WO2014181799A1 - 円偏光分離フィルム、円偏光分離フィルムの製造方法、赤外線センサー、ならびに光を利用した検知システムおよび検知方法 - Google Patents

円偏光分離フィルム、円偏光分離フィルムの製造方法、赤外線センサー、ならびに光を利用した検知システムおよび検知方法 Download PDF

Info

Publication number
WO2014181799A1
WO2014181799A1 PCT/JP2014/062258 JP2014062258W WO2014181799A1 WO 2014181799 A1 WO2014181799 A1 WO 2014181799A1 JP 2014062258 W JP2014062258 W JP 2014062258W WO 2014181799 A1 WO2014181799 A1 WO 2014181799A1
Authority
WO
WIPO (PCT)
Prior art keywords
circularly polarized
polarized light
light
layer
liquid crystal
Prior art date
Application number
PCT/JP2014/062258
Other languages
English (en)
French (fr)
Inventor
市橋 光芳
渉 馬島
和宏 沖
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013098634A external-priority patent/JP6254769B2/ja
Priority claimed from JP2013098635A external-priority patent/JP6254770B2/ja
Priority claimed from JP2013098633A external-priority patent/JP6254768B2/ja
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201480025532.9A priority Critical patent/CN105190382B/zh
Priority to DE112014002328.0T priority patent/DE112014002328T5/de
Publication of WO2014181799A1 publication Critical patent/WO2014181799A1/ja
Priority to US14/932,346 priority patent/US20160054496A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/544No clear coat specified the first layer is let to dry at least partially before applying the second layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8848Polarisation of light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/86Investigating moving sheets

