WO2016171218A1 - 検知方法および検知システム - Google Patents

検知方法および検知システム Download PDF

Info

Publication number
WO2016171218A1
WO2016171218A1 PCT/JP2016/062652 JP2016062652W WO2016171218A1 WO 2016171218 A1 WO2016171218 A1 WO 2016171218A1 JP 2016062652 W JP2016062652 W JP 2016062652W WO 2016171218 A1 WO2016171218 A1 WO 2016171218A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
circularly polarized
polarized light
irradiation
liquid crystal
Prior art date
Application number
PCT/JP2016/062652
Other languages
English (en)
French (fr)
Inventor
渉 馬島
和宏 沖
市橋 光芳
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016077841A external-priority patent/JP6502282B2/ja
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP16783239.3A priority Critical patent/EP3287766B1/en
Publication of WO2016171218A1 publication Critical patent/WO2016171218A1/ja
Priority to US15/790,350 priority patent/US10598588B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a detection method and a detection system. More specifically, the present invention relates to a detection method and a detection system using circularly polarized light.
  • Patent Literature 1 A method using polarized light is conventionally known as a detection method.
  • a silicon substrate is irradiated with polarized infrared light through a first linear polarization filter, and reflected or transmitted light from the silicon substrate is received through a second linear polarization filter.
  • the crack of the silicon substrate is detected.
  • the reflected light or transmitted light at a point where there is no crack is linearly polarized light, and the amount of light that can be sensed is reduced except when a specific condition is satisfied through the second linearly polarized light filter, while the reflected light from the crack is reduced.
  • the transmitted light utilizes the fact that light that can be sensed through the second linear polarization filter is generated by irregular reflection.
  • Patent Document 2 discloses a technique using circularly polarized light in the technique of Patent Document 1.
  • Patent Document 3 discloses a system that uses a film including a near-infrared circularly polarized light separating layer and a visible light blocking layer to detect a foreign object on a specular reflector, a transparent film, a human, and the like as an object. Has been.
  • An object of the present invention is to provide a detection method and a detection system using circularly polarized light, which have higher sensitivity and less false detection particularly when a transparent article is used as an object.
  • the present inventors have conducted intensive studies and found a new system. That is, the present invention provides the following [1] to [15].
  • [1] A method for detecting an object The object is detected by sensing the light derived from the irradiation light and transmitted through the object, The irradiation light is circularly polarized light, The sensed light is circularly polarized, The object is a transparent article, The light derived from the irradiation light is incident on the object at an angle of greater than 20 ° and 70 ° or less with the normal of the object.
  • the sensing is direct sensing of light transmitted through the object by the irradiation light, The method according to [1], wherein the circularly polarized light sense of the irradiation light is opposite to the circularly polarized light sense of the sensed light.
  • the sensing is sensing reflected light of the light derived from the irradiation light, The method according to [1], wherein the sense of circular polarization of the irradiation light is the same as the sense of circular polarization of the sensed light.
  • [5] The method according to any one of [1] to [4], wherein two or more irradiation lights having different incident surfaces are used as the irradiation light.
  • [6] The method according to [5], wherein the different incident surfaces form an angle of 10 ° to 90 ° with each other.
  • [7] The method according to [5] or [6], wherein three irradiation lights having different incident surfaces are used as the irradiation light.
  • a system for detecting an object An irradiation unit that selectively irradiates circularly polarized light, an object moving unit, and a detection unit that selectively senses circularly polarized light are included in this order in the optical path of the circularly polarized light,
  • the sense of circularly polarized light selectively irradiated by the irradiation unit and the sense of circularly polarized light selectively detected by the detection unit are opposite,
  • the light path derived from the irradiation light from the irradiation unit is incident on the detection unit, the optical path of the light and the object moving unit intersect at the intersection,
  • intersection part is larger than 20 degrees and is 70 degrees or less.
  • the irradiation unit includes a light source and a circularly polarized light separating film 1
  • the detection unit includes a circularly polarized light separating film 2 and a light receiving element,
  • the light source, the circularly polarized light separating film 1, the object moving unit, the circularly polarized light separating film 2, and the light receiving element are arranged in this order in the optical path of the circularly polarized light,
  • the system according to [8] wherein the circularly polarized light separating film 1 and the circularly polarized light separating film 2 selectively transmit circularly polarized lights having opposite senses.
  • each of the circularly polarized light separating film 1 and the circularly polarized light separating film 2 includes a circularly polarized light separating layer in which a cholesteric liquid crystal phase is fixed.
  • a system for detecting an object An irradiation unit that selectively irradiates circularly polarized light, a detection unit that selectively senses circularly polarized light, an object moving unit, and a specular reflection member;
  • the object moving unit is included between the irradiation unit and the specular reflection member, and / or included between the specular reflection member and the detection unit,
  • the irradiation unit and the detection unit are located at a position where light derived from the irradiation light from the irradiation unit is specularly reflected by the specular reflection member and incident on the detection unit,
  • the circularly polarized light sense selectively irradiated by the irradiating unit and the circularly polarized light sense selectively detected by the
  • the angle formed by the normal line of the moving unit is greater than 20 ° and 70 ° or less, and / or the light derived from the irradiation light from the irradiation unit is reflected by the specular reflection member and sensed by the detection unit.
  • the optical path 2 intersects the object moving unit at the intersection 2, and the angle formed by the normal direction of the optical path 2 and the object moving unit at the intersecting part 2 is greater than 20 ° and not more than 70 °. , system.
  • the irradiation unit includes a light source and a circularly polarized light separating film 11,
  • the detection unit includes a circularly polarized light separating film 12 and a light receiving element, and includes a light source, a circularly polarized light separating film 11, and the specular reflection member in this order in the optical path 1, Including the specular reflection member, the circularly polarized light separating film 12, and the light receiving element in this order in the optical path 2, and
  • the system according to [8] wherein the circularly polarized light separating film 11 and the circularly polarized light separating film 12 selectively transmit circularly polarized light having the same sense to each other.
  • each of the circularly polarized light separating film 11 and the circularly polarized light separating film 12 includes a circularly polarized light separating layer in which a cholesteric liquid crystal phase is fixed.
  • the irradiation unit includes two or more irradiation units that emit irradiation light having different incident surfaces, and each includes the detection unit in the incident surface. .
  • the object is a transparent article.
  • the present invention provides a novel method as a detection method using circularly polarized light. Using the method of the present invention, it is possible to detect transparent articles with high sensitivity and few false detections.
  • an angle for example, an angle such as “90 °”
  • a relationship for example, “parallel”, “horizontal”, etc.
  • the angle is within the range of strict angle ⁇ 10 °, and the error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less.
  • sense for circularly polarized light means right circularly polarized light or left circularly polarized light.
  • the sense of circularly polarized light is right-handed circularly polarized light when the electric field vector tip turns clockwise as time increases when viewed as the light travels toward you, and left when it turns counterclockwise. Defined as being circularly polarized.
  • “selective” for circularly polarized light means that the amount of circularly polarized light of one of the senses is larger than the amount of circularly polarized light of the other sense.
  • the degree of circular polarization of light is preferably 0.3 or more, more preferably 0.6 or more, and even more preferably 0.8 or more. It is particularly preferred that it is substantially 1.0. Table / by (I R + I L)
  • the term “sense” is sometimes used for the twist direction of the spiral of the cholesteric liquid crystal.
  • the selective reflection of the cholesteric liquid crystal is such that when the twist direction (sense) of the spiral of the cholesteric liquid crystal is right, the right circularly polarized light is selectively reflected and left circularly polarized light is selectively transmitted, and when the sense is left, the left is left. Selectively reflects circularly polarized light and selectively transmits right circularly polarized light.
  • the “incident surface” means a surface that is perpendicular to an object plane (reflection surface) and includes incident light when light (irradiation light) is incident on a planar object.
  • the “incident surface” only needs to further include a specular reflection light beam and a direct transmission light beam of irradiation light.
  • birefringence means retardation of an object at the wavelength of emitted light (emission peak).
  • the object when the object is a film, it means to include in-plane retardation (Re) and retardation in the thickness direction (Rth) at a wavelength ⁇ .
  • the unit is nm.
  • Re at a specific wavelength ⁇ nm is measured by making light of wavelength ⁇ nm incident in the film normal direction in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments).
  • the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
  • Rth is calculated by the following method.
  • Rth at specific wavelength ⁇ nm is as follows. First, Re at a specific wavelength ⁇ nm is set to have an in-plane slow axis (determined by KOBRA 21ADH or WR) as a tilt axis (rotation axis) (if there is no slow axis, any in-plane film With respect to the film normal direction (with the direction as the axis of rotation), light at a wavelength of ⁇ nm is incident in 10 degree steps from the normal direction to 50 ° on one side, and a total of 6 points are measured. Then, KOBRA 21ADH or WR calculates Rth based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value.
  • KOBRA 21ADH or WR calculates Rth based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value.
  • Re ( ⁇ ) represents a retardation value in a direction inclined by an angle ⁇ from the normal direction.
  • nx represents the refractive index in the slow axis direction in the plane
  • ny represents the refractive index in the direction orthogonal to nx in the plane
  • nz is the direction orthogonal to nx and ny.
  • d is the film thickness.
  • the term “light” may be infrared, visible, or ultraviolet, and may be infrared and visible wavelength, visible and ultraviolet, or infrared and visible. Further, it may be light in a wavelength range that extends over the wavelength range of ultraviolet rays. 1nm, It may be light with a specific wavelength width such as 10 nm, 50 nm, 100 nm, 150 nm, or 200 nm. The wavelength width is preferably about 50 nm width or more.
  • Visible light is light having a wavelength that can be seen by human eyes among electromagnetic waves, and indicates light having a wavelength range of 380 nm to 780 nm.
  • Infrared rays are electromagnetic waves in the wavelength range that are longer than visible rays and shorter than radio waves.
  • Near-infrared light is generally an electromagnetic wave having a wavelength range of 780 to 2500 nm.
  • Ultraviolet rays are electromagnetic waves in a wavelength range shorter than visible light and longer than X-rays. The ultraviolet light may be light in a wavelength region that can be distinguished from visible light and X-rays, and is, for example, light in the wavelength range of 10 to 380 nm.
  • near infrared light As irradiation light, it is preferable to use near infrared light as irradiation light.
  • a wavelength range of 780 nm to 1500 nm, or 800 nm to 1500 nm is preferable.
  • light having a wavelength range corresponding to the wavelength range of near-infrared light used in an infrared camera, an infrared photoelectric sensor, or infrared communication may be used.
  • the irradiation light two types of light, that is, two lights having different wavelength ranges may be used.
  • reflected light means specular reflected light (direct reflected light) and diffuse reflected light (scattered light).
  • Transmitted light is meant to include scattered transmitted light, direct transmitted light, and diffracted light.
  • the “optical path” means a light path from the irradiation unit to the detection unit, or a part thereof.
  • the optical path 1 of light from which the light derived from the irradiation unit is incident on the specular reflection member refers to the light derived from the irradiation unit (more precisely, the center of the light source) and the irradiation light from the irradiation unit. Means a straight line connecting the position incident on the specular reflection member.
  • the optical path 2 of light that is reflected by the specular reflection member and sensed by the detection unit when the light derived from the irradiation unit is reflected by the specular reflection member is the position where the light derived from the irradiation unit is incident on the specular reflection member and the detection unit ( More precisely, it means a straight line connecting the center of the light receiving element). In the drawings and the like, the optical path is indicated by a straight line, but this does not mean that both the irradiation light and the sensed light are limited to light having high directivity.
  • light derived from irradiation light means light derived from irradiation light excluding environmental light in the method or system of the present invention, and the irradiation light, light obtained by transmitting the irradiation light through the object, Light obtained by reflecting irradiated light, light obtained by reflecting light obtained by transmitting irradiated light through the object, or light obtained by reflecting light obtained by transmitting irradiated light through the object Means light obtained by passing through an object.
  • polarized light is used as light.
  • polarized light it is possible to preferentially sense light derived from the irradiation light from the irradiation unit with respect to ambient light, and the S / N ratio can be increased.
  • a transparent object can be detected.
  • circularly polarized light is used as the polarized light.
  • the polarization state of light can be measured using a spectral radiance meter or a spectrometer equipped with a circularly polarizing plate.
  • the intensity of light measured through the right circularly polarizing plate corresponds to I R
  • the intensity of light measured through the left circularly polarizing plate corresponds to I L.
  • a circularly polarizing plate is attached to an illuminance meter or an optical spectrum meter, it can be measured.
  • the ratio can be measured by attaching a right circular polarized light transmission plate, measuring the right circular polarized light amount, attaching a left circular polarized light transmission plate, and measuring the left circular polarized light amount.
  • the object detected by the method of the present invention is a transparent article.
  • the term “transparent” means a state in which natural light in the wavelength range of the light used is transmitted.
  • the wavelength range of the light used may be the wavelength range of the irradiation light.
  • the light may have a light transmittance of 50% or more, 60% or more, 80% or more, 90% or more, or 95% or more.
  • the light transmittance used as a measure of transparency is measured by measuring the total light transmittance and the amount of scattered light using the method described in JIS-K7105, that is, using an integrating sphere light transmittance measuring device. It can be calculated by subtracting the rate.
  • the term “transparent article” is preferably an article that transmits natural light in the wavelength region of light used and transmits natural light in the visible light region at the same time.
  • the light transmittance in the visible light region may be 80% or more, or 85% or more.
  • the transparent article may be transparent on the entire surface in all directions, or may include a non-transparent part in part. For example, it contains 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, 5% or less of a non-transparent portion with respect to the surface area of a film-like transparent article. Also good.
  • the object detected by the method of the present invention is planar or has a shape that can approximate a plane.
  • the objects may be gathered into a flat shape, or may be approximated to a flat shape in detection by moving the objects parallel to the plane.
  • Examples of the object include a film, a sheet, and a plate. Specific examples include cards, paper, plastic films (such as optical films and transparent packaging films).
  • the object detected by the method of the present invention only needs to have birefringence in any direction.
  • having birefringence means, for example, in the case of a film or a plate-like product, Re or Rth is 20 nm or more, preferably 50 nm or more, and more preferably 100 nm or more. Preferably, it is 200 nm or more. Due to the birefringence of the object, the polarization state of the circularly polarized light to be irradiated changes, and the amount of light sensed by the detection unit increases, so that the object can be detected.
  • the object to be detected by the method of the present invention preferably has birefringence in the direction in which the irradiation light enters and proceeds in the method of the present invention.
  • the low birefringence film include an acrylic film (for example, Technoloy film S000 manufactured by ESCABO SHEET Co., Ltd.), an acrylic plate (for example, Technoloy sheet manufactured by ESCABO Sheet Co., Ltd., manufactured by Nitto Jushi Kogyo Co., Ltd.). CLAREX precision plate, etc.), polycarbonate film (eg, Technoroy film C000, etc. manufactured by ESCABO SHEET Co., Ltd.), glass (eg, synthetic quartz glass, manufactured by Asahi Glass), TAC (triacetyl cellulose) film (eg, FUJIFILM Corporation) Fujitack).
  • an acrylic film for example, Technoloy film S000 manufactured by ESCABO SHEET Co., Ltd.
  • an acrylic plate for example, Technoloy sheet manufactured by ESCABO Sheet Co., Ltd., manufactured by Nitto Jushi Kogyo Co., Ltd.
  • polycarbonate film eg, Technoroy
  • ⁇ Detection method> In the detection method of the present invention, circularly polarized light is used as described above. Then, the detection of the object is performed by sensing the light derived from the irradiation light to the object and transmitted through the object. In the detection method of the present invention, in the state where there is no object, the light derived from the irradiation light from the irradiation unit is not detected by the detection unit, or the light amount is small. This can be achieved by adjusting the sense of circularly polarized light and the sense of circularly polarized light to be sensed as described below. Furthermore, in the method of the present invention, the object is detected by increasing the amount of light sensed when light derived from the irradiation light passes through the object in the above state.
  • the light transmitted through the object includes circularly polarized light whose sense of polarization changes due to the birefringence of the object and is opposite to the circularly polarized light before transmission.
  • the increase in the light quantity at this time may be, for example, 200% or more, 300% or more, or 500% or more with respect to the light quantity in the absence of an object.
  • the type of the object may be determined based on the amount of change in the amount of light. For example, a transparent article and a non-transparent article, or a plurality of articles having different transparency and birefringence may be distinguished.
  • the object to be determined may include a non-transparent article.
  • the non-transparent article enters the optical path, not only the light from the irradiating unit but also the ambient light is not sensed, so that the amount of light sensed by the detecting unit decreases. Therefore, the non-transparent article that is detected separately from the transparent article may be detected by reducing the amount of light detected by the object.
  • the irradiation light is incident on the object so as to form an angle greater than 20 ° and not more than 70 ° with the normal of the object.
  • the birefringence (retardation) of a substance increases as its thickness increases. Therefore, by making light incident on the object so as to form the above-mentioned angle, the distance through which the light passes through the object can be increased, the thickness can be substantially increased, and the birefringence can be increased.
  • the target is a film having a small Re value of about 0 to 100 nm but a large Rth
  • the incident light is formed at an angle with the normal line of the target object. The amount of light can be increased.
  • the angle is preferably 25 ° or greater and 65 ° or less, and more preferably 30 ° or greater and 62 ° or less.
  • the normal line of the object means a normal line extending from the irradiation light incident position of the object on the irradiation light incident side of the object.
  • the object has a shape that can be approximated to a planar shape, it means a normal line based on the approximated plane.
  • two or more irradiation lights may be used, and it is more preferable that three or more irradiation lights are used.
  • the two or more irradiation lights may be irradiation lights having different wavelength ranges, may be irradiation lights having different angles with the normal line of the object, or irradiation lights having different incident surfaces. Also good. Two or more of these may be different irradiation light.
  • the amount of circularly polarized light detected using two or more irradiation lights may be added to be used for detection, and the amount of circularly polarized light detected based on irradiation light with higher sensitivity (large S / N) may be used. It may be used for detection. It is preferable that detection is performed based on irradiation light with high sensitivity (high S / N).
  • the sensitivity of detection of a birefringent object whose slow axis direction is unknown can be increased. This is because it is possible to prevent the sensitivity from being lowered due to the irradiation light from the direction where the birefringence is small in the object.
  • two incident surfaces of any two of the irradiation lights form an angle of 10 ° to 90 °.
  • the angle is preferably 30 ° to 90 °, and more preferably 45 ° to 90 °.
  • the angle formed by the incident directions of any two of the irradiated light is preferably 10 ° to 170 °. 30 ° to 150 ° is more preferable, and 45 ° to 135 ° is still more preferable.
  • the irradiation light is incident on the object from different incident surfaces, three or more irradiation lights are preferably used, and three irradiation lights are particularly preferably used.
  • the detection method using two or more irradiation lights can be performed using, for example, a detection system including two or more irradiation units described later.
  • the adjustment between the circularly polarized light sense of the irradiation light and the sensed circularly polarized light sense can be performed, for example, as follows.
  • the direct detection of the light transmitted through the object by the irradiated light is performed, and the circularly polarized sense that the irradiated light selectively includes and the circularly polarized sense that the detected light selectively includes.
  • Direct sensing of light means sensing of light transmitted through an object, particularly direct light. In the direct sensing of light, it is sufficient that the light derived from the irradiation light is not reflected before sensing, and the light transmitted through the object may be sensed as it is.
  • the reflected light of the light derived from the irradiated light is sensed, and the circularly polarized light sense selectively included in the irradiated light and the circularly polarized light sense selectively included in the detected light are detected.
  • the reflected light is preferably specular reflection light.
  • the light derived from the irradiation light may be transmitted through the object before reflection, or may be transmitted through the object after reflection. In particular, it is preferable that any of them is transparent.
  • the sensing is preferably sensing of the reflected light of the irradiation light transmitted through the object and the light transmitted again through the object. This is because the detection sensitivity can be increased because the object is transmitted twice.
  • the system of the present invention can be used to implement the method of the present invention.
  • the system of the present invention may be an apparatus including at least an irradiation unit, an object moving unit, and a detection unit, or may be a combination including an object moving unit, an irradiation unit, and a detection unit.
  • the system includes an irradiation unit that selectively irradiates circularly polarized light, an object moving unit, and a detection unit that selectively senses circularly polarized light in this order in the optical path of circularly polarized light.
  • the detection unit is at a position where the light emitted from the irradiation unit is incident, and the optical path of the light from which the light irradiated from the irradiation unit enters the detection unit intersects the object moving unit, and the irradiation unit
  • the circularly polarized light sense selectively irradiated by the detector is opposite to the circularly polarized light sense selectively detected by the detection unit.
  • the system in another aspect (reflection type), includes an irradiation unit that selectively irradiates circularly polarized light, a detection unit that selectively senses circularly polarized light, an object moving unit, and a specular reflection member.
  • the object moving unit is between the irradiating unit and the specular reflecting member, or between the specular reflecting member and the detecting unit, or the object moving unit is an irradiating unit and a specular reflecting member.
  • the irradiating unit and the detecting unit are in positions where the light irradiated from the irradiating unit is specularly reflected by the specular reflecting member and incident on the detecting unit.
  • the optical path 2 of the light reflected by the member and sensed by the detection unit intersects the object moving unit at the intersection 2 or the optical path of the light from which the light derived from the irradiation unit enters the specular reflection member 1 intersects the object moving unit at the intersecting unit 1 and the light path 2 of the light that is derived from the light irradiated from the irradiating unit is reflected by the specular reflection member and sensed by the detecting unit is the object moving unit and the intersecting unit 2
  • the circularly polarized light sense selectively irradiated by the irradiating unit and the circularly polarized light sense selectively detected by the detecting unit are set to be the same. In any of the above aspects, it is preferable that the detection unit be in the incident surface of the light irradiated from the irradiation unit.
  • the irradiation unit preferably includes a light source and a circularly polarized light separating film
  • the detecting unit preferably includes a light receiving element and a circularly polarized light separating film.
  • FIG. 1 shows an arrangement example of a light source, a light receiving element, and a circularly polarized light separating film for detecting an object.
  • the light source 22 In the arrangements A, B, and D which are transmissive types, the light source 22, a circularly polarized light separating film on the light source side (sometimes referred to as a circularly polarized light separating film 1 in this specification), an object moving unit 24, a light receiving element
  • the side circularly polarized light separating film (also referred to as circularly polarized light separating film 2 in this specification) and the light receiving element 23 are arranged in this order in the optical path of circularly polarized light.
  • the circularly polarized light separating film 1 and the circularly polarized light separating film 2 selectively transmit the circularly polarized light of the opposite sense, and no object is present, most of the light from the light source is not directly detected by the light receiving element.
  • the object When the object is arranged at the intersection between the optical path and the object moving unit, the amount of light detected by the light receiving element increases, and the object is detected by the increase.
  • the arrangement C which is a reflective type is configured to sense reflected light using the specular reflection member 16. That is, when the circularly polarized light separating film 11 selectively transmits circularly polarized light having the same sense as the circularly polarized light separating film 12 and no object is present, most of the light from the light source is not sensed by the light receiving element. When the object is arranged at the intersection 1 and / or the intersection 2, the amount of light detected by the light receiving element increases, and the object is detected by the increase.
