WO2014183334A1 - 液晶显示屏、显示装置及单色量子点层的制备方法 - Google Patents

液晶显示屏、显示装置及单色量子点层的制备方法 Download PDF

Info

Publication number
WO2014183334A1
WO2014183334A1 PCT/CN2013/079531 CN2013079531W WO2014183334A1 WO 2014183334 A1 WO2014183334 A1 WO 2014183334A1 CN 2013079531 W CN2013079531 W CN 2013079531W WO 2014183334 A1 WO2014183334 A1 WO 2014183334A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
quantum dot
monochromatic
crystal display
dot layer
Prior art date
Application number
PCT/CN2013/079531
Other languages
English (en)
French (fr)
Inventor
郭仁炜
董学
Original Assignee
北京京东方光电科技有限公司
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司, 京东方科技集团股份有限公司 filed Critical 北京京东方光电科技有限公司
Priority to US14/347,884 priority Critical patent/US9323115B2/en
Publication of WO2014183334A1 publication Critical patent/WO2014183334A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy

Definitions

  • Liquid crystal display display device and preparation method of monochromatic quantum dot layer
  • Embodiments of the present invention relate to a liquid crystal display panel, a display device, and a method of fabricating a monochromatic quantum dot layer. Background technique
  • Quantum Dots also known as nanocrystals, are nanoparticles composed of II-VI or III-V elements.
  • the quantum dots generally have a particle size between 1 and 20 nm.
  • quantum dots since electrons and holes are quantum confinement, a continuous band structure changes into a vertical energy level structure, and the quantum dots can be excited to emit fluorescence.
  • the emission of a quantum dot can be controlled by changing the size of the quantum dot. By changing the size of the quantum dot and its chemical composition, it can emit its optical language covering the entire visible region. Taking CdTe quantum dots as an example, when its particle size grows from 2.5 nm to 4.0 nm, their emission wavelengths can be red shifted from 510 nm to 660 nm.
  • quantum dots can be used as molecular probes for fluorescent labels by using the luminescent properties of quantum dots, and can also be applied to display devices.
  • the monochromatic quantum dot is used as the illumination source of the backlight module of the liquid crystal display.
  • the monochromatic quantum dot is excited by the blue LED to emit a monochromatic light and a blue light to form a white background light, which has a large color gamut and can improve the picture quality. .
  • Embodiments of the present invention provide a liquid crystal display, a display device, and a method of preparing a monochrome quantum dot layer for improving the color gamut of a display screen, thereby improving picture quality.
  • An aspect of the invention provides a liquid crystal display comprising: a counter substrate, an array substrate, and a liquid crystal layer between the opposite substrate and the array substrate, wherein the liquid crystal display is provided with a plurality of pixels a unit, each of the pixel units having a plurality of sub-pixel units displaying different colors, a position of the opposite substrate or the array substrate corresponding to the sub-pixel unit of at least one color of each pixel unit is provided with a monochromatic quantum dot layer, and the monochromatic quantum dot layer is emitted corresponding to the sub-pixel after being excited by the background light Monochromatic light of unit color; the monochromatic quantum dot layer comprises a polymer network and monochromatic quantum dots uniformly in the polymer network; the polymer network is composed of monochromatic quantum The organic modification of the point surface is formed by polymerization of a polymerizable monomer containing a double bond, and the organic modification contains a hydroxyl functional group and a sulfur hydrogen bond.
  • Another aspect of the present invention provides a display device comprising the liquid crystal display provided by the embodiment of the present invention.
  • Still another aspect of the present invention provides a method of producing a monochromatic quantum dot layer, comprising: coating a mixture comprising a monochromatic quantum dot surface-modified with an organic modifier and a polymerizable monomer containing a double bond onto a substrate
  • the organic modification contains a hydroxyl functional group and a sulfur hydrogen bond; polymerizing an organic modification on the surface of the monochromatic quantum dot and a polymerizable monomer to form a polymer network, and the monochromatic quantum dots are uniform Dispersed in the polymer network.
  • Figure la, Figure lb and Figure 1c are schematic structural views of a liquid crystal display provided by an embodiment of the present invention.
  • FIG. 2 is a color gamut simulation diagram of a liquid crystal display and an existing liquid crystal display according to an embodiment of the present invention
  • 3a-3d are schematic diagrams showing arrangement of sub-pixel units in a pixel unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of steps of preparing an array substrate according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing steps of preparing a counter substrate according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an embodiment of the present invention.
  • the second schematic structure of the liquid crystal display
  • FIG. 7 is a schematic flow chart of a method for preparing a monochromatic quantum dot layer according to an embodiment of the present invention
  • FIG. 8a and FIG. 8b are schematic diagrams showing steps of a method for preparing a monochromatic quantum dot layer according to an embodiment of the present invention.
  • Words such as “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. “Upper”, “Down”, “Left”, “Right”, etc. are only used to indicate the relative positional relationship. When the absolute position of the object to be described is changed, the relative positional relationship may also change accordingly.
  • a liquid crystal display panel as shown in FIGS. la and lb, includes: a counter substrate 1, an array substrate 2, and a liquid crystal layer 3 between the opposite substrate 1 and the array substrate 2.
  • a plurality of pixel units are disposed on the array substrate 2, that is, a plurality of pixel units are disposed in the liquid crystal display, and the pixel units may be arranged in an array.
  • Each pixel unit has a plurality of sub-pixel units that display different colors (each sub-pixel unit is shown in the dashed box in the figure). For example, these sub-pixel units are used to display red, green or blue light.
  • a position of the opposite substrate 1 or the array substrate 2 corresponding to the sub-pixel unit of at least one color of each pixel unit is respectively provided with a monochrome quantum dot layer 01, and the monochromatic quantum dot layer 01 is Monochromatic light corresponding to the color of the sub-pixel unit is emitted after being excited by the background light.
  • the backlight is, for example, a backlight module from the liquid crystal display.
  • the monochromatic quantum dot layer comprises a polymer network and is uniformly dispersed in the polymer network
  • the monochromatic quantum dots in the network for example, the monochromatic quantum dot layer is composed of a polymer network and monochromatic quantum dots uniformly dispersed in the polymer network.
  • the polymer network is formed by polymerization of an organic modification on the surface of a monochromatic quantum dot and a polymerizable monomer containing a double bond, and the organic modification contains a hydroxyl functional group and a sulfur-hydrogen bond.
  • a monochrome quantum dot layer is used instead of the existing color resin as a color filter to convert the background light into monochromatic light; and between the pixel electrode and the common electrode of the sub-pixel unit The generated electric field controls the deflection of the liquid crystal molecules in the liquid crystal layer, and adjusts the light intensity through the sub-pixel unit to realize color liquid crystal display. Since the quantum dot emitting light is narrow and the luminous efficiency is high, the background light can be efficiently converted into monochromatic light. As shown in the color gamut simulation diagram of FIG.
  • each monochromatic quantum dot layer emits monochromatic light of different colors, such as a combination of red light, yellow light, green light, cyan light and blue light
  • the combined color gamut curve can be Achieve the gamut boundary (shown by the dashed line in the figure), relative to the gamut curve composed of the traditional red, green and blue primary colors (shown by the solid line in the figure), due to the addition of other pure colors, as described above, yellow Increase the bounds of the gamut.
  • QD quantum dot
  • the embodiment of the present invention can improve the color gamut of the liquid crystal display, enhance the color saturation, and improve the display quality of the display.
  • the use of organic modifiers to modify the surface of monochromatic quantum dots can increase the dispersion of quantum dots in organic solvents, and the polymerization of organic modifiers on the surface of monochromatic quantum dots and polymerizable monomers containing double bonds can be generated.