Definitions

  • the present invention relates to a circularly polarized light separating film, a method for producing a circularly polarized light separating film, an infrared sensor, and a detection system and a detection method using light.
  • a detection system using polarized light in the infrared region is conventionally known.
  • a silicon substrate is irradiated with polarized infrared light through a first linear polarization filter, and reflected or transmitted light from the silicon substrate is received through a second linear polarization filter.
  • the crack of the silicon substrate is detected.
  • This technique means that the reflected light or transmitted light in a place where there is no crack is linearly polarized light, and the amount of light that can be sensed is reduced except when a specific condition is satisfied through the second linearly polarizing filter.
  • the fact that light that can be sensed through the second linear polarization filter is generated by irregular reflection is utilized.
  • Patent Document 2 in an automatic water faucet device that detects a human hand or object using infrared light, a first polarizing means that transmits a linearly polarized component of infrared light to be projected, and infrared light that is received
  • An apparatus is disclosed in which erroneous detection is prevented by using a second polarizing means that transmits a linearly polarized component of light.
  • Patent Document 3 discloses a technique using circularly polarized light in the technique of Patent Document 1. The use of circularly polarized light eliminates the need to adjust the polarization direction of the second linear polarizing filter.
  • Detecting systems using polarized light in the infrared light wavelength region may be used in various light environments.
  • An object of the present invention is to provide a detection system that uses polarized light in the infrared light wavelength region and has high sensitivity regardless of the surrounding environment and few false detections.
  • Another object of the present invention is to provide a detection method using polarized light in the infrared light wavelength range, which has high sensitivity regardless of the surrounding environment and has few false detections.
  • this invention makes it a subject to provide the film which can be utilized for such a system.
  • the present inventors have examined a detection system using polarized light in the infrared wavelength region. And even if it is a case where it detects using the sensor which has a light receiving element which detects infrared rays, it discovered that the light receiving element might also detect the light of visible region, and has caused the false detection. Based on this finding, the inventors have further studied and completed the present invention. That is, the present invention provides the following [1] to [26].
  • a circularly polarized light separating film that selectively transmits either right circularly polarized light or left circularly polarized light in at least a part of the near-infrared light wavelength range, and transmits light in at least a part of the visible light wavelength range.
  • a circularly polarized light separating film comprising a visible light blocking layer that reflects or absorbs and a circularly polarized light separating layer that selectively transmits either right circularly polarized light or left circularly polarized light in at least a part of the near infrared wavelength region.
  • At least a part of the near-infrared light wavelength region is a wavelength region having a wavelength of 800 to 1500 nm and a width of 50 nm or more, and at least a part of the visible light wavelength region is a wavelength of 380 to 780 nm and a width of 50 nm or more.
  • the circularly polarized light separating film according to any one of [1] to [7], and light having a wavelength that allows the circularly polarized light separating film to selectively transmit either right circularly polarized light or left circularly polarized light.
  • Infrared sensor including a light receiving element capable of detecting light.
  • a system for detecting the object by irradiating the object with light and detecting reflected light or transmitted light of the object derived from the light irradiation A light source, a circularly polarized light separating film 1, a circularly polarized light separating film 2, and a light receiving element that detects light having a wavelength in the near-infrared light wavelength region, Both the circularly polarized light separating film 1 and the circularly polarized light separating film 2 selectively transmit either the right circularly polarized light or the left circularly polarized light in at least a part of the near infrared wavelength region, The circularly polarized light separating film 1 may also serve as the circularly polarized light separating film 2, In the light source, the circularly polarized light separating film 1, the circularly polarized light separating film 2, and the light receiving element, the light supplied from the light source passes through the circularly polarized light separating film 1, and is irradiated on the object.
  • the transmitted or reflected light is arranged so as to pass through the circularly polarized light separating film 2 and be detected by the light receiving element,
  • the system wherein the circularly polarized light separating film 2 is the circularly polarized light separating film according to any one of [1] to [7].
  • the object is a transparent film
  • the light source, the circularly polarized light separating film 1, the circularly polarized light separating film 2, and the light receiving element detect that the transmitted light of the object derived from the light of the light source passes through the circularly polarized light separating film 2 and is detected by the light receiving element.
  • the system according to any one of [17] to [19], arranged as described above.
  • a method of irradiating an object with light and detecting the object by reflected light or transmitted light of the object derived from the light irradiation (1) irradiating the object with circularly polarized light in a near-infrared light wavelength region that selectively includes either right-handed circularly polarized light or left-handed circularly polarized light; (2) The light in which at least a part of the light generated by the circularly polarized light reflected by the object or transmitted through the object is transmitted through the circularly polarized light separating layer 2 and the visible light blocking layer 2 is near infrared.
  • the circularly polarized light separating layer 2 selectively transmits either the right circularly polarized light or the left circularly polarized light in at least a part of the near infrared wavelength region
  • the visible light blocking layer 2 is a method of reflecting or absorbing light in at least a part of the visible light wavelength range.
  • the circularly polarized light in the near-infrared wavelength region of (1) is light formed by transmitting light through the visible light blocking layer 1 and the circularly polarized light separating layer 1,
  • the circularly polarized light separating layer 1 is a layer that selectively transmits either right circularly polarized light or left circularly polarized light in at least a part of the near-infrared light wavelength region, and may also serve as the circularly polarized light separating layer 2
  • the visible light blocking layer 1 is a layer that reflects or absorbs light in at least a part of the visible light wavelength range, and may also serve as the visible light blocking layer 2. Any of [23] to [25] The method according to claim 1.
  • a detection system and a detection method using polarized light in the infrared light wavelength region which have high sensitivity regardless of the surrounding environment and have few false detections. Furthermore, a circularly polarized light separating film that can be used in the detection system and the detection method is provided.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • “selective” for circularly polarized light means that the amount of light of either the right circularly polarized component or the left circularly polarized component of the irradiated light is greater than that of the other circularly polarized component.
  • the degree of circular polarization of light is preferably 0.3 or more, more preferably 0.6 or more, and even more preferably 0.8 or more. More preferably, it is substantially 1.0.
  • sense for circularly polarized light means right circularly polarized light or left circularly polarized light.
  • the sense of circularly polarized light is right-handed circularly polarized light when the electric field vector tip turns clockwise as time increases when viewed as the light travels toward you, and left when it turns counterclockwise. Defined as being circularly polarized.
  • the term “sense” is sometimes used for the twist direction of the spiral of the cholesteric liquid crystal.
  • the selective reflection by the cholesteric liquid crystal reflects right circularly polarized light when the twist direction (sense) of the cholesteric liquid crystal spiral is right, transmits left circularly polarized light, and reflects left circularly polarized light when the sense is left, Transmits circularly polarized light.
  • Visible light is light having a wavelength that can be seen by human eyes, and indicates light having a wavelength range of 380 nm to 780 nm.
  • Infrared rays are electromagnetic waves in the wavelength range that are longer than visible light and shorter than radio waves.
  • Near-infrared light is generally an electromagnetic wave having a wavelength range of 700 nm to 2500 nm.
  • the near infrared light preferably has a wavelength range of 780 nm to 1500 nm, or 800 nm to 1500 nm.
  • any wavelength range corresponding to the wavelength range of near-infrared light used in an infrared camera, an infrared photoelectric sensor, or infrared communication may be used.
  • the measurement of the light intensity required in connection with the calculation of the light transmittance may be performed by using, for example, a normal visible and near infrared spectrum meter and measuring the reference as air.
  • the polarization state of each wavelength of light can be measured using a spectral radiance meter or a spectrometer equipped with a circularly polarizing plate.
  • the intensity of light measured through the right circularly polarizing plate corresponds to I R
  • the intensity of light measured through the left circularly polarizing plate corresponds to I L.
  • ordinary light sources such as incandescent bulbs, mercury lamps, fluorescent lamps, and LEDs emit almost natural light, but the characteristics that are attached to these to produce the polarization of the polarization state control member are, for example, a polarization phase difference manufactured by AXOMETRICS. It can be measured using an analyzer AxoScan or the like.
  • a circularly polarizing plate is attached to an illuminance meter or an optical spectrum meter, it can be measured.
  • the ratio can be measured by attaching a right circular polarized light transmission plate, measuring the right circular polarized light amount, attaching a left circular polarized light transmission plate, and measuring the left circular polarized light amount.
  • infrared light particularly light in the near-infrared wavelength region is used as light.
  • Polarization may be used as infrared rays.
  • polarized light By using polarized light as infrared light for detection, the optical properties of the object as a contrast to the background in the detection of reflected and transmitted light from the object through a film that is selective in polarization transmission Can be reflected, and an object having a specific optical property can be detected, or a detection with few malfunctions can be performed.
  • reflected light and transmitted light are used to mean scattered light and diffracted light.
  • circularly polarized light is used as polarized light for detection.
  • circularly polarized light is used to detect reflected light and transmitted light from an object, it becomes easier to adjust the orientation of the film for polarization detection than when linearly polarized light is used as polarized light.
  • Examples of objects that can be detected by the detection system or detection method of the present invention include transparent (birefringent) films, cracks or scratches on a specular reflector (such as a metal plate), and foreign matters on the specular reflector.
  • Security applications include use as human sensors such as pedestrians at night and human sensors in automatic doors and elevators.
  • FIG. 1 shows an arrangement example of a light source, a light receiving element, and a circularly polarized light separating film for detecting an object.
  • a light source, a circularly polarized light separating film on the light source side (sometimes referred to as a circularly polarized light separating film 1 in this specification), an object, a circularly polarized light separating film on the light receiving element side (in this specification, circularly polarized light separating film).
  • the light receiving element is arranged in this order, and the transmitted light of the object is detected.
  • a transparent film particularly, one having birefringence
  • it can be used to detect the passage of a film in a film production line.
  • glass is arranged between the object and the circularly polarized light separating film 1 (1 in the figure) and between the object and the circularly polarized light separating film 2 (1 in the figure).
  • the influence of the reflected light from the glass can be greatly reduced.
  • the circularly polarized light separating film 2 may include a visible light blocking layer, or a film including the visible light blocking layer may be disposed between the circularly polarized light separating film 2 and the light receiving element. With such a configuration, high sensitivity can be obtained regardless of the surrounding environment.
  • the circularly polarized light separating film 2 includes a visible light blocking layer
  • the visible light blocking layer is preferably arranged so that the visible light blocking layer is on the light receiving element side and the circularly polarized light separating layer is on the object side.
  • the circularly polarized light separating film 1 includes a visible light blocking layer, or a film including the visible light blocking layer is disposed between the circularly polarized light separating film 1 and the light source.
  • the visible light blocking layer is preferably disposed on the light source side and the circularly polarized light separating layer on the object side.
  • Arrangements 2 to 4 are structures that detect reflected light, and the circularly polarized light separating film 1 also serves as the circularly polarized light separating film 2, that is, the circularly polarized light separating film 1 and the circularly polarized light separating film 2 are the same. It is.
  • the light source and the light receiving element are arranged on the same side of the circularly polarized light separating film (1 in the figure) as viewed from the object.
  • the light receiving element may be provided with a light blocking layer or the like between the light receiving element and the light source as shown in the figure so that the light receiving element is not affected by the direct light from the light source.
  • the arrangement 2 an example is shown in which a transparent film (particularly one having birefringence) is an object. Glass is disposed between the object and the circularly polarized light separating film, but depending on the use of the circularly polarized light separating film, the influence of the reflected light from the glass can be greatly reduced.
  • the paper on the specular reflector is detected.
  • the light that has become circularly polarized light of either sense through the circularly polarized light separating film (1 in the figure) is reflected as the circularly polarized light of the other sense by the specular reflector, although the light cannot be transmitted through the film and reach the light receiving element, the light irregularly reflected by the paper contains the light component that can be transmitted through the circularly polarized light separating film.
  • the arrangement 4 an example in which a foreign object or a crack of a specular reflector is detected as an object is shown, but the principle of detection (sensing) is the same as that in the arrangement 3.
  • Arrangement 5 is a configuration for detecting reflected light, and is an example in which different films are used for the circularly polarized light separating film 1 and the circularly polarized light separating film 2.
  • the light source (2 in the figure) and the circularly polarized light separating film 1 (1 in the figure) may be integrated to form a light source device, and the light receiving element (3 in the figure) and The circularly polarized light separating film 2 (1 in the figure) may be integrated to constitute an infrared sensor.
  • the human is detected at the arrangement 5. For example, a pedestrian at night or a person in an elevator can be preferably detected with such an arrangement.
  • the circularly polarized light separating film may include a visible light blocking layer, or a film including the visible light blocking layer may be disposed between the circularly polarized light separating film and the light source and the light receiving element. With such a configuration, high sensitivity can be obtained regardless of the surrounding environment.
  • the circularly polarized light separating film includes a visible light blocking layer
  • the circularly polarized light separating film is preferably disposed so that the visible light blocking layer is on the light source and light receiving element side and the circularly polarized light separating layer is on the object side.
  • the circularly polarized light separating film 2 may include a visible light blocking layer, or a film including the visible light blocking layer may be disposed between the circularly polarized light separating film 2 and the light receiving element. With such a configuration, high sensitivity can be obtained regardless of the surrounding environment.
  • the circularly polarized light separating film 2 includes a visible light blocking layer
  • the circularly polarized light separating film 2 is preferably disposed so that the visible light blocking layer is on the light receiving element side and the circularly polarized light separating layer side is on the object side.
  • the circularly polarized light separating film 1 it is also preferable to include a visible light blocking layer in the circularly polarized light separating film 1 or to dispose a film including a visible light blocking layer between the circularly polarized light separating film 1 and the light source.
  • the visible light blocking layer is preferably disposed on the light source side and the circularly polarized light separating layer on the object side.
  • the optical path (optical axis) of the reflected light or transmitted light of the object derived from the light source forms an angle with the normal direction of the circularly polarized light separating film 2.
  • the angle of the optical path (optical axis) of the light with respect to the circularly polarized light separating film 2 may be about 70 ° to 89 °, 80 ° to 89 °, or 85 °.
  • the circularly polarized light reflected by the circularly polarized light separating film 2 after reflecting or transmitting a specular reflector or the like corresponding to the background of the object is not derived from the object by reflecting the background again. Light detection can be reduced.
  • the circularly polarized light separating film is a film that selectively transmits either right circularly polarized light or left circularly polarized light in at least a part of the near-infrared light wavelength region.
  • a circularly polarized light separating film separates light (natural light, non-polarized light) in a specific near-infrared wavelength region incident from one side into right-handed circularly polarized light and left-handed circularly polarized light, and selectively selects either one on the other side. It is preferable that it can permeate. At this time, the other circularly polarized light may be reflected or absorbed.
  • the circularly polarized light separating film may selectively transmit either right circularly polarized light or left circularly polarized light with respect to light incident from any surface, and light incident from either surface. Only the right circularly polarized light or the left circularly polarized light may be selectively transmitted only with respect to the light, and the same selective transmission may not be exhibited with respect to the light incident from the other side surface. In the latter case, the arrangement may be such that a desired circular polarization selectivity can be obtained in use. Further, the circularly polarized light separating film may be separated into right circularly polarized light and left circularly polarized light, and either one of the light incident from any surface may be selectively transmitted to the other side surface.
  • the circularly polarized light separating film has a light transmittance ⁇ (transmitted) of circularly polarized light having the same sense as the incident light when either the right or left circularly polarized light is incident in a region of 50 nm width or more in the wavelength range of 800 to 1500 nm. If the light intensity of circularly polarized light) / (light intensity of incident circularly polarized light) ⁇ 100 ⁇ is 70% or more, 80% or more, 90% or more, 95% or more, 99% or more, preferably substantially 100%. Good.
  • Light intensity) ⁇ 100 ⁇ is 30% or less, 20% or less, 10% or less, 5% or less, 1% or less, preferably substantially 0%.
  • the circularly polarized light separating film preferably has a low light transmittance in the visible light wavelength region.
  • the circularly polarized light separating film 2 used on the light receiving element side preferably has a low light transmittance in the visible light wavelength region.
  • the circularly polarized light separating film used in a system or method that does not separately use a film including a visible light blocking layer as described above preferably has a low light transmittance in the visible light wavelength region.
  • the transmittance of natural light (non-polarized light) may be low, and the transmittance of circularly polarized light and / or linearly polarized light is also preferably low.
  • the light transmittance may be low in a part of the visible light wavelength region, and the light transmittance may be low in the entire visible light wavelength region.
  • the average light transmittance in the wavelength region of 380 nm to 780 nm may be 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, or 5% or less.
  • the low light transmittance in the visible light wavelength range can significantly reduce light that is unnecessary for sensing (light that hinders sensing) reaching the light receiving element in a system using a circularly polarized light separating film.
  • the S / N ratio can be increased and the minimum light intensity detected by the light receiving element can be decreased.
  • the circularly polarized light separating film includes a circularly polarized light separating layer that selectively transmits either right circularly polarized light or left circularly polarized light in at least a part of the near-infrared light wavelength region. It is preferable that the circularly polarized light separating film includes a visible light blocking layer that reflects or absorbs light in at least a part of the visible light wavelength region.
  • the circularly polarized light separating film including the visible light blocking layer can be preferably used in a system or method that does not separately use a film including the visible light blocking layer.
  • the circularly polarized light separating film may contain other layers as necessary.
  • the circularly polarized light separating film 2 used on the light receiving element side includes a visible light blocking layer that reflects or absorbs light in at least a part of the visible light wavelength region, or at least in the visible light wavelength region. It may be used together with a film including a visible light blocking layer that reflects or absorbs light in part.
  • the circularly polarized light separating film 1 used on the light source side includes a visible light blocking layer that reflects or absorbs light in at least part of the visible light wavelength range, or reflects or reflects light in at least part of the visible light wavelength range. It is preferably used together with a film including a visible light blocking layer that absorbs.
  • the visible light blocking layer used on the light source side may be referred to as the visible light blocking layer 1
  • the visible light blocking layer used on the light receiving element side may be referred to as the visible light blocking layer 2.
  • each layer will be described.
  • the visible light blocking layer functions so that light in a specific visible light wavelength region does not pass through the film.
  • the visible light blocking layer preferably blocks natural light. Moreover, it is preferable to block any of non-polarized light, circularly polarized light, and linearly polarized light.
  • the circularly polarized light separating film only needs to achieve a low light transmittance in the visible light wavelength region mainly by the visible light blocking layer.
  • Examples of the visible light blocking layer include a visible light reflecting layer and a visible light absorbing layer.
  • the visible light wavelength range where the visible light blocking layer blocks light by reflection or absorption is in the wavelength range of 380 nm to 780 nm.
  • the wavelength band width of at least a part of the visible light wavelength band may be 10 nm or more, 20 nm or more, 30 nm or more, 40 nm or more, or 50 nm or more.
  • the visible light wavelength range in which light is reflected or absorbed by the visible light blocking layer includes a wavelength range in which light unnecessary for sensing (light that hinders sensing) is easily detected in the sensor (light receiving element). preferable.
  • At least a part of the visible light wavelength region may be 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more of the wavelength region of 380 nm to 750 nm, and is substantially 100%. Also good.
  • the visible light blocking layer only needs to have a high light blocking property such as light reflectivity or light absorption in at least a part of the wavelength range excluding the detection wavelength range of the sensor (light receiving element) to be used. Or what is necessary is just to have a high light-blocking property in at least one part except the light emission wavelength range of the light source to be used, normally an infrared light source.
  • a silicon photodiode used as a light receiving element (photodetector) has a sensitivity up to a visible light region which is the most present in the use environment and is a main cause of noise. A material that reflects or absorbs light is preferred.
  • the visible light blocking layer substantially does not reflect or absorb light in a near-infrared wavelength region that allows the circularly polarized light separating layer to selectively transmit either right circularly polarized light or left circularly polarized light.
  • the thickness of the visible light blocking layer is preferably 2 ⁇ m to 500 ⁇ m, more preferably 5 ⁇ m to 300 ⁇ m, and still more preferably 10 ⁇ m to 150 ⁇ m.
  • the visible light reflecting layer and the visible light absorbing layer that can be used as the visible light blocking layer will be described.
  • the visible light reflecting layer Depending on the use of a visible light reflecting layer that reflects light to block light, the temperature of the film does not increase, so that the film durability is improved and the film performance is easily maintained.
  • the visible light reflecting layer usually has a mirror-like appearance, has a positive effect on the appearance of the film, and is easy to use on a portion that is touched by human eyes even when used as a sensor component.
  • the visible light reflecting layer include a dielectric multilayer film and a layer in which a cholesteric liquid crystal phase is fixed.
  • the dielectric multilayer film is formed by laminating transparent dielectric layers having different refractive indexes of inorganic oxides and organic polymer materials. At least one of these transparent dielectric layers has a product (n ⁇ d) of the thickness (d) and the refractive index (n) of the transparent dielectric layer, which is a quarter of the wavelength ( ⁇ ) of the light to be reflected.
  • n ⁇ d the thickness of the dielectric layer
  • the refractive index of the transparent dielectric layer
  • the transparent dielectric layer is not particularly limited as long as it is transparent in the infrared light wavelength region to be used.
