WO2014178624A1 - Matériau actif d'anode pour batterie rechargeable au lithium - Google Patents

Matériau actif d'anode pour batterie rechargeable au lithium Download PDF

Info

Publication number
WO2014178624A1
WO2014178624A1 PCT/KR2014/003809 KR2014003809W WO2014178624A1 WO 2014178624 A1 WO2014178624 A1 WO 2014178624A1 KR 2014003809 W KR2014003809 W KR 2014003809W WO 2014178624 A1 WO2014178624 A1 WO 2014178624A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
concentration
active material
manganese
cobalt
Prior art date
Application number
PCT/KR2014/003809
Other languages
English (en)
Korean (ko)
Inventor
선양국
노형주
윤성준
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority claimed from KR1020140051899A external-priority patent/KR101731145B1/ko
Publication of WO2014178624A1 publication Critical patent/WO2014178624A1/fr
Priority to US14/926,770 priority Critical patent/US20160049648A1/en
Priority to US15/264,829 priority patent/US10930922B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery, and more particularly, to a lithium including a core part having a concentration of nickel, manganese and cobalt gradient from the center to a surface direction, and a shell part having a constant concentration of nickel, manganese and cobalt. It relates to a positive electrode active material for a secondary battery.
  • Lithium secondary batteries have an operating voltage of 3.7 V or more, and have a higher energy density per unit weight than nickel-cadmium batteries or nickel-hydrogen batteries. As a result, the demand for lithium secondary batteries is increasing day by day. Doing.
  • P-HEV plug-in hybrid
  • LiCoO 2 LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li 1 + X [Mn 2-x M x ] O 4 , and LiFePO 4 .
  • LiCoO 2 is an excellent material having stable charge and discharge characteristics, excellent electronic conductivity, high battery voltage, high stability, and flat discharge voltage characteristics.
  • Co has low reserves, is expensive, and toxic to humans. Therefore, development of other anode materials is desired.
  • Korean Patent Publication No. 2005-0083869 proposes a lithium transition metal oxide having a concentration gradient of a metal composition.
  • This method is a method of synthesizing the internal material of a certain composition and then applying a material having a different composition to the outside to prepare a double layer, and then mixed with a lithium salt to heat treatment.
  • the internal material a commercially available lithium transition metal oxide may be used.
  • this method discontinuously changes the metal composition of the positive electrode active material between the resultant inner and outer material compositions, and does not continuously change gradually.
  • the powder synthesized by the present invention is not suitable for use as a cathode active material for lithium secondary batteries because the tap density is low because ammonia, which is a chelating agent, is not used.
  • Korean Patent Laid-Open Publication No. 2007-0097923 proposes a cathode active material having an inner bulk portion and an outer bulk portion and having a continuous concentration distribution according to the position of metal components in the outer bulk portion.
  • this method since the concentration is constant in the inner bulk portion and the metal composition is changed only in the outer bulk portion, there is a need to develop a positive electrode active material having a better structure in terms of stability and capacity.
  • Control of the Li / M ratio in the positive electrode active material is related to the Mn content in the composite transition metal, it is possible to insert extra lithium in the transition metal layer by a certain amount of Mn substitution amount or more.
  • the extra lithium inserted into the transition metal layer results in relatively high high-rate characteristics and lifespan characteristics.
  • the composition system having a relatively higher Mn content compared to the ternary composition containing a low Mn content It is easy to insert lithium to minimize the amount of lithium introduced during synthesis to control the water-soluble base content such as Li 2 CO 3 , LiOH remaining on the surface of the active material after firing.