  • the light source and the light receiving element are arranged on the same side of the circularly polarized light separating film as viewed from the object. In this configuration, even if a layer that blocks light (especially light having a wavelength in the irradiation light region) is provided between the light receiving element and the light source so that the light receiving element is not affected by direct light from the light source. Good.
  • the light path and the object moving unit are arranged at the intersection where the light path from which the light derived from the irradiation unit is incident and the object moving unit intersect.
  • the angle formed by the normal line is greater than 20 ° and equal to or less than 70 °.
  • the angle is preferably 25 ° or greater and 65 ° or less, and more preferably 30 ° or greater and 62 ° or less.
  • the angle formed by the normal of the optical path 1 and the object moving unit at the intersection 1 (inclination angle 26-1 shown in FIG. 1C) and the optical path 2 and the target at the intersection 2 At least one of the angles (inclination angle 26-2 shown in FIG. 1C) formed by the normal direction of the object moving unit is greater than 20 ° and not more than 70 °, and at the intersection 1, the optical path 1 and the object moving unit Both the angle formed by the normal line (inclination angle 26-1 shown in FIG. 1C) and the angle formed by the normal direction of the optical path 2 and the object moving unit at the intersection 2 (inclination angle 26-2 shown in FIG. 1C). Is more than 20 ° and 70 ° or less. Any of the above angles is preferably 25 ° or more and 65 ° or less, and more preferably 30 ° or more and 62 ° or less.
  • a housing may be provided so as to shield the object moving unit.
  • a housing can be provided as shown in the arrangements B and D.
  • a circularly polarized light separating film may be provided on the window portion of the housing.
  • the straight line connecting between the centers of the two window portions of the housing and the normal line of the object moving unit may intersect with each other at an angle greater than 20 ° and less than 70 °.
  • light especially light having a wavelength in the irradiation light region
  • An attachment may be provided to make it less susceptible to ambient light.
  • the detection unit is not affected by light directly from the irradiation unit, and light (especially in the wavelength of the irradiation light region) is placed between the irradiation unit and the detection unit. It is only necessary to provide a layer that blocks light).
  • the object moving unit means a part where an object to be detected can be arranged, and includes a part that can hold the object in a plane. In the system of the present invention, it is sufficient that the object is detected in this portion.
  • the object may be continuously moved in the left and right directions as shown in the straight line in the figure, and is continuously moved in the front and back directions of the page. It may be arranged, or may be simply arranged at a straight portion shown in the figure.
  • the object may move in the vertical direction of the paper surface as in the straight line shown in the figure, or may move in the front and back directions of the paper surface, and is simply arranged in the straight line portion shown in the figure. May be.
  • the “movement” of the object may be one-way direction, may move back and forth, or may be a discontinuous movement including arrangement and removal.
  • the normal line of the object moving unit refers to a method of extending from the irradiation light incident position of the object moving unit to the irradiation light incident side with respect to the portion of the object moving unit that can hold the object planarly.
  • the object moving unit include a film transport unit.
  • a specific example of the detection system is a system for confirming the passage of a product in a factory production line. Examples of products include optical films, packaging films, acrylic films or acrylic plates.
  • the irradiation unit selectively irradiates circularly polarized light in a specific light wavelength range. What is necessary is just to select the wavelength range of irradiation light according to a target object.
  • the irradiation unit includes a light source.
  • an irradiation part contains a light source and a circularly polarized light separation film.
  • the light source is a light source that irradiates linearly polarized light
  • the irradiation unit may include a light source and a retardation film such as a ⁇ / 4 retardation layer.
  • Any light source can be used as long as it emits light of the photosensitive wavelength of the light receiving element, such as a halogen lamp, tungsten lamp, LED, LD, xenon lamp, and meta-hara lamp, but it is small, light emitting directivity, monochromatic light, pulse LED or LD is preferable in terms of modulation suitability.
  • the irradiating unit has a light source inside the housing, and a circularly polarized light separating film is arranged in a portion that emits irradiated light, and light other than light that has passed through the circularly polarized light separating film is not emitted from the light source.
  • the circularly polarized light separating layer includes a linearly polarized light separating layer and a ⁇ / 4 phase difference layer, the ⁇ / 4 phase difference layer is disposed on the outer side and the linearly polarized light separating layer is on the light source side. Is preferred.
  • the system of the present invention may include two or more irradiation units.
  • you may have two or more irradiation parts so that it may become irradiation light from which an incident surface differs, and two or more so that it may become irradiation light from which the angle made with the normal line of a target object differs in the same incident surface.
  • And may have two or more irradiators so that the angles formed by the incident surface and the normal of the object are different.
  • the system of the present invention may include two or more types of irradiation units having different wavelength ranges of irradiation light.
  • the detection unit only needs to selectively detect circularly polarized light in the wavelength range of the irradiation light from the irradiation unit.
  • the detection part should just consist of a light receiving element and a circularly polarized light separation film, for example.
  • the light receiving element include a photodiode type sensor using a semiconductor such as Si, Ge, HgCdTe, PtSi, InSb, and PbS, a detector in which light detection elements are arranged in a line, and a CCD (charge coupled device ( Charge Coupled Device)) and CMOS (Complementary Metal Oxide Semiconductor).
  • the detection unit is preferably a light amount sensing unit capable of measuring the amount of light.
  • the circularly polarized light separating film is used in combination with a light receiving element capable of sensing light having a wavelength that selectively transmits either right circularly polarized light or left circularly polarized light as a part of the detection unit, Good.
  • a circularly polarized light separating film may be disposed on the light receiving surface of the light receiving element.
  • the senor has a light receiving element inside the housing, and a circularly polarized light separating film is disposed in the light capturing portion so that light other than light passing through the circularly polarized light separating film does not reach the light receiving element.
  • the circularly polarized light separating film includes a linearly polarized light separating layer and a ⁇ / 4 phase difference layer, which will be described later, the ⁇ / 4 phase difference layer is disposed outside and the linearly polarized light separating layer is disposed on the light receiving element side. It is preferable.
  • the system of the present invention may include two or more detection units.
  • the system includes two or more irradiation units, it is preferable to include two or more detection units that detect light derived from each irradiation unit.
  • the detection part which detects the light derived from each irradiation part is each arrange
  • the system of this invention contains 2 or more types of irradiation parts from which the wavelength range of irradiated light differs, it is preferable to include the detection part containing the light receiving element which can detect the light of each wavelength range.
  • the circularly polarized light separating film is a film that selectively transmits either right circularly polarized light or left circularly polarized light in a specific wavelength region.
  • the circularly polarized light separating film preferably separates specific light (natural light, non-polarized light) incident from one side surface into right circularly polarized light and left circularly polarized light, and can selectively transmit either one to the other side surface. . At this time, the other circularly polarized light may be reflected or absorbed.
  • the circularly polarized light separating film may selectively transmit either right circularly polarized light or left circularly polarized light with respect to light incident from any surface, and light incident from either surface. Only the right circularly polarized light or the left circularly polarized light may be selectively transmitted only with respect to the light, and the same selective transmission may not be exhibited with respect to the light incident from the other side surface. In the latter case, the arrangement may be such that a desired circular polarization selectivity can be obtained in use. Further, the circularly polarized light separating film may be separated into right circularly polarized light and left circularly polarized light, and either one of the light incident from any surface may be selectively transmitted to the other side surface.
  • the circularly polarized light separating film is a circularly polarized light transmittance ⁇ (transmitted circularly polarized light having the same sense as incident light when either right or left circularly polarized light is incident in a specific wavelength region of 50 nm width or more).
  • (Intensity) / (Light intensity of incident circularly polarized light) ⁇ 100 ⁇ may be 70% or more, 80% or more, 90% or more, 95% or more, 99% or more, preferably substantially 100%.
  • the light transmittance of circularly polarized light having the same sense as the incident light when circularly polarized light of the other sense is incident ⁇ (light intensity of transmitted circularly polarized light) / (incident circularly polarized light) Light intensity) ⁇ 100 ⁇ is 30% or less, 20% or less, 10% or less, 5% or less, 1% or less, preferably substantially 0%.
  • the circularly polarized light separating film includes a circularly polarized light separating layer that selectively transmits either right circularly polarized light or left circularly polarized light in a specific wavelength region.
  • the circularly polarized light separating layer used on the light source side may be referred to as the circularly polarized light separating layer 1
  • the circularly polarized light separating layer used on the light receiving element side may be referred to as the circularly polarized light separating layer 2.
  • the wavelength band width of the wavelength range in which the circularly polarized light separating layer selectively transmits either the right circularly polarized light or the left circularly polarized light is 5 nm or more, 10 nm or more, 20 nm or more, 30 nm or more, 40 nm or more, or 50 nm or more. That's fine.
  • the specific wavelength range in which the circularly polarized light separating layer selectively transmits either the right circularly polarized light or the left circularly polarized light is necessary for the detection of the target object in combination with the usage pattern of the circularly polarized light separating film.
  • the light wavelength may be included, and may be 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more of the wavelength range of 800 nm to 1500 nm, and is substantially 100%. May be.
  • the circularly polarized light separating layer may transmit, reflect, or absorb light other than the wavelength region that selectively transmits either right circularly polarized light or left circularly polarized light.
  • the circularly polarized light separating layer selectively transmits either right circularly polarized light or left circularly polarized light, and may reflect or absorb the other circularly polarized light.
  • a layer in which a cholesteric liquid crystal phase is fixed, or a layer made of a laminate including a linearly polarized light separating layer and a ⁇ / 4 retardation layer can be used.
  • the circularly polarized light separating film may include a reflected light scattering circularly polarized light separating layer.
  • the reflected light scattering circularly polarized light separating layer has a diffuse reflectance / regular reflectance of the circular polarization of the other sense larger than the scattering transmittance / direct transmittance of the circular polarization of the sense that selectively transmits at a specific wavelength.
  • a circularly polarized light separating film including a reflected light scattering circularly polarized light separating layer is referred to as a scattering type circularly polarized light separating film
  • a circularly polarizing light separating film not including a reflected light scattering circularly polarized light separating layer is referred to as a specular circularly polarized light separating film.
  • Scattering transmittance / direct transmittance and diffuse reflectance / regular reflectance are values calculated based on values measured using a spectrophotometer and an integrating sphere unit, respectively.
  • Direct transmittance and regular reflectance can be measured with a spectrophotometer, and all angle measured values of transmittance and reflectance can be measured by combining an integrating sphere unit with the spectrophotometer.
  • the direct transmittance is a measured value at an incident angle of 0 °
  • the regular reflectance may be a measured value at an incident angle of, for example, 5 ° for convenience of measurement.
  • the scattered transmittance can be calculated by subtracting the direct transmittance from the measured value of the transmittance at all angles, and the diffuse reflectance can be calculated by subtracting the regular reflectance from the measured value of the reflectivity at all angles.
  • a filter that functions as a circularly polarized light filter at the measurement wavelength may be installed on the light source side.
  • the reflected light scattering circularly polarized light separating layer only needs to be composed of a layer in which a cholesteric liquid crystal phase is fixed, and the above specific wavelength is the center wavelength of circularly polarized reflection (selective reflection) of the layer in which the cholesteric liquid crystal phase is fixed as described later. It is.
  • the reflected light scattering circularly polarized light separating layer has a large scattering property of reflected light and transmitted light with respect to circularly polarized light having a specific wavelength (selective reflection wavelength) of one sense. On the other hand, the scattering property is low for the opposite circularly polarized light.
  • the reflected light scattering circularly polarized light separating layer is formed of a right-handed cholesteric liquid crystal
  • the scattering properties of reflected circularly polarized light and transmitted circularly polarized light with respect to the right circularly polarized light of the selective reflection wavelength are large.
  • the left circularly polarized light has a low scattering property.
  • the reflected light scattering circularly polarized light separation layer is formed of a left-handed spiral cholesteric liquid crystal, the reflected circularly polarized light and transmitted circularly polarized light have a large scattering property with respect to the left circularly polarized light of the selective reflection wavelength. It is sufficient that the scattering property is low.
  • the reflected light scattering circularly polarized light separating layer may have a scattering transmittance / direct transmittance of the above-mentioned sense circularly polarized light having the above-mentioned specific wavelength of 0.00 to 0.10, preferably 0.00 to 0.05. With such a value, a high amount of light and a circular polarization degree in a specific optical path can be ensured. Further, the circularly polarized light separating layer has a diffuse reflectance / regular reflectance of circularly polarized light having a sense opposite to the sense selectively transmitted at the specific wavelength of 2.0 to 7.5, preferably 3.0 to 5 0.0 or less.
  • the reflected light scattering circularly polarized light separating layer has a haze value measured with natural light having the above-mentioned specific wavelength of more than 10 and 55 or less, preferably more than 20 and 50 or less.
  • the haze value is ⁇ (scattering transmittance of natural light) / (scattering transmittance of natural light + direct transmittance of natural light) ⁇ 100 (%) ⁇ .
  • the haze value can be calculated based on the value measured using the spectrophotometer and integrating sphere unit as described above for the measurement of the scattering transmittance / direct transmittance of circularly polarized light. In this case, the measurement may be performed without using the filter functioning as the circular polarization filter.
  • the circularly polarized light separating layer is composed only of the above non-reflected light scattering non-scattering circularly polarized light separating layer or only the reflected light scattering circularly polarized light separating layer, the reflected light scattering The light-polarizing separation layer and the reflected light non-scattering circular polarization separation layer may be used.
  • the outermost surface preferably includes the reflected light scattering circularly polarized light separating layer.
  • the reflected light non-scattering circularly polarized light separating layer has a scatter property of reflected light and transmitted light with respect to circularly polarized light with a specific wavelength (selective reflection wavelength) of one sense with respect to circularly polarized light with the opposite sense.
  • the scattering transmittance / direct transmittance of the circular polarization of the sense of the specific wavelength is 0.00 or more and 0.05 or less, preferably 0.00 or more and 0.03 or less, and the circular polarization of the other sense.
  • the diffuse reflectance / regular reflectance of the film may be 0.0 to 0.05, preferably 0.0 to 0.03.
  • the haze value measured with natural light having the specific wavelength may be 3.0 or less, preferably 1.0 or less.
  • a layer in which a cholesteric liquid crystal phase is fixed may be used.
  • a layer in which a cholesteric liquid crystal phase is fixed or a laminate including a linearly polarized light separating layer and a ⁇ / 4 retardation layer may be used.
  • the cholesteric liquid crystal phase exhibits circularly polarized light selective reflection that selectively reflects the circularly polarized light of either the right circularly polarized light or the left circularly polarized light and transmits the circularly polarized light of the other sense.
  • Many cholesteric liquid crystal compounds that exhibit circularly polarized light selective reflection and films formed from cholesteric liquid crystal compounds have been known, and when using a layer in which a cholesteric liquid crystal phase is fixed in a circularly polarized light separating film, those conventional techniques are used. Can be referred to.
  • the layer in which the cholesteric liquid crystal phase is fixed may be a layer in which the alignment of the liquid crystal compound in the cholesteric liquid crystal phase is maintained, and typically, the polymerizable liquid crystal compound is in the alignment state of the cholesteric liquid crystal phase.
  • the layer in which the cholesteric liquid crystal phase is fixed it is sufficient that the optical properties of the cholesteric liquid crystal phase are maintained in the layer, and the liquid crystal compound in the layer may no longer exhibit liquid crystallinity.
  • the polymerizable liquid crystal compound may be polymerized by a curing reaction and may no longer have liquid crystallinity.
  • a layer in which a cholesteric liquid crystal phase is fixed may be referred to as a cholesteric liquid crystal layer or a liquid crystal layer.
  • the cholesteric liquid crystal layer exhibits circularly polarized reflection derived from the helical structure of cholesteric liquid crystal.
  • the n value and the P value are adjusted so that either the right circularly polarized light or the left circularly polarized light is selectively transmitted (reflected) in at least a part of the near infrared wavelength region.
  • the center wavelength ⁇ may be in the wavelength range of 780 nm to 1500 nm, preferably 800 nm to 1500 nm.
  • n ⁇ P When light is incident obliquely on the cholesteric liquid crystal layer, such as when a cholesteric liquid crystal layer is used for the circularly polarized light separating film 1 or the circularly polarized light separating film 2 shown in the arrangement B of FIG.
  • ⁇ d the center wavelength of selective reflection when a light ray passes at an angle of ⁇ 2 with respect to the normal direction of the cholesteric liquid crystal layer (helical axis direction of the cholesteric liquid crystal layer) is ⁇ d .
  • ⁇ d is expressed by the following equation.
  • ⁇ d n 2 ⁇ P ⁇ cos ⁇ 2 ⁇ 2 when light is incident on the cholesteric liquid crystal layer having a refractive index n 2 from the air layer having a refractive index of 1.0 at an angle ⁇ 1 with respect to the normal direction of the cholesteric liquid crystal layer is expressed by the following equation.
  • n value and the P value may be adjusted according to the above formula to obtain a desired center wavelength.
  • the pitch length of the cholesteric liquid crystal phase depends on the kind of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent, the desired pitch length can be obtained by adjusting these.
  • the method described in “Introduction to Liquid Crystal Chemistry Experiments” edited by the Japanese Liquid Crystal Society, Sigma Publishing 2007, 46p, and “Liquid Crystal Handbook” Liquid Crystal Handbook Editorial Committee Maruzen 196p can be used. it can.
  • the width of the circularly polarized light reflection wavelength region is 50 nm to 150 nm for ordinary materials. Therefore, reflection can be achieved by laminating several types of cholesteric liquid crystal layers having different center wavelengths of reflected light with different periods P. Bandwidth can be increased. Further, in one cholesteric liquid crystal layer, the reflection band can be widened by gradually changing the period P in the film thickness direction.
  • the sense of the reflected circularly polarized light of the cholesteric liquid crystal layer coincides with the sense of the spiral.
  • a cholesteric liquid crystal layer whose spiral sense is either right or left may be used.
  • a plurality of cholesteric liquid crystal layers having the same period P and the same spiral sense may be stacked.
  • a cholesteric liquid crystal layer separately prepared by a method described later may be adhered by an adhesive layer or the like, and a polymerizable liquid crystal compound or the like is directly applied to the surface of the cholesteric liquid crystal layer previously formed by a method described later or the like.
  • a plurality of layers may be stacked in order to widen the selective reflection (transmission) bandwidth.
  • a cholesteric liquid crystal layer having the same spiral sense may be stacked.
  • the cholesteric liquid crystal layer selectively transmits either right circularly polarized light or left circularly polarized light with respect to light incident from any surface, and right circularly polarized light and light incident from any surface Any one of them can be selectively transmitted to the other side by separating into left circularly polarized light.
  • a material and a method for manufacturing a cholesteric liquid crystal layer that can be used for a visible light reflection layer or a circularly polarized light separation layer will be described.
  • the material used for forming the cholesteric liquid crystal layer include a liquid crystal composition containing a polymerizable liquid crystal compound and a chiral agent (optically active compound). If necessary, apply the above liquid crystal composition mixed with a surfactant or polymerization initiator and dissolved in a solvent to a substrate (support, alignment layer, transparent layer, lower cholesteric liquid crystal layer, etc.)
  • the cholesteric liquid crystal layer can be formed by fixing after ripening the cholesteric alignment.
  • the polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disc-like liquid crystal compound, but is preferably a rod-like liquid crystal compound.
  • Examples of the rod-like polymerizable liquid crystal compound forming the cholesteric liquid crystal layer include a rod-like nematic liquid crystal compound.
  • rod-like nematic liquid crystal compounds examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines.
  • Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
  • the polymerizable cholesteric liquid crystal compound can be obtained by introducing a polymerizable group into the cholesteric liquid crystal compound.
  • the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and particularly preferably an ethylenically unsaturated polymerizable group.
  • the polymerizable group can be introduced into the molecule of the cholesteric liquid crystal compound by various methods.
  • the number of polymerizable groups possessed by the polymerizable cholesteric liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable cholesteric liquid crystal compounds are described in Makromol. Chem.
  • the addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 80 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition, and is preferably 85 to 99. It is more preferably 5% by mass, particularly preferably 90 to 99% by mass.
  • the chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • the chiral compound may be selected according to the purpose because the helical sense or helical pitch induced by the compound is different.
  • the chiral agent is not particularly limited, and known compounds (for example, liquid crystal device handbook, Chapter 3-4-3, TN, chiral agent for STN, 199 pages, Japan Society for the Promotion of Science, 142nd edition, 1989) Description), isosorbide, and isomannide derivatives can be used.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent.
  • the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group.
  • the chiral agent and the curable cholesteric liquid crystal compound have a polymerizable group
  • it is derived from a repeating unit derived from the cholesteric liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable cholesteric liquid crystal compound.
  • a polymer having repeating units can be formed.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable cholesteric liquid crystal compound.
  • the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group.
  • the chiral agent may be a liquid crystal compound.
  • the chiral agent has a photoisomerizable group because a pattern having a desired reflection wavelength corresponding to the emission wavelength can be formed by irradiation with a photomask such as actinic rays after coating and orientation.
  • a photoisomerization group the isomerization part of the compound which shows photochromic property, an azo, an azoxy, and a cinnamoyl group are preferable.
  • Specific examples of the compound include JP2002-80478, JP200280851, JP2002-179668, JP2002-179669, JP2002-179670, and JP2002. Use the compounds described in JP-A No. 179681, JP-A No. 2002-179682, JP-A No.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol%, more preferably 1 mol% to 30 mol%, based on the amount of the polymerizable liquid crystal compound.
  • the liquid crystal composition preferably contains a polymerization initiator.
  • the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics.
  • Group acyloin compounds described in US Pat. No. 2,722,512
  • polynuclear quinone compounds described in US Pat. Nos.
  • the content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, and preferably 0.5 to 5% by mass with respect to the content of the polymerizable liquid crystal compound. Further preferred.
  • the liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and the durability.
  • a crosslinking agent those that are cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
  • polyfunctional acrylate compounds such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate
  • Glycidyl (meth) acrylate Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane.
  • a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the crosslinking agent is preferably 3% by mass to 20% by mass, and more preferably 5% by mass to 15% by mass. When the content of the crosslinking agent is less than 3% by mass, the effect of improving the crosslinking density may not be obtained, and when it exceeds 20% by mass, the stability of the cholesteric layer may be lowered.
  • Alignment control agent In the liquid crystal composition, an alignment control agent that contributes to stably or rapidly forming a planar cholesteric liquid crystal layer may be added.
  • the alignment control agent include fluorine (meth) acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185, and paragraphs [0031] to [0034] of JP-A-2012-203237. And compounds represented by the formulas (I) to (IV) as described above.
  • 1 type may be used independently and 2 or more types may be used together.
  • the addition amount of the alignment control agent in the liquid crystal composition is preferably 0.01% by mass to 10% by mass, more preferably 0.01% by mass to 5% by mass with respect to the total mass of the cholesteric liquid crystal compound. 02 mass% to 1 mass% is particularly preferred.
  • the liquid crystal composition contains at least one selected from various additives such as a surfactant for adjusting the surface tension of the coating film and making the film thickness uniform, and a polymerizable monomer. It may be. Further, in the liquid crystal composition, if necessary, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, and the like may be added as long as the optical performance is not deteriorated. Can be added.
  • various additives such as a surfactant for adjusting the surface tension of the coating film and making the film thickness uniform, and a polymerizable monomer. It may be.
  • a polymerization inhibitor such as an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, and the like may be added as long as the optical performance is not deteriorated. Can be added.