  • TiO 2 , SiO 2 , Ta 2 O 5 or the like can be suitably used as the inorganic oxide in the dielectric multilayer film.
  • the inorganic oxide layer can be formed by sputtering or the like on the surface of glass or heat-resistant polymer film, for example.
  • examples of the organic polymer material include polycarbonate, acrylic resin, polyester, epoxy resin, polyurethane, polyamide, polyolefin, silicone (including modified silicone such as silicone polyurea), and the like, and Japanese National Patent Publication No. 9-507308. It can be produced according to the method disclosed in the publication.
  • the cholesteric liquid crystal phase exhibits circularly polarized light selectively reflecting either right circularly polarized light or left circularly polarized light and transmitting the other circularly polarized light.
  • Many cholesteric liquid crystal compounds that exhibit circularly polarized light selective reflection and films formed from cholesteric liquid crystal compounds have been known, and when using a layer in which a cholesteric liquid crystal phase is fixed in a circularly polarized light separating film, those conventional techniques are used. Can be referred to.
  • the layer in which the cholesteric liquid crystal phase is fixed may be a layer in which the alignment of the liquid crystal compound in the cholesteric liquid crystal phase is maintained, and typically, the polymerizable liquid crystal compound is in the alignment state of the cholesteric liquid crystal phase.
  • the polymerizable liquid crystal compound may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
  • a layer in which a cholesteric liquid crystal phase is fixed may be referred to as a cholesteric liquid crystal layer or a liquid crystal layer.
  • the layer in which the cholesteric liquid crystal phase is fixed exhibits circularly polarized reflection derived from the helical structure of the cholesteric liquid crystal.
  • the n value and the P value are adjusted so that the center wavelength ⁇ is in the wavelength range of 380 nm to 780 nm. That's fine. Since the pitch length of the cholesteric liquid crystal phase depends on the kind of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent, the desired pitch length can be obtained by adjusting these.
  • the sense of the reflected circularly polarized light of the cholesteric liquid crystal layer coincides with the sense of the spiral.
  • the reflectivity at the reflection wavelength increases as the cholesteric liquid crystal layer becomes thicker.
  • it is saturated at a thickness of 2 to 8 ⁇ m in the visible light wavelength range, and it is reflected only on one side of circularly polarized light. Therefore, the maximum reflectance is 50%.
  • the visible light reflecting layer has the same period P
  • the spiral sense is the right cholesteric liquid crystal layer and the left cholesteric A phase difference of a half wavelength with respect to the central wavelength of circularly polarized reflection of a cholesteric liquid crystal layer in which the liquid crystal layers are laminated or the same period P and the same spiral sense cholesteric liquid crystal layer It is possible to use a laminate made of a retardation film having
  • the width of the circularly polarized reflection wavelength region is 50 nm to 100 nm for ordinary materials. Therefore, by reflecting several layers of cholesteric liquid crystal layers with different center wavelengths of reflected light with a different period P, reflection is possible. Bandwidth can be increased. Further, in one cholesteric liquid crystal layer, the reflection band can be widened by gradually changing the period P in the film thickness direction. Specific materials and methods for producing the cholesteric liquid crystal layer will be described later.
  • a visible light absorbing layer As a visible light absorbing layer, a dispersion liquid in which a colorant such as a pigment or a dye is dispersed in a solvent containing a dispersant, a binder or a monomer is used as a base material (having sufficient light transmittance in the infrared wavelength region detected by the light receiving element) A layer formed by coating on the surface of the polymer substrate, a layer formed by directly dyeing the surface of the polymer substrate with a dye, and a layer formed from a polymer material containing the dye.
  • the pigment those that do not absorb or scatter in the infrared wavelength region detected by the light receiving element are preferably used.
  • cyan, magenta, yellow, and black inks for color printing that require transparency and pigments used in red, green, and blue color filters such as liquid crystal display devices and organic LED display devices are preferably used. be able to. By mixing these pigments having different absorption maximum wavelengths, it is possible to form a layer that absorbs the entire light in the visible light wavelength region widely and sufficiently.
  • the dye a dye which does not absorb in the infrared wavelength region detected by the light receiving element and is robust against exposure to visible light is preferably used.
  • General direct dyes, acid dyes, basic dyes, mordant dyes, disperse dyes, reactive dyes, and the like can be used.
  • this dye-type absorbing layer commercially available photographic filters IR-80, IR-82, IR-84, etc. (manufactured by Fuji Film Co., Ltd.) can also be used.
  • the circularly polarized light separating film includes a circularly polarized light separating layer that selectively transmits either the right circularly polarized light or the left circularly polarized light in at least a part of the near-infrared light wavelength region.
  • the circularly polarized light separating layer used on the light source side may be referred to as the circularly polarized light separating layer 1
  • the circularly polarized light separating layer used on the light receiving element side may be referred to as the circularly polarized light separating layer 2.
  • the circularly polarized light separating film includes a circularly polarized light separating layer so that the function of selectively transmitting either the right circularly polarized light or the left circularly polarized light of the circularly polarized light separating layer is not lost by the other layers, thereby allowing near infrared light It has a function of selectively transmitting either right circularly polarized light or left circularly polarized light in at least a part of the wavelength range. That is, for example, a circularly polarized light separating film has the same sense in the same wavelength region together with a circularly polarized light separating layer that selectively transmits either right circularly polarized light or left circularly polarized light in a specific near infrared light wavelength region.
  • a circularly polarized light separating layer that reflects circularly polarized light simultaneously, or by including a layer that reflects or absorbs light (natural light) in the corresponding near-infrared light wavelength region, either right circularly polarized light or left circularly polarized light It is preferable that the functions of the individual circularly polarized light separating layers that selectively transmit one of them are not offset.
  • the near-infrared light wavelength range in which the circularly polarized light separating layer selectively transmits either the right circularly polarized light or the left circularly polarized light may be in the range of 780 nm to 1500 nm, preferably 800 nm to 1500 nm. It may be 5 nm or more, 10 nm or more, 20 nm or more, 30 nm or more, 40 nm or more, or 50 nm or more.
  • the near-infrared light wavelength range in which the circularly polarized light separating layer selectively transmits either right-handed circularly polarized light or left-handed circularly-polarized light is combined with the usage form of the circularly polarized light separating film, for example, the wavelength of light necessary for sensing It may be included, and may be 50% or more, 60% or more, 70% or more, 80% or more, 90% or more of the wavelength region of 800 nm to 1500 nm, or substantially 100%.
  • the circularly polarized light separating layer may transmit, reflect, or absorb light other than the wavelength region that selectively transmits either right circularly polarized light or left circularly polarized light.
  • the circularly polarized light separating layer selectively transmits either right circularly polarized light or left circularly polarized light, and may reflect or absorb the other circularly polarized light.
  • a layer in which a cholesteric liquid crystal phase is fixed, or a layer made of a laminate including a linearly polarized light separating layer and a ⁇ / 4 retardation layer can be used.
  • the center value ⁇ may be adjusted to a wavelength range of 780 nm to 1500 nm, preferably 800 nm to 1500 nm by adjusting the n value and the P value.
  • a cholesteric liquid crystal layer whose spiral sense is either right or left may be used.
  • a plurality of cholesteric liquid crystal layers having the same period P and the same spiral sense may be stacked.
  • the orientation direction of the liquid crystal molecules on the air interface side of the cholesteric layer formed earlier and the orientation direction of the liquid crystal molecules on the lower side of the cholesteric liquid crystal layer formed thereon coincide with each other.
  • the polarization characteristics are improved.
  • a cholesteric liquid crystal layer is used for the visible light reflection layer
  • a plurality of layers may be laminated in order to widen the selective reflection (transmission) bandwidth.
  • a cholesteric liquid crystal layer having the same spiral sense is laminated. It is preferable to do.
  • the cholesteric liquid crystal layer selectively transmits either right circularly polarized light or left circularly polarized light with respect to light incident from any surface, and right circularly polarized light and light incident from any surface Any one of them can be selectively transmitted to the other side by separating into left circularly polarized light.
  • a material and a manufacturing method of the cholesteric liquid crystal layer will be described later.
  • linearly polarized light separating layer As the linearly polarized light separating layer, a linear polarizer can be used as long as it is a polarizer corresponding to light in the infrared region.
  • Linear polarizer Infrared linear polarizers that can be suitably used include multilayer dielectric reflective polarizers in which a plurality of resins having different refractive indexes and different refractive indexes are laminated, and the thickness and retardation value are controlled by stretching, and a number of parallel conductor wires Examples thereof include a grit polarizer constituted by an array (grit), a polarizer in which metal nanoparticles having shape anisotropy are arrayed and fixed, and a polarizer in which dichroic dyes are arrayed and fixed.
  • a retardation layer can be formed by coating a composition for forming a retardation layer directly on an infrared linear polarizer, and a thinner circularly polarized light separating layer can be produced.
  • the multilayer dielectric reflective polarizer is a polarizing film that transmits only light in the vibration direction parallel to the in-plane transmission axis and reflects other light.
  • An example of such a film is a multilayer film disclosed in JP-T-9-507308. This is obtained by alternately laminating a layer consisting of a transparent dielectric layer 1 having no birefringence in the film plane and a layer consisting of a transparent dielectric layer 2 having birefringence in the plane.
  • the refractive index of the layer 1 is formed so as to coincide with either the ordinary light refractive index or the extraordinary light refractive index of the transparent dielectric layer 2.
  • the product (n ⁇ d) of the thickness (d) and the refractive index (n) of the transparent dielectric layer is a quarter of the wavelength of light to be reflected. It is configured to become.
  • the material for forming the transparent dielectric layer may be any material that is light transmissive at the infrared wavelength used. Examples include polycarbonate, acrylic resin, polyester, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivative, Examples thereof include silicone (including modified silicone such as silicone polyurea).
  • a grid polarizer is a submicron pitch (based on the wavelength of incident light) made of a thin film of a good conductor such as aluminum, silver, or gold on one side of a glass film or silicon (Si) substrate that is transparent to the infrared wavelength used.
  • a plurality of parallel conductor line arrangement structures (grit) with a short pitch) are provided, and examples thereof include a polarizer disclosed in Japanese Patent Application Laid-Open No. 2002-328234. This polarizer functions as a polarizer by reflecting a polarized light component parallel to the grid of incident light and transmitting a perpendicular polarized light component. ⁇ ⁇ If necessary, this can be sandwiched between glasses or an antireflection layer can be provided.
  • a polarizer in which metal nanoparticles having shape anisotropy are arrayed and fixed is a silver halide particle having a large aspect ratio or a silver particle oriented and fixed.
  • This polarizing plate is an absorptive linear polarizing plate that absorbs infrared light having an electric field vibration plane in the direction of particle arrangement and transmits infrared light in a direction perpendicular to the infrared light.
  • JP-A-59-83951, JP-A-2-248341, and JP-A-2003-139951 can be used.
  • the polarizer in which the dichroic dyes are arranged and fixed examples include an infrared polarizing film in which PVA (polyvinyl alcohol) is adsorbed with iodine or doped with a dichroic dye and stretched to form polyvinylene.
  • This polarizing plate absorbs infrared light having an electric field vibration plane in a stretching method and transmits infrared light in a direction orthogonal thereto. This is because the orientation of the dichroic dye is obtained by passing the PVA film through a dyeable composition tank such as iodine / iodide to dye the PVA layer and then stretching it at a magnification of 4 to 6 times. Can do.
  • Conversion of PVA to polyvinylene can be accomplished by the hydrochloric acid vapor process as described in US Pat. No. 2,445,555. Further, in order to improve the stability of the polarizing material, boration is performed using an aqueous borate bath containing boric acid and borax. Commercially available Edmund Optics Japan Co., Ltd. near-infrared linearly polarizing film can be cited as an equivalent.
  • the thickness of the linearly polarized light separating layer is preferably 0.05 ⁇ m to 300 ⁇ m, more preferably 0.2 ⁇ m to 150 ⁇ m, still more preferably 0.5 ⁇ m to 100 ⁇ m.
  • the in-plane slow axis of the retardation plate is set in an orientation rotated by 45 ° from the absorption axis or transmission axis of the polarizing plate.
  • the front phase difference of the retardation plate is 1 ⁇ 4 of the center wavelength of the light emission wavelength of the light source, or “center wavelength * n ⁇ center wavelength.
  • the emission center wavelength of the light source is 1000 nm
  • the phase difference is preferably 250 nm, 750 nm, 1250 nm, 1750 nm, or the like.
  • the smaller the dependency of the phase difference on the light incident angle is, the more preferable, and a retardation plate having a phase difference of 1 ⁇ 4 length of the center wavelength is most preferable in this respect.
  • the detection system or the detection method of the present invention when a combination of various light sources having different emission wavelengths is used as an infrared light source, a light source having a peak emission intensity of two or more wavelengths, or a light source that emits light over a wide wavelength range In such a case, it is conceivable that the wavelength range showing the circularly polarized light selectivity should be widened. In such a case, the above-described retardation plate can be used, but it is more preferable to use a broadband retardation plate.
  • a broadband retardation plate is a retardation plate having a constant retardation angle over a wide wavelength range.
  • a retardation layer having different birefringence wavelength dispersions can be obtained by making the slow axes orthogonal to each other.
  • a retardation plate or the like in which a layer having a phase difference of ⁇ / 2 and a layer having a phase difference of ⁇ / 4 are stacked with their slow axes intersecting at 60 degrees can be given.
  • the material of the retardation plate examples include crystalline glass, inorganic crystal, polycarbonate, acrylic resin, polyester, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivative, silicone (including modified silicone such as silicone polyurea). ) And other polymers, polymerizable liquid crystal compounds, and polymer liquid crystal compounds arranged and fixed.
  • the thickness of the ⁇ / 4 layer is preferably 0.2 ⁇ m to 300 ⁇ m, more preferably 0.5 ⁇ m to 150 ⁇ m, and even more preferably 1 ⁇ m to 80 ⁇ m.
  • a material and a method for manufacturing a cholesteric liquid crystal layer that can be used for a visible light reflection layer or a circularly polarized light separation layer will be described.
  • the material used for forming the cholesteric liquid crystal layer include a liquid crystal composition containing a polymerizable liquid crystal compound and a chiral agent (optically active compound). If necessary, apply the above liquid crystal composition, which is further mixed with a surfactant or polymerization initiator and dissolved in a solvent, onto a substrate (support, alignment film, underlying cholesteric liquid crystal layer, etc.), and then cholesteric. After the alignment aging, the cholesteric liquid crystal layer can be formed by fixing.
  • the polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disc-like liquid crystal compound, but is preferably a rod-like liquid crystal compound.
  • Examples of the rod-like polymerizable liquid crystal compound forming the cholesteric liquid crystal layer include a rod-like nematic liquid crystal compound.
  • rod-like nematic liquid crystal compounds examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines.
  • Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
  • the polymerizable cholesteric liquid crystal compound can be obtained by introducing a polymerizable group into the cholesteric liquid crystal compound.
  • the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and particularly preferably an ethylenically unsaturated polymerizable group.
  • the polymerizable group can be introduced into the molecule of the cholesteric liquid crystal compound by various methods.
  • the number of polymerizable groups possessed by the polymerizable cholesteric liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable cholesteric liquid crystal compounds are described in Makromol. Chem.
  • the addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 10 to 60% by mass, and 20 to 50% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition. Is more preferable, and 30 to 40% by mass is particularly preferable.
  • the chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • the chiral compound may be selected according to the purpose because the helical sense or helical pitch induced by the compound is different.
  • the chiral agent is not particularly limited, and known compounds (for example, liquid crystal device handbook, Chapter 3-4-3, TN, chiral agent for STN, 199 pages, Japan Society for the Promotion of Science, 142nd edition, 1989) Description), isosorbide, and isomannide derivatives can be used.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent.
  • the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group.
  • the chiral agent and the curable cholesteric liquid crystal compound have a polymerizable group
  • it is derived from a repeating unit derived from the cholesteric liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable cholesteric liquid crystal compound.
  • a polymer having repeating units can be formed.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable cholesteric liquid crystal compound.
  • the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group.
  • the chiral agent may be a liquid crystal compound.
  • the chiral agent has a photoisomerizable group because a pattern having a desired reflection wavelength corresponding to the emission wavelength can be formed by irradiation with a photomask such as actinic rays after coating and orientation.
  • a photoisomerization group the isomerization part of the compound which shows photochromic property, an azo, an azoxy, and a cinnamoyl group are preferable.
  • Specific examples of the compound include JP2002-80478, JP200280851, JP2002-179668, JP2002-179669, JP2002-179670, and JP2002. Use the compounds described in JP-A No. 179681, JP-A No. 2002-179682, JP-A No.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol%, more preferably 1 mol% to 30 mol%, based on the amount of the polymerizable liquid crystal compound.
  • the liquid crystal composition preferably contains a polymerization initiator.
  • the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics.
  • Group acyloin compounds described in US Pat. No. 2,722,512
  • polynuclear quinone compounds described in US Pat. Nos.
  • the content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, and preferably 0.5 to 5% by mass with respect to the content of the polymerizable liquid crystal compound. Further preferred.
  • the liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and the durability.
  • a crosslinking agent those that can be cured by ultraviolet rays, heat, moisture and the like can be suitably used.
  • polyfunctional acrylate compounds such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate
  • Glycidyl (meth) acrylate Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as trimethoxysi
  • a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the crosslinking agent is preferably 3% by mass to 20% by mass, and more preferably 5% by mass to 15% by mass. When the content of the crosslinking agent is less than 3% by mass, the effect of improving the crosslinking density may not be obtained, and when it exceeds 20% by mass, the stability of the cholesteric layer may be lowered.
  • an alignment control agent that contributes to stably or rapidly forming a cholesteric liquid crystal layer having a planar alignment may be added.
  • the alignment control agent include fluorine (meth) acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185, and paragraphs [0031] to [0034] of JP-A-2012-203237. And compounds represented by the formulas (I) to (IV) described in the above.
  • 1 type may be used independently and 2 or more types may be used together.
  • the addition amount of the alignment control agent in the liquid crystal composition is preferably 0.01% by mass to 10% by mass, more preferably 0.01% by mass to 5% by mass with respect to the total mass of the cholesteric liquid crystal compound. 02 mass% to 1 mass% is particularly preferred.
  • the liquid crystal composition contains at least one selected from various additives such as a surfactant for adjusting the surface tension of the coating film and making the film thickness uniform, and a polymerizable monomer. It may be. Further, in the liquid crystal composition, if necessary, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, and the like may be added as long as the optical performance is not deteriorated. Can be added.
  • various additives such as a surfactant for adjusting the surface tension of the coating film and making the film thickness uniform, and a polymerizable monomer. It may be.
  • a polymerization inhibitor such as an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, and the like may be added as long as the optical performance is not deteriorated. Can be added.
  • the cholesteric liquid crystal layer is prepared by applying a liquid crystal composition in which a polymerizable liquid crystal compound and a polymerization initiator, a chiral agent added as necessary, a surfactant, and the like are dissolved in a solvent, on a substrate and drying.
  • a coating film is obtained, and the coating film is irradiated with actinic rays to polymerize the cholesteric liquid crystal composition, thereby forming a cholesteric liquid crystal layer in which the cholesteric regularity is fixed.
  • the laminated film which consists of a some cholesteric layer can be formed by repeating the manufacturing process of a cholesteric layer.
  • organic solvent is used preferably.
  • the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, ethers, etc. Can be given. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are particularly preferable in consideration of environmental load.
  • the method of applying the liquid crystal composition on the substrate is not particularly limited and can be appropriately selected depending on the purpose.
  • the wire bar coating method, curtain coating method, extrusion coating method, direct gravure coating method, reverse Examples include gravure coating, die coating, spin coating, dip coating, spray coating, and slide coating.
  • it can implement also by transferring the liquid-crystal composition separately coated on the support body to a base material.
  • the liquid crystal molecules are aligned by heating the applied liquid crystal composition.
  • the heating temperature is preferably 200 ° C. or lower, and more preferably 130 ° C. or lower.
  • the aligned liquid crystal compound may be further polymerized.
  • the polymerization may be either thermal polymerization or photopolymerization by light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for light irradiation.
  • the irradiation energy is preferably 20mJ / cm 2 ⁇ 50J / cm 2, 100mJ / cm 2 ⁇ 1,500mJ / cm 2 is more preferable.
  • light irradiation may be performed under heating conditions or in a nitrogen atmosphere.
  • the irradiation ultraviolet wavelength is preferably 350 nm to 430 nm.
  • the polymerization reaction rate is preferably high from the viewpoint of stability, preferably 70% or more, and more preferably 80% or more.
  • the polymerization reaction rate can determine the consumption rate of a polymerizable functional group using an IR absorption spectrum.
  • the thickness of the cholesteric liquid crystal layer that is a circularly polarized light separating layer in the near infrared wavelength region is preferably 1 ⁇ m to 150 ⁇ m, more preferably 2 ⁇ m to 100 ⁇ m, and more preferably 5 ⁇ m. More preferably, it is ⁇ 50 ⁇ m.
  • the circularly polarized light separating film may include other layers such as a support, an alignment layer for aligning the liquid crystal compound, and an adhesive layer for bonding the circularly polarized light separating layer and the visible light blocking layer.
  • the film containing the above-mentioned visible light blocking layer may also contain other layers such as a support.
  • the support is not particularly limited, and glass or the like may be used in addition to the plastic film. It is preferable that the optical properties of the visible light blocking layer and the circularly polarized light separating layer are not canceled, and it is generally transparent and preferably has low birefringence.
  • plastic film examples include polyester such as polyethylene terephthalate (PET), polycarbonate, acrylic resin, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivative, and silicone.
  • PET polyethylene terephthalate
  • acrylic resin epoxy resin
  • polyurethane polyurethane
  • polyamide polyolefin
  • cellulose derivative cellulose derivative
  • silicone silicone
  • the support used for producing the cholesteric liquid crystal layer may be peeled off in the circularly polarized light separating film.
  • the alignment film is a layer having an organic compound, a rubbing treatment of a polymer (resin such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamide imide, polyether imide, polyamide, modified polyamide), oblique deposition of an inorganic compound, or a micro groove. Or by accumulating organic compounds (for example, ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride, methyl stearylate) by the Langmuir-Blodgett method (LB film). Furthermore, an alignment film in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known.
  • a polymer resin such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamide imide, polyether imide, polyamide, modified polyamide
  • organic compounds for example, ⁇ -tricosanoic acid, dioctadecylmethylammonium chlor
  • an alignment film formed by polymer rubbing treatment is particularly preferable.
  • the rubbing treatment can be performed by rubbing the surface of the polymer layer with paper or cloth in a certain direction. You may apply
  • Adhesives include hot melt type, thermosetting type, photocuring type, reactive curing type, and pressure-sensitive adhesive type that does not require curing, from the viewpoint of curing method, and the materials are acrylate, urethane, urethane acrylate, epoxy , Epoxy acrylate, polyolefin, modified olefin, polypropylene, ethylene vinyl alcohol, vinyl chloride, chloroprene rubber, cyanoacrylate, polyamide, polyimide, polystyrene, polyvinyl butyral, etc. can do.