  • the residual lithium component decomposes during charging and discharging or reacts with the electrolytic solution to generate CO 2 gas. As a result, a swelling phenomenon of the battery is generated, thereby lowering the high temperature stability.
  • the residual lithium formed increases the pH when preparing the slurry of the electrode plate, and gelation occurs because the slurry containing NMP (1-methyl-2-pyrrolidinone) and the binder (Binder) starts to polymerize. It causes problems in the manufacturing process. Lithium hydroxide reduces the dispersibility of the positive electrode active material, binder, conductive material, etc. in the solvent, the longer the time required to stabilize the viscosity of the slurry. In addition, when applying to the current collector in the state that the viscosity of the slurry is not stabilized, there is a problem that the uniform coating is not made on the current collector, the smoothness of the electrode surface is lowered, and thus the performance of the battery is lowered.
  • An object of the present invention is to provide a positive electrode active material of a novel structure consisting of a core portion and a shell portion capable of reducing the content of residual lithium while increasing the content of nickel to solve the problems of the prior art as described above. do.
  • the present invention to solve the above problems
  • the core portion is represented by the concentration of the center of the nickel, manganese and cobalt as CC1-Ni, CC1-Co, CC1-Mn,
  • the core portion may have a concentration gradient size of each of the first core portion CS1-Ni, CS1-Mn, CS1-Co;
  • the second core portion of the concentration gradient size of the nickel, manganese and cobalt is CS2-Ni, CS2-Mn, CS2-Co;
  • the concentration of CC 1 -Ni in the center is 0.95 or more
  • the concentration of nickel, manganese and cobalt in the shell portion is represented by SC-Ni, SC-Mn, SC-Co, and the nickel concentration SC1-Ni in the shell portion provides a positive electrode active material for a lithium secondary battery.
  • the concentration gradient sizes CS1-Ni, CS1-Mn, CS1-Co, and nickel, manganese, and cobalt in the second core portion in the first core portion Concentration gradient sizes of CS2-Ni, CS2-Mn, CS2-Co are CS1-Ni ⁇ 0, CS1-Mn> 0, CS1-Co> 0, CS2-Ni ⁇ 0, CS2-Mn> 0, CS2-Co> It is characterized by being 0.
  • the concentration of nickel, manganese and cobalt in the shell portion is represented by SC1-Ni, SC1-Mn, SC1-Co, and the concentration of nickel, manganese and cobalt in the shell portion is constant. .
  • the concentrations of SC1-Ni, SC1-Mn, and SC1-Co in the shell portion are the same as the concentrations of nickel, manganese, and cobalt in the outermost portion of the core portion. It is done.
  • the average cobalt concentration of the core part and the shell part may be 6%.
  • the average cobalt concentration is the average cobalt concentration of the whole positive electrode active material particles prepared according to the present invention.
  • the rate characteristic and capacity of the lithium secondary battery may decrease.
  • the nickel concentration at the point where the first core portion and the second core portion contact each other may be 0.9.
  • the minimum value of nickel concentration in the first core portion may be 0.9 and the maximum value of nickel concentration in the second core portion may be 0.9.
  • the shell portion has a volume of 30% or less of the total volume.
  • the cathode active material according to the present invention forms a shell portion with a constant concentration on the surface of a core portion having a concentration gradient of nickel, manganese, and cobalt, and thus has excellent capacity and charge / discharge characteristics. Structural stability.
  • Figure 1 shows the results of measuring the concentration of Ni, Mn, Co according to the distance from the center of the particles produced in the embodiment of the present invention by EDX.
  • Ni X1 Co y1 Mn z1 OH 2 (x1, y1, z1) and Ni X2 Co were prepared by mixing nickel sulfate, cobalt sulfate, and manganese sulfate.
  • a second aqueous metal solution of y2 Mn z2 OH 2 (x2, y2, z2) was prepared, and ammonia solution of 25 mol concentration at 0.7 liter / hour was mixed while changing the mixing ratio of the first and second metal aqueous solutions. was continuously added to the reactor at 0.07 liter / hour to prepare a core having a first concentration gradient.
