 3动物免疫保护
购买自北京维通利华实验动物技术有限公司 18只雌性 9周龄 Balb/c小鼠。 实验前, 选择体重 21±1的小鼠为实验对象, 随机分为 3组, DTT组、 DTT-PDL1E组、 DTT-PDL1E1 组, 每组 6只。 按照方法 4, 进行动物免疫, 免疫前采集血清, 之后在每次免疫前一天采 集血清。 三免后, 按照方法 9, 进行肿瘤细胞培养和肿瘤接种。 接种肿瘤七天后开始隔 天观测肿瘤体积变化, 并记录。 小鼠肿瘤体积变化(Tumor volume=width2*length* J! /2) 趋势(见图 10A),结果显示 DTT-PDLIE组, DTT-PDL1E1组较对照组具有保护效果(P<0. 05 n=6)。 肿瘤接种 22天后安乐死, 剖检肿瘤, 各组瘤重 (见图 10B)。 统计学分析, DTT与 DTT-PDLIE差异显著 (P<0. 05), DTT与 DTT-PDL1E1差异极显著 (P<0. 001 ), 两免疫保 护组无统计学差异(P〉0. 05)。肿瘤重量与体重比率, DTT对照组 DTT-PDLIE组差异显著 (P<0. 05), DTT对照组 DTT-PDL1E1组差异显著 (P<0. 05), 两免疫保护组无统计学差 异 (P>0. 05) (图 10C、 D)。按照方法 9得出, DTT-PDLIE肿瘤抑制率 24. 6%, DTT- PDL1E1 肿瘤抑制率 30%。 结果表明靶向 DTT-PDL1疫苗具有显著的抗肿瘤效。 实施例 8 以 EGFR为靶点的抗肿瘤疫苗
步骤 1 抗原设计
表皮生长因子受体(印 idermal growth factor receptor, EGFR)是一种广泛分布于人 体各组织细胞膜上的多功能糖蛋白。 其抑制剂(如 gefitinib和 erlotinib)和单抗药物 (如 cetuximab和 panitumumab) 已经上市用于治疗晚期结肠癌。 EGFR胞外结构域由 I、 II、 III、 IV四个亚区构成。 III亚区通过主要的保守氨基酸残基与配体相互作用。 II亚区是 介导二聚体形成的主要位点。 本发明人将 EGFR III亚区融合到 DTT的 C末端, 并将第 II亚 区 中 参 与 二 聚 体 形 成 的 主 要 表 位 ( hEGFR 237-267 DTCPPLMLYNPTTYQMDVNPEGKYSFGATCV (SEQ ID NO. : 83) , PPLMLYNPTTYQMDVNPE (SEQ ID NO. : 109) ), 通过 C端 -N端距离相近原则将表位多肽移植到 DTT的合适位置上, 设计成多 表位疫苗。 设计步骤见方法 1。
本实施例共设计了 4 个抗原蛋白, 分别是 DTT-mEGFRI 11、 DTT-hEGFRI 11、
DTT-mEGFRIII-pep, DTT_p印 -mEGFRIII。 其融合后氨基酸序列如下:
-mEGFRI 11抗原蛋白的氨基酸序列:
Figure imgf000040_0001
DVIISGNRNLCYANTINWKKLFGTPNQKTKIMNNRAEKDCKAVNHV (SEQ ID NO. : 84)
mEGFR III亚区氨基酸序列:
TPNQKTKIMNNRAEKDCKAVNHV (SEQ ID NO. : 110) -hEGFRI 11抗原蛋白的氨基酸序列:
Figure imgf000040_0002
DVI ISGNKNLCYANTINWKKLFGTSGQKTKI ISNRGENKCKATGQV (SEQ ID NO. : 85)
hEGFR III亚区氨基酸序列: TSGQKTKI ISNRGENKCKATGQV (SEQ ID NO. : 111) -mEGFRI II-pep抗原蛋白的氨基酸序列:
Figure imgf000041_0001
GATCV (SEQ ID NO. : 86) -hEGFRI II-pep抗原蛋白的氨基酸序列:
Figure imgf000041_0002
GATCV (SEQ ID NO. : 119)
DTT-pep-mEGFRIII 抗原蛋白的氨基酸序列(把 DTT 中的 DSETADN 替换为
Figure imgf000041_0003
ID NO. : 87)
DTT-pep-hEGFRIII 抗原蛋白的氨基酸序列(把 DTT 中的 DSETADN 替换为
Figure imgf000041_0004
ID NO. : 120) 步骤 2: 载体构建, 融合蛋白表达与纯化
根据 GeneBank中 DT的 T结构域基因 mRNA和 mEGFR和 hEGFR基因 mRNA的开放阅读框 的序列, 设计引物通过重叠 PCR的原理在 DT的 T结构域中相应的位置引入 B表位。 引物 和模板由南京金斯瑞生物科技有限公司合成。采用重叠 PCR法制得 PCR产物,每个蛋白分 别采用 1F和 3R, 2F和 4R两对引物做第一轮 PCR, IF和 4R引物做第二轮 PCR。 PCR及载 体构建步骤见方法 2。