  • the photocuring type is preferable as the curing method, and from the viewpoint of optical transparency and heat resistance, the material is preferably an acrylate, urethane acrylate, epoxy acrylate, or the like. .
  • a circularly polarized light separating film having a visible light blocking layer can be produced by, for example, bonding a visible light blocking layer and a circularly polarized light separating layer, which can be produced as described above, using an adhesive or the like.
  • the surface to be bonded is not particularly limited. For example, when a support is provided, it may be the support surface side or the opposite side. After bonding both together, the support may or may not be peeled off.
  • a visible light blocking layer may be bonded to the surface of the linearly polarized light separating layer as viewed from the ⁇ / 4 retardation layer.
  • the circularly polarized light separating film having a visible light blocking layer may be prepared by directly forming a circularly polarized light separating layer on the visible light blocking layer through a step of applying a composition for forming a circularly polarized light separating layer, The visible light blocking layer may be formed directly on the circularly polarized light separating layer through a step of applying a composition for forming a visible light blocking layer.
  • a light receiving element used in a detection system or a detection method a photodiode sensor using a semiconductor such as Si, Ge, HgCdTe, PtSi, InSb, PbS, or a detector in which light detection elements are linearly arranged or an image can be captured.
  • CCD and CMOS are examples.
  • the circularly polarized light separating film is a part of the infrared sensor, and the light receiving element capable of detecting light having a wavelength that allows the circularly polarized light separating film to selectively transmit either the right circularly polarized light or the left circularly polarized light. And may be used in combination.
  • a circularly polarized light separating film can be disposed on the light receiving surface of the infrared sensor.
  • the infrared sensor has a light receiving element inside the housing, and a circularly polarized light separating film is disposed in the light capturing portion, so that light other than light passing through the circularly polarized light separating film does not reach the light receiving element.
  • a circularly polarized light separating film includes a visible light blocking layer
  • the circularly polarized light separating film is preferably arranged so that the circularly polarized light separating layer is on the outside and the visible light blocking layer is on the light receiving element side.
  • the circularly polarized light separating layer may be arranged so that the ⁇ / 4 phase difference layer is outside and the linearly polarized light separating layer is on the light receiving element side.
  • a film including a visible light blocking layer may be disposed on the light capturing portion. In this case, it is preferable that the circularly polarized light separating film is disposed on the outside so that the film including the visible light blocking layer is on the light receiving element side.
  • Light source light source device
  • Any light source can be used as long as it emits light of the photosensitive wavelength of the light receiving element, such as a halogen lamp, tungsten lamp, LED, LD, xenon lamp, and meta-hara lamp, but it is small, light emitting directivity, monochromatic light, pulse LED or LD is preferable in terms of modulation suitability.
  • the light source is preferably a near infrared light source.
  • the light source device may be configured by combining a light source and the circularly polarized light separating film.
  • the light source device has, for example, a light source inside the housing, and a circularly polarized light separating film is disposed in a portion that emits light so that light other than light passing through the circularly polarized light separating film is not emitted from the light source. It is preferable.
  • the circularly polarized light separating film includes a visible light blocking layer
  • the circularly polarized light separating layer is preferably disposed on the outer side and the visible light blocking layer is on the light source side.
  • the circularly polarized light separating layer includes a linearly polarized light separating layer and a ⁇ / 4 phase difference layer
  • the ⁇ / 4 phase difference layer is disposed outside and the linearly polarized light separating layer is on the light source side.
  • a film including a visible light blocking layer may be disposed on the light capturing portion. In this case, it is preferable that the circularly polarized light separating film is disposed outside so that the film including the visible light blocking layer is on the light source side.
  • the circularly polarized light separating film may be used independently of the infrared sensor and the light source device.
  • a circularly polarized light separating film may be used between the object and the light receiving element and / or between the object and the light source.
  • the orientation of the film relative to the object can be adjusted in accordance with the description of the infrared sensor or the light source device.
  • Example R1 Preparation of circularly polarized light separating layer
  • the coating liquid A-2 shown in Table 1 is wired at room temperature so that the dry film thickness after drying becomes 5 ⁇ m. It was applied using a bar.
  • the coating layer was dried at room temperature for 30 seconds, heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds.
  • a liquid crystal layer was obtained.
  • coating solution A-3 shown in Table 1 was applied at room temperature so that the thickness of the dried film after drying was 5 ⁇ m, and then dried, heated and irradiated with UV in the same manner as described above. An eye liquid crystal layer was formed to obtain a circularly polarized light separating layer.
  • the coating liquid B-1 shown in Table 2 is applied to a wire bar at room temperature so that the dry film thickness after drying is 2 ⁇ m. It applied using.
  • the coating layer was dried at room temperature for 30 seconds, heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds. A liquid crystal layer was obtained.
  • the coating solution B-2 shown in Table 2 was applied at room temperature so that the dry film thickness was 2 ⁇ m, and then dried, heated, and UV-irradiated in the same manner as described above.
  • the liquid crystal layer was formed.
  • the coating liquids B-3 to B-16 shown in Table 2 on the second liquid crystal layer the third to sixteenth liquid crystal layers were formed in the same process to obtain a visible light reflecting layer. .
  • UV curing adhesive Exp. U12034-6 was applied using a wire bar at room temperature so that the dry film thickness after drying was 5 ⁇ m.
  • the coated surface and the liquid crystal layer side surface of the visible light reflecting layer prepared above were bonded together so that no bubbles would enter, and then at 30 ° C., a Fusion D bulb (lamp 90 mW / cm) with an output of 60% and 6%.
  • UV irradiation for ⁇ 12 seconds was a support for the circularly polarized light separating layer and the visible light reflecting layer, was peeled off to obtain the circularly polarized light separating film of Example R1.
  • Example R2 The coating solution A-1 shown in Table 1 was applied to a rubbing treated surface of Fujifilm PET subjected to rubbing treatment using a wire bar at room temperature so that the dry film thickness after drying was 5 ⁇ m.
  • the coating layer was dried at room temperature for 30 seconds, heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds.
  • a liquid crystal layer was obtained.
  • the coating solution A-2 shown in Table 1 was applied at room temperature so that the thickness of the dried film after drying was 5 ⁇ m, and then dried, heated and irradiated with UV in the same manner as described above.
  • An eye liquid crystal layer was formed.
  • the coating solution A-3 shown in Table 1 was applied at room temperature so that the thickness of the dried film after drying was 5 ⁇ m, and then dried, heated and irradiated with UV in the same manner as described above.
  • a third liquid crystal layer was formed to obtain a circularly polarized light separating layer.
  • the circularly polarized light separating layer produced in Example R2 was obtained by pasting the circularly polarized light separating layer produced above in the same manner as in the visible light reflective layer produced in Example R1 and the same method as in Example R1.
  • Example R3 The coating solution A-1 shown in Table 1 was applied to a rubbing-treated surface of Fujifilm PET subjected to rubbing treatment using a wire bar at room temperature so that the dry film thickness after drying was 5 ⁇ m.
  • the coating layer was dried at room temperature for 30 seconds, heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds.
  • a liquid crystal layer was obtained.
  • coating solution A-2 shown in Table 1 was applied at room temperature so that the thickness of the dried film after drying was 5 ⁇ m, followed by drying, heating and UV irradiation in the same manner as above.
  • the liquid crystal layer was formed.
  • the third to ninth liquid crystal layers were formed in the same process to obtain a circularly polarized light separating layer. .
  • the circularly polarized light separating layer produced above was bonded in the same manner as in Example R1 and the same visible light reflecting layer as the visible light reflecting layer produced in Example R1 to obtain a circularly polarized light separating film of Example R3.
  • Example R4 The coating solution A-1 shown in Table 1 was applied to a rubbing-treated surface of Fujifilm PET subjected to rubbing treatment using a wire bar at room temperature so that the dry film thickness after drying was 5 ⁇ m.
  • the coating layer was dried at room temperature for 30 seconds, heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds.
  • a liquid crystal layer was obtained.
  • coating solution A-2 shown in Table 1 was applied at room temperature so that the thickness of the dried film after drying was 5 ⁇ m, followed by drying, heating and UV irradiation in the same manner as above.
  • the liquid crystal layer was formed.
  • the third to twelfth liquid crystal layers were formed in the same process to obtain a circularly polarized light separating layer. .
  • the circularly polarized light separating layer produced above was bonded by the same visible light reflecting layer as the visible light reflecting layer produced in Example R1 and the same method as in Example R1 to obtain a circularly polarized light separating film of Example R4.
  • Example R5 The coating solution A-1 shown in Table 1 was applied to a rubbing-treated surface of Fujifilm PET subjected to rubbing treatment using a wire bar at room temperature so that the dry film thickness after drying was 5 ⁇ m.
  • the coating layer was dried at room temperature for 30 seconds, heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds.
  • a liquid crystal layer was obtained.
  • coating solution A-2 shown in Table 1 was applied at room temperature so that the thickness of the dried film after drying was 5 ⁇ m, followed by drying, heating and UV irradiation in the same manner as above.
  • the liquid crystal layer was formed.
  • the third to fourteenth liquid crystal layers were formed in the same process to obtain a circularly polarized light separating layer. .
  • the circularly polarized light separating layer produced in Example R5 was obtained by pasting the circularly polarized light separating layer produced above in the same manner as the visible light reflective layer produced in Example R1 and the same method as in Example R1.
  • Example R6 The coating solution A-15 shown in Table 1 was applied to the rubbing treated surface of Fujifilm PET subjected to rubbing treatment using a wire bar at room temperature so that the dry film thickness after drying was 5 ⁇ m.
  • the coating layer was dried at room temperature for 30 seconds, heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds.
  • a liquid crystal layer was obtained.
  • coating solution A-16 shown in Table 1 was applied at room temperature so that the thickness of the dried film after drying was 5 ⁇ m, and then dried, heated and UV-irradiated in the same manner as above.
  • An eye liquid crystal layer was formed to obtain a circularly polarized light separating layer.
  • the circularly polarized light separating layer produced above was bonded in the same manner as in Example R1 and the same visible light reflecting layer as the visible light reflecting layer produced in Example R1 to obtain a circularly polarized light separating film of Example R6.
  • Example R7 The coating solution B-1 shown in Table 2 was applied to a rubbing treated surface of Fujifilm PET subjected to rubbing treatment using a wire bar at room temperature so that the dry film thickness after drying was 2 ⁇ m.
  • the coating layer was dried at room temperature for 30 seconds, heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds.
  • a liquid crystal layer was obtained.
  • coating solution B-2 shown in Table 2 was applied at room temperature so that the thickness of the dried film after drying was 2 ⁇ m, followed by drying, heating and UV irradiation in the same manner as above.
  • the liquid crystal layer was formed.
  • the third to tenth liquid crystal layers were formed in the same process. A visible light reflection layer was obtained.
  • Example R7 The visible light reflecting layer produced above was bonded in the same manner as in Example R1 with the same circularly polarized light separating layer as that produced in Example R1, and a circularly polarized light separating film of Example R7 was obtained.
  • Example R8 The coating solution B-1 shown in Table 2 was applied to a rubbing treated surface of Fujifilm PET subjected to rubbing treatment using a wire bar at room temperature so that the dry film thickness after drying was 2 ⁇ m.
  • the coating layer was dried at room temperature for 30 seconds, heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds.
  • a liquid crystal layer was obtained.
  • coating solution B-2 shown in Table 2 was applied at room temperature so that the thickness of the dried film after drying was 2 ⁇ m, followed by drying, heating and UV irradiation in the same manner as above.
  • the liquid crystal layer was formed.
  • the third to sixth liquid crystal layers are formed in the same manner, and reflected by visible light. A layer was obtained.
  • Example R8 The visible light reflecting layer prepared above was bonded in the same manner as in Example R1 with the same circularly polarized light separating layer as that prepared in Example R1, and a circularly polarized light separating film of Example R8 was obtained. .
  • Example R9 The coating solution A-2 shown in Table 1 was applied to a rubbing treated surface of Fujifilm PET subjected to rubbing treatment using a wire bar at room temperature so that the dry film thickness after drying was 5 ⁇ m.
  • the coating layer was dried at room temperature for 30 seconds, heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds.
  • a circularly polarized light separating layer was obtained.
  • the circularly polarized light separating layer produced in Example R9 was obtained by pasting the circularly polarized light separating layer produced above in the same manner as the visible light reflective layer produced in Example R1 and the same method as in Example R1.
  • Example R10 The coating solution B-1 shown in Table 2 was applied to a rubbing treated surface of Fujifilm PET subjected to rubbing treatment using a wire bar at room temperature so that the dry film thickness after drying was 2 ⁇ m.
  • the coating layer was dried at room temperature for 30 seconds, heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds.
  • a liquid crystal layer was obtained.
  • the coating solution B-9 shown in Table 2 was applied at room temperature so that the dry film thickness after drying was 2 ⁇ m, and then dried, heated, and irradiated with UV in the same manner as above to form the second layer.
  • a visible light reflecting layer was obtained by forming a liquid crystal layer
  • Example R10 The visible light reflecting layer prepared above was bonded in the same manner as in Example R1 with the same circularly polarized light separating layer as that prepared in Example R1, and a circularly polarized light separating film of Example R10 was obtained.
  • Example R11 The coating liquid C shown in Table 3 was spin-coated at a rotational speed of 2000 rpm on the rubbing treated surface of Fujifilm PET subjected to rubbing treatment.
  • the coating layer was dried at room temperature for 30 seconds, heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds.
  • a retardation film was formed.
  • the phase difference of this retardation film was measured in the range of 400 nm to 800 nm using an AxoScan of Axometrix, and the phase difference at 880 nm was obtained by extrapolation using these values, and was found to be 220 nm. .
  • UV curing adhesive Exp. U12034-6 was applied using a wire bar at room temperature so that the dry film thickness after drying was 5 ⁇ m.
  • a circularly polarizing plate was formed by laminating a near-infrared linear polarizing film manufactured by Edmund Optics Japan Co., Ltd. so that the angle between the alignment axis of the liquid crystal molecules and the absorption axis of the polarizing plate was 45 degrees. . It was confirmed that the circularly polarizing plate was a right circularly polarizing plate by measuring the circular polarization using the above-mentioned AxoScan so that the polarizing plate came to the light incident side.
  • Example R1 On the surface of the linearly polarizing plate of the circularly polarized light separating layer prepared above, the surface on the liquid crystal layer side of the visible light reflecting layer prepared in Example R1 was bonded in the same manner as in Example R1. A circularly polarized light separating film was obtained.
  • Example A1 On the IR80 manufactured by FUJIFILM Corporation as the visible light absorbing layer, the UV curable adhesive Exp. U12034-6 was applied using a wire bar at room temperature so that the dry film thickness after drying was 5 ⁇ m. The coated surface and the surface on the liquid crystal layer side of the circularly polarized light separating layer produced in the same manner as in Example R1 were bonded so that no bubbles would enter, and then output at 30 ° C. with a fusion D bulb (lamp 90 mW / cm). UV irradiation at 60% for 6-12 seconds. Thereafter, Fujifilm PET, which was a support for the circularly polarized light separating layer, was peeled off to obtain a circularly polarized light separating film of Example A1.
  • Example A2 The circularly polarized light separating layer produced in the same manner as in Example R2 was bonded in the same manner as IR80 manufactured by FUJIFILM Corporation and Example A1 to obtain a circularly polarized light separating film of Example A2.
  • Example A3 The circularly polarized light separating layer produced in the same manner as in Example R3 was bonded in the same manner as IR80 manufactured by FUJIFILM Corporation and Example A1 to obtain a circularly polarized light separating film of Example A3.
  • Example A4 The circularly polarized light separating layer produced in the same manner as in Example R4 was bonded in the same manner as IR80 manufactured by FUJIFILM Corporation and Example A1 to obtain a circularly polarized light separating film of Example A4.
  • Example A5 The circularly polarized light separating layer produced in the same manner as in Example R5 was bonded in the same manner as IR80 manufactured by FUJIFILM Corporation and Example A1 to obtain a circularly polarized light separating film of Example A5.
  • Example A6 The coating solution A-14 shown in Table 1 was applied to a rubbing treated surface of Fujifilm PET subjected to rubbing treatment using a wire bar at room temperature so that the dry film thickness after drying was 5 ⁇ m.
  • the coating layer was dried at room temperature for 30 seconds, heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds.
  • a liquid crystal layer was obtained.
  • coating solution A-15 shown in Table 1 was applied at room temperature so that the thickness of the dried film after drying was 5 ⁇ m, followed by drying, heating and UV irradiation in the same manner as above.
  • a liquid crystal layer was formed to obtain a circularly polarized light separating layer.
  • the circularly polarized light separating layer produced above was bonded in the same manner as IR80 manufactured by Fuji Film Co., Ltd. and Example A1 to obtain a circularly polarized light separating film of Example A6.
  • Example A7 A circularly polarized light separation film of Example A7 was obtained in the same manner as in Example A1, except that SC60 manufactured by Fuji Film Co., Ltd. was used as the visible light absorbing layer.
  • Example A8 A circularly polarized light separating film of Example A8 was obtained in the same manner as in Example A1, except that SC46 manufactured by Fuji Film Co., Ltd. was used as the visible light absorbing layer.
  • Example A9 The circularly polarized light separating layer produced in the same manner as in Example R9 was bonded in the same manner as IR80 manufactured by FUJIFILM Corporation and Example A1 to obtain a circularly polarized light separating film of Example A9.
  • Example A10 A circularly polarized light separating film of Example A10 was obtained in the same manner as in Example A1, except that SC42 manufactured by Fuji Film Co., Ltd. was used as the visible light absorbing layer.
  • Example A11 The coating liquid C shown in Table 3 was spin-coated at a rotational speed of 2000 rpm on the rubbing treated surface of Fujifilm PET subjected to rubbing treatment.
  • the coating layer was dried at room temperature for 30 seconds, heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds.
  • a retardation film was formed.
  • phase difference of this retardation film was measured in the range of 400 nm to 800 nm using an AxoScan of Axometrix, and the phase difference at 880 nm was obtained by extrapolation using these values, and was found to be 220 nm. .
  • the surface of the retardation film of this film has a UV curable adhesive Exp. U12034-6 was applied using a wire bar at room temperature so that the dry film thickness after drying was 5 ⁇ m.
  • a circularly polarizing plate was formed by laminating a near-infrared linear polarizing film manufactured by Edmund Optics Japan Co., Ltd. so that the angle formed by the alignment axis of the liquid crystal molecules with the absorption axis of the polarizing plate was 45 degrees. . It was confirmed that the circularly polarizing plate was a right circularly polarizing plate by measuring the circular polarization using the above-mentioned AxoScan so that the polarizing plate came to the light incident side.
  • UV curable adhesive Exp. U12034-6 was coated at room temperature on IR80 manufactured by FUJIFILM Corporation using a wire bar so that the dry film thickness after drying was 5 ⁇ m. This coated surface was bonded to the surface of the linearly polarizing plate of the circularly polarized light separating layer prepared above so that no air bubbles would enter, and then at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% and 6 to UV irradiation was performed for 12 seconds to obtain a circularly polarized light separating film of Example A11.
  • the film, mirror, light source (KED880S4 manufactured by Kyosemi Co., Ltd.) and light receiving element (KS1364 manufactured by Shinko Denshi Co., Ltd.) prepared above were arranged as shown in FIG.
  • the film was arranged such that the visible light blocking layer (visible light reflecting layer or visible light absorbing layer) was on the light source and light receiving element side and the circularly polarized light separating layer was on the mirror side.
  • the mirror was irradiated with non-polarized light having a wavelength of 880 nm from the light source through the film, and the light reflected by the mirror was transmitted through the film and detected by the light receiving element.
  • the value measured in the absence of the film was taken as 100, and the value measured by installing the film was corrected and evaluated. The lower the value, the more effective.
  • the evaluation criteria are as follows. The dark room was measured with the light completely blocked, and the bright room was measured with an incandescent lamp. AA: 0-5 A: 5-20 B: 20-50 C: 50-100 The durability was evaluated by carrying out the above measurement after continually irradiating a 40 W halogen lamp for 1000 hours. Appearance was evaluated by visual inspection, and the appearance of a mirror was A, and the others were C. The results are shown in Tables 4 and 5.
  • a circularly polarized light separating film B was produced by the same procedure as that for producing the circularly polarized light separating film of Example R1.
  • a circularly polarized light separating film B was produced in the same procedure as that for producing the circularly polarized light separating film of Example A1.
  • a circularly polarized light separating film C was produced in the same procedure as that for producing the circularly polarized light separating film of Example A2.
  • the coating solution A-15 shown in Table 1 was applied to the rubbing treated surface of Fujifilm PET subjected to rubbing treatment using a wire bar at room temperature so that the dry film thickness after drying was 5 ⁇ m.
  • the coating layer was dried at room temperature for 30 seconds, heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds.
  • a liquid crystal layer was obtained.
  • coating solution A-16 shown in Table 1 was applied at room temperature so that the thickness of the dried film after drying was 5 ⁇ m, and then dried, heated and UV-irradiated in the same manner as above. An eye liquid crystal layer was formed to obtain a circularly polarized light separating layer.
  • the circularly polarized light separating layer produced above was bonded in the same manner as IR80 manufactured by Fuji Film Co., Ltd. and the circularly polarized light separating film B to obtain a circularly polarized light separating film D.
  • a circularly polarized light separating film E was produced by the same procedure as that for producing the circularly polarized light separating film of Example A9.
  • a circularly polarized light separating film F was obtained in the same manner as the method for producing the circularly polarized light separating film A except that the visible light reflecting layer was not formed.
  • a circularly polarized light separating film G was obtained in the same manner as the method for producing the circularly polarized light separating film C except that no visible light absorbing layer was formed.
  • a circularly polarized light separating film H was obtained in the same manner as the method for producing the circularly polarized light separating film D except that no visible light absorbing layer was formed.
  • a circularly polarized light separating film I was produced by the same procedure as that for producing the circularly polarized light separating layer of Example R4.
  • Circularly Polarized Separation Film L A visible light absorbing layer was formed on the circularly polarized light separating film K in the same manner as the circularly polarized light separating film B, and a circularly polarized light separating film L was obtained.
  • the circularly polarized light separating films A to L produced as described above were used on the light source side (circularly polarized light separating film 1) and the light receiving element side (circularly polarized light separating film 2) as shown in Table 3, and the numbers shown in Table 3 were used. Arrangements were made according to the arrangement diagram of FIG. 1, and the objects of Examples 1 to 11 and Comparative Examples 1 to 5 shown in Table 3 were detected.
  • the visible light blocking layer is disposed on the light source side and the circularly polarized light separating layer is on the object side
  • the films were arranged so that the visible light blocking layer was on the light receiving element side and the circularly polarized light separating layer was on the object side.
  • Example 1-6, 10, and 11 and Comparative Example 1-3 the evaluation is based on the signal intensity ratio of the detector when the detection target is inserted into the optical path and when it is not inserted under the bright room condition. This was done by comparison.
  • Examples 7 and 8 and Comparative Example 4 the evaluation was made by comparing the signal intensity ratio of the detector when a cracked detection target and an intact detection target were inserted into the optical path under bright room conditions. .
  • the evaluation criteria are as follows. A: 4 or more B: 2 or more and less than 4 C: 1.4 or more and less than 2 D: less than 1.4
  • Example 9 and Comparative Example 5 water was sprayed on the kappa in the dark, and it was photographed with a camera.