  • the cholesteric liquid crystal layer is prepared by applying a liquid crystal composition in which a polymerizable liquid crystal compound and a polymerization initiator, a chiral agent added as necessary, a surfactant, and the like are dissolved in a solvent, on a substrate and drying.
  • a coating film is obtained, and the coating film is irradiated with actinic rays to polymerize the cholesteric liquid crystal composition, thereby forming a cholesteric liquid crystal layer in which the cholesteric regularity is fixed.
  • the laminated film which consists of a some cholesteric layer can be formed by repeating the manufacturing process of a cholesteric layer.
  • organic solvent is used preferably.
  • the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, ethers, etc. Is mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are particularly preferable in consideration of environmental load.
  • the method of applying the liquid crystal composition on the substrate is not particularly limited and can be appropriately selected depending on the purpose.
  • the wire bar coating method, curtain coating method, extrusion coating method, direct gravure coating method, reverse Examples include gravure coating, die coating, spin coating, dip coating, spray coating, and slide coating.
  • it can implement also by transferring the liquid-crystal composition separately coated on the support body to a base material.
  • the liquid crystal molecules are aligned by heating the applied liquid crystal composition.
  • the heating temperature is preferably 200 ° C. or lower, and more preferably 130 ° C. or lower.
  • the aligned liquid crystal compound may be further polymerized.
  • the polymerization may be either thermal polymerization or photopolymerization using light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for light irradiation.
  • the irradiation energy is preferably 20mJ / cm 2 ⁇ 50J / cm 2, 100mJ / cm 2 ⁇ 1,500mJ / cm 2 is more preferable.
  • light irradiation may be performed under heating conditions or in a nitrogen atmosphere.
  • the irradiation ultraviolet wavelength is preferably 350 nm to 430 nm.
  • the polymerization reaction rate is preferably as high as possible from the viewpoint of stability, preferably 70% or more, and more preferably 80% or more.
  • the polymerization reaction rate can be determined by measuring the consumption ratio of the polymerizable functional group using an IR absorption spectrum.
  • the thickness of the cholesteric liquid crystal layer that is a circularly polarized light separating layer is preferably 1 ⁇ m to 150 ⁇ m, more preferably 1 ⁇ m to 100 ⁇ m, and even more preferably 1.5 ⁇ m to 30 ⁇ m. 2 to 15 ⁇ m is particularly preferable.
  • a liquid crystal layer having a high diffuse reflectance at a specific wavelength has a small tilt angle of liquid crystal molecules on at least one surface of the layer, preferably both surfaces of the layer, and an in-plane of liquid crystal molecules. It was found that the orientation can be obtained by randomizing the orientation. That is, the diffuse reflectance at the selective reflection wavelength can be adjusted by adjusting the tilt angle and the in-plane orientation direction.
  • the liquid crystal alignment direction and tilt angle in the vicinity of the cholesteric liquid crystal layer surface may be confirmed by a transmission electron microscope (TEM) image or the like in the vicinity of the film surface in the cross section of the cholesteric liquid crystal layer.
  • TEM transmission electron microscope
  • the spiral axis of the cholesteric liquid crystal phase can be distributed with a slight undulation in the plane due to the configuration having the inclination of the spiral axis of the cholesteric liquid crystal phase on the outermost surface. That is, a shift of the helical axis from the normal direction of the layer can be caused. Due to the deviation of the spiral axis, a scattering layer with high diffuse reflectance / regular reflectance is obtained. Within this layer, there may be a plurality of alignment defects.
  • the inclination of the spiral axis on the outermost surface of the cholesteric liquid crystal layer can be obtained as follows.
  • a stripe pattern of a bright part and a dark part can be observed.
  • the stripe pattern is observed so that the bright part and the dark part are repeated in a direction substantially parallel to the layer surface. Two repetitions of this bright part and dark part (two bright parts and two dark parts) correspond to one pitch of the spiral.
  • the normal direction of the striped pattern is the spiral axis.
  • the inclination of the spiral axis of the outermost surface of the cholesteric liquid crystal layer can be obtained as an angle with the outermost surface on the same side as the line formed by the first dark part from the outermost surface.
  • the cholesteric liquid crystal layer such that the inclination of the outermost helical axis changes in the plane, a reflected light scattering circularly polarized light separating layer having a high diffuse reflectance / regular reflectance can be obtained.
  • the inclination of the helical axis is changing means, for example, a state in which an increase and a decrease are confirmed in the direction of linear movement when the inclination of the helical axis is measured at a constant interval on an arbitrary straight line on the surface. .
  • the increase and decrease are preferably repeated and the change is preferably continuous.
  • the outermost surface may be at least one of the cholesteric liquid crystal layers (the uppermost surface or the lowermost surface) or both (the uppermost surface and the lowermost surface), but preferably both.
  • the maximum value of the inclination of the spiral axis may be about 20 ° or less.
  • the maximum value of the inclination of the helical axis may be 2 ° or more and 20 ° or less, and is preferably 5 ° or more and 20 ° or less.
  • the tilt angle means an angle formed by tilted liquid crystal molecules with a layer plane, and the maximum refractive index direction of the refractive index ellipsoid of the liquid crystal compound with respect to the layer plane is the maximum. Means the angle. Therefore, in the rod-like liquid crystal compound having positive optical anisotropy, the tilt angle means an angle formed by the major axis direction of the rod-like liquid crystal compound, that is, the director direction and the layer plane.
  • the in-plane orientation direction of the liquid crystal molecule means an orientation in a plane parallel to the layer in the direction of the maximum refractive index of the liquid crystal molecule.
  • the in-plane orientation azimuth is random when the liquid crystal molecules having an in-plane orientation azimuth different from the average azimuth of the in-plane liquid crystal compound molecules by 4 ° or more are 10% or more and 20% or less by TEM. It means a state that can be done.
  • the term “liquid crystal molecule” means a molecule of a polymerizable liquid crystal compound in the liquid crystal composition, and when the polymerizable liquid crystal compound is polymerized by a curing reaction of the liquid crystal composition, the above-described polymerizable property. This means a partial structure corresponding to a liquid crystal compound molecule.
  • the tilt angle of the liquid crystal molecules on the lower surface is preferably in the range of 0 ° to 20 °, more preferably 0 ° to 10 °.
  • the density of alignment defects and the inclination angle distribution of the helical axis can be set within a preferable range.
  • the tilt angle (pretilt angle) of the liquid crystal molecules on the lower layer side surface is low as described above, Rubbing or the like on the surface of a transparent layer or base material to be described later or another cholesteric liquid crystal layer to which the liquid crystal composition is applied in order to be preferably horizontal (parallel to the support surface) and to reduce the alignment uniformity of the liquid crystal molecules It is preferable not to perform the alignment treatment. In order to make the liquid crystal molecules on the air interface side of the cholesteric liquid crystal layer horizontal, it is preferable to use the alignment control agent described above.
  • linearly polarized light separating layer As the linearly polarized light separating layer, a linear polarizer can be used as long as it is a polarizer corresponding to the wavelength range of light to be used.
  • Linear Polarizer As an infrared linear polarizer that can be suitably used, a multilayer dielectric reflective polarizer in which a resin having a refractive index and a different refractive index is laminated, and the thickness and retardation value are controlled by stretching, Examples thereof include a grit polarizer constituted by parallel conductor wire arrangement (grit), a polarizer in which metal nanoparticles having shape anisotropy are arranged and fixed, and a polarizer in which dichroic dyes are arranged and fixed. Any of these can be easily formed into a thin layer, a film, or a plate, and can be formed by simply laminating a sheet-like retardation layer described later in the step of forming the circularly polarized light separating layer. Alternatively, a retardation layer can be formed by coating a composition for forming a retardation layer directly on an infrared linear polarizer, and a thinner circularly polarized light separating layer can be produced.
  • grit polarizer
  • the multilayer dielectric reflective polarizer is a polarizing film that transmits only light in the vibration direction parallel to the in-plane transmission axis and reflects other light.
  • An example of such a film is a multilayer film disclosed in JP-T-9-507308. This is obtained by alternately laminating a layer consisting of a transparent dielectric layer 1 having no birefringence in the film plane and a layer consisting of a transparent dielectric layer 2 having birefringence in the plane.
  • the refractive index of the layer 1 is formed so as to coincide with either the ordinary light refractive index or the extraordinary light refractive index of the transparent dielectric layer 2.
  • the product (n ⁇ d) of the thickness (d) and the refractive index (n) of the transparent dielectric layer is a quarter of the wavelength of light to be reflected. It is configured to become.
  • the material for forming the transparent dielectric layer may be any material that is light transmissive at the infrared wavelength used. Examples include polycarbonate, acrylic resin, polyester, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivative, Examples thereof include silicone (including modified silicone such as silicone polyurea).
  • a grid polarizer is a submicron pitch (based on the wavelength of incident light) made of a thin film of a good conductor such as aluminum, silver, or gold on one side of a glass film or silicon (Si) substrate that is transparent to the infrared wavelength used.
  • a plurality of parallel conductor line array structures (grit) with a short pitch) are provided, and examples thereof include a polarizer disclosed in JP-A-2002-328234. This polarizer functions as a polarizer by reflecting a polarized light component parallel to the grid of incident light and transmitting a perpendicular polarized light component. If necessary, this can be sandwiched between glasses, or an antireflection layer can be provided.
  • a polarizer in which metal nanoparticles having shape anisotropy are arrayed and fixed is a silver halide particle having a large aspect ratio or a silver particle oriented and fixed.
  • This polarizing plate is an absorptive linear polarizing plate that absorbs infrared light having an electric field vibration plane in the direction of particle arrangement and transmits infrared light in a direction perpendicular to the infrared light.
  • JP-A-59-83951, JP-A-2-248341, and JP-A-2003-139951 can be used.
  • Examples of the polarizer in which the dichroic dye is arranged and fixed include an infrared polarizing film in which PVA (polyvinyl alcohol) is adsorbed with iodine or doped with a dichroic dye and stretched to form polyvinylene.
  • This polarizing plate absorbs infrared light having an electric field vibration plane in a stretching method and transmits infrared light in a direction orthogonal thereto. This is to obtain the orientation of the dichroic dye by passing the PVA film through a dyeable composition tank such as iodine / iodide and dyeing the PVA layer and then stretching it at a magnification of 4 to 6 times. Can do.
  • Conversion of PVA to polyvinylene can be accomplished by the hydrochloric acid vapor process as described in US Pat. No. 2,445,555. Further, in order to improve the stability of the polarizing material, boration is performed using an aqueous borate bath containing boric acid and borax. A commercially available linear polarizing film manufactured by Edmund Optics Japan Co., Ltd. can be cited as an equivalent.
  • the thickness of the linearly polarized light separating layer is preferably 0.05 ⁇ m to 300 ⁇ m, more preferably 0.2 ⁇ m to 150 ⁇ m, still more preferably 0.5 ⁇ m to 100 ⁇ m.
  • the in-plane slow axis of the retardation plate is placed in an orientation rotated by 45 ° from the absorption axis or transmission axis of the polarizing plate.
  • the front phase difference of the retardation plate is 1 ⁇ 4 of the center wavelength of the light emission wavelength of the light source, or “center wavelength * n ⁇ center wavelength.
  • the emission center wavelength of the light source is 1000 nm
  • the phase difference is preferably 250 nm, 750 nm, 1250 nm, 1750 nm, or the like.
  • the smaller the dependency of the phase difference on the light incident angle is, the more preferable, and a retardation plate having a phase difference of 1 ⁇ 4 length of the center wavelength is most preferable in this respect.
  • the detection system or the detection method of the present invention when a combination of various light sources having different emission wavelengths is used as an infrared light source, a light source having a peak emission intensity of two or more wavelengths, or a light source that emits light over a wide wavelength range In such a case, it is conceivable that the wavelength range showing the circularly polarized light selectivity should be widened. In such a case, the above-described retardation plate can be used, but it is more preferable to use a broadband retardation plate.
  • a broadband retardation plate is a retardation plate having a constant retardation angle over a wide wavelength range.
  • Examples of the material of the retardation plate include crystalline glass, inorganic crystal, polycarbonate, acrylic resin, polyester, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivative, silicone (including modified silicone such as silicone polyurea). ), A polymerized liquid crystal compound, and a polymer liquid crystal compound arranged and fixed.
  • the thickness of the ⁇ / 4 layer is preferably 0.2 ⁇ m to 300 ⁇ m, more preferably 0.5 ⁇ m to 150 ⁇ m, and even more preferably 1 ⁇ m to 80 ⁇ m.
  • the circularly polarized light separating film is a support, an alignment layer for aligning the liquid crystal compound, an adhesive layer for bonding the circularly polarized light separating layer and the visible light blocking layer, and light other than a specific wavelength region used for detection. Other layers such as a light blocking layer for preventing transmission may be included.
  • the support is not particularly limited, and examples thereof include plastic film glass. It is preferable that the optical properties of the visible light blocking layer and the circularly polarized light separating layer are not canceled, and it is generally transparent and preferably has low birefringence.
  • plastic film examples include polyester such as polyethylene terephthalate (PET), polycarbonate, acrylic resin, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivative, and silicone.
  • PET polyethylene terephthalate
  • the support used for producing the cholesteric liquid crystal layer may be peeled off in the circularly polarized light separating film.
  • the support side is preferably the light source side with respect to the circularly polarized light separating layer.
  • the support body side is a light receiving element side with respect to a circularly-polarized light separation layer.
  • the alignment layer is a layer having a rubbing treatment of an organic compound or a polymer (resin such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamideimide, polyetherimide, polyamide, or modified polyamide), oblique deposition of an inorganic compound, or a microgroove. Or accumulation of organic compounds (eg, ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride, methyl stearylate) using the Langmuir-Blodgett method (LB film). Furthermore, an alignment layer in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known.
  • organic compounds eg, ⁇ -tricosanoic acid, dioctadecylmethylammonium chloride, methyl stearylate
  • LB film Langmuir-Blodgett method
  • an alignment layer formed by polymer rubbing is particularly preferable.
  • the rubbing treatment can be performed by rubbing the surface of the polymer layer several times in a certain direction with paper or cloth. You may apply
  • a transparent layer may be included as a lower layer to which the liquid crystal composition is applied when forming the cholesteric liquid crystal layer, for example, in the production of the reflected light scattering circularly polarized light separating layer.
  • a layer made of a material that gives a low pretilt angle to the polymerizable liquid crystal compound molecules in the liquid crystal composition provided on the surface thereof can be preferably used.
  • a non-liquid crystalline polymerizable composition containing (meth) acrylate monomer, gelatin, urethane monomer and the like can be applied and cured.
  • an acrylic layer obtained by applying and curing a layer containing a (meth) acrylate monomer is isotropic in the plane. Therefore, if a liquid crystal layer is formed without rubbing the acrylic layer surface, the acrylic layer is in contact with the acrylic layer. The in-plane orientation direction of the liquid crystal is random. Therefore, a cholesteric liquid crystal layer formed by applying a liquid crystal composition on the surface of the acrylic layer can be a layer having alignment defects. When a liquid crystal layer is formed on a liquid crystal layer having alignment defects, a liquid crystal layer having alignment defects can be formed in the same manner.
  • the transparent layer resins such as polyimide (Sanever 130 of polyimide varnish manufactured by Nissan Chemical Co., Ltd.), polyvinyl alcohol, polyester, polyarylate, polyamideimide, polyetherimide, polyamide, modified polyamide, and the like may be used.
  • the surface of the transparent layer on which the liquid crystal composition is applied is not rubbed (for example, the surface of the polymer layer is rubbed in a certain direction with paper or cloth). It is preferable.
  • the thickness of the transparent layer is preferably from 0.01 to 50 ⁇ m, more preferably from 0.05 to 20 ⁇ m.
  • Adhesives include hot melt type, thermosetting type, photocuring type, reactive curing type, and pressure-sensitive adhesive type that does not require curing, from the viewpoint of curing method, and the materials are acrylate, urethane, urethane acrylate, epoxy , Epoxy acrylate, polyolefin, modified olefin, polypropylene, ethylene vinyl alcohol, vinyl chloride, chloroprene rubber, cyanoacrylate, polyamide, polyimide, polystyrene, polyvinyl butyral, etc. can do. From the viewpoint of workability and productivity, the photocuring type is preferable as the curing method, and from the viewpoint of optical transparency and heat resistance, it is preferable to use an acrylate, urethane acrylate, epoxy acrylate, or the like material.
  • the circularly polarized light separating film preferably has a low light transmittance with respect to light outside the above specific wavelength range.
  • the light blocking layer is provided to block light outside the above specific wavelength range.
  • Examples of the light blocking layer include a light reflecting layer and a light absorbing layer.
  • Examples of the light reflecting layer include a dielectric multilayer film and a cholesteric liquid crystal layer.
  • the dielectric multilayer film is formed by laminating transparent dielectric layers having different refractive indexes of inorganic oxides and organic polymer materials.
  • the inorganic oxide layer can be formed by sputtering or the like on the surface of glass or a heat-resistant polymer film, for example.
  • the organic polymer material include polycarbonate, acrylic resin, polyester, epoxy resin, polyurethane, polyamide, polyolefin, silicone (including modified silicone such as silicone polyurea), and the like. It can be produced according to the method disclosed in the publication.
  • the reflectivity at the reflection wavelength of the cholesteric liquid crystal layer increases as the cholesteric liquid crystal layer becomes thicker. However, in a normal liquid crystal material, it is saturated at a thickness of 2 to 8 ⁇ m in the visible light wavelength region. In addition, the reflectance is 50% at the maximum because it is a reflection with respect to only one circularly polarized light. In order to reflect light regardless of the sense of circularly polarized light and the reflectance of natural light to be 50% or more, the light reflecting layer has the same period P, the spiral sense is the right cholesteric liquid crystal layer and the left cholesteric liquid crystal.
  • a dispersion liquid in which a colorant such as pigment or dye is dispersed in a solvent containing a dispersant, a binder or a monomer is used as a base material (having sufficient light transmittance in the infrared wavelength region where the light receiving element senses light). It is possible to use a layer formed by coating on a substrate, a layer formed by directly dyeing the surface of a polymer substrate with a dye, or a layer formed from a polymer material containing a dye.
  • the coating solution A-2 shown in Table 1 was applied at room temperature so that the dry film thickness after drying was 5 ⁇ m.
  • the coating layer was dried at room temperature for 30 seconds, then heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. for 6 to 12 seconds at an output of 60% at a lamp of 90 mW / cm.
  • a liquid crystal layer was obtained.
  • the coating solution A-3 shown in Table 1 was applied onto this liquid crystal layer at room temperature so that the dry film thickness after drying was 5 ⁇ m. After the coating layer was dried at room temperature for 30 seconds, it was heated in an atmosphere at 85 ° C. for 2 minutes, and then at 30 ° C., irradiated with UV at a power of 60% for 6 to 12 seconds using a fusion D bulb (lamp 90 mW / cm).
  • a reflective film MR-1 was obtained.
  • Reflective films MR-2 to MR-6 were produced in the same manner as the reflective film MR-1, except that the following three coating liquids were used instead of the coating liquids A-1 to A-3.
  • ⁇ Preparation of reflective film SC-1 (scattering type)> A rubbing treatment is performed on a PET surface of Cosmo Shine A-4100 (thickness 100 ⁇ m) manufactured by Toyobo Co., Ltd., which has not been subjected to an easy adhesion treatment, so that the coating film C shown in Table 1 has a thickness of 8 ⁇ m after drying. Application was at room temperature. After the coating layer was dried at room temperature for 30 seconds, it was heated in an atmosphere at 85 ° C. for 2 minutes, and then at 30 ° C., irradiated with UV at a power of 60% for 6 to 12 seconds using a fusion D bulb (lamp 90 mW / cm). An acrylic layer was obtained.
  • the coating solution A-1 shown in Table 1 was applied at room temperature so that the dry film thickness after drying was 5 ⁇ m. After the coating layer was dried at room temperature for 30 seconds, it was heated in an atmosphere at 85 ° C. for 2 minutes, and then at 30 ° C., irradiated with UV at a power of 60% for 6 to 12 seconds using a fusion D bulb (lamp 90 mW / cm). A liquid crystal layer was obtained. On this liquid crystal layer, the coating solution A-2 shown in Table 1 was applied at room temperature so that the dry film thickness after drying was 5 ⁇ m. The coating layer was dried at room temperature for 30 seconds, then heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C.
  • a liquid crystal layer was obtained. Further, the coating solution A-3 shown in Table 1 was applied onto this liquid crystal layer at room temperature so that the dry film thickness after drying was 5 ⁇ m. The coating layer was dried at room temperature for 30 seconds, then heated in an atmosphere of 85 ° C. for 2 minutes, and then irradiated with UV light at 30 ° C. with a fusion D bulb (lamp 90 mW / cm) at an output of 60% for 6 to 12 seconds. A reflective film SC-1 was obtained.
  • Reflective films SC-2 to SC-6 were produced in the same manner as for the reflective film SC-1, except that the following three coating liquids were used instead of the coating liquids A-1 to A-3.
  • the coated surface is bonded to the liquid crystal layer side of the upper reflective film shown in Table 2 so that no air bubbles enter, and a fusion D bulb (lamp 90 mW / cm) is used at 30 ° C. and 60% output for 6 to 12 seconds. UV irradiation. Thereafter, the PET film that has been the upper support is peeled off.
  • ⁇ / 4 plate a quarter ⁇ of 700 to 1000 nm of an achromatic wave plate (retardation plate) manufactured by Edmund optics Japan was used.
  • As the linear polarizing plate a high-contrast polarizing filter for NIR manufactured by Edmund optics Japan was used. Adhesion between the ⁇ / 4 plate and the linear polarizing plate was performed by DIC Corporation UV curable adhesive Exp.
  • U12 034-6 was used in the same manner as the above-mentioned bonding of the MR film and the SC film.
  • linearly polarized light separating films b1 and b2 As the linearly polarized light separating film b1, the linearly polarizing plate Edmund opt used above is used. A high-contrast polarizing filter for NIR manufactured by ics Japan was used. As the linearly polarized light separating film b2, a near infrared polarizing film manufactured by a linearly polarizing plate Edmund optics Japan was used.
  • Examples 1 to 6 Comparative Examples 1 to 10> As shown in Table 3, sample detection was performed using the produced circularly polarized light separating films a1 to a12 and linearly polarized light separating films b1 and b2 in combination in the irradiation unit and the detection unit.
  • the light source an LED having an emission spectrum center wavelength of 450 nm or 940 nm shown in FIG. 2, as the light receiving element (photodetector), an optical power meter ML9001A manufactured by Anritsu Co., as a sample, Re is about 0 nm and Rth Used a TAC film of about 100 nm.
  • the light source, the photodetector, and the circularly polarized light separating film were arranged as shown in A or B of FIG.
  • the sample is arranged so that the short side direction of the sample plane is in the plane of the drawing of the object moving unit shown in FIG. 1 and the long side direction of the sample plane is in the depth direction of the drawing. It was made to be at the intersection with the moving part.
  • the circularly polarized light separating films a1 to a12 and the linearly polarized light separating films b1 and b2 are arranged such that the lower layer side shown in Table 2 is the light source side when installed on the light source, and the lower layer side shown in Table 2 is installed on the photodetector. It was made to be on the photodetector side.
  • the tilt angle and light source wavelength were selected as shown in Table 3.
  • Table 3 shows the output from the photodetector when the sample is installed and when there is no sample.
  • the value when the output of the detector is 100 when no circularly polarized light separating film or linearly polarized light separating film is installed in any of the light source and the detector is shown.
  • the ratio of the measured value when there is a sample to the measured value when there is no sample is shown as “with sample / without sample” and is also shown as a percentage. It can be considered that the false detection is less likely to occur as the ratio is larger than 100%.
  • the measured value when the sample was present was 200% or more of the measured value when there was no sample, and a difference in the amount of light that was unlikely to cause erroneous detection was obtained.
  • the measured value with the sample was less than 200% of the measured value with no sample.
  • a high output was obtained in the example in which the sample inclination angle was 60 °, but the output of the photodetector was not seen under the condition of no sample. This means that a non-transparent article cannot be detected.
  • the difference between the measured value when there is a sample and the measured value when there is no sample is small, so that it is considered that erroneous detection occurs when used in the detection method.
  • the measured value when the sample is present is smaller than the measured value when there is no sample, which is considered because the degree of polarization of the linearly polarizing plate is low. It is done.
  • the linear polarizing plate alone showed a significant performance drop (C), but in the state where the ⁇ / 4 layer was bonded to the linear polarizing plate (Example 6), the wet heat durability was improved. It is considered that the ⁇ / 4 layer and the adhesive layer functioned as a barrier against humidity and the like.
  • Examples 7 to 9> Using a TAC film with Re of about 25 nm and Rth of about 100 nm as a sample, measurement was performed using the same light source and light receiving element as in Example 1. The measurement was performed according to the arrangement of A in FIG. 1, the tilt angle was 60 °, and the measurement wavelength was 940 nm.
  • the produced circularly polarized light separating film a2 was used on the light source side, and a4 was used on the light receiving side. In the circularly polarized light separating film a2, the lower layer side shown in Table 2 is on the light source side, and in the circularly polarized light separating film a4, the lower layer side shown in Table 2 is on the photodetector side.
  • the angle of the incident surface of the light emitted from the light source is 0 °, 60 °, 90 °
  • a light source and a light receiving element were arranged so as to be 120 °.
  • the direction of the slow axis of the sample when viewed from the normal direction of the sample is similarly 0 °, 45 ° or the above direction as a reference.
  • Circularly polarized light separating film 1 Circularly polarized light separating film 2 11 Circularly polarized light separation film 11 12 circularly polarized light separating film 12 16 Specular reflection member 17 Attachment 22 Light source 23 Light receiving element 24 Object moving part 25 Optical path 26 Inclination angle 27 Sensor in-plane angle 28 Slow axis in-plane angle 29 Sample slow axis 30 Sample (observed from normal direction) 31 Incident light incident surface

