WO2014178624A1 - Anode active material for lithium rechargeable battery - Google Patents

Anode active material for lithium rechargeable battery Download PDF

Info

Publication number
WO2014178624A1
WO2014178624A1 PCT/KR2014/003809 KR2014003809W WO2014178624A1 WO 2014178624 A1 WO2014178624 A1 WO 2014178624A1 KR 2014003809 W KR2014003809 W KR 2014003809W WO 2014178624 A1 WO2014178624 A1 WO 2014178624A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
concentration
active material
manganese
cobalt
Prior art date
Application number
PCT/KR2014/003809
Other languages
French (fr)
Korean (ko)
Inventor
선양국
노형주
윤성준
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority claimed from KR1020140051899A external-priority patent/KR101731145B1/en
Publication of WO2014178624A1 publication Critical patent/WO2014178624A1/en
Priority to US14/926,770 priority Critical patent/US20160049648A1/en
Priority to US15/264,829 priority patent/US10930922B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery, and more particularly, to a lithium including a core part having a concentration of nickel, manganese and cobalt gradient from the center to a surface direction, and a shell part having a constant concentration of nickel, manganese and cobalt. It relates to a positive electrode active material for a secondary battery.
  • Lithium secondary batteries have an operating voltage of 3.7 V or more, and have a higher energy density per unit weight than nickel-cadmium batteries or nickel-hydrogen batteries. As a result, the demand for lithium secondary batteries is increasing day by day. Doing.
  • P-HEV plug-in hybrid
  • LiCoO 2 LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li 1 + X [Mn 2-x M x ] O 4 , and LiFePO 4 .
  • LiCoO 2 is an excellent material having stable charge and discharge characteristics, excellent electronic conductivity, high battery voltage, high stability, and flat discharge voltage characteristics.
  • Co has low reserves, is expensive, and toxic to humans. Therefore, development of other anode materials is desired.
  • Korean Patent Publication No. 2005-0083869 proposes a lithium transition metal oxide having a concentration gradient of a metal composition.
  • This method is a method of synthesizing the internal material of a certain composition and then applying a material having a different composition to the outside to prepare a double layer, and then mixed with a lithium salt to heat treatment.
  • the internal material a commercially available lithium transition metal oxide may be used.
  • this method discontinuously changes the metal composition of the positive electrode active material between the resultant inner and outer material compositions, and does not continuously change gradually.
  • the powder synthesized by the present invention is not suitable for use as a cathode active material for lithium secondary batteries because the tap density is low because ammonia, which is a chelating agent, is not used.
  • Korean Patent Laid-Open Publication No. 2007-0097923 proposes a cathode active material having an inner bulk portion and an outer bulk portion and having a continuous concentration distribution according to the position of metal components in the outer bulk portion.
  • this method since the concentration is constant in the inner bulk portion and the metal composition is changed only in the outer bulk portion, there is a need to develop a positive electrode active material having a better structure in terms of stability and capacity.
  • Control of the Li / M ratio in the positive electrode active material is related to the Mn content in the composite transition metal, it is possible to insert extra lithium in the transition metal layer by a certain amount of Mn substitution amount or more.
  • the extra lithium inserted into the transition metal layer results in relatively high high-rate characteristics and lifespan characteristics.
  • the composition system having a relatively higher Mn content compared to the ternary composition containing a low Mn content It is easy to insert lithium to minimize the amount of lithium introduced during synthesis to control the water-soluble base content such as Li 2 CO 3 , LiOH remaining on the surface of the active material after firing.
  • the residual lithium component decomposes during charging and discharging or reacts with the electrolytic solution to generate CO 2 gas. As a result, a swelling phenomenon of the battery is generated, thereby lowering the high temperature stability.
  • the residual lithium formed increases the pH when preparing the slurry of the electrode plate, and gelation occurs because the slurry containing NMP (1-methyl-2-pyrrolidinone) and the binder (Binder) starts to polymerize. It causes problems in the manufacturing process. Lithium hydroxide reduces the dispersibility of the positive electrode active material, binder, conductive material, etc. in the solvent, the longer the time required to stabilize the viscosity of the slurry. In addition, when applying to the current collector in the state that the viscosity of the slurry is not stabilized, there is a problem that the uniform coating is not made on the current collector, the smoothness of the electrode surface is lowered, and thus the performance of the battery is lowered.
  • An object of the present invention is to provide a positive electrode active material of a novel structure consisting of a core portion and a shell portion capable of reducing the content of residual lithium while increasing the content of nickel to solve the problems of the prior art as described above. do.
  • the present invention to solve the above problems
  • the core portion is represented by the concentration of the center of the nickel, manganese and cobalt as CC1-Ni, CC1-Co, CC1-Mn,
  • the core portion may have a concentration gradient size of each of the first core portion CS1-Ni, CS1-Mn, CS1-Co;
  • the second core portion of the concentration gradient size of the nickel, manganese and cobalt is CS2-Ni, CS2-Mn, CS2-Co;
  • the concentration of CC 1 -Ni in the center is 0.95 or more
  • the concentration of nickel, manganese and cobalt in the shell portion is represented by SC-Ni, SC-Mn, SC-Co, and the nickel concentration SC1-Ni in the shell portion provides a positive electrode active material for a lithium secondary battery.
  • the concentration gradient sizes CS1-Ni, CS1-Mn, CS1-Co, and nickel, manganese, and cobalt in the second core portion in the first core portion Concentration gradient sizes of CS2-Ni, CS2-Mn, CS2-Co are CS1-Ni ⁇ 0, CS1-Mn> 0, CS1-Co> 0, CS2-Ni ⁇ 0, CS2-Mn> 0, CS2-Co> It is characterized by being 0.
  • the concentration of nickel, manganese and cobalt in the shell portion is represented by SC1-Ni, SC1-Mn, SC1-Co, and the concentration of nickel, manganese and cobalt in the shell portion is constant. .
  • the concentrations of SC1-Ni, SC1-Mn, and SC1-Co in the shell portion are the same as the concentrations of nickel, manganese, and cobalt in the outermost portion of the core portion. It is done.
  • the average cobalt concentration of the core part and the shell part may be 6%.
  • the average cobalt concentration is the average cobalt concentration of the whole positive electrode active material particles prepared according to the present invention.
  • the rate characteristic and capacity of the lithium secondary battery may decrease.
  • the nickel concentration at the point where the first core portion and the second core portion contact each other may be 0.9.
  • the minimum value of nickel concentration in the first core portion may be 0.9 and the maximum value of nickel concentration in the second core portion may be 0.9.
  • the shell portion has a volume of 30% or less of the total volume.
  • the cathode active material according to the present invention forms a shell portion with a constant concentration on the surface of a core portion having a concentration gradient of nickel, manganese, and cobalt, and thus has excellent capacity and charge / discharge characteristics. Structural stability.
  • Figure 1 shows the results of measuring the concentration of Ni, Mn, Co according to the distance from the center of the particles produced in the embodiment of the present invention by EDX.
  • Ni X1 Co y1 Mn z1 OH 2 (x1, y1, z1) and Ni X2 Co were prepared by mixing nickel sulfate, cobalt sulfate, and manganese sulfate.
  • a second aqueous metal solution of y2 Mn z2 OH 2 (x2, y2, z2) was prepared, and ammonia solution of 25 mol concentration at 0.7 liter / hour was mixed while changing the mixing ratio of the first and second metal aqueous solutions. was continuously added to the reactor at 0.07 liter / hour to prepare a core having a first concentration gradient.
  • the concentration of nickel sulfate, cobalt sulfate, and manganese sulfate was adjusted to 0.7 liters / hour while mixing while changing the mixing ratio of the third metal aqueous solution and the second metal aqueous solution having a constant Ni X 3 Co y 3 Mn z 3 OH 2 to a concentration of 25 mol.
  • Ammonia solution was continuously added to the reactor at 0.07 liter / hour to prepare a core part having a second concentration gradient.
  • the concentration of nickel sulfate, cobalt sulfate, and manganese sulfate was supplied with an aqueous solution for forming a shell portion having a constant concentration of Ni X 4 Co y 4 Mn z 4 OH 2 to prepare a shell portion having a concentration different from that of the core portion terminal having a second concentration gradient.
  • Example 11 to 20 thus prepared, the concentration of the aqueous metal solution is shown in Table 1 below.
  • the prepared metal composite hydroxide was filtered, washed with water, and dried in a 110 ° C. hot air dryer for 12 hours. After mixing the metal composite hydroxide and lithium hydroxide (LiOH) in a 1: 1 molar ratio, and heated at a temperature increase rate of 2 °C / min and maintained at 450 °C for 10 hours, followed by pre-firing at 700 ⁇ 900 °C It baked by time and obtained the positive electrode active material powder.
  • LiOH lithium hydroxide
  • the capacity of the battery including the cathode active material according to the present invention is 220 mAh / g or more.
  • the capacity is expressed including high nickel, but in FIG. 5.
  • the ignition temperature is higher than 40 ° C. than the comparative example it can be seen that the thermal stability is greatly improved.
  • Example 3 of the present invention it can be seen that the residual lithium is reduced to 50% of the comparative example.
  • the tap density of the active material particles prepared in Example 1 and Comparative Example 1 is shown in Table 4 below.
  • the positive electrode active material according to the present invention forms a shell portion having a constant concentration on the surface of the core portion having a concentration gradient of nickel, manganese, and cobalt, so that the crystal structure is stabilized while exhibiting high capacity due to excellent life characteristics and charge / discharge characteristics. Structural stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to an anode active material for a lithium rechargeable battery, and more specifically relates to an anode active material for a lithium rechargeable battery wherein the anode active material comprises a core part exhibiting gradients in nickel, manganese and cobalt concentrations in the core-to-surface direction, and a shell part wherein the nickel, manganese and cobalt concentrations are constant and the nickel concentration is adjusted so as to be in a predetermined range. In the anode active material according to the present invention, because the shell part, wherein the nickel concentration is adjusted so as to be in a predetermined range and the remaining metal concentrations are constant, is formed on the surface of the core part having the gradients in nickel, manganese and cobalt concentrations, it follows that even though the nickel concentration is high the residual lithium is reduced, and the lifespan characteristics and charging and discharging characteristics are outstanding and high capacity is exhibited while even so the crystal structure is stabilised such that structural stability is exhibited even when used at high voltage.