  • the concentration of nickel sulfate, cobalt sulfate, and manganese sulfate was adjusted to 0.7 liters / hour while mixing while changing the mixing ratio of the third metal aqueous solution and the second metal aqueous solution having a constant Ni X 3 Co y 3 Mn z 3 OH 2 to a concentration of 25 mol.
  • Ammonia solution was continuously added to the reactor at 0.07 liter / hour to prepare a core part having a second concentration gradient.
  • the concentration of nickel sulfate, cobalt sulfate, and manganese sulfate was supplied with an aqueous solution for forming a shell portion having a constant concentration of Ni X 4 Co y 4 Mn z 4 OH 2 to prepare a shell portion having a concentration different from that of the core portion terminal having a second concentration gradient.
  • Example 11 to 20 thus prepared, the concentration of the aqueous metal solution is shown in Table 1 below.
  • the prepared metal composite hydroxide was filtered, washed with water, and dried in a 110 ° C. hot air dryer for 12 hours. After mixing the metal composite hydroxide and lithium hydroxide (LiOH) in a 1: 1 molar ratio, and heated at a temperature increase rate of 2 °C / min and maintained at 450 °C for 10 hours, followed by pre-firing at 700 ⁇ 900 °C It baked by time and obtained the positive electrode active material powder.
  • LiOH lithium hydroxide
  • the capacity of the battery including the cathode active material according to the present invention is 220 mAh / g or more.
  • the capacity is expressed including high nickel, but in FIG. 5.
  • the ignition temperature is higher than 40 ° C. than the comparative example it can be seen that the thermal stability is greatly improved.
  • Example 3 of the present invention it can be seen that the residual lithium is reduced to 50% of the comparative example.
  • the tap density of the active material particles prepared in Example 1 and Comparative Example 1 is shown in Table 4 below.
  • the positive electrode active material according to the present invention forms a shell portion having a constant concentration on the surface of the core portion having a concentration gradient of nickel, manganese, and cobalt, so that the crystal structure is stabilized while exhibiting high capacity due to excellent life characteristics and charge / discharge characteristics. Structural stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne un matériau actif d'anode pour une batterie rechargeable au lithium, et plus particulièrement un matériau actif d'anode pour une batterie rechargeable au lithium comprenant une partie coeur qui présente des gradients de concentrations en nickel, manganèse et cobalt du coeur vers la surface, et une partie enveloppe dans laquelle les concentrations en nickel, manganèse et cobalt sont constantes et la concentration en nickel est réglée de manière à se situer dans une plage prédéterminée. Du fait que dans ce matériau actif d'anode de l'invention la partie enveloppe, dans laquelle la concentration en nickel est réglée de manière à se situer dans une plage prédéterminée et les concentrations en métaux restants sont constantes, est formée sur la surface de la partie coeur qui présente des gradients de concentrations en nickel, manganèse et cobalt, on obtient, même avec une concentration élevée en nickel, une quantité de lithium résiduel réduite, et des caractéristiques de durée de vie et des caractéristiques de charge et de décharge remarquables, de même qu'une capacité élevée, de pair avec une structure cristalline stabilisée de telle manière que la stabilité structurale est assurée même lors d'une utilisation à une haute tension.
PCT/KR2014/003809 2011-01-05 2014-04-29 Matériau actif d'anode pour batterie rechargeable au lithium WO2014178624A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/926,770 US20160049648A1 (en) 2013-04-29 2015-10-29 Positive electrode active material and secondary battery comprising the same
US15/264,829 US10930922B2 (en) 2011-01-05 2016-09-14 Positive electrode active material and secondary battery comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0047797 2013-04-29
KR20130047797 2013-04-29
KR10-2014-0051899 2014-04-29
KR1020140051899A KR101731145B1 (ko) 2013-04-29 2014-04-29 리튬 이차 전지용 양극활물질