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

透明物品を対象物とした際に、感度が高く、誤検知が少ない、円偏光を利用した検知方法および検知システムを提供する。照射光由来の光であって対象物を透過した光の感知により対象物が検知され、照射光が円偏光であり、感知される光が円偏光であり、照射光由来の光は、対象物の法線と、20°より大きく70°以下である角度をなして対象物に入射する、検知方法、ならびに、照射部、対象物移動部、検出部をこの順で含み、照射部が照射する円偏光のセンスと検出部が感知する円偏光のセンスとが逆であり、照射部からの照射光由来の光が検出部に入射する光の光路と対象物移動部とが交差する交差部において光路と対象物移動部の法線とがなす角度が、20°より大きく70°以下である透過型の検知システムおよびさらに鏡面反射部材を含み、照射部が照射する円偏光のセンスと検出部が感知する円偏光のセンスとが同一である反射型の検知システム。

Description

検知方法および検知システム
 本発明は、検知方法および検知システムに関する。より詳しくは、本発明は円偏光を利用した検知方法および検知システムに関する。
 検知方法として偏光を利用した方法が従来から知られている。例えば、特許文献1では、シリコン基板に第一の直線偏光フィルタを介した偏光赤外光を照射し、シリコン基板からの反射光もしくは透過光を第二の直線偏光フィルタを介して受光するシステムにより、シリコン基板のクラックを検知している。この技術は、クラックが存在しない箇所の反射光もしくは透過光は直線偏光であり第二の直線偏光フィルタを介すると特定の条件を満たすとき以外は感知できる光量が減少する一方、クラックでの反射光もしくは透過光は乱反射によって第二の直線偏光フィルタを介しても感知できる光が生じることを利用したものである。さらに、特許文献2では、特許文献1の技術において円偏光を利用した技術が開示されている。
 特許文献3には、近赤外円偏光分離層と可視光遮断層とを含むフィルムを利用して、鏡面反射体上の異物のほか、透明フィルム、ヒトなどを対象物として検知するシステムが開示されている。
特開2008-58270号公報 特開2013-36888号公報 WO2014/181799
 特許文献1に記載のシステムでは、第一の直線偏光フィルタと第二の直線偏光フィルタとで偏光方向の調整が必要であるが、特許文献2または3に記載の検知システムでは、円偏光の利用により上記の調整は不要である。ここで、特許文献3においては、透明フィルムの検知に関する記載があるが、透明物品をさらに感度良く検知することに関する記載はない。
 本発明は、特に透明物品を対象物とした際に、さらに感度が高く、誤検知が少ない、円偏光を利用した検知方法および検知システムを提供することを課題とする。
 本発明者らは、上記課題の解決のため、鋭意検討を重ね、新たなシステムを見出した。すなわち、本発明は下記の[1]~[15]を提供するものである。
[1]対象物を検知する方法であって、
照射光由来の光であって上記対象物を透過した光の感知により上記対象物が検知され、
上記照射光が円偏光であり、
上記感知される光が円偏光であり、
上記対象物は透明物品であり、
上記照射光由来の光は、上記対象物の法線と、20°より大きく70°以下である角度をなして上記対象物に入射する方法。
[2]上記感知が、上記照射光が上記対象物を透過した光の直接感知であり、
上記照射光の円偏光のセンスと上記感知される光の円偏光のセンスとが逆である[1]に記載の方法。
[3]上記感知が、上記照射光由来の光の反射光の感知であり、
上記照射光の円偏光のセンスと上記感知される光の円偏光のセンスとが同一である[1]に記載の方法。
[4]上記感知が、上記照射光が上記対象物を透過した光の反射光が、上記対象物をもう一度透過した光の感知である、[3]に記載の方法。
[5]前記照射光として異なる入射面を有する2つ以上の照射光が用いられる[1]~[4]のいずれかに記載の方法。
[6]前記の異なる入射面が、互いに10°~90°の角度をなしている[5]に記載の方法。
[7]前記照射光として異なる入射面を有する3つの照射光が用いられる[5]または[6]に記載の方法。
[8]対象物を検知するシステムであって、
円偏光を選択的に照射する照射部、対象物移動部、円偏光を選択的に感知する検出部を前記円偏光の光路においてこの順で含み、
上記照射部が選択的に照射する円偏光のセンスと上記検出部が選択的に感知する円偏光のセンスとが逆であり、
上記照射部からの照射光由来の光が上記検出部に入射する光の前記光路と上記対象物移動部とが交差部において交差しており、
上記交差部で上記光路と上記対象物移動部の法線とがなす角度が、20°より大きく70°以下であるシステム。
[9]上記照射部が光源および円偏光分離フィルム1を含み、
上記検出部が円偏光分離フィルム2および受光素子を含み、
上記光源、上記円偏光分離フィルム1、上記対象物移動部、上記円偏光分離フィルム2、および上記受光素子が上記円偏光の光路においてこの順で配置されており、
上記円偏光分離フィルム1および上記円偏光分離フィルム2が互いに逆のセンスの円偏光を選択的に透過させる[8]に記載のシステム。
[10]上記円偏光分離フィルム1および上記円偏光分離フィルム2がいずれもコレステリック液晶相を固定した円偏光分離層を含むフィルムである[9]に記載のシステム。
[11]対象物を検知するシステムであって、
円偏光を選択的に照射する照射部、円偏光を選択的に感知する検出部、対象物移動部および鏡面反射部材を含み、
上記対象物移動部は、上記照射部と上記鏡面反射部材との間に含まれ、ならびに/または、上記鏡面反射部材と上記検出部との間に含まれ、
上記照射部および上記検出部は、上記照射部からの照射光由来の光が上記鏡面反射部材で鏡面反射して上記検出部に入射する位置にあり、
上記照射部が選択的に照射する円偏光のセンスと上記検出部が選択的に感知する円偏光のセンスとが同一であり、
上記照射部からの照射光由来の光が上記鏡面反射部材に入射する光の光路1が上記対象物移動部と交差部1において交差しており、上記交差部1において上記光路1と上記対象物移動部の法線がなす角度が、20°より大きく70°以下であり、ならびに/または上記照射部からの照射光由来の光が上記鏡面反射部材により反射し上記検出部において感知される光の光路2は上記対象物移動部と交差部2において交差しており、上記交差部2において上記光路2と上記対象物移動部の法線方向がなす角度が、20°より大きく70°以下である、
システム。
[12]上記照射部が光源および円偏光分離フィルム11を含み、
上記検出部が円偏光分離フィルム12および受光素子を含み、光源、円偏光分離フィルム11、および上記鏡面反射部材を上記光路1においてこの順で含み、
上記鏡面反射部材、上記円偏光分離フィルム12、および上記受光素子を上記光路2においてこの順で含み、ならびに、
上記円偏光分離フィルム11および上記円偏光分離フィルム12が互いの同一のセンスの円偏光を選択的に透過させる[8]に記載のシステム。
[13]上記円偏光分離フィルム11および上記円偏光分離フィルム12がいずれもコレステリック液晶相を固定した円偏光分離層を含むフィルムである[11]または[12]に記載のシステム。
[14]上記照射部として入射面の異なる照射光となる2つ以上の照射部を含み、かつ前記入射面内にそれぞれ前記検出部を含む[8]~[13]のいずれかに記載のシステム。[15]上記対象物が透明物品である[8]~[14]のいずれかに記載のシステム。
 本発明により、円偏光を用いた検知方法として新規の方法が提供される。本発明の方法を用いて、感度が高く誤検知の少ない透明物品の検知が可能である。
本発明の方法およびシステムを用いた対象物の検知のための、光源、受光素子、円偏光分離フィルムの配置例を光の入射面を断面として示す模式図である。 実施例で用いた光源の発光スペクトルを示す図である。 実施例7~9におけるセンサー面内角度と遅相軸面内角度を説明する図であって、試料の法線方向から観察したシステムの模式図である。
 以下、本発明を詳細に説明する。
 本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
 本明細書において、角度(例えば「90°」等の角度)、及びその関係(例えば「平行」、「水平」等)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、厳密な角度±10°未満の範囲内であることなどを意味し、厳密な角度との誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
 本明細書において、円偏光につき「センス」というときは、右円偏光であるか、または左円偏光であるかを意味する。円偏光のセンスは、光が手前に向かって進んでくるように眺めた場合に電場ベクトルの先端が時間の増加に従って時計回りに回る場合が右円偏光であり、反時計回りに回る場合が左円偏光であるとして定義される。
 本明細書において、円偏光につき「選択的」というときは、いずれかのセンスの円偏光の光量が、他方のセンスの円偏光の光量よりも多いことを意味する。具体的には「選択的」というとき、光の円偏光度は、0.3以上であることが好ましく、0.6以上がより好ましく、0.8以上がさらに好ましい。実質的に1.0であることが特に好ましい。ここで、円偏光度とは、光の右円偏光成分の強度をIR、左円偏光成分の強度をILとしたとき、|IR-IL|/(IR+IL)によって表される値である。
 本明細書においては、コレステリック液晶の螺旋の捩れ方向について「センス」との用語を用いることもある。コレステリック液晶の選択反射は、コレステリック液晶の螺旋の捩れ方向(センス)が右の場合は右円偏光を選択的に反射し、かつ左円偏光を選択的に透過し、センスが左の場合は左円偏光を選択的に反射し、かつ右円偏光を選択的に透過する。
 本明細書において、「入射面」とは光(照射光)が平面状の対象物に入射するときの、対象物平面(反射面)に垂直で入射光線を含む面を意味する。「入射面」はさらに照射光の鏡面反射光光線および直透過光光線を含んでいればよい。
 本明細書において、複屈折とは、照射光の波長(発光ピーク)における対象物のレターデーションを意味する。対象物がフィルムであるときは、波長λにおける面内レターデーション(Re)及び厚さ方向のレターデーション(Rth)を含む意味である。単位はいずれもnmである。特定波長λnmにおけるReはKOBRA 21ADH、又はWR(王子計測機器(株)製)において、波長λnmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルタをマニュアルで交換するか、または測定値をプログラム等により変換して測定することができる。測定されるフィルムが、1軸又は2軸の屈折率楕円体により表されるものである場合には、以下の方法によりRthが算出される。
 特定波長λnmにおけるRthは以下の通りである。まず、特定波長λnmにおけるReを、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50°まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定する。そして、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRがRthを算出する。上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADH、又はWRが算出する。なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値、及び入力された膜厚値を基に、以下の式(A)、及び式(B)よりRthを算出することもできる。
Figure JPOXMLDOC01-appb-M000001
 なお、上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値を表す。また、式(A)におけるnxは、面内における遅相軸方向の屈折率を表し、nyは、面内においてnxに直交する方向の屈折率を表し、nzは、nx及びnyに直交する方向の屈折率を表す。dは膜厚である。
Rth=((nx+ny)/2-nz)×d・・・・・・・・・・・式(B)
 本明細書において、光というとき、赤外線であっても、可視光線であっても、紫外線であってもよく、赤外線および可視光線の波長域、可視光線および紫外線の波長域、または赤外線、可視光線および紫外線の波長域にまたがる波長域の光であってもよい。1nm、
10nm、50nm、100nm、150nm、または200nmなどの特定の波長幅の光であってもよい。なお、波長幅は、50nm幅程度以上あることが好ましい。
 可視光線は電磁波のうち、ヒトの目で見える波長の光であり、380nm~780nmの波長域の光を示す。赤外線(赤外光)は可視光線より長く電波より短い波長域電磁波である。近赤外光とは一般的に780nm~2500nmの波長域の電磁波である。紫外線は可視光線より短くX線より長い波長域電磁波である。紫外線は可視光線およびX線と区別される波長領域の光であればよく、例えば波長10~380nmの範囲の光である。
 本発明の方法において照射光としては、近赤外光を用いることが好ましい。照射光として近赤外光を用いる場合は、780nm~1500nm、または800nm~1500nmの波長域が好ましい。典型的には、赤外線カメラ、赤外線光電センサー、または赤外線通信などで用いられている近赤外光の波長域に対応する波長域の光を用いればよい。照射光としては、2種類の光、すなわち、波長域の異なる2つの光が用いられていてもよい。
 本明細書において、「反射光」は、鏡面反射光(直反射光)および拡散反射光(散乱光)を含む意味である。「透過光」は散乱透過光、直透過光、および回折光を含む意味である。
 本明細書において「光路」は、照射部から検出部までの光の経路、またはその一部を意味する。システムの説明において、「照射部からの照射光由来の光が鏡面反射部材に入射する光の光路1」は、照射部(より厳密には光源の中心)と照射部からの照射光由来の光が鏡面反射部材に入射する位置とを結ぶ直線を意味する。「照射部からの照射光由来の光が鏡面反射部材によって反射し検出部に感知される光の光路2」は照射部からの照射光由来の光が鏡面反射部材に入射する位置と検出部(より厳密には受光素子の中心)とを結ぶ直線を意味する。図などにおいて、光路は直線により示されているが、このことは、照射光および感知される光がいずれも指向性の高い光に限定されることを意味するものではない。
 本明細書において、「照射光由来の光」は、本発明の方法やシステムにおける環境光を除く照射光由来の光を意味し、照射光、照射光が対象物を透過して得られる光、照射光が反射して得られる光、照射光が対象物を透過して得られる光が反射して得られる光、または照射光が対象物を透過して得られる光が反射して得られる光がさらに対象物を透過して得られる光などを意味する。
 本発明の検知方法においては、光として偏光が用いられる。偏光を用いることにより、周囲の光に対して照射部からの照射光由来の光を優勢に感知することが可能であり、S/N比を上げることができる。また、透明の対象物の検知が可能になる。さらに、本発明においては、偏光として円偏光が用いられる。円偏光を利用して対象物を透過した光を感知すると、偏光として直線偏光を用いる場合と比較して偏光感知のためのフィルムの方位の調整が容易または不要になる。
 光の偏光状態は、円偏光板を装着した分光放射輝度計またはスペクトルメータを用いて測定することができる。この場合、右円偏光板を通して測定した光の強度がIR、左円偏光板を通して測定した光の強度がILに相当する。また、照度計や光スペクトルメータに、円偏光板を取り付けても測定することができる。右円偏光透過板をつけ、右円偏光量を測定、左円偏光透過板をつけ、左円偏光量を測定することにより、比率を測定できる。
<対象物>
 本発明の方法により検知される対象物は透明物品である。本明細書において、透明とは、用いている光の波長域の自然光が透過する状態を意味する。用いている光の波長域としては、照射光の波長域であればよい。光は50%以上、60%以上、80%以上、90%以上、または95%以上の光線透過率であればよい。透明の尺度として用いられる光線透過率は、JIS-K7105に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。本明細書において、透明物品という場合は、用いている光の波長域の自然光が透過すると同時に可視光領域の自然光が透過する物品であることも好ましい。例えば、可視光領域における光線透過率が、80%以上、または85%以上などであればよい。
 透明物品は、全ての方向それぞれの全面において透明なものであってもよく、一部に非透明部分を含むものであってもよい。例えばフィルム状の透明物品の表面積に対し、70%以下、60%以下、50%以下、40%以下、30%以下、20%以下、10%以下、5%以下の非透明部分を含んでいてもよい。
 本発明の方法により検知される対象物は平面状であるか、または平面に近似することができる形状である。検知の際、対象物が集合して平面状となるものであってもよく、対象物が平面に平行に移動することにより、検知の際に平面状に近似できるものであってもよい。対象物の例としては、フィルム、シート、板などが挙げられる。具体例としては、カード、紙、プラスチックフィルム(光学フィルム、包装用透明フィルムなど)などが挙げられる。
 本発明の方法により検知される対象物はいずれかの方向において複屈折を有していればよい。本明細書において、複屈折を有するとは、例えば、フィルムや板状製品の場合、ReまたはRthが20nm以上であることを意味し、50nm以上であることが好ましく、100nm以上であることがより好ましく、200nm以上であることがさらに好ましい。対象物の複屈折により、照射される円偏光の偏光状態が変化し、検出部において感知される光量が増加することにより、対象物を検知することができる。本発明の方法により検知される対象物は、本発明の方法において照射光が入射して進行する方向で複屈折を有していることが好ましい。
 本発明の方法においては、高複屈折性のフィルムを対象物とした場合に感度の高い検知が可能であるのはもちろんのこと、低複屈折性のフィルムを対象物とした場合にも、感度の高い検知が可能である。
 低複屈折性のフィルムの例としては、アクリルフィルム(例えば、エスカーボシート株式会社製テクノロイフィルムS000等)、アクリル板(例えば、エスカーボシート株式会社製テクノロイシート、日東樹脂工業株式会社製CLAREX精密板等)、ポリカーボネートフィルム(例えば、エスカーボシート株式会社製テクノロイフィルムC000等)、ガラス(例えば、旭硝子製合成石英ガラス等)、TAC(トリアセチルセルロース)フィルム(例えば、富士フイルム株式会社製フジタック)などが挙げられる。
<検知方法>
 本発明の検知方法においては、上記のように、円偏光が利用される。そして、対象物の検知は、対象物への照射光由来の光であって対象物を透過した光の感知により行われる。本発明の検知方法においては、対象物の無い状態では、照射部からの照射光に由来する光は、検出部において感知されないかまたは光量が少ない状態とする。これは、照射光の円偏光のセンスと感知する円偏光のセンスを後述のように調整することにより達成することができる。さらに、本発明の方法では、上記の状態で照射光由来の光が対象物を透過することにより感知される光量が増加することにより対象物が検知される。すなわち、対象物を透過した光は、対象物の複屈折により偏光状態が変化して透過前の円偏光とは逆センスの円偏光を含むため、これを利用して照射部で感知される光量を増加させる。
 このときの光量の増加は対象物が無い状態の光量に対し、例えば、200%以上、300%以上、500%以上の光量になっていればよい。
 光量の変化量により、対象物の種類が判定されていてもよい。例えば、透明物品および非透明物品、または透明度や複屈折性の異なる複数の物品が区別されていてもよい。この場合において、判定される対象物には非透明物品が含まれていてもよい。非透明物品が光路に入ると照射部からの光のみでなく、環境光も感知されなくなるため、検出部において感知される光量は減少することになる。そのため、透明物品と区別されて検知される非透明物品は、対象物によって感知される光量が減少することにより検知されていてもよい。
 本発明の検知方法においては、照射光は、対象物の法線と、20°より大きく70°以下である角度をなすように対象物に入射させる。物質の複屈折(レターデーション)はその厚みが増加すると増加する。そのため、上記角度をなすように対象物に光を入射させることにより、光が対象物を透過する距離を長くし、実質的に厚みを増加させ、複屈折を大きくすることができる。また、Reが例えば0~100nm程度で小さいがRthがそれより大きいフィルムなどが対象物である場合は入射光を対象物の法線と角度をなすようにすることにより、感知される円偏光の光量を増加させることができる。
 そのため、本発明のシステムにおいては、例えば複屈折性が低いとされているフィルム材料についても感度良く検知することが可能である。
 上記角度は、25°以上65°以下であることが好ましく、30°以上62°以下であることがより好ましい。
 なお、本明細書において、対象物の法線というとき、対象物に対する照射光入射側に対象物の照射光入射位置からのびる法線を意味する。対象物が平面状に近似することができる形状であるときは、近似した平面を基準とする法線を意味する。
 本発明の検知方法においては、2つ以上の照射光が用いられていてもよく、3つ以上の照射光が用いられることがさらに好ましい。2つ以上の照射光は、波長域が異なる照射光であってもよく、対象物の法線となす角度が異なる照射光であってもよく、または、異なる入射面を有する照射光であってもよい。これらの2つ以上が異なる照射光であってもよい。