获得阳性克隆后提取质粒进行 PCR鉴定, 4个抗原蛋白( DTT-mEGFRI 11、 DTT-hEGFRI 11、 DTT-mEGFRI I I-pep和 DTT_p印 -mEGFRI I I ) 的 PCR产物鉴定均在 1200KD左右, 符合预期。 阳性克隆由金斯瑞测序公司测序,测序结果与预期设计相一致。重组蛋白表达及制备步骤 见方法 3。通过 SDS-PAGE进行蛋白检测,结果显示, DTT-mEGFR, DTT-hEGFR, DTT-pep-mEGFR; DTT-mEGFR-pep 分子量大小大约在 40KD左右, 符合预期。 蛋白纯度均达到 90%以上。 本专利设计的 4个抗原蛋白对应的核酸及引物序列如下:
实施例 7引物列表
Figure imgf000042_0001
DTT— mEGFRI I I— pep— 4R CCGCTCGAGCTACACACAGGTGGCACCAAAGCTGTACTTC (SEQ ID NO. : 103)
DTT-mEGFRI I I抗原蛋白的基因序列请见(SEQ ID NO. : 104。
DTT-hEGFRI I I抗原蛋白的基因序列请见 SEQ ID NO. : 105。
DTT-p印 -mEGFRI I I抗原蛋白的基因序列请见 SEQ ID NO. : 106。
DTT-mEGFRI I I-pep 抗原蛋白的基因序列请见 SEQ ID NO. : 107。 步骤 3 免疫原性的检测
每组取 10只小鼠的血清进行检测, 包被 mEGFR标准品(购自北京义翘神州生物技术 有限公司),进行 ELISA检测,具体步骤见方法 4。ELISA检测显示, PBS组平均数值为 0. 31, DTT 组平均数值为 0. 34, DTT-mEGFR 平均数值为 1. 84, DTT- hEGFR 平均数值为 1. 65, DTT-p印 -mEGFR平均数值为 1. 91, DTT-mEGFR-p印平均数值为 1. 31。四组实验组针对 mEGFR 都产生了较好的抗体,说明本专利的方法成功突破了免疫耐受,产生了针对 mEGFR的抗体 (p<0. 05 )。
包被 Herl标准品, ELISA结果显示, PBS组平均数值为 0. 17,DTT组平均数值为 0. 20,
DTT-mEGFR平均数值为 0. 60, DTT-hEGFR平均数值为 1. 25, DTT-pep-mEGFR平均数值为 0. 87, DTT-mEGFR-pep平均数值为 0. 29。 四组实验组针对 mEGFR都产生了较好的抗体, 说明我们的方法成功突破了免疫耐受, 产生了针对自身蛋白的抗体 (p〈0. 05 )。 mEGFR针 对 Herl 也有抗体产生, 同时 Herl 针对 mEGFR也有较好的抗体, 说明存在交叉反应。 步骤 4 Western鉴定
我们用 A431细胞裂解液为电泳样品做检测, 同时选取 B16F10细胞裂解液作为阴性 对照。 具体实验步骤见方法 6。 通过显色反应, 实验组针对 A431细胞裂解液有明显的抗 体条带, 且位置在 105KD左右, 符合 EGFR分子量大小。 这说明我们的抗体针对细胞表面 的 EGFR有特异性结合。 步骤 5 荷瘤小鼠免疫治疗
小鼠免疫步骤见方法 4, 肿瘤细胞培养、移植和表观效果评价具体步骤见方法 9。选 取 Lewis小鼠肺癌细胞建立肿瘤模型, 接种量为 5 X 105个 /只。 以接种天数为横坐标, 肿 瘤体积为纵坐标, 做肿瘤生长曲线。 结果显示, 从第 16天开始, 本专利的 4组实验组相 对于 PBS和 DTT对照组都有显著性差异 (p〈0. 05 )。 DTT-mEGFR组相对于 PBS组, 肿瘤抑 制率为 16 %。 DTT-hEGFR组相对于 PBS组, 肿瘤抑制率为 32%。 DTT-mEGFR-pep组相对于 PBS组, 肿瘤抑制率为 21%。 DTT-p印 -mEGFR组相对于 PBS组, 肿瘤抑制率为 37%。 结果说 明我们的疫苗能打破自身免疫耐受, 有较好的肿瘤抑制效果。 步骤 6 T细胞增殖实验
用 mEGFR标准品 (购自北京义翘神州生物技术有限公司) 作为抗原来剌激脾细胞, 实验步骤见方法七。每组选取 3只小鼠, PBS组平均读数为 0. 12, DTT组平均读数为 0. 12, DTT-p印 -mEGFR组平均读数为 0. 20 ,实验组相对于两组对照组都有显著性差异(p〈0. 05 )。 说明 DTT-p印 -mEGFR疫苗可以剌激 T细胞增殖, 打破了细胞免疫耐受。 步骤 7 CTL杀伤实验
用 mEGFR标准品(购自北京义翘神州生物技术有限公司)作为抗原来剌激脾细胞, 用 Lewi s小鼠肺癌细胞作为靶细胞, 实验具体步骤见方法 8。 每组选取 3只小鼠, PBS组针对 Lewi s细胞的杀伤率平均为 4%, DTT组杀伤率平均为 8%, DTT_p印 -mEGFR组杀伤率平均为 29. 8%, 实验组相对于两组对照组都有显著性差异 (p〈0. 05)。 说明 DTT-p印 -mEGFR疫苗针 对靶细胞产生了 CTL杀伤作用。 在本发明提及的所有文献都在本申请中引用作为参考, 就如同每一篇文献被单 独引用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本领域技 术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求 书所限定的范围。