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2014/003815 Continuation-In-Part WO2014178628A1 (fr) 2011-01-05 2014-04-29 Matériau actif d'anode pour batterie secondaire au lithium
US15/264,829 Continuation-In-Part US10930922B2 (en) 2011-01-05 2016-09-14 Positive electrode active material and secondary battery comprising the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/926,770 Continuation-In-Part US20160049648A1 (en) 2011-01-05 2015-10-29 Positive electrode active material and secondary battery comprising the same

Publications (1)

Publication Number Publication Date
WO2014178624A1 true WO2014178624A1 (fr) 2014-11-06

Family

ID=51843679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003809 WO2014178624A1 (fr) 2011-01-05 2014-04-29 Matériau actif d'anode pour batterie rechargeable au lithium

Country Status (1)

Country Link
WO (1) WO2014178624A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3016183A3 (fr) * 2014-10-29 2016-08-10 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Matériau actif d'électrode positive et batterie secondaire comprenant celui-ci
EP2993718A4 (fr) * 2013-04-29 2016-10-05 Iucf Hyu Matériau actif d'anode pour batterie rechargeable au lithium
EP3416218A4 (fr) * 2016-02-08 2019-10-23 Murata Manufacturing Co., Ltd. Matériau actif d'électrode positive de batterie secondaire, électrode positive de batterie secondaire, batterie secondaire, bloc de batterie, véhicule électrique, système de stockage d'énergie électrique, outil électrique, et appareil électronique
CN110931768A (zh) * 2019-11-17 2020-03-27 新乡天力锂能股份有限公司 一种高镍类单晶锂离子电池三元正极材料及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010081181A (ko) * 2000-02-10 2001-08-29 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
KR20120009891A (ko) * 2010-07-22 2012-02-02 주식회사 에코프로 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지
KR20120079801A (ko) * 2011-01-05 2012-07-13 한양대학교 산학협력단 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20120121235A (ko) * 2011-04-26 2012-11-05 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20130001703A (ko) * 2011-06-27 2013-01-04 주식회사 에코프로 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010081181A (ko) * 2000-02-10 2001-08-29 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
KR20120009891A (ko) * 2010-07-22 2012-02-02 주식회사 에코프로 리튬 이차전지용 양극활물질의 제조방법, 그에 의하여 제조된 리튬 이차전지용 양극활물질 및 그를 이용한 리튬 이차전지
KR20120079801A (ko) * 2011-01-05 2012-07-13 한양대학교 산학협력단 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20120121235A (ko) * 2011-04-26 2012-11-05 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20130001703A (ko) * 2011-06-27 2013-01-04 주식회사 에코프로 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2993718A4 (fr) * 2013-04-29 2016-10-05 Iucf Hyu Matériau actif d'anode pour batterie rechargeable au lithium
US10490809B2 (en) 2013-04-29 2019-11-26 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Positive electrode active material for lithium secondary battery
EP3016183A3 (fr) * 2014-10-29 2016-08-10 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Matériau actif d'électrode positive et batterie secondaire comprenant celui-ci
EP3416218A4 (fr) * 2016-02-08 2019-10-23 Murata Manufacturing Co., Ltd. Matériau actif d'électrode positive de batterie secondaire, électrode positive de batterie secondaire, batterie secondaire, bloc de batterie, véhicule électrique, système de stockage d'énergie électrique, outil électrique, et appareil électronique
CN110931768A (zh) * 2019-11-17 2020-03-27 新乡天力锂能股份有限公司 一种高镍类单晶锂离子电池三元正极材料及制备方法

Similar Documents

Publication Publication Date Title
KR101731145B1 (ko) 리튬 이차 전지용 양극활물질
JP4061668B2 (ja) リチウムイオン非水電解質二次電池
WO2013147537A1 (fr) Procédé de préparation de précurseur de matériau actif de cathode pour une batterie secondaire au lithium, précurseur de matériau actif de cathode pour batterie secondaire au lithium préparé par celui-ci et matériau actif de cathode pour batterie secondaire au lithium le contenant
CN106848262B (zh) 用于锂二次电池的具有全粒子浓度梯度的正极活性材料,其制备方法及具有其的锂二次电池
JP4171848B2 (ja) リチウムイオン非水電解質二次電池
JP4197002B2 (ja) リチウムイオン非水電解質二次電池用正極活物質及びその製造方法
JP4784608B2 (ja) リチウムイオン非水電解質二次電池用正極活物質及びその製造方法
KR100815583B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지
JP4200539B2 (ja) リチウムイオン非水電解質二次電池
JP3994238B2 (ja) 非水電解質リチウム二次電池
KR20110034592A (ko) 비수 전해질 이차 전지용 정극 활물질, 비수 전해질 이차 전지용 정극 활물질의 제조 방법, 비수 전해질 이차 전지용 정극 및 비수 전해질 이차 전지
WO2011065651A9 (fr) Anode réalisée par une combinaison de deux éléments, et batterie secondaire au lithium l'utilisant
WO2011065650A9 (fr) Anode réalisée par une combinaison de deux éléments, et batterie secondaire au lithium l'utilisant
WO2011122865A2 (fr) Matière active d'électrode positive et batterie rechargeable au lithium utilisant celle-ci
JP4235702B2 (ja) 正極活物質とその製造方法とこれを用いた非水電解質二次電池
WO2014178624A1 (fr) Matériau actif d'anode pour batterie rechargeable au lithium
KR101190226B1 (ko) 리튬 이차전지용 양극활물질, 그의 제조방법 및 이를 포함한 리튬 이차전지
WO2011136550A2 (fr) Matériau actif de cathode et batterie secondaire au lithium utilisant un tel matériau
JP2019527917A (ja) 長寿命に適合した二次電池用電極の製造方法
WO2010147389A2 (fr) Matériau actif d'électrode positive pour batterie secondaire au lithium
WO2016068682A1 (fr) Précurseur d'oxyde de métal de transition, oxyde de métal de transition composite au lithium, électrode positive qui comprend celui-ci, et batterie secondaire
JP4013327B2 (ja) 非水二次電池
WO2014010849A1 (fr) Précurseur pour la préparation d'un oxyde de métal de transition composite de lithium
WO2016114586A1 (fr) Matériau actif d'anode pour pile rechargeable au lithium et pile rechargeable au lithium le comprenant
JP4026207B2 (ja) リチウムイオン非水二次電池用負極材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/02/2016).

122 Ep: pct application non-entry in european phase

Ref document number: 14791007

Country of ref document: EP

Kind code of ref document: A1