Abstract

本発明により、近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させる円偏光分離フィルムであって、可視光波長域の少なくとも一部において光を反射または吸収する可視光遮断層と近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させる円偏光分離層とを含む円偏光分離フィルム、上記円偏光分離フィルムの製造方法、上記円偏光分離フィルムを含む赤外線センサー、ならびに、上記円偏光分離フィルムまたは円偏光分離フィルムおよび可視光遮断層を含むフィルムの組み合わせを用いた検知システムおよび検知方法が提供される。本発明の検知システムおよび検知方法は、周囲環境に関わらず感度が高く、誤検知が少ない。

Description

円偏光分離フィルム、円偏光分離フィルムの製造方法、赤外線センサー、ならびに光を利用した検知システムおよび検知方法
 本発明は、円偏光分離フィルム、円偏光分離フィルムの製造方法、赤外線センサー、ならびに光を利用した検知システムおよび検知方法に関する。
 赤外領域における偏光を利用した検知システムが従来から知られている。例えば、特許文献1では、シリコン基板に第一の直線偏光フィルターを介した偏光赤外光を照射し、シリコン基板からの反射光もしくは透過光を第二の直線偏光フィルターを介して受光するシステムで、シリコン基板のクラックを検出している。この技術は、すなわち、クラックが存在しない箇所の反射光もしくは透過光は直線偏光であり第二の直線偏光フィルターを介すると特定の条件を満たすとき以外は感知できる光量が減少するが、クラックでの反射光もしくは透過光においては乱反射によって第二の直線偏光フィルターを介しても感知できる光が生じることを利用したものである。特許文献2では、赤外光を利用してヒトの手や物体を検知する自動水栓装置において、投光する赤外光の直線偏光成分を透過する第一の偏光手段と、受光する赤外光の直線偏光成分を透過させる第二の偏光手段を用いて誤検知を防止した装置が開示されている。
 特許文献3では、特許文献1の技術において円偏光を利用した技術が開示されている。円偏光の利用によって、第二の直線偏光フィルターの偏光方向の調整の必要性が排除されている。
特開2008-58270号公報 特開2003-96850号公報 特開2013-36888号公報
 赤外光波長域における偏光を利用した検知システムは、様々な光環境で利用される可能性がある。本発明は、赤外光波長域における偏光を利用した検知システムとして、周囲環境に関わらず感度が高く、誤検知の少ない検知システムの提供を課題とする。本発明は、また、赤外光波長域における偏光を利用した検知方法において、周囲環境に関わらず感度が高く、誤検知の少ない方法の提供を課題とする。さらに、本発明はこのようなシステムに利用可能なフィルムの提供を課題とする。
 本発明者らは、上記課題の解決のため、赤外線波長域における偏光を利用した検知システムの検討を行った。そして、赤外線を感知する受光素子を有するセンサーを用いて検知を行う場合であっても受光素子が可視光領域の光も検知して誤検知を招いている場合があることを見出した。本発明者らは、この知見に基づきさらに研究を重ね、本発明を完成させた。すなわち、本発明は下記の[1]~[26]を提供するものである。
[1]近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させる円偏光分離フィルムであって、可視光波長域の少なくとも一部において光を反射または吸収する可視光遮断層と近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させる円偏光分離層とを含む円偏光分離フィルム。
[2]上記の近赤外光波長域の少なくとも一部が波長800~1500nmの50nm幅以上の波長域であり、かつ上記の可視光波長域の少なくとも一部が波長380~780nmの50nm幅以上の波長域である[1]に記載の円偏光分離フィルム。
[3]波長380~780nmの領域の平均光透過率が5%以下であり、かつ、波長800~1500nmの範囲の50nm幅以上の領域において、右または左円偏光のいずれか一方の光透過率が10%以下であり他方の円偏光の光透過率が90%以上である[1]または[2]に記載の円偏光分離フィルム。
[4]上記可視光遮断層が、コレステリック液晶相を固定した層および誘電体多層膜からなる群より選択される可視光反射層である[1]~[3]のいずれか一項に記載の円偏光分離フィルム。
[5]上記可視光遮断層が、顔料または染料を含む可視光吸収層である[1]~[3]のいずれか一項に記載の円偏光分離フィルム。
[6]上記円偏光分離層がコレステリック液晶相を固定した層である[1]~[5]のいずれか一項に記載の円偏光分離フィルム。
[7]上記円偏光分離層が、直線偏光分離層と波長800~1500nmの50nm以上の範囲で位相差(Re)が200~375nmである層とを含む[1]~[5]のいずれか一項に記載の円偏光分離フィルム。
[8][1]~[6]のいずれか一項に記載の円偏光分離フィルムの製造方法であって、上記円偏光分離層が以下(1)~(3)を含む方法により形成される方法:
(1)重合性液晶化合物およびキラル剤を含む液晶組成物を基材に塗布すること、
(2)(1)において基板上に塗布された液晶組成物を乾燥させてコレステリック液晶相を形成すること、
(3)加熱または光照射により上記コレステリック液晶相を固定すること。
[9][8]に記載の円偏光分離フィルムの製造方法であって、上記円偏光分離層が以下(11)~(13)を含む方法により形成される方法:
(11)重合性液晶化合物およびキラル剤を含む液晶組成物を上記(3)で得られる上記コレステリック液晶相を固定した層の表面に直接塗布すること、
(12)(11)において基板上に塗布された液晶組成物を乾燥させてコレステリック液晶相を形成すること、
(13)加熱または光照射により(12)で形成された上記コレステリック液晶相を固定すること。
[10]上記(1)の重合性液晶化合物およびキラル剤と上記(11)の重合性液晶化合物およびキラル剤がそれぞれ同一である[9]に記載の製造方法。
[11][8]~[10]のいずれか一項に記載の製造方法であって、コレステリック液晶相を固定した層の表面に、接着剤を用いて可視光遮断層を貼り合わせることを含む製造方法。
[12][8]~[10]のいずれか一項に記載の製造方法であって、上記基材の表面に、可視光遮断層を接着剤を用いて貼り合わせることを含む製造方法。
[13][1]~[6]のいずれか一項に記載の円偏光分離フィルムの製造方法であって、上記円偏光分離層が以下(21)~(23)を含む方法により形成される方法:
(21)重合性液晶化合物およびキラル剤を含む液晶組成物を可視光遮断層上に塗布すること、
(22)(21)において上記可視光遮断層上に塗布された液晶組成物を乾燥させてコレステリック液晶相を形成すること、
(23)加熱または光照射により上記コレステリック液晶相を固定すること。
[14][13]に記載の円偏光分離フィルムの製造方法であって、上記円偏光分離層が以下(31)~(33)を含む方法により形成される方法:
(31)重合性液晶化合物およびキラル剤を含む液晶組成物を、上記(23)で得られる上記コレステリック液晶相を固定した層の表面に直接塗布すること、
(32)(31)において基板上に塗布された液晶組成物を乾燥させてコレステリック液晶相を形成すること、
(33)加熱または光照射により(32)で形成された上記コレステリック液晶相を固定すること。
[15]上記(21)の重合性液晶化合物およびキラル剤と上記(31)の重合性液晶化合物およびキラル剤がそれぞれ同一である[14]に記載の製造方法。
[16][1]~[7]のいずれか一項に記載の円偏光分離フィルムと、上記円偏光分離フィルムが右円偏光または左円偏光のいずれか一方を選択的に透過させる波長の光を検出できる受光素子とを含む赤外線センサー。
[17]対象物に光照射し、上記光照射に由来する上記対象物の反射光または透過光を検出することにより上記対象物を検知するシステムであって、
光源、円偏光分離フィルム1、円偏光分離フィルム2、および、近赤外光波長域の波長の光を検出する受光素子を含み、
円偏光分離フィルム1および円偏光分離フィルム2はいずれも、近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させ、
円偏光分離フィルム1は円偏光分離フィルム2を兼ねていてもよく、
上記光源、円偏光分離フィルム1、円偏光分離フィルム2、および上記受光素子が、上記光源から供給される光が円偏光分離フィルム1を透過して上記対象物に照射され、かつ上記対象物を透過または反射した光が、円偏光分離フィルム2を透過して上記受光素子に検出されるように配置されており、
円偏光分離フィルム2が、[1]~[7]のいずれか一項に記載の円偏光分離フィルムであるシステム。
[18]円偏光分離フィルム1が、[1]~[7]のいずれか一項に記載の円偏光分離フィルムである[17]に記載のシステム。
[19]上記光源が近赤外光光源である[17]または[18]に記載のシステム。
[20]ガラスを介して上記対象物を検知するシステムであり、
上記光源、円偏光分離フィルム1、円偏光分離フィルム2、および、上記受光素子が、上記光源の光に由来する上記対象物の反射光が円偏光分離フィルム2を透過して上記受光素子に検出されるように配置されている[17]~[19]のいずれか一項に記載のシステム。
[21]上記対象物が透明フィルムであり、
上記光源、円偏光分離フィルム1、円偏光分離フィルム2、および、上記受光素子が、上記光源の光に由来する上記対象物の透過光が円偏光分離フィルム2を透過して上記受光素子に検出されるように配置されている[17]~[19]のいずれか一項に記載のシステム。
[22]上記光源に由来する上記対象物の反射光または透過光の光軸が円偏光分離フィルム2と70°~89°の角度をなしている[17]~[21]のいずれか一項に記載のシステム。
[23]対象物に光照射し、上記光照射に由来する上記対象物の反射光または透過光により上記対象物を検知する方法であって、
(1)右円偏光または左円偏光のいずれか一方を選択的に含む近赤外光波長域の円偏光を上記対象物に照射すること、
(2)上記円偏光が、上記対象物で反射してまたは上記対象物を透過して生じた光の少なくとも一部が円偏光分離層2および可視光遮断層2を透過した光を近赤外光波長域の波長の光を検出する受光素子で感知することを含み、
上記円偏光分離層2は、近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させ、
可視光遮断層2は、可視光波長域の少なくとも一部の波長域の光を反射または吸収する方法。
[24]円偏光分離層2および可視光遮断層2がいずれも同一のフィルムを構成する層である[23]に記載の方法。
[25]上記(2)において、上記対象物で反射してまたは上記対象物を透過して生じた光の少なくとも一部が円偏光分離層2および光遮断層2をこの順で透過する[23]または[24]に記載の方法。
[26]上記(1)の近赤外光波長域の円偏光が、光を、可視光遮断層1および円偏光分離層1を透過させることにより形成された光であり、
円偏光分離層1は、近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させる層であり、円偏光分離層2を兼ねていてもよく、
可視光遮断層1は、可視光波長域の少なくとも一部の波長域の光を反射または吸収する層であり、可視光遮断層2を兼ねていてもよい、[23]~[25]のいずれか一項に記載の方法。
 本発明により、周囲環境に関わらず感度が高く、誤検知の少ない、赤外光波長域における偏光を利用した検知システムおよび検知方法が提供される。さらに、上記検知システムおよび上記検知方法において利用できる円偏光分離フィルムが提供される。
本発明の方法による対象物の検知のための、光源、受光素子、円偏光分離フィルムの配置例を示す図である。 実施例で用いた、フィルム、光源、受光素子、鏡の配置を模式的に示す図である。
 以下、本発明を詳細に説明する。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、円偏光につき「選択的」というときは、照射される光の右円偏光成分または左円偏光成分のいずれかの光量が、他方の円偏光成分よりも多いことを意味する。具体的には「選択的」というとき、光の円偏光度は、0.3以上であることが好ましく、0.6以上がより好ましく、0.8以上がさらに好ましい。実質的に1.0であることがさらに好ましい。 ここで、円偏光度とは、光の右円偏光成分の強度をIR、左円偏光成分の強度をILとしたとき、|IR-IL|/(IR+IL)で表される値である。
 本明細書において、円偏光につき「センス」というときは、右円偏光であるか、または左円偏光であるかを意味する。円偏光のセンスは、光が手前に向かって進んでくるように眺めた場合に電場ベクトルの先端が時間の増加に従って時計回りに回る場合が右円偏光であり、反時計回りに回る場合が左円偏光であるとして定義される。
 本明細書においては、コレステリック液晶の螺旋の捩れ方向について「センス」との用語を用いることもある。コレステリック液晶による選択反射は、コレステリック液晶の螺旋の捩れ方向(センス)が右の場合は右円偏光を反射し、左円偏光を透過し、センスが左の場合は左円偏光を反射し、右円偏光を透過する。
 可視光線は電磁波のうち、ヒトの目で見える波長の光であり、380nm~780nmの波長域の光を示す
 赤外線(赤外光)は可視光線より長く電波より短い波長域電磁波である。近赤外光とは一般的に700nm~2500nmの波長域の電磁波である。近赤外光としては、780nm~1500nm、または800nm~1500nmの波長域が好ましい。典型的には、赤外線カメラ、赤外線光電センサー、または赤外線通信などで用いられている近赤外光の波長域に対応する波長域であればよい。
 本明細書において、光透過率の算出に関連して必要である光強度の測定は、例えば通常の可視、近赤外スペクトルメータを用いて、リファレンスを空気として測定したものであればよい。
 なお、光の各波長の偏光状態は、円偏光板を装着した分光放射輝度計またはスペクトルメータを用いて測定することができる。この場合、右円偏光板を通して測定した光の強度がIR、左円偏光板を通して測定した光の強度がILに相当する。また、白熱電球、水銀灯、蛍光灯、LED等の通常光源は、ほぼ自然光を発しているが、これらに装着して偏光状態制御部材の偏光を作り出す特性は、例えば、AXOMETRICS社製の偏光位相差解析装置AxoScanなどを用いて測定することができる。
 また、照度計や光スペクトルメータに、円偏光板を取り付けても測定することができる。右円偏光透過板をつけ、右円偏光量を測定、左円偏光透過板をつけ、左円偏光量を測定することにより、比率を測定できる。
(対象物の検知)
 本発明の検知システムまたは検知方法における対象物の検知の際、光としては、赤外線、特に近赤外光波長域の光が使用される。赤外線としては偏光を用いればよい。検知のための赤外線として偏光を用いることにより、偏光の透過性に選択性のあるフィルムを介した対象物からの反射光および透過光の検知において、バックグラウンドとの対比として対象物の光学的性質を反映させることが可能であり、特定の光学的性質を有する対象物の検知が可能となったり、誤作動の少ない検知等が可能となったりする。なお、本明細書において、「反射光および透過光」というときは、散乱光および回折光を含む意味で用いられる。さらに、本発明の検知システムまたは検知方法においては、検知のための偏光として円偏光が用いられる。円偏光を利用して、対象物からの反射光および透過光を検知すると、偏光として直線偏光を用いる場合と比較して偏光検出のためのフィルムの方位の調整が容易になる。
 本発明の検知システムまたは検知方法で検知できる対象物の例としては、透明(複屈折)フィルム、鏡面反射体(金属板など)上のクラックまたは傷、鏡面反射体上の異物などがあげられる。セキュリティー用途として、夜間の歩行者などのヒトや、自動ドアやエレベーターなどでの人感センサーとしての使用もあげられる。
 対象物の検知のための、光源、受光素子、円偏光分離フィルムの配置例を図1に示す。
 配置1においては、光源、光源側の円偏光分離フィルム(本明細書において円偏光分離フィルム1ということがある。)、対象物、受光素子側の円偏光分離フィルム(本明細書において円偏光分離フィルム2ということがある。)、および受光素子がこの順で配置されており、対象物の透過光が検知されている。このときの対象物としては、透明フィルム(特に複屈折性を有するもの)などが考えられる。例えば、フィルムの製造ラインにおいて、フィルムの通過を検知するために用いることができる。配置1では対象物と円偏光分離フィルム1(図中の1)との間、および対象物と円偏光分離フィルム2(図中の1)との間にそれぞれガラスが配されているが、円偏光分離フィルムの利用によっては、ガラスからの反射光の影響を大幅に軽減することができる。
 配置1においては、円偏光分離フィルム2に可視光遮断層を含ませるか、または円偏光分離フィルム2と受光素子との間に可視光遮断層を含むフィルムを配すればよい。このような構成により周囲環境に関わらず高い感度を得ることができる。円偏光分離フィルム2が可視光遮断層を含む場合、可視光遮断層が受光素子側かつ円偏光分離層が対象物側となるように配置されていることが好ましい。また、配置1において、円偏光分離フィルム1に可視光遮断層を含ませるか、円偏光分離フィルム1と光源との間に可視光遮断層を含むフィルムを配することが好ましい。円偏光分離フィルム1が可視光遮断層を有する場合は可視光遮断層が光源側かつ円偏光分離層が対象物側となるように配置されていることが好ましい。
 配置2~4は、反射光を検知する構成であり、円偏光分離フィルム1が円偏光分離フィルム2を兼ねている、すなわち、円偏光分離フィルム1と円偏光分離フィルム2とが同一である構成である。配置2~4においては、対象物から見て円偏光分離フィルム(図中の1)の同じ側面側に光源と受光素子とが配置されている。この構成において、受光素子は光源からの直接の光の影響を受けないよう、図に示すように受光素子と光源との間には光を遮断する層などが設けられていればよい。
 配置2においては透明フィルム(特に複屈折性を有するもの)が対象物である例が示されている。対象物と円偏光分離フィルムとの間にはガラスが配されているが、円偏光分離フィルムの利用によっては、ガラスからの反射光の影響を大幅に軽減することができる。
 配置3においては、鏡面反射体上の紙を検知している。この例は、円偏光分離フィルム(図中の1)を介していずれか一方のセンスの円偏光となった光は鏡面反射体において他方のセンスの円偏光として反射されるため、上記円偏光分離フィルムを透過して受光素子に到達することができないが、紙によって乱反射した光は上記円偏光分離フィルムを透過できる光成分を含むことを利用したものである。
 配置4においては対象物として鏡面反射体の異物またはクラックを検知する例が示されているが、検知(センシング)の原理は配置3と同様である。
 配置5は反射光を検知する構成であって、円偏光分離フィルム1と円偏光分離フィルム2に別のフィルムを用いている例である。このような使用の例において、光源(図中の2)および円偏光分離フィルム1(図中の1)は一体化して光源装置を構成していてもよく、受光素子(図中の3)および円偏光分離フィルム2(図中の1)は一体化して赤外線センサーを構成していてもよい。図に示す例では配置5でヒトを検知している。例えば、夜間の歩行者や、エレベーター内のヒトが、このような配置で好ましく検知できる。
 配置2~4においては、円偏光分離フィルムに可視光遮断層を含ませるか、円偏光分離フィルムと光源および受光素子との間に可視光遮断層を含むフィルムを配すればよい。このような構成により周囲環境に関わらず高い感度を得ることができる。円偏光分離フィルムが可視光遮断層を含む場合、円偏光分離フィルムは可視光遮断層が光源および受光素子側かつ円偏光分離層が対象物側となるように配置されていることが好ましい。
 また配置5において、円偏光分離フィルム2に可視光遮断層を含ませるか、円偏光分離フィルム2と受光素子との間に可視光遮断層を含むフィルムを配すればよい。このような構成により周囲環境に関わらず高い感度を得ることができる。円偏光分離フィルム2が可視光遮断層を含む場合円偏光分離フィルム2の可視光遮断層が受光素子側かつ円偏光分離層側が対象物側となるように配置されていることが好ましい。さらに、配置5において、円偏光分離フィルム1に可視光遮断層を含ませるか、円偏光分離フィルム1と光源との間に可視光遮断層を含むフィルムを配することも好ましい。円偏光分離フィルム1が可視光遮断層を有する場合は可視光遮断層が光源側かつ円偏光分離層が対象物側となるように配置されていることが好ましい。
 例えば、配置2~5で示されるように、光源に由来する対象物の反射光または透過光の光路(光軸)は円偏光分離フィルム2の法線方向と角度をなしていることが好ましい。例えば、光の光路(光軸)の円偏光分離フィルム2に対する角度は、70°~89°、80°~89°、または85°程度であればよい。このような配置により、例えば対象物のバックグラウンドにあたる鏡面反射体等を反射または透過した後、円偏光分離フィルム2で反射する円偏光が再度のバックグラウンドを反射することによる、対象物に由来しない光の検知を軽減することができる。
(円偏光分離フィルムの光学的性質)
 円偏光分離フィルムは、近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させるフィルムである。円偏光分離フィルムは、片側面から入射した特定の近赤外光波長域の光(自然光、非偏光)を右円偏光および左円偏光に分離し、いずれか一方を選択的に他側面側に透過させることができることが好ましい。このとき他方の円偏光は反射していても吸収していてもよい。
 円偏光分離フィルムは、いずれの面から入射した光に対しても右円偏光または左円偏光のいずれか一方を選択的に透過させるものであってもよく、いずれか一方の面から入射した光に対してのみ右円偏光または左円偏光のいずれか一方を選択的に透過させ、他側面から入射した光に対してはそのような同様の選択的透過を示さないものであってもよい。後者の場合は使用の際に、所望の円偏光選択性が得られる配置とすればよい。また、円偏光分離フィルムは、いずれの面から入射した光であっても右円偏光および左円偏光に分離していずれか一方を選択的に他側面側に透過していてもよく、いずれか一方の面から入射した光についてのみ右円偏光および左円偏光に分離し、いずれか一方を選択的に他側面側に透過させ、他側面から入射した光に対してはそのような円偏光分離を示さないものであってもよい。後者の場合は使用の際に、所望の円偏光選択性が得られる配置とすればよい。
 円偏光分離フィルムは、波長800~1500nmの範囲の50nm幅以上の領域において右または左円偏光のいずれか一方を入射させたときの入射光と同一センスの円偏光の光透過率{(透過した円偏光の光強度)/(入射円偏光の光強度)×100}が、70%以上、80%以上、90%以上、95%以上、99%以上、好ましくは実質的に100%であればよい。同時に上記と同一の波長域において、他方のセンスの円偏光を入射させたときの入射光と同一センスの円偏光の光透過率{(透過した円偏光の光強度)/(入射させた円偏光の光強度)×100}が30%以下、20%以下、10%以下、5%以下、1%以下、好ましくは実質的に0%であればよい。
 円偏光分離フィルムは、可視光波長域において低い光透過率を有していることが好ましい。特に、受光素子側で用いられる円偏光分離フィルム2は、可視光波長域において低い光透過率を有していることが好ましい。また、特に、上記のように可視光遮断層を含むフィルムを別途に用いないシステムまたは方法において用いられる円偏光分離フィルムは可視光波長域において低い光透過率を有していることが好ましい。通常は自然光(非偏光)の透過率が低い構成であればよく、円偏光および/または直線偏光の透過率も低いことが好ましい。また、可視光波長域の一部において光の透過率が低くてもよく、可視光波長域の全域において光の透過率が低くてもよい。具体的には、380nm~780nmの波長域の平均光透過率が50%以下、40%以下、30%以下、20%以下、10%以下、または5%以下等であればよい。
 可視光波長域において光の透過率が低いことにより、円偏光分離フィルムを利用したシステムにおいて、受光素子に到達するセンシングに不必要な光(センシングに障害になる光)を大幅に減らすことができ、S/N比を高め、受光素子が検出する最低の光強度を下げることができる。
 円偏光分離フィルムは近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させる円偏光分離層を含む。円偏光分離フィルムは可視光波長域の少なくとも一部において光を反射または吸収する可視光遮断層を含んでいることが好ましい。可視光遮断層を含む円偏光分離フィルムは可視光遮断層を含むフィルムを別途に用いないシステムまたは方法において好ましく用いることができる。円偏光分離フィルムは必要に応じて他の層を含んでいてもよい。
 検知システムまたは検知方法で、受光素子側で用いられる円偏光分離フィルム2は可視光波長域の少なくとも一部において光を反射または吸収する可視光遮断層を含んでいるか、または可視光波長域の少なくとも一部において光を反射または吸収する可視光遮断層を含むフィルムとともに用いられていればよい。光源側で用いられる円偏光分離フィルム1は、視光波長域の少なくとも一部において光を反射または吸収する可視光遮断層を含んでいるか、または可視光波長域の少なくとも一部において光を反射または吸収する可視光遮断層を含むフィルムとともに用いられていることが好ましい。なお、本明細書において、光源側で用いられる可視光遮断層を可視光遮断層1ということがあり、また、受光素子側で用いられる可視光遮断層を可視光遮断層2ということがある。以下、各層について説明する。
(可視光遮断層)
 可視光遮断層は特定の可視光波長域の光がフィルムを透過しないように機能する。可視光遮断層は、自然光を遮断することが好ましい。また、非偏光、円偏光、直線偏光のいずれも遮断することが好ましい。円偏光分離フィルムは、主に、可視光遮断層により可視光波長域での低い光透過率を達成していればよい。
 可視光遮断層の例としては、可視光反射層および可視光吸収層があげられる。
 可視光遮断層が反射または吸収などにより光を遮断する可視光波長域の少なくとも一部は380nm~780nmの波長域にあればよい。可視光波長域の少なくとも一部の波長域幅は、10nm以上、20nm以上、30nm以上、40nm以上、または50nm以上等であればよい。可視光遮断層が光が反射または吸収される可視光波長域は、センサー(受光素子)においてセンシングに不必要な光(センシングに障害になる光)が検出されやすい波長域を含んでいることが好ましい。また、光源からの発光波長等に応じて定められる所望の近赤外光波長域以外の光の波長域を含んでいることも好ましい。可視光波長域の少なくとも一部は380nm~750nmの波長域の50%以上、60%以上、70%以上、80%以上、または90%以上であってもよく、実質的に100%であってもよい。
 可視光遮断層は、使用するセンサー(受光素子)の検出波長域を除く波長域の少なくとも一部で光反射性または光吸収性などの光遮断性が高いものであればよい。または、使用する光源、通常は赤外線光源、の発光波長域を除く少なくとも一部で光遮断性が高いものであればよい。一般に受光素子(光検出器)として使用されるシリコンフォトダイオードは、使用環境中に最も多く存在しノイズの主因となる可視光領域にまで感度を有するため、可視光遮断層は、この可視光領域を中心に光反射または光吸収するものが好ましい。また、可視光遮断層は、円偏光分離層が右円偏光または左円偏光のいずれか一方を選択的に透過させる近赤外光波長域の光を実質的に反射または吸収しないことが好ましい。