Description

리튬 이차 전지용 양극활물질Cathode active material for lithium secondary battery
본 발명은 리튬 이차 전지용 양극활물질에 관한 것으로서, 더욱 상세하게는 중심으로부터 표면 방향으로 니켈, 망간 및 코발트의 농도가 구배를 나타내는 코어부, 및 니켈, 망간 및 코발트의 농도가 일정한 쉘부를 포함하는 리튬 이차 전지용 양극활물질에 관한 것이다. The present invention relates to a cathode active material for a lithium secondary battery, and more particularly, to a lithium including a core part having a concentration of nickel, manganese and cobalt gradient from the center to a surface direction, and a shell part having a constant concentration of nickel, manganese and cobalt. It relates to a positive electrode active material for a secondary battery.
리튬 이차 전지는 작동 전압이 3.7 V 이상으로서, 니켈-카드뮴 전지나 니켈-수소 전지보다 단위 중량당 에너지 밀도가 높다는 측면에서 이들 휴대용 전자정보 통신기기들을 구동할 동력원으로서 리튬 이차 전지에 대한 수요가 나날이 증가하고 있다.Lithium secondary batteries have an operating voltage of 3.7 V or more, and have a higher energy density per unit weight than nickel-cadmium batteries or nickel-hydrogen batteries. As a result, the demand for lithium secondary batteries is increasing day by day. Doing.
최근에는 내연기관과 리튬 이차 전지를 혼성화(hybrid)하여 전기자동차용 동력원으로 사용하고자 하는 연구가 미국, 일본, 유럽 등에서 활발히 진행 중에 있다. 하루에 60마일 미만의 주행거리를 갖는 자동차에 사용되는 플러그인 하이브리드 (P-HEV) 전지 개발이 미국을 중심으로 활발히 진행 중이다. 상기 P-HEV용 전지는 거의 전기자동차에 가까운 특성을 갖는 전지로 고용량 전지 개발이 최대의 과제이다. 특히, 2.0 g/cc 이상의 높은 탭 밀도와 230 mAh/g 이상의 고용량 특성을 갖는 양극 재료를 개발하는 것이 최대의 과제이다.Recently, research on hybridizing an internal combustion engine and a lithium secondary battery to use it as a power source for an electric vehicle has been actively conducted in the United States, Japan, and Europe. Development of plug-in hybrid (P-HEV) batteries for cars with mileage less than 60 miles per day is actively underway in the United States. The P-HEV battery is a battery having almost the characteristics of an electric vehicle, the development of a high capacity battery is the biggest problem. In particular, the development of a positive electrode material having a high tap density of 2.0 g / cc or more and high capacity of 230 mAh / g or more is a major challenge.
현재 상용화되었거나 개발 중인 양극 재료로는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li1+X[Mn2-xMx]O4, LiFePO4 등이 있다. 이 중에서 LiCoO2는 안정된 충방전 특성, 우수한 전자전도성, 높은 전지 전압, 높은 안정성, 및 평탄한 방전전압 특성을 갖는 뛰어난 물질이다. 그러나, Co는 매장량이 적고 고가인 데다가 인체에 대한 독성이 있기 때문에 다른 양극 재료 개발이 요망된다. 또한, 충전시의 탈 리튬에 의하여 결정 구조가 불안정하여 열적 특성이 매우 열악한 단점을 가지고 있다.Anode materials currently commercialized or under development include LiCoO 2, LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , Li 1 + X [Mn 2-x M x ] O 4 , and LiFePO 4 . Among these, LiCoO 2 is an excellent material having stable charge and discharge characteristics, excellent electronic conductivity, high battery voltage, high stability, and flat discharge voltage characteristics. However, Co has low reserves, is expensive, and toxic to humans. Therefore, development of other anode materials is desired. In addition, there is a disadvantage in that the crystal structure is unstable due to de-lithography during charging and the thermal characteristics are very poor.
이를 개선하기 위해, 니켈의 일부를 전이금속 원소로 치환하여, 발열 시작 온도를 고온 측으로 이동시키거나 급격한 발열을 방지하기 위하여 발열 피크를 완만하게(broad)하려는 시도가 많이 이루어지고 있다. 그러나, 아직도 만족할 만한 결과는 얻어지고 있지 않다.즉, 니켈의 일부를 코발트로 치환한 LiNi1-xCoxO2(x=0.1-0.3) 물질의 경우 우수한 충방전 특성과 수명특성을 보이나, 열적 안전성 문제는 해결하지 못하였다. 또한, 뿐만 아니라 유럽특허 제0872450호에서는 Ni 자리에 Co 와 Mn 뿐만 아니라 다른 금속이 치환된 LiaCobMncMdNi1-(b+c+d)O2(M=B, Al, Si. Fe, Cr, Cu, Zn, W, Ti, Ga) 형을 개시하였으나, 여전히 Ni계의 열적 안전성은 해결하지 못하였다.In order to improve this, many attempts have been made to substitute a portion of nickel with a transition metal element to shift the exothermic start temperature to the high temperature side or to broaden the exothermic peak to prevent the rapid exotherm. However, satisfactory results are still not obtained. In other words, LiNi1-xCoxO2 (x = 0.1-0.3) material in which a part of nickel is substituted with cobalt shows excellent charge and discharge characteristics, but thermal safety problems are solved. I couldn't. In addition, European Patent No. 0872450 also discloses Li a Co b Mn c M d Ni 1- (b + c + d) O 2 (M = B, Al, in which not only Co and Mn are substituted for Ni, but also other metals ) Si, Fe, Cr, Cu, Zn, W, Ti, Ga) type, but the thermal stability of the Ni-based still has not been solved.
이러한 단점을 없애기 위하여 대한민국 특허 공개 제2005-0083869호에는 금속 조성의 농도 구배를 갖는 리튬 전이 금속 산화물이 제안되어 있다. 이 방법은 일단 일정 조성의 내부 물질을 합성한 후 외부에 다른 조성을 갖는 물질을 입혀 이중층으로 제조한 후 리튬염과 혼합하여 열처리 하는 방법이다. 상기 내부 물질로는 시판되는 리튬 전이 금속 산화물을 사용할 수도 있다. In order to eliminate this disadvantage, Korean Patent Publication No. 2005-0083869 proposes a lithium transition metal oxide having a concentration gradient of a metal composition. This method is a method of synthesizing the internal material of a certain composition and then applying a material having a different composition to the outside to prepare a double layer, and then mixed with a lithium salt to heat treatment. As the internal material, a commercially available lithium transition metal oxide may be used.