 2つ以上の照射光を用いて感知される円偏光の光量は加算して検知に用いてもよく、より感度の高い(S/Nが大きい)照射光に基づき感知される円偏光の光量を検知に用いてもよい。感度の高い(S/Nが大きい)照射光に基づいて検知が行われることが好ましい。
 異なる入射面により対象物に入射する照射光を用いることにより、遅相軸方向が不明の複屈折性の対象物の検知の感度を上げることができる。対象物において複屈折が小さい方向からの照射光であるために感度が低下することを防止することができるからである。
 異なる入射面により対象物に入射する2つ以上の照射光が用いられる場合、それらの照射光のうちの任意の2つの照射光の2つの入射面は10°~90°の角度をなしていることが好ましく、30°~90°の角度をなしていることがより好ましく、45°~90°の角度をなしていることがさらに好ましい。また、それらの照射光のうちの任意の2つの照射光の入射方向がなす角度(対象物の法線方向から見たときの法線を中心とした角度)は、10°~170°が好ましく、30°~150°がより好ましく、45°~135°がさらに好ましい。互いに異なる入射面により対象物に入射する照射光である場合、3つ以上の照射光が用いられることが好ましく、3つの照射光が用いられることが特に好ましい。
 2つ以上の照射光が用いられる検知方法は、例えば、後述する照射部を2つ以上含む検知システムを用いて行うことができる。
 前述の、照射光の円偏光のセンスと感知する円偏光のセンスとの調整は、例えば、以下のように行うことができる。
 第1の態様(透過型)では、照射光が対象物を透過した光の直接感知を行い、照射光が選択的に含む円偏光のセンスと感知される光が選択的に含む円偏光のセンスとを逆にする。光の直接感知とは、対象物の透過光、特に直透過光の感知を意味する。光の直接感知では、感知までに照射光由来の光が反射されていなければよく、対象物を透過した光はそのまま感知されればよい。
 第2の態様(反射型)では、照射光由来の光の反射光の感知を行い、照射光が選択的に含む円偏光のセンスと感知される光が選択的に含む円偏光のセンスとを同一とする。このとき、反射光は鏡面反射光であることが好ましい。第2の態様において、照射光由来の光は反射前に対象物を透過していても、反射後に対象物を透過していても、いずれにおいても透過していてもよい。このうち特に、いずれにおいても透過していることが好ましい。すなわち、感知は、照射光が対象物を透過した光の反射光が、対象物をもう一度透過した光の感知であることが好ましい。対象物を2回透過することになるため、検知の感度を上げることができるからである。
<検知システム>
 本発明の方法を実現するために、例えば本発明のシステムを用いることができる。本発明のシステムは、少なくとも、照射部、対象物移動部、検出部を含む装置であってもよく、または、対象物移動部と、照射部と、検出部とを含む組み合わせであってもよい。
 一つの態様(透過型)では、システムは円偏光を選択的に照射する照射部、対象物移動部、円偏光を選択的に感知する検出部を円偏光の光路においてこの順で含む。このとき、検出部は、照射部から照射された光が入射する位置にあり、照射部から照射された光が検出部に入射する光の光路は対象物移動部と交差しており、照射部が選択的に照射する円偏光のセンスと検出部が選択的に感知する円偏光のセンスとは逆であるようにする。
 別の態様(反射型)では、システムは、円偏光を選択的に照射する照射部、円偏光を選択的に感知する検出部、対象物移動部および鏡面反射部材を含む。このとき対象物移動部は、照射部と鏡面反射部材との間にあるか、もしくは、鏡面反射部材と検出部との間にあり、または、対象物移動部は、照射部と鏡面反射部材との間かつ鏡面反射部材と検出部との間にある。照射部および検出部は、互いに照射部から照射された光が鏡面反射部材により鏡面反射して検出部に入射する位置にある。そして、照射部からの照射光由来の光が鏡面反射部材に入射する光の光路1が対象物移動部と交差部1において交差しているか、もしくは照射部からの照射光由来の光が鏡面反射部材により反射し検出部に感知される光の光路2が対象物移動部と交差部2において交差しており、または、照射部からの照射光由来の光が鏡面反射部材に入射する光の光路1が対象物移動部と交差部1において交差し、かつ照射部からの照射光由来の光が鏡面反射部材により反射し検出部に感知される光の光路2が対象物移動部と交差部2において交差している。さらに、照射部が選択的に照射する円偏光のセンスと検出部が選択的に感知する円偏光のセンスとが同一になるようにする。
 上記いずれの態様においても、検出部は照射部から照射された光の入射面内にあることが好ましい。
 後述するように、照射部は光源および円偏光分離フィルムを含むことが好ましく、検出部は受光素子および円偏光分離フィルムを含むことが好ましい。対象物の検知のための、光源、受光素子、円偏光分離フィルムの配置例を図1に示す。
 透過型の態様である配置A、B、Dにおいては、光源22、光源側の円偏光分離フィルム(本明細書において円偏光分離フィルム1ということがある。)、対象物移動部24、受光素子側の円偏光分離フィルム(本明細書において円偏光分離フィルム2ということがある。)、および受光素子23が円偏光の光路においてこの順で配置されている。円偏光分離フィルム1と円偏光分離フィルム2とは逆のセンスの円偏光を選択的に透過し、対象物が存在しないときは、光源からの光の大部分は、直接受光素子に感知されない。対象物が光路と対象物移動部との交差部に配置されると、受光素子において感知される光の光量が増加し、その増加により対象物が検知される。
 反射型の態様である配置Cは、鏡面反射部材16を用いて反射光を感知する構成である。すなわち、円偏光分離フィルム11が円偏光分離フィルム12とは同じセンスの円偏光を選択的に透過し、対象物が存在しないときは、光源からの光の大部分は、受光素子に感知されない。対象物が交差部1および/または交差部2に配置されると、受光素子において感知される光の光量が増加し、その増加により対象物が検知される。
 配置Cにおいては、対象物から見て円偏光分離フィルムの同じ側面側に光源と受光素子とが配置されている。この構成において、受光素子が光源からの直接の光の影響を受けないよう受光素子と光源との間には光(特に照射光領域の波長の光)を遮断する層などが設けられていてもよい。
 透過型の態様の本発明のシステムにおいては、照射部からの照射光由来の光が検出部に入射する光の光路と対象物移動部とが交差する交差部において、この光路と対象物移動部の法線とがなす角度(図1A,B、Dに示す、傾斜角度26)は、20°より大きく70°以下である。上記角度は、25°以上65°以下であることが好ましく、30°以上62°以下であることがより好ましい。
 反射型の態様の本発明のシステムにおいては、交差部1において光路1と対象物移動部の法線がなす角度(図1Cに示す、傾斜角度26-1)および交差部2において光路2と対象物移動部の法線方向がなす角度(図1Cに示す、傾斜角度26-2)の少なくともいずれか一方が20°より大きく70°以下であり、交差部1において光路1と対象物移動部の法線がなす角度(図1Cに示す、傾斜角度26-1)および交差部2において光路2と対象物移動部の法線方向がなす角度(図1Cに示す、傾斜角度26-2)の双方が20°より大きく70°以下であることが好ましい。上記角度はいずれも、25°以上65°以下であることが好ましく、30°以上62°以下であることがより好ましい。
 本発明のシステムは、対象物移動部を遮光するように、筐体が設けられていてもよい。例えば配置B、Dに示すように筐体を設けることができる。その際、配置Bに示すように筐体の窓部分に円偏光分離フィルムが設けられていてもよい。このとき、筐体の2つ窓部分のそれぞれの中心の間をつなぐ直線と対象物移動部の法線が20°より大きく70°以下の角度により交差していればよい。また、配置Dに示すように、窓部分と照射部との間および窓部分と検出部との間から選択されるいずれか一方または双方に光(特に照射光領域の波長の光)を遮断するアタッチメントを設けて、環境光の影響をより受けにくくしてもよい。
 また、反射型の態様の本発明のシステムにおいては、検出部は照射部からの直接の光の影響を受けないよう、照射部と検出部との間に、光(特に照射光領域の波長の光)を遮断する層などが設けられていればよい。
[対象物移動部]
 対象物移動部は、検知すべき対象物を配置できる部位を意味し、対象物を平面的に保持できる部分を含む。本発明のシステムにおいては、この部分において、対象物が検知されるようになっていればよい。例えば、図1の配置A、B、Dにおいて、対象物は、図に示す直線のように左右の方向で連続的に移動していてもよく、紙面の手前と奥の方向で連続的に移動していてもよく、単に図に示す直線部位に配置されてもよい。配置Cにおいて対象物は、図に示す直線のように紙面の上下の方向で移動していてもよく、紙面の手前と奥の方向で移動していてもよく、単に図に示す直線部位に配置されてもよい。
 なお、本明細書において、対象物の「移動」は一方方向のものであってもよく、行き来するものであってもよく、配置と除去とからなる非連続的な移動であってもよい。
 本明細書において、対象物移動部の法線というときは、対象物移動部の、対象物を平面的に保持できる部分に対する照射光入射側に、対象物移動部の照射光入射位置からのびる法線を意味し、対象物移動部において、保持することができる対象物の平面に対する法線を意味する。対象物移動部の例としては、フィルム搬送部などが挙げられる。
 検知システムの具体例としては、工場の製造ラインなどにおける製品の通過を確認するシステムなどが挙げられる。製品の例としては、光学フィルム、包装フィルム、アクリルフィルムまたはアクリル板などが挙げられる。
[照射部]
 照射部は特定の光の波長域における円偏光を選択的に照射する。照射光の波長域は対象物に応じて選択すればよい。照射部は、光源を含む。また、照射部は光源と円偏光分離フィルムを含むことが好ましい。光源が直線偏光を照射する光源である場合においては、照射部は光源とλ/4位相差層などの位相差フィルムとを含んでいてもよい。
 光源としては、ハロゲンランプ、タングステンランプ、LED、LD、キセノンランプ、メタハラランプなど受光素子の感光波長の光を発光するものであればいずれも使用できるが、小型、発光指向性、単色光、パルス変調適性の点でLEDまたはLDが好ましい。
 照射部は、例えば光源を筐体内部に有し、照射光を出射する部分に円偏光分離フィルムを配して、円偏光分離フィルムを経由した光以外の光が光源から出射していない構成となっていることが好ましい。また、円偏光分離層が直線偏光分離層とλ/4位相差層とを含むものである場合は、λ/4位相差層が外側であって直線偏光分離層が光源側となるように配置することが好ましい。
 本発明のシステムは照射部を2つ以上含んでいてもよい。例えば、入射面の異なる照射光となるように2つ以上の照射部を有していてもよく、同一の入射面で対象物の法線となす角度が異なる照射光となるように2つ以上の照射部を有していてもよく、入射面および対象物の法線となす角度のいずれも異なる照射光となるように2つ以上の照射部を有していてもよい。これらのうち、入射面の異なる照射光となるように2つ以上の照射部を有していることが好ましい。
 また、本発明のシステムは照射光の波長域の異なる2種以上の照射部を含んでいてもよい。
[検出部]
 検出部は照射部からの照射光の波長域で円偏光を選択的に感知していればよい。
 検出部は、例えば受光素子と、円偏光分離フィルムからなっていればよい。
 受光素子の例としては、Si、Ge、HgCdTe、PtSi、InSb、PbSなどの半導体を使用したフォトダイオード型センサーや光検出素子を線状に配列した検出器や画像を取り込めるCCD(電荷結合素子 (Charge Coupled Device))やCMOS(Complementary Metal Oxide Semiconductor)が挙げられる。
 検出部は光量を測定できる光量感知部となっていることが好ましい。
 円偏光分離フィルムは、検出部の部品として、円偏光分離フィルムが右円偏光または左円偏光のいずれか一方を選択的に透過させる波長の光を感知できる受光素子と組み合わせて用いられていればよい。受光素子の受光面に円偏光分離フィルムを配置すればよい。
 センサーは受光素子を筐体内部に有し、光取り込み部分に円偏光分離フィルムを配して、円偏光分離フィルムを経由した光以外の光が受光素子に到達しない構成となっていることが好ましい。円偏光分離フィルムが後述の直線偏光分離層とλ/4位相差層とを含むものである場合は、λ/4位相差層が外側であって直線偏光分離層が受光素子側となるように配置することが好ましい。
 本発明のシステムは検出部を2つ以上含んでいてもよい。特にシステムが2つ以上の照射部を含む場合において、各照射部由来の光を検出する検出部を2つ以上含むことが好ましい。各照射部由来の光を検出する検出部は各照射部の照射光の入射面内にそれぞれ配置されていることが好ましい。
 また、本発明のシステムが照射光の波長域の異なる2種以上の照射部を含む場合、それぞれの波長域の光を検出可能な受光素子を含む検出部を含むことが好ましい。
[円偏光分離フィルム]
 円偏光分離フィルムは、特定の波長域において右円偏光または左円偏光のいずれか一方を選択的に透過させるフィルムである。円偏光分離フィルムは、片側面から入射した特定の光(自然光、非偏光)を右円偏光および左円偏光に分離し、いずれか一方を選択的に他側面側に透過させることができることが好ましい。このとき他方の円偏光は反射していても吸収していてもよい。
 円偏光分離フィルムは、いずれの面から入射した光に対しても右円偏光または左円偏光のいずれか一方を選択的に透過させるものであってもよく、いずれか一方の面から入射した光に対してのみ右円偏光または左円偏光のいずれか一方を選択的に透過させ、他側面から入射した光に対してはそのような同様の選択的透過を示さないものであってもよい。後者の場合は使用の際に、所望の円偏光選択性が得られる配置とすればよい。また、円偏光分離フィルムは、いずれの面から入射した光であっても右円偏光および左円偏光に分離していずれか一方を選択的に他側面側に透過していてもよく、いずれか一方の面から入射した光についてのみ右円偏光および左円偏光に分離し、いずれか一方を選択的に他側面側に透過させ、他側面から入射した光に対してはそのような円偏光分離を示さないものであってもよい。後者の場合は使用の際に、所望の円偏光選択性が得られる配置とすればよい。
 円偏光分離フィルムは、特定の50nm幅以上の波長領域において右または左円偏光のいずれか一方を入射させたときの入射光と同一センスの円偏光の光線透過率{(透過した円偏光の光強度)/(入射円偏光の光強度)×100}が、70%以上、80%以上、90%以上、95%以上、99%以上、好ましくは実質的に100%であればよい。同時に上記と同一の波長域において、他方のセンスの円偏光を入射させたときの入射光と同一センスの円偏光の光線透過率{(透過した円偏光の光強度)/(入射させた円偏光の光強度)×100}が30%以下、20%以下、10%以下、5%以下、1%以下、好ましくは実質的に0%であればよい。
(円偏光分離層)
 円偏光分離フィルムは、特定の波長域において右円偏光または左円偏光のいずれか一方を選択的に透過させる円偏光分離層を含む。なお、本明細書において、光源側で用いられる円偏光分離層を円偏光分離層1ということがあり、また、受光素子側で用いられる円偏光分離層を円偏光分離層2ということがある。
 円偏光分離層が右円偏光または左円偏光のいずれか一方を選択的に透過させる波長域の波長域幅は、5nm以上、10nm以上、20nm以上、30nm以上、40nm以上、または50nm以上であればよい。円偏光分離層が右円偏光または左円偏光のいずれか一方を選択的に透過させる特定の波長域は、円偏光分離フィルムの使用形態と合わせて、対象物の検知のために適した必要な光の波長を含んでいればよく、800nm~1500nmの波長域の50%以上、60%以上、70%以上、80%以上、または90%以上であってもよく、実質的に100%であってもよい。
 円偏光分離層は、右円偏光または左円偏光のいずれか一方を選択的に透過させる波長域以外の光については、透過させていても、反射していても、吸収していてもよい。また、円偏光分離層は右円偏光または左円偏光のいずれか一方を選択的に透過させるとともに、他方の円偏光を反射していてもよく、吸収していてもよい。
 円偏光分離層としては、例えば、コレステリック液晶相を固定した層、または直線偏光分離層とλ/4位相差層とを含む積層体からなる層を用いることができる。
(反射光散乱性円偏光分離層、反射光非散乱性円偏光分離層)
 円偏光分離フィルムは、反射光散乱性円偏光分離層を含んでいてもよい。反射光散乱性円偏光分離層は特定の波長において選択的に透過するセンスの円偏光の散乱透過率/直透過率より、他方のセンスの円偏光の拡散反射率/正反射率が大きい。本明細書において、反射光散乱性円偏光分離層を含む円偏光分離フィルムを散乱型円偏光分離フィルム、反射光散乱性円偏光分離層を含まない円偏光分離フィルムを鏡面型円偏光分離フィルムということがある。
 散乱透過率/直透過率、拡散反射率/正反射率はそれぞれ、分光光度計と積分球ユニットを用いて測定した値に基づいて計算される値である。直透過率、正反射率は分光光度計で、透過率、反射率の全角度測定値は分光光度計に積分球ユニットを組み合わせることにより測定できる。直透過率は入射角0°における測定値であり、正反射率は測定の都合上、例えば入射角5°における測定値であればよい。散乱透過率は透過率の全角度測定値から直透過率を、拡散反射率は反射率の全角度測定値から正反射率を差し引いて算出することができる。いずれか一方の円偏光の直透過率、正反射率、透過率、反射率の全角度測定値を測定するために、光源側に測定波長で円偏光フィルタとして機能するフィルタを設置すればよい。
 反射光散乱性円偏光分離層はコレステリック液晶相を固定した層からなっていればよく、上記の特定の波長は、後述するコレステリック液晶相を固定した層の円偏光反射(選択反射)の中心波長である。反射光散乱性円偏光分離層は、一方のセンスの特定の波長(選択反射波長)の円偏光に対しての反射光および透過光の散乱性が大きい。一方、その逆の円偏光に対しては散乱性が低い。すなわち、例えば反射光散乱性円偏光分離層が、右螺旋のコレステリック液晶から形成されている場合は、その選択反射波長の右円偏光に対しての反射円偏光、透過円偏光の散乱性が大きく、一方、左円偏光に対しては散乱性が低ければよい。反射光散乱性円偏光分離層が左螺旋のコレステリック液晶から形成されている場合は、その選択反射波長の左円偏光に対しての反射円偏光、透過円偏光の散乱性は大きく、右円偏光に対しては散乱性が低ければよい。
 反射光散乱性円偏光分離層は、上記の特定の波長の上記のセンスの円偏光の散乱透過率/直透過率が0.00以上0. 10以下、好ましくは0.00以上0.05以下であればよい。このような値により、特定の光路での高い光量と円偏光度を確保することができる。また、円偏光分離層は上記特定の波長において選択的に透過するセンスと逆のセンスの円偏光の拡散反射率/正反射率が2.0以上7.5以下、好ましくは3.0以上5.0以下であればよい。
拡散反射率/正反射率が7.5以下とすることにより、円偏光分離層の透明度の低下を防止することができる。
 また、反射光散乱性円偏光分離層は上記の特定の波長の自然光で測定したヘイズ値が10より大きく55以下、好ましくは、20より大きく50以下であればよい。なお、ここで、ヘイズ値は、{(自然光の散乱透過率)/(自然光の散乱透過率+自然光の直透過率)×100(%)}である。ヘイズ値は、円偏光の散乱透過率/直透過率等の測定について上述したように分光光度計と積分球ユニットを用いて測定した値に基づいて計算することができ、測定の際は光源側において上記の円偏光フィルタとして機能するフィルタを用いずに測定すればよい。
 円偏光分離層は上記の反射光散乱性を有していない反射光非散乱性円偏光分離層のみからなっていても、反射光散乱性円偏光分離層のみからなっていても、反射光散乱性円偏光分離層と反射光非散乱性円偏光分離層とからなっていてもよい。反射光散乱性円偏光分離層と反射光非散乱性円偏光分離層とからなる円偏光分離層の場合、最外面に反射光散乱性円偏光分離層が含まれていることが好ましい。
 反射光非散乱性円偏光分離層は、一方のセンスの特定の波長(選択反射波長)の円偏光に対しての反射光および透過光の散乱性は、その逆のセンスの円偏光に対しての散乱性と実質的に同一であり、上記特定の波長の上記センスの円偏光の散乱透過率/直透過率が0.00以上0.05以下、好ましくは0.00以上0.03以下であり、他方のセンスの円偏光の拡散反射率/正反射率が0.0以上0.05以下、好ましくは0.0以上0.03以下であればよい。上記特定の波長の自然光により測定したヘイズ値が3.0以下、好ましくは1.0以下であればよい。
 反射光散乱性円偏光分離層としては、コレステリック液晶相を固定した層を用いればよい。反射光非散乱性円偏光分離層としては、コレステリック液晶相を固定した層、または直線偏光分離層とλ/4位相差層とを含む積層体を用いればよい。
(コレステリック液晶相を固定した層)
 コレステリック液晶相は、右円偏光または左円偏光のいずれか一方のセンスの円偏光を選択的に反射させるとともに他方のセンスの円偏光を透過する円偏光選択反射を示すことが知られている。円偏光選択反射性を示すコレステリック液晶化合物やコレステリック液晶化合物から形成されたフィルムは従来から数多く知られており、円偏光分離フィルムにおいてコレステリック液晶相を固定した層を用いる場合には、それらの従来技術を参照することができる。
 コレステリック液晶相を固定した層とは、コレステリック液晶相となっている液晶化合物の配向が保持されている層であればよく、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射、加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、また外場や外力によって配向形態に変化を生じさせることない状態に変化した層であればよい。なお、コレステリック液晶相を固定した層においては、コレステリック液晶相の光学的性質が層中において保持されていれば十分であり、層中の液晶化合物はもはや液晶性を示していなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子化して、もはや液晶性を失っていてもよい。