  • the molecular polymer network can make monochromatic quantum dots more stably dispersed in the polymer network, prevent the accumulation of quantum dots, increase the quantum yield of quantum dots, and improve the quantum excitation efficiency.
  • the polymer network can isolate air and monochromatic quantum dots, avoiding the contact of monochromatic quantum dots with oxygen, increasing the lifetime of quantum dots.
  • the above liquid crystal display provided by the embodiment of the present invention can be applied to various modes, for example, can be applied to an in-plane switch (IPS, In-Plane Switch) and an advanced super-dimensional field switch (ADS, Advanced Super Dimension Switch) capable of realizing a wide viewing angle.
  • the liquid crystal display can also be applied to a conventional TN (Twisted Nematic) type liquid crystal display or a vertical alignment (VA) type liquid crystal display, which is not limited herein.
  • the monochromatic quantum dot layer 01 provided in each sub-pixel unit may be disposed on a side of the array substrate 2 facing the liquid crystal layer 3.
  • the array substrate 2 shown in FIG. 1a has a common electrode 02, and the monochromatic quantum dot layer 01 is disposed on the upper side of the common electrode 02.
  • the common electrode 02 may be located above the pixel electrode 08 of the array substrate 2 as shown in FIG.
  • the pixel electrode 08 is a plate electrode
  • the common electrode 02 is a slit electrode.
  • each monochromatic quantum dot layer 01 may also be disposed on a side of the array substrate 2 facing away from the liquid crystal layer 3 (for example, the lower side of the array substrate 2 in FIG. 1a) according to the needs of the preparation process.
  • each of the monochromatic quantum dot layers 01 is disposed between other film layers in the array substrate 2, which is not limited herein.
  • the background light from the lower side of the array substrate 2 is first irradiated to each monochromatic quantum dot layer 01 located in the sub-pixel unit, and the quantum dots in each monochromatic quantum dot layer 01 are excited by the background light to generate corresponding monochromatic light, and then each single The color light is adjusted by the liquid crystal layer controlled by the electric field generated between the common electrode 02 and the pixel electrode 08, and the intensity of each monochromatic light is changed to realize color liquid crystal display.
  • the black matrix 03 may be disposed in the same layer as each of the monochromatic quantum dot layers 01, as shown in FIG. 1a, both of which are disposed on the array substrate 2;
  • the black matrix 03 may be disposed on the side of the counter substrate 1 facing the liquid crystal layer 3, which is not limited herein.
  • the monochromatic quantum dot layer 01 disposed in each sub-pixel unit may also be disposed on the side of the opposite substrate 1 facing the liquid crystal layer 3, as shown in FIG. 1b, disposed on the opposite substrate 1 The underside.
  • the background light from the lower side of the array substrate 2 is firstly adjusted by the electric field controlled by the electric field generated between the common electrode and the pixel electrode, and the intensity of the background light changes, and then irradiated to each monochromatic quantum dot layer located in the sub-pixel unit. 01.
  • the quantum dots in each monochromatic quantum dot layer 01 are excited by the background light to generate corresponding monochromatic light, thereby realizing color liquid crystal display.
  • the backlight module 4 is further disposed on the side of the array substrate 2 facing away from the liquid crystal layer (the lower side of the array substrate 2 in FIGS. 1a and 1b).
  • the background light emitted by the backlight module 4 is blue light, and the center wavelength of the blue light may be about 450 nm, so that the monochromatic quantum dots in each monochromatic quantum dot layer are excited to emit corresponding monochromatic light.
  • the backlight module is, for example, a side-illuminated backlight module or a direct-lit backlight module, and the light source used is, for example, a light-emitting diode (LED) or the like.
  • an absorption layer 04 having blue light absorption may be disposed on the position of the sub-pixel unit corresponding to each of the monochromatic quantum dot layers 01, and corresponding to the sub-pixel unit emitting blue light.
  • the absorption layer 04 is not provided at the position.
  • the absorbing layer 04 may be disposed on the side of the counter substrate 1 facing the liquid crystal layer 3.
  • the absorbing layer 04 is disposed to block the external blue light that is irradiated from the opposite substrate 1 away from the liquid crystal layer 3 side into the liquid crystal display panel, and the external blue light is excited to excite the quantum dots in the monochromatic quantum dot layer, so that the sub-pixel unit is emitted.
  • the intensity of monochromatic light is uncontrollable, affecting the quality of liquid crystal display.
  • the material of the absorbent layer 04 may be 5-(1-methyl-2-pyrrolemethyl)rhodanine or a derivative thereof.
  • the blue light can be directly used as one of the primary color lights of the pixel unit, that is, if each pixel unit has Displaying N sub-pixel units of different colors, wherein sub-pixel units of N-1 colors are respectively provided with a monochromatic quantum dot layer, and 1 sub-pixel unit is not provided with a monochromatic quantum dot layer (so that it is a via), as The blue light of the background light directly passes through the sub-pixel unit, and emits blue light modulated by the liquid crystal layer, and N is a positive integer greater than or equal to 2.
  • N is a positive integer greater than or equal to 2.
  • the display colors of the two sub-pixel units constituting one pixel unit are complementary colors, for example, orange and blue, respectively.
  • one pixel unit may be composed of four colors, five colors, or six colors, which is not limited herein.
  • one pixel unit is composed of four colors of blue, red, green and yellow
  • one pixel unit has four sub-pixel units, and the four sub-pixel units can be arranged in combination as shown in FIG. 3a, or as shown in FIG. 3b.
  • the arrangement shown in the figure is not limited herein.
  • a monochrome quantum dot layer is not disposed at one sub-pixel unit, and the background blue light directly passes through, that is, a via structure, and the other three sub-pixel units are respectively provided with red-emitting monochromatic quantum.
  • a layered, green-emitting monochromatic quantum dot layer and a yellow-emitting monochromatic quantum dot layer Another example: When one pixel unit is composed of five colors of blue, red, green, yellow and orange, one pixel unit has five sub-pixel units, and the five sub-pixel units can be arranged in combination as shown in FIG.
  • One of the sub-pixel units is not provided with a monochromatic quantum dot layer, that is, a via structure, the background blue light directly passes through, and the other five sub-pixel units are respectively provided with a red-emitting monochromatic quantum dot layer and a green-emitting single A quantum dot layer, a monochromatic quantum dot layer that emits yellow light, a monochromatic quantum dot layer that emits orange light, and a monochromatic quantum dot layer that emits cyan light.
  • the arrangement of the sub-pixel units in each pixel unit is not limited to the arrangement as shown in FIGS. 3a-3d, for example, the sub-pixel units in the upper and lower rows may be staggered from each other.
  • a monochromatic quantum dot layer emitting red, green, yellow, orange, or cyan after excitation by the background light may be selected, and the emission wavelength of the quantum dot is controlled by controlling the particle size of the quantum dot, for example, ZnS quantum
  • the size of the quantum dot emitting red light is mainly about 9-10 nm
  • the size of the emitted yellow light quantum dot is about 8 nm
  • the size of the quantum dot emitting green light is about 7 nm.
  • the monochromatic quantum dot layer in the embodiment of the present invention refers to the same quantum dot disposed at the position of the array substrate or the opposite substrate corresponding to the sub-pixel unit of the same color; sub-pixels of different colors
  • the quantum dots of the array substrate or the opposite substrate are different.
  • the difference here may be the quantum dot size or the material, as long as the quantum dots at the sub-pixel units corresponding to the respective colors are excited. It is possible to emit a monochromatic light corresponding to the color of the sub-pixel unit. That is to say, the quantum dots of each region of the monochromatic quantum dot layer can only emit monochromatic light after being excited, but the monochromatic light emitted by the regions corresponding to the sub-pixel units of different colors is different.
  • the liquid crystal display screen on which the monochromatic quantum dot layers are disposed on the array substrate is taken as an example.