그러나, 이 방법은 생성된 내부 물질과 외부 물질 조성 사이에서 양극활물질의 금속 조성이 불연속적으로 변화하며, 연속적으로 점진적으로 변하지 않는다. 또한, 이 발명으로 합성된 분말은 킬레이팅제인 암모니아를 사용하지 않기 때문에 탭 밀도가 낮아 리튬 이차 전지용 양극활물질로 사용하기에는 부적합하였다.However, this method discontinuously changes the metal composition of the positive electrode active material between the resultant inner and outer material compositions, and does not continuously change gradually. In addition, the powder synthesized by the present invention is not suitable for use as a cathode active material for lithium secondary batteries because the tap density is low because ammonia, which is a chelating agent, is not used.
이러한 점을 개선하기 위해 대한민국 특허 공개 제2007-0097923호에서는 내부 벌크부와 외부 벌크부를 두고 외부 벌크부에서 금속 성분들이 위치에 따라 연속적인 농도 분포를 가지는 양극활물질이 제안되어 있다. 그러나, 이 방법에서는 내부 벌크부에서는 농도가 일정하고 외부 벌크부에서만 금속 조성이 변화하기 때문에 안정성 및 용량 면에서 좀더 우수한 새로운 구조의 양극활물질을 개발할 필요성이 있었다.In order to improve this point, Korean Patent Laid-Open Publication No. 2007-0097923 proposes a cathode active material having an inner bulk portion and an outer bulk portion and having a continuous concentration distribution according to the position of metal components in the outer bulk portion. However, in this method, since the concentration is constant in the inner bulk portion and the metal composition is changed only in the outer bulk portion, there is a need to develop a positive electrode active material having a better structure in terms of stability and capacity.
또한, Ni 함량이 높아지면 상대적으로 가역 용량이 증대되나 열적안정성은 급격히 저하되며, Ni 함량이 상대적으로 낮아지고 Mn 함량이 높아지면, 열안정성은 향상되나 에너지밀도 측면에서 종전의 LiCoO2 대비 장점이 없어지게 된다. 따라서 종전의 LiCoO2를 완전 대체 혹은 일부 대체하기 위해서는 용량 및 안전성 측면에서의 최적의 Ni:Mn:Co 조성 및 Li/M가 선정되어야 한다.In addition, as the Ni content increases, the reversible capacity is relatively increased, but the thermal stability is sharply decreased. When the Ni content is relatively low and the Mn content is increased, the thermal stability is improved, but there is no advantage in comparison to LiCoO2 in the past in terms of energy density. You lose. Therefore, in order to completely replace or partially replace the conventional LiCoO 2 , an optimal Ni: Mn: Co composition and Li / M should be selected in terms of capacity and safety.
양극 활물질내 Li/M 비의 조절은 복합 전이금속 중 Mn 함량과 관계되며, 일정량 이상의 Mn 치환량에 의해 전이금속층에 여분의 리튬을 삽입시킬 수 있다. 전지특성 측면에서는 전이금속층에 삽입된 여분의 리튬에 의해 상대적으로 높은 고율특성 및 수명특성이 발현되며, 또한 낮은 Mn 함량을 포함하는 삼성분계 조성과 비교시 Mn 함량을 상대적으로 높인 조성계에서는 전이금속층에 리튬 삽입이 용이하여 합성시 투입되는 리튬량을 최소화시켜 소성후 활물질 표면에 잔류하는 Li2CO3, LiOH 등의 수용성 염기함량 조절이 가능하다. 잔류 리튬성분은 충방전시 분해되거나 전해액과 반응하여 CO2 가스를 발생시키며, 그 결과 전지의 스웰링 현상을 발생시켜 특히 고온 안정성을 저하시키게 된다. Control of the Li / M ratio in the positive electrode active material is related to the Mn content in the composite transition metal, it is possible to insert extra lithium in the transition metal layer by a certain amount of Mn substitution amount or more. In terms of battery characteristics, the extra lithium inserted into the transition metal layer results in relatively high high-rate characteristics and lifespan characteristics. In addition, the composition system having a relatively higher Mn content compared to the ternary composition containing a low Mn content, It is easy to insert lithium to minimize the amount of lithium introduced during synthesis to control the water-soluble base content such as Li 2 CO 3 , LiOH remaining on the surface of the active material after firing. The residual lithium component decomposes during charging and discharging or reacts with the electrolytic solution to generate CO 2 gas. As a result, a swelling phenomenon of the battery is generated, thereby lowering the high temperature stability.
특히, Ni을 주성분으로 포함하는 삼성분계 양극 활물질이 공기 및 습기에 노출되면, LiOH나 Li2CO3와 같은 불순물이 표면에 형성된다(반응식 1, 2 참조; J. Power Sources, 134, page 293, 2004년).In particular, when a ternary cathode active material containing Ni as a main component is exposed to air and moisture, impurities such as LiOH and Li 2 CO 3 are formed on the surface (see Schemes 1 and 2; J. Power Sources, 134, page 293, 2004). ).
반응식 1 LiNiO2 + yH2O → Li1-yNiO2-y/2 + yLiOH Scheme 1 LiNiO 2 + yH2O → Li 1-y NiO 2-y / 2 + yLiOH
반응식 2 Scheme 2
LiNi0.8Co0.15Al0.05O2 + 4xO2 +yH2O → Li1-yNi0.8Co0.15Al0.05O2 + 2xLi2CO3 LiNi 0.8 Co 0.15 Al 0.05 O 2 + 4xO 2 + yH 2 O → Li 1-y Ni 0.8 Co 0.15 Al 0.05 O 2 + 2xLi 2 CO 3