 本明細書においてコレステリック液晶相を固定した層をコレステリック液晶層または液晶層ということがある。
 コレステリック液晶層は、コレステリック液晶の螺旋構造に由来した円偏光反射を示す。その反射の中心波長λは、コレステリック相における螺旋構造のピッチ長P(=螺旋の周期)に依存し、コレステリック液晶層の平均屈折率nとλ=n×Pの関係に従う。そのため、この螺旋構造のピッチ長を調節することによって、円偏光反射を示す波長を調整できる。すなわち、例えば、可視光波長域の少なくとも一部において光を選択的に透過(反射)するように、n値とP値を調節して中心波長λが380nm~780nmの波長域となるようにすればよく、また、近赤外光波長域の少なくとも一部において右円偏光または左円偏光のいずれか一方を選択的に透過(反射)するように、上述の、n値とP値を調節して中心波長λが780nm~1500nm、好ましくは800nm~1500nmの波長域となるようにすればよい。
 なお、図1の配置Bに示す円偏光分離フィルム1または円偏光分離フィルム2にコレステリック液晶層を用いる場合などのように、コレステリック液晶層に対して斜めに光が入射する場合は、選択反射の中心波長は短波長側にシフトする。そのため、光源または受光素子に合わせて必要とされる選択反射の波長に対して、上記のλ=n×Pの式に従って計算されるλは長波長となるようにn×Pを調整することが好ましい。屈折率n2のコレステリック液晶層中でコレステリック液晶層の法線方向(コレステリック液晶層の螺旋軸方向)に対して光線がθ2の角度において通過するときの選択反射の中心波長をλdとするとき、λdは以下の式により表される。
λd=n2×P×cosθ2
 屈折率1.0の空気層から屈折率n2のコレステリック液晶層に光がコレステリック液晶層の法線方向に対してθ1の角度において入射するときのθ2は以下の式により表される。
θ2=arcsin(sinθ1/n2
 コレステリック液晶層に対して斜めに光が入射する形態で用いる場合は、上記式に従ってn値とP値を調節して所望の中心波長とすればよい。
 コレステリック液晶相のピッチ長は重合性液晶化合物とともに用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調整することによって所望のピッチ長を得ることができる。なお、螺旋のセンスやピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46p、および「液晶便覧」液晶便覧編集委員会 丸善 196pに記載の方法を用いることができる。
 また、選択反射(円偏光反射)帯の半値幅は、Δλが液晶化合物の複屈折Δnと上記ピッチ長Pに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯の幅の制御は、Δnを調整して行うことができる。Δnの調整は重合性液晶化合物の種類やその混合比率を調整したり、配向固定時の温度を制御したりすることで行うことができる。
 円偏光反射波長域の幅は可視光領域においては、通常の材料では50nm~150nmであるため、周期Pを変えた反射光の中心波長が異なるコレステリック液晶層を幾種類か積層することにより反射の帯域幅を広げることができる。また、1つのコレステリック液晶層内において、周期Pを膜厚方向に対して緩やかに変化させることにより反射の帯域を広げることもできる。
 また、コレステリック液晶層の反射円偏光のセンスは螺旋のセンスに一致する。
 円偏光分離層としては、螺旋のセンスが右または左のいずれかであるコレステリック液晶層を用いればよく、特定の波長で円偏光選択性を高くするためなどの目的のために積層する際には、周期Pが同じで、同じ螺旋のセンスのコレステリック液晶層を複数積層すればよい。この際は、後述の方法などにより別途作製されたコレステリック液晶層を接着層などにより接着してもよく、後述の方法などにより先に形成されたコレステリック液晶層の表面に直接、重合性液晶化合物等を含む液晶組成物を塗布し、配向および固定の工程を繰り返すことにより積層してもよい。後者の方法により、先に形成したコレステリック液晶層の空気界面側の液晶分子の配向方位と、その上に形成するコレステリック液晶層の下側の液晶分子の配向方位が一致し、円偏光分離層の偏光特性が良好となる。
 また、選択反射(透過)帯域幅を広げるため複数層を積層してもよく、その際は同じ螺旋のセンスのコレステリック液晶層を積層すればよい。
 コレステリック液晶層は、いずれの面から入射した光に対しても右円偏光または左円偏光のいずれか一方を選択的に透過させ、かついずれの面から入射した光であっても右円偏光および左円偏光に分離していずれか一方を選択的に他側面側に透過させることができる。
 以下、可視光反射層または円偏光分離層に用いることができるコレステリック液晶層の作製材料および作製方法について説明する。
 上記コレステリック液晶層の形成に用いる材料としては、重合性液晶化合物とキラル剤
(光学活性化合物)とを含む液晶組成物などが挙げられる。必要に応じてさらに界面活性剤や重合開始剤などと混合して溶剤などに溶解した上記液晶組成物を、基材(支持体、配向層、透明層、下層となるコレステリック液晶層など)に塗布し、コレステリック配向熟成後、固定化してコレステリック液晶層を形成することができる。
重合性液晶化合物
 重合性液晶化合物は、棒状液晶化合物であっても、円盤状液晶化合物であってもよいが、棒状液晶化合物であることが好ましい。
 コレステリック液晶層を形成する棒状の重合性液晶化合物の例としては、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
 重合性コレステリック液晶化合物は、重合性基をコレステリック液晶化合物に導入することにより得られる。重合性基の例には、不飽和重合性基、エポキシ基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基が特に好ましい。重合性基は種々の方法で、コレステリック液晶化合物の分子中に導入できる。重合性コレステリック液晶化合物が有する重合性基の個数は、好ましくは1~6個、より好ましくは1~3個である。重合性コレステリック液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および特開2001-328973号公報などに記載の化合物が含まれる。2種類以上の重合性コレステリック液晶化合物を併用してもよい。2種類以上の重合性コレステリック液晶化合物を併用すると、配向温度を低下させることができる。
 また、液晶組成物中の重合性液晶化合物の添加量は、液晶組成物の固形分質量(溶媒を除いた質量)に対して、80~99.9質量%であることが好ましく、85~99.5質量%であることがより好ましく、90~99質量%であることが特に好ましい。
キラル剤(光学活性化合物)
 キラル剤はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル化合物は、化合物によって誘起する螺旋のセンスまたは螺旋ピッチが異なるため、目的に応じて選択すればよい。
 キラル剤としては、特に制限はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、イソマンニド誘導体を用いることができる。
 キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と硬化性コレステリック液晶化合物が重合性基を有する場合は、重合性キラル剤と重合性コレステリック液晶化合物との重合反応により、コレステリック液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性コレステリック液晶化合物が有する重合性基と、同種の基であることが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが特に好ましい。
 また、キラル剤は、液晶化合物であってもよい。
 キラル剤が光異性化基を有する場合には、塗布、配向後に活性光線などのフォトマスク照射によって、発光波長に対応した所望の反射波長のパターンを形成することができるので好ましい。光異性化基としては、フォトクロッミック性を示す化合物の異性化部位、アゾ、アゾキシ、シンナモイル基が好ましい。具体的な化合物として、特開2002-80478号公報、特開2002-80851号公報、特開2002-179668号公報、特開2002-179669号公報、特開2002-179670号公報、特開2002-179681号公報、特開2002-179682号公報、特開2002-338575号公報、特開2002-338668号公報、特開2003-313189号公報、特開2003-313292号公報に記載の化合物を用いることができる。
 液晶組成物における、キラル剤の含有量は、重合性液晶化合物量の0.01モル%~200モル%が好ましく、1モル%~30モル%がより好ましい。
重合開始剤
 液晶組成物は、重合開始剤を含有していることが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であることが好ましい。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。
 液晶組成物中の光重合開始剤の含有量は、重合性液晶化合物の含有量に対して0.1~20質量%であることが好ましく、0.5質量%~5質量%であることがさらに好ましい。
架橋剤
 液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等により硬化するものが好適に使用できる。
 架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 架橋剤の含有量は、3質量%~20質量%が好ましく、5質量%~15質量%がより好ましい。架橋剤の含有量が、3質量%未満であると、架橋密度向上の効果が得られないことがあり、20質量%を超えると、コレステリック層の安定性を低下させてしまうことがある。
配向制御剤
 液晶組成物中には、安定的にまたは迅速にプレーナー配向のコレステリック液晶層とするために寄与する配向制御剤を添加してもよい。配向制御剤の例としては特開2007-272185号公報の段落〔0018〕~〔0043〕等に記載のフッ素(メタ)アクリレート系ポリマー、特開2012-203237号公報の段落〔0031〕~〔0034〕等に記載の式(I)~(IV)で表される化合物などが挙げられる。
 なお、配向制御剤としては1種を単独で用いてもよいし、2種以上を併用してもよい。
 液晶組成物中における、配向制御剤の添加量は、コレステリック液晶化合物の全質量に対して0.01質量%~10質量%が好ましく、0.01質量%~5質量%がより好ましく、0.02質量%~1質量%が特に好ましい。
その他の添加剤
 その他、液晶組成物は、塗膜の表面張力を調整し膜厚を均一にするための界面活性剤、および重合性モノマー等の種々の添加剤から選ばれる少なくとも1種を含有していてもよい。また、液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、金属酸化物微粒子等を、光学的性能を低下させない範囲で添加することができる。
 コレステリック液晶層は、重合性液晶化合物および重合開始剤、更に必要に応じて添加されるキラル剤、界面活性剤等を溶媒に溶解させた液晶組成物を、基材上に塗布し、乾燥させて塗膜を得、この塗膜に活性光線を照射してコレステリック液晶性組成物を重合し、コレステリック規則性が固定化されたコレステリック液晶層を形成することができる。なお、複数のコレステリック層からなる積層膜は、コレステリック層の製造工程を繰り返し行うことにより形成することができる。
 液晶組成物の調製に使用する溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
 有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えばケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、エーテル類、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が特に好ましい。
 基材上への液晶組成物の塗布方法は、特に制限はなく、目的に応じて適宜選択することができ、例えば、ワイヤーバーコーティング法、カーテンコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スピンコーティング法、ディップコーティング法、スプレーコーティング法、スライドコーティング法などが挙げられる。また、別途支持体上に塗設した液晶組成物を基材上へ転写することによっても実施できる。塗布した液晶組成物を加熱することにより、液晶分子を配向させる。加熱温度は、200℃以下が好ましく、130℃以下がより好ましい。この配向処理により、重合性液晶化合物が、フィルム面に対して実質的に垂直な方向に螺旋軸を有するようにねじれ配向している光学薄膜が得られる。
 配向させた液晶化合物は、更に重合させればよい。重合は、熱重合、光照射を用いた光重合のいずれでもよいが、光重合が好ましい。光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2~50J/cm2が好ましく、100mJ/cm2~1,500mJ/cm2がより好ましい。光重合反応を促進するため、加熱条件下または窒素雰囲気下で光照射を実施してもよい。照射紫外線波長は350nm~430nmが好ましい。重合反応率は安定性の観点から、高いほうが好ましく70%以上が好ましく、80%以上がより好ましい。
 重合反応率は、重合性の官能基の消費割合を、IR吸収スペクトルを用いて測定することにより、決定することができる。
 なお、円偏光分離層であるコレステリック液晶層の厚み(複数層積層されている場合は複数層の合計)は、1μm~150μmが好ましく、1μm~100μmがより好ましく、1.5μm~30μmがさらに好ましく、2μm~15μmが特に好ましい。
(コレステリック液晶層の拡散反射率/正反射率の調整)
 本発明者らの検討の結果、特定の波長において拡散反射率が高い液晶層は、層の少なくとも一方の表面、好ましくは層の両表面において液晶分子のチルト角を小さく、且つ液晶分子の面内配向方位をランダムとすることにより得られることが判明した。すなわち、上記のチルト角および面内配向方位を調整することにより、選択反射波長における拡散反射率を調整することができる。コレステリック液晶層表面近傍の液晶配向方向、チルト角はコレステリック液晶層断面の膜表面近傍を透過電子顕微鏡(TEM)像などにより確認すればよい。
 コレステリック液晶層表面の液晶分子のチルト角と面内配向方位とを上記のように調整することにより、最表面においてコレステリック液晶相の螺旋軸の傾きを有する構成を実現することができる。螺旋軸の傾きを有するとは、後述の螺旋軸の傾きが2°以上である面内の位置があることを意味する。最表面においてコレステリック液晶相の螺旋軸の傾きを有する構成によりコレステリック液晶相の螺旋軸は面内において僅かなうねりを持って分布させることができると考えられる。すなわち、層の法線方向から螺旋軸のずれを、生じさせることができる。この螺旋軸のずれにより、拡散反射率/正反射率が高い散乱性の層となる。この層の内部には、複数の配向欠陥が存在しうる。
 コレステリック液晶層の最表面の螺旋軸の傾きは以下のように得ることができる。
 コレステリック液晶層断面をTEM観察すると、明部と暗部との縞模様が観察できる。縞模様は、層面に略平行な方向に明部と暗部とが繰り返されるように観察される。この明部と暗部の繰り返し2回分(明部2つおよび暗部2つ)が螺旋1ピッチ分に相当する。縞模様の法線方向が螺旋軸となる。コレステリック液晶層の最表面の螺旋軸の傾きは、最表面から1本目の暗部がなす線と同じ側の最表面との角度として得ることができる。
 コレステリック液晶層を、最表面の螺旋軸の傾きが面内において変化しているように構成することにより、拡散反射率/正反射率が高い反射光散乱性円偏光分離層を得ることができる。なお、「螺旋軸の傾きが変化している」とは、例えば、表面の任意の直線上において一定間隔により螺旋軸の傾きを測定すると、直線進行方向において増加および減少が確認される状態を示す。増加および減少は、好ましくは繰り返されており、変化は好ましくは連続的である。
 最表面はコレステリック液晶層の少なくともいずれか一方(最上面または最下面)であってもよく、両方(最上面および最下面)であってもよいが、両方であることが好ましい。
 さらに螺旋軸の傾きの最大値を20°以下程度とすればよい。螺旋軸の傾きの最大値は2°以上20°以下であればよく、5°以上20°以下であることが好ましい。
 本明細書において、「チルト角」とは、傾斜した液晶分子が層平面となす角度を意味し、液晶化合物の屈折率楕円体において最大の屈折率の方向が層平面となす角度のうち、最大の角度を意味する。従って、正の光学的異方性を持つ棒状液晶化合物では、チルト角は棒状液晶化合物の長軸方向すなわちダイレクター方向と層平面とのなす角度を意味する。
 液晶分子の面内配向方位とは、液晶分子の上記の最大の屈折率の方向最大の屈折率の方向の、層と平行な面内での方位を意味する。面内配向方位がランダムであるとは、面内の液晶化合物分子の面内配向方位の平均方位と4°以上異なる面内配向方位を有する液晶分子がTEMにて10%以上20%以下で確認できる状態を意味する。
 なお、本明細書において、液晶分子というとき、液晶組成物においては重合性液晶化合物の分子を意味し、重合性液晶化合物が液晶組成物の硬化反応により高分子化している場合は、上記重合性液晶化合物分子に該当する部分構造を意味する。
 コレステリック液晶層の形成の際の重合性液晶化合物の配向の際の、下層側表面にある液晶分子のチルト角は0°~20°の範囲が好ましく、0°~10°がより好ましい。上記の値にチルト角を制御することにより、配向欠陥の密度と、螺旋軸の傾斜角度分布を好ましい範囲とすることができる。
 反射光散乱性円偏光分離層形成のためにコレステリック液晶層を形成するときの重合性液晶化合物の配向の際は、下層側表面の液晶分子のチルト角(プレチルト角)を上記のように低く、好ましくは水平(支持体表面と平行)にし、且つ液晶分子の配向均一性を低下させるために、液晶組成物を塗布する後述の透明層や基材、または他のコレステリック液晶層の表面にラビングなどの配向処理をしないことが好ましい。コレステリック液晶層の空気界面側の液晶分子を水平にするために、前述の配向制御剤を使用することが好ましい。
(直線偏光分離層とλ/4位相差層とを含む積層体)
 直線偏光分離層とλ/4位相差層とを含む積層体からなる円偏光分離層では、直線偏光分離層の面から入射する光は、反射もしくは吸収によって直線偏光に変換され、その後λ/4位相差層を通過することによって右または左の円偏光に変換される。一方、λ/4位相差層からの光入射の場合、いずれの偏光状態の光でも最後に通過する直線偏光分離層によって直線偏光となるが、特に入射光が円偏光の場合はλ/4位相差層によって直線偏光層の透過軸に平行または直交する直線偏光に変換されるので、入射円偏光センスの識別に利用するためにはλ/4位相差層側から光を入射することが好ましく、出射円偏光を利用する場合には、直線偏光分離層側から光を入射することが好ましい。
 直線偏光分離層としては、直線偏光子を用いることができ、使用する光の波長域に対応した偏光子であればよい。
直線偏光子
 好適に用いることができる赤外線直線偏光子としては、屈折性を有し屈折率の異なる樹脂を多層積層し、延伸により厚みと位相差値を制御した多層誘電体反射偏光子、多数の平行導体線配列(グリット)により構成されたグリット偏光子、形状異方性のある金属ナノ粒子を配列固定した偏光子、二色性色素を配列固定した偏光子などが挙げられる。これらはいずれも薄層状、フィルム状、 あるいは板状に形成することが容易であり、円偏光分離層を形成する工程において、後述のシート状の位相差層を単に貼り合せて形成できる。または、赤外線直線偏光子上に直接、位相差層形成のための組成物を塗布することにより位相差層を形成してすることができ、より薄膜の円偏光分離層の作製が可能である。
 多層誘電体反射偏光子は、面内透過軸に平行な振動方向の光のみを透過し、それ以外の光を反射可能な偏光フィルムである。この様なフィルムとして、特表平9-507308号公報等に開示された多層フィルムを挙げることができる。これは、フィルム面内に複屈折性のない透明誘電体層1からなる層と面内に複屈折性を有する透明誘電体層2からなる層を交互に多層積層したものであり、透明誘電体層1の屈折率を透明誘電体層2の常光屈折率または異常光屈折率のいずれかに一致するように形成したものである。さらにこれらの透明誘電体層の少なくともいずれか一方は、厚み(d)と透明誘電体層の屈折率(n)との積(n×d)が、反射させるべき光の波長の4分の1になる様にして構成される。上記透明誘電体層の形成のための材料は、使用する赤外線波長において光透過性の材料であればよく、例としてはポリカーボネート、アクリル樹脂、ポリエステル、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、シリコーン(シリコーンポリウレア等の変性シリコーンを含む)等が挙げられる。