  • the manufacturing process of the array substrate, as shown in FIG. 4a to FIG. 4k, may include the following steps:
  • a pixel electrode 08 on the active layer 07 and the gate insulating layer 06, the pixel electrode 08 being a plate electrode, as shown in FIG. 4d; source and drain), as shown in FIG. 4e; (6) depositing a first insulating (PVX) layer 10 over the source and drain electrodes 09 and the pixel electrode 08, as shown in FIG. 4f;
  • PVX first insulating
  • the monochromatic quantum dot layer 01 corresponds to the pixel electrode 08 and the common electrode 02, located above them, as shown in Fig. 4j;
  • a first protective layer 12 is formed on the black matrix 03 and the monochromatic quantum dot layer 01 as shown in Fig. 4k.
  • the thin film transistor composed of the gate electrode 05, the gate insulating layer 06, the active layer 07, and the source and drain electrodes 09 is a bottom gate type thin film transistor, but the present invention is not limited thereto; for example, in another embodiment A top gate type thin film transistor can also be formed.
  • the common electrode 02 is located above the pixel electrode 08. As described above, in other embodiments, the common electrode 02 and the pixel electrode 08 may be in other arrangements, and the present invention is not limited thereto.
  • the monochromatic quantum dot layer 01 is not formed at the corresponding position to obtain a via structure.
  • the liquid crystal display panel on which the respective monochromatic quantum dot layers are disposed on the opposite substrate is taken as an example, and the manufacturing process of the opposite substrate, as shown in FIG. 5a to FIG. 5e, may include the following Steps:
  • a second protective layer 13 is formed on the monochromatic quantum dot layer 01 as shown in Fig. 5d.
  • a spacer (PS) layer 14 may also be formed on the second protective layer 13 as needed, as shown in Fig. 5e.
  • the absorption layer 04 When the absorption layer 04 is formed, it may be covered to include the black matrix 03.
  • each pixel unit includes a sub-pixel unit that emits blue light, and the absorption layer 04 is used to absorb blue light, the absorption layer 04 is not disposed corresponding to the position of the blue-emitting sub-pixel unit.
  • the pixel region exposed by the black matrix 03 corresponds to a sub-pixel unit on the array substrate used in combination with the counter substrate.
  • the monochromatic quantum dot layer 01 When for a subpixel When the unit does not need to form the monochromatic quantum dot layer 01, the monochromatic quantum dot layer 01 is not formed at the corresponding position to obtain a via structure.
  • the array substrate used in combination with the counter substrate in this embodiment can be in various available modes.
  • Fig. 6 is a schematic view showing the structure of a liquid crystal display in which respective monochromatic quantum dot layers are disposed on an opposite substrate.
  • the monochromatic quantum dot layer in the liquid crystal display adopts an organic modification to modify the surface of the monochromatic quantum dots, increases the dispersion of the monochromatic quantum dots in the organic solvent, and adopts the organic modification.
  • a method of polymerizing a polymerizable monomer containing a double bond to form a polymer network so that monochromatic quantum dots can be more stably dispersed in a polymer network, preventing accumulation of quantum dots, and increasing quantum of quantum dots. Yield to improve quantum excitation light efficiency.
  • the polymer network can block air and monochromatic quantum dots, avoiding the contact of monochromatic quantum dots with oxygen, increasing the lifetime of quantum dots.
  • the embodiment of the invention further provides a method for preparing a monochromatic quantum dot layer, as shown in FIG. 7, comprising the following steps:
  • a mixture comprising a monochromatic quantum dot 011 modified with an organic modifier surface and a polymerizable monomer 012 containing a double bond (as shown in Figure 8a) is applied to the substrate.
  • the substrate may be a glass substrate, a quartz substrate, a plastic substrate or the like.
  • the organic modification contains a hydroxyl functional group and a sulfur-hydrogen bond.
  • the sulfur-hydrogen bond contained at one end of the organic modification adheres to the monochromatic quantum dot, and the hydroxyl functional group at the other end connected through the flexible chain can crosslink with the double bond.
  • a polymer network is formed, and in such a form, the core-shell structure of the monochromatic quantum dot molecule can be stabilized.
  • the organic modification on the surface of the monochromatic quantum dot and the polymerizable monomer are polymerized to form a polymer network (as shown in FIG. 8b), the monochromatic quantum dot Evenly ⁇ : in the polymer network.
  • step S701 can be implemented as follows.
  • a monochromatic quantum dot, an organic modification, and an organic solvent are mixed, and then a polymerizable monomer is added to obtain a mixed solution.
  • the mass ratio of the monochromatic quantum dots may be 1% to 3%, and the molar ratio of the monochromatic quantum dots to the organic modification may be 1:10.
  • the material of the monochromatic quantum dots can be selected from the C-S, CdSe, One or more of CdTe, ZnO, ZnSe, ZnTe, and III-V GaAs, GaP, GaAs, GaSb, HgS, HgSe, HgTe, InAs, InP, InSb, AlAs, AlP, AlSb, and the like.
  • the material of the organic modification may be a chain sulfhydryl hydroxy derivative such as a material having a molecular structure of HS-C n H 2n -OH.
  • a common organic solvent such as propylene glycol methyl ether acetate may be used as the organic solvent, which is not limited herein.
  • a polymerizable monomer having a double bond may be an ethylene acid derivative which may have two to four double bond functional groups, for example, a material having the following molecular structure:
  • n 1, 2, 3, 4, 5, 6, 7, or 8.
  • the organic solvent in the mixed solution is removed by, for example, vacuuming to obtain a mixture of monochromatic quantum dots and a polymerizable monomer which are surface-modified with an organic modifier coated on a substrate.
  • photoinitiators include dibenzoyl peroxide, dodecyl peroxide, azobisisobutyronitrile, azobisisoheptanenitrile, diisopropyl peroxydicarbonate, and dicyclohexyl peroxydicarbonate.
  • photoinitiators include dibenzoyl peroxide, dodecyl peroxide, azobisisobutyronitrile, azobisisoheptanenitrile, diisopropyl peroxydicarbonate, and dicyclohexyl peroxydicarbonate.
  • a process in which a chain sulfhydryl hydroxy derivative and an ethylene acid derivative are polymerized is as follows. Among them, one double bond in the ethylene acid derivative and the hydroxyl functional group contained in the organic modification polymerize, and other double bond-containing substances represented by R3 and R4 are polymerized to form a polymer network.
  • the embodiment of the present invention further provides a display device, including the liquid crystal display provided by the embodiment of the present invention. Since the principle of solving the problem is similar to the foregoing liquid crystal display, the implementation of the device can be referred to Implementation, repetition will not be repeated.
  • a liquid crystal display panel a display device, and a method for preparing a monochrome quantum dot layer are provided.
  • the liquid crystal panel is provided with a plurality of pixel units, each of which has a plurality of sub-pixels displaying different colors.
  • the unit is provided with a monochrome quantum dot layer at a position corresponding to the sub-pixel unit of at least one color of each pixel unit, and the monochromatic quantum dot layer emits monochromatic light corresponding to the color of the sub-pixel unit after being excited by the background light.
  • the quantum dot layer is used instead of the existing color resin as a color filter to convert the background light into monochromatic light, and the background light can be efficiently converted into a single color because the quantum dot emits narrow light and has high luminous efficiency.
  • Light can improve the color gamut of the LCD screen, enhance color saturation, and improve the display quality of the display.
  • organic modifiers to modify the surface of monochromatic quantum dots can increase the dispersion of quantum dots in organic solvents, and the polymerization of organic modifiers on the surface of monochromatic quantum dots and polymerizable monomers containing double bonds can be generated.
  • the molecular polymer network mode enables monochromatic quantum dots to be more stably dispersed in the polymer network, preventing the accumulation of quantum dots, increasing the quantum yield of quantum dots, and improving the quantum excitation efficiency.
  • the polymer network can block air and monochromatic quantum dots, avoiding the contact of monochromatic quantum dots with oxygen, increasing the lifetime of quantum dots.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示屏、显示装置及单色量子点层的制备方法,在液晶面板内设置有多个像素单元,每个像素单元均具有多个显示不同颜色的亚像素单元,在各像素单元的至少一个颜色的亚像素单元对应的位置设置有单色量子点层(01)。采用高分子聚合物网络分散单色量子点,可以防止量子点的堆积,增加量子产率,以提高量子激发光效;还可以避免单色量子点与氧气接触,增加了量子点的使用寿命。