형성된 잔류 리튬성분은 극판 슬러리 제조시 pH를 상승시켜 NMP(1-메틸-2-피롤리디논(pyrrolidinone)), 결합제(Binder)가 포함된 슬러리(Slurry)가 중합되기 시작하여 겔화가 발생, 극판 제작 공정에 문제를 일으킨다. 수산화리튬은 용매에서 양극 활물질, 바인더, 도전재 등의 분산성을 감소시켜 상기 슬러리의 점도가 안정화되는데 소요되는 시간이 길어지게 된다. 또한, 슬러리의 점도가 안정화되지 않은 상태에서 집전체에 도포하는 경우, 집전체 상에 균일한 도포가 이루어지지 않고, 전극 표면의 평활도가 떨어지며, 따라서 전지의 성능이 저하되는 문제점이 있다.The residual lithium formed increases the pH when preparing the slurry of the electrode plate, and gelation occurs because the slurry containing NMP (1-methyl-2-pyrrolidinone) and the binder (Binder) starts to polymerize. It causes problems in the manufacturing process. Lithium hydroxide reduces the dispersibility of the positive electrode active material, binder, conductive material, etc. in the solvent, the longer the time required to stabilize the viscosity of the slurry. In addition, when applying to the current collector in the state that the viscosity of the slurry is not stabilized, there is a problem that the uniform coating is not made on the current collector, the smoothness of the electrode surface is lowered, and thus the performance of the battery is lowered.
따라서, 많은 종래 기술들은 잔류 리튬을 감소시키기 위해 니켈을 주성분으로 하는 양극 활물질의 특성 및 제조 공정을 개선하는데 초점을 맞추고 있다.Therefore, many prior arts focus on improving the properties and manufacturing process of nickel-based positive electrode active materials to reduce residual lithium.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 니켈의 함량을 높여 고용량을 나타내면서도 잔류 리튬의 함량을 감소시킬 수 있는 코어부와 쉘부로 구성되는 새로운 구조의 양극활물질을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a positive electrode active material of a novel structure consisting of a core portion and a shell portion capable of reducing the content of residual lithium while increasing the content of nickel to solve the problems of the prior art as described above. do.
본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention to solve the above problems
니켈, 망간 및 코발트의 농도가 중심으로부터 표면 방향으로 구배를 나타내는 코어부; 및 상기 니켈, 망간 및 코발트의 농도가 일정한 쉘부; 를 포함하고, A core portion in which the concentrations of nickel, manganese and cobalt exhibit a gradient from the center to the surface direction; And a shell portion having a constant concentration of nickel, manganese, and cobalt; Including,
상기 코어부는 상기 니켈, 망간 및 코발트의 중심의 농도가 CC1-Ni, CC1-Co, CC1-Mn 으로 표시되고, The core portion is represented by the concentration of the center of the nickel, manganese and cobalt as CC1-Ni, CC1-Co, CC1-Mn,
상기 코어부는 농도 구배 크기가 각각 CS1-Ni, CS1-Mn, CS1-Co 인 제 1 코어부; 및 The core portion may have a concentration gradient size of each of the first core portion CS1-Ni, CS1-Mn, CS1-Co; And
상기 니켈, 망간 및 코발트의 농도 구배 크기가 각각 CS2-Ni, CS2-Mn, CS2-Co 인 제 2 코어부;를 포함하고, , The second core portion of the concentration gradient size of the nickel, manganese and cobalt is CS2-Ni, CS2-Mn, CS2-Co;
상기 중심에서의 니켈의 농도 CC1-Ni는 0.95 이상이고, The concentration of CC 1 -Ni in the center is 0.95 or more,
상기 쉘부에서의 니켈, 망간 및 코발트의 농도가 SC-Ni, SC-Mn, SC-Co 로 표시되고 상기 쉘부에서의 니켈 농도 SC1-Ni 는 0.6 이하인 리튬 이차 전지용 양극활물질을 제공한다. The concentration of nickel, manganese and cobalt in the shell portion is represented by SC-Ni, SC-Mn, SC-Co, and the nickel concentration SC1-Ni in the shell portion provides a positive electrode active material for a lithium secondary battery.
본 발명에 의한 양극활물질에 있어서, 상기 제 1 코어부에서의 니켈, 망간 및 코발트의 농도 구배 크기 CS1-Ni, CS1-Mn, CS1-Co, 와 상기 제 2 코어부에서의 니켈, 망간 및 코발트의 농도 구배 크기 CS2-Ni, CS2-Mn, CS2-Co가 CS1-Ni<0, CS1-Mn>0, CS1-Co>0, CS2-Ni<0, CS2-Mn>0, CS2-Co>0 인 것을 특징으로 한다. In the cathode active material according to the present invention, the concentration gradient sizes CS1-Ni, CS1-Mn, CS1-Co, and nickel, manganese, and cobalt in the second core portion in the first core portion. Concentration gradient sizes of CS2-Ni, CS2-Mn, CS2-Co are CS1-Ni <0, CS1-Mn> 0, CS1-Co> 0, CS2-Ni <0, CS2-Mn> 0, CS2-Co> It is characterized by being 0.
본 발명에 의한 양극활물질에 있어서, 상기 쉘부에서의 니켈, 망간 및 코발트의 농도가 SC1-Ni, SC1-Mn, SC1-Co 로 표시되고 상기 쉘부에서의 니켈, 망간 및 코발트의 농도가 일정한 것을 한다. In the cathode active material according to the present invention, the concentration of nickel, manganese and cobalt in the shell portion is represented by SC1-Ni, SC1-Mn, SC1-Co, and the concentration of nickel, manganese and cobalt in the shell portion is constant. .
본 발명에 의한 양극활물질에 있어서, 상기 쉘부에서의 니켈, 망간 및 코발트의 농도 SC1-Ni, SC1-Mn, SC1-Co 는 상기 코어부의 최외각에서의 니켈, 망간, 코발트의 농도와 동일한 것을 특징으로 한다.  In the cathode active material according to the present invention, the concentrations of SC1-Ni, SC1-Mn, and SC1-Co in the shell portion are the same as the concentrations of nickel, manganese, and cobalt in the outermost portion of the core portion. It is done.