 可視光遮断層の厚さは、2μm~500μmが好ましく、5μm~300μmがより好ましく、10μm~150μmが更に好ましい。
 以下、可視光遮断層として用いることができる可視光反射層および可視光吸収層についてそれぞれ説明する。
(可視光反射層)
 光遮断のために光を反射させる可視光反射層の利用によっては、フィルムの温度上昇もないため、フィルム耐久性が上がり、フィルム性能が維持しやすい。また、可視光反射層は通常、鏡のような外観を有し、フィルムの外観にも好影響を与え、センサー部品として用いられる場合にも人の目に触れる部分に使用しやすくなる。
 可視光反射層の例としては、誘電体多層膜およびコレステリック液晶相を固定した層などがあげられる。
(誘電体多層膜)
 誘電体多層膜は、無機酸化物や有機高分子材料の屈折率の異なる透明誘電性の層を相互に多層積層したものである。これらの透明誘電体層の少なくともいずれか一層は、厚み(d)と透明誘電体層の屈折率(n)との積(n×d)が、反射させるべき光の波長(λ)の4分の1になる様にして構成され、反射の中心波長がλで誘電体層の屈折率の差に対応して決まる反射の帯域幅の領域の光を反射することができる。通常の材料の組み合わせでは、一つの周期の誘電体多層膜で可視光領域全体を反射することは困難であるため、n×dの値を変えた反射光の中心波長が異なるものを幾種類か積層することで反射の帯域幅を広げるなど調整することができる。上記透明誘電体層は、使用する赤外光波長域において透過性であれば特に限定されない。
 通常、誘電体多層膜中の無機酸化物としてはTiO2、SiO2、Ta25などを好適に用いることができる。無機酸化物の層は、例えば、ガラス、耐熱性高分子フィルムの表面にスパッタ法などで形成することができる。一方、有機高分子材料の例としては、ポリカーボネート、アクリル樹脂、ポリエステル、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、シリコーン(シリコーンポリウレア等の変性シリコーンを含む)等があげられ、特表平9-507308号公報等に開示された方法に準じて製造することができる。
(コレステリック液晶相を固定した層:可視光反射層)
 コレステリック液晶相は、右円偏光または左円偏光のいずれか一方を選択的に反射させるとともに他方の円偏光を透過する円偏光選択反射を示すことが知られている。円偏光選択反射性を示すコレステリック液晶化合物やコレステリック液晶化合物から形成されたフィルムは従来から数多く知られており、円偏光分離フィルムにおいてコレステリック液晶相を固定した層を用いる場合には、それらの従来技術を参照することができる。
 コレステリック液晶相を固定した層とは、コレステリック液晶相となっている液晶化合物の配向が保持されている層であればよく、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射、加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、また外場や外力によって配向形態に変化を生じさせることない状態に変化した層であればよい。なお、コレステリック液晶相を固定した層においては、コレステリック液晶相の光学的性質が層中において保持されていれば十分であり、上記層中の液晶性化合物はもはや液晶性を示していなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。
 本明細書においてコレステリック液晶相を固定した層をコレステリック液晶層または液晶層ということがある。
 コレステリック液晶相を固定した層は、コレステリック液晶の螺旋構造に由来した円偏光反射を示す。その反射の中心波長λは、コレステリック相における螺旋構造のピッチ長P(=螺旋の周期)に依存し、コレステリック液晶層の平均屈折率nとλ=n×Pの関係に従う。そのため、この螺旋構造のピッチ長を調節することによって、円偏光反射を示す波長を調整できる。すなわち、可視光波長域の少なくとも一部において光を反射する可視光反射層の形成のためには、n値とP値を調節して中心波長λが380nm~780nmの波長域となるようにすればよい。コレステリック液晶相のピッチ長は重合性液晶化合物とともに用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調整することによって所望のピッチ長を得ることができる。なお、螺旋のセンスやピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46p、および「液晶便覧」液晶便覧編集委員会 丸善 196pに記載の方法を用いることができる。
 また、コレステリック液晶層の反射円偏光のセンスは螺旋のセンスに一致する。
 反射波長での反射率は、コレステリック液晶層が厚いほど高くなるが、通常の液晶材料では可視光の波長域では2~8μmの厚みで飽和し、また片側の円偏光のみに対しての反射であるため反射率は最大で50%である。円偏光のセンスに関わらず光反射し、自然光の反射率を50%以上とするために、可視光反射層としては、周期Pが同じで、螺旋のセンスが右のコレステリック液晶層と左のコレステリック液晶層とが積層されたもの、または、周期Pが同じで、同じ螺旋のセンスのコレステリック液晶層と、その間に配されるコレステリック液晶層の円偏光反射の中心波長に対して半波長の位相差を有する位相差膜とからなる積層体を用いることができる。
 また、選択反射(円偏光反射)帯の半値幅は、Δλが液晶化合物の複屈折Δnと上記ピッチ長Pに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯の幅の制御は、Δnを調整して行うことができる。Δnの調整は重合性液晶化合物の種類やその混合比率を調整したり、配向固定時の温度を制御したりすることで行うことができる。
 円偏光反射波長域の幅は可視光領域においては、通常の材料では50nm~100nmであるため、周期Pを変えた反射光の中心波長が異なるコレステリック液晶層を幾種類か積層することで反射の帯域幅を広げることができる。また、1つのコレステリック液晶層内において、周期Pを膜厚方向に対して緩やかに変化させることで反射の帯域を広げることもできる。
 コレステリック液晶層の具体的な作製材料および作製方法については後述する。
(可視光吸収層)
 可視光吸収層としては顔料や染料などの着色剤を分散剤、バインダーやモノマーを含む溶媒に分散した分散液を、基材(受光素子が検出する赤外線波長域で十分な光透過性を有するものが好ましい)の上に塗工して形成された層、染料を用いて直接高分子基材表面を染色した層、染料を含む高分子材料から形成された層を用いることができる。
 顔料としては、受光素子が検出する赤外線波長域にて吸収や散乱が無いものが好ましく用いられる。そのため、透明性を求められるカラー印刷用のシアン、マゼンタ、イエロー、クロのインキや、液晶表示装置や有機LED表示装置などの赤色、緑色、青色のカラーフィルターに使用されている顔料を好適に用いることができる。これらの吸収の極大波長が異なる顔料を混合することによって、可視光波長域の光全体を広く十分に吸収する層を形成することができる。
 染料は、受光素子が検出する赤外線波長域にて吸収が無くまた可視光暴露に対して堅牢なものが好ましく用いられる。一般的な直接染料、酸性染料、塩基性染料、媒染染料、分散染料、反応染料などを用いることができる。この染料型吸収層として、市販の写真用フィルターIR-80、IR-82、IR-84など(富士フイルム社製)を使用することもできる。
(円偏光分離層)
 円偏光分離フィルムは、近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させる円偏光分離層を含む。なお、本明細書において、光源側で用いられる円偏光分離層を円偏光分離層1ということがあり、また、受光素子側で用いられる円偏光分離層を円偏光分離層2ということがある。円偏光分離フィルムは円偏光分離層の右円偏光または左円偏光のいずれか一方を選択的に透過させる機能が他の層によって喪失しないように円偏光分離層を含むことにより、近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させる機能を有する。すなわち、例えば、円偏光分離フィルムは、特定の近赤外光波長域において右円偏光または左円偏光のいずれか一方を選択的に透過させる円偏光分離層とともに同一の波長域で同一のセンスの円偏光を反射する円偏光分離層を同時に含むことにより、または対応する近赤外光波長域において、光(自然光)を反射または吸収する層を含むことにより、右円偏光または左円偏光のいずれか一方を選択的に透過させる個々の円偏光分離層の機能が相殺されていないことが好ましい。
 円偏光分離層が右円偏光または左円偏光のいずれか一方を選択的に透過させる近赤外光波長域は、780nm~1500nm、好ましくは800nm~1500nmにあればよく、その波長域幅は、5nm以上、10nm以上、20nm以上、30nm以上、40nm以上、または50nm以上であればよい。円偏光分離層が右円偏光または左円偏光のいずれか一方を選択的に透過させる近赤外光波長域は、円偏光分離フィルムの使用形態と合わせて、例えばセンシングに必要な光の波長を含んでいればよく、800nm~1500nmの波長域の50%以上、60%以上、70%以上、80%以上、または90%以上であってもよく、実質的に100%であってもよい。
 円偏光分離層は、右円偏光または左円偏光のいずれか一方を選択的に透過させる波長域以外の光については、透過させていても、反射していても、吸収していてもよい。また、円偏光分離層は右円偏光または左円偏光のいずれか一方を選択的に透過させるとともに、他方の円偏光を反射していてもよく、吸収していてもよい。
 円偏光分離層としては、例えば、コレステリック液晶相を固定した層、または直線偏光分離層とλ/4位相差層とを含む積層体からなる層を用いることができる。
(コレステリック液晶相を固定した層:円偏光分離層)
 円偏光分離層としては、上述のようなコレステリック液晶相を固定した層を用いることができる。ただし、円偏光分離層として用いられるコレステリック液晶層は近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過(反射)するように、上述の、n値とP値を調節して中心波長λが780nm~1500nm、好ましくは800nm~1500nmの波長域となるようにすればよい。
 円偏光分離層としては、螺旋のセンスが右または左のいずれかであるコレステリック液晶層を用いればよく、特定の波長で円偏光選択性を高くするためなどの目的のために積層する際には、周期Pが同じで、同じ螺旋のセンスのコレステリック液晶層を複数積層すればよい。この際は、後述の方法で形成された先のコレステリック液晶層の表面に直接、重合性液晶化合物等を含む液晶組成物を塗布し、配向および固定の工程を繰り返すことが好ましい。このような工程により、先に形成したコレステリック層の空気界面側の液晶分子の配向方位と、その上に形成するコレステリック液晶層の下側の液晶分子の配向方位が一致し、円偏光分離層の偏光特性が良好となる。
 また、可視光反射層にコレステリック液晶層を用いる場合と同様に、選択反射(透過)帯域幅を広げるため複数層を積層してもよいが、その際は同じ螺旋のセンスのコレステリック液晶層を積層することが好ましい。
 コレステリック液晶層は、いずれの面から入射した光に対しても右円偏光または左円偏光のいずれか一方を選択的に透過させ、かついずれの面から入射した光であっても右円偏光および左円偏光に分離していずれか一方を選択的に他側面側に透過させることができる。
 コレステリック液晶層の作製材料、および作製方法については後述する。
(直線偏光分離層とλ/4位相差層とを含む積層体)
 直線偏光分離層とλ/4位相差層とを含む積層体からなる円偏光分離層では、直線偏光分離層の面から入射する光は、反射もしくは吸収によって直線偏光に変換され、その後λ/4位相差層を通過することによって右または左の円偏光に変換される。一方、λ/4位相差層からの光入射の場合、いずれの偏光状態の光でも最後に通過する直線偏光分離層によって直線偏光となるが、特に入射光が円偏光の場合はλ/4位相差層によって直線偏光層の透過軸に平行または直交する直線偏光に変換されるので、入射円偏光センスの識別に利用するためにはλ/4位相差層側から光を入射することが好ましく、出射円偏光を利用する場合には、直線偏光分離層側から光を入射することが好ましい。
 直線偏光分離層としては、直線偏光子を用いることができ、赤外線領域の光に対応した偏光子であればよい。
(直線偏光子)
 好適に用いることができる赤外線直線偏光子としては、屈折性を有し屈折率の異なる樹脂を多層積層し、延伸により厚みと位相差値を制御した多層誘電体反射偏光子、多数の平行導体線配列(グリット)により構成されたグリット偏光子、形状異方性のある金属ナノ粒子を配列固定した偏光子、二色性色素を配列固定した偏光子などがあげられる。これらはいずれも薄層状、フィルム状、 あるいは板状に形成することが容易であり、円偏光分離層を形成する工程において、後述のシート状の位相差層を単に貼り合せて形成できる。または、赤外線直線偏光子上に直接、位相差層形成のための組成物を塗布することにより位相差層を形成してすることができ、より薄膜の円偏光分離層の作製が可能である。
 多層誘電体反射偏光子は、面内透過軸に平行な振動方向の光のみを透過し、それ以外の光を反射可能な偏光フィルムである。この様なフィルムとして、特表平9-507308号公報等に開示された多層フィルムをあげることができる。これは、フィルム面内に複屈折性のない透明誘電体層1からなる層と面内に複屈折性を有する透明誘電体層2からなる層を交互に多層積層したものであり、透明誘電体層1の屈折率を透明誘電体層2の常光屈折率または異常光屈折率のいずれかに一致するように形成したものである。さらにこれらの透明誘電体層の少なくともいずれか一方は、厚み(d)と透明誘電体層の屈折率(n)との積(n×d)が、反射させるべき光の波長の4分の1になる様にして構成される。上記透明誘電体層の形成のための材料は、使用する赤外線波長において光透過性の材料であればよく、例としてはポリカーボネート、アクリル樹脂、ポリエステル、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、シリコーン(シリコーンポリウレア等の変性シリコーンを含む)等があげられる。
 グリット偏光子は、使用する赤外線波長において光透過性の高分子フィルム、ガラス基板やケイ素(Si)基板の片面にアルミや銀、または金などの良導体薄膜からなるサブミクロンピッチ(入射光の波長より短いピッチ)の多数の平行導体線配列構造(グリット)を設けたものであり、特開2002-328234号公報等に開示された偏光子をあげることができる。この偏光子は入射光のうちグリットに対して平行な偏光成分は反射し、垂直な偏光成分は透過することによって、偏光子として機能する。 必要に応じてこれをガラスで挟んだり反射防止層を設けたりすることができる。
 形状異方性のある金属ナノ粒子を配列固定した偏光子は、アスペクト比が大きなハロゲン化銀粒子や、銀粒子を配向しそれを固定したものである。この偏光板は粒子の配列方向に電界振動面を有する赤外光を吸収し、それに直交する方向の赤外光を透過する吸収型の直線偏光板である。これに属するものとして特開昭59-83951号公報、特開平2-248341号公報、特開2003-139951号公報にあるものを用いることができる。
 二色性色素を配列固定した偏光子としては、PVA(ポリビニルアルコール)にヨウ素を吸着もしくは2色性染料をドーピングさせ延伸しポリビニレンとした赤外偏光フィルムなどをあげることができる。この偏光板は延伸方法に電界振動面を有する赤外光を吸収し、それに直交する方向の赤外光を透過する。
 これは、PVAのフィルムをヨウ素/ヨウ化物などの染色性組成物槽中に通してPVA層の染色を行ったのち4~6倍の倍率で延伸することによって二色性色素の配向を得ることができる。PVAのポリビニレンへの変換は米国特許第2.445,555号に記載されているような塩酸蒸気法で行うことができる。またこの偏光用材料の安定性を改善するために、ホウ酸とボラツクスを含有する水性ボレート化浴を使用してボレート化することも行われる。市販のエドモンド・オプティクス・ジャパン株式会社製の近赤外用直線偏光フィルムを、これに相当するものとしてあげることができる。
 直線偏光分離層の厚さは、0.05μm~300μmが好ましく、0.2μm~150μmがより好ましく、0.5μm~100μmが更に好ましい。
(λ/4位相差層)
 位相差板の面内遅相軸は 上記偏光板の吸収軸もしくは透過軸から45°回転させた方位に設置する。赤外線光源としてLEDやレーザーなどの単色光光源を用いる場合には、位相差板の正面位相差は 光源の発光波長の中心波長の1/4の長さ、または「中心波長*n±中心波長の1/4(nは整数)」であることが望ましく、例えば、光源の発光中心波長が1000nmであれば、250nm、750nm、1250nm、1750nmなどの位相差であることが好ましい。また位相差の光入射角度の依存性は小さいほど好ましく、中心波長の1/4の長さの位相差を持つ位相差板がこの点において最も好ましい。
 本発明の検知システムまたは検知方法において、赤外線光源として発光波長が異なる多種の光源を組み合わせて用いたり、発光強度のピークが二波長以上の光源や発光が広い波長範囲に及ぶ光源を用いたりする場合などにおいて、円偏光選択性を示す波長域を広くしたい場合が考えられる。そのような場合にも、上述の位相差板を用いることができるが、広帯域の位相差板を用いることがより好ましい。広帯域の位相差板とは広い波長範囲にわたって位相差角度が一定となる位相差板で、この例としては、複屈折率の波長分散が互いに異なる位相差層をその遅相軸を直交させることで広帯域とした積層位相差板、この原理を分子レベルで用い複屈折率の波長分散が互いに異なる置換基をその配列軸を直交させて配向形成した高分子フィルム、使用波長域の波長(λ)に対して位相差がλ/2の層とλ/4の層を互いの遅相軸を60度に交差して積層した位相差板などをあげることができる。
 上記位相差板の材料の例としては、結晶性のガラスや無機物の結晶や、ポリカーボネート、アクリル樹脂、ポリエステル、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、シリコーン(シリコーンポリウレア等の変性シリコーンを含む)等のポリマーや 重合性液晶化合物、高分子液晶化合物を配列させて固定したものをあげることができる。
 λ/4層の厚さは、0.2μm~300μmが好ましく、0.5μm~150μmがより好ましく、1μm~80μmが更に好ましい。
(コレステリック液晶相を固定した層の作製方法)
 以下、可視光反射層または円偏光分離層に用いることができるコレステリック液晶層の作製材料および作製方法について説明する。
 上記コレステリック液晶層の形成に用いる材料としては、重合性液晶化合物とキラル剤(光学活性化合物)とを含む液晶組成物などがあげられる。必要に応じてさらに界面活性剤や重合開始剤などと混合して溶剤などに溶解した上記液晶組成物を、基材(支持体、配向膜、下層となるコレステリック液晶層など)に塗布し、コレステリック配向熟成後、固定化してコレステリック液晶層を形成することができる。
重合性液晶化合物
 重合性液晶化合物は、棒状液晶化合物であっても、円盤状液晶化合物であってもよいが、棒状液晶化合物であることが好ましい。
 コレステリック液晶層を形成する棒状の重合性液晶化合物の例としては、棒状ネマチック液晶化合物があげられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
 重合性コレステリック液晶化合物は、重合性基をコレステリック液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基が特に好ましい。重合性基は種々の方法で、コレステリック液晶化合物の分子中に導入できる。重合性コレステリック液晶化合物が有する重合性基の個数は、好ましくは1~6個、より好ましくは1~3個である。重合性コレステリック液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および特開2001-328973号公報などに記載の化合物が含まれる。2種類以上の重合性コレステリック液晶化合物を併用してもよい。2種類以上の重合性コレステリック液晶化合物を併用すると、配向温度を低下させることができる。
 また、液晶組成物中の重合性液晶化合物の添加量は、液晶組成物の固形分質量(溶媒を除いた質量)に対して、10~60質量%であることが好ましく、20~50質量%であることがより好ましく、30~40質量%であることが特に好ましい。
キラル剤(光学活性化合物)
 キラル剤はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル化合物は、化合物によって誘起する螺旋のセンスまたは螺旋ピッチが異なるため、目的に応じて選択すればよい。
 キラル剤としては、特に制限はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、イソマンニド誘導体を用いることができる。
 キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と硬化性コレステリック液晶化合物が重合性基を有する場合は、重合性キラル剤と重合性コレステリック液晶化合物との重合反応により、コレステリック液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性コレステリック液晶化合物が有する重合性基と、同種の基であることが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが特に好ましい。
 また、キラル剤は、液晶化合物であってもよい。
 キラル剤が光異性化基を有する場合には、塗布、配向後に活性光線などのフォトマスク照射によって、発光波長に対応した所望の反射波長のパターンを形成することができるので好ましい。光異性化基としては、フォトクロッミック性を示す化合物の異性化部位、アゾ、アゾキシ、シンナモイル基が好ましい。具体的な化合物として、特開2002-80478号公報、特開2002-80851号公報、特開2002-179668号公報、特開2002-179669号公報、特開2002-179670号公報、特開2002-179681号公報、特開2002-179682号公報、特開2002-338575号公報、特開2002-338668号公報、特開2003-313189号公報、特開2003-313292号公報に記載の化合物を用いることができる。
 液晶組成物における、キラル剤の含有量は、重合性液晶性化合物量の0.01モル%~200モル%が好ましく、1モル%~30モル%がより好ましい。
重合開始剤
 液晶組成物は、重合開始剤を含有していることが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であることが好ましい。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)等があげられる。
 液晶組成物中の光重合開始剤の含有量は、重合性液晶化合物の含有量に対して0.1~20質量%であることが好ましく、0.5質量%~5質量%であることがさらに好ましい。
架橋剤
 液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等で硬化するものが好適に使用できる。
 架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などがあげられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 架橋剤の含有量は、3質量%~20質量%が好ましく、5質量%~15質量%がより好ましい。架橋剤の含有量が、3質量%未満であると、架橋密度向上の効果が得られないことがあり、20質量%を超えると、コレステリック層の安定性を低下させてしまうことがある。
配向制御剤
液晶組成物中には、安定的にまたは迅速にプレーナー配向のコレステリック液晶層とするために寄与する配向制御剤を添加してもよい。配向制御剤の例としては特開2007-272185号公報の段落〔0018〕~〔0043〕等に記載のフッ素(メタ)アクリレート系ポリマー、特開2012-203237号公報の段落〔0031〕~〔0034〕等に記載の式(I)~(IV)で表される化合物などがあげられる。
 なお、配向制御剤としては1種を単独で用いてもよいし、2種以上を併用してもよい。
 液晶組成物中における、配向制御剤の添加量は、コレステリック液晶化合物の全質量に対して0.01質量%~10質量%が好ましく、0.01質量%~5質量%がより好ましく、0.02質量%~1質量%が特に好ましい。
その他の添加剤
 その他、液晶組成物は、塗膜の表面張力を調整し膜厚を均一にするための界面活性剤、および重合性モノマー等の種々の添加剤から選ばれる少なくとも1種を含有していてもよい。また、液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、金属酸化物微粒子等を、光学的性能を低下させない範囲で添加することができる。
 コレステリック液晶層は、重合性液晶化合物および重合開始剤、更に必要に応じて添加されるキラル剤、界面活性剤等を溶媒に溶解させた液晶組成物を、基材上に塗布し、乾燥させて塗膜を得、この塗膜に活性光線を照射してコレステリック液晶性組成物を重合し、コレステリック規則性が固定化されたコレステリック液晶層を形成することができる。なお、複数のコレステリック層からなる積層膜は、コレステリック層の製造工程を繰り返し行うことにより形成することができる。
 液晶組成物の調製に使用する溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
 有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えばケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、エーテル類、などがあげられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が特に好ましい。
 基材上への液晶組成物の塗布方法は、特に制限はなく、目的に応じて適宜選択することができ、例えば、ワイヤーバーコーティング法、カーテンコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スピンコーティング法、ディップコーティング法、スプレーコーティング法、スライドコーティング法などがあげられる。また、別途支持体上に塗設した液晶組成物を基材上へ転写することによっても実施できる。塗布した液晶組成物を加熱することにより、液晶分子を配向させる。加熱温度は、200℃以下が好ましく、130℃以下がより好ましい。この配向処理により、重合性液晶化合物が、フィルム面に対して実質的に垂直な方向に螺旋軸を有するようにねじれ配向している光学薄膜が得られる。
 配向させた液晶化合物は、更に重合させればよい。重合は、熱重合、光照射による光重合のいずれでもよいが、光重合が好ましい。光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2~50J/cm2が好ましく、100mJ/cm2~1,500mJ/cm2がより好ましい。光重合反応を促進するため、加熱条件下または窒素雰囲気下で光照射を実施してもよい。照射紫外線波長は350nm~430nmが好ましい。重合反応率は安定性の観点から、高いことが好ましく70%以上が好ましく、80%以上がより好ましい。