Claims

权 利 要 求 书
1. 一种携带抗原表位的重组蛋白, 其特征在于, 所述重组蛋白具有源自载体蛋白的 结构骨架, 并且所述载体蛋白具有至少一个 T细胞表位, 并且在所述载体蛋白的至少一个 分子表面氨基酸残基区通过拼接、 替换、 和 /或插入而引入所述的抗原表位。
2. 如权利要求 1所述的重组蛋白, 其特征在于, 所述抗原表位是低免疫原性蛋白的 表位, 优选地所述的低免疫原性蛋白包括人和非人哺乳动物的蛋白。
3. 如权利要求 1所述的重组蛋白, 其特征在于, 所述的载体蛋白是病原体蛋白, 包 括病毒蛋白、 细菌蛋白、 衣原体蛋白、 支原体蛋白、 非人动物蛋白或其组合。
4. 如权利要求 2所述的重组蛋白, 其特征在于, 所述的低免疫原性蛋白选自下组: VEGF、 TNF-o Her2蛋白、 凝血因子、 白细胞介素、 成纤维细胞活化蛋白、 EGFR、 PDL1或其组合。
5. 如权利要求 1所述的重组蛋白, 其特征在于, 所述的分子表面氨基酸残基区包括 载体蛋白的 C末端, 和 /或所述的分子表面氨基酸残基区包括载体蛋白的 N末端。
6. 如权利要求 1所述的重组蛋白, 其特征在于, 所述的载体蛋白为白喉毒素的跨膜 结构域 (简称 DTT)。
7. 如权利要求 6所述的重组蛋白,其特征在于,所述的分子表面氨基酸残基区在 DTT 上的 287-299位氨基酸之间或 DTT的 C末端或 N末端,
优选地, 所述分子表面氨基酸残基区选自下组: DTT上的 290-297位氨基酸、 DTT上 的 291-297位氨基酸、 DTT上的 292-297位氨基酸、 293-297位氨基酸、 294-297位氨基酸、 DTT上的 295-297位氨基酸和 DTT上的 296-297位氨基酸。
8. 一种多核苷酸,其特征在于,所述的多核苷酸编码权利要求 1所述的重组蛋白。
9. 一种表达载体, 其特征在于, 所述表达载体含有权利要求 8所述的多核苷酸。
10. 一种宿主细胞, 其特征在于, 所述的宿主细胞含有权利要求 9所述的表达载 体, 或者在基因组中整合有权利要求 8所述的多核苷酸。
11. 一种药物组合物, 其特征在于, 所述的组合物含有权利要求 1所述的重组蛋 白、权利要求 8所述的多核苷酸或者权利要求 9所述的表达载体或者权利要求 10所述的 宿主细胞, 以及药学上可接受的载体和 /或辅料。
12. 如权利要求 1 1所述的药物组合物, 其特征在于, 所述的组合物为疫苗。
13. 一种疫苗组合物, 其特征在于, 所述的组合物含有权利要求 1所述的重组蛋 白、权利要求 8所述的多核苷酸或者权利要求 9所述的表达载体或者权利要求 10所述的 宿主细胞, 以及免疫学上可接受的载体和 /或辅料。
14. 如权利要求 1所述的携带抗原表位的重组蛋白的用途, 其特征在于,
(a)用于制备针对所述抗原表位的抗体; 和 /或
(b)用于制备治疗与所述抗原表位相关的疾病的药物。
15. 一种抗原表位肽, 所述抗原表位肽源自哺乳动物 (如人)的低免疫原性蛋白且 包含一个或多个抗原表位,
并且所述抗原表位肽氨基酸序列长度为相应的低免疫原性蛋白全长的 5-100%, 且所述抗原表位肽的长度为 5-500个氨基酸;
并且所述抗原表位肽与本发明载体蛋白形成的重组蛋白可诱发同一种类的所述 哺乳动物产生针对该低免疫原性蛋白的免疫反应。
16.—种治疗方法, 给需要的对象施用权利要求 1所述的重组蛋白、 权利要求 1 1 所述的药物组合物或权利要求 13所述的疫苗组合物。
PCT/CN2014/077522 2013-05-14 2014-05-14 针对低免疫原性蛋白的表位疫苗及其制法和用途 WO2014183649A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14797306.9A EP2998322A4 (en) 2013-05-14 2014-05-14 EPITOPE BASED VACCINE FOR LOW IMMUNOGENICITY PROTEIN AND METHOD FOR PREPARING AND USING SAME