본 발명에 의한 양극활물질에 있어서, 상기 코어부와 상기 쉘부의 평균 코발트 농도는 6%일 수 있다. 본 발명에 의한 양극활물질에 있어서, 상기 평균 코발트 농도는 본 발명에 따라 제조된 양극 활물질 입자 전체의 평균 코발트 농도이다. 입자 전체의 평균 코발트 농도가 6%이하이면, 리튬 이차 전지의 율특성 및 용량이 감소할 수 있다.In the cathode active material according to the present invention, the average cobalt concentration of the core part and the shell part may be 6%. In the positive electrode active material according to the present invention, the average cobalt concentration is the average cobalt concentration of the whole positive electrode active material particles prepared according to the present invention. When the average cobalt concentration of the particles as a whole is 6% or less, the rate characteristic and capacity of the lithium secondary battery may decrease.
본 발명에 의한 양극활물질에 있어서, 상기 제1 코어부와 제2 코어부가 접하는 지점에서의 니켈 농도가 0.9일 수 있다. 다시 말해서, 상기 제1 코어부에서 니켈 농도의 최소값이 0.9이고, 상기 제2 코어부에서 니켈 농도의 최대값이 0.9일 수 있다.In the cathode active material according to the present invention, the nickel concentration at the point where the first core portion and the second core portion contact each other may be 0.9. In other words, the minimum value of nickel concentration in the first core portion may be 0.9 and the maximum value of nickel concentration in the second core portion may be 0.9.
본 발명에 의한 양극활물질에 있어서, 상기 쉘부의 부피는 전체 부피의 30% 이하인 것을 특징으로 한다. In the cathode active material according to the present invention, the shell portion has a volume of 30% or less of the total volume.
본 발명에 의한 양극활물질은 니켈, 망간, 코발트가 농도 구배를 가지는 코어부의 표면에 농도가 일정한 쉘부를 형성함으로써 수명 특성과 충방전 특성이 우수하여 고용량을 나타내면서도 결정 구조가 안정화되어 고전압으로 사용시에도 구조 안정성을 나타낸다.The cathode active material according to the present invention forms a shell portion with a constant concentration on the surface of a core portion having a concentration gradient of nickel, manganese, and cobalt, and thus has excellent capacity and charge / discharge characteristics. Structural stability.
도 1은 본 발명의 실시예에서 제조된 입자의 중심으로부터 거리에 따른 Ni, Mn, Co 의 농도를 EDX로 측정한 결과를 나타낸다. Figure 1 shows the results of measuring the concentration of Ni, Mn, Co according to the distance from the center of the particles produced in the embodiment of the present invention by EDX.
도 2 내지 도 5는 본 발명의 실시예 1 및 비교예에서 제조된 활물질을 포함하는 전지의 충방전 특성, 수명 특성 및 DSC 특성을 측정한 결과를 나타낸다.2 to 5 show the results of measuring charge and discharge characteristics, life characteristics, and DSC characteristics of a battery including the active material prepared in Example 1 and Comparative Example of the present invention.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited by the following examples.
<실시예> <Example>
코어부 농도 구배가 2개인 입자를 제조하기 위해 먼저 황산니켈, 황산코발트 및 황산망간을 혼합하여 조성이 NiX1Coy1Mnz1OH2 (x1,y1,z1)인 제 1 금속 수용액과 NiX2Coy2Mnz2OH2 (x2,y2,z2)인 제 2 금속 수용액을 제조하고, 상기 제 1 금속 수용액과 제 2 금속 수용액의 혼합 비율을 바꾸면서 혼합하면서 0.7 리터/시간으로, 25 mol 농도의 암모니아 용액을 0.07 리터/시간으로 반응기에 연속적으로 투입하여 제 1 농도 구배를 가진 코어부를 제조하였다. To prepare particles having a core concentration gradient of two, first, a solution of Ni X1 Co y1 Mn z1 OH 2 (x1, y1, z1) and Ni X2 Co were prepared by mixing nickel sulfate, cobalt sulfate, and manganese sulfate. A second aqueous metal solution of y2 Mn z2 OH 2 (x2, y2, z2) was prepared, and ammonia solution of 25 mol concentration at 0.7 liter / hour was mixed while changing the mixing ratio of the first and second metal aqueous solutions. Was continuously added to the reactor at 0.07 liter / hour to prepare a core having a first concentration gradient.
이후, 황산니켈, 황산코발트 및 황산망간의 농도가 NiX3Coy3Mnz3OH2 로 일정한 제 3 금속 수용액과 상기 제 2 금속 수용액의 혼합 비율을 바꾸면서 혼합하면서 0.7 리터/시간으로, 25 mol 농도의 암모니아 용액을 0.07 리터/시간으로 반응기에 연속적으로 투입하여 제 2 농도 구배를 가진 코어부를 제조하였다. Thereafter, the concentration of nickel sulfate, cobalt sulfate, and manganese sulfate was adjusted to 0.7 liters / hour while mixing while changing the mixing ratio of the third metal aqueous solution and the second metal aqueous solution having a constant Ni X 3 Co y 3 Mn z 3 OH 2 to a concentration of 25 mol. Ammonia solution was continuously added to the reactor at 0.07 liter / hour to prepare a core part having a second concentration gradient.
이후 상기 황산니켈, 황산코발트 및 황산망간의 농도가 NiX4Coy4Mnz4OH2 로 일정한 쉘부 형성용 수용액을 공급하여 제 2 농도 구배를 가진 코어부 말단의 농도와는 다른 농도의 쉘부를 제조하였다. Thereafter, the concentration of nickel sulfate, cobalt sulfate, and manganese sulfate was supplied with an aqueous solution for forming a shell portion having a constant concentration of Ni X 4 Co y 4 Mn z 4 OH 2 to prepare a shell portion having a concentration different from that of the core portion terminal having a second concentration gradient. .
이와 같이 제조된 실시예 11 내지 20에서 상기 금속 수용액의 농도는 아래 표 1과 같다.In Examples 11 to 20 thus prepared, the concentration of the aqueous metal solution is shown in Table 1 below.
표 1