Description

液晶显示屏、 显示装置及单色量子点层的制备方法 技术领域
本发明的实施例涉及一种液晶显示屏、 显示装置及单色量子点层的制备 方法。 背景技术
量子点 (Quantum Dots, QDs)又可以称纳米晶, 是一种由 II - VI族或 III - V族元素组成的纳米颗粒。 量子点的粒径一般介于 1 ~ 20nm之间。 量子点 中由于电子和空穴被量子限域, 连续的能带结构变成分立能级结构, 于是量 子点受激后可以发射荧光。
量子点的发射光语可以通过改变量子点的尺寸大小来控制。 通过改变量 子点的尺寸和它的化学组成可以使其发射光语覆盖整个可见光区。 以 CdTe 量子点为例, 当它的粒径从 2.5nm生长到 4.0nm时, 它们的发射波长可以从 510nm红移到 660nm。
目前, 利用量子点的发光特性, 可以将量子点作为分子探针应用于荧光 标记, 也可以应用于显示器件中。 将单色量子点作为液晶显示屏的背光模组 的发光源,单色量子点在受到蓝光 LED激发后发出单色光与蓝光混合形成白 色背景光, 具有较大的色域, 能提高画面品质。
由于纳米级的量子点在有机溶剂中分散性不好, 在之后制成图案时会出 现量子点堆积产生淬灭现象, 严重降低了量子产率, 因此, 在目前还没有将 量子点应用于液晶显示屏内部的设计。 发明内容
本发明的实施例提供了一种液晶显示屏、 显示装置及单色量子点层的制 备方法, 用以提高显示屏的色域, 进而提高画面品质。
本发明的一个方面提供了一种液晶显示屏, 包括: 对向基板、 阵列基板 以及位于所述对向基板和所述阵列基板之间的液晶层, 所述液晶显示屏上设 置有多个像素单元,每个所述像素单元具有多个显示不同颜色的亚像素单元, 在各像素单元的至少一个颜色的亚像素单元对应的对向基板或者阵列基板的 位置, 设置有单色量子点层, 所述单色量子点层在受背景光激发后发出对应 所述亚像素单元颜色的单色光; 所述单色量子点层包括高分子聚合物网络以 及均匀 于所述高分子聚合物网络内的单色量子点; 所述高分子聚合物网 络是由在单色量子点表面的有机修饰物和含有双键的可聚合单体发生聚合反 应生成的, 所述有机修饰物含有羟基官能团以及硫氢键。
本发明的另一个方面提供了一种显示装置, 包括本发明实施例提供的液 晶显示屏。
本发明的再一个方面提供了一种单色量子点层的制备方法, 包括: 将包 括经有机修饰物表面修饰的单色量子点以及含有双键的可聚合单体的混合物 涂覆到基板上, 所述有机修饰物含有羟基官能团以及硫氢键; 使在所述单色 量子点表面的有机修饰物和可聚合单体发生聚合反应, 生成高分子聚合物网 络, 所述单色量子点均匀地分散于所述高分子聚合物网络内。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 la、 图 lb和图 lc分别为本发明实施例提供的液晶显示屏的结构示意 图;
图 2为本发明实施例提供的液晶显示屏和现有的液晶显示屏的色域模拟 图;
图 3a-图 3d为本发明实施例提供的像素单元中各亚像素单元的排列示意 图;
图 4a-图 4k为本发明实施例提供的制备阵列基板的各步骤的示意图; 图 5a-图 5e为本发明实施例提供的制备对向基板各步骤的示意图; 图 6为本发明实施例提供的液晶显示屏的结构示意图之二;
图 7为本发明实施例提供的单色量子点层的制备方法的流程示意图; 图 8a和图 8b为本发明实施例提供的单色量子点层的制备方法的各步骤 的示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
附图中各层薄膜厚度和区域大小形状不反映阵列基板或对向基板的真实 比例, 目的只是示意说明本发明内容。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一" 、 "第二" 以及类似的词语并不表示任何顺序、 数量或者重要性, 而只是用来区分不同的组成部分。 同样, "一个" 、 "一" 或者 "该"等类似词语也不表示数量限制, 而是表示存在至少一个。 "包括" 或者 "包含" 等类似的词语意指出现该词前面的元件或者物件涵盖出现在该 词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。 "连接" 或者 "相连" 等类似的词语并非限定于物理的或者机械的连接, 而是可以包 括电性的连接, 不管是直接的还是间接的。 "上" 、 "下" 、 "左" 、 "右" 等仅用于表示相对位置关系, 当被描述对象的绝对位置改变后, 则该相对位 置关系也可能相应地改变。
本发明实施例提供的一种液晶显示屏, 如图 la和图 lb所示, 包括: 对 向基板 1 , 阵列基板 2, 以及位于对向基板 1和阵列基板 2之间的液晶层 3。 阵列基板 2上设置有多个像素单元, 即液晶显示屏内设置有多个像素单元, 这些像素单元可以排列为阵列。 每个像素单元具有多个显示不同颜色的亚像 素单元(每个亚像素单元如图中虚线框所示) 。 例如, 这些亚像素单元用于 显示红色光、 绿色光或蓝色光。
在该液晶显示屏中, 在各像素单元的至少一个颜色的亚像素单元对应的 对向基板 1或阵列基板 2的位置, 分别设置有单色量子点层 01 , 该单色量子 点层 01在受背景光激发后发出对应该亚像素单元颜色的单色光。该背景光例 如来自该液晶显示屏的背光模组。
该单色量子点层包括高分子聚合物网络以及均匀分散于高分子聚合物网 络内的单色量子点, 例如, 该单色量子点层由高分子聚合物网络以及均匀分 散于高分子聚合物网络内的单色量子点组成。 例如, 该高分子聚合物网络是 由在单色量子点表面的有机修饰物和含有双键的可聚合单体发生聚合反应生 成的, 有机修饰物含有羟基官能团以及硫氢键。
本发明实施例提供的液晶显示屏中, 采用单色量子点层代替现有的彩色 树脂作为彩色滤光片来将背景光转化成单色光; 通过亚像素单元的像素电极 和公共电极之间产生的电场控制液晶层中的液晶分子偏转, 调节通过亚像素 单元的光强, 实现彩色液晶显示。 由于量子点发射光语窄并且发光效率高, 可以将背景光高效地转化为单色光。 如图 2所示的色域模拟图, 由于各单色 量子点层发出不同颜色的单色光, 诸如红光、 黄光、 绿光、 青光和蓝光的组 合, 该组合的色域曲线可以达到色域边界(图中虚线所示) , 相对于由传统 的红绿蓝三原色组成的色域曲线(图中实线所示) , 由于增加了其他的纯颜 色, 如上所述的黄色, 能够增加色域的边界范围。 另外只要将量子点 (QD)调 解到一定尺寸, 就能发出黄光。 由于量子点发射的光半峰宽较窄, 能够得到 较纯的光。 所以在色域上, 本发明的四个角形成的面积就更大了, 即, 量子 点发光显示能够获得更大的色域。 通过上述方式, 本发明的实施例可以提高 液晶显示屏的色域, 增强色彩饱和度, 提高了显示屏的显示品质。
采用有机修饰物修饰单色量子点表面的方式可以增加量子点在有机溶剂 中的分散性, 且采用在单色量子点表面的有机修饰物和含有双键的可聚合单 体发生聚合反应生成高分子聚合物网络的方式, 可使单色量子点能够更加稳 定的分散于高分子聚合物网络中, 防止量子点的堆积, 增加量子点的量子产 率, 以提高量子激发光效。 另外, 高分子聚合物网络可以隔绝空气与单色量 子点, 避免单色量子点与氧气接触, 增加了量子点的使用寿命。