CN201480027977.0A CN105705522B (zh) 2013-05-14 2014-05-14 针对低免疫原性蛋白的表位疫苗及其制法和用途
US14/891,351 US20160206732A1 (en) 2013-05-14 2014-05-14 Epitope vaccine for low immunogenic protein and preparing method and usage thereof
JP2016513220A JP6549560B2 (ja) 2013-05-14 2014-05-14 低免疫原性タンパク質に対するエピトープワクチンおよびその製造方法と使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310178135 2013-05-14
CN201310178135.2 2013-05-14

Publications (1)

Publication Number Publication Date
WO2014183649A1 true WO2014183649A1 (zh) 2014-11-20

Family

ID=51897723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077522 WO2014183649A1 (zh) 2013-05-14 2014-05-14 针对低免疫原性蛋白的表位疫苗及其制法和用途

Country Status (5)

Country Link
US (1) US20160206732A1 (zh)
EP (1) EP2998322A4 (zh)
JP (1) JP6549560B2 (zh)
CN (1) CN105705522B (zh)
WO (1) WO2014183649A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109381704A (zh) * 2017-08-04 2019-02-26 上海亨臻实业有限公司 凝血因子xi靶标的免疫细胞和疫苗及治疗代谢综合症的用途
US10975442B2 (en) 2014-12-19 2021-04-13 Massachusetts Institute Of Technology Molecular biomarkers for cancer immunotherapy
US10993997B2 (en) 2014-12-19 2021-05-04 The Broad Institute, Inc. Methods for profiling the t cell repertoire
WO2022083805A1 (es) 2020-10-22 2022-04-28 Centro De Ingenieria Genetica Y Biotecnologia Antígeno quimérico que comprende el dominio extracelular de pd-l1
US11452768B2 (en) 2013-12-20 2022-09-27 The Broad Institute, Inc. Combination therapy with neoantigen vaccine
US11725237B2 (en) 2013-12-05 2023-08-15 The Broad Institute Inc. Polymorphic gene typing and somatic change detection using sequencing data
US11834718B2 (en) 2013-11-25 2023-12-05 The Broad Institute, Inc. Compositions and methods for diagnosing, evaluating and treating cancer by means of the DNA methylation status