 グリット偏光子は、使用する赤外線波長において光透過性の高分子フィルム、ガラス基板やケイ素(Si)基板の片面にアルミや銀、または金などの良導体薄膜からなるサブミクロンピッチ(入射光の波長より短いピッチ)の多数の平行導体線配列構造(グリット)を設けたものであり、特開2002-328234号公報等に開示された偏光子を挙げることができる。この偏光子は入射光のうちグリットに対して平行な偏光成分は反射し、垂直な偏光成分は透過することによって、偏光子として機能する。必要に応じてこれをガラスにより挟んだり、反射防止層を設けたりすることができる。
 形状異方性のある金属ナノ粒子を配列固定した偏光子は、アスペクト比が大きなハロゲン化銀粒子や、銀粒子を配向しそれを固定したものである。この偏光板は粒子の配列方向に電界振動面を有する赤外光を吸収し、それに直交する方向の赤外光を透過する吸収型の直線偏光板である。これに属するものとして特開昭59-83951号公報、特開平2-248341号公報、特開2003-139951号公報にあるものを用いることができる。
 二色性色素を配列固定した偏光子としては、PVA(ポリビニルアルコール)にヨウ素を吸着もしくは2色性染料をドーピングさせ延伸しポリビニレンとした赤外偏光フィルムなどを挙げることができる。この偏光板は延伸方法に電界振動面を有する赤外光を吸収し、それに直交する方向の赤外光を透過する。
 これは、PVAのフィルムをヨウ素/ヨウ化物などの染色性組成物槽中に通してPVA層の染色を行ったのち4~6倍の倍率により延伸することによって二色性色素の配向を得ることができる。PVAのポリビニレンへの変換は米国特許第2.445,555号に記載されているような塩酸蒸気法により行うことができる。またこの偏光用材料の安定性を改善するために、ホウ酸とボラツクスを含有する水性ボレート化浴を使用してボレート化することも行われる。市販のエドモンド・オプティクス・ジャパン株式会社製の直線偏光フィルムを、これに相当するものとして挙げることができる。
 直線偏光分離層の厚さは、0.05μm~300μmが好ましく、0.2μm~150μmがより好ましく、0.5μm~100μmが更に好ましい。
λ/4位相差層
 位相差板の面内遅相軸は、上記偏光板の吸収軸もしくは透過軸から45°回転させた方位に設置する。光源としてLEDやレーザーなどの単色光光源を用いる場合には、位相差板の正面位相差は、光源の発光波長の中心波長の1/4の長さ、または「中心波長*n±中心波長の1/4(nは整数)」であることが望ましく、例えば、光源の発光中心波長が1000nmであれば、250nm、750nm、1250nm、1750nmなどの位相差であることが好ましい。また位相差の光入射角度の依存性は小さいほど好ましく、中心波長の1/4の長さの位相差を持つ位相差板がこの点において最も好ましい。
 本発明の検知システムまたは検知方法において、赤外線光源として発光波長が異なる多種の光源を組み合わせて用いたり、発光強度のピークが二波長以上の光源や発光が広い波長範囲に及ぶ光源を用いたりする場合などにおいて、円偏光選択性を示す波長域を広くしたい場合が考えられる。そのような場合にも、上述の位相差板を用いることができるが、広帯域の位相差板を用いることがより好ましい。広帯域の位相差板とは広い波長範囲にわたって位相差角度が一定となる位相差板である。この例としては、複屈折率の波長分散が互いに異なる位相差層をその遅相軸を直交させることにより広帯域とした積層位相差板、この原理を分子レベルで用い複屈折率の波長分散が互いに異なる置換基をその配列軸を直交させて配向形成した高分子フィルム、使用波長域の波長(λ)に対して位相差がλ/2の層とλ/4の層を互いの遅相軸を60°に交差して積層した位相差板などを挙げることができる。
 上記位相差板の材料の例としては、結晶性のガラスや無機物の結晶や、ポリカーボネート、アクリル樹脂、ポリエステル、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、シリコーン(シリコーンポリウレア等の変性シリコーンを含む)等のポリマーや重合性液晶化合物、高分子液晶化合物を配列させて固定したものを挙げることができる。
 λ/4層の厚さは、0.2μm~300μmが好ましく、0.5μm~150μmがより好ましく、1μm~80μmが更に好ましい。
(その他の層)
 円偏光分離フィルムは、支持体、上記の液晶化合物の配向のための配向層、円偏光分離層と可視光遮断層の貼合のための接着層、検知に用いる特定の波長域以外の光を透過させないための光遮断層などの他の層を含んでいてもよい。
(支持体)
 支持体は特に限定されず、例としては、プラスチックフィルムガラス等が挙げられる。可視光遮断層や円偏光分離層の光学的性質を相殺する性質を有していないことが好ましく、一般的には透明であり、低複屈折性であることが好ましい。プラスチックフィルムの例としては、ポリエチレンテレフタレート(PET)などのポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、シリコーンなどが挙げられる。上記のコレステリック液晶層の作製のために用いられる支持体は、円偏光分離フィルムにおいては剥離されていてもよい。
 支持体と円偏光分離層とを含む円偏光分離フィルムを照射部に用いる場合、円偏光分離層に対し支持体側が光源側になっていることが好ましい。また、支持体と円偏光分離層とを含む円偏光分離フィルムを検出部に用いる場合、円偏光分離層に対し支持体側が受光素子側になっていることが好ましい。
(配向層)
 配向層は、有機化合物、ポリマー(ポリイミド、ポリビニルアルコール、ポリエステル、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリアミド、変性ポリアミドなどの樹脂)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、またはラングミュア・ブロジェット法(LB膜)を用いた有機化合物(例えば、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。更に、電場の付与、磁場の付与または光照射により、配向機能が生じる配向層も知られている。これらの中でも、ポリマーのラビング処理により形成する配向層が特に好ましい。ラビング処理は、ポリマー層の表面を、紙、布により一定方向に、数回擦ることにより実施することができる。
 配向層を設けずに支持体表面、または支持体をラビング処理した表面に、液晶組成物を塗布してもよい。
(透明層)
 反射光散乱性円偏光分離層の作製の際などにおいて、コレステリック液晶層の形成の際に液晶組成物が塗布される下層として、透明層を含んでいてもよい。透明層としては、その表面に設けられる液晶組成物中の重合性液晶化合物分子に対して低いプレチルト角を与える材料からなる層を好ましく用いることができる。
 透明層としては、例えば、(メタ)アクリレートモノマー、ゼラチン、ウレタンモノマーなどを含む非液晶性の重合性組成物を塗布硬化したものを用いることができる。例えば、(メタ)アクリレートモノマーを含む層を塗布硬化して得られるアクリル層は面内において等方的であるため、アクリル層表面にラビング処理を施さずに液晶層を形成すると、アクリル層に接している液晶の面内配向方位はランダムとなる。
 そのためアクリル層表面に液晶組成物を塗布して形成されるコレステリック液晶層を配向欠陥を有する層とすることができる。
 そして、配向欠陥を有する液晶層上に液晶層を形成すると、同様に配向欠陥を有する液晶層を形成することができる。
 透明層としてはそのほか、ポリイミド(日産化学社製ポリイミドワニスのサンエバー130など)、ポリビニルアルコール、ポリエステル、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリアミド、変性ポリアミドなどの樹脂などを用いてもよい。拡散反射率の高いコレステリック液晶層の形成のため、液晶組成物を塗布する透明層の表面はラビング処理(例えば、ポリマー層の表面を、紙または布等で一定方向に擦るラビング処理)を行わないことが好ましい。
 透明層の厚さは0.01~50μmであることが好ましく、0.05~20μmであることがさらに好ましい。
(接着層)
 接着剤としては硬化方式の観点からホットメルトタイプ、熱硬化タイプ、光硬化タイプ、反応硬化タイプ、硬化の不要な感圧接着タイプがあり、それぞれ素材としてアクリレート系、ウレタン系、ウレタンアクリレート系、エポキシ系、エポキシアクリレート系、ポリオレフィン系、変性オレフィン系、ポリプロピレン系、エチレンビニルアルコール系、塩化ビニル系、クロロプレンゴム系、シアノアクリレート系、ポリアミド系、ポリイミド系、ポリスチレン系、ポリビニルブチラール系などの化合物を使用することができる。作業性、生産性の観点から、硬化方式として光硬化タイプが好ましく、光学的な透明性、耐熱性の観点から、素材はアクリレート系、ウレタンアクリレート系、エポキシアクリレート系などを使用することが好ましい。
(光遮断層)
 円偏光分離フィルムは、上記の特定の波長域以外での光に対して低い光線透過率を有していることが好ましい。光遮断層は、上記の特定の波長域以外での光を遮断するために設けられる。
 光遮断層としては、光反射層または光吸収層が挙げられる。
 光反射層の例としては、誘電体多層膜およびコレステリック液晶層などを挙げることができる。
 誘電体多層膜は、無機酸化物や有機高分子材料の屈折率の異なる透明誘電性の層を相互に多層積層したものである。無機酸化物の層は、例えば、ガラス、耐熱性高分子フィルムの表面にスパッタ法などにより形成することができる。一方、有機高分子材料の例としては、ポリカーボネート、アクリル樹脂、ポリエステル、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、シリコーン(シリコーンポリウレア等の変性シリコーンを含む)等が挙げられ、特表平9-507308号公報等に開示された方法に準じて製造することができる。
 コレステリック液晶層の反射波長での反射率は、コレステリック液晶層が厚いほど高くなるが、通常の液晶材料では可視光の波長域では2~8μmの厚みで飽和する。また片側の円偏光のみに対しての反射であるため反射率は最大で50%である。円偏光のセンスに関わらず光反射し、自然光の反射率を50%以上とするために、光反射層としては、周期Pが同じで、螺旋のセンスが右のコレステリック液晶層と左のコレステリック液晶層とが積層されたもの、または、周期Pが同じで、同じ螺旋のセンスのコレステリック液晶層と、その間に配されるコレステリック液晶層の円偏光反射の中心波長に対して半波長の位相差を有する位相差膜とからなる積層体を用いることができる。
 光吸収層としては顔料や染料などの着色剤を分散剤、バインダーやモノマーを含む溶媒に分散した分散液を、基材(受光素子が光を感知する赤外線波長域で十分な光透過性を有するものが好ましい)の上に塗工して形成された層、染料を用いて直接高分子基材表面を染色した層、染料を含む高分子材料から形成された層を用いることができる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。
<反射フィルムMR-1(鏡面型)の作製>
 東洋紡株式会社製コスモシャインA-4100(厚み100μm)の易接着処理していないPET面上にラビング処理を施し、表1に示す塗布液A-1を乾燥後の乾膜の厚みが5μmになるように室温にて塗布した。塗布層を室温にて30秒乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃においてフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し、液晶層を得た。この液晶層上に表1に示す塗布液A-2を乾燥後の乾膜の厚みが5μmになるように室温にて塗布した。塗布層を室温にて30秒乾燥させた後、85℃の雰囲気において2分間加熱し、その後30℃においてフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%において6~12秒間UV照射し、液晶層を得た。さらにこの液晶層上に表1に示す塗布液A-3を乾燥後の乾膜の厚みが5μmになるように室温にて塗布した。塗布層を室温にて30秒乾燥させた後、85℃の雰囲気において2分間加熱し、その後30℃においてフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し、反射フィルムMR-1を得た。
<反射フィルムMR-2~MR-6(鏡面型)の作製>
 塗布液A-1~A-3の代わりに以下に示す3つの塗布液をそれぞれ用いた以外は、反射フィルムMR-1の作製と同様にして反射フィルムMR-2~MR-6を作製した。
 MR-2:B-1~B-3
 MR-3:A-4~A-6
 MR-4:B-4~B-6
 MR-5:A-3、A-7、A-8
 MR-6:B-3、B-7、B-8
<反射フィルムSC-1(散乱型)の作製>
 東洋紡株式会社製コスモシャインA-4100(厚み100μm)の易接着処理していないPET面上にラビング処理を施し、表1に示す塗布液Cを乾燥後の乾膜の厚みが8μmになるように室温にて塗布した。塗布層を室温にて30秒乾燥させた後、85℃の雰囲気において2分間加熱し、その後30℃においてフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し、アクリル層を得た。このアクリル層上に表1に示す塗布液A-1を乾燥後の乾膜の厚みが5μmになるように室温にて塗布した。塗布層を室温にて30秒乾燥させた後、85℃の雰囲気において2分間加熱し、その後30℃においてフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し、液晶層を得た。この液晶層上に表1に示す塗布液A-2を乾燥後の乾膜の厚みが5μmになるように室温にて塗布した。塗布層を室温にて30秒乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃においてフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し、液晶層を得た。さらにこの液晶層上に表1に示す塗布液A-3を乾燥後の乾膜の厚みが5μmになるように室温にて塗布した。塗布層を室温にて30秒乾燥させた後、85℃の雰囲気で2分間加熱し、その後30℃においてフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射し、反射フィルムSC-1を得た。
<反射フィルムSC-2~SC-6(散乱型)の作製>
 塗布液A-1~A-3の代わりに以下に示す3つの塗布液をそれぞれ用いた以外は、反射フィルムSC-1の作製と同様にして反射フィルムSC-2~SC-6を作製した。
 SC-2:B-1~B-3
 SC-3:A-4~A-6
 SC-4:B-4~B-6
 SC-5:A-3、A-7、A-8
 SC-6:B-3、B-7、B-8
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-C000003
<円偏光分離フィルムa1~a10の作製>
 作製した反射フィルムMR-1~MR-6および反射フィルムSC-1~SC-6を、以下表2に示すように、そのまま、または貼り合わせて円偏光分離フィルムa1~a10を作製した。上記で作製したMRフィルムとSCフィルムとを貼り合わせる際は以下の手順で行った。
 表2に示す下層の反射フィルムの、液晶層側の表面に、DIC株式会社製UV硬化型接着剤Exp.U12034-6を、乾燥後の乾膜の厚みが5μmになるように室温にてワイヤーバーを用いて塗布する。塗布面と、表2に示す上層の反射フィルムの液晶層側とを気泡が入らないように貼り合わせ、30℃でフュージョン製Dバルブ(ランプ90mW/cm)にて出力60%で6~12秒間UV照射する。その後上層の支持体となっていたPETフィルムを剥離する。
<円偏光分離フィルムa11、a12の作製>
 a11はλ/4板と直線偏光板の光軸の角度を45°ずらして貼り合わせ、a12はλ/4板と直線偏光板の光軸の角度を-45°ずらして貼り合わせて作製した。λ/4板は、Edmund optics Japan製アクロマティック波長板(位相差板)の700-1000nmの1/4λを用いた。直線偏光板は、Edmund optics Japan製NIR用高コントラスト偏光フィルタを用いた。
 λ/4板と直線偏光板との接着は、DIC株式会社製UV硬化型接着剤Exp.U12
034-6を用いて、上記のMRフィルムとSCフィルムとの貼り合わせと同様に行った。
<直線偏光分離フィルムb1、b2の作製>
 直線偏光分離フィルムb1としては、上記で使用した直線偏光板Edmund opt
ics Japan製NIR用高コントラスト偏光フィルタを用いた。
 直線偏光分離フィルムb2としては、直線偏光板Edmund optics Japan製近赤外用偏光フィルムを用いた。
Figure JPOXMLDOC01-appb-T000004
<実施例1~6、比較例1~10>
 作製した円偏光分離フィルムa1~a12、直線偏光分離フィルムb1、b2を、表3に示すように、照射部および検出部において組み合わせて用いて、試料検知を行った。光源としては図2に示した発光スペクトル450nmまたは940nmに発光強度の中心波長を有するLED、受光素子(光検出器)としてはアンリツ社製 光パワーメーターML9001A、試料としては、Reが約0nmかつRthが約100nmのTACフィルムを用いた。
 光源、光検出器、円偏光分離フィルムは、表3に示すように、図1のAまたはBの配置とした。試料は図1に示す対象物移動部の図の面内に試料平面の短辺方向が、図の奥行き方向に試料平面の長辺方向があるように配置し、検知の際は光路と対象物移動部との交差点にあるようにした。
 円偏光分離フィルムa1~a12、直線偏光分離フィルムb1、b2は、光源に設置するときは表2に示す下層側が光源側になるように、光検出器に設置するときは表2に示す下層側が光検出器側になるようにした。傾斜角度および光源の波長を表3に示すように選択した。
 試料を設置した場合および試料がない場合の光検出器での出力を表3に示す。表3においては、光源および検出器のいずれにも円偏光分離フィルムまたは直線偏光分離フィルムを設置しない状態での検出器の出力を100としたときの値を示す。試料が無い時の測定値に対する試料があるときの測定値の比を「試料あり/試料なし」として、パーセント表示により合わせて示す。この比が100%より大きいほど誤検知が生じにくいと考えることができる。
 また、各実施例、比較例で作製した系について、湿熱耐久性を以下の基準で評価した。結果を表3に示す。
A:85℃湿度85%で100時間放置後の、試料が無いときの光検出器の出力の変化量が0.5未満
B:上記変化量が0.5以上1.0未満
C:上記変化量が1.0以上
Figure JPOXMLDOC01-appb-T000005
 実施例1~6ではいずれも試料があるときの測定値が、試料が無いときの測定値の200%以上となり、誤検知が生じにくい光量の差が得られた。一方、傾斜角度を0°とした比較例1~7においては、試料があるときの測定値が試料が無いときの測定値の200%未満となった。さらに直線偏光分離フィルムb1を用いた例においては、試料傾斜角度を
60°とした例で高い出力が得られたが、試料なしの条件において、光検出器の出力が見られなかった。このことは、非透明物品の検知ができないことを意味する。直線偏光分離フィルムb2を用いた例においては、試料があるときの測定値と試料が無いときの測定値との差異が小さいため、検知方法に用いた場合には誤検知が生じると考えられる。なお、直線偏光分離フィルムb2を用いた例において、試料があるときの測定値が、試料が無いときの測定値より小さくなっているが、これは、直線偏光板の偏光度が低いためと考えられる。
 湿熱耐久性においては、直線偏光板のみでは大きく性能低下が見られた(C)が、直線偏光板にλ/4層を貼合した状態(実施例6)では湿熱耐久性が向上した。λ/4層、接着層が、湿度等に対するバリアとして機能したと考えられる。
<実施例7~9>
 Reが約25nmかつRthが約100nmのTACフィルムを試料として、実施例1と同じ光源および受光素子を用いて測定を行った。測定は図1のAの配置により行い、傾斜角度は60°、測定波長は940nmとした。作製した円偏光分離フィルムa2を光源側に、a4を受光側に用いた。円偏光分離フィルムa2は、表2に示す下層側が光源側になるように、円偏光分離フィルムa4は、表2に示す下層側が光検出器側になるようにした。
 試料の法線方向から見たときの一方向を基準として0°としたとき、光源の照射光の入射面の角度(センサー面内角度:図3参照)が0°、60°、90°、120°となるように光源および受光素子を配置した。このとき、試料の遅相軸の、試料の法線方向から見たときの方向(遅相軸面内角度:図3参照)を、同様に上記の方向を基準として、0°、45°または、90°になるように試料を設置したときの光検出器での出力を測定し、試料がないときの光検出器での出力との比として、上記と同様の「試料あり/なし」の値を求めた。結果を表4に示す。
 表5に示すように、センサー面内角度が0°のみの検出において、0°、45°、および90°に試料の遅相軸を設置したところ、上記値が最低330.1%である感度が得られた。それに対し、センサー面内角度0°および90°の2種の検出を行い、信号の大きい検出を採用したところ、上記値が最低6784.5%である感度が得られ、さらにセンサー面内角度が0°、60°、および120°の3種の検出を行い、信号の大きい検出を採用したところ、上記値が最低10097.5%である感度が得られ、検知感度が格段に向上した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
1 円偏光分離フィルム1
2 円偏光分離フィルム2
11 円偏光分離フィルム11
12 円偏光分離フィルム12
16  鏡面反射部材
17 アタッチメント
22 光源
23 受光素子
24 対象物移動部
25 光路
26 傾斜角度
27 センサー面内角度
28 遅相軸面内角度
29 試料の遅相軸
30 試料(法線方向から観察)
31 照射光の入射面