제1금속수용액 제2금속수용액 제3금속수용액 제4금속수용액 쉘부 두께
Ni Co Mn Ni Co Mn Ni Co Mn Ni Co Mn
실시예 1 98 2 2 90 4 6 69 08 23 60 12 28 0.5 ㎛
실시예 2 98 2 2 90 4 6 70 7 23 60 10 30 0.5 ㎛
Table 1
First metal aqueous solution Second metal aqueous solution Tertiary metal solution 4th metal aqueous solution Shell thickness
Ni Co Mn Ni Co Mn Ni Co Mn Ni Co Mn
Example 1 98 2 2 90 4 6 69 08 23 60 12 28 0.5 μm
Example 2 98 2 2 90 4 6 70 7 23 60 10 30 0.5 μm
제조된 금속 복합수산화물을 여과하고, 물 세척한 후에 110℃ 온풍건조기에서 12시간 건조시켰다. 상기 금속 복합 수산화물과 수산화리튬(LiOH)을 1 : 1 몰비로 혼합한 후에 2℃/min의 승온 속도로 가열한 후 450℃에서 10시간 유지시켜 예비 소성을 수행하였으며, 뒤이어 700~900 ℃에서 10시간 소성시켜 양극 활물질 분말을 얻었다. The prepared metal composite hydroxide was filtered, washed with water, and dried in a 110 ° C. hot air dryer for 12 hours. After mixing the metal composite hydroxide and lithium hydroxide (LiOH) in a 1: 1 molar ratio, and heated at a temperature increase rate of 2 ℃ / min and maintained at 450 ℃ for 10 hours, followed by pre-firing at 700 ~ 900 ℃ It baked by time and obtained the positive electrode active material powder.
<비교예>Comparative Example
Ni80Co6Mn14OH2 로 표시되는 금속 수용액을 사용하여 입자 전체에서 니켈, 코발트, 망간의 농도가 일정한 비교예 의 복합 산화물 입자를 제조하였다. Using a metal aqueous solution represented by Ni 80 Co 6 Mn 14 OH 2 It was prepared a composite oxide particle of Comparative Example in which the concentration of nickel, cobalt, manganese is constant throughout the particle.
<실험예> EDX 사진 측정Experimental Example: EDX Photo Measurement
상기 실시예 1 에서 제조된 입자의 중심으로부터 거리에 따른 Ni, Mn, Co 의 농도를 EDX로 측정하고 그 결과를 도 1에 나타내었다. 도 1에서 본 발명의 실시예에 따른 입자의 경우 코어부 농도 구배가 2가지이고, 말단의 농도가 유지되는 쉘부를 포함하는 것을 알 수 있다. The concentration of Ni, Mn, Co according to the distance from the center of the particles prepared in Example 1 was measured by EDX and the results are shown in FIG. In the case of the particle according to the embodiment of the present invention in FIG.
<실험예> 충방전 특성, 수명 특성 및 DSC 측정 Experimental Example Charge and Discharge Characteristics, Life Characteristics and DSC Measurements
상기 실시예 1 내지 2, 및 비교예에서 제조된 활물질을 포함하는 전지의 충방전 특성, 수명 특성 및 DSC 특성을 측정하고 아래 표 2 및 도 2 내지 도 5 에 나타내었다. Charge and discharge characteristics, life characteristics and DSC characteristics of the battery including the active material prepared in Examples 1 to 2, and Comparative Examples were measured and shown in Table 2 below and FIGS. 2 to 5.
표 2
Figure PCTKR2014003809-appb-T000001
TABLE 2
Figure PCTKR2014003809-appb-T000001
상기 표 2 및 충방전 특성을 나타내는 도 2로부터 본 발명에 의한 양극활물질을 포함하는 전지의 용량이 220 mAh/g 이상임을 확인할 수 있으며, 이와 같이 고니켈을 포함하여 용량이 발현되지만, 도 5 에서 보는 바와 같이 DSC 특성에서는 비교예보다 발화 온도가 40°C 이상 높아서 열안정성이 크게 개선되는 것을 알 수 있다. From Table 2 and FIG. 2 showing charge and discharge characteristics, it can be seen that the capacity of the battery including the cathode active material according to the present invention is 220 mAh / g or more. Thus, the capacity is expressed including high nickel, but in FIG. 5. As can be seen in the DSC characteristics, the ignition temperature is higher than 40 ° C. than the comparative example it can be seen that the thermal stability is greatly improved.
<실험예>잔류리튬 측정 Experimental Example Residual Lithium Measurement
상기 실시예 1, 비교예 에서 제조된 활물질 입자의 잔류 LiOH 및 Li2CO3 의 양을 측정한 결과는 아래 표 3과 같다. The results of measuring the amount of the residual LiOH and Li 2 CO 3 of the active material particles prepared in Example 1, Comparative Example are shown in Table 3 below.
표 3
잔류 LiOH Li2CO3 합계
비교예 1 7124 5397 12521
실시예 1 3208 3095 6307
TABLE 3
Residual LiOH Li 2 CO 3 Sum
Comparative Example 1 7124 5397 12521
Example 1 3208 3095 6307
상기 표 3에서 본 발명의 실시예에 의한 경우 잔류 리튬이 비교예의 50% 수준으로 감소하는 것을 확인할 수 있다. In Example 3 of the present invention it can be seen that the residual lithium is reduced to 50% of the comparative example.
<실험예> 탭밀도 및 BET 표면적 측정 Experimental Example Determination of Tap Density and BET Surface Area
상기 실시예 1, 비교예1 에서 제조된 활물질 입자의 탭밀도는 아래 표 4와 같다. The tap density of the active material particles prepared in Example 1 and Comparative Example 1 is shown in Table 4 below.
표 4
탭밀도
실시예1 2.52
비교예1 2.62
Table 4
Tap density
Example 1 2.52
Comparative Example 1 2.62
본 발명에 의한 양극활물질은 니켈, 망간, 코발트가 농도 구배를 가지는 코어부의 표면에 농도가 일정한 쉘부를 형성함으로써 수명 특성과 충방전 특성이 우수하여 고용량을 나타내면서도 결정 구조가 안정화되어 고전압으로 사용시에도 구조 안정성을 나타낸다. The positive electrode active material according to the present invention forms a shell portion having a constant concentration on the surface of the core portion having a concentration gradient of nickel, manganese, and cobalt, so that the crystal structure is stabilized while exhibiting high capacity due to excellent life characteristics and charge / discharge characteristics. Structural stability.