本发明实施例提供的上述液晶显示屏可以适用于各种模式, 例如可以适 用于能够实现宽视角的平面内开关 (IPS, In-Plane Switch)和高级超维场开关 (ADS , Advanced Super Dimension Switch)型液晶显示屏, 也可以适用于传统 的扭曲向列(TN, Twisted Nematic)型液晶显示屏或者竖直排列 (VA, Vertical Alignment)型液晶显示屏等, 在此不做限定。
在本发明实施例提供的下述液晶显示屏中都是以 ADS 型液晶显示屏为 例进行说明。 根据一个实施例, 在各亚像素单元内设置的单色量子点层 01 , 例如, 可 以设置在阵列基板 2面向液晶层 3的一侧。例如图 la所示的阵列基板 2具有 公共电极 02, 单色量子点层 01设置在公共电极 02上侧。 该公共电极 02可 以如图 la所示位于阵列基板 2的像素电极 08之上,也可以位于像素电极 08 之下, 或者公共电极 02与像素电极 08 同层设置, 可以将单色量子点层 01 设置在阵列基板 2的公共电极 02和像素电极 08之上, 且单色量子点层 01 与公共电极 02和像素电极 08绝缘。在图中,像素电极 08为板状电极,公共 电极 02为狭缝电极。 当公共电极 02和像素电极 08设置在同一层上时,二者 都为狭缝电极。
当然, 根据本发明的实施例, 根据制备工艺的需要, 也可以将各单色量 子点层 01设置在阵列基板 2背离液晶层 3的一侧 (例如图 la中阵列基板 2 的下侧) , 或者将各单色量子点层 01设置在阵列基板 2中的其他膜层之间, 在此不做限定。 来自阵列基板 2下侧的背景光先照射到位于亚像素单元的各 单色量子点层 01 , 各单色量子点层 01 中的量子点受到背景光激发生成对应 的单色光, 然后各单色光受到公共电极 02与像素电极 08之间产生的电场控 制的液晶层的调节, 各单色光的光强发生变化, 实现彩色液晶显示。
在各单色量子点层 01设置在阵列基板 2上时, 可以将黑矩阵 03与各单 色量子点层 01同层设置, 如图 la所示, 二者均设置阵列基板 2上; 当然, 也可将黑矩阵 03设置在对向基板 1面向液晶层 3的一侧, 在此不做限定。
根据一个实施例, 在各亚像素单元内设置的单色量子点层 01 , 例如, 也 可以设置在对向基板 1面向液晶层 3的一侧,如图 lb所示,设置在对向基板 1的下侧。 来自阵列基板 2下侧的背景光先受到公共电极与像素电极之间产 生的电场控制的液晶层的调节, 背景光的光强发生变化, 然后照射到位于亚 像素单元的各单色量子点层 01 , 各单色量子点层 01中的量子点受到背景光 激发生成对应的单色光, 实现彩色液晶显示。
本发明实施例提供的液晶显示屏中, 如图 lc所示, 在位于阵列基板 2 背离液晶层一侧(如图 la、 lb中阵列基板 2的下侧)还具有背光模组 4。 例 如, 该背光模组 4发射的背景光为蓝光, 蓝光的中心波长可为约 450nm, 以 便各单色量子点层中的单色量子点被激发后发出对应的单色光。 当然, 根据 实际选用的量子点的激发波长, 也可以选用近紫外光作为激发量子点的背景 光, 在此不做限定。 该背光模组例如为侧面照射式背光模组或直下式背光模 组, 所采用的光源例如为发光二极管 (LED)等。
在选用蓝光作为背景光激发各单色量子点层时, 为了避免被各单色量子 点层吸收后还有蓝色的背景光透过亚像素单元, 造成从亚像素单元出射的单 色光不纯,可以在对应各设置有单色量子点层 01的亚像素单元的位置,在单 色量子点层 01之上, 设置具有吸收蓝光的吸收层 04, 相应地在发射蓝光的 亚像素单元的位置不设置吸收层 04。 例如, 如图 la和图 lb所示, 可以将吸 收层 04设置在对向基板 1面向液晶层 3的一侧。 另外, 设置的吸收层 04还 可以遮挡从对向基板 1背离液晶层 3—侧照射进入液晶显示屏的外部蓝光, 避免外部蓝光激发单色量子点层中的量子点, 使亚像素单元出射的单色光的 光强不可控, 影响液晶显示品质。
根据本发明的一个实施例, 吸收层 04的材料可以采用 5-(1-甲基 -2-吡咯 次甲基)若丹宁或其衍生物。
例如, 如图 la和图 lb所示, 在选用蓝光作为背景光激发各单色量子点 层 01时,还可以直接利用该蓝光作为像素单元的原色光之一, 即若每个像素 单元均具有显示 N个不同颜色的亚像素单元,其中 N-1个颜色的亚像素单元 分别设置有单色量子点层, 1 个亚像素单元不设置单色量子点层(从而表现 为过孔) , 作为背景光的蓝光直接通过该亚像素单元, 射出经过液晶层调制 光强的蓝光, N为大于等于 2的正整数。 当 N等于 2时, 组成一个像素单元 的两个亚像素单元的显示颜色互为补色, 如可以分别为橙色和蓝色。
根据本发明的实施例, 可以由 4色、 5色或 6色组成一个像素单元, 在 此不做限定。 例如: 在由蓝、 红、 绿和黄 4种颜色组成一个像素单元时, 一 个像素单元有 4个亚像素单元,这 4个亚像素单元可以如图 3a所示排列组合, 也可以如图 3b所示排列组合, 在此不做限定。 在图 3a、 3b的构造中, 一个 亚像素单元处没有设置单色量子点层, 背景蓝光直接通过, 即为过孔结构, 另外 3个亚像素单元处分别设置有发红光的单色量子点层、 发绿光的单色量 子点层以及发黄光的单色量子点层。 又如: 在由蓝、 红、 绿、 黄和橙 5种颜 色组成一个像素单元时, 一个像素单元有 5个亚像素单元, 这 5个亚像素单 元可以如图 3c所示排列组合, 其中一个亚像素单元处没有设置单色量子点 层, 即为过孔结构, 背景蓝光直接通过, 另外 4个亚像素单元处分别设置有 发红光的单色量子点层、 发绿光的单色量子点层、 发黄光的单色量子点层以 及发橙光的单色量子点层。 又如: 在由蓝、 红、 绿、 黄、 橙和青 5种颜色组 成一个像素单元时, 一个像素单元有 6个亚像素单元, 这 6个亚像素单元可 以如图 3d所示排列组合,其中一个亚像素单元处没有设置单色量子点层, 即 为过孔结构, 背景蓝光直接通过, 另外 5个亚像素单元处分别设置有发红光 的单色量子点层、 发绿光的单色量子点层、 发黄光的单色量子点层、 发橙光 的单色量子点层以及发青光的单色量子点层。 每个像素单元中的亚像素单元 的排列不限于如图 3a-3d所示排列方式, 例如上下两行中亚像素单元可以彼 此错开排列。
可以选用在受背景光激发后发出红光、 绿光、 黄光、 橙光或青光等的单 色量子点层, 通过控制量子点的粒径来控制量子点的发光波段, 例如以 ZnS 量子点为例, 发射红光的量子点尺寸主要在约 9 ~ 10nm, 发射黄光量子点尺 寸约 8 nm, 发射绿光的量子点尺寸在约 7nm。