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10358502B2 (en) 2014-12-18 2019-07-23 Siwa Corporation Product and method for treating sarcopenia
US9993535B2 (en) 2014-12-18 2018-06-12 Siwa Corporation Method and composition for treating sarcopenia
CN109071675A (zh) 2016-02-19 2018-12-21 Siwa有限公司 使用高级糖化终产物(age)的抗体治疗癌症、杀死转移性癌细胞和预防癌症转移的方法和组合物
CN107602705B (zh) * 2017-09-13 2018-08-31 北京鼎成肽源生物技术有限公司 一种基于蛋白互作用于检测细胞pd1表达情况的融合蛋白及其应用
KR102011979B1 (ko) * 2017-10-16 2019-08-19 (주)케어젠 세사몰과 펩타이드의 결합체를 유효성분으로 함유하는 숙취 해소용 조성물
CN110327459B (zh) * 2019-08-22 2022-07-01 中国农业科学院上海兽医研究所(中国动物卫生与流行病学中心上海分中心) 抗病原体感染用靶向免疫检查点pd-l1的融合疫苗
CN113318225B (zh) * 2020-02-28 2024-01-19 无锡派列博生物医药科技有限公司 肿瘤免疫增强剂及其制法和应用
CN112979766B (zh) * 2021-04-16 2022-08-16 武汉大学 SARS-ConV-2病毒S蛋白膜外N端结构域高靶向性重组蛋白及其亚单位疫苗

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990014837A1 (en) 1989-05-25 1990-12-13 Chiron Corporation Adjuvant formulation comprising a submicron oil droplet emulsion
CN1690080A (zh) * 2004-04-21 2005-11-02 中国科学院沈阳应用生态研究所 攻击vegfr1阳性细胞的杂合毒素及其编码基因
CN101954073A (zh) * 2010-09-10 2011-01-26 浙江一就生物医药有限公司 一种新型的抗肿瘤细胞疫苗及其制备方法
CN102807621A (zh) * 2011-06-01 2012-12-05 厦门大学 包含白喉毒素无毒突变体crm197或其片段的融合蛋白
CN102370979B (zh) * 2011-10-10 2013-05-01 中国人民解放军第四军医大学 一种针对人TNF-α分子的自体疫苗的构建方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK96493D0 (da) * 1993-08-26 1993-08-26 Mouritsen Og Elsner Aps Fremgangsmaade til at inducere antistofresponser mod selvproteiner og autovaccine fremstillet ved fremgangsmaaden
CN1294517A (zh) * 1997-11-14 2001-05-09 欧洲细胞技术有限公司 具有合成可变区和修饰特异性的免疫球蛋白分子
GB0329146D0 (en) * 2003-12-16 2004-01-21 Glaxosmithkline Biolog Sa Vaccine
CA2557654A1 (en) * 2004-02-27 2005-09-15 Vaxconsulting Peptides of il1 beta and tnf alpha and method of treatment using same
CN100381460C (zh) * 2004-11-30 2008-04-16 北京市肿瘤防治研究所 Her-2模拟抗原表位及含有该表位的肽
US20060276400A1 (en) * 2005-06-06 2006-12-07 Hedy Adari Modulation of cholesteryl ester transfer protein (CETP) activity
CA2691539C (en) * 2007-06-21 2014-08-26 Angelica Therapeutics, Inc. Modified toxins