 重合反応率は、重合性の官能基の消費割合を、IR吸収スペクトルを用いて決定することができる。
 なお、近赤外波長域での円偏光分離層であるコレステリック液晶層の厚み(複数層積層されている場合は複数層の合計)は、1μm~150μmが好ましく、2μm~100μmがより好ましく、5μm~50μmが更に好ましい。
(その他の層)
 円偏光分離フィルムは、支持体、上記の液晶化合物の配向のための配向層、円偏光分離層と可視光遮断層の貼合のための接着層等の他の層を含んでいてもよい。また、上述の可視光遮断層を含むフィルムも、支持体等の他の層を含んでいてもよい。
 支持体は特に限定されず、プラスチックフィルムの他、ガラス等を用いてもよい。可視光遮断層や円偏光分離層の光学的性質を相殺する性質を有していないことが好ましく、一般的には透明であり、低複屈折性であることが好ましい。プラスチックフィルムの例としては、ポリエチレンテレフタレート(PET)などのポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、シリコーンなどがあげられる。上記のコレステリック液晶層の作製のために用いられる支持体は、円偏光分離フィルムにおいては剥離されていてもよい。
 配向膜は、有機化合物、ポリマー(ポリイミド、ポリビニルアルコール、ポリエステル、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリアミド、変性ポリアミドなどの樹脂)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、またはラングミュア・ブロジェット法(LB膜)による有機化合物(例えば、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。更に、電場の付与、磁場の付与または光照射により、配向機能が生じる配向膜も知られている。これらの中でも、ポリマーのラビング処理により形成する配向膜が特に好ましい。ラビング処理は、ポリマー層の表面を、紙、布で一定方向に、擦ることにより実施することができる。
 配向膜を設けずに支持体表面、または支持体をラビング処理した表面に、液晶組成物を塗布してもよい。
 接着剤としては硬化方式の観点からホットメルトタイプ、熱硬化タイプ、光硬化タイプ、反応硬化タイプ、硬化の不要な感圧接着タイプがあり、それぞれ素材としてアクリレート系、ウレタン系、ウレタンアクリレート系、エポキシ系、エポキシアクリレート系、ポリオレフィン系、変性オレフィン系、ポリプロピレン系、エチレンビニルアルコール系、塩化ビニル系、クロロプレンゴム系、シアノアクリレート系、ポリアミド系、ポリイミド系、ポリスチレン系、ポリビニルブチラール系などの化合物を使用することができる。作業性、生産性の観点から、硬化方式として光硬化タイプが好ましく、光学的な透明性、耐熱性の観点から、素材はアクリルレート系、ウレタンアクリレート系、エポキシアクリレート系などを使用することが好ましい。
(可視光遮断層を有する円偏光分離フィルムの製造方法)
 可視光遮断層を有する円偏光分離フィルムは、例えば上記のように作製できる可視光遮断層と円偏光分離層とを接着剤等を用いて貼り合わせることにより作製することができる。貼り合わせる面は特に限定されず、例えば、支持体を有する場合は支持体面側でもよく、その反対側でもよい。両者を貼り合わせた後、支持体は剥離しても、剥離しなくてもよい。円偏光分離層が直線偏光分離層とλ/4位相差層とを含むものである場合は、λ/4位相差層からみて直線偏光分離層側の面に可視光遮断層が貼り合わされていることが好ましい。
 可視光遮断層を有する円偏光分離フィルムは、可視光遮断層上に直接、円偏光分離層形成用の組成物を塗布する工程を経て円偏光分離層を形成して作製されていてもよく、円偏光分離層上に直接、可視光遮断層形成用の組成物を塗布する工程を経て可視光遮断層を形成して作製されていてもよい。
(受光素子、赤外線センサー)
 検知システムまたは検知方法において用いられる受光素子としては、Si、Ge、HgCdTe、PtSi、InSb、PbSなどの半導体を使用したフォトダイオード型センサーや光検出素子を線状に配列した検出器や画像を取り込めるCCDやCMOSがあげられる。
 検知システムまたは検知方法においては、円偏光分離フィルムが、赤外線センサーの部品として、円偏光分離フィルムが右円偏光または左円偏光のいずれか一方を選択的に透過させる波長の光を検出できる受光素子と組み合わせて用いられていてもよい。例えば、赤外線センサーの受光面に円偏光分離フィルムを配置することができる。
 赤外線センサーは受光素子を筐体内部に有し、光取り込み部分に円偏光分離フィルムを配して、円偏光分離フィルムを経由した光以外の光が受光素子に到達しない構成となっていることが好ましい。また、円偏光分離フィルムが可視光遮断層を含む場合、円偏光分離フィルムは円偏光分離層が外側であって可視光遮断層が受光素子側となるように配置されていることが好ましい。円偏光分離層が直線偏光分離層とλ/4位相差層とを含むものである場合は、λ/4位相差層が外側であって直線偏光分離層が受光素子側となるように配置することが好ましい。
円偏光分離フィルムとともに、可視光遮断層を含むフィルムを光取り込み部分に円偏光分離フィルムを配してもよい。この場合、円偏光分離フィルムが外側であって可視光遮断層を含むフィルムが受光素子側となるように配置されていることが好ましい。
(光源、光源装置)
 光源としては、ハロゲンランプ、タングステンランプ、LED、LD、キセノンランプ、メタハラランプなど受光素子の感光波長の光を発光するものであればいずれも使用できるが、小型、発光指向性、単色光、パルス変調適性の点でLEDまたはLDが好ましい。光源は近赤外光光源が好ましい。
 検知システムまたは検知方法においては、光源と上記円偏光分離フィルムが組み合わされて光源装置を構成していてもよい。光源装置は、例えば光源を筐体内部に有し、光を出射する部分に円偏光分離フィルムを配して、円偏光分離フィルムを経由した光以外の光が光源から出射していない構成となっていることが好ましい。また、円偏光分離フィルムが可視光遮断層を含む場合、円偏光分離層が外側であって可視光遮断層が光源側となるように配置されていることが好ましい。円偏光分離層が直線偏光分離層とλ/4位相差層とを含むものである場合は、λ/4位相差層が外側であって直線偏光分離層が光源側となるように配置することが好ましい。円偏光分離フィルムとともに、可視光遮断層を含むフィルムを光取り込み部分に円偏光分離フィルムを配してもよい。この場合、円偏光分離フィルムが外側であって可視光遮断層を含むフィルムが光源側となるように配置されていることが好ましい。
 円偏光分離フィルムは、実施例で示すように、赤外線センサーおよび光源装置とは独立して用いてもよい。この際は、円偏光分離フィルムを対象物と受光素子との間および/または対象物と光源との間に配して使用すればよい。このとき、上記の赤外線センサーまたは光源装置での説明に準じて、対象物に対するフィルムの向きを調整することができる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。
 [実施例R1]
円偏光分離層の作製
 ラビング処理を施した富士フイルム製PETのラビング処理面に、表1に示す塗布液A-2を、乾燥後の乾膜の厚みが5μmになるように、室温にてワイヤーバーを用いて塗布した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し液晶層を得た。この液晶層上に表1に示す塗布液A-3を乾燥後の乾膜の厚みが5μmになるように室温にて塗布し、その後上記と同様に乾燥、加熱、UV照射を行い、2層目の液晶層を形成して、円偏光分離層を得た。
可視光反射層の作製
 ラビング処理を施した富士フイルム製PETのラビング処理面に、表2に示す塗布液B-1を、乾燥後の乾膜の厚みが2μmになるように室温にてワイヤーバーを用いて塗布した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し液晶層を得た。この液晶層上に表2に示す塗布液B-2を乾燥後の乾膜の厚みが2μmになるように室温にて塗布し、その後上記と同様に乾燥、加熱、UV照射を行い2層目の液晶層を形成した。2層目の液晶層上に表2に示す塗布液B-3~B-16をそれぞれ用いて同様の工程で3層目~16層目の液晶層を形成し、可視光反射層を得た。
可視光反射層、円偏光分離層の貼合
 上記で作製した円偏光分離層の液晶層側の面上に、DIC株式会社製UV硬化型接着剤Exp.U12034-6を、乾燥後の乾膜の厚みが5μmになるように室温にてワイヤーバーを用いて塗布した。この塗布面と上記で作製した可視光反射層の液晶層側の面とを気泡が入らないように貼りあわせ、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射した。その後、円偏光分離層、可視光反射層の支持体となっていた富士フイルム製PETを剥離し、実施例R1の円偏光分離フィルムを得た。
[実施例R2]
 ラビング処理を施した富士フイルム製PETのラビング処理面に、表1に示す塗布液A-1を乾燥後の乾膜の厚みが5μmになるように室温にてワイヤーバーを用いて塗布した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し液晶層を得た。この液晶層上に表1に示す塗布液A-2を乾燥後の乾膜の厚みが5μmになるように室温にて塗布し、その後上記と同様に乾燥、加熱、UV照射を行い、2層目の液晶層を形成した。2層目の液晶層上に表1に示す塗布液A-3を乾燥後の乾膜の厚みが5μmになるように室温にて塗布し、その後上記と同様に乾燥、加熱、UV照射を行い、3層目の液晶層を形成して、円偏光分離層を得た。
 上記で作製した円偏光分離層を実施例R1で作製した可視光反射層と同じ可視光反射層と実施例R1と同様の方法で貼合し実施例R2の円偏光分離フィルムを得た。
[実施例R3]
 ラビング処理を施した富士フイルム製PETのラビング処理面に、表1に示す塗布液A-1を乾燥後の乾膜の厚みが5μmになるように室温にてワイヤーバーを用いて、塗布した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し、液晶層を得た。この液晶層上に表1に示す塗布液A-2を乾燥後の乾膜の厚みが5μmになるように室温にて塗布し、上記と同様に乾燥、加熱、UV照射を行い、2層目の液晶層を形成した。2層目の液晶層上に表1に示す塗布液A-3~A-9をそれぞれ用いて同様の工程で3層目~9層目の液晶層を形成し、円偏光分離層を得た。
 上記で作製した円偏光分離層を実施例R1で作製した可視光反射層と同じ可視光反射層と実施例R1と同様の方法で貼合し、実施例R3の円偏光分離フィルムを得た。
[実施例R4]
 ラビング処理を施した富士フイルム製PETのラビング処理面に、表1に示す塗布液A-1を乾燥後の乾膜の厚みが5μmになるように室温にてワイヤーバーを用いて、塗布した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し、液晶層を得た。この液晶層上に表1に示す塗布液A-2を乾燥後の乾膜の厚みが5μmになるように室温にて塗布し、上記と同様に乾燥、加熱、UV照射を行い、2層目の液晶層を形成した。2層目の液晶層上に表1に示す塗布液A-3~A-12をそれぞれ用いて同様の工程で3層目~12層目の液晶層を形成し、円偏光分離層を得た。
 上記で作製した円偏光分離層を実施例R1で作製した可視光反射層と同じ可視光反射層と実施例R1と同様の方法で貼合し、実施例R4の円偏光分離フィルムを得た。
[実施例R5]
 ラビング処理を施した富士フイルム製PETのラビング処理面に、表1に示す塗布液A-1を乾燥後の乾膜の厚みが5μmになるように室温にてワイヤーバーを用いて、塗布した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し、液晶層を得た。この液晶層上に表1に示す塗布液A-2を乾燥後の乾膜の厚みが5μmになるように室温にて塗布し、上記と同様に乾燥、加熱、UV照射を行い、2層目の液晶層を形成した。2層目の液晶層上に表1に示す塗布液A-3~A-14をそれぞれ用いて同様の工程で3層目~14層目の液晶層を形成し、円偏光分離層を得た。
 上記で作製した円偏光分離層を実施例R1で作製した可視光反射層と同じ可視光反射層と実施例R1と同様の方法で貼合し、実施例R5の円偏光分離フィルムを得た。
[実施例R6]
 ラビング処理を施した富士フイルム製PETのラビング処理面に、表1に示す塗布液A-15を、乾燥後の乾膜の厚みが5μmになるように室温にてワイヤーバーを用いて塗布した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し液晶層を得た。この液晶層上に表1に示す塗布液A-16を乾燥後の乾膜の厚みが5μmになるように室温にて塗布し、その後上記と同様に乾燥、加熱、UV照射を行い、2層目の液晶層を形成して、円偏光分離層を得た。
 上記で作製した円偏光分離層を実施例R1で作製した可視光反射層と同じ可視光反射層と実施例R1と同様の方法で貼合し、実施例R6の円偏光分離フィルムを得た。
[実施例R7]
 ラビング処理を施した富士フイルム製PETのラビング処理面に、表2に示す塗布液B-1を乾燥後の乾膜の厚みが2μmになるように室温にてワイヤーバーを用いて塗布した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し液晶層を得た。この液晶層上に表2に示す塗布液B-2を乾燥後の乾膜の厚みが2μmになるように室温にて塗布し、上記と同様に乾燥、加熱、UV照射を行い、2層目の液晶層を形成した。2層目の液晶層上に表2に示す塗布液B-3~B-5、B-9~B-13をそれぞれ用いて同様の工程で3層目~10層目の液晶層を形成し、可視光反射層を得た。
 上記で作製した可視光反射層を実施例R1で作製した円偏光分離層と同じ円偏光分離層と実施例R1と同様の方法で貼合し、実施例R7の円偏光分離フィルムを得た。
[実施例R8]
 ラビング処理を施した富士フイルム製PETのラビング処理面に、表2に示す塗布液B-1を、乾燥後の乾膜の厚みが2μmになるように室温にてワイヤーバーを用いて塗布した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し液晶層を得た。この液晶層上に表2に示す塗布液B-2を乾燥後の乾膜の厚みが2μmになるように室温にて塗布し、上記と同様に乾燥、加熱、UV照射を行い、2層目の液晶層を形成した。2層目の液晶層上に表2に示す塗布液B-3、B-9~B-11をそれぞれ用いて同様の工程で3層目~6層目の液晶層を形成し、可視光反射層を得た。
 上記で作製した可視光反射層を、実施例R1で作製した円偏光分離層と同じ円偏光分離層と実施例R1と同様の方法で貼合し、実施例R8の円偏光分離フィルムを得た。
[実施例R9]
 ラビング処理を施した富士フイルム製PETのラビング処理面に、表1に示す塗布液A-2 を、乾燥後の乾膜の厚みが5μmになるように室温にてワイヤーバーを用いて塗布した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し、円偏光分離層を得た。
 上記で作製した円偏光分離層を実施例R1で作製した可視光反射層と同じ可視光反射層と実施例R1と同様の方法で貼合し実施例R9の円偏光分離フィルムを得た。
[実施例R10]
 ラビング処理を施した富士フイルム製PETのラビング処理面に、表2に示す塗布液B-1を、乾燥後の乾膜の厚みが2μmになるように室温にてワイヤーバーを用いて塗布した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し液晶層を得た。この液晶層上に表2に示す塗布液B-9を乾燥後の乾膜の厚みが2μmになるように室温にて塗布し、その後上記と同様に乾燥、加熱、UV照射を行い2層目の液晶層を形成して、可視光反射層を得た
 上記で作製した可視光反射層を実施例R1で作製した円偏光分離層と同じ円偏光分離層と実施例R1と同様の方法で貼合し、実施例R10の円偏光分離フィルムを得た。
[実施例R11]
 ラビング処理を施した富士フイルム製PETのラビング処理面に、表3に示す塗布液Cを、2000rpmの回転数でスピン塗布した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し位相差膜を形成した。
 この位相差膜の位相差をAxometrix社のAxoScanを用いて、400nm~800nmの範囲で測定し、これらの値を用いて880nmにおける位相差を外挿法で求めたところ220nmの位相差であった。
 この膜の位相差膜表面にDIC株式会社製UV硬化型接着剤Exp.U12034-6を、乾燥後の乾膜の厚みが5μmになるように室温にてワイヤーバーを用いて塗布した。液晶分子の配向軸が偏光板の吸収軸との面内でなす角度が45度になるようにエドモンド・オプティクス・ジャパン株式会社製の近赤外用直線偏光フィルムを貼り合せ、円偏光板を形成した。この円偏光板を上記のAxoScanを用いて、光入射側に偏光板が来るようにしてCircular Polarizanceを測定することによって、右円偏光板となっていることを確認した。
 上記で作製した円偏光分離層の直線偏光板の面上に、実施例R1で作製した可視光反射層の液晶層側の面を実施例R1と同様の方法で貼合し、実施例R11の円偏光分離フィルムを得た。
[比較例R1]
 実施例R9で作製した円偏光分離層のみを使用した。
[比較例R2]
 実施例R1で作製した円偏光分離層のみを使用した。
[比較例R3]
 DIC株式会社製UV硬化型接着剤Exp.U12034-6を、ワイヤーバーを用いて、乾燥後の乾膜の厚みが5μmになるように富士フイルム株式会社製IR80(可視光吸収層)上に、室温にて塗布した。この塗布面を作製した実施例R1と同様に作製した円偏光分離層の液晶層側と気泡が入らないように貼りあわせ、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射した。円偏光分離層の支持体となっていた富士フイルム製PETを剥離し、比較例R3の円偏光分離フィルムを得た。
[実施例A1]
 可視光吸収層としての富士フイルム株式会社製IR80上に、DIC株式会社製UV硬化型接着剤Exp.U12034-6を、乾燥後の乾膜の厚みが5μmになるように・室温にてワイヤーバーを用いて塗布した。この塗布面と実施例R1と同様に作製した円偏光分離層の液晶層側の面とを気泡が入らないように貼りあわせ、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射した。その後、円偏光分離層の支持体となっていた富士フイルム製PETを剥離し、実施例A1の円偏光分離フィルムを得た。
[実施例A2]
 実施例R2と同様に作製した円偏光分離層を富士フイルム株式会社製IR80と実施例A1と同様の方法で貼合し実施例A2の円偏光分離フィルムを得た。
[実施例A3]
 実施例R3と同様に作製した円偏光分離層を富士フイルム株式会社製IR80と実施例A1と同様の方法で貼合し実施例A3の円偏光分離フィルムを得た。
[実施例A4]
 実施例R4と同様に作製した円偏光分離層を富士フイルム株式会社製IR80と実施例A1と同様の方法で貼合し、実施例A4の円偏光分離フィルムを得た。
[実施例A5]
 実施例R5と同様に作製した円偏光分離層を富士フイルム株式会社製IR80と実施例A1と同様の方法で貼合し、実施例A5の円偏光分離フィルムを得た。
[実施例A6]
 ラビング処理を施した富士フイルム製PETのラビング処理面に、表1に示す塗布液A-14を乾燥後の乾膜の厚みが5μmになるように室温にてワイヤーバーを用いて塗布した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し、液晶層を得た。この液晶層上に表1に示す塗布液A-15を乾燥後の乾膜の厚みが5μmになるように室温にて塗布し、上記と同様に乾燥、加熱、UV照射を行い、2層目の液晶層を形成し、円偏光分離層を得た。
 上記で作製した円偏光分離層を富士フイルム株式会社製IR80と実施例A1と同様の方法で貼合し実施例A6の円偏光分離フィルムを得た。
[実施例A7]
 可視光吸収層として富士フイルム株式会社製SC60を使用する以外は、実施例A1と同様の方法で実施例A7の円偏光分離フィルムを得た。
[実施例A8]
 可視光吸収層として富士フイルム株式会社製SC46を使用する以外は、実施例A1と同様の方法で実施例A8の円偏光分離フィルムを得た。
[実施例A9]
 実施例R9と同様に作製した円偏光分離層を富士フイルム株式会社製IR80と実施例A1と同様の方法で貼合し実施例A9の円偏光分離フィルムを得た。
[実施例A10]
 可視光吸収層として富士フイルム株式会社製SC42を使用する以外は、実施例A1と同様の方法で実施例A10の円偏光分離フィルムを得た。
[実施例A11]
 ラビング処理を施した富士フイルム製PETのラビング処理面に、表3に示す塗布液Cを、2000rpmの回転数でスピン塗布した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し位相差膜を形成した。
 この位相差膜の位相差をAxometrix社のAxoScanを用いて、400nm~800nmの範囲で測定し、これらの値を用いて880nmにおける位相差を外挿法で求めたところ220nmの位相差であった。
 この膜の位相差膜表面にDIC株式会社製UV硬化型接着剤Exp.U12034-6を、乾燥後の乾膜の厚みが5μmになるように室温にてワイヤーバーを用いて塗布した。液晶分子の配向軸が偏光板の吸収軸との面内でなす角度が45度になるようにエドモンド・オプティクス・ジャパン株式会社製の近赤外用直線偏光フィルムを貼り合せ、円偏光板を形成した。この円偏光板を上記のAxoScanを用いて、光入射側に偏光板が来るようにしてCircular Polarizanceを測定することによって、右円偏光板となっていることを確認した。
 DIC株式会社製UV硬化型接着剤Exp.U12034-6をワイヤーバーを用いて、乾燥後の乾膜の厚みが5μmになるように富士フイルム株式会社製IR80上に、室温にて塗布した。この塗布面を上記で作製した円偏光分離層の直線偏光板の面と気泡が入らないように貼りあわせ、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し、実施例A11の円偏光分離フィルムを得た。
[比較例A1]
 実施例R9で作製した円偏光分離層のみを使用した。
[比較例A2]
 実施例R1で作製した円偏光分離層のみを使用した。
測定方法
 上記で作製したフィルム、鏡、光源(京セミ株式会社製KED880S4)、受光素子(新光電子株式会社製KS1364)を図2に示すように配置した。なお、フィルムは可視光遮断層(可視光反射層または可視光吸収層)が光源および受光素子側かつ円偏光分離層が鏡側となるように配置した。鏡に対して、光源から波長880nm中心の非偏光をフィルムを介して照射し、鏡からの反射光が上記フィルムを透過した光を受光素子で感知して評価した。フィルムが無い状態で測定した値を100として、フィルムを設置して測定した値を補正して評価した。値が低いほど効果があることを示す。評価基準は以下の通りである。暗室は光を完全に遮断した状態で測定し、明室は白熱灯をともした状態で測定した。
 AA:0~5
 A:5~20
 B:20~50
 C:50~100
 耐久性の評価は、40Wハロゲンランプを1000時間照射し続けた後に上記の測定を実施して行い、数値変化が5以内でA、5以上でCとした。外観は目視で評価し、鏡のように見えるものをA、それ以外をCとした。
 結果を表4、5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[円偏光分離フィルムAの作製]
 実施例R1の円偏光分離フィルムの作製と同様の手順で円偏光分離フィルムBを作製した。
[円偏光分離フィルムBの作製]
 実施例A1の円偏光分離フィルムの作製と同様の手順で円偏光分離フィルムBを作製した。
[円偏光分離フィルムCの作製]
 実施例A2の円偏光分離フィルムの作製と同様の手順で円偏光分離フィルムCを作製した。
[円偏光分離フィルムDの作製]
 ラビング処理を施した富士フイルム製PETのラビング処理面に、表1に示す塗布液A-15を、乾燥後の乾膜の厚みが5μmになるように室温にてワイヤーバーを用いて塗布した。塗布層を室温にて30秒間乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し液晶層を得た。この液晶層上に表1に示す塗布液A-16を乾燥後の乾膜の厚みが5μmになるように室温にて塗布し、その後上記と同様に乾燥、加熱、UV照射を行い、2層目の液晶層を形成して、円偏光分離層を得た。
 上記で作製した円偏光分離層を富士フイルム株式会社製IR80と円偏光分離フィルムBと同様の方法で貼合し円偏光分離フィルムDを得た。
[円偏光分離フィルムEの作製]
 実施例A9の円偏光分離フィルムの作製と同様の手順で円偏光分離フィルムEを作製した。
[円偏光分離フィルムFの作製]
 可視光反射層を形成しないこと以外は、円偏光分離フィルムAの製作方法と同様にして円偏光分離フィルムFを得た。
[円偏光分離フィルムGの作製]
 可視光吸収層を形成しないこと以外は、円偏光分離フィルムCの製作方法と同様にして円偏光分離フィルムGを得た。
[円偏光分離フィルムHの作製]
 可視光吸収層を形成しないこと以外は、円偏光分離フィルムDの製作方法と同様にして円偏光分離フィルムHを得た。
[円偏光分離フィルムIの作製]
 実施例R4の円偏光分離層の作製と同様の手順で円偏光分離フィルムIを作製した。
[円偏光分離フィルムJの作製]
 円偏光分離フィルムIに円偏光分離フィルムBと同様にして可視光吸収層を形成し、円偏光分離フィルムJを得た。
[円偏光分離フィルムKの作製]
 実施例R5の円偏光分離層の作製と同様の手順で円偏光分離フィルムIを作製した。
[円偏光分離フィルムLの作製]
 円偏光分離フィルムKに円偏光分離フィルムBと同様にして可視光吸収層を形成し、円偏光分離フィルムLを得た。
 上記のように作製した円偏光分離フィルムA~Lを、表3に示すように光源側(円偏光分離フィルム1)および受光素子側(円偏光分離フィルム2)に用い、表3に示す番号の図1の配置図に従って配置し、表3に示す実施例1~11、比較例1~5の対象物の検知を行った。なお、可視光遮断層と円偏光分離層とを含むフィルムを円偏光分離フィルム1として用いた場合は、可視光遮断層が光源側かつ円偏光分離層が対象物側となるように配置し、可視光遮断層と円偏光分離層とを含むフィルムを円偏光分離フィルム2として用いた場合は、可視光遮断層が受光素子側かつ円偏光分離層が対象物側となるように配置した。
評価方法
 実施例1-6、10、11と比較例1-3では、評価は、明室条件下で、検出対象を光路に挿入した場合と、挿入しない場合での検出器の信号強度比の比較で行った。
 実施例7,8と比較例4では、評価は、明室条件下で、クラックの入った検出対象と無傷の検出対象を光路中に挿入した場合の検出器の信号強度比の比較で行った。
 評価基準は以下の通りである。
A:4以上
B:2以上4未満
C:1.4以上2未満
D:1.4未満
 実施例9と比較例5では、暗所で水をカッパに吹き付けて、それをカメラで撮影し、虚像が写る場合を「不可」、虚像が認められない場合を「可」とした。
 暗所は光を完全に遮断した状態とし、明室は白熱灯をともした状態で測定した。
 結果を表6に示す。
Figure JPOXMLDOC01-appb-T000007
1 円偏光分離フィルム
2 光源
3 受光素子(検出器)
4 対象物
5 透明ガラス