需要说明的是, 本发明实施例所述的单色量子点层是指在同种颜色的亚 像素单元对应的阵列基板或对向基板的位置设置的量子点是相同的; 不同颜 色的亚像素单元对应的阵列基板或对向基板的位置设置的量子点是不同的, 此处不同可以是量子点尺寸或者材料等的不同, 只要保证对应各个颜色的亚 像素单元处的量子点受激发后仅发出对应该亚像素单元颜色的单色光即可。 也就是说,所述单色量子点层各个区域的量子点受激发后都仅能发出单色光, 但对应不同颜色的亚像素单元的区域其发出的单色光是不同的。
根据一个实施例, 以上述各单色量子点层设置在阵列基板之上的液晶显 示屏为例, 阵列基板的制作工艺, 如图 4a-图 4k所示, 可以包括以下几个步 骤:
(1)在阵列基板 2之上形成栅极 05, 如图 4a所示;
(2)在栅极 05上形成栅绝缘层 06, 如图 4b所示;
(3)在栅绝缘层 06上形成有源层 07, 如图 4c所示;
(4)在有源层 07和栅绝缘层 06上形成一层像素电极 08, 该像素电极 08 为板状电极, 如图 4d所示; 源极和漏极) , 如图 4e所示; (6)在源漏极 09和像素电极 08之上沉积第一绝缘 (PVX)层 10, 如图 4f 所示;
(7)在第一绝缘 (PVX)层 10之上形成条状公共电极 02 , 该公共电极 02为 狭缝电极, 其电极条之间形成狭缝, 如图 4g所示;
(8)在公共电极 02上形成第二绝缘 (PVX)层 11 , 如图 4h所示;
(9)在第二绝缘 (PVX)层 11上形成黑矩阵 03, 该黑矩阵 03例如覆盖形成 的薄膜晶体管、 栅线和数据线, 如图 4i所示;
(10)在第二绝缘 (PVX)层 11上制备单色量子点层 01该单色量子点层 01 对应于像素电极 08、 公共电极 02 , 位于它们的上方, 如图 4j所示;
(11)在黑矩阵 03和单色量子点层 01上形成第一保护层 12,如图 4k所示。 在上述实施例中, 由栅极 05、 栅绝缘层 06、 有源层 07 以及源漏极 09 构成的薄膜晶体管为底栅型薄膜晶体管, 但是本发明不限于此; 例如, 在另 一个实施例中还可以形成顶栅型薄膜晶体管。 在上述实施例中, 公共电极 02 位于像素电极 08之上,如上所述在其他实施例中公共电极 02和像素电极 08 还可以以其他设置方式, 本发明不限于此。 当某个亚像素单元不需要形成单 色量子点层 01时, 则在相应位置不形成单色量子点层 01而得到过孔结构。
对应地, 根据一个实施例, 以上述各单色量子点层设置在对向基板之上 的液晶显示屏为例, 对向基板的制作工艺, 如图 5a-图 5e所示, 可以包括以 下几个步骤:
(1)在对向基板 1上形成黑矩阵 03(BM)的区域,黑矩阵 03露出像素区域, 如图 5a所示;
(2)在黑矩阵 (BM)03上形成吸收层 04, 该吸收层 04覆盖黑矩阵 03露出 的像素区域, 如图 5b所示;
(3)在吸收层 04上制备单色量子点层 01 , 如图 5c所示;
(4)在单色量子点层 01上形成第二保护层 13, 如图 5d所示。
根据需要还可以在第二保护层 13上形成隔垫物 (PS)层 14,如图 5e所示。 形成吸收层 04时, 也可以使其覆盖包括黑矩阵 03。 例如, 如果每个像素单 元包括发蓝光的亚像素单元,且吸收层 04用于吸收蓝光时,则对应于该发蓝 光的亚像素单元的位置不设置该吸收层 04。 黑矩阵 03露出的像素区域, 对 应于与该对置基板组合使用的阵列基板上的亚像素单元。 当对于某个亚像素 单元不需要形成单色量子点层 01时, 在相应位置不形成单色量子点层 01而 得到过孔结构。 与本实施例中的对置基板组合使用的阵列基板可以为各种可 用模式。
图 6是各单色量子点层设置在对向基板之上的液晶显示屏的结构示意 图。
在上述制备工艺中制备单色量子点层时, 为了避免由于单色量子点堆积 会产生的淬灭现象, 导致量子产率降低的问题。 本发明实施例提供的液晶显 示屏中的各单色量子点层采用有机修饰物对单色量子点进行表面修饰的方 式, 增加单色量子点在有机溶剂中的分散性, 并采用有机修饰物与含有双键 的可聚合单体发生聚合反应生成高分子聚合物网络的方式, 使单色量子点能 够更加稳定的分散于高分子聚合物网络中, 防止量子点的堆积, 增加量子点 的量子产率, 以提高量子激发光效。 另外, 高分子聚合物网络可以隔绝空气 与单色量子点, 避免单色量子点与氧气接触, 增加了量子点的使用寿命。
本发明实施例还提供了一种单色量子点层的制备方法, 如图 7所示, 包 括以下几个步骤:
5701、 将包括经有机修饰物表面修饰的单色量子点 011以及含有双键的 可聚合单体 012的混合物(如图 8a所示)涂覆到基板上。
该基板可以为玻璃基板、 石英基板或塑料基板等。 该有机修饰物含有羟 基官能团以及硫氢键, 有机修饰物的一端含有的硫氢键会附着在单色量子点 上, 通过柔性链相连的另一端含有的羟基官能团能够与双键发生交联反应, 生成高分子聚合物网络, 在这样的形态下能够稳定单色量子点分子的核壳结 构。
5702、 例如采用紫外光照射或加热的方式, 使在单色量子点表面的有机 修饰物和可聚合单体发生聚合反应,生成高分子聚合物网络(如图 8b所示), 单色量子点均匀地^:于高分子聚合物网络内。
在一个示例中, 步骤 S701可通过如下方式实现。
(1)将单色量子点、 有机修饰物以及有机溶剂进行混合, 然后加入可聚合 单体, 得到混合溶液。
例如, 单色量子点所占质量比可在 1%-3%, 单色量子点与有机修饰物的 摩尔比可为 1:10。 例如, 单色量子点的材料可以选用 Π- VI族的 CdS、 CdSe、 CdTe、 ZnO、 ZnSe、 ZnTe和 III- V族 GaAs、 GaP、 GaAs、 GaSb、 HgS、 HgSe、 HgTe、 InAs、 InP、 InSb、 AlAs、 A1P、 AlSb等材料中的一种或几种。
例如, 有机修饰物的材料可以选用链状硫氢烷基羟基衍生物, 例如分子 结构为: HS-CnH2n-OH的材料。
例如, 有机溶剂可以选用诸如丙二醇甲醚醋酸酯的常用有机溶剂, 在此 不做限定。
例如, 含双键的可聚合单体可以选用乙烯酸衍生物, 该衍生物可以含有 二至四个双键官能团, 例如分子结构如下的材料:
0
H¾C=C— C-0-C H^^-0-G -G=C
" H 『、 4" ^ H
Figure imgf000012_0001
. H ^ — ― .
H'j 二 C— L. "O— C— C^H¾-. "-0— C -C=GH->
- H I ! Ά (N H
H-C-CrH¾,-0-G -G二 CH>
^ H 、 其中, n=l,2,3,4,5,6,7或 8。
(2)将混合溶液旋涂到基板上。
(3)例如采用抽真空方式, 去除混合溶液中的有机溶剂, 得到涂敷在基板 上的经有机修饰物表面修饰的单色量子点以及可聚合单体的混合物。
若在步骤 S702 中采用紫外光照射的方式, 使在单色量子点表面的有机 修饰物和可聚合单体发生聚合反应, 生成高分子聚合物网络, 那么在包括经 有机修饰物表面修饰的单色量子点以及可聚合单体的混合物中还可以添加光 引发剂, 以便加快聚合反应的反应速度。 例如, 光引发剂包括过氧化二苯甲 酰、 过氧化十二酰、 偶氮二异丁腈、 偶氮二异庚腈、 过氧化二碳酸二异丙酯 和过氧化二碳酸二环己酯中之一或组合。