Claims (8)

  1. 니켈, 망간 및 코발트의 농도가 중심으로부터 표면 방향으로 구배를 나타내는 코어부; 및 상기 니켈, 망간 및 코발트의 농도가 일정한 쉘부; 를 포함하고, A core portion in which the concentrations of nickel, manganese and cobalt exhibit a gradient from the center to the surface direction; And a shell portion having a constant concentration of nickel, manganese, and cobalt; Including,
    상기 코어부는 상기 니켈, 망간 및 코발트의 중심의 농도가 CC1-Ni, CC1-Co, CC1-Mn 으로 표시되고, The core portion is represented by the concentration of the center of the nickel, manganese and cobalt as CC1-Ni, CC1-Co, CC1-Mn,
    상기 코어부는 농도 구배 크기가 각각 CS1-Ni, CS1-Mn, CS1-Co 인 제 1 코어부; 및 The core portion may have a concentration gradient size of each of the first core portion CS1-Ni, CS1-Mn, CS1-Co; And
    상기 니켈, 망간 및 코발트의 농도 구배 크기가 각각 CS2-Ni, CS2-Mn, CS2-Co 인 제 2 코어부;를 포함하고,And a second core portion having concentration gradient sizes of nickel, manganese, and cobalt, respectively, CS2-Ni, CS2-Mn, and CS2-Co.
    상기 중심에서의 니켈의 농도 CC1-Ni는 0.95 이상이고, The concentration of CC 1 -Ni in the center is 0.95 or more,
    상기 쉘부에서의 니켈, 망간 및 코발트의 농도가 SC-Ni, SC-Mn, SC-Co 로 표시되고 상기 쉘부에서의 니켈 농도 SC1-Ni 는 0.6 이하인 리튬 이차 전지용 양극활물질.Nickel, manganese, and cobalt concentration in the shell portion is represented by SC-Ni, SC-Mn, SC-Co and nickel concentration SC1-Ni in the shell portion is a positive electrode active material for a lithium secondary battery.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 제 1 코어부에서의 니켈, 망간 및 코발트의 농도 구배 크기 CS1-Ni, CS1-Mn, CS1-Co, 와 상기 제 2 코어부에서의 니켈, 망간 및 코발트의 농도 구배 크기 CS2-Ni, CS2-Mn, CS2-Co가 Concentration gradient sizes of nickel, manganese and cobalt in the first core portion CS1-Ni, CS1-Mn, CS1-Co, and concentration gradient sizes of nickel, manganese and cobalt in the second core portion CS2-Ni, CS2 -Mn, CS2-Co is
    CS1-Ni<0, CS1-Mn>0, CS1-Co>0, CS2-Ni<0, CS2-Mn>0, CS2-Co>0 인 것을 특징으로 하는 리튬 이차 전지용 양극활물질CS1-Ni <0, CS1-Mn> 0, CS1-Co> 0, CS2-Ni <0, CS2-Mn> 0, CS2-Co> 0, the positive electrode active material for a lithium secondary battery
  3. 제 1 항에 있어서, The method of claim 1,
    상기 쉘부에서의 니켈, 망간 및 코발트의 농도가 SC1-Ni, SC1-Mn, SC1-Co 로 표시되고 상기 쉘부에서의 니켈, 망간 및 코발트의 농도가 일정한 것을 특징으로 하는 리튬 이차 전지용 양극활물질Nickel, manganese and cobalt concentration in the shell portion is represented by SC1-Ni, SC1-Mn, SC1-Co and the concentration of nickel, manganese and cobalt in the shell portion is a positive electrode active material for lithium secondary battery
  4. 제 1 항에 있어서, The method of claim 1,
    상기 쉘부의 농도 SC1-Ni, SC1-Mn, SC1-Co 는 상기 코어부의 최외각의 농도와 동일한 것을 특징으로 하는 리튬 이차 전지용 양극활물질Concentrations SC1-Ni, SC1-Mn, and SC1-Co of the shell portion are the same as the concentration of the outermost portion of the core portion.
  5. 제1항에 있어서,The method of claim 1,
    상기 코어부와 상기 쉘부의 평균 코발트 농도는 6%인 리튬 이차 전지용 양극 활물질.The average cobalt concentration of the core portion and the shell portion is 6% positive electrode active material for lithium secondary batteries.
  6. 제1항에 있어서,The method of claim 1,
    상기 제1 코어부와 제2 코어부가 접하는 지점에서의 니켈 농도가 0.9인 리튬 이차 전지용 양극 활물질.The positive electrode active material for lithium secondary batteries whose nickel concentration is 0.9 at the point where the said 1st core part and the 2nd core part contact | connect.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 쉘부의 부피는 전체 부피의 30% 이하인 것을 특징으로 하는 리튬 이차 전지용 양극활물질. The shell portion has a volume of 30% or less of the total volume of the cathode active material for a lithium secondary battery.
  8. 제 1 항 내지 제 7 항 중 어느 하나의 리튬 이차 전지용 양극활물질을 포함하는 리튬 이차 전지 A lithium secondary battery comprising the cathode active material for any one of claims 1 to 7
PCT/KR2014/003809 2011-01-05 2014-04-29 Anode active material for lithium rechargeable battery WO2014178624A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/926,770 US20160049648A1 (en) 2013-04-29 2015-10-29 Positive electrode active material and secondary battery comprising the same
US15/264,829 US10930922B2 (en) 2011-01-05 2016-09-14 Positive electrode active material and secondary battery comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130047797 2013-04-29
KR10-2013-0047797 2013-04-29
KR1020140051899A KR101731145B1 (en) 2013-04-29 2014-04-29 Cathod active material for lithium rechargeable battery
KR10-2014-0051899 2014-04-29