Claims (26)

  1. 近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させる円偏光分離フィルムであって、可視光波長域の少なくとも一部において光を反射または吸収する可視光遮断層と近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させる円偏光分離層とを含む円偏光分離フィルム。
  2. 前記の近赤外光波長域の少なくとも一部が波長800~1500nmの50nm幅以上の波長域であり、かつ前記の可視光波長域の少なくとも一部が波長380~780nmの50nm幅以上の波長域である請求項1に記載の円偏光分離フィルム。
  3. 波長380~780nmの領域の平均光透過率が5%以下であり、かつ、波長800~1500nmの範囲の50nm幅以上の領域において、右または左円偏光のいずれか一方の光透過率が10%以下であり他方の円偏光の光透過率が90%以上である請求項1または2に記載の円偏光分離フィルム。
  4. 前記可視光遮断層が、コレステリック液晶相を固定した層および誘電体多層膜からなる群より選択される可視光反射層である請求項1~3のいずれか一項に記載の円偏光分離フィルム。
  5. 前記可視光遮断層が、顔料または染料を含む可視光吸収層である請求項1~3のいずれか一項に記載の円偏光分離フィルム。
  6. 前記円偏光分離層がコレステリック液晶相を固定した層である請求項1~5のいずれか一項に記載の円偏光分離フィルム。
  7. 前記円偏光分離層が、直線偏光分離層と波長800~1500nmの50nm以上の範囲で位相差(Re)が200~375nmである層とを含む請求項1~5のいずれか一項に記載の円偏光分離フィルム。
  8. 請求項1~6のいずれか一項に記載の円偏光分離フィルムの製造方法であって、前記円偏光分離層が以下(1)~(3)を含む方法により形成される方法:
    (1)重合性液晶化合物およびキラル剤を含む液晶組成物を基材に塗布すること、
    (2)(1)において基板上に塗布された液晶組成物を乾燥させてコレステリック液晶相を形成すること、
    (3)加熱または光照射により前記コレステリック液晶相を固定すること。
  9. 請求項8に記載の円偏光分離フィルムの製造方法であって、前記円偏光分離層が以下(11)~(13)を含む方法により形成される方法:
    (11)重合性液晶化合物およびキラル剤を含む液晶組成物を前記(3)で得られる前記コレステリック液晶相を固定した層の表面に直接塗布すること、
    (12)(11)において基板上に塗布された液晶組成物を乾燥させてコレステリック液晶相を形成すること、
    (13)加熱または光照射により(12)で形成された前記コレステリック液晶相を固定すること。
  10. 前記(1)の重合性液晶化合物およびキラル剤と前記(11)の重合性液晶化合物およびキラル剤がそれぞれ同一である請求項9に記載の製造方法。
  11. 請求項8~10のいずれか一項に記載の製造方法であって、コレステリック液晶相を固定した層の表面に、接着剤を用いて可視光遮断層を貼り合わせることを含む製造方法。
  12. 請求項8~10のいずれか一項に記載の製造方法であって、前記基材の表面に、可視光遮断層を接着剤を用いて貼り合わせることを含む製造方法。
  13. 請求項1~6のいずれか一項に記載の円偏光分離フィルムの製造方法であって、前記円偏光分離層が以下(21)~(23)を含む方法により形成される方法:
    (21)重合性液晶化合物およびキラル剤を含む液晶組成物を可視光遮断層上に塗布すること、
    (22)(21)において前記可視光遮断層上に塗布された液晶組成物を乾燥させてコレステリック液晶相を形成すること、
    (23)加熱または光照射により前記コレステリック液晶相を固定すること。
  14. 請求項13に記載の円偏光分離フィルムの製造方法であって、前記円偏光分離層が以下(31)~(33)を含む方法により形成される方法:
    (31)重合性液晶化合物およびキラル剤を含む液晶組成物を、前記(23)で得られる前記コレステリック液晶相を固定した層の表面に直接塗布すること、
    (32)(31)において基板上に塗布された液晶組成物を乾燥させてコレステリック液晶相を形成すること、
    (33)加熱または光照射により(32)で形成された前記コレステリック液晶相を固定すること。
  15. 前記(21)の重合性液晶化合物およびキラル剤と前記(31)の重合性液晶化合物およびキラル剤がそれぞれ同一である請求項14に記載の製造方法。
  16. 請求項1~7のいずれか一項に記載の円偏光分離フィルムと、前記円偏光分離フィルムが右円偏光または左円偏光のいずれか一方を選択的に透過させる波長の光を検出できる受光素子とを含む赤外線センサー。
  17. 対象物に光照射し、前記光照射に由来する前記対象物の反射光または透過光を検出することにより前記対象物を検知するシステムであって、
    光源、円偏光分離フィルム1、円偏光分離フィルム2、および、近赤外光波長域の波長の光を検出する受光素子を含み、
    円偏光分離フィルム1および円偏光分離フィルム2はいずれも、近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させ、
    円偏光分離フィルム1は円偏光分離フィルム2を兼ねていてもよく、
    前記光源、円偏光分離フィルム1、円偏光分離フィルム2、および前記受光素子が、前記光源から供給される光が円偏光分離フィルム1を透過して前記対象物に照射され、かつ前記対象物を透過または反射した光が、円偏光分離フィルム2を透過して前記受光素子に検出されるように配置されており、
    円偏光分離フィルム2が、請求項1~7のいずれか一項に記載の円偏光分離フィルムであるシステム。
  18. 円偏光分離フィルム1が、請求項1~7のいずれか一項に記載の円偏光分離フィルムである請求項17に記載のシステム。
  19. 前記光源が近赤外光光源である請求項17または18に記載のシステム。
  20. ガラスを介して前記対象物を検知するシステムであり、
    前記光源、円偏光分離フィルム1、円偏光分離フィルム2、および、前記受光素子が、前記光源の光に由来する前記対象物の反射光が円偏光分離フィルム2を透過して前記受光素子に検出されるように配置されている請求項17~19のいずれか一項に記載のシステム。
  21. 前記対象物が透明フィルムであり、
    前記光源、円偏光分離フィルム1、円偏光分離フィルム2、および、前記受光素子が、前記光源の光に由来する前記対象物の透過光が円偏光分離フィルム2を透過して前記受光素子に検出されるように配置されている請求項17~19のいずれか一項に記載のシステム。
  22. 前記光源に由来する前記対象物の反射光または透過光の光軸が円偏光分離フィルム2と70°~89°の角度をなしている請求項17~21のいずれか一項に記載のシステム。
  23. 対象物に光照射し、前記光照射に由来する前記対象物の反射光または透過光により前記対象物を検知する方法であって、
    (1)右円偏光または左円偏光のいずれか一方を選択的に含む近赤外光波長域の円偏光を前記対象物に照射すること、
    (2)前記円偏光が、前記対象物で反射してまたは前記対象物を透過して生じた光の少なくとも一部が円偏光分離層2および可視光遮断層2を透過した光を近赤外光波長域の波長の光を検出する受光素子で感知することを含み、
    前記円偏光分離層2は、近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させ、
    可視光遮断層2は、可視光波長域の少なくとも一部の波長域の光を反射または吸収する方法。
  24. 円偏光分離層2および可視光遮断層2がいずれも同一のフィルムを構成する層である請求項23に記載の方法。
  25. 前記(2)において、前記対象物で反射してまたは前記対象物を透過して生じた光の少なくとも一部が円偏光分離層2および光遮断層2をこの順で透過する請求項23または24に記載の方法。
  26. 前記(1)の近赤外光波長域の円偏光が、光を、可視光遮断層1および円偏光分離層1を透過させることにより形成された光であり、
    円偏光分離層1は、近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過させる層であり、円偏光分離層2を兼ねていてもよく、
    可視光遮断層1は、可視光波長域の少なくとも一部の波長域の光を反射または吸収する層であり、可視光遮断層2を兼ねていてもよい、請求項23~25のいずれか一項に記載の方法。
PCT/JP2014/062258 2013-05-08 2014-05-07 円偏光分離フィルム、円偏光分離フィルムの製造方法、赤外線センサー、ならびに光を利用した検知システムおよび検知方法 WO2014181799A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480025532.9A CN105190382B (zh) 2013-05-08 2014-05-07 圆偏振光分离薄膜、圆偏振光分离薄膜的制备方法、红外传感器、利用光的探测系统及探测方法
DE112014002328.0T DE112014002328T5 (de) 2013-05-08 2014-05-07 Zirkulär polarisierter Licht-Separationsfilm, Verfahren zur Erzeugung eines zirkulär polarisierten Licht-Separationsfilmes, Infrarot-Sensor und Abtastsystem und Abtastverfahren unter Verwendung von Licht
US14/932,346 US20160054496A1 (en) 2013-05-08 2015-11-04 Circularly polarized light separation film, method for producing circularly polarized light separation film, infrared sensor, and sensing system and sensing method utilizing light

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013098634A JP6254769B2 (ja) 2013-05-08 2013-05-08 円偏光分離フィルムおよび円偏光分離フィルムの製造方法、ならびに赤外線センサー
JP2013-098635 2013-05-08
JP2013098635A JP6254770B2 (ja) 2013-05-08 2013-05-08 円偏光分離フィルムおよび円偏光分離フィルムの製造方法、ならびに赤外線センサー
JP2013-098633 2013-05-08
JP2013098633A JP6254768B2 (ja) 2013-05-08 2013-05-08 光を利用した検知システムおよび検知方法
JP2013-098634 2013-05-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/932,346 Continuation US20160054496A1 (en) 2013-05-08 2015-11-04 Circularly polarized light separation film, method for producing circularly polarized light separation film, infrared sensor, and sensing system and sensing method utilizing light

Publications (1)

Publication Number Publication Date
WO2014181799A1 true WO2014181799A1 (ja) 2014-11-13

Family

ID=51867277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062258 WO2014181799A1 (ja) 2013-05-08 2014-05-07 円偏光分離フィルム、円偏光分離フィルムの製造方法、赤外線センサー、ならびに光を利用した検知システムおよび検知方法

Country Status (4)

Country Link
US (1) US20160054496A1 (ja)
CN (1) CN105190382B (ja)
DE (1) DE112014002328T5 (ja)
WO (1) WO2014181799A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105801414A (zh) * 2014-12-30 2016-07-27 石家庄诚志永华显示材料有限公司 双环[3,3,0]辛烷可聚合化合物
WO2016171218A1 (ja) * 2015-04-24 2016-10-27 富士フイルム株式会社 検知方法および検知システム
JP2017146289A (ja) * 2015-04-24 2017-08-24 富士フイルム株式会社 検知方法および検知システム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI619937B (zh) * 2016-01-15 2018-04-01 奇美視像科技股份有限公司 以多光子激發技術檢查物體之方法以及量測物體之裝置
JP6689646B2 (ja) * 2016-04-01 2020-04-28 浜松ホトニクス株式会社 レーザ加工装置
CN105866874B (zh) * 2016-06-01 2019-03-15 武汉华星光电技术有限公司 偏光片及具有该偏光片的显示设备
US10928307B2 (en) * 2016-06-02 2021-02-23 Fraunhofer-Geseilschaft zurförderung der angewandten Forschung e.V. Configurable retro-reflective sensor system for the improved characterization of the properties of a sample
US11391873B2 (en) 2016-11-14 2022-07-19 Nippon Kayaku Kabushiki Kaisha Dye-based polarizing plate for infrared wavelength range using azo, anthraquinone, or cyanine compound
WO2018151759A1 (en) 2017-02-20 2018-08-23 3M Innovative Properties Company Optical articles and systems interacting with the same
CN107462553A (zh) * 2017-08-31 2017-12-12 西安近代化学研究所 一种基于偏光板的烟雾透过率测试系统的校准装置
KR20200061370A (ko) 2017-09-27 2020-06-02 쓰리엠 이노베이티브 프로퍼티즈 캄파니 장비 및 안전 모니터링을 위하여 광학 패턴들을 이용하는 개인 보호 장비 관리 시스템
DE102019115138B3 (de) * 2019-06-05 2020-12-10 TRüTZSCHLER GMBH & CO. KG Karde, Vliesleitelement, Spinnereivorbereitungsanlage und Verfahren zur Erfassung von störenden Partikeln
CN115605353A (zh) * 2020-05-28 2023-01-13 日本瑞翁株式会社(Jp) 真伪判断构件及其真实性判断方法
CN116818786A (zh) * 2023-06-14 2023-09-29 成都瑞波科材料科技有限公司 用于光学膜的异物检测装置、方法及光学膜涂布装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503169A (ja) * 1993-09-22 1997-03-31 セントラル リサーチ ラボラトリーズ リミティド 有色材料
JP2008083010A (ja) * 2006-09-29 2008-04-10 Honda Denshi Giken:Kk 自動ドア開閉制御用反射型センサ
JP2011016291A (ja) * 2009-07-09 2011-01-27 Toppan Printing Co Ltd 金属反射層を有する積層体、及びこの積層体を使用したステッカー、転写箔、紙、偽造防止媒体、並びにこの積層体の金属反射層をパターニングする方法
JP2013036888A (ja) * 2011-08-09 2013-02-21 Mitsubishi Electric Corp シリコン基板の検査装置、および検査方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114445A (ja) * 1982-12-21 1984-07-02 Yamamura Glass Kk 透明体の欠陥検出装置
KR100607739B1 (ko) * 1997-12-16 2006-08-01 고수다르스체니 노크니 첸트르 로시스코이 페데라치 편광기와 액정디스플레이
WO2000033129A1 (en) * 1998-12-01 2000-06-08 Koninklijke Philips Electronics N.V. Color filter layer of cholesterically ordered material, and reflective lcd provided with such a color filter layer
US7800755B1 (en) * 2007-07-02 2010-09-21 The United States Of America As Represented By The Secretary Of The Navy High-speed polarimeter having a multi-wavelength source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503169A (ja) * 1993-09-22 1997-03-31 セントラル リサーチ ラボラトリーズ リミティド 有色材料
JP2008083010A (ja) * 2006-09-29 2008-04-10 Honda Denshi Giken:Kk 自動ドア開閉制御用反射型センサ
JP2011016291A (ja) * 2009-07-09 2011-01-27 Toppan Printing Co Ltd 金属反射層を有する積層体、及びこの積層体を使用したステッカー、転写箔、紙、偽造防止媒体、並びにこの積層体の金属反射層をパターニングする方法
JP2013036888A (ja) * 2011-08-09 2013-02-21 Mitsubishi Electric Corp シリコン基板の検査装置、および検査方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105801414A (zh) * 2014-12-30 2016-07-27 石家庄诚志永华显示材料有限公司 双环[3,3,0]辛烷可聚合化合物
WO2016171218A1 (ja) * 2015-04-24 2016-10-27 富士フイルム株式会社 検知方法および検知システム
JP2017146289A (ja) * 2015-04-24 2017-08-24 富士フイルム株式会社 検知方法および検知システム
EP3287766A4 (en) * 2015-04-24 2018-03-28 FUJIFILM Corporation Detection method and detection system
US10598588B2 (en) 2015-04-24 2020-03-24 Fujifilm Corporation Sensing method and sensing system

Also Published As

Publication number Publication date
DE112014002328T5 (de) 2016-01-21
CN105190382B (zh) 2019-01-04
CN105190382A (zh) 2015-12-23
US20160054496A1 (en) 2016-02-25

Similar Documents

Publication Publication Date Title
WO2014181799A1 (ja) 円偏光分離フィルム、円偏光分離フィルムの製造方法、赤外線センサー、ならびに光を利用した検知システムおよび検知方法
JP6132678B2 (ja) 偏光フィルターおよびその応用
JP6254768B2 (ja) 光を利用した検知システムおよび検知方法
JP6471162B2 (ja) 検知システムおよび検知方法
JP6166977B2 (ja) 円偏光フィルターおよびその応用
WO2015025909A1 (ja) 円偏光フィルターおよびその応用
JP6336572B2 (ja) 反射部材、投映スクリーン、コンバイナ、および、遮熱部材
JP6530763B2 (ja) 画像表示機能付きミラー
KR101944227B1 (ko) 투영상 표시용 하프 미러 및 그 제조 방법, 그리고 투영상 표시 시스템
WO2015030176A1 (ja) 応力表示部材および応力表示部材を用いたひずみ測定方法
US9874669B2 (en) Reflection film, optical member, and display
JP6321988B2 (ja) 遮熱用途に使用可能な反射部材および反射部材を含むプロジェクター
JP6254770B2 (ja) 円偏光分離フィルムおよび円偏光分離フィルムの製造方法、ならびに赤外線センサー
JP6502282B2 (ja) 検知方法および検知システム
JP2016004487A (ja) 光学的パターン読み取り方法、光学的パターン読み取りシステム、光学的パターン読み取り装置、および光学的パターンを含む光学部材
JP6254769B2 (ja) 円偏光分離フィルムおよび円偏光分離フィルムの製造方法、ならびに赤外線センサー
WO2016171218A1 (ja) 検知方法および検知システム
JP2017227924A (ja) 円偏光分離フィルムおよび円偏光分離フィルムの製造方法、ならびに赤外線センサー
JP6588517B2 (ja) 円偏光分離フィルムおよび円偏光分離フィルムの製造方法、ならびに赤外線センサー
JP2018116308A (ja) 遮熱用途に使用可能な反射部材および反射部材を含むプロジェクター

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480025532.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794894

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120140023280

Country of ref document: DE

Ref document number: 112014002328

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794894

Country of ref document: EP

Kind code of ref document: A1