例如, 链状硫氢烷基羟基衍生物和乙烯酸衍生物发生聚合的过程如下, 其中, 乙烯酸衍生物中的一个双键和有机修饰物含有的羟基官能团发生聚合 反应, R3和 R4表示的其他含双键的物质发生聚合反应, 最终形成高分子聚合物网络。
Figure imgf000013_0001
本发明的实施例还提供了一种显示装置, 包括本发明实施例提供的上述 液晶显示屏, 由于该装置解决问题的原理与前述一种液晶显示屏相似, 因此 该装置的实施可以参见其的实施, 重复之处不再赘述。
根据本发明实施例提供的一种液晶显示屏、 显示装置及单色量子点层的 制备方法, 在液晶面板内设置有多个像素单元, 每个像素单元均具有多个显 示不同颜色的亚像素单元, 在各像素单元的至少一个颜色的亚像素单元对应 的位置设置有单色量子点层, 该单色量子点层在受背景光激发后发出对应该 亚像素单元颜色的单色光。 本发明实施例采用量子点层代替现有的彩色树脂 作为彩色滤光片将背景光转化成单色光, 由于量子点发射光语窄并且发光效 率高, 可以将背景光高效地转化为单色光, 可以提高液晶显示屏的色域, 增 强色彩饱和度, 提高显示屏的显示品质。 采用有机修饰物修饰单色量子点表 面的方式可以增加量子点在有机溶剂中的分散性, 且采用在单色量子点表面 的有机修饰物和含有双键的可聚合单体发生聚合反应生成高分子聚合物网络 的方式, 使单色量子点能够更加稳定的分散于高分子聚合物网络中, 防止量 子点的堆积, 增加量子点的量子产率, 以提高量子激发光效。 另外, 高分子 聚合物网络可以隔绝空气与单色量子点, 避免单色量子点与氧气接触, 增加 了量子点的使用寿命。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种液晶显示屏, 包括: 对向基板、 阵列基板以及位于所述对向基板 和所述阵列基板之间的液晶层, 所述液晶显示屏上设置有多个像素单元, 每 个所述像素单元具有多个显示不同颜色的亚像素单元, 其中,
在各像素单元的至少一个颜色的亚像素单元对应的对向基板或者阵列基 板的位置, 设置有单色量子点层, 所述单色量子点层在受背景光激发后发出 对应所述亚像素单元颜色的单色光;
所述单色量子点层包括高分子聚合物网络以及均勾 ^:于所述高分子聚 合物网络内的单色量子点; 所述高分子聚合物网络是由在单色量子点表面的 有机修饰物和含有双键的可聚合单体发生聚合反应生成的, 所述有机修饰物 含有羟基官能团以及疏氢键。
2、如权利要求 1所述的液晶显示屏, 其中, 所述单色量子点层位于所述 阵列基板面向所述液晶层的一侧, 或位于所述对向基板面向所述液晶层的一 侧。
3、如权利要求 1或 2所述的液晶显示屏, 其中, 所述阵列基板面向所述 液晶层的一侧还具有公共电极和像素电极, 所述单色量子点层位于所述阵列 基板的像素电极和公共电极之上, 且所述单色量子点层与所述公共电极和像 素电极绝缘。
4、 如权利要求 1-3任一所述的液晶显示屏, 还包括: 位于所述阵列基板 背离所述液晶层一侧的发射背景光为蓝光的背光模组。
5、如权利要求 4所述的液晶显示屏, 其中,每个所述像素单元均具有显 示 N个不同颜色的亚像素单元,其中 N-1个颜色的亚像素单元分别设置有所 述单色量子点层, N为大于等于 2的正整数。
6、 如权利要求 4所述的液晶显示屏, 其中, 在所述单色量子点层之上, 对应各设置有单色量子点层的亚像素单元的位置,还具有吸收蓝光的吸收层。
7、 如权利要求 6所述的液晶显示屏, 其中, 所述吸收层的材料为 5-(1- 甲基 -2-吡咯次甲基)若丹宁或其衍生物。
8、 如权利要求 1-7任一所述的液晶显示屏, 其中, 所述单色量子点层在 受背景光激发后发出红光、 绿光、 黄光、 橙光或青光。
9、 如权利要求 1-8任一项所述的液晶显示屏, 其中, 所述单色量子点的 材料为 CdS、 CdSe、 CdTe、 ZnO、 ZnSe、 ZnTe、 GaAs、 GaP、 GaAs、 GaSb、 HgS、 HgSe、 HgTe、 InAs、 InP、 InSb、 AlAs、 A1P或 AlSb。
10、 如权利要求 1-9任一项所述的液晶显示屏, 其中, 所述有机修饰物 的材料为链状硫氢烷基羟基衍生物。
11、 如权利要求 1-10任一项所述的液晶显示屏, 其中, 所述可聚合单体 的材料为乙烯酸衍生物。
12、 一种显示装置, 包括如权利要求 1-11中任一项所述的液晶显示屏。
13、 一种单色量子点层的制备方法, 包括:
将包括经有机修饰物表面修饰的单色量子点以及含有双键的可聚合单体 的混合物涂覆到基板上, 所述有机修饰物含有羟基官能团以及硫氢键;
使在所述单色量子点表面的有机修饰物和可聚合单体发生聚合反应, 生 成高分子聚合物网络, 所述单色量子点均匀地分散于所述高分子聚合物网络 内。
14、如权利要求 13所述的方法, 其中, 所述将包括经有机修饰物表面修 饰的单色量子点以及含有双键的可聚合单体的混合物涂覆到基板上, 包括: 将所述单色量子点、 有机修饰物以及有机溶剂进行混合, 然后加入可聚 合单体, 得到混合溶液;
将所述混合溶液旋涂到所述基板上;
去除所述混合溶液中的有机溶剂, 得到涂覆在基板上的包括经有机修饰 物表面修饰的单色量子点以及可聚合单体的混合物。
15、 如权利要求 14所述的方法, 其中, 所述单色量子点所占质量比在 1%-3%, 所述单色量子点与所述有机修饰物的摩尔比为 1:10。
16、 如权利要求 13-15任一项所述的方法, 其中, 所述单色量子点的材 料为 CdS、 CdSe、 CdTe、 ZnO、 ZnSe、 ZnTe、 GaAs、 GaP、 GaAs、 GaSb、
HgS、 HgSe、 HgTe、 InAs、 InP、 InSb、 AlAs、 A1P或 AlSb。
17、 如权利要求 13-16任一项所述的方法, 其中, 所述有机修饰物的材 料为链状硫氢烷基羟基衍生物。
18、 如权利要求 13-17任一项所述的方法, 其中, 所述可聚合单体的材 料为乙烯酸衍生物。
19、 如权利要求 13-18任一项所述的方法, 其中, 通过紫外光照射或加 热使在所述单色量子点表面的有机修饰物和可聚合单体发生聚合反应。
PCT/CN2013/079531 2013-05-17 2013-07-17 液晶显示屏、显示装置及单色量子点层的制备方法 WO2014183334A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/347,884 US9323115B2 (en) 2013-05-17 2013-07-17 Method for preparing liquid crystal display panel, display device and monochromatic quantum dot layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310184787.7A CN103293745B (zh) 2013-05-17 2013-05-17 液晶显示屏、显示装置及单色量子点层的制备方法
CN201310184787.7 2013-05-17

Publications (1)

Publication Number Publication Date
WO2014183334A1 true WO2014183334A1 (zh) 2014-11-20

Family

ID=49094899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079531 WO2014183334A1 (zh) 2013-05-17 2013-07-17 液晶显示屏、显示装置及单色量子点层的制备方法

Country Status (3)

Country Link
US (1) US9323115B2 (zh)
CN (1) CN103293745B (zh)
WO (1) WO2014183334A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353555A (zh) * 2015-12-08 2016-02-24 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103309087A (zh) * 2013-06-08 2013-09-18 北京京东方光电科技有限公司 一种阵列基板、液晶显示面板和显示装置
CN103346266B (zh) * 2013-06-21 2016-03-30 深圳市华星光电技术有限公司 一种发光器件、显示面板及其制造方法
CN103353629A (zh) * 2013-07-17 2013-10-16 杭州纳晶科技有限公司 彩色滤光片和显示屏
CN103487857A (zh) * 2013-10-11 2014-01-01 张家港康得新光电材料有限公司 量子点薄膜及背光模组
CN105018092A (zh) * 2014-04-29 2015-11-04 Tcl集团股份有限公司 一种量子点/聚合物复合物及其制备方法及用途
CN104090361B (zh) 2014-06-24 2017-02-15 京东方科技集团股份有限公司 有源基板及显示装置
KR102342178B1 (ko) * 2014-09-05 2021-12-23 스미또모 가가꾸 가부시키가이샤 경화성 조성물
CN104330918A (zh) * 2014-11-28 2015-02-04 京东方科技集团股份有限公司 一种显示面板和显示装置
KR101983426B1 (ko) * 2015-01-23 2019-09-11 삼성디스플레이 주식회사 감광성 수지 조성물 및 표시장치
CN104716145B (zh) * 2015-03-27 2018-03-20 京东方科技集团股份有限公司 一种显示基板及其制造方法、显示装置
CN104820253A (zh) * 2015-05-19 2015-08-05 武汉华星光电技术有限公司 显示装置及其反射片
CN105044963B (zh) * 2015-08-11 2018-03-30 深圳市华星光电技术有限公司 显示面板及其制作方法
CN105355726B (zh) * 2015-10-08 2018-05-01 深圳市华星光电技术有限公司 量子点层图形化的方法及量子点彩膜的制备方法
CN105204104B (zh) 2015-10-30 2018-05-25 京东方科技集团股份有限公司 滤光片及其制作方法、显示基板及显示装置
CN105404046B (zh) * 2015-12-04 2018-06-01 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法
DE102015121720A1 (de) * 2015-12-14 2017-06-14 Osram Opto Semiconductors Gmbh Konversionselement, optoelektronisches Bauelement und Verfahren zur Herstellung eines Konversionselements
CN105609535B (zh) * 2016-01-15 2018-11-13 京东方科技集团股份有限公司 显示基板、显示装置及其制作方法
CN105467670A (zh) * 2016-02-19 2016-04-06 京东方科技集团股份有限公司 一种阵列基板、显示面板及液晶显示器
WO2017154747A1 (ja) * 2016-03-10 2017-09-14 シャープ株式会社 液晶表示装置及び配向膜
CN105733557B (zh) * 2016-04-22 2017-12-29 深圳市华星光电技术有限公司 配体修饰量子点材料、液晶显示面板的制作方法及液晶显示面板
KR102638864B1 (ko) * 2016-12-30 2024-02-21 엘지디스플레이 주식회사 광 흡수시트 및 이를 포함하는 표시장치
CN106654068B (zh) * 2017-01-20 2018-10-02 京东方科技集团股份有限公司 一种有机电致发光器件的制作方法及相应装置
CN107102468A (zh) * 2017-05-08 2017-08-29 京东方科技集团股份有限公司 一种显示装置及其制备方法
CN107175815B (zh) 2017-07-13 2020-05-19 上海天马微电子有限公司 一种透射式液晶面板与3d打印装置
US10673715B2 (en) 2017-07-20 2020-06-02 Servicenow, Inc. Splitting network discovery payloads based on degree of relationships between nodes
KR102027186B1 (ko) 2017-09-11 2019-10-01 서울대학교산학협력단 광변조 양자점 컬러 디스플레이 및 이의 제조방법
US10578934B2 (en) * 2018-04-27 2020-03-03 A.U. Vista, Inc. Color sequential display device and display method thereof
CN109613736A (zh) * 2019-02-14 2019-04-12 惠科股份有限公司 显示面板及其制作方法,以及显示装置
CN111933667B (zh) * 2020-08-12 2023-09-05 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
US20240182782A1 (en) * 2021-03-31 2024-06-06 Sony Group Corporation Materials, process and fabrication technology for quantum dot color conversion filter by sensitized polymerization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060238671A1 (en) * 2005-04-20 2006-10-26 Samsung Electronics Co., Ltd. Photo-luminescence liquid crystal display
CN101343536A (zh) * 2008-07-16 2009-01-14 东北师范大学 表面功能化纳米微粒及其聚合物纳米复合材料的制备方法
US20110281388A1 (en) * 2008-11-13 2011-11-17 Hcf Partners, Lp Cross-Linked Quantum Dots and Methods for Producing and Using the Same
CN102492068A (zh) * 2011-12-09 2012-06-13 江苏康纳思光电科技有限公司 一种大分子单体修饰的量子点、制备方法及其应用
CN102944943A (zh) * 2012-11-09 2013-02-27 京东方科技集团股份有限公司 量子点彩色滤光片、液晶面板及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110071B1 (ko) * 2005-04-29 2012-02-24 삼성전자주식회사 자발광 lcd
KR20100041122A (ko) * 2008-10-13 2010-04-22 삼성전자주식회사 액정 표시 장치
US20110303940A1 (en) * 2010-06-14 2011-12-15 Hyo Jin Lee Light emitting device package using quantum dot, illumination apparatus and display apparatus
CN103091895B (zh) * 2013-01-22 2015-12-09 北京京东方光电科技有限公司 一种显示装置及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060238671A1 (en) * 2005-04-20 2006-10-26 Samsung Electronics Co., Ltd. Photo-luminescence liquid crystal display
CN101343536A (zh) * 2008-07-16 2009-01-14 东北师范大学 表面功能化纳米微粒及其聚合物纳米复合材料的制备方法
US20110281388A1 (en) * 2008-11-13 2011-11-17 Hcf Partners, Lp Cross-Linked Quantum Dots and Methods for Producing and Using the Same
CN102492068A (zh) * 2011-12-09 2012-06-13 江苏康纳思光电科技有限公司 一种大分子单体修饰的量子点、制备方法及其应用
CN102944943A (zh) * 2012-11-09 2013-02-27 京东方科技集团股份有限公司 量子点彩色滤光片、液晶面板及显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353555A (zh) * 2015-12-08 2016-02-24 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法
WO2017096710A1 (zh) * 2015-12-08 2017-06-15 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法
CN105353555B (zh) * 2015-12-08 2018-08-14 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法

Also Published As

Publication number Publication date
US9323115B2 (en) 2016-04-26
CN103293745B (zh) 2016-04-20
CN103293745A (zh) 2013-09-11
US20150002788A1 (en) 2015-01-01

Similar Documents

Publication Publication Date Title
WO2014183334A1 (zh) 液晶显示屏、显示装置及单色量子点层的制备方法
WO2014166179A1 (zh) 液晶显示屏、显示装置及量子点层图形化的方法
KR101793741B1 (ko) 표시장치
KR101686713B1 (ko) 양자점-고분자 복합체의 제조 방법, 양자점-고분자 복합체, 이를 포함하는 광 변환 필름, 백라이트 유닛 및 표시장치
US9766392B2 (en) Optical member, display device having the same and method of fabricating the same
US9110203B2 (en) Display device with light guide plate and optical path conversion unit
WO2017075879A1 (zh) 量子点彩膜基板及其制作方法与液晶显示装置
US10534232B2 (en) Array substrate and manufacturing method thereof
US20150109560A1 (en) Liquid crystal display and display device
KR101786097B1 (ko) 광학 부재, 이를 포함하는 표시장치 및 이의 제조방법
KR102390960B1 (ko) 표시 장치
WO2017092091A1 (zh) 量子点彩膜基板的制作方法
WO2017059629A1 (zh) 量子点彩膜的制备方法
TW201307954A (zh) 光學構件及包含其之顯示裝置與光學構件之製造方法
WO2018227678A1 (zh) 蓝光吸收截止膜及蓝光显示装置
JP2016048602A (ja) 表示装置
JP2016042449A (ja) 表示装置
WO2016169069A1 (zh) 偏光片、基于量子效应的显示面板及显示装置
CN111290160B (zh) 一种显示结构和显示装置
US20160377788A1 (en) Backlight module and liquid crystal display device using the same
CN203241664U (zh) 液晶显示屏及显示装置
CN104730619A (zh) 导光板及具有该导光板的背光模块和液晶显示器
KR101956058B1 (ko) 표시장치
CN109491137B (zh) 光调制量子点彩色显示器及其制造方法
KR101905838B1 (ko) 표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14347884

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884883

Country of ref document: EP

Kind code of ref document: A1