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2014/003815 Continuation-In-Part WO2014178628A1 (en) 2011-01-05 2014-04-29 Anode active material for lithium secondary battery
US15/264,829 Continuation-In-Part US10930922B2 (en) 2011-01-05 2016-09-14 Positive electrode active material and secondary battery comprising the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/926,770 Continuation-In-Part US20160049648A1 (en) 2011-01-05 2015-10-29 Positive electrode active material and secondary battery comprising the same

Publications (1)

Publication Number Publication Date
WO2014178624A1 true WO2014178624A1 (en) 2014-11-06

Family

ID=51843679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003809 WO2014178624A1 (en) 2011-01-05 2014-04-29 Anode active material for lithium rechargeable battery

Country Status (1)

Country Link
WO (1) WO2014178624A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3016183A3 (en) * 2014-10-29 2016-08-10 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Positive electrode active material and secondary battery comprising the same
EP2993718A4 (en) * 2013-04-29 2016-10-05 Iucf Hyu Anode active material for lithium rechargeable battery
EP3416218A4 (en) * 2016-02-08 2019-10-23 Murata Manufacturing Co., Ltd. Secondary battery positive electrode active material, secondary battery positive electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic apparatus
CN110931768A (en) * 2019-11-17 2020-03-27 新乡天力锂能股份有限公司 Ternary positive electrode material of high-nickel monocrystal lithium ion battery and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010081181A (en) * 2000-02-10 2001-08-29 김순택 Positive active material for lithium secondary battery and method of preparing same
KR20120009891A (en) * 2010-07-22 2012-02-02 주식회사 에코프로 Manufacturing method of positive active material for lithium secondary battery, positive active material manufactured by the same and lithium secondary battery using positive active material
KR20120079801A (en) * 2011-01-05 2012-07-13 한양대학교 산학협력단 Cathod active material, method for preparing the same, lithium secondary battery comprising the same
KR20120121235A (en) * 2011-04-26 2012-11-05 국립대학법인 울산과학기술대학교 산학협력단 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20130001703A (en) * 2011-06-27 2013-01-04 주식회사 에코프로 Cathod active material, lithium rechargeble battery including the same, and method of activiting the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010081181A (en) * 2000-02-10 2001-08-29 김순택 Positive active material for lithium secondary battery and method of preparing same
KR20120009891A (en) * 2010-07-22 2012-02-02 주식회사 에코프로 Manufacturing method of positive active material for lithium secondary battery, positive active material manufactured by the same and lithium secondary battery using positive active material
KR20120079801A (en) * 2011-01-05 2012-07-13 한양대학교 산학협력단 Cathod active material, method for preparing the same, lithium secondary battery comprising the same
KR20120121235A (en) * 2011-04-26 2012-11-05 국립대학법인 울산과학기술대학교 산학협력단 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20130001703A (en) * 2011-06-27 2013-01-04 주식회사 에코프로 Cathod active material, lithium rechargeble battery including the same, and method of activiting the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2993718A4 (en) * 2013-04-29 2016-10-05 Iucf Hyu Anode active material for lithium rechargeable battery
US10490809B2 (en) 2013-04-29 2019-11-26 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Positive electrode active material for lithium secondary battery
EP3016183A3 (en) * 2014-10-29 2016-08-10 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Positive electrode active material and secondary battery comprising the same
EP3416218A4 (en) * 2016-02-08 2019-10-23 Murata Manufacturing Co., Ltd. Secondary battery positive electrode active material, secondary battery positive electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic apparatus
CN110931768A (en) * 2019-11-17 2020-03-27 新乡天力锂能股份有限公司 Ternary positive electrode material of high-nickel monocrystal lithium ion battery and preparation method

Similar Documents

Publication Publication Date Title
KR101731145B1 (en) Cathod active material for lithium rechargeable battery
JP4061668B2 (en) Lithium ion non-aqueous electrolyte secondary battery
WO2013147537A1 (en) Method for preparing cathode active material precursor for lithium secondary battery, cathode active material precursor for lithium secondary battery prepared thereby, and cathode active material for lithium secondary battery containing same
CN106848262B (en) Positive active material having all-particle concentration gradient for lithium secondary battery, method of preparing the same, and lithium secondary battery having the same
JP4171848B2 (en) Lithium ion non-aqueous electrolyte secondary battery
JP4197002B2 (en) Cathode active material for lithium ion non-aqueous electrolyte secondary battery and method for producing the same
JP4784608B2 (en) Cathode active material for lithium ion non-aqueous electrolyte secondary battery and method for producing the same
JP4200539B2 (en) Lithium ion non-aqueous electrolyte secondary battery
KR100815583B1 (en) Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP3994238B2 (en) Nonaqueous electrolyte lithium secondary battery
KR20110034592A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for production of positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2011065651A9 (en) Anode made by a combination of two components, and lithium secondary battery using same
WO2011065650A9 (en) Anode made by a combination of two components, and lithium secondary battery using same
WO2011122865A2 (en) Positive electrode active material and lithium secondary battery using same
JP4235702B2 (en) Positive electrode active material, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the same
WO2014178624A1 (en) Anode active material for lithium rechargeable battery
KR101190226B1 (en) Cathode active material for a lithium secondary battery, preparation thereof, and a lithium secondary battery containing the same
WO2011136550A2 (en) Cathode active material and lithium secondary battery using same
JP2019527917A (en) Manufacturing method of secondary battery electrode suitable for long life
WO2010147389A2 (en) Positive electrode active material for lithium secondary battery
WO2016068682A1 (en) Transition metal oxide precursor, lithium composite transition metal oxide, positive electrode comprising same, and secondary battery
JP4013327B2 (en) Non-aqueous secondary battery
WO2014010849A1 (en) Precursor for preparing lithium composite transition metal oxide
WO2016114586A1 (en) Anode active material for lithium secondary battery and lithium secondary battery comprising same
JP4026207B2 (en) Method for producing negative electrode material for lithium ion non-aqueous secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/02/2016).

122 Ep: pct application non-entry in european phase

Ref document number: 14791007

Country of ref document: EP

Kind code of ref document: A1