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990014837A1 (en) 1989-05-25 1990-12-13 Chiron Corporation Adjuvant formulation comprising a submicron oil droplet emulsion
CN1690080A (zh) * 2004-04-21 2005-11-02 中国科学院沈阳应用生态研究所 攻击vegfr1阳性细胞的杂合毒素及其编码基因
CN101954073A (zh) * 2010-09-10 2011-01-26 浙江一就生物医药有限公司 一种新型的抗肿瘤细胞疫苗及其制备方法
CN102807621A (zh) * 2011-06-01 2012-12-05 厦门大学 包含白喉毒素无毒突变体crm197或其片段的融合蛋白
CN102370979B (zh) * 2011-10-10 2013-05-01 中国人民解放军第四军医大学 一种针对人TNF-α分子的自体疫苗的构建方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Sciences", 1991, MACK PUB. CO.
LE BUANEC H ET AL.: "TNF alpha kinoid vaccination-induced neutralizing antibodies to TNF alpha protect mice from autologous TNF alpha-driven chronic and acute inflammation", PROC NATL ACAD SCI USA, vol. 103, no. 51, 2006, pages 19442 - 7, XP009147121, DOI: doi:10.1073/pnas.0604827103
NICHOLAS JOHNSON ET AL.: "Construction of an Epitope Vector Utilising the Diphtheria Toxin B-Subunit", FEMS MICROBIOLOGY LETTERS, vol. 146, 31 January 1997 (1997-01-31), XP055263212 *
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
See also references of EP2998322A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11834718B2 (en) 2013-11-25 2023-12-05 The Broad Institute, Inc. Compositions and methods for diagnosing, evaluating and treating cancer by means of the DNA methylation status
US11725237B2 (en) 2013-12-05 2023-08-15 The Broad Institute Inc. Polymorphic gene typing and somatic change detection using sequencing data
US11452768B2 (en) 2013-12-20 2022-09-27 The Broad Institute, Inc. Combination therapy with neoantigen vaccine
US10975442B2 (en) 2014-12-19 2021-04-13 Massachusetts Institute Of Technology Molecular biomarkers for cancer immunotherapy
US10993997B2 (en) 2014-12-19 2021-05-04 The Broad Institute, Inc. Methods for profiling the t cell repertoire
US11939637B2 (en) 2014-12-19 2024-03-26 Massachusetts Institute Of Technology Molecular biomarkers for cancer immunotherapy
CN109381704A (zh) * 2017-08-04 2019-02-26 上海亨臻实业有限公司 凝血因子xi靶标的免疫细胞和疫苗及治疗代谢综合症的用途
WO2022083805A1 (es) 2020-10-22 2022-04-28 Centro De Ingenieria Genetica Y Biotecnologia Antígeno quimérico que comprende el dominio extracelular de pd-l1

Also Published As

Publication number Publication date
US20160206732A1 (en) 2016-07-21
CN105705522A (zh) 2016-06-22
EP2998322A4 (en) 2016-12-14
JP2016526026A (ja) 2016-09-01
CN105705522B (zh) 2020-09-15
JP6549560B2 (ja) 2019-07-24
EP2998322A1 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2014183649A1 (zh) 针对低免疫原性蛋白的表位疫苗及其制法和用途
JP7470669B2 (ja) 組換えタンパク質及びそれらの治療的用途
CN105085684B (zh) Pcsk9靶向重组疫苗设计及其应用
AU2015204503B2 (en) Novel vaccines against HPV and HPV-related diseases
CZ9903657A3 (cs) Modifikované molekuly TNFalfa, DNA kódující takové modifikované molekuly TNFalfa a vakcíny obsahující uvedené modifikované molekuly TNFalfa
EP1687333A2 (en) Method for down-regulation of vegf
KR20020084841A (ko) Il5 활성을 다운-조절하는 방법
KR20010102556A (ko) 암 및 과증식성 장애의 치료 조성물 및 치료방법
US8309096B2 (en) Fusion protein
CN106543287B (zh) 构象表位疫苗和应用
US20050063952A1 (en) Immunogenic CEA
EP1874332A2 (en) Immunogenic egfr peptides comprising foreign t cell stimulating epitope
KR20200029010A (ko) 합성 단백질 및 그 치료학적 용도
WO2021170111A1 (zh) 肿瘤免疫增强剂及其制法和应用
WO2009003889A2 (en) Immunogenic analogues of rankl
JPWO2003000894A1 (ja) ポリヌクレオチドワクチン
KR20220058527A (ko) 안정화된 키메라 합성 단백질 및 그 치료 용도
AU2016362597A1 (en) Vaccination with MICA/B alpha 3 domain for the treatment of cancer
KR20240017325A (ko) 항원 전달용 재조합 융합 단백질 및 이의 이용
AU2021363436A1 (en) Chimeric antigen comprising the extracellular domain of pd-l1
JP2023540778A (ja) Ace2結合力が減少したコロナウイルス由来の受容体結合ドメイン変異体及びこれを含むワクチン組成物
JP2023508401A (ja) ジスルフィド結合の再配列を有するヒトvegf-aの変異型を含むポリペプチド及びそれを含む組成物
KR20060015595A (ko) 해독된 tnf 및 그의 제조 방법
WO2008040759A1 (en) Method for down-regulation of cripto

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513220

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014797306

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14891351

Country of ref document: US