Claims (15)

  1. 対象物を検知する方法であって、
    照射光由来の光であって前記対象物を透過した光の感知により前記対象物が検知され、
    前記照射光が円偏光であり、
    前記感知される光が円偏光であり、
    前記対象物は透明物品であり、
    前記照射光由来の光は、前記対象物の法線と、20°より大きく70°以下である角度をなして前記対象物に入射する方法。
  2. 前記感知が、前記照射光が前記対象物を透過した光の直接感知であり、
    前記照射光の円偏光のセンスと前記感知される光の円偏光のセンスとが逆である請求項1に記載の方法。
  3. 前記感知が、前記照射光由来の光の反射光の感知であり、
    前記照射光の円偏光のセンスと前記感知される光の円偏光のセンスとが同一である請求項1に記載の方法。
  4. 前記感知が、前記照射光が前記対象物を透過した光の反射光が前記対象物をもう一度透過した光の感知である、請求項3に記載の方法。
  5. 前記照射光として異なる入射面を有する2つ以上の照射光が用いられる請求項1~4のいずれか一項に記載の方法。
  6. 前記異なる入射面が、互いに10°~90°の角度をなしている請求項5に記載の方法。
  7. 前記照射光として異なる入射面を有する3つの照射光が用いられる請求項5または6に記載の方法。
  8. 対象物を検知するシステムであって、
    円偏光を選択的に照射する照射部、対象物移動部、円偏光を選択的に感知する検出部を、前記円偏光の光路においてこの順で含み、
    前記照射部が選択的に照射する円偏光のセンスと前記検出部が選択的に感知する円偏光のセンスとが逆であり、
    前記照射部からの照射光由来の光が前記検出部に入射する光の前記光路と前記対象物移動部とが交差部において交差しており、
    前記交差部において前記光路と前記対象物移動部の法線とがなす角度が、20°より大きく70°以下であるシステム。
  9. 前記照射部が光源および円偏光分離フィルム1を含み、
    前記検出部が円偏光分離フィルム2および受光素子を含み、
    前記光源、前記円偏光分離フィルム1、前記対象物移動部、前記円偏光分離フィルム2、および前記受光素子が前記円偏光の光路においてこの順で配置されており、
    前記円偏光分離フィルム1および前記円偏光分離フィルム2が互いに逆のセンスの円偏光を選択的に透過させる請求項8に記載のシステム。
  10. 前記円偏光分離フィルム1および前記円偏光分離フィルム2がいずれもコレステリック液晶相を固定した円偏光分離層を含むフィルムである請求項9に記載のシステム。
  11. 対象物を検知するシステムであって、
    円偏光を選択的に照射する照射部、円偏光を選択的に感知する検出部、対象物移動部および鏡面反射部材を含み、
    前記対象物移動部は、前記照射部と前記鏡面反射部材との間に含まれ、ならびに/または、前記鏡面反射部材と前記検出部との間に含まれ、
    前記照射部および前記検出部は、前記照射部からの照射光由来の光が前記鏡面反射部材により鏡面反射して前記検出部に入射する位置にあり、
    前記照射部が選択的に照射する円偏光のセンスと前記検出部が選択的に感知する円偏光のセンスとが同一であり、
    前記照射部からの照射光由来の光が前記鏡面反射部材に入射する光の光路1が前記対象物移動部と交差部1において交差しており、前記交差部1において前記光路1と前記対象物移動部の法線がなす角度が、20°より大きく70°以下であり、ならびに/または前記照射部からの照射光由来の光が前記鏡面反射部材により反射し前記検出部において感知される光の光路2は前記対象物移動部と交差部2において交差しており、前記交差部2において前記光路2と前記対象物移動部の法線方向がなす角度が、20°より大きく70°以下である、
    システム。
  12. 前記照射部が光源および円偏光分離フィルム11を含み、
    前記検出部が円偏光分離フィルム12および受光素子を含み、
    前記光源、前記円偏光分離フィルム11、および前記鏡面反射部材を前記光路1においてこの順で含み、
    前記鏡面反射部材、前記円偏光分離フィルム12、および前記受光素子を前記光路2においてこの順で含み、ならびに、
    前記円偏光分離フィルム11および前記円偏光分離フィルム12が互いの同一のセンスの円偏光を選択的に透過させる請求項11に記載のシステム。
  13. 前記円偏光分離フィルム11および前記円偏光分離フィルム12がいずれもコレステリック液晶相を固定した円偏光分離層を含むフィルムである請求項11または12に記載のシステム。
  14. 前記照射部として入射面の異なる照射光となる2つ以上の照射部を含み、かつ前記入射面内にそれぞれ前記検出部を含む請求項8~13のいずれか一項に記載のシステム。
  15. 前記対象物が透明物品である請求項8~14のいずれか一項に記載のシステム。
PCT/JP2016/062652 2015-04-24 2016-04-21 検知方法および検知システム WO2016171218A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16783239.3A EP3287766B1 (en) 2015-04-24 2016-04-21 Detection method and detection system
US15/790,350 US10598588B2 (en) 2015-04-24 2017-10-23 Sensing method and sensing system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015089607 2015-04-24
JP2015-089607 2015-04-24
JP2016-025047 2016-02-12
JP2016025047 2016-02-12
JP2016-077841 2016-04-08
JP2016077841A JP6502282B2 (ja) 2015-04-24 2016-04-08 検知方法および検知システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/790,350 Continuation US10598588B2 (en) 2015-04-24 2017-10-23 Sensing method and sensing system

Publications (1)

Publication Number Publication Date
WO2016171218A1 true WO2016171218A1 (ja) 2016-10-27

Family

ID=57144047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062652 WO2016171218A1 (ja) 2015-04-24 2016-04-21 検知方法および検知システム

Country Status (1)

Country Link
WO (1) WO2016171218A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051701A1 (ja) * 2016-09-14 2018-03-22 新光電子株式会社 検知装置
WO2018088558A1 (ja) * 2016-11-14 2018-05-17 日本化薬株式会社 赤外波長域用染料系偏光板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026234B1 (ja) * 1970-10-30 1975-08-29
JP2008175940A (ja) * 2007-01-17 2008-07-31 Sekisui Chem Co Ltd 光学フィルムの欠陥のマーキング方法
JP2011149935A (ja) * 2009-12-25 2011-08-04 Nihon Yamamura Glass Co Ltd 容器検査方法および容器検査装置
JP2013036888A (ja) * 2011-08-09 2013-02-21 Mitsubishi Electric Corp シリコン基板の検査装置、および検査方法
WO2014181799A1 (ja) * 2013-05-08 2014-11-13 富士フイルム株式会社 円偏光分離フィルム、円偏光分離フィルムの製造方法、赤外線センサー、ならびに光を利用した検知システムおよび検知方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026234B1 (ja) * 1970-10-30 1975-08-29
JP2008175940A (ja) * 2007-01-17 2008-07-31 Sekisui Chem Co Ltd 光学フィルムの欠陥のマーキング方法
JP2011149935A (ja) * 2009-12-25 2011-08-04 Nihon Yamamura Glass Co Ltd 容器検査方法および容器検査装置
JP2013036888A (ja) * 2011-08-09 2013-02-21 Mitsubishi Electric Corp シリコン基板の検査装置、および検査方法
WO2014181799A1 (ja) * 2013-05-08 2014-11-13 富士フイルム株式会社 円偏光分離フィルム、円偏光分離フィルムの製造方法、赤外線センサー、ならびに光を利用した検知システムおよび検知方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3287766A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051701A1 (ja) * 2016-09-14 2018-03-22 新光電子株式会社 検知装置
WO2018088558A1 (ja) * 2016-11-14 2018-05-17 日本化薬株式会社 赤外波長域用染料系偏光板
CN109863432A (zh) * 2016-11-14 2019-06-07 日本化药株式会社 用于红外线波长区域的染料系偏光板
JPWO2018088558A1 (ja) * 2016-11-14 2019-10-10 日本化薬株式会社 赤外波長域用染料系偏光板
JP2022023090A (ja) * 2016-11-14 2022-02-07 日本化薬株式会社 赤外波長域用染料系偏光板
JP7048508B2 (ja) 2016-11-14 2022-04-05 日本化薬株式会社 赤外波長域用染料系偏光板
US11391873B2 (en) 2016-11-14 2022-07-19 Nippon Kayaku Kabushiki Kaisha Dye-based polarizing plate for infrared wavelength range using azo, anthraquinone, or cyanine compound
JP7288024B2 (ja) 2016-11-14 2023-06-06 日本化薬株式会社 赤外波長域用染料系偏光板

Similar Documents

Publication Publication Date Title
JP6471162B2 (ja) 検知システムおよび検知方法
US20160054496A1 (en) Circularly polarized light separation film, method for producing circularly polarized light separation film, infrared sensor, and sensing system and sensing method utilizing light
WO2015025909A1 (ja) 円偏光フィルターおよびその応用
JP6166977B2 (ja) 円偏光フィルターおよびその応用
WO2014203986A1 (ja) 偏光フィルターおよびセンサーシステム
US9874669B2 (en) Reflection film, optical member, and display
US7393570B2 (en) Broad-band-cholesteric liquid-crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illiminator, and liquid-crystal display
WO2015030176A1 (ja) 応力表示部材および応力表示部材を用いたひずみ測定方法
JP6254768B2 (ja) 光を利用した検知システムおよび検知方法
KR101944227B1 (ko) 투영상 표시용 하프 미러 및 그 제조 방법, 그리고 투영상 표시 시스템
US10598588B2 (en) Sensing method and sensing system
JP2016004487A (ja) 光学的パターン読み取り方法、光学的パターン読み取りシステム、光学的パターン読み取り装置、および光学的パターンを含む光学部材
JP6254770B2 (ja) 円偏光分離フィルムおよび円偏光分離フィルムの製造方法、ならびに赤外線センサー
WO2016171218A1 (ja) 検知方法および検知システム
JP6254769B2 (ja) 円偏光分離フィルムおよび円偏光分離フィルムの製造方法、ならびに赤外線センサー
US9910197B2 (en) Optical member and display including the optical member
JP2017227924A (ja) 円偏光分離フィルムおよび円偏光分離フィルムの製造方法、ならびに赤外線センサー
JP6588517B2 (ja) 円偏光分離フィルムおよび円偏光分離フィルムの製造方法、ならびに赤外線センサー
JP2016114764A (ja) 反射フィルム、光学部材、ディスプレイおよび画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783239

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016783239

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE