WO2014178244A1 - Substrate processing apparatus, device manufacturing method, and cylindrical mask - Google Patents

Substrate processing apparatus, device manufacturing method, and cylindrical mask Download PDF

Info

Publication number
WO2014178244A1
WO2014178244A1 PCT/JP2014/058590 JP2014058590W WO2014178244A1 WO 2014178244 A1 WO2014178244 A1 WO 2014178244A1 JP 2014058590 W JP2014058590 W JP 2014058590W WO 2014178244 A1 WO2014178244 A1 WO 2014178244A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
substrate
cylindrical
pattern
projection
Prior art date
Application number
PCT/JP2014/058590
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 正紀
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201480037519.5A priority Critical patent/CN105359040B/en
Priority to JP2015514784A priority patent/JP6269660B2/en
Priority to KR1020197025601A priority patent/KR102079793B1/en
Priority to KR1020157033942A priority patent/KR101924255B1/en
Priority to KR1020187034083A priority patent/KR102019620B1/en
Priority to KR1020187034082A priority patent/KR101979562B1/en
Priority to KR1020207004470A priority patent/KR102096961B1/en
Publication of WO2014178244A1 publication Critical patent/WO2014178244A1/en
Priority to HK16103220.8A priority patent/HK1215308A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/24Curved surfaces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/704Scanned exposure beam, e.g. raster-, rotary- and vector scanning

Definitions

  • the present invention relates to a substrate processing apparatus that projects a mask pattern onto a substrate, and exposes the pattern onto the substrate, a device manufacturing method, and a cylindrical mask used therefor.
  • the device manufacturing system includes a substrate processing apparatus such as an exposure apparatus.
  • the substrate processing apparatus described in Patent Document 1 projects an image of a pattern formed on a mask arranged in an illumination area onto a substrate or the like arranged in a projection area, and exposes the pattern on the substrate.
  • Masks used in the substrate processing apparatus include planar ones and cylindrical ones.
  • the substrate processing apparatus can continuously expose the substrate by turning the mask into a cylindrical shape.
  • a substrate processing apparatus there is a roll-to-roll method in which a substrate is continuously fed into a long sheet form below a projection region.
  • the substrate processing apparatus can continuously transport both the substrate and the mask by rotating the cylindrical mask and using the roll-to-roll method as the substrate transport method. .
  • the substrate processing apparatus is usually required to efficiently expose the pattern on the substrate and improve the productivity.
  • a cylindrical mask is used as the mask.
  • An object of an aspect of the present invention is to provide a substrate processing apparatus, a device manufacturing method, and a cylindrical mask capable of producing a high-quality substrate with high productivity.
  • a projection optical system that projects a light beam from a mask pattern arranged in an illumination area of illumination light onto a projection area where a substrate is arranged, and a cylinder with a predetermined curvature in the illumination area
  • a mask support member for supporting the mask pattern along the first curved surface, a substrate support member for supporting the substrate along the predetermined second surface in the projection area, and the mask pattern are predetermined.
  • a driving mechanism that rotates the mask support member so as to move in the scanning exposure direction and moves the substrate support member so that the substrate moves in the scanning exposure direction.
  • forming the pattern of the mask on the substrate using the substrate processing apparatus according to the first aspect supplying the substrate to the substrate processing apparatus, A device manufacturing method is provided.
  • a mask pattern for an electronic device is formed along a cylindrical outer peripheral surface, and the cylindrical mask is rotatable around a center line, and the outer peripheral surface has a diameter of ⁇ .
  • the cylindrical base material has a length in the direction of the center line of the outer peripheral surface of La, and the maximum length in the direction of the central line of the mask pattern that can be formed on the outer peripheral surface of the cylindrical base material
  • a cylindrical mask is provided in which the ratio L / ⁇ of the diameter ⁇ to the length L is set in the range of 1.3 ⁇ L / ⁇ ⁇ 3.8 in the range of L ⁇ La.
  • a cylindrical mask in which a mask pattern is formed along a cylindrical surface having a constant radius from a predetermined center line and is mounted on an exposure apparatus so as to be rotatable around the center line.
  • the cylindrical surface includes a display screen region having a long side dimension Ld, a short side dimension Lc, an aspect ratio Asp of Ld / Lc, and a peripheral circuit region provided adjacent to the periphery of the display screen region.
  • Mask regions are formed in a row with a spacing Sx in the circumferential direction of the cylindrical surface, with n (n ⁇ 2) arranged side by side, and the longitudinal dimension L of the mask region is set to e of the long side dimension Ld of the display screen region.
  • the center line of the cylindrical surface When the dimension in the short direction of the mask region is set to e 2 times (e 2 ⁇ 1) of the short side dimension Lc of the display screen region (e 1 ⁇ 1), the center line of the cylindrical surface
  • a cylindrical mask is provided in which the diameter ⁇ , the number n, and the spacing Sx are set so that 3 ⁇ L / ⁇ ⁇ 3.8.
  • the relationship between the diameter ⁇ and the length L of the cylindrical surface shape held by the mask support member or the cylindrical surface shape of the pattern formed on the mask is set within the above range.
  • the device pattern can be efficiently exposed and transferred with high productivity.
  • panels with various display sizes can be used even in the case of multi-planar arrangement in which a plurality of display panel patterns are arranged along the peripheral surface of the cylindrical mask. Can be arranged efficiently.
  • FIG. 1 is a diagram illustrating an overall configuration of a device manufacturing system according to the first embodiment.
  • FIG. 2 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the first embodiment.
  • FIG. 3 is a view showing the arrangement of illumination areas and projection areas of the exposure apparatus shown in FIG.
  • FIG. 4 is a diagram showing the configuration of the illumination optical system and the projection optical system of the exposure apparatus shown in FIG.
  • FIG. 5 is a diagram showing the state of the illumination light beam irradiated on the cylindrical mask and the state of the projected light beam generated from the cylindrical mask.
  • FIG. 6 is a perspective view showing a schematic configuration of a cylindrical drum and a mask constituting the cylindrical mask.
  • FIG. 7 is a development view showing an arrangement example when one mask for the display panel is cut on the mask surface of the cylindrical mask.
  • FIG. 8 is a development view showing an arrangement example in which three masks of the same size are arranged in a line on a mask surface of a cylindrical mask and three chamfers are formed.
  • FIG. 9 is a development view showing an arrangement example in which four masks of the same size are arranged in a line on the mask surface of the cylindrical mask and the four surfaces are chamfered.
  • FIG. 10 is a development view showing an arrangement example in which four masks of the same size are taken in two rows and two columns on the mask surface of the cylindrical mask.
  • FIG. 11 is a development view illustrating an example of a two-chamfer arrangement of a display panel mask having an aspect ratio of 2: 1.
  • FIG. 12 is a graph simulating the relationship between the diameter of the cylindrical mask and the exposure slit width under a specific allowable defocus amount.
  • FIG. 13 is a developed view showing a specific example in the case of taking one face of a mask for a 60-inch display panel.
  • FIG. 14 is a development view showing an example of a two-chamfer arrangement of a mask.
  • FIG. 15 is a development view showing a first arrangement example of a two-chamfer mask for a 32-inch display panel.
  • FIG. 16 is a development view showing a second arrangement example of a two-chamfer mask for a 32-inch display panel.
  • FIG. 12 is a graph simulating the relationship between the diameter of the cylindrical mask and the exposure slit width under a specific allowable defocus amount.
  • FIG. 13 is a developed view showing a specific example in the
  • FIG. 17 is a developed view showing a specific example in the case of taking one mask for a 32-inch display panel.
  • FIG. 18 is a developed view showing a specific arrangement example of three-chamfering of a mask for a 32-inch display panel.
  • FIG. 19 is a development view showing a specific arrangement example of three-chamfering of a mask for a 37-inch display panel.
  • FIG. 20 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the second embodiment.
  • FIG. 21 is a view showing the overall arrangement of an exposure apparatus (substrate processing apparatus) according to the third embodiment.
  • FIG. 22 is a flowchart showing a device manufacturing method by the device manufacturing system.
  • a substrate processing apparatus that performs exposure processing on a substrate is an exposure apparatus.
  • the exposure apparatus is incorporated in a device manufacturing system that manufactures devices by performing various processes on the exposed substrate.
  • a device manufacturing system will be described.
  • FIG. 1 is a diagram illustrating a configuration of a device manufacturing system according to the first embodiment.
  • a device manufacturing system 1 shown in FIG. 1 is a line (flexible display manufacturing line) for manufacturing a flexible display as a device. Examples of the flexible display include an organic EL display.
  • the device manufacturing system 1 sends out the substrate P from the supply roll FR1 in which the flexible substrate P is wound in a roll shape, and continuously performs various processes on the delivered substrate P.
  • a so-called roll-to-roll system is adopted in which the processed substrate P is wound around the collection roll FR2 as a flexible device.
  • the substrate P which is a film-like sheet
  • the substrates P sent out from the supply roll FR1 are sequentially supplied to n processing apparatuses U1, U2. , U3, U4, U5,... Un, and the example until being wound around the collecting roll FR2.
  • n processing apparatuses U1, U2. , U3, U4, U5,... Un and the example until being wound around the collecting roll FR2.
  • a foil (foil) made of a resin or a metal such as stainless steel or an alloy is used for the substrate P.
  • the material of the resin film include polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, and vinyl acetate resin. Includes one or more.
  • the thermal expansion coefficient may be set smaller than a threshold corresponding to the process temperature or the like, for example, by mixing an inorganic filler with a resin film.
  • the inorganic filler may be, for example, titanium oxide, zinc oxide, alumina, silicon oxide or the like.
  • the substrate P may be a single layer of ultrathin glass having a thickness of about 100 ⁇ m manufactured by a float process or the like, or a laminate in which the above resin film, foil, or the like is bonded to the ultrathin glass. It may be.
  • the substrate P configured in this way becomes a supply roll FR1 by being wound in a roll shape, and this supply roll FR1 is mounted on the device manufacturing system 1.
  • the device manufacturing system 1 to which the supply roll FR1 is mounted repeatedly executes various processes for manufacturing one device on the substrate P sent out from the supply roll FR1. For this reason, the processed substrate P is in a state where a plurality of devices are connected. That is, the substrate P sent out from the supply roll FR1 is a multi-sided substrate.
  • the substrate P was modified and activated in advance by a predetermined pretreatment, or a fine partition structure (uneven structure) for precise patterning was formed on the surface by an imprint method or the like. Things can be used.
  • the treated substrate P is recovered as a recovery roll FR2 by being wound into a roll.
  • the collection roll FR2 is attached to a dicing device (not shown).
  • the dicing apparatus to which the collection roll FR2 is mounted divides the processed substrate P for each device (dicing) to form a plurality of devices.
  • the dimension in the width direction (short direction) is about 10 cm to 2 m
  • the dimension in the length direction (long direction) is 10 m or more.
  • substrate P is not limited to an above-described dimension.
  • FIG. 1 shows an orthogonal coordinate system in which the X direction, the Y direction, and the Z direction are orthogonal.
  • the X direction is a direction connecting the supply roll FR1 and the recovery roll FR2 in the horizontal plane, and is the left-right direction in FIG.
  • the Y direction is a direction orthogonal to the X direction in the horizontal plane, and is the front-rear direction in FIG.
  • the Y direction is the axial direction of the supply roll FR1 and the recovery roll FR2.
  • the Z direction is the vertical direction, and is the vertical direction in FIG.
  • the device manufacturing system 1 includes a substrate supply device 2 that supplies a substrate P, processing devices U1 to Un that perform various processes on the substrate P supplied by the substrate supply device 2, and processing is performed by the processing devices U1 to Un.
  • the substrate recovery apparatus 4 that recovers the processed substrate P and the host controller 5 that controls each device of the device manufacturing system 1 are provided.
  • the substrate supply device 2 is rotatably mounted with a supply roll FR1.
  • the substrate supply apparatus 2 includes a driving roller DR1 that sends out the substrate P from the mounted supply roll FR1, and an edge position controller EPC1 that adjusts the position of the substrate P in the width direction (Y direction).
  • the driving roller DR1 rotates while sandwiching both front and back surfaces of the substrate P, and feeds the substrate P to the processing apparatuses U1 to Un by feeding the substrate P in the transport direction from the supply roll FR1 to the collection roll FR2.
  • the edge position controller EPC1 sets the substrate P so that the position at the end (edge) in the width direction of the substrate P is within the range of about ⁇ 10 ⁇ m to about ⁇ 10 ⁇ m with respect to the target position.
  • the position of the substrate P in the width direction is corrected by moving P in the width direction.
  • the substrate collection device 4 is rotatably mounted with a collection roll FR2.
  • the substrate recovery apparatus 4 includes a driving roller DR2 that draws the processed substrate P toward the recovery roll FR2, and an edge position controller EPC2 that adjusts the position of the substrate P in the width direction (Y direction).
  • the substrate collection device 4 rotates while sandwiching the front and back surfaces of the substrate P by the driving roller DR2, pulls the substrate P in the transport direction, and rotates the collection roll FR2, thereby winding the substrate P.
  • the edge position controller EPC2 is configured in the same manner as the edge position controller EPC1, and corrects the position in the width direction of the substrate P so that the end portion (edge) in the width direction of the substrate P does not vary in the width direction. .
  • the processing device U1 is a coating device that applies a photosensitive functional liquid to the surface of the substrate P supplied from the substrate supply device 2.
  • a photosensitive functional liquid for example, a photoresist, a photosensitive silane coupling material (photosensitive lyophobic modifier, photosensitive plating reducing material, etc.), UV curable resin liquid, or the like is used.
  • the processing apparatus U1 is provided with a coating mechanism Gp1 and a drying mechanism Gp2 in order from the upstream side in the transport direction of the substrate P.
  • the coating mechanism Gp1 includes a pressure drum roller R1 around which the substrate P is wound, and a coating roller R2 facing the pressure drum roller R1.
  • the coating mechanism Gp1 sandwiches the substrate P between the impression cylinder roller R1 and the application roller R2 in a state where the supplied substrate P is wound around the impression cylinder roller R1. Then, the application mechanism Gp1 applies the photosensitive functional liquid by the application roller R2 while rotating the impression cylinder roller R1 and the application roller R2 to move the substrate P in the transport direction.
  • the drying mechanism Gp2 blows drying air such as hot air or dry air, removes the solute (solvent or water) contained in the photosensitive functional liquid, and dries the substrate P coated with the photosensitive functional liquid. A photosensitive functional layer is formed on the substrate P.
  • the processing device U2 is a heating device that heats the substrate P conveyed from the processing device U1 to a predetermined temperature (for example, about several tens to 120 ° C.) in order to stabilize the photosensitive functional layer formed on the surface of the substrate P. It is.
  • the processing apparatus U2 is provided with a heating chamber HA1 and a cooling chamber HA2 in order from the upstream side in the transport direction of the substrate P.
  • the heating chamber HA1 is provided with a plurality of rollers and a plurality of air turn bars therein, and the plurality of rollers and the plurality of air turn bars constitute a transport path for the substrate P.
  • the plurality of rollers are provided in rolling contact with the back surface of the substrate P, and the plurality of air turn bars are provided in a non-contact state on the surface side of the substrate P.
  • the plurality of rollers and the plurality of air turn bars are arranged to form a meandering transport path so as to lengthen the transport path of the substrate P.
  • the substrate P passing through the heating chamber HA1 is heated to a predetermined temperature while being transported along a meandering transport path.
  • the cooling chamber HA2 cools the substrate P to the environmental temperature so that the temperature of the substrate P heated in the heating chamber HA1 matches the environmental temperature of the subsequent process (processing apparatus U3).
  • the cooling chamber HA2 is provided with a plurality of rollers, and the plurality of rollers are arranged in a meandering manner in order to lengthen the conveyance path of the substrate P, similarly to the heating chamber HA1.
  • the substrate P passing through the cooling chamber HA2 is cooled while being transferred along a meandering transfer path.
  • a driving roller DR3 is provided on the downstream side in the transport direction of the cooling chamber HA2, and the driving roller DR3 rotates while sandwiching the substrate P that has passed through the cooling chamber HA2, thereby moving the substrate P toward the processing apparatus U3. Supply.
  • the processing apparatus (substrate processing apparatus) U3 projects and exposes a pattern such as a circuit for display or wiring on the substrate (photosensitive substrate) P having a photosensitive functional layer formed on the surface supplied from the processing apparatus U2. Exposure apparatus. Although details will be described later, the processing unit U3 illuminates the reflective cylindrical mask M (cylindrical drum 21) with an illumination light beam, and projects and exposes a projection light beam obtained by the illumination light beam being reflected by the mask M onto the substrate P. To do.
  • the processing apparatus U3 includes a driving roller DR4 that sends the substrate P supplied from the processing apparatus U2 to the downstream side in the transport direction, and an edge position controller EPC3 that adjusts the position of the substrate P in the width direction (Y direction).
  • the driving roller DR4 rotates while pinching both the front and back surfaces of the substrate P, and sends the substrate P to the downstream side in the transport direction, so that the drive roller DR4 is directed to a rotating drum (substrate support drum) 25 that stably supports the substrate P at the exposure position.
  • the edge position controller EPC3 is configured in the same manner as the edge position controller EPC1, and corrects the position in the width direction of the substrate P so that the width direction of the substrate P at the exposure position becomes the target position.
  • the processing apparatus U3 includes a buffer unit DL having two sets of drive rollers DR6 and DR7 that send the substrate P to the downstream side in the transport direction in a state in which the substrate P after exposure is slackened.
  • the two sets of drive rollers DR6 and DR7 are arranged at a predetermined interval in the transport direction of the substrate P.
  • the drive roller DR6 rotates while sandwiching the upstream side of the substrate P to be transported, and the drive roller DR7 rotates while sandwiching the downstream side of the substrate P to be transported to direct the substrate P toward the processing apparatus U4. And supply.
  • the substrate P is provided with a slack, it is possible to absorb fluctuations in the conveyance speed that occur on the downstream side in the conveyance direction with respect to the driving roller DR7, so that the influence of the exposure processing on the substrate P due to the fluctuations in the conveyance speed is cut off. can do.
  • the processing apparatus U3 in order to relatively align (align) the image of a part of the mask pattern of the cylindrical mask M (hereinafter also simply referred to as the mask M) and the substrate P, it is formed in advance on the substrate P.
  • Alignment microscopes AMG1 and AMG2 are provided for detecting the alignment mark thus formed or a reference pattern formed on a part of the outer peripheral surface of the rotary drum (substrate support drum) 25.
  • the processing apparatus U4 is a wet processing apparatus that performs wet development processing, electroless plating processing, and the like on the exposed substrate P transferred from the processing apparatus U3.
  • the processing apparatus U4 has three processing tanks BT1, BT2, BT3 hierarchized in the vertical direction (Z direction) and a plurality of rollers for transporting the substrate P therein.
  • the plurality of rollers are arranged so as to serve as a conveyance path through which the substrate P sequentially passes through the three processing tanks BT1, BT2, and BT3.
  • a driving roller DR8 is provided on the downstream side in the transport direction of the processing tank BT3, and the driving roller DR8 rotates while sandwiching the substrate P that has passed through the processing tank BT3, so that the substrate P is directed toward the processing apparatus U5. Supply.
  • the processing apparatus U5 is a drying apparatus which dries the board
  • the processing apparatus U5 removes droplets attached to the substrate P wet-processed in the processing apparatus U4 and adjusts the moisture content of the substrate P.
  • the substrate P dried by the processing apparatus U5 is further transferred to the processing apparatus Un through several processing apparatuses. Then, after being processed by the processing device Un, the substrate P is wound up on the recovery roll FR2 of the substrate recovery device 4.
  • the host control device 5 performs overall control of the substrate supply device 2, the substrate recovery device 4, and the plurality of processing devices U1 to Un.
  • the host control device 5 controls the substrate supply device 2 and the substrate recovery device 4 to transport the substrate P from the substrate supply device 2 toward the substrate recovery device 4. Further, the host control device 5 controls the plurality of processing devices U1 to Un to perform various processes on the substrate P while synchronizing with the transport of the substrate P.
  • FIG. 2 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the first embodiment.
  • FIG. 3 is a view showing the arrangement of illumination areas and projection areas of the exposure apparatus shown in FIG.
  • FIG. 4 is a diagram showing the configuration of the illumination optical system and the projection optical system of the exposure apparatus shown in FIG.
  • FIG. 5 is a diagram showing a state of an illumination light beam irradiated on the mask and a projected light beam emitted from the mask.
  • the exposure apparatus U3 shown in FIG. 2 is a so-called scanning exposure apparatus, and projects a mask pattern image formed on the outer peripheral surface of the cylindrical mask M onto the surface of the substrate P while transporting the substrate P in the transport direction.
  • Exposure. 2 is an orthogonal coordinate system in which the X direction, the Y direction, and the Z direction are orthogonal to each other, and is an orthogonal coordinate system similar to that in FIG.
  • the mask M (cylindrical mask M in FIG. 1) used in the exposure apparatus U3 will be described.
  • the mask M is a reflective mask using, for example, a metal cylinder.
  • the pattern of the mask M is formed on a cylindrical base material having an outer peripheral surface (circumferential surface) having a curvature radius Rm centered on the first axis AX1 extending in the Y direction.
  • the circumferential surface of the mask M is a mask surface (first surface) P1 on which a predetermined mask pattern is formed.
  • the mask surface P1 includes a high reflection part that reflects the light beam in a predetermined direction with high efficiency and a reflection suppression part (low reflection part) that does not reflect the light beam in the predetermined direction or reflects it with low efficiency.
  • the mask pattern is formed by a high reflection portion and a reflection suppression portion.
  • the reflection suppressing unit only needs to reflect less light in a predetermined direction.
  • the reflection suppressing unit can be made of a material that absorbs light, a material that transmits light, or a material that diffracts light in a direction other than a specific direction.
  • the exposure apparatus U3 can use a mask made of a cylindrical cylindrical base material made of metal such as aluminum or SUS as the mask M having the above configuration. Therefore, the exposure apparatus U3 can perform exposure using an inexpensive mask.
  • the mask M may be formed with all or part of the panel pattern corresponding to one display device, or may be formed with a panel pattern corresponding to a plurality of display devices.
  • the mask M has a multi-face pattern in which a plurality of panel patterns are repeatedly formed in the circumferential direction around the first axis AX1, or a plurality of small panel patterns in a direction parallel to the first axis AX1. It may be chamfered. Further, the mask M is a multi-face pattern of different size patterns in which a panel pattern for the first display device and a panel pattern for a second display device having a size different from that of the first display device are formed. Also good.
  • the mask M should just have the circumferential surface used as the curvature radius Rm centering on 1st axis
  • the mask M may be an arc-shaped plate having a circumferential surface.
  • the mask M may be a thin plate, or the thin plate mask M may be curved to have a circumferential surface.
  • the exposure apparatus U3 shown in FIG. 2 In addition to the driving rollers DR4, DR6, DR7, the substrate support drum 25, the edge position controller EPC3, and the alignment microscopes AMG1, AMG2, the exposure apparatus U3 includes a mask holding mechanism 11, a substrate support mechanism 12, and an illumination optical system IL. A projection optical system PL, and a low-order control device 16.
  • the exposure apparatus U3 illuminates the light emitted from the light source device 13 via the illumination optical system IL and a part of the projection optical system PL.
  • the mask holding drum 21 of the mask holding mechanism 11 (hereinafter also referred to as the cylindrical drum 21).
  • the lower-level control device 16 controls each part of the exposure apparatus U3 and causes each part to execute processing.
  • the lower level control device 16 may be a part or all of the higher level control device 5 of the device manufacturing system 1. Further, the lower level control device 16 may be a device controlled by the higher level control device 5 and different from the higher level control device 5.
  • the lower control device 16 includes, for example, a computer.
  • the mask holding mechanism 11 includes a cylindrical drum 21 that holds the mask M, and a first drive unit 22 that rotates the cylindrical drum 21.
  • the cylindrical drum 21 holds the mask M so as to be a cylinder having a radius of curvature Rm with the first axis AX1 of the mask M as the rotation center.
  • the first drive unit 22 is connected to the lower control device 16 and rotates the cylindrical drum 21 around the first axis AX1.
  • the cylindrical drum 21 of the mask holding mechanism 11 directly forms a mask pattern with a high reflection portion and a low reflection portion on the outer peripheral surface thereof, but is not limited to this configuration.
  • the cylindrical drum 21 as the mask holding mechanism 11 may wind and hold a thin plate-like reflective mask M following the outer peripheral surface thereof. Further, the cylindrical drum 21 as the mask holding mechanism 11 may detachably hold a plate-shaped reflective mask M that is previously curved in an arc shape with a radius Rm on the outer peripheral surface of the cylindrical drum 21.
  • the substrate support mechanism 12 includes a substrate support drum 25 that supports the substrate P, a second drive unit 26 that rotates the substrate support drum 25, a pair of air turn bars ATB1 and ATB2, and a pair of guide rollers 27 and 28.
  • the substrate support drum 25 is formed in a cylindrical shape having an outer peripheral surface (circumferential surface) having a curvature radius Rp with the second axis AX2 extending in the Y direction as the center.
  • the first axis AX1 and the second axis AX2 are parallel to each other, and a plane passing (including) the first axis AX1 and the second axis AX2 is a center plane CL.
  • a part of the circumferential surface of the substrate support drum 25 is a support surface P2 that supports the substrate P. That is, the substrate support drum 25 supports the substrate P stably by curving the substrate P into a cylindrical surface by winding the substrate P around the support surface P2.
  • the second drive unit 26 is connected to the lower control device 16 and rotates the substrate support drum 25 about the second axis AX2.
  • a pair of air turn bars ATB1 and ATB2 and a pair of guide rollers 27 and 28 are provided on the upstream side and the downstream side, respectively, in the transport direction of the substrate P with the substrate support drum 25 interposed therebetween.
  • the guide roller 27 guides the substrate P conveyed from the driving roller DR4 to the substrate support drum 25 via the air turn bar ATB1, and the guide roller 28 guides the substrate P conveyed from the air turn bar ATB2 via the substrate support drum 25. Guide to the drive roller DR6.
  • the substrate support mechanism 12 rotates the substrate support drum 25 by the second driving unit 26, thereby supporting the substrate P introduced into the substrate support drum 25 on the support surface P ⁇ b> 2 of the substrate support drum 25 and at a predetermined speed. Send in the scale direction (X direction).
  • the lower-level control device 16 connected to the first drive unit 22 and the second drive unit 26 rotates the cylindrical drum 21 and the substrate support drum 25 synchronously at a predetermined rotation speed ratio, thereby masking the mask M.
  • the projected image of the mask pattern formed on the surface P1 is continuously and repeatedly scanned and exposed on the surface of the substrate P (surface curved along the circumferential surface) wound around the support surface P2 of the substrate support drum 25.
  • the exposure apparatus U3, the first drive unit 22, and the second drive unit 26 serve as the moving mechanism of this embodiment. In the exposure apparatus U ⁇ b> 3 shown in FIG.
  • a portion upstream of the guide roller 27 in the transport direction of the substrate P serves as a substrate supply unit that supplies the substrate P to the support surface P ⁇ b> 2 of the substrate support drum 25.
  • the substrate supply unit may be directly provided with the supply roll FR1 shown in FIG.
  • a portion downstream of the guide roller 28 in the transport direction of the substrate P is a substrate recovery unit that recovers the substrate P from the support surface P ⁇ b> 2 of the substrate support drum 25.
  • the substrate collection unit may be directly provided with the collection roll FR2 shown in FIG.
  • the light source device 13 emits an illumination light beam EL1 that is illuminated by the mask M.
  • the light source device 13 includes a light source 31 and a light guide member 32.
  • the light source 31 is a light source that emits light of a predetermined wavelength.
  • the light source 31 is, for example, a lamp light source such as a mercury lamp, a gas laser light source such as an excimer laser, a solid-state laser light source such as a laser diode or a light emitting diode (LED).
  • Illumination light emitted from the light source 31 can use, for example, ultraviolet emission lines (g-line, h-line, i-line) when using a mercury lamp, and KrF excimer laser light (wavelength 248 nm) when using an excimer laser light source.
  • Far ultraviolet light (DUV light) such as ArF excimer laser light (wavelength 193 nm) can be used.
  • the light source 31 emits the illumination light beam EL1 including a wavelength shorter than the i-line (365 nm wavelength).
  • laser light (wavelength 355 nm) emitted as the third harmonic of the YAG laser and laser light (wavelength 266 nm) emitted as the fourth harmonic of the YAG laser can also be used.
  • the light guide member 32 guides the illumination light beam EL1 emitted from the light source 31 to the illumination optical system IL.
  • the light guide member 32 includes an optical fiber or a relay module using a mirror. Further, when a plurality of illumination optical systems IL are provided, the light guide member 32 divides the illumination light beam EL1 from the light source 31 into a plurality, and guides the plurality of illumination light beams EL1 to the plurality of illumination optical systems IL.
  • the light guide member 32 of the present embodiment causes the illumination light beam EL1 emitted from the light source 31 to enter the polarization beam splitter PBS as light of a predetermined polarization state.
  • the polarizing beam splitter PBS is provided between the mask M and the projection optical system PL for incident illumination of the mask M, reflects a light beam that becomes S-polarized linearly polarized light, and transmits a light beam that becomes P-polarized linearly polarized light. To do. For this reason, the light source device 13 emits the illumination light beam EL1 in which the illumination light beam EL1 incident on the polarization beam splitter PBS becomes a linearly polarized light (S-polarized light). The light source device 13 emits a polarized laser having the same wavelength and phase to the polarization beam splitter PBS.
  • the light source device 13 uses a polarization plane preserving fiber as the light guide member 32 and maintains the polarization state of the laser light output from the light source device 13. Guide the light as it is.
  • the light beam output from the light source 31 may be guided by an optical fiber, and the light output from the optical fiber may be polarized by a polarizing plate. That is, the light source device 13 may polarize the randomly polarized light beam by the polarizing plate when the randomly polarized light beam is guided. Further, the light source device 13 may guide the light beam output from the light source 31 by a relay optical system using a lens or the like.
  • the exposure apparatus U3 of the first embodiment is an exposure apparatus assuming a so-called multi-lens system.
  • 3 is a plan view of the illumination area IR on the mask M held by the cylindrical drum 21 as viewed from the ⁇ Z side (the left figure of FIG. 3), and on the substrate P supported by the substrate support drum 25.
  • a plan view of the projection area PA from the + Z side (the right view of FIG. 3) is shown. 3 indicates the moving direction (rotating direction) of the cylindrical drum 21 and the substrate support drum 25.
  • the multi-lens type exposure apparatus U3 illuminates a plurality of (for example, six in the first embodiment) illumination areas IR1 to IR6 on the mask M with the illumination light beam EL1, respectively, and each illumination light beam EL1 corresponds to each illumination area IR1 to IR6.
  • a plurality of projection light beams EL2 obtained by being reflected by the projection are projected and exposed to a plurality of projection areas PA1 to PA6 (for example, six in the first embodiment) on the substrate P.
  • the plurality of illumination areas IR1 to IR6 includes the first illumination area IR1, the third illumination area IR3, and the fifth illumination area IR5 on the mask M on the upstream side in the rotation direction across the center plane CL.
  • the second illumination region IR2, the fourth illumination region IR4, and the sixth illumination region IR6 are disposed on the mask M on the downstream side in the rotation direction.
  • Each illumination region IR1 to IR6 is an elongated trapezoidal region having parallel short sides and long sides extending in the axial direction (Y direction) of the mask M.
  • each of the trapezoidal illumination areas IR1 to IR6 is an area where the short side is located on the center plane CL side and the long side is located outside.
  • the first illumination region IR1, the third illumination region IR3, and the fifth illumination region IR5 are arranged at predetermined intervals in the axial direction.
  • the second illumination region IR2, the fourth illumination region IR4, and the sixth illumination region IR6 are arranged at a predetermined interval in the axial direction.
  • the second illumination region IR2 is disposed between the first illumination region IR1 and the third illumination region IR3 in the axial direction.
  • the third illumination region IR3 is disposed between the second illumination region IR2 and the fourth illumination region IR4 in the axial direction.
  • the fourth illumination region IR4 is disposed between the third illumination region IR3 and the fifth illumination region IR5 in the axial direction.
  • the fifth illumination region IR5 is disposed between the fourth illumination region IR4 and the sixth illumination region IR6 in the axial direction.
  • the illumination areas IR1 to IR6 are overlapped so that the triangular portions of the hypotenuses of the trapezoidal illumination areas adjacent in the Y direction overlap each other when rotated in the circumferential direction (X direction) of the mask M. Is arranged).
  • the illumination areas IR1 to IR6 are trapezoidal areas, but may be rectangular areas.
  • the mask M has a pattern formation area A3 where a mask pattern is formed and a pattern non-formation area A4 where a mask pattern is not formed.
  • the pattern non-formation area A4 is a low reflection area (reflection suppression part) that hardly reflects the illumination light beam EL1, and is arranged so as to surround the pattern formation area A3 in a frame shape.
  • the first to sixth illumination regions IR1 to IR6 are arranged so as to cover the entire width in the Y direction of the pattern formation region A3.
  • a plurality of (for example, six in the first embodiment) illumination optical systems IL are provided according to the plurality of illumination regions IR1 to IR6.
  • the illumination light beam EL1 from the light source device 13 is incident on each of the plurality of illumination optical systems (divided illumination optical systems) IL1 to IL6.
  • Each illumination optical system IL1 to IL6 guides each illumination light beam EL1 incident from the light source device 13 to each illumination region IR1 to IR6. That is, the first illumination optical system IL1 guides the illumination light beam EL1 to the first illumination region IR1, and similarly, the second to sixth illumination optical systems IL2 to IL6 transmit the illumination light beam EL1 to the second to sixth illumination regions IR2. Lead to IR6.
  • the plurality of illumination optical systems IL1 to IL6 are arranged on the side where the first, third, and fifth illumination regions IR1, IR3, and IR5 are arranged (left side in FIG. 2) with the center plane CL interposed therebetween.
  • IL1, third illumination optical system IL3, and fifth illumination optical system IL5 are arranged.
  • the first illumination optical system IL1, the third illumination optical system IL3, and the fifth illumination optical system IL5 are arranged at a predetermined interval in the Y direction.
  • the plurality of illumination optical systems IL1 to IL6 has the second illumination on the side where the second, fourth, and sixth illumination regions IR2, IR4, and IR6 are disposed (right side in FIG. 2) with the center plane CL interposed therebetween.
  • An optical system IL2, a fourth illumination optical system IL4, and a sixth illumination optical system IL6 are arranged.
  • the second illumination optical system IL2, the fourth illumination optical system IL4, and the sixth illumination optical system IL6 are arranged at a predetermined interval in the Y direction.
  • the second illumination optical system IL2 is disposed between the first illumination optical system IL1 and the third illumination optical system IL3 in the axial direction.
  • the third illumination optical system IL3, the fourth illumination optical system IL4, and the fifth illumination optical system IL5 are arranged between the second illumination optical system IL2 and the fourth illumination optical system IL4 in the axial direction.
  • the first illumination optical system IL1, the third illumination optical system IL3, and the fifth illumination optical system IL5, and the second illumination optical system IL2, the fourth illumination optical system IL4, and the sixth illumination optical system IL6 are from the Y direction. They are arranged symmetrically.
  • the illumination optical systems IL1 to IL6 will be described with reference to FIG. Since each of the illumination optical systems IL1 to IL6 has the same configuration, the first illumination optical system IL1 (hereinafter simply referred to as the illumination optical system IL) will be described as an example.
  • the first illumination optical system IL1 hereinafter simply referred to as the illumination optical system IL
  • the illumination optical system IL Koehler-illuminates the illumination region IR on the mask M with the illumination light beam EL1 from the light source 31 of the light source device 13 so as to illuminate the illumination region IR (first illumination region IR1) with uniform illuminance.
  • the illumination optical system IL is an epi-illumination system using a polarization beam splitter PBS.
  • the illumination optical system IL includes an illumination optical module ILM, a polarization beam splitter PBS, and a quarter wavelength plate 41 in order from the incident side of the illumination light beam EL1 from the light source device 13.
  • the illumination optical module ILM includes a collimator lens 51, a fly-eye lens 52, a plurality of condenser lenses 53, a cylindrical lens 54, and an illumination field stop 55 in order from the incident side of the illumination light beam EL1.
  • the relay lens system 56 is provided on the first optical axis BX1.
  • the collimator lens 51 receives light emitted from the light guide member 32 and irradiates the entire surface on the incident side of the fly-eye lens 52.
  • the center of the exit side surface of the fly-eye lens 52 is disposed on the first optical axis BX1.
  • the fly-eye lens 52 generates a surface light source image obtained by dividing the illumination light beam EL1 from the collimator lens 51 into a number of point light source images.
  • the illumination light beam EL1 is generated from the surface light source image.
  • the exit-side surface of the fly-eye lens 52 on which the point light source image is generated is formed by various lenses from the fly-eye lens 52 through the illumination field stop 55 to the first concave mirror 72 of the projection optical system PL described later.
  • the reflecting surface of the first concave mirror 72 is arranged so as to be optically conjugate with the pupil plane on which it is located.
  • the optical axis of the condenser lens 53 provided on the emission side of the fly-eye lens 52 is disposed on the first optical axis BX1.
  • the condenser lens 53 superimposes light from each of a large number of point light source images formed on the emission side of the fly-eye lens 52 on the illumination field stop 55, and irradiates the illumination field stop 55 with a uniform illuminance distribution.
  • the illumination field stop 55 has a trapezoidal or rectangular rectangular opening similar to the illumination region IR shown in FIG. 3, and the center of the opening is arranged on the first optical axis BX1.
  • the relay lens system (imaging system) 56, polarization beam splitter PBS, and quarter wavelength plate 41 provided in the optical path from the illumination field stop 55 to the mask M allow the opening of the illumination field stop 55 to be illuminated on the mask M. Arranged in an optically conjugate relationship with the region IR.
  • the relay lens system 56 includes a plurality of lenses 56a, 56b, 56c, and 56d arranged along the first optical axis BX1, and converts the illumination light beam EL1 transmitted through the opening of the illumination field stop 55 into the polarization beam splitter PBS.
  • the illumination area IR on the mask M is irradiated through
  • a cylindrical lens 54 is provided on the exit side of the condenser lens 53 and adjacent to the illumination field stop 55.
  • the cylindrical lens 54 is a plano-convex cylindrical lens in which the incident side is a flat surface and the output side is a convex cylindrical lens surface.
  • the optical axis of the cylindrical lens 54 is disposed on the first optical axis BX1.
  • the cylindrical lens 54 converges each principal ray of the illumination light beam EL1 that irradiates the illumination region IR on the mask M in the XZ plane and makes it parallel in the Y direction.
  • the polarization beam splitter PBS is disposed between the illumination optical module ILM and the center plane CL.
  • the polarization beam splitter PBS reflects a light beam that becomes S-polarized linearly polarized light at the wavefront dividing plane and transmits a light beam that becomes P-polarized linearly polarized light.
  • the illumination light beam EL1 incident on the polarization beam splitter PBS is linearly polarized light of S polarization
  • the illumination light beam EL1 is reflected by the wavefront dividing surface of the polarization beam splitter PBS, passes through the quarter wavelength plate 41, and is circularly polarized light.
  • the illumination area IR on the mask M is irradiated.
  • the projection light beam EL2 reflected by the illumination area IR on the mask M is again converted from circularly polarized light to linear P polarized light by passing through the quarter-wave plate 41, and is transmitted through the wavefront splitting surface of the polarizing beam splitter PBS to project optically. Head to the system PL.
  • the polarization beam splitter PBS preferably reflects most of the illumination light beam EL1 incident on the wavefront splitting surface and transmits most of the projection light beam EL2.
  • the polarization splitting characteristic at the wavefront splitting plane of the polarization beam splitter PBS is expressed by the extinction ratio, but the extinction ratio also changes depending on the incident angle of the light beam toward the wavefront splitting plane.
  • the design is made in consideration of the NA (numerical aperture) of the illumination light beam EL1 and the projection light beam EL2 so that the influence on the imaging performance is not a problem.
  • FIG. 5 exaggerates the behavior of the illumination light beam EL1 applied to the illumination region IR on the mask M and the projection light beam EL2 reflected by the illumination region IR in the XZ plane (plane perpendicular to the first axis AX1).
  • FIG. 5 the illumination optical system IL described above irradiates the illumination area IR of the mask M so that the principal ray of the projection light beam EL2 reflected by the illumination area IR of the mask M becomes telecentric (parallel system).
  • Each principal ray of the illumination light beam EL1 to be generated is intentionally non-telecentric in the XZ plane (plane perpendicular to the first axis AX1) and telecentric in the YZ plane (parallel to the center plane CL). .
  • Such a characteristic of the illumination light beam EL1 is given by the cylindrical lens 54 shown in FIG.
  • an intersection point Q2 (a line extending from the center point Q1 in the circumferential direction of the illumination region IR on the mask surface P1 toward the first axis AX1 and a circle having a half radius Rm of the mask surface P1 (
  • the curvature of the convex cylindrical lens surface of the cylindrical lens 54 is set so that each principal ray of the illumination light beam EL1 passing through the illumination region IR is directed to the intersection point Q2 on the XZ plane.
  • each principal ray of the projection light beam EL2 reflected in the illumination region IR is in a state (telecentric) parallel to a straight line passing through the first axis AX1, the point Q1, and the intersection point Q2 in the XZ plane.
  • the plurality of projection areas PA1 to PA6 on the substrate P are arranged in correspondence with the plurality of illumination areas IR1 to IR6 on the mask M. That is, the plurality of projection areas PA1 to PA6 on the substrate P have the first projection area PA1, the third projection area PA3, and the fifth projection area PA5 on the substrate P on the upstream side in the transport direction across the center plane CL.
  • the second projection area PA2, the fourth projection area PA4, and the sixth projection area PA6 are arranged on the substrate P on the downstream side in the transport direction.
  • Each of the projection areas PA1 to PA6 is an elongated trapezoidal (rectangular) area having a short side and a long side extending in the width direction (Y direction) of the substrate P.
  • each of the trapezoidal projection areas PA1 to PA6 is an area where the short side is located on the center plane CL side and the long side is located outside.
  • the first projection area PA1, the third projection area PA3, and the fifth projection area PA5 are arranged at predetermined intervals in the width direction.
  • the second projection area PA2, the fourth projection area PA4, and the sixth projection area PA6 are arranged at a predetermined interval in the width direction.
  • the second projection area PA2 is arranged between the first projection area PA1 and the third projection area PA3 in the axial direction.
  • the third projection area PA3 is arranged between the second projection area PA2 and the fourth projection area PA4 in the axial direction.
  • the fourth projection area PA4 is arranged between the third projection area PA3 and the fifth projection area PA5 in the axial direction.
  • the fifth projection area PA5 is arranged between the fourth projection area PA4 and the sixth projection area PA6 in the axial direction.
  • the triangular portions of the oblique sides of the trapezoidal projection area PA adjacent in the Y direction overlap with each other in the transport direction of the substrate P (overlapping). To be arranged).
  • the projection area PA has such a shape that the exposure amount in the area where the adjacent projection areas PA overlap is substantially the same as the exposure amount in the non-overlapping area.
  • the first to sixth projection areas PA1 to PA6 are arranged so as to cover the entire width in the Y direction of the exposure area A7 exposed on the substrate P.
  • the circumference from the center point of the illumination region IR1 (and IR3, IR5) on the mask M to the center point of the illumination region IR2 (and IR4, IR6) is set to be substantially equal.
  • a plurality of projection optical systems PL (for example, six in the first embodiment) are provided according to the plurality of projection areas PA1 to PA6.
  • a plurality of projection light beams EL2 reflected from the plurality of illumination regions IR1 to IR6 are incident on the plurality of projection optical systems (divided projection optical systems) PL1 to PL6, respectively.
  • Each projection optical system PL1 to PL6 guides each projection light beam EL2 reflected by the mask M to each projection area PA1 to PA6. That is, the first projection optical system PL1 guides the projection light beam EL2 from the first illumination area IR1 to the first projection area PA1, and similarly, the second to sixth projection optical systems PL2 to PL6 are second to sixth.
  • the plurality of projection optical systems PL1 to PL6 has a first projection optical system on the side (left side in FIG. 2) on which the first, third, and fifth projection areas PA1, PA3, and PA5 are arranged with the center plane CL interposed therebetween.
  • PL1, a third projection optical system PL3, and a fifth projection optical system PL5 are arranged.
  • the first projection optical system PL1, the third projection optical system PL3, and the fifth projection optical system PL5 are arranged at a predetermined interval in the Y direction.
  • the plurality of projection optical systems PL1 to PL6 has the second projection on the side (the right side in FIG.
  • the second projection optical system PL2, the fourth projection optical system PL4, and the sixth projection optical system PL6 are arranged at a predetermined interval in the Y direction. At this time, the second projection optical system PL2 is disposed between the first projection optical system PL1 and the third projection optical system PL3 in the axial direction.
  • the third projection optical system PL3, the fourth projection optical system PL4, and the fifth projection optical system PL5 are arranged between the second projection optical system PL2 and the fourth projection optical system PL4 in the axial direction.
  • the first projection optical system PL1, the third projection optical system PL3, and the fifth projection optical system PL5, and the second projection optical system PL2, the fourth projection optical system PL4, and the sixth projection optical system PL6 are from the Y direction. They are arranged symmetrically.
  • the projection optical systems PL1 to PL6 will be described with reference to FIG. Since the projection optical systems PL1 to PL6 have the same configuration, the first projection optical system PL1 (hereinafter simply referred to as the projection optical system PL) will be described as an example.
  • the projection optical system PL projects an image of the mask pattern in the illumination area IR (first illumination area IR1) on the mask M onto the projection area PA on the substrate P.
  • the projection optical system PL includes the quarter-wave plate 41, the polarization beam splitter PBS, and the projection optical module PLM in order from the incident side of the projection light beam EL2 from the mask M.
  • the quarter-wave plate 41 and the polarization beam splitter PBS are also used as the illumination optical system IL.
  • the illumination optical system IL and the projection optical system PL share the quarter wavelength plate 41 and the polarization beam splitter PBS.
  • the projection light beam EL2 reflected by the illumination region IR enters a projection optical system PL in a telecentric state (in which each principal ray is parallel to each other).
  • the projection light beam EL2 that is circularly polarized light reflected by the illumination region IR is converted from circularly polarized light to linearly polarized light (P-polarized light) by the quarter wavelength plate 41, and then enters the polarization beam splitter PBS.
  • the projection light beam EL2 incident on the polarization beam splitter PBS passes through the polarization beam splitter PBS and then enters the projection optical module PLM.
  • the projection optical module PLM is provided corresponding to the illumination optical module ILM. That is, the projection optical module PLM of the first projection optical system PL1 converts the mask pattern image of the first illumination area IR1 illuminated by the illumination optical module ILM of the first illumination optical system IL1 into the first projection area on the substrate P. Project to PA1. Similarly, the projection optical modules LM of the second to sixth projection optical systems PL2 to PL6 have second to sixth illumination regions IR2 to IR2 illuminated by the illumination optical modules ILM of the second to sixth illumination optical systems IL2 to IL6. The image of the IR6 mask pattern is projected onto the second to sixth projection areas PA2 to PA6 on the substrate P.
  • the projection optical module PLM includes a first optical system 61 that forms an image of the mask pattern in the illumination region IR on the intermediate image plane P7, and at least an intermediate image formed by the first optical system 61.
  • a second optical system 62 for re-imaging a part of the image on the projection area PA of the substrate P, and a projection field stop 63 disposed on the intermediate image plane P7 on which the intermediate image is formed are provided.
  • the projection optical module PLM includes a focus correction optical member 64, an image shift optical member 65, a magnification correction optical member 66, a rotation correction mechanism 67, and a polarization adjustment mechanism (polarization adjustment means) 68.
  • the first optical system 61 and the second optical system 62 are, for example, telecentric catadioptric optical systems obtained by modifying a Dyson system.
  • the first optical system 61 has its optical axis (hereinafter referred to as the second optical axis BX2) substantially orthogonal to the center plane CL.
  • the first optical system 61 includes a first deflecting member 70, a first lens group 71, and a first concave mirror 72.
  • the first deflecting member 70 is a triangular prism having a first reflecting surface P3 and a second reflecting surface P4.
  • the first reflecting surface P3 is a surface that reflects the projection light beam EL2 from the polarization beam splitter PBS and causes the reflected projection light beam EL2 to enter the first concave mirror 72 through the first lens group 71.
  • the second reflecting surface P4 is a surface on which the projection light beam EL2 reflected by the first concave mirror 72 enters through the first lens group 71 and reflects the incident projection light beam EL2 toward the projection field stop 63.
  • the first lens group 71 includes various lenses, and the optical axes of the various lenses are disposed on the second optical axis BX2.
  • the first concave mirror 72 is disposed on the pupil plane of the first optical system 61 and is set in an optically conjugate relationship with a number of point light source images generated by the fly-eye lens 52.
  • the projection light beam EL2 from the polarization beam splitter PBS is reflected by the first reflecting surface P3 of the first deflecting member 70, and enters the first concave mirror 72 through the upper half field region of the first lens group 71.
  • the projection light beam EL2 incident on the first concave mirror 72 is reflected by the first concave mirror 72, passes through the lower half field of view of the first lens group 71, and enters the second reflective surface P4 of the first deflecting member 70.
  • the projection light beam EL2 incident on the second reflection surface P4 is reflected by the second reflection surface P4, passes through the focus correction optical member 64 and the image shift optical member 65, and enters the projection field stop 63.
  • the projection field stop 63 has an opening that defines the shape of the projection area PA. That is, the shape of the opening of the projection field stop 63 defines the substantial shape of the projection area PA. Therefore, the projection field stop 63 can be omitted when the shape of the opening of the illumination field stop 55 in the illumination optical system IL is a trapezoid similar to the substantial shape of the projection area PA.
  • the second optical system 62 has the same configuration as that of the first optical system 61, and is provided symmetrically with the first optical system 61 with the intermediate image plane P7 interposed therebetween.
  • the second optical system 62 has an optical axis (hereinafter referred to as a third optical axis BX3) that is substantially perpendicular to the center plane CL and parallel to the second optical axis BX2.
  • the second optical system 62 includes a second deflecting member 80, a second lens group 81, and a second concave mirror 82.
  • the second deflecting member 80 has a third reflecting surface P5 and a fourth reflecting surface P6.
  • the third reflecting surface P5 is a surface that reflects the projection light beam EL2 from the projection field stop 63 and causes the reflected projection light beam EL2 to enter the second concave mirror 82 through the second lens group 81.
  • the fourth reflecting surface P6 is a surface on which the projection light beam EL2 reflected by the second concave mirror 82 enters through the second lens group 81 and reflects the incident projection light beam EL2 toward the projection area PA.
  • the second lens group 81 includes various lenses, and the optical axes of the various lenses are disposed on the third optical axis BX3.
  • the second concave mirror 82 is disposed on the pupil plane of the second optical system 62 and is set in an optically conjugate relationship with a number of point light source images formed on the first concave mirror 72.
  • the projection light beam EL2 from the projection field stop 63 is reflected by the third reflecting surface P5 of the second deflecting member 80, and enters the second concave mirror 82 through the upper half field region of the second lens group 81.
  • the projection light beam EL ⁇ b> 2 that has entered the second concave mirror 82 is reflected by the second concave mirror 82, passes through the lower half field of view of the second lens group 81, and enters the fourth reflecting surface P ⁇ b> 6 of the second deflecting member 80.
  • the projection light beam EL2 incident on the fourth reflection surface P6 is reflected by the fourth reflection surface P6, passes through the magnification correction optical member 66, and is projected onto the projection area PA. Thereby, the image of the mask pattern in the illumination area IR is projected to the projection area PA at the same magnification ( ⁇ 1).
  • the focus correction optical member 64 is disposed between the first deflection member 70 and the projection field stop 63.
  • the focus correction optical member 64 adjusts the focus state of the mask pattern image projected onto the substrate P.
  • the focus correction optical member 64 is formed by superposing two wedge-shaped prisms in opposite directions (in the opposite direction in the X direction in FIG. 4) so as to form a transparent parallel plate as a whole. By sliding the pair of prisms in the direction of the slope without changing the distance between the faces facing each other, the thickness of the parallel plate is made variable. As a result, the effective optical path length of the first optical system 61 is finely adjusted, and the focus state of the mask pattern image formed on the intermediate image plane P7 and the projection area PA is finely adjusted.
  • the image shifting optical member 65 is disposed between the first deflecting member 70 and the projection field stop 63.
  • the image shift optical member 65 adjusts the image of the mask pattern projected onto the substrate P so as to be movable in the image plane.
  • the image shifting optical member 65 is composed of a transparent parallel flat glass that can be tilted in the XZ plane of FIG. 4 and a transparent parallel flat glass that can be tilted in the YZ plane of FIG. By adjusting the respective tilt amounts of the two parallel flat glass plates, the image of the mask pattern formed on the intermediate image plane P7 and the projection area PA can be slightly shifted in the X direction and the Y direction.
  • the magnification correcting optical member 66 is disposed between the second deflection member 80 and the substrate P.
  • a concave lens, a convex lens, and a concave lens are arranged coaxially at predetermined intervals, the front and rear concave lenses are fixed, and the convex lens between them is moved in the optical axis (principal ray) direction. It is configured.
  • the mask pattern image formed in the projection area PA is isotropically enlarged or reduced by a small amount while maintaining a telecentric imaging state.
  • the optical axes of the three lens groups constituting the magnification correcting optical member 66 are inclined in the XZ plane so as to be parallel to the principal ray of the projection light beam EL2.
  • the rotation correction mechanism 67 is a mechanism that slightly rotates the first deflection member 70 around an axis parallel to the Z axis by an actuator (not shown), for example.
  • the rotation correction mechanism 67 can slightly rotate the image of the mask pattern formed on the intermediate image plane P7 within the intermediate image plane P7 by the rotation of the first deflection member 70.
  • the polarization adjustment mechanism 68 adjusts the polarization direction by rotating the quarter-wave plate 41 around an axis orthogonal to the plate surface by an actuator (not shown), for example.
  • the polarization adjusting mechanism 68 can adjust the illuminance of the projection light beam EL2 projected on the projection area PA by rotating the quarter wavelength plate 41.
  • the projection light beam EL2 from the mask M is emitted from the illumination region IR in a telecentric state (each principal ray is parallel to each other), and the 1 ⁇ 4 wavelength plate 41 and the polarization are emitted.
  • the light enters the first optical system 61 through the beam splitter PBS.
  • the projection light beam EL2 incident on the first optical system 61 is reflected by the first reflecting surface (plane mirror) P3 of the first deflecting member 70 of the first optical system 61, passes through the first lens group 71, and is reflected by the first concave mirror 72. Reflected.
  • the projection light beam EL2 reflected by the first concave mirror 72 passes through the first lens group 71 again and is reflected by the second reflecting surface (planar mirror) P4 of the first deflecting member 70, and the focus correction optical member 64 and the image shifter.
  • the light passes through the optical member 65 and enters the projection field stop 63.
  • the projection light beam EL2 that has passed through the projection field stop 63 is reflected by the third reflecting surface (planar mirror) P5 of the second deflecting member 80 of the second optical system 62, and then reflected by the second concave mirror 82 through the second lens group 81. Is done.
  • the projection light beam EL2 reflected by the second concave mirror 82 passes through the second lens group 81 again, is reflected by the fourth reflecting surface (plane mirror) P6 of the second deflecting member 80, and enters the magnification correcting optical member 66. .
  • the projection light beam EL2 emitted from the magnification correcting optical member 66 is incident on the projection area PA on the substrate P, and an image of the mask pattern appearing in the illumination area IR is projected to the projection area PA at the same magnification ( ⁇ 1). .
  • the second reflecting surface (plane mirror) P4 of the first deflecting member 70 and the third reflecting surface (plane mirror) P5 of the second deflecting member 80 are relative to the center plane CL (or the optical axes BX2, BX3).
  • the first reflecting surface (plane mirror) P3 of the first deflecting member 70 and the fourth reflecting surface (plane mirror) P6 of the second deflecting member 80 are center plane CL (or light). An angle other than 45 ° is set with respect to the axes BX2, BX3).
  • the angle ⁇ ° (absolute value) with respect to the center plane CL (or the optical axis BX2) of the first reflecting surface P3 of the first deflecting member 70 is the straight line and center passing through the point Q1, the intersection point Q2, and the first axis AX1 in FIG.
  • the angle between the surface CL and the surface CL is ⁇ s °
  • the angle ⁇ ° (absolute value) with respect to the center plane CL (or the second optical axis BX2) of the fourth reflecting surface P6 of the second deflecting member 80 is a projection area PA related to the circumferential direction of the outer peripheral surface of the substrate support drum 25.
  • FIG. 6 is a perspective view showing a schematic configuration of the cylindrical drum 21 and the mask M formed on the outer peripheral surface thereof.
  • FIG. 7 is a development view showing a schematic configuration of the mask surface P1 when the outer peripheral surface of the cylindrical drum 21 is developed on a plane.
  • the mask M is a reflection-type thin sheet mask and is wound around the outer peripheral surface of the cylindrical drum 21, and the cylindrical drum 21 is formed of a metal cylindrical base material, and the reflective type is formed on the outer peripheral surface of the cylindrical base material.
  • the mask pattern can be applied either directly or directly, but for the sake of simplicity, the latter case will be described here.
  • the mask M formed on the mask surface P1 that is the outer peripheral surface (diameter ⁇ ) of the cylindrical drum 21 is composed of a pattern formation region A3 and a pattern non-formation region (light-shielding band region) A4. Composed.
  • the mask M shown in FIGS. 6 and 7 corresponds to the pattern formation region A3 projected onto the exposure region A7 on the substrate P in FIG.
  • the mask M (pattern formation region A3) is formed almost in the entire circumferential direction of the outer peripheral surface of the cylindrical drum 21, and the width (length) in the direction parallel to the first axis AX1 (Y direction) is L. Then, the length La of the outer peripheral surface of the cylindrical drum 21 is smaller than the length La in the direction parallel to the first axis AX1 (Y direction).
  • the mask M is not densely arranged over 360 ° of the outer peripheral surface of the cylindrical drum 21 but is provided with a blank portion 92 having a predetermined dimension in the circumferential direction. Accordingly, both ends in the circumferential direction of the blank portion 92 correspond to the end and start of the mask M (pattern formation region A3) in the scanning exposure direction.
  • shafts SF coaxial with the first axis AX1 are provided at both end surfaces of the cylindrical drum 21.
  • the shaft SF supports the cylindrical drum 21 via a bearing provided at a predetermined position in the exposure apparatus U3.
  • a contact type using a metal ball or needle or a non-contact type such as a static pressure gas bearing is used.
  • the cylindrical drum 21 (mask M) has an outer peripheral surface (mask surface P1) of the cylindrical drum 21 (mask M) in each end region outside the region of the mask M in the Y direction parallel to the first axis AX1.
  • An encoder scale for measuring the rotational angle position with high accuracy may be formed on the entire surface in the circumferential direction.
  • a scale disk engraved with an encoder scale for measuring the rotational angle position may be fixed coaxially with the shaft SF.
  • FIG. 7 shows a state in which the outer peripheral surface of the cylindrical drum 21 of FIG. 6 is cut along the cutting line 94 in the blank portion 92 and developed.
  • the direction orthogonal to the Y direction in a state where the outer peripheral surface is expanded is defined as the ⁇ direction.
  • the circumference ratio is ⁇ .
  • the length L in the Y direction parallel to the first axis AX1 of the mask M is formed by L ⁇ La with respect to the total length La in the direction parallel to the first axis AX1 of the mask surface P1. And is formed with a length Lb in the ⁇ direction.
  • the length obtained by subtracting the length Lb from the total circumferential length ⁇ of the mask surface P1 is the total dimension of the blank portion 92 in the ⁇ direction.
  • An alignment mark for aligning the mask M is also formed at each of the discrete positions in the Y direction in the blank portion 92.
  • the mask M shown in FIG. 7 is a mask for forming a pattern corresponding to one of display panels used in a liquid crystal display, an organic EL display, or the like.
  • a pattern formed on the mask M a pattern for forming an electrode or wiring for TFT for driving each pixel of the display screen of the display panel, a pattern of each pixel of the display screen of the display device, or a display device Color filters and black matrix patterns.
  • the mask M (pattern formation area A3) is arranged around the display screen area DPA on which a pattern corresponding to the display screen of the display panel is formed, and the display screen area DPA.
  • a peripheral circuit region TAB in which a pattern such as a circuit for driving is formed is provided.
  • the size of the display screen area DPA on the mask M corresponds to the size of the display portion of the display panel to be manufactured (inch size of diagonal length Le), but the projection optical system PL shown in FIGS.
  • the projection magnification is equal ( ⁇ 1)
  • the actual size (diagonal length Le) of the display screen area DPA on the mask M is the inch size of the actual display screen.
  • the display screen area DPA is a rectangle having a long side Ld and a short side Lc.
  • the aspect ratio 16: 9 is an aspect ratio of a screen used in a so-called high vision size (wide size).
  • An aspect ratio of 2: 1 is an aspect ratio of a screen called a scope size, and is an aspect ratio used for a 4K2K super high-definition size in a television image.
  • the screen size is the same (50 inches) and the aspect ratio is 2: 1
  • the long side Ld of the display screen area DPA is about 113.6 cm and the short side Lc is about 56.8 cm.
  • the direction of the long side Ld of the display screen area DPA is It is preferable to arrange them in the ⁇ direction (circumferential direction of the cylindrical drum 21). This is because the length La of the cylindrical drum 21 in the direction of the first axis AX1 is not increased too much without reducing the diameter ⁇ of the cylindrical drum 21. Therefore, an example of the size (Lb ⁇ L) of the mask M including the width dimension of the peripheral circuit region TAB will be given.
  • the width dimension of the peripheral circuit area TAB varies depending on the circuit configuration, the total of the widths in the Y direction of the peripheral circuit area TAB located at both ends in the Y direction of the display screen area DPA in FIG.
  • the total of the width in the ⁇ direction of the peripheral circuit area TAB located at both ends in the ⁇ direction of the display screen area DPA is 10% of the length Ld in the Y direction of the display screen area DPA, As a percentage.
  • the long side Lb of the mask M is 121.76 cm and the short side L is 68.49 cm. Since the size of the blank portion 92 in the ⁇ direction is zero or more, the diameter ⁇ of the cylindrical drum 21 is 38.76 cm or more from the calculation of ⁇ ⁇ Lb / ⁇ . Therefore, in order to scan and expose a 50-inch display panel pattern having an aspect ratio of 16: 9 onto the substrate P, the diameter La is 38.76 mm or more, and the length La is parallel to the first axis AX1 of the mask surface P1.
  • the cylindrical drum 21 having a short side L (68.49 cm) or more is required.
  • the ratio L / ⁇ between the diameter ⁇ and the short side L of the mask M is about 1.77.
  • the total width in the ⁇ direction of the peripheral circuit area TAB is 20% of the length Ld in the ⁇ direction of the display screen area DPA
  • the long side Lb of the mask M is 132.83 cm
  • the diameter ⁇ of the cylindrical drum 21 is 42.28 cm or more
  • the ratio L / ⁇ between the diameter ⁇ and the short side L of the mask M is about 1.62.
  • the long side Lb of the mask M is 124.96 cm, and the short side L is 62.48 cm.
  • the diameter ⁇ of the cylindrical drum 21 is 39.78 cm or more from the calculation of ⁇ ⁇ Lb / ⁇ . Therefore, in order to scan and expose a 50-inch display panel pattern with an aspect ratio of 2: 1 onto the substrate P, the diameter La is 39.78 cm or more and the length La is parallel to the first axis AX1 of the mask surface P1. Requires a cylindrical drum 21 having a short side L (62.48 cm) or more.
  • the ratio L / ⁇ between the diameter ⁇ and the short side L of the mask M is about 1.57.
  • the total width in the ⁇ direction of the peripheral circuit area TAB is 20% of the length Ld in the ⁇ direction of the display screen area DPA
  • the long side Lb of the mask M is 136.31 cm
  • the diameter ⁇ of the cylindrical drum 21 is 43.39 cm or more
  • the ratio L / ⁇ between the diameter ⁇ and the short side L of the mask M is about 1.44.
  • the length of the mask M in the Y direction orthogonal to the scanning exposure direction falls within the range of 1.3 ⁇ L / ⁇ ⁇ 3.8.
  • the arrangement of the mask M shown in FIG. 7 is rotated by 90 ° in FIG. 7 so that the long side Lb of the mask M is in the Y direction and the short side L is in the ⁇ direction, it is out of the above relationship.
  • the width of the peripheral circuit area TAB in the ⁇ direction is 10% of the length Ld of the display screen area DPA
  • the long side Lb of the mask M is 121. Since the short side L is 68.49 cm, the minimum value of the length L in the direction parallel to the first axis AX1 of the mask surface P1 is Lb (121.76 cm), and the diameter ⁇ of the cylindrical drum 21 is From the calculation of ⁇ ⁇ L / ⁇ , it is 21.80 cm or more. Therefore, the ratio Lb / ⁇ between the diameter ⁇ and the length Lb of the mask M in the direction parallel to the first axis AX1 is about 5.59.
  • the long side Lb of the mask M is 124.96 cm and the short side L is 62.48 cm, so that it is parallel to the first axis AX1 of the mask surface P1.
  • the minimum value of the length L in this direction is Lb (124.96 cm), and the diameter ⁇ of the cylindrical drum 21 is 19.89 cm or more from the calculation of ⁇ ⁇ L / ⁇ . Therefore, the ratio Lb / ⁇ between the diameter ⁇ and the length Lb of the mask M in the direction parallel to the first axis AX1 is about 6.28.
  • the length of the cylindrical drum 21 in the direction parallel to the first axis AX1 is doubled, leading to a further increase in the number of projection optical systems PL (illumination optical systems IL) arranged in the Y direction.
  • the ratio L / ⁇ (or Lb / ⁇ ) is small, one is that the length of the mask M on the cylindrical drum 21 in the direction parallel to the first axis AX1 is small, for example, 6 in FIG.
  • the situation is such that only about half of the projection areas PA1 to PA6 are used, and the other is that the diameter ⁇ of the cylindrical drum 21 is too large, and the blank portion 92 shown in FIGS. The situation is such that the dimensions are larger than necessary.
  • the mask on which the pattern for the display panel is formed is obtained by setting the dimensional condition of the outer shape of the cylindrical drum (mask holding drum) 21 to a relationship of 1.3 ⁇ L / ⁇ ⁇ 3.8. Precise exposure work using M can be performed efficiently, and productivity can be increased.
  • the mask M having the pattern for one display panel is carried on the outer peripheral surface (mask surface P ⁇ b> 1) of the cylindrical drum (mask holding drum) 21.
  • a pattern for a plurality of display panels may be formed on the mask surface P1.
  • FIG. 8 is a development view showing a schematic configuration when three masks M1 of the same size are arranged in the circumferential direction ( ⁇ direction) of the cylindrical drum 21 on the mask surface P1.
  • FIG. 9 is a developed view showing a schematic configuration when four masks M2 of the same size are arranged in the circumferential direction ( ⁇ direction) of the cylindrical drum 21 on the mask surface P1. 10 rotates the mask M2 shown in FIG. 9 by 90 °, arranges two masks M2 in the Y direction on the mask surface P1, and arranges two sets in the circumferential direction ( ⁇ direction) of the cylindrical drum 21. It is an expanded view which shows schematic structure in the case of doing. In the example shown in FIGS.
  • each display panel of the same size is exposed on the substrate P during one rotation of the cylindrical drum 21 (three or four in this case). Called M. Further, as shown in FIG. 8, the entire region on the mask surface P1 to be scanned and exposed on the substrate P via the projection optical system PL is set as a mask M in accordance with FIG.
  • a mask M1 (M2 in FIGS. 9 and 10) to be a panel is arranged with a predetermined interval Sx in the scanning exposure direction ( ⁇ direction).
  • Each mask M1 (M2 in FIGS. 9 and 10) includes a display screen area DPA having a diagonal length Le and a peripheral circuit area TAB surrounding the same, as in FIG.
  • the largest rectangle is a mask surface P ⁇ b> 1 that is the outer peripheral surface of the cylindrical drum 21.
  • the mask surface P1 has a length ⁇ in the ⁇ direction over a rotation angle from 0 ° to 360 ° when the cutting line 94 is the origin in the ⁇ direction, and is long in the Y direction parallel to the first axis AX1.
  • a region indicated by a broken line inside the mask surface P1 is a mask M corresponding to the entire region to be exposed on the substrate P (exposure region A7 in FIG. 3).
  • the three masks M1 arranged in the ⁇ direction in the mask M are arranged so that the long side direction of the display screen area DPA is the Y direction and the short side direction is the ⁇ direction.
  • alignment marks (mask marks) 96 for specifying the position of the mask M (or M1) on the cylindrical drum 21 are provided at three positions in the Y direction. Discretely provided. These mask marks 96 are detected through a mask alignment optical system (not shown) disposed at a predetermined position in the circumferential direction of the cylindrical drum 21 so as to face the outer peripheral surface (mask surface P1). Based on the position of each mask mark 96 detected by the mask alignment optical system, the exposure apparatus U3 determines the positional deviation in the rotational direction ( ⁇ direction) and the positional deviation in the Y direction for the entire cylindrical drum 21 or each mask M1. Measure.
  • the exposure apparatus determines on which position on the substrate P the pattern of the mask M (or M1) has been exposed.
  • An alignment mark (substrate mark) for identification is transferred onto the substrate P together with the mask M (or M1).
  • such a substrate mark 96a is formed at each of the three positions separated in the ⁇ direction on both end portions in the Y direction of each mask M1.
  • the area on the mask (or the substrate P) occupied by the substrate mark 96a is about several mm as the width in the Y direction.
  • the length L in the Y direction of the mask M on the mask surface P1 to be exposed on the substrate P is the dimension in the Y direction of each mask M1 and the substrate mark 96a secured on both sides of each mask M1 in the Y direction. It is the sum total of the dimension of the area
  • Px is a total length of the dimension in the ⁇ direction of each mask M1 and the dimension in the Y direction of each interval Sx. It becomes.
  • FIG. 7 when the mask M corresponding to a single display panel is arranged, it is preferable to provide a margin 92 having a predetermined length. However, as shown in FIG. 8, an interval Sx is provided in the ⁇ direction.
  • the length of the blank portion 92 in the ⁇ direction can be made zero.
  • the length of each mask M1 in the ⁇ direction is naturally determined by the size of the display panel, and the minimum dimension required as the interval Sx is also determined in advance. ⁇ should be set.
  • the range of the diameter ⁇ of the cylindrical drum 21 that can be mounted on the exposure apparatus U3 is generally determined, it can be adjusted by changing (increasing) the dimension of the interval Sx.
  • the diagonal length Le of the display screen area DPA of the mask M1 is 32 inches (81.28 cm), and each dimension in the Y direction and ⁇ direction of the peripheral circuit area TAB is about 10% of the dimension of the display screen area DPA.
  • the dimension in the Y direction of the region where the substrate mark 96a is to be formed is 0.5 cm (1 cm on both sides).
  • the short side dimension of the mask M1 is 48.83 cm and the long side dimension is 77.93 cm.
  • the short side dimension of the mask M1 is 43.83 cm.
  • the long side dimension is 79.97 cm.
  • both the display panel mask M1 having an aspect ratio of 16: 9 and the display panel mask M1 having an aspect ratio of 2: 1 can be arranged on the mask surface P1 of the cylindrical drum 21 having the same diameter.
  • the diameter ⁇ of the cylindrical drum 21 is preferably about 43 cm.
  • the interval Sx between the masks M1 may be set to 1.196 cm, and in the display panel having an aspect ratio of 2: 1, the interval Sx between the masks M1 may be set to 5.045 cm.
  • the length L in the Y direction of the mask M on the mask surface P1 is the sum of the Y direction dimension of the mask M1 and the Y direction dimension (1 cm) of the formation region of the substrate mark 96a, an aspect ratio of 16: 9 is displayed.
  • L 78.93 cm
  • L 80.97 cm.
  • L / ⁇ 1.88.
  • the ratio L / ⁇ is in the range of 1.3 to 3.8.
  • the spacing Sx on the substrate P is set.
  • the exposure apparatus U3 in preparation for the case where the diameter ⁇ of the cylindrical drum 21 (mask M) to be mounted on the exposure apparatus U3 changes, the exposure apparatus U3 has about 1/2 of the difference of the diameter ⁇ .
  • a mechanism for shifting the position of the first axis AX1 in the Z direction is provided.
  • the first axis AX1 (shaft SF) of the cylindrical drum 21 is supported by being shifted by about 1.835 cm in the Z direction.
  • the cylindrical lens 54 shown in FIG. 4 has a curvature of the convex cylindrical surface that satisfies the illumination condition as shown in FIG.
  • the polarization beam splitter PBS and the quarter-wave plate 41 are entirely small in the XZ plane. You also need to tilt.
  • the mask M (including the three masks M1) formed on the cylindrical drum 21 as shown in FIG. 8 includes a plurality of display panel patterns (masks M1) transferred onto the substrate P.
  • a substrate mark 96a is provided in the ⁇ direction (scanning exposure direction). Therefore, if the plurality of substrate marks 96a are sequentially transferred onto the substrate P together with the display panel pattern (mask M1) by the exposure apparatus U3, various problems during exposure can be confirmed.
  • the position of a defect for example, dust adhesion
  • a mask patterning error, focus error, overlay exposure is performed.
  • Various offset errors such as overlay errors can be measured. In addition to managing the entire mask, the measured offset error is used for position management of each mask M1 on the cylindrical mask 21 and position management (correction) of each display panel pattern (mask M1) transferred onto the substrate P. Used.
  • FIG. 9 for example, four masks M2 for a display panel having an aspect ratio of 2: 1 are arranged on the mask surface P1 of the cylindrical drum 21 so as to be arranged in the ⁇ direction so that the Y direction is the long side of the display screen area DPA.
  • An interval Sx is provided on the side (long side) in the ⁇ direction of each mask M2, and the mask mark 96 and the substrate mark 96a are also provided in the same manner as in FIG.
  • the total width in the ⁇ direction of the peripheral circuit area TAB is 10% of the length of the display screen area DPA in the ⁇ direction
  • the peripheral circuit area TAB is 20% of the length in the Y direction
  • the total width in the Y direction of the formation region of the substrate mark 96a disposed at each of both ends in the Y direction of the mask M2 is 1 cm.
  • the total length L in the Y direction of the mask M for exposure on the mask surface P1 is the mask M2 and the substrate mark 96a.
  • L 66.43 cm.
  • the mask M2 shown in FIG. 9 is rotated by 90 °, and the long sides are arranged in the ⁇ direction, and two in the ⁇ direction and two in the Y direction are arranged on the mask surface P1.
  • An example of the case is shown.
  • the total width in the Y direction of the formation region of the substrate mark 96a is 2 cm
  • the total length (short side) L in the Y direction of the mask M formed on the mask surface P1 is 61.98 cm
  • ⁇ of the mask M The total length (long side) ⁇ in the direction is 132.86 cm
  • the diameter ⁇ of the mask M (cylindrical mask 21) is 42.29 cm or more
  • the ratio L / ⁇ is 1.47.
  • display device mask patterns may be arranged on the mask surface P1 according to various arrangement rules.
  • a plurality of mask patterns (masks M1 and M2) of display panels of various sizes are arranged as shown in FIGS.
  • the mask pattern can be arranged in a state where the gap (interval Sx) is reduced.
  • the cylindrical drum 21 satisfies the relationship of 1.3 ⁇ L / ⁇ ⁇ 3.8, thereby suppressing an increase in the size of the apparatus while suppressing an increase in the number of illumination optical systems IL and projection optical systems PL. be able to. That is, it is possible to prevent the cylindrical drum 21 from becoming elongated and increasing the number of illumination optical systems IL and projection optical systems PL. Moreover, it can suppress that the diameter (phi) of the cylindrical drum 21 becomes large and the dimension of the Z direction of an apparatus becomes large.
  • the aspect ratio as the mask M increases in a further expanding direction and the total width of the peripheral circuit area TAB adjacent to the short side of the screen display area DPA is the length of the screen display area DPA. It is assumed that it is about 20% of the side Ld. It is assumed that the total width of the peripheral circuit area TAB adjacent to the long side of the screen display area DPA is about 0 to 10% of the short side Lc of the screen display area DPA. Under such an assumption, when the screen display area DPA is a 50-inch display panel having an aspect ratio of 2: 1, the long side Ld of the screen display area DPA is 113.59 cm and the short side Lc is 56.8 cm.
  • the diameter ⁇ of the cylindrical drum 21 (mask M) is 43.39 cm
  • the ratio L / ⁇ of the length L to the diameter ⁇ is 1.30 to 1.44.
  • the aspect ratio of the screen display area DPA is 2: 1 and the mask M is increased by 20% including the width of the peripheral circuit area TAB only in the long side direction, the one-sided mask M as shown in FIG.
  • the ratio L / ⁇ becomes too large as described above.
  • the one-sided mask M is increased by 20% including the width of the peripheral circuit area TAB only in the long side direction.
  • L / Lb ( ⁇ ) 2.4 / 1 and the ratio L / ⁇ is 7.54.
  • the length L in the Y direction is 136.31 cm
  • the length Lb ( ⁇ ) in the ⁇ direction is 56.8 cm.
  • the diameter ⁇ of 21 (mask M) is 18.1 cm.
  • the ratio L / ⁇ varies greatly depending on whether the long side direction of the mask M is the ⁇ direction or the Y direction.
  • two masks M2 for a display panel having an aspect ratio of 2: 1 are as shown in FIG.
  • the screen display area DPA (2: 1) is 50 inches
  • the diameter ⁇ is 36.16 cm
  • the length L (La) is 136.31 cm.
  • the mask is so arranged that the short side direction of the screen display area DPA is oriented in the circumferential direction ( ⁇ direction) of the cylindrical drum 21 and the long side direction is oriented in the direction of the first axis AX1 (Y direction) of the cylindrical drum 21.
  • the ratio L / ⁇ can be made 3.8 or less by arranging two or more same masks M2 in the ⁇ direction. If n masks M2 shown in FIG. 11 are arranged in the ⁇ direction under the same conditions, the relational expression representing the above ratio L / ⁇ is as follows.
  • the mask surface P1 has a ratio L / ⁇ by arranging three masks M1 and M2 of the mask pattern for the display panel device as shown in FIG. 8 or four as shown in FIG. Can be arranged smaller than 3.8.
  • the value of the ratio L / ⁇ is obtained from the relational expression when n masks M1 and M2 having the longitudinal direction in the Y direction are arranged in the ⁇ direction.
  • the vertical and horizontal dimensions of the masks M1 and M2 also vary depending on the width of the peripheral circuit area TAB around the display screen area DPA. Therefore, the mask is enlarged by the peripheral circuit area TAB on both sides (or one side) in the longitudinal direction of the display screen area DPA.
  • the magnification of the dimension in the longitudinal direction of M1 and M2 is e1, and the magnification of the dimension in the lateral direction of the masks M1 and M2 enlarged by the peripheral circuit area TAB on both sides (or one side) of the display screen area DPA in the lateral direction. Let e2.
  • the ratio L / ⁇ is expressed by the following relational expression.
  • L / ⁇ e1 ⁇ ⁇ ⁇ Asp ⁇ Lc / n (e2 ⁇ Lc + Sx)
  • e2 1.0.
  • the ratio L / ⁇ is 2.23.
  • the aspect ratio of the mask area of the entire four-chamfer arrangement in which the mask M2 (24 inches) is arranged in 2 rows and 2 columns is directed to the long side direction of the display screen area DPA in the ⁇ direction. If the aspect ratio of the single-sided mask M (50 inches) is substantially the same, the cylindrical drum 21 having the same dimensions can be formed only by the difference in the size of the terminal portion of the peripheral circuit area TAB or the difference in the spacing Sx. It becomes possible.
  • the masks M, M1, and M2 for the display panel are efficiently used.
  • the relationship between the length L of the cylindrical drum (cylindrical mask) 21 in the direction (Y direction) orthogonal to the scanning exposure direction ( ⁇ direction) and the diameter ⁇ is 1. It is preferable to satisfy 3 ⁇ L / ⁇ ⁇ 3.8.
  • the aspect ratio of the single masks M, M1, and M2 is close to 2: 1, when arranging a plurality of these masks by multi-chamfering, the entire mask area on the mask surface P1 occupied by multi-chamfering is used.
  • the aspect ratio (L: Lb) is preferably close to 1: 1. Further, it is preferable that the interval Sx (or the blank portion 92) is constant.
  • the relationship between the diameter ⁇ of the outer peripheral surface (mask surface P1) of the cylindrical drum 21 and the total length L (La) in the direction of the first axis AX1 of the mask pattern formed on the mask surface P1 is 1.3 ⁇ L It is preferable to satisfy / ⁇ 3.8. Furthermore, when 1.3 ⁇ L / ⁇ ⁇ 2.6, the above-described effect can be preferably obtained. As an example, when the mask M2 is rotated 90 ° so that the longitudinal direction of the mask M2 shown in FIG. ⁇ 2.6.
  • the exposure apparatus U3 can replace the mask M (M1, M2).
  • the mask exchangeable various sizes of display panels or mask patterns for electronic circuit boards can be projected and exposed on the substrate P. Even if the number of masks (M, M1, M2, etc.) formed on the mask surface P1 of the cylindrical drum 21 is various, the gap (interval Sx) generated between the masks is made larger than necessary. None will happen. That is, it is possible to suppress a decrease in the ratio of the effective mask region (mask utilization rate) in the entire area of the mask surface P1.
  • the diameter ⁇ of the mask surface P1 of the cylindrical drum 21 and the length L of the mask region in the direction (Y direction) orthogonal to the scanning exposure direction are substantially the same. It is preferable to be replaceable. Thereby, only the mask M (M1, M2) is exchanged, and adjustment of the projection optical system PL and the illumination optical system IL on the exposure apparatus U3 side or other parts such as the distance between the substrate P and the mask surface P1 is unnecessary. Alternatively, an extremely small adjustment amount can be used, and patterns of various devices can be transferred with the same image quality even after mask replacement.
  • the device masks (M1, M2) having various numbers of chamfering numbers and different arrangement directions are arranged on the mask surface P1.
  • devices having various numbers of surfaces may be arranged on the mask surface P1 with different diameters ⁇ of the cylindrical drum 21.
  • the shape of the cylindrical mask surface P1 satisfy the relationship of 1.3 ⁇ L / ⁇ ⁇ 3.8, a plurality of mask patterns can be formed on the mask surface P1 with a small gap. Can be arranged. Thereby, the pattern of the device (display panel) can be efficiently transferred onto the substrate P.
  • the cylindrical mask by the cylindrical drum 21 into a shape satisfying the relationship of 1.3 ⁇ L / ⁇ ⁇ 3.8, the device patterns of various sizes can be obtained while reducing the gap between the plurality of device patterns. Can be arranged efficiently, and the change in the diameter ⁇ of the cylindrical mask can be reduced.
  • the number of attachment surfaces of the masks M1 and M2 is two, three, four, or more depending on the size of the display panel (device) to be manufactured. Can do.
  • the size of the gap (interval Sx) can be further reduced.
  • the cylindrical drum 21 satisfies 1.3 ⁇ L / ⁇ ⁇ 3.8 so that the width of the scanning exposure direction ( ⁇ direction) of the illumination area IR or the projection area PA with respect to the roll diameter (diameter ⁇ ).
  • the so-called exposure slit width can be optimized (increased).
  • the relationship between the diameter ⁇ of the mask surface P1 of the cylindrical drum 21 and the exposure slit width in the scanning exposure direction will be described with reference to FIG.
  • FIG. 12 is a graph simulating the relationship between the diameter ⁇ of the cylindrical drum 21 (mask surface P1) and the exposure slit width D while changing the defocus amount.
  • the vertical axis represents the exposure slit width D [mm], which represents the width of the projection area PA (FIG. 3) formed on the substrate P in the ⁇ direction (X direction).
  • the vertical axis represents the diameter ⁇ [mm] of the cylindrical drum 21 (mask surface P1).
  • the defocus amount is defined by the numerical aperture NA on the image side (substrate P side) of the projection optical system PL of the exposure apparatus U3, the wavelength ⁇ of illumination light for exposure, and the process constant k (k ⁇ 1). It is determined based on the depth of focus DOF.
  • the simulation was performed for the case where the deviation amount (defocus amount) in the focus direction between the best focus surface of the projection image and the surface of the substrate P was 25 ⁇ m and 50 ⁇ m.
  • the numerical aperture NA of the projection optical system PL is 0.0875
  • the wavelength ⁇ of the illumination light is 365 nm of the i-line of the mercury lamp
  • the process constant k is about 0.5.
  • DOF k ⁇ ⁇ / NA 2
  • a width of about 50 ⁇ m (about ⁇ 25 ⁇ m to +25 ⁇ m) is obtained.
  • 2.5 ⁇ mL / S can be obtained.
  • a focus deviation of about 1 ⁇ 2 of the depth of focus DOF occurs within the exposure slit width D, and at the time of defocusing by 50 ⁇ m indicated by a solid line.
  • This is a state in which a focus deviation of the depth of focus DOF occurs within the slit width D. That is, the graph at the time of 25 ⁇ m defocusing indicated by a broken line shows the diameter ⁇ in the case where 1 ⁇ 2 of the width of the focal depth DOF (25 ⁇ m in width) is allowed as an error due to the curvature of the mask surface P1 of the cylindrical drum 21.
  • the graph of the relationship between the exposure slit width D and the 50 ⁇ m defocus shown by the solid line is the diameter ⁇ when the depth of the DOF is allowed as an error due to the curvature of the mask surface P1 of the cylindrical drum 21.
  • the relationship of the exposure slit width D is shown.
  • the maximum value of the exposure slit width D when the defocus amount ⁇ Z is allowed up to 25 ⁇ m is about 7.1 mm, and the defocus amount ⁇ Z is allowed up to 50 ⁇ m.
  • the maximum value of the exposure slit width D is about 10.0 mm.
  • the exposure slit width D that satisfies the allowable defocus amount increases.
  • the mask M2 as shown in FIG. 11 in which the aspect ratio of the display screen area DPA is 2: 1 and the peripheral circuit area TAB is provided only in the longitudinal direction of the display screen area DPA, only one surface of the mask M2 is the cylindrical drum 21. If the mask portion P2 is formed on the entire circumference of the mask surface P1 without creating the blank portion 92 (interval Sx), the longitudinal direction of the mask M2 is set to the circumferential direction ( ⁇ direction) of the cylindrical drum 21 or the first axis AX1. The ratio L / ⁇ varies greatly depending on the direction (Y direction).
  • the short direction of the mask M2 is the Y direction
  • the total circumferential length ⁇ in the ⁇ direction of one surface of the mask M2 is 1.2 ⁇ Ld
  • the length L in the Y direction of the mask is set within the total dimension in the Y direction of the projection areas PA1 to PA6 (FIG. 3) of the projection optical system PL of the exposure apparatus U3, the length L is constant.
  • the ratio L / ⁇ changes from 1.3 to 7.5 by about 6 times, it means that the diameter ⁇ of the cylindrical drum 21 changes by about 6 times.
  • the exposure slit width D when the allowable defocus amount ⁇ Z is 25 ⁇ m changes from about 3.9 mm when ⁇ 150 mm to about 9.5 mm when ⁇ 900 mm.
  • the exposure slit width D is reduced to about 40% when the cylindrical mask having a diameter ⁇ of 900 mm is changed to a cylindrical mask having a diameter ⁇ of 150 mm. .
  • the allowable defocus amount ⁇ Z is 50 ⁇ m.
  • the exposure amount given to the substrate P is simply 40%. It will decrease. In order to set the exposure amount given to the substrate P to an appropriate value (100%), it is about 40 with respect to the moving speed of the substrate P at the time of exposure by the projection area PA set as the exposure slit width D of 9.5 mm.
  • the substrate P is moved at a speed of%. That is, since the transport speed of the substrate P itself is reduced to about 40%, the throughput (productivity) becomes half or less.
  • the brightness of the projection image in the projection area PA that is, the illuminance of the illumination light beam EL1 is set so as not to decrease the transport speed of the substrate P. It is conceivable to increase. In that case, the illuminance of the illumination light beam EL1 that irradiates the mask surface P1 needs to be about 2.5 times the illuminance when the exposure slit width D is 9.5 mm.
  • the ratio L / ⁇ is set within a range (1.3 to 3.8) of about 3.8 (1.2 ⁇ ⁇ ) or less. Can do.
  • the transport speed of the substrate P can be reduced to about 60%.
  • the aspect ratio (L: ⁇ ) of the mask region formed on the mask surface P1 of the cylindrical drum 21 is limited so that the ratio L / ⁇ is about 1.3 to about 3.8.
  • a change in the exposure slit width D can be suppressed.
  • the diameter ⁇ of the cylindrical drum 21 is 700 mm, for example.
  • the exposure slit width D at a defocus amount of 25 ⁇ m decreases from about 9.5 mm when the diameter ⁇ is 900 mm to about 8.4 mm. This corresponds to a reduction of the throughput to about 88%, but is significantly improved as compared to the case where the throughput is reduced to half or less as in the previous example, and exposure with substantially no loss is possible.
  • the illuminance of the illumination light beam EL1 can be easily increased by increasing the emission intensity of the light source 31 or increasing the number of light sources. , It can eliminate the decrease in throughput. It can be seen that the throughput becomes constant as the size of the mask region approaches a constant value. That is, the size (L ⁇ ⁇ ) of the mask area is constant by properly using one chamfering of the mask M and multiple chamfering of the mask M1 and the mask M2 according to the screen size (diagonal length Le) of the display image area DPA. It can be a cylindrical drum 21 (the diameter ⁇ does not change), and the throughput is kept constant.
  • the range of the ratio L / ⁇ is about 1.3 to about 3.8.
  • the exposure apparatus U3 of the present embodiment is capable of distorting the projected image caused by the projection error due to the cylindrical surface, or changing the projected image surface due to the arc (focus shift). ), A plurality of mask patterns for the display panel (device) can be transferred side by side on the substrate P with a small gap.
  • FIGS. 13 shows the case of a single chamfering of the mask M with the ⁇ direction as the longitudinal direction, as in FIG. 7, and FIG. 14 shows the mask M2 with the Y direction as the longitudinal direction, as in FIG. A case of two chamfering in which two are arranged in the ⁇ direction is shown.
  • FIG. 13 shows a case where a display panel mask M having a diagonal length Le (inches) of the display screen area DPA is arranged in the orientation in which the long side is in the ⁇ direction, as in FIG. 7.
  • the ratio of the long side dimension Ld to the short side dimension Lc (Ld / Lc) of the display screen area DPA is the aspect ratio Asp
  • the entire mask M including the peripheral circuit area TAB around the display screen area DPA is cylindrical.
  • e1 indicates how much the longitudinal direction of the mask M is relative to the longitudinal direction of the display screen area DPA depending on the total width of the peripheral circuit area TAB attached to both sides or one side of the display screen area DPA in the longitudinal direction. This is an enlargement magnification representing whether to enlarge.
  • e2 indicates that the short direction of the mask M is short of the display screen area DPA depending on the total width (Ta in FIG. 13) of the peripheral circuit area TAB attached to both sides or one side of the display screen area DPA. This is an enlargement magnification representing how much the image is enlarged with respect to the hand direction.
  • the minimum required size as the outer peripheral surface (mask surface P1) of the cylindrical drum 21 is ⁇ ⁇ L
  • the ratio L / ⁇ between the length L and the diameter ⁇ of the mask M at this time is It is expressed as follows.
  • L / ⁇ ⁇ ⁇ e2 / e1 ⁇ Asp
  • the ratio L / ⁇ is ⁇ / 1.2 ⁇ Asp. Therefore, when the aspect ratio Asp is 2 (2/1), the ratio L / ⁇ is ⁇ / 2.4 ⁇ 1.3, and when the aspect ratio Asp is 1.778 (16/9), the ratio L / ⁇ is ⁇ / 2.134 ⁇ 1.47.
  • FIG. 14 shows a case of two chamfers in which two masks M2 having the long side direction of the display screen area DPA in the Y direction are arranged in the ⁇ direction, as in FIG. 11, and the aspect ratio Asp, the magnifications e1, e2 Is the same as in FIG.
  • the ratio L / ⁇ is 0.6 ⁇ ⁇ Asp. Therefore, when the aspect ratio Asp is 2 (2/1), the ratio L / ⁇ is about 3.8, and when the aspect ratio Asp is 1.778 (16/9), the ratio L / ⁇ is about 3 .4.
  • the size (number of inches) of the display panel (device) arranged on the cylindrical mask surface P1 the aspect ratio Asp of the display screen area DPA, the width of the peripheral circuit area TAB, and the like are determined, based on them.
  • FIG. 7 or FIG. 13 a case where a mask M having the long side direction of the display screen area DPA in the ⁇ direction is chamfered on the mask surface P1 of the cylindrical drum 21 is used as a reference for comparison.
  • the projection optical system PL of the exposure apparatus U3 projects the mask pattern onto the substrate P at the same magnification. Therefore, an actual display panel and an actual size mask pattern are formed on the mask surface P1 of the cylindrical drum 21.
  • the display screen area DPA of the display panel is a high-vision size (aspect ratio 16: 9) and a 60-inch screen.
  • the short side dimension Lc of the display screen area DPA is 74.7 cm
  • the long side dimension Ld is 132.8 cm
  • the diagonal length Le is 152.4 cm.
  • the length in the ⁇ direction of the blank portion 92 shown in FIG. 6 or 7 is set to 5.0 cm.
  • the dimension ⁇ in the ⁇ direction of the mask surface P1 is 164.4 cm. Therefore, the diameter ⁇ of the cylindrical drum 21 needs to be 52.33 cm or more, and is set to 52.5 cm, for example. Further, the length in the Y direction of the entire mask M under the above conditions is 85.9 cm. However, since this mask M is used as a reference, the projection areas PA1 to PA6 of the projection optical systems PL1 to PL6 of the exposure apparatus U3 are used. It is assumed that the total width in the Y direction of the exposure region in which is connected in the Y direction is slightly larger than 85.9 cm and 87 cm. Here, from the simulation result shown in FIG.
  • the exposure slit width D when the allowable defocus amount is 25 ⁇ m is 7.4 mm.
  • the exposure slit width D is 10.3 mm. Therefore, when the substrate P is scanned and exposed using the reference mask M (cylindrical drum 21) shown in FIG. 13, the exposure slit width D is 7.4 mm or less, or 10.3 mm or less. (The moving speed of the substrate P, the illuminance of the illumination light beam EL1, etc.) are optimized.
  • the illumination slit width D (the width of the projection area PA in the scanning exposure direction) has a predetermined value of 7.4 mm or less.
  • the opening of the field stop 55 or the opening of the projection field stop 63 in the projection optical system PL is adjusted.
  • the long side dimension Ld of the display screen area DPA is 70.8 cm
  • the short side dimension Lc is 39.9 cm.
  • the magnification e1 by the peripheral circuit area TAB adjacent to both sides or one side in the longitudinal direction of the display screen area DPA is about 1.2 (20% increase)
  • the dimension in the ⁇ direction of the mask M3 is increased by about 15 cm
  • the margin portion 92 of about 5 cm is provided in the ⁇ direction
  • the total length of 90.8 cm which is the sum of the dimension in the ⁇ direction of the mask M3 and the dimension of the blank portion 92, is the total circumference length. If the diameter ⁇ of the cylindrical drum 21 is changed, the diameter ⁇ may be at least 28.91 cm. Therefore, if a cylindrical drum 21 having a diameter ⁇ of 29 cm is prepared as the cylindrical drum 21 for the mask M3, the allowable defocus amount ⁇ Z is 25 ⁇ m from the simulation result of FIG. Is about 5.4 mm, and when the allowable defocus amount ⁇ Z is 50 ⁇ m, it is about 7.6 mm.
  • the exposure slit width D (7.4 mm or 10.3 mm) set for the standard cylindrical drum 21.
  • the exposure slit width D was set to 10.3 mm (allowable defocus amount 50 ⁇ m) so as to obtain an appropriate exposure amount.
  • the moving speed of the substrate P is V1.
  • the exposure slit width D is 7.6 mm (allowable).
  • the substrate processing of the production line Overall, the speed is reduced by almost 25%. Even when the allowable defocus amount ⁇ Z is 25 ⁇ m, the productivity is reduced to the same extent.
  • cylindrical mask (cylindrical drum 21) in which a mask M3 for a 32-inch display panel having an aspect ratio of 16: 9 is chamfered in the arrangement as shown in FIG. 14 will be described with reference to FIG.
  • the long side dimension Ld of the display screen area DPA is 70.8 cm
  • the short side dimension Lc is 39.9 cm.
  • the enlargement magnification e1 in the longitudinal direction (Y direction) of the mask M3 by the peripheral circuit region TAB is about 1.2 and the enlargement magnification e2 in the short direction ( ⁇ direction) is about 1.15
  • the Y of the mask M3 The length L in the direction increases by about 15 cm to 85.8 cm, and the length Lg of the mask M3 in the ⁇ direction increases by about 6 cm to 45.9 cm.
  • the length in the ⁇ direction of the entire mask region including the two masks M3 and the two intervals Sx is 2 (Lg + Sx), it is 110.8 cm. Accordingly, the diameter ⁇ of the cylindrical drum 21 in this case may be about 35.3 cm. Further, the length L in the Y direction of the mask surface P1 on the cylindrical drum 21 is at least 85.8 cm. This length L (85.8 cm) is just within the range of 87 cm of the entire width in the Y direction of the exposure area set by the reference cylindrical drum 21 (the total length of the projection areas PA1 to PA6 in the Y direction).
  • the pattern of the mask M3 can be efficiently exposed on the substrate P by being mounted on the exposure apparatus U3.
  • FIG. 16 is a developed view showing a schematic configuration of another example in which two masks M3 for the 32-inch display panel shown in FIG. 15 are chamfered.
  • the direction dimension L is 91.8 cm (2 ⁇ 45.9 cm).
  • This length L (91.8 cm) does not fall within the range of 87 cm of the entire width in the Y direction of the exposure region set by the reference cylindrical drum 21 (the total length of the projection regions PA1 to PA6 in the Y direction). That is, the two chamfers obtained by rotating the same mask M3 as in FIG. 15 by 90 ° cannot be arranged on the mask surface P1 of the reference cylindrical drum 21.
  • FIG. 17 is a developed view showing a schematic configuration of another example in which the mask M3 for the 32-inch display panel shown in FIG. 15 is chamfered.
  • one of the masks M3 having the same dimensions as in FIG. 15 is arranged so that the short direction of the display screen area DPA is the ⁇ direction, and the interval Sx of the blank portion 92 in the ⁇ direction is 10 cm. To do.
  • Such an arrangement of the mask M3 is inefficient because the area occupied by the standard cylindrical drum 21 with respect to the mask surface P1 is extremely small. Therefore, assuming a cylindrical drum 21 having a size suitable for the one-sided mask M3 as shown in FIG.
  • the total circumferential length ⁇ of the cylindrical drum 21 is a dimension Lg (45.9 cm) in the ⁇ direction of the mask M3.
  • the size (10 cm) of the blank portion 92 (Sx), ⁇ 55.9 cm. Therefore, since the diameter ⁇ of the cylindrical drum 21 is 17.8 cm or more, it is considered as 18 cm.
  • the length L in the Y direction of the mask M3 is 85.8 cm as in FIG. 15, so the ratio L / ⁇ is about 4.77.
  • the mask M3 can be efficiently arranged on the mask surface P1, but the throughput ( Productivity) decreases.
  • the diameter of the mask surface P1 is 18.0 cm
  • the exposure slit width D when the allowable defocus amount ⁇ Z is 25 ⁇ m is about 4.3 mm, and the allowable defocus amount ⁇ Z is 50 ⁇ m.
  • the exposure slit width D is about 6.0 mm.
  • the moving speed V2 of the substrate P is reduced according to the narrowing of the exposure slit width D with respect to the moving speed V1 of the substrate P when the standard cylindrical mask (cylindrical drum 21) is used.
  • V2 (4.3 / 7.4) V1
  • V2 (6.0 / 10.3) V1.
  • the throughput is reduced to about 58% compared to the case of using a standard cylindrical mask.
  • FIG. 18 The arrangement of the mask M3 in FIG. 18 is a three-chamfer pattern similar to that in FIG.
  • the dimension in the ⁇ direction of the blank portion 92 (Sx) adjacent to the long side of each of the three masks M3 and the interval Sx is 9 cm
  • the dimension Lg in the short side direction of the mask M3 is 45.9 cm. Therefore, the length of the entire mask region in the ⁇ direction is 164.7 cm from 3 (Lg + Sx).
  • the dimension L in the Y direction of the mask area is 85.8 cm, which is within the total width 87 cm of the exposure area (projection areas PA1 to PA6) in the Y direction.
  • the mask M3 can be efficiently arranged only by adjusting the size of the blank portion 92 and the interval Sx. Therefore, when the mask M3 is chamfered as shown in FIG. 18, the standard cylindrical mask size ( ⁇ ⁇ L) can be used as it is, so that the throughput does not decrease.
  • the ratio L / ⁇ is about 1.63, and 1.3 ⁇ L / ⁇ ⁇ 3.8, which is considered to be an efficient production.
  • the display screen area DPA may be a high-vision size 65-inch screen with an aspect ratio of 16: 9.
  • the diagonal length Le of the display screen area DPA arranged as shown in FIG. 13 is 165.1 cm
  • the short side Lc extending in the Y direction is 80.9 cm
  • the long side Ld extending in the ⁇ direction is 143.9 cm. .
  • a blank portion 92 is provided adjacent to the ⁇ direction.
  • the dimension (Sx) in the ⁇ direction is 5 cm
  • the dimension in the ⁇ direction of the mask surface P1 is about 178 cm
  • the diameter ⁇ is It becomes 56.7 cm or more.
  • the exposure apparatus U3 that can be mounted with the 65-inch cylindrical mask as a reference mask has a full width (projection) in the Y direction of the exposure region.
  • Six projection optical systems PL in which the dimensions in the Y direction of the projection area PA are changed so that the total width in the Y direction of the areas PA1 to PA6 is, for example, 95.0 cm are provided.
  • the long side Ld (Y direction) of the 37-inch display screen area DPA is 81.9 cm
  • the short side Lc ( ⁇ direction) is 46.1 cm
  • the magnification e1 in the long side direction and the short side
  • the mask M4 has a long side dimension L (e1 ⁇ Ld) of about 94.2 cm and a short side dimension Lg (e2 ⁇ Lc) of about 53. 0 cm.
  • the arrangement may be the same as that shown in FIG.
  • the diameter ⁇ of the cylindrical mask (cylindrical drum 21) when the two surfaces of the mask M4 are efficiently arranged in the circumferential direction is 37.6 cm or more.
  • the ratio L / ⁇ is about 2.5 ( ⁇ 94.2 / 37.6).
  • the exposure slit width D is about 6 mm when the allowable defocus amount ⁇ Z is 25 ⁇ m and when the allowable defocus amount ⁇ Z is 50 ⁇ m from the simulation of FIG. It is about 8.6 mm.
  • the allowable defocus amount ⁇ Z is 25 ⁇ m and 50 ⁇ m.
  • the productivity (moving speed of the substrate P) is about 80%.
  • the illuminance of the illumination light beam EL1 can be increased by about 20% compared to the exposure with the reference cylindrical mask, no substantial reduction in productivity occurs.
  • the exposure apparatus U3 of this embodiment projected the mask pattern of the cylindrical mask (cylindrical drum 21) on the board
  • the exposure apparatus U3 adjusts the configuration of the projection optical system PL, the peripheral speed of the cylindrical mask (cylindrical drum 21), the moving speed of the substrate P, etc., enlarges the pattern of the mask M at a predetermined magnification, and projects it onto the substrate P.
  • the image may be projected on the substrate P after being reduced at a predetermined magnification.
  • the longitudinal direction of the rectangular display screen area DPA is set to the Y direction.
  • the cylindrical mask (cylindrical drum 21) is configured as follows.
  • a mask pattern is formed along a cylindrical surface (P1) having a constant radius (Rm) from the center line (AX1), and is a cylindrical mask mounted on an exposure apparatus so as to be rotatable around the center line.
  • a rectangular mask region (masks M1 to M4) for the display panel is formed by arranging n (n ⁇ 2) pieces at intervals Sx in the circumferential direction ( ⁇ direction) of the cylindrical surface.
  • the dimension L in the direction (Y direction) is e1 times the long side dimension Ld of the display screen area (enlargement magnification e1 ⁇ 1), and the dimension in the short side direction ( ⁇ direction) of the mask area is the short side of the display screen area.
  • the length ⁇ is set to n (e 2 ⁇ Lc + Sx), and further, the diameter ⁇ and the number of the numbers so that the ratio of the dimension L to the diameter ⁇ is in the range of 1.3 ⁇ L / ⁇ ⁇ 3.8. n, the interval Sx is set.
  • FIG. 20 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the second embodiment.
  • the exposure apparatus U3 of the first embodiment is configured to hold the substrate P that passes through the projection region by the cylindrical substrate support drum 25.
  • the exposure apparatus U3a of the second embodiment has a configuration in which 1 in the XY plane.
  • the substrate P is held in a planar shape by the substrate support mechanism 12a that can move in two dimensions. Therefore, the substrate P in the present embodiment may be not only a single sheet substrate based on a flexible resin (PET, PEN, etc.) but also a thin glass substrate.
  • the substrate support mechanism 12a includes a substrate stage 102 having a support surface P2 that holds the substrate P in a planar shape, and the substrate stage 102 in the X direction within a plane orthogonal to the center plane CL. And a moving device (not shown) for scanning and moving along the line.
  • the support surface P2 of the substrate P in FIG. 20 is a plane substantially parallel to the XY plane (a plane orthogonal to the center plane CL), it is reflected from the mask M and is projected into the projection optical module PLM (projection optical systems PL1 to PL6).
  • the principal ray of the projection light beam EL2 that passes through and is projected onto the substrate P is set to be perpendicular to the XY plane.
  • the projection magnification of the projection optical module PLM is equal ( ⁇ 1), similarly to FIG. 2, the odd-numbered illumination on the mask M when viewed in the XZ plane.
  • the circumferential distance CCM from the center point of the region IR1 (and IR3, IR5) to the center point of the even-numbered illumination region IR2 (and IR4, IR6) is an odd-numbered projection region on the substrate P following the support surface P2.
  • the distance CCP in the X direction (scanning exposure direction) from the center point of PA1 (and PA3, PA5) to the center point of the even-numbered second projection area PA2 (and PA4, PA6) is set substantially equal. .
  • the lower order control device 16 controls the moving device (linear motor for scanning exposure, actuator for fine movement, etc.) of the substrate support mechanism 12a, and the cylindrical drum 21 holding the cylindrical mask M is controlled.
  • the substrate stage 102 is driven in synchronism with the rotation. Therefore, the movement position of the substrate stage 102 in the X direction and the Y direction is accurately measured by a laser interferometer for length measurement or a linear encoder, and the rotational position of the cylindrical drum 21 is precisely measured by a rotary encoder.
  • the support surface P2 of the substrate stage 102 may be constituted by a suction holder that vacuum-sucks and electrostatically sucks the substrate P during scanning exposure, or a static pressure gas bearing is provided between the support surface P2 and the substrate P. It may be formed of a bale-nuis type holder that is formed and supports the substrate P in a non-contact state or a low friction state.
  • the substrate P is a flexible long sheet substrate (web), and the substrate P is moved in the X direction while applying tension in the X direction (and Y direction) to the substrate P. Therefore, the substrate stage 102 (bale / Nui holder) does not need to be moved in the X and Y directions, and the support surface P2 may be an area that covers the projection areas PA1 to PA6. The size of 102 can be reduced. Also, in the case of a bale / nuis type holder, if the substrate P is a long sheet substrate, scanning exposure can be performed while continuously moving the substrate P in the longitudinal direction. Compared to the case of the suction holder that requires additional time, it is more suitable for the production of the roll-to-roll method.
  • the cylindrical drum 21 that holds the mask M (M1 to M4) in a cylindrical shape is also used.
  • the shape condition (L / ⁇ ) satisfies the relationship described in the first embodiment, the mask patterns of the display panels of various sizes can be efficiently arranged and exposed on the substrate P. A reduction in productivity can be suppressed.
  • FIG. 21 is a view showing the overall arrangement of an exposure apparatus (substrate processing apparatus) according to the third embodiment.
  • the exposure apparatus U3a of the second embodiment is configured to use a reflective mask in which the light reflected by the mask becomes the projection light beam EL2, but the exposure apparatus U3b of the third embodiment uses the light transmitted through the mask as the projection light beam. It is configured to use a transmission type mask that becomes EL2.
  • the mask holding mechanism 11a includes a cylindrical drum (mask holding drum) 21a that holds the mask MA in a cylindrical shape, a guide roller 93 that supports the mask holding drum 21a, and a mask holding drum 21a.
  • Drive roller 98 and drive unit 99 are included in the exposure apparatus U3b of the third embodiment.
  • the mask holding drum 21a forms a mask surface (P1) on which the illumination area IR on the mask MA is arranged.
  • the cylindrical surface is, for example, an outer peripheral surface of a cylinder, an outer peripheral surface of a column, or the like.
  • the mask holding drum 21a is made of, for example, glass or quartz and is formed as an annular transparent cylinder having a certain thickness, and its outer peripheral surface (cylindrical surface) forms a mask surface.
  • the mask MA is created as a transmission type planar sheet mask in which a pattern is formed with a light-shielding layer such as chromium on one surface of a strip-like ultrathin glass plate (for example, a thickness of 100 to 500 ⁇ m) with good flatness, It is used in a state in which it is curved along the outer peripheral surface of the mask holding drum 21a and wound (attached) around this outer peripheral surface.
  • the mask MA has a pattern non-formation region where no pattern is formed, and is attached to the mask holding drum 21a in the pattern non-formation region (corresponding to the peripheral blank portion 92). Therefore, in this case, the mask MA can be attached to and detached from the mask holding drum 21a.
  • the outer peripheral surface of the mask holding drum 21a is directly covered with a light shielding layer such as chromium.
  • a mask pattern may be drawn and integrated.
  • the mask holding drum 21a functions as a support member (mask support member) of the mask MA.
  • the guide roller 93 and the driving roller 98 extend in the Y-axis direction parallel to the center line AX1 'of the mask holding drum 21a.
  • the guide roller 93 and the driving roller 98 are provided so as to circumscribe the end portion in the Y direction of the mask holding drum 21a, but not to contact the pattern formation region of the mask MA held on the mask holding drum 21a. Yes.
  • the drive roller 98 is connected to the drive unit 99.
  • the drive roller 98 transmits the torque supplied from the drive unit 99 to the mask holding drum 21a, thereby rotating the mask holding drum 21a around the central axis.
  • the light source device 13a of the present embodiment includes a light source (not shown) similar to that of the first embodiment and a plurality of illumination optical systems ILa (ILa1 to ILa6).
  • a part or all of each of the illumination optical systems ILa1 to ILa6 is disposed on the inner side of the mask holding drum 21a (annular transparent cylinder), and is on the mask MA held on the outer peripheral surface (mask surface P1) of the mask holding drum 21a.
  • the illumination areas IR1 to IR6 are illuminated from the inside.
  • Each illumination optical system ILa1 to ILa6 includes a fly-eye lens, a rod integrator, and the like, and illuminates each illumination region IR1 to IR6 with an illumination light beam EL1 with a uniform illuminance.
  • the light source may be arranged inside the mask holding drum 21a or may be arranged outside the mask holding drum 21a.
  • the light source may be installed separately from the exposure apparatus U3b and guided through a light guide unit such as an optical fiber or a relay lens.
  • the exposure apparatuses U3, U3a, U3b of the first, second, and third embodiments all have the mask pattern formed on the cylindrical mask surface P1 (cylindrical drum 21, mask holding drum 21a),
  • the projection exposure was performed on the substrate P through the projection optical module PLM (PL1 to PL6).
  • the transmission type cylindrical mask (MA) is used as in the third embodiment, the distance between the outer peripheral surface (mask surface P1) of the transmission type cylindrical mask and the surface of the substrate P to be exposed is constant.
  • the transmission type cylindrical mask (MA) and the substrate P are arranged close to each other so that the gap (several tens to several hundreds of ⁇ m) is maintained, and the substrate P is synchronously moved in one direction while rotating the transmission type cylindrical mask.
  • a proximity-type scanning exposure apparatus may be used.
  • the cylindrical mask (cylindrical drum 21, mask holding drum 21a) can be adapted to change the diameter ⁇ of the cylindrical mask.
  • a mechanism that can adjust the support position (Z position) of the lens, or a mechanism that adjusts the state of the optical elements in the illumination optical system IL and the projection optical system PL is provided.
  • the diameter ⁇ of the cylindrical mask to which the exposure apparatus can be mounted has a range from the minimum diameter ⁇ 1 to the maximum diameter ⁇ 2.
  • the shape dimensions of the cylindrical drum 21 and the mask holding drum 21a are preferably set so as to satisfy the relationship of ⁇ 1 ⁇ ⁇ ⁇ ⁇ 2 along with the relationship.
  • FIG. 22 is a flowchart showing a device manufacturing method by the device manufacturing system.
  • step S201 the function / performance design of a display panel using, for example, a self-luminous element such as an organic EL is performed, and necessary circuit patterns and wiring patterns are designed using CAD or the like.
  • step S202 cylindrical masks for necessary layers are manufactured based on mask patterns for various layers designed by CAD or the like.
  • the cylindrical mask is such that the relationship between the diameter ⁇ and the length L (La) satisfies 1.3 ⁇ L / ⁇ ⁇ 3.8, and satisfies the conditions for mounting on the exposure apparatus, ⁇ 1 ⁇ ⁇ ⁇ ⁇ 2. To be produced.
  • a supply roll FR1 around which a flexible substrate P (resin film, metal foil film, plastic, etc.) serving as a display panel base material is wound is prepared (step S203).
  • the roll-shaped substrate P prepared in step S203 has a surface modified as necessary, a pre-formed base layer (for example, fine unevenness by an imprint method), and light sensitivity.
  • These functional films and transparent films (insulating materials) may be laminated in advance.
  • a backplane layer composed of electrodes, wiring, insulating films, TFTs (thin film semiconductors), etc. constituting the display panel device is formed on the substrate P, and the organic EL is stacked on the backplane layer.
  • a light emitting layer (display pixel portion) is formed by a self-luminous element such as (Step S204).
  • a photosensitive layer photoresist layer, photosensitive silane
  • U3, U3a, U3b described in the previous embodiments.
  • the substrate P is diced for each display panel device continuously manufactured on the long substrate P by a roll method, and a protective film (environmental barrier layer) or a color filter is formed on the surface of each display panel device.
  • a device is assembled by pasting sheets or the like (step S205).
  • an inspection process is performed to determine whether the display panel device functions normally or satisfies desired performance and characteristics (step S206). As described above, a display panel (flexible display) can be manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Liquid Crystal (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

Provided are a substrate processing apparatus, whereby high-quality substrates can be manufactured with high productivity, a device manufacturing method, and a mask. The present invention is provided with: a mask supporting member that supports a mask pattern such that the pattern is supported along a first surface that is curved in a cylindrical surface shape at a predetermined curvature in a lighting region; a substrate supporting member that supports the substrate such that the substrate is supported along a predetermined second surface in a projection region; and a drive mechanism, which rotates the mask supporting member such that the mask pattern moves in the predetermined scanning exposure direction, and which also moves the substrate supporting member such that the substrate moves in the scanning exposure direction. The mask supporting member satisfies formula of 1.3≤L/φ≤3.8, where a diameter of the first surface is represented by φ, and a first surface length in the direction orthogonal to the scanning exposure direction is represented by L.

Description

基板処理装置、デバイス製造方法及び円筒マスクSubstrate processing apparatus, device manufacturing method, and cylindrical mask
 本発明は、マスクのパターンを基板に投影し、該基板に該パターンを露光する基板処理装置、デバイス製造方法及びこれに用いる円筒マスクに関する。 The present invention relates to a substrate processing apparatus that projects a mask pattern onto a substrate, and exposes the pattern onto the substrate, a device manufacturing method, and a cylindrical mask used therefor.
 液晶ディスプレイ等の表示デバイスや、半導体等、各種デバイスを製造するデバイス製造システムがある。デバイス製造システムは、露光装置等の基板処理装置を備えている。特許文献1に記載の基板処理装置は、照明領域に配置されたマスクに形成されているパターンの像を、投影領域に配置されている基板等に投影し、基板に当該パターンを露光する。基板処理装置に用いられるマスクは、平面状のもの、円筒状のもの等がある。 There are device manufacturing systems for manufacturing various devices such as display devices such as liquid crystal displays and semiconductors. The device manufacturing system includes a substrate processing apparatus such as an exposure apparatus. The substrate processing apparatus described in Patent Document 1 projects an image of a pattern formed on a mask arranged in an illumination area onto a substrate or the like arranged in a projection area, and exposes the pattern on the substrate. Masks used in the substrate processing apparatus include planar ones and cylindrical ones.
特開2007-299918号公報JP 2007-299918 A
 基板処理装置は、マスクを円筒形状としマスクを回転させることで、連続して基板に露光を行うことができる。また、基板処理装置としては、基板を長尺のシート状として連続的に投影領域の下に送り込むロール・ツー・ロール方式もある。このように、基板処理装置は、円筒形状のマスクを回転させ、かつ、基板の搬送方法として、ロール・ツー・ロール方式を用いることで、基板とマスクの両方を連続して搬送することができる。 The substrate processing apparatus can continuously expose the substrate by turning the mask into a cylindrical shape. In addition, as a substrate processing apparatus, there is a roll-to-roll method in which a substrate is continuously fed into a long sheet form below a projection region. Thus, the substrate processing apparatus can continuously transport both the substrate and the mask by rotating the cylindrical mask and using the roll-to-roll method as the substrate transport method. .
 ここで、基板処理装置は、通常、効率よく基板にパターンを露光し、生産性を向上することが求められる。マスクとして円筒マスクを用いる場合も同様である。 Here, the substrate processing apparatus is usually required to efficiently expose the pattern on the substrate and improve the productivity. The same applies when a cylindrical mask is used as the mask.
 本発明の態様は、高い生産性で高い品質の基板を生産することができる基板処理装置、デバイス製造方法及び円筒マスクを提供することを目的とする。 An object of an aspect of the present invention is to provide a substrate processing apparatus, a device manufacturing method, and a cylindrical mask capable of producing a high-quality substrate with high productivity.
 本発明の第1の態様に従えば、照明光の照明領域に配置されるマスクのパターンからの光束を、基板が配置される投影領域に投射する投影光学系と、照明領域において所定曲率で円筒面状に湾曲した第1面に沿うように、マスクのパターンを支持するマスク支持部材と、投影領域において所定の第2面に沿うように基板を支持する基板支持部材と、マスクのパターンが所定の走査露光方向に移動するようにマスク支持部材を回転させ、かつ、基板が前記走査露光方向に移動するように基板支持部材を移動させる駆動機構とを備え、マスク支持部材は、第1面の直径をφとし、走査露光方向に直交する方向の第1面の長さをLとした場合、1.3≦L/φ≦3.8である基板処理装置が提供される。 According to the first aspect of the present invention, a projection optical system that projects a light beam from a mask pattern arranged in an illumination area of illumination light onto a projection area where a substrate is arranged, and a cylinder with a predetermined curvature in the illumination area A mask support member for supporting the mask pattern along the first curved surface, a substrate support member for supporting the substrate along the predetermined second surface in the projection area, and the mask pattern are predetermined. A driving mechanism that rotates the mask support member so as to move in the scanning exposure direction and moves the substrate support member so that the substrate moves in the scanning exposure direction. When the diameter is φ and the length of the first surface in the direction orthogonal to the scanning exposure direction is L, a substrate processing apparatus satisfying 1.3 ≦ L / φ ≦ 3.8 is provided.
 本発明の第2の態様に従えば、第1の態様に記載の基板処理装置を用いて前記基板に前記マスクのパターンを形成することと、前記基板処理装置に前記基板を供給することと、を含むデバイス製造方法が提供される。 According to a second aspect of the present invention, forming the pattern of the mask on the substrate using the substrate processing apparatus according to the first aspect, supplying the substrate to the substrate processing apparatus, A device manufacturing method is provided.
 本発明の第3の態様に従えば、円筒状の外周面に沿って電子デバイス用のマスクパターンが形成され、中心線の回りに回転可能な円筒マスクであって、前記外周面の直径がφ、前記外周面の前記中心線の方向の長さがLaとなるような円筒基材を有し、前記円筒基材の外周面に形成可能なマスクパターンの前記中心線の方向の最大の長さをLとしたとき、L≦Laの範囲で、前記直径φと前記長さLの比率L/φが、1.3≦L/φ≦3.8の範囲に設定される円筒マスクが提供される。 According to the third aspect of the present invention, a mask pattern for an electronic device is formed along a cylindrical outer peripheral surface, and the cylindrical mask is rotatable around a center line, and the outer peripheral surface has a diameter of φ. The cylindrical base material has a length in the direction of the center line of the outer peripheral surface of La, and the maximum length in the direction of the central line of the mask pattern that can be formed on the outer peripheral surface of the cylindrical base material A cylindrical mask is provided in which the ratio L / φ of the diameter φ to the length L is set in the range of 1.3 ≦ L / φ ≦ 3.8 in the range of L ≦ La. The
 本発明の第4の態様に従えば、所定の中心線から一定半径の円筒面に沿ってマスクパターンが形成され、前記中心線の回りに回転可能に露光装置に装着される円筒マスクであって、前記円筒面には、長辺寸法Ld、短辺寸法Lc、アスペクト比AspをLd/Lcとする表示画面領域と、その周辺に隣接して設けられる周辺回路領域とを含む表示パネル用の長方形のマスク領域が、前記円筒面の周方向に間隔Sxを空けて、n個(n≧2)並べて形成され、前記マスク領域の長手方向の寸法Lを前記表示画面領域の長辺寸法Ldのe倍(e≧1)、前記マスク領域の短手方向の寸法を前記表示画面領域の短辺寸法Lcのe倍(e≧1)としたとき、前記円筒面の前記中心線の方向に関する長さは前記寸法L以上に設定されると共に、前記円筒面の直径をφ、円周率をπとしたとき、πφ=n(e・Lc+Sx)に設定され、さらに、前記寸法Lと前記直径φとの比L/φが、1.3≦L/φ≦3.8の範囲になるように、前記直径φ、前記個数n、前記間隔Sxが設定される円筒マスクが提供される。 According to a fourth aspect of the present invention, there is provided a cylindrical mask in which a mask pattern is formed along a cylindrical surface having a constant radius from a predetermined center line and is mounted on an exposure apparatus so as to be rotatable around the center line. The cylindrical surface includes a display screen region having a long side dimension Ld, a short side dimension Lc, an aspect ratio Asp of Ld / Lc, and a peripheral circuit region provided adjacent to the periphery of the display screen region. Mask regions are formed in a row with a spacing Sx in the circumferential direction of the cylindrical surface, with n (n ≧ 2) arranged side by side, and the longitudinal dimension L of the mask region is set to e of the long side dimension Ld of the display screen region. When the dimension in the short direction of the mask region is set to e 2 times (e 2 ≧ 1) of the short side dimension Lc of the display screen region (e 1 ≧ 1), the center line of the cylindrical surface When the length in the direction is set to the dimension L or more, , The diameter of the cylindrical surface phi, when the pi [pi, is set to πφ = n (e 2 · Lc + Sx), further, the ratio L / phi between said dimension L the diameter phi is 1. A cylindrical mask is provided in which the diameter φ, the number n, and the spacing Sx are set so that 3 ≦ L / φ ≦ 3.8.
 本発明の態様によれば、マスク支持部材によって保持される円筒面状のマスク形状、又はマスクに形成されるパターンの円筒面状形状の直径φと長さLの関係を上記範囲のように設定することで、高い生産性で効率的にデバイスパターンの露光や転写を行うことができる。また、直径φと長さLの関係を上記範囲のようにすることで、表示パネル用のパターンの複数個を円筒マスクの周面に沿って並べる多面取りの場合も、色々な表示サイズのパネルを効率的に配置できる。 According to the aspect of the present invention, the relationship between the diameter φ and the length L of the cylindrical surface shape held by the mask support member or the cylindrical surface shape of the pattern formed on the mask is set within the above range. As a result, the device pattern can be efficiently exposed and transferred with high productivity. In addition, by making the relationship between the diameter φ and the length L within the above range, panels with various display sizes can be used even in the case of multi-planar arrangement in which a plurality of display panel patterns are arranged along the peripheral surface of the cylindrical mask. Can be arranged efficiently.
図1は、第1実施形態のデバイス製造システムの全体構成を示す図である。FIG. 1 is a diagram illustrating an overall configuration of a device manufacturing system according to the first embodiment. 図2は、第1実施形態の露光装置(基板処理装置)の全体構成を示す図である。FIG. 2 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the first embodiment. 図3は、図2に示す露光装置の照明領域及び投影領域の配置を示す図である。FIG. 3 is a view showing the arrangement of illumination areas and projection areas of the exposure apparatus shown in FIG. 図4は、図2に示す露光装置の照明光学系及び投影光学系の構成を示す図である。FIG. 4 is a diagram showing the configuration of the illumination optical system and the projection optical system of the exposure apparatus shown in FIG. 図5は、円筒マスクに照射される照明光束の状態と、円筒マスクから生じる投影光束の状態とを示す図である。FIG. 5 is a diagram showing the state of the illumination light beam irradiated on the cylindrical mask and the state of the projected light beam generated from the cylindrical mask. 図6は、円筒マスクを構成する円筒ドラムとマスクの概略構成を示す斜視図である。FIG. 6 is a perspective view showing a schematic configuration of a cylindrical drum and a mask constituting the cylindrical mask. 図7は、円筒マスクのマスク面に表示パネル用のマスクを1面取りする場合の配置例を示す展開図である。FIG. 7 is a development view showing an arrangement example when one mask for the display panel is cut on the mask surface of the cylindrical mask. 図8は、円筒マスクのマスク面に同一サイズのマスクを一列に3つ並べて3面取りする配置例を示す展開図である。FIG. 8 is a development view showing an arrangement example in which three masks of the same size are arranged in a line on a mask surface of a cylindrical mask and three chamfers are formed. 図9は、円筒マスクのマスク面に同一サイズのマスクを一列に4つ並べて4面取りする配置例を示す展開図である。FIG. 9 is a development view showing an arrangement example in which four masks of the same size are arranged in a line on the mask surface of the cylindrical mask and the four surfaces are chamfered. 図10は、円筒マスクのマスク面に同一サイズのマスクを2行2列で4面取りする配置例を示す展開図である。FIG. 10 is a development view showing an arrangement example in which four masks of the same size are taken in two rows and two columns on the mask surface of the cylindrical mask. 図11は、アスペクト比2:1の表示パネル用のマスクの2面取りの配置例を説明する展開図である。FIG. 11 is a development view illustrating an example of a two-chamfer arrangement of a display panel mask having an aspect ratio of 2: 1. 図12は、特定の許容デフォーカス量の下で、円筒マスクの直径と露光スリット幅との関係をシミュレーションしたグラフである。FIG. 12 is a graph simulating the relationship between the diameter of the cylindrical mask and the exposure slit width under a specific allowable defocus amount. 図13は、60インチ表示パネル用のマスクを1面取りする場合の具体例を示す展開図である。FIG. 13 is a developed view showing a specific example in the case of taking one face of a mask for a 60-inch display panel. 図14は、マスクの2面取りの配置例を示す展開図である。FIG. 14 is a development view showing an example of a two-chamfer arrangement of a mask. 図15は、32インチ表示パネル用のマスクの2面取りの第1の配置例を示す展開図である。FIG. 15 is a development view showing a first arrangement example of a two-chamfer mask for a 32-inch display panel. 図16は、32インチ表示パネル用のマスクの2面取りの第2の配置例を示す展開図である。FIG. 16 is a development view showing a second arrangement example of a two-chamfer mask for a 32-inch display panel. 図17は、32インチ表示パネル用のマスクを1面取りする場合の具体例を示す展開図である。FIG. 17 is a developed view showing a specific example in the case of taking one mask for a 32-inch display panel. 図18は、32インチ表示パネル用のマスクの3面取りの具体的な配置例を示す展開図である。FIG. 18 is a developed view showing a specific arrangement example of three-chamfering of a mask for a 32-inch display panel. 図19は、37インチ表示パネル用のマスクの3面取りの具体的な配置例を示す展開図である。FIG. 19 is a development view showing a specific arrangement example of three-chamfering of a mask for a 37-inch display panel. 図20は、第2実施形態の露光装置(基板処理装置)の全体構成を示す図である。FIG. 20 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the second embodiment. 図21は、第3実施形態の露光装置(基板処理装置)の全体構成を示す図である。FIG. 21 is a view showing the overall arrangement of an exposure apparatus (substrate processing apparatus) according to the third embodiment. 図22は、デバイス製造システムによるデバイス製造方法を示すフローチャートである。FIG. 22 is a flowchart showing a device manufacturing method by the device manufacturing system.
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換または変更を行うことができる。例えば、以下の実施形態では、デバイスとしてフレキシブル・ディスプレイを製造する場合として説明するがこれに限定されない。デバイスとしては、銅箔等による配線パターンが形成される配線基板、多数の半導体素子(トランジスタ、ダイオード等)が形成される基板等を製造することもできる。 DETAILED DESCRIPTION OF EMBODIMENTS Embodiments (embodiments) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the contents described in the following embodiments. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined. In addition, various omissions, substitutions, or changes of the components can be made without departing from the scope of the present invention. For example, although the following embodiment demonstrates as a case where a flexible display is manufactured as a device, it is not limited to this. As a device, a wiring board on which a wiring pattern made of copper foil or the like is formed, a board on which a large number of semiconductor elements (transistors, diodes, etc.) are formed, or the like can be manufactured.
[第1実施形態]
 第1実施形態は、基板に露光処理を施す基板処理装置が露光装置である。また、露光装置は、露光後の基板に各種処理を施してデバイスを製造するデバイス製造システムに組み込まれている。先ず、デバイス製造システムについて説明する。
[First Embodiment]
In the first embodiment, a substrate processing apparatus that performs exposure processing on a substrate is an exposure apparatus. The exposure apparatus is incorporated in a device manufacturing system that manufactures devices by performing various processes on the exposed substrate. First, a device manufacturing system will be described.
<デバイス製造システム>
 図1は、第1実施形態のデバイス製造システムの構成を示す図である。図1に示すデバイス製造システム1は、デバイスとしてのフレキシブル・ディスプレイを製造するライン(フレキシブル・ディスプレイ製造ライン)である。フレキシブル・ディスプレイとしては、例えば有機ELディスプレイ等がある。このデバイス製造システム1は、可撓性の基板Pをロール状に巻回した供給用ロールFR1から、該基板Pを送り出し、送り出された基板Pに対して各種処理を連続的に施した後、処理後の基板Pを可撓性のデバイスとして回収用ロールFR2に巻き取る、いわゆるロール・ツー・ロール(Roll to Roll)方式となっている。第1実施形態のデバイス製造システム1では、フィルム状のシートである基板Pが供給用ロールFR1から送り出され、供給用ロールFR1から送り出された基板Pが、順次、n台の処理装置U1、U2、U3、U4、U5、…Unを経て、回収用ロールFR2に巻き取られるまでの例を示している。先ず、デバイス製造システム1の処理対象となる基板Pについて説明する。
<Device manufacturing system>
FIG. 1 is a diagram illustrating a configuration of a device manufacturing system according to the first embodiment. A device manufacturing system 1 shown in FIG. 1 is a line (flexible display manufacturing line) for manufacturing a flexible display as a device. Examples of the flexible display include an organic EL display. The device manufacturing system 1 sends out the substrate P from the supply roll FR1 in which the flexible substrate P is wound in a roll shape, and continuously performs various processes on the delivered substrate P. A so-called roll-to-roll system is adopted in which the processed substrate P is wound around the collection roll FR2 as a flexible device. In the device manufacturing system 1 according to the first embodiment, the substrate P, which is a film-like sheet, is sent out from the supply roll FR1, and the substrates P sent out from the supply roll FR1 are sequentially supplied to n processing apparatuses U1, U2. , U3, U4, U5,... Un, and the example until being wound around the collecting roll FR2. First, the board | substrate P used as the process target of the device manufacturing system 1 is demonstrated.
 基板Pは、例えば、樹脂フィルム、ステンレス鋼等の金属または合金からなる箔(フォイル)等が用いられる。樹脂フィルムの材質としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、酢酸ビニル樹脂のうち1または2以上を含んでいる。 For the substrate P, for example, a foil (foil) made of a resin or a metal such as stainless steel or an alloy is used. Examples of the material of the resin film include polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, and vinyl acetate resin. Includes one or more.
 基板Pは、例えば、基板Pに施される各種処理において受ける熱による変形量が実質的に無視できるように、熱膨張係数が顕著に大きくないものを選定することが望ましい。熱膨張係数は、例えば、無機フィラーを樹脂フィルムに混合することによって、プロセス温度等に応じた閾値よりも小さく設定されていてもよい。無機フィラーは、例えば、酸化チタン、酸化亜鉛、アルミナ、酸化ケイ素等でもよい。また、基板Pは、フロート法等で製造された厚さ100μm程度の極薄ガラスの単層体であってもよいし、この極薄ガラスに上記の樹脂フィルム、箔等を貼り合わせた積層体であってもよい。 As the substrate P, for example, it is desirable to select a substrate whose thermal expansion coefficient is not remarkably large so that the amount of deformation caused by heat in various processes applied to the substrate P can be substantially ignored. The thermal expansion coefficient may be set smaller than a threshold corresponding to the process temperature or the like, for example, by mixing an inorganic filler with a resin film. The inorganic filler may be, for example, titanium oxide, zinc oxide, alumina, silicon oxide or the like. The substrate P may be a single layer of ultrathin glass having a thickness of about 100 μm manufactured by a float process or the like, or a laminate in which the above resin film, foil, or the like is bonded to the ultrathin glass. It may be.
 このように構成された基板Pは、ロール状に巻回されることで供給用ロールFR1となり、この供給用ロールFR1が、デバイス製造システム1に装着される。供給用ロールFR1が装着されたデバイス製造システム1は、1個のデバイスを製造するための各種の処理を、供給用ロールFR1から送り出される基板Pに対して繰り返し実行する。このため、処理後の基板Pは、複数のデバイスが連なった状態となる。つまり、供給用ロールFR1から送り出される基板Pは、多面取り用の基板となっている。尚、基板Pは、予め所定の前処理によって、その表面を改質して活性化したもの、或いは、表面に精密パターニングのための微細な隔壁構造(凹凸構造)をインプリント法等で形成したものでも良い。 The substrate P configured in this way becomes a supply roll FR1 by being wound in a roll shape, and this supply roll FR1 is mounted on the device manufacturing system 1. The device manufacturing system 1 to which the supply roll FR1 is mounted repeatedly executes various processes for manufacturing one device on the substrate P sent out from the supply roll FR1. For this reason, the processed substrate P is in a state where a plurality of devices are connected. That is, the substrate P sent out from the supply roll FR1 is a multi-sided substrate. In addition, the substrate P was modified and activated in advance by a predetermined pretreatment, or a fine partition structure (uneven structure) for precise patterning was formed on the surface by an imprint method or the like. Things can be used.
 処理後の基板Pは、ロール状に巻回されることで回収用ロールFR2として回収される。回収用ロールFR2は、図示しないダイシング装置に装着される。回収用ロールFR2が装着されたダイシング装置は、処理後の基板Pを、デバイスごとに分割(ダイシング)することで、複数個のデバイスにする。基板Pの寸法は、例えば、幅方向(短尺となる方向)の寸法が10cm~2m程度であり、長さ方向(長尺となる方向)の寸法が10m以上である。尚、基板Pの寸法は、上記した寸法に限定されない。 The treated substrate P is recovered as a recovery roll FR2 by being wound into a roll. The collection roll FR2 is attached to a dicing device (not shown). The dicing apparatus to which the collection roll FR2 is mounted divides the processed substrate P for each device (dicing) to form a plurality of devices. Regarding the dimensions of the substrate P, for example, the dimension in the width direction (short direction) is about 10 cm to 2 m, and the dimension in the length direction (long direction) is 10 m or more. In addition, the dimension of the board | substrate P is not limited to an above-described dimension.
 図1では、X方向、Y方向及びZ方向が直交する直交座標系となっている。X方向は、水平面内において供給用ロールFR1及び回収用ロールFR2を結ぶ方向であり、図1における左右方向である。Y方向は、水平面内においてX方向に直交する方向であり、図1における前後方向である。Y方向は、供給用ロールFR1及び回収用ロールFR2の軸方向となっている。Z方向は、鉛直方向であり、図1における上下方向である。 FIG. 1 shows an orthogonal coordinate system in which the X direction, the Y direction, and the Z direction are orthogonal. The X direction is a direction connecting the supply roll FR1 and the recovery roll FR2 in the horizontal plane, and is the left-right direction in FIG. The Y direction is a direction orthogonal to the X direction in the horizontal plane, and is the front-rear direction in FIG. The Y direction is the axial direction of the supply roll FR1 and the recovery roll FR2. The Z direction is the vertical direction, and is the vertical direction in FIG.
 デバイス製造システム1は、基板Pを供給する基板供給装置2と、基板供給装置2によって供給された基板Pに対して各種処理を施す処理装置U1~Unと、処理装置U1~Unによって処理が施された基板Pを回収する基板回収装置4と、デバイス製造システム1の各装置を制御する上位制御装置5とを備える。 The device manufacturing system 1 includes a substrate supply device 2 that supplies a substrate P, processing devices U1 to Un that perform various processes on the substrate P supplied by the substrate supply device 2, and processing is performed by the processing devices U1 to Un. The substrate recovery apparatus 4 that recovers the processed substrate P and the host controller 5 that controls each device of the device manufacturing system 1 are provided.
 基板供給装置2には、供給用ロールFR1が回転可能に装着される。基板供給装置2は、装着された供給用ロールFR1から基板Pを送り出す駆動ローラDR1と、基板Pの幅方向(Y方向)における位置を調整するエッジポジションコントローラEPC1とを有する。駆動ローラDR1は、基板Pの表裏両面を挟持しながら回転し、基板Pを供給用ロールFR1から回収用ロールFR2へ向かう搬送方向に送り出すことで、基板Pを処理装置U1~Unに供給する。このとき、エッジポジションコントローラEPC1は、基板Pの幅方向の端部(エッジ)における位置が、目標位置に対して±十数μm程度の範囲から±数十μm程度の範囲に収まるように、基板Pを幅方向に移動させて、基板Pの幅方向における位置を修正する。 The substrate supply device 2 is rotatably mounted with a supply roll FR1. The substrate supply apparatus 2 includes a driving roller DR1 that sends out the substrate P from the mounted supply roll FR1, and an edge position controller EPC1 that adjusts the position of the substrate P in the width direction (Y direction). The driving roller DR1 rotates while sandwiching both front and back surfaces of the substrate P, and feeds the substrate P to the processing apparatuses U1 to Un by feeding the substrate P in the transport direction from the supply roll FR1 to the collection roll FR2. At this time, the edge position controller EPC1 sets the substrate P so that the position at the end (edge) in the width direction of the substrate P is within the range of about ± 10 μm to about ± 10 μm with respect to the target position. The position of the substrate P in the width direction is corrected by moving P in the width direction.
 基板回収装置4には、回収用ロールFR2が回転可能に装着される。基板回収装置4は、処理後の基板Pを回収用ロールFR2側に引き寄せる駆動ローラDR2と、基板Pの幅方向(Y方向)における位置を調整するエッジポジションコントローラEPC2とを有する。基板回収装置4は、駆動ローラDR2により基板Pの表裏両面を挟持しながら回転し、基板Pを搬送方向に引き寄せると共に、回収用ロールFR2を回転させることで、基板Pを巻き上げる。このとき、エッジポジションコントローラEPC2は、エッジポジションコントローラEPC1と同様に構成され、基板Pの幅方向の端部(エッジ)が幅方向においてばらつかないように、基板Pの幅方向における位置を修正する。 The substrate collection device 4 is rotatably mounted with a collection roll FR2. The substrate recovery apparatus 4 includes a driving roller DR2 that draws the processed substrate P toward the recovery roll FR2, and an edge position controller EPC2 that adjusts the position of the substrate P in the width direction (Y direction). The substrate collection device 4 rotates while sandwiching the front and back surfaces of the substrate P by the driving roller DR2, pulls the substrate P in the transport direction, and rotates the collection roll FR2, thereby winding the substrate P. At this time, the edge position controller EPC2 is configured in the same manner as the edge position controller EPC1, and corrects the position in the width direction of the substrate P so that the end portion (edge) in the width direction of the substrate P does not vary in the width direction. .
 処理装置U1は、基板供給装置2から供給された基板Pの表面に感光性機能液を塗布する塗布装置である。感光性機能液としては、例えば、フォトレジスト、感光性シランカップリング材(感光性親撥液性改質材、感光性メッキ還元材等)、UV硬化樹脂液等が用いられる。処理装置U1は、基板Pの搬送方向の上流側から順に、塗布機構Gp1と乾燥機構Gp2とが設けられている。塗布機構Gp1は、基板Pが巻き付けられる圧胴ローラR1と、圧胴ローラR1に対向する塗布ローラR2とを有する。塗布機構Gp1は、供給された基板Pを圧胴ローラR1に巻き付けた状態で、圧胴ローラR1及び塗布ローラR2により基板Pを挟持する。そして、塗布機構Gp1は、圧胴ローラR1及び塗布ローラR2を回転させることで、基板Pを搬送方向に移動させながら、塗布ローラR2により感光性機能液を塗布する。乾燥機構Gp2は、熱風またはドライエアー等の乾燥用エアーを吹き付け、感光性機能液に含まれる溶質(溶剤または水)を除去し、感光性機能液が塗布された基板Pを乾燥させることで、基板P上に感光性機能層を形成する。 The processing device U1 is a coating device that applies a photosensitive functional liquid to the surface of the substrate P supplied from the substrate supply device 2. As the photosensitive functional liquid, for example, a photoresist, a photosensitive silane coupling material (photosensitive lyophobic modifier, photosensitive plating reducing material, etc.), UV curable resin liquid, or the like is used. The processing apparatus U1 is provided with a coating mechanism Gp1 and a drying mechanism Gp2 in order from the upstream side in the transport direction of the substrate P. The coating mechanism Gp1 includes a pressure drum roller R1 around which the substrate P is wound, and a coating roller R2 facing the pressure drum roller R1. The coating mechanism Gp1 sandwiches the substrate P between the impression cylinder roller R1 and the application roller R2 in a state where the supplied substrate P is wound around the impression cylinder roller R1. Then, the application mechanism Gp1 applies the photosensitive functional liquid by the application roller R2 while rotating the impression cylinder roller R1 and the application roller R2 to move the substrate P in the transport direction. The drying mechanism Gp2 blows drying air such as hot air or dry air, removes the solute (solvent or water) contained in the photosensitive functional liquid, and dries the substrate P coated with the photosensitive functional liquid. A photosensitive functional layer is formed on the substrate P.
 処理装置U2は、基板Pの表面に形成された感光性機能層を安定にすべく、処理装置U1から搬送された基板Pを所定温度(例えば、数10~120℃程度)まで加熱する加熱装置である。処理装置U2は、基板Pの搬送方向の上流側から順に、加熱チャンバHA1と冷却チャンバHA2とが設けられている。加熱チャンバHA1は、その内部に複数のローラ及び複数のエア・ターンバーが設けられており、複数のローラ及び複数のエア・ターンバーは、基板Pの搬送経路を構成している。複数のローラは、基板Pの裏面に転接して設けられ、複数のエア・ターンバーは、基板Pの表面側に非接触状態で設けられる。複数のローラ及び複数のエア・ターンバーは、基板Pの搬送経路を長くすべく、蛇行状の搬送経路となる配置になっている。加熱チャンバHA1内を通る基板Pは、蛇行状の搬送経路に沿って搬送されながら所定温度まで加熱される。冷却チャンバHA2は、加熱チャンバHA1で加熱された基板Pの温度が、後工程(処理装置U3)の環境温度と揃うようにすべく、基板Pを環境温度まで冷却する。冷却チャンバHA2は、その内部に複数のローラが設けられ、複数のローラは、加熱チャンバHA1と同様に、基板Pの搬送経路を長くすべく、蛇行状の搬送経路となる配置になっている。冷却チャンバHA2内を通る基板Pは、蛇行状の搬送経路に沿って搬送されながら冷却される。冷却チャンバHA2の搬送方向における下流側には、駆動ローラDR3が設けられ、駆動ローラDR3は、冷却チャンバHA2を通過した基板Pを挟持しながら回転することで、基板Pを処理装置U3へ向けて供給する。 The processing device U2 is a heating device that heats the substrate P conveyed from the processing device U1 to a predetermined temperature (for example, about several tens to 120 ° C.) in order to stabilize the photosensitive functional layer formed on the surface of the substrate P. It is. The processing apparatus U2 is provided with a heating chamber HA1 and a cooling chamber HA2 in order from the upstream side in the transport direction of the substrate P. The heating chamber HA1 is provided with a plurality of rollers and a plurality of air turn bars therein, and the plurality of rollers and the plurality of air turn bars constitute a transport path for the substrate P. The plurality of rollers are provided in rolling contact with the back surface of the substrate P, and the plurality of air turn bars are provided in a non-contact state on the surface side of the substrate P. The plurality of rollers and the plurality of air turn bars are arranged to form a meandering transport path so as to lengthen the transport path of the substrate P. The substrate P passing through the heating chamber HA1 is heated to a predetermined temperature while being transported along a meandering transport path. The cooling chamber HA2 cools the substrate P to the environmental temperature so that the temperature of the substrate P heated in the heating chamber HA1 matches the environmental temperature of the subsequent process (processing apparatus U3). The cooling chamber HA2 is provided with a plurality of rollers, and the plurality of rollers are arranged in a meandering manner in order to lengthen the conveyance path of the substrate P, similarly to the heating chamber HA1. The substrate P passing through the cooling chamber HA2 is cooled while being transferred along a meandering transfer path. A driving roller DR3 is provided on the downstream side in the transport direction of the cooling chamber HA2, and the driving roller DR3 rotates while sandwiching the substrate P that has passed through the cooling chamber HA2, thereby moving the substrate P toward the processing apparatus U3. Supply.
 処理装置(基板処理装置)U3は、処理装置U2から供給された、表面に感光性機能層が形成された基板(感光基板)Pに対して、ディスプレイ用の回路または配線等のパターンを投影露光する露光装置である。詳細は後述するが、処理装置U3は、反射型の円筒マスクM(円筒ドラム21)に照明光束を照明し、照明光束がマスクMにより反射されることで得られる投影光束を基板Pに投影露光する。処理装置U3は、処理装置U2から供給された基板Pを搬送方向の下流側に送る駆動ローラDR4と、基板Pの幅方向(Y方向)における位置を調整するエッジポジションコントローラEPC3とを有する。駆動ローラDR4は、基板Pの表裏両面を挟持しながら回転し、基板Pを搬送方向の下流側に送り出すことで、基板Pを露光位置で安定に支持する回転ドラム(基板支持ドラム)25へ向けて供給する。エッジポジションコントローラEPC3は、エッジポジションコントローラEPC1と同様に構成され、露光位置における基板Pの幅方向が目標位置となるように、基板Pの幅方向における位置を修正する。 The processing apparatus (substrate processing apparatus) U3 projects and exposes a pattern such as a circuit for display or wiring on the substrate (photosensitive substrate) P having a photosensitive functional layer formed on the surface supplied from the processing apparatus U2. Exposure apparatus. Although details will be described later, the processing unit U3 illuminates the reflective cylindrical mask M (cylindrical drum 21) with an illumination light beam, and projects and exposes a projection light beam obtained by the illumination light beam being reflected by the mask M onto the substrate P. To do. The processing apparatus U3 includes a driving roller DR4 that sends the substrate P supplied from the processing apparatus U2 to the downstream side in the transport direction, and an edge position controller EPC3 that adjusts the position of the substrate P in the width direction (Y direction). The driving roller DR4 rotates while pinching both the front and back surfaces of the substrate P, and sends the substrate P to the downstream side in the transport direction, so that the drive roller DR4 is directed to a rotating drum (substrate support drum) 25 that stably supports the substrate P at the exposure position. Supply. The edge position controller EPC3 is configured in the same manner as the edge position controller EPC1, and corrects the position in the width direction of the substrate P so that the width direction of the substrate P at the exposure position becomes the target position.
 また、処理装置U3は、露光後の基板Pにたるみを与えた状態で、基板Pを搬送方向の下流側へ送る2組の駆動ローラDR6、DR7を有するバッファー部DLを備えている。2組の駆動ローラDR6、DR7は、基板Pの搬送方向に所定の間隔を空けて配置されている。駆動ローラDR6は、搬送される基板Pの上流側を挟持して回転し、駆動ローラDR7は、搬送される基板Pの下流側を挟持して回転することで、基板Pを処理装置U4へ向けて供給する。このとき、基板Pは、たるみが与えられているため、駆動ローラDR7よりも搬送方向の下流側において生ずる搬送速度の変動を吸収でき、搬送速度の変動による基板Pへの露光処理の影響を縁切りすることができる。また、処理装置U3内には、円筒マスクM(以降、単にマスクMとも呼ぶ)のマスクパターンの一部分の像と基板Pとを相対的に位置合せ(アライメント)する為に、基板Pに予め形成されたアライメントマーク、或いは回転ドラム(基板支持ドラム)25の外周面の一部に形成された基準パターン等を検出するアライメント顕微鏡AMG1、AMG2が設けられている。 Further, the processing apparatus U3 includes a buffer unit DL having two sets of drive rollers DR6 and DR7 that send the substrate P to the downstream side in the transport direction in a state in which the substrate P after exposure is slackened. The two sets of drive rollers DR6 and DR7 are arranged at a predetermined interval in the transport direction of the substrate P. The drive roller DR6 rotates while sandwiching the upstream side of the substrate P to be transported, and the drive roller DR7 rotates while sandwiching the downstream side of the substrate P to be transported to direct the substrate P toward the processing apparatus U4. And supply. At this time, since the substrate P is provided with a slack, it is possible to absorb fluctuations in the conveyance speed that occur on the downstream side in the conveyance direction with respect to the driving roller DR7, so that the influence of the exposure processing on the substrate P due to the fluctuations in the conveyance speed is cut off. can do. Further, in the processing apparatus U3, in order to relatively align (align) the image of a part of the mask pattern of the cylindrical mask M (hereinafter also simply referred to as the mask M) and the substrate P, it is formed in advance on the substrate P. Alignment microscopes AMG1 and AMG2 are provided for detecting the alignment mark thus formed or a reference pattern formed on a part of the outer peripheral surface of the rotary drum (substrate support drum) 25.
 処理装置U4は、処理装置U3から搬送された露光後の基板Pに対して、湿式による現像処理、無電解メッキ処理等を行なう湿式処理装置である。処理装置U4は、その内部に、鉛直方向(Z方向)に階層化された3つの処理槽BT1、BT2、BT3と、基板Pを搬送する複数のローラと、を有する。複数のローラは、3つの処理槽BT1、BT2、BT3の内部を、基板Pが順に通過する搬送経路となるように配置される。処理槽BT3の搬送方向における下流側には、駆動ローラDR8が設けられ、駆動ローラDR8は、処理槽BT3を通過した基板Pを挟持しながら回転することで、基板Pを処理装置U5へ向けて供給する。 The processing apparatus U4 is a wet processing apparatus that performs wet development processing, electroless plating processing, and the like on the exposed substrate P transferred from the processing apparatus U3. The processing apparatus U4 has three processing tanks BT1, BT2, BT3 hierarchized in the vertical direction (Z direction) and a plurality of rollers for transporting the substrate P therein. The plurality of rollers are arranged so as to serve as a conveyance path through which the substrate P sequentially passes through the three processing tanks BT1, BT2, and BT3. A driving roller DR8 is provided on the downstream side in the transport direction of the processing tank BT3, and the driving roller DR8 rotates while sandwiching the substrate P that has passed through the processing tank BT3, so that the substrate P is directed toward the processing apparatus U5. Supply.
 図示は省略するが、処理装置U5は、処理装置U4から搬送された基板Pを乾燥させる乾燥装置である。処理装置U5は、処理装置U4において湿式処理された基板Pに付着する液滴を除去すると共に、基板Pの水分含有量を調整する。処理装置U5により乾燥された基板Pは、さらに幾つかの処理装置を経て、処理装置Unに搬送される。そして、処理装置Unで処理された後、基板Pは、基板回収装置4の回収用ロールFR2に巻き上げられる。 Although illustration is abbreviate | omitted, the processing apparatus U5 is a drying apparatus which dries the board | substrate P conveyed from the processing apparatus U4. The processing apparatus U5 removes droplets attached to the substrate P wet-processed in the processing apparatus U4 and adjusts the moisture content of the substrate P. The substrate P dried by the processing apparatus U5 is further transferred to the processing apparatus Un through several processing apparatuses. Then, after being processed by the processing device Un, the substrate P is wound up on the recovery roll FR2 of the substrate recovery device 4.
 上位制御装置5は、基板供給装置2、基板回収装置4及び複数の処理装置U1~Unを統括制御する。上位制御装置5は、基板供給装置2及び基板回収装置4を制御して、基板Pを基板供給装置2から基板回収装置4へ向けて搬送させる。また、上位制御装置5は、基板Pの搬送に同期させながら、複数の処理装置U1~Unを制御して、基板Pに対する各種処理を実行させる。 The host control device 5 performs overall control of the substrate supply device 2, the substrate recovery device 4, and the plurality of processing devices U1 to Un. The host control device 5 controls the substrate supply device 2 and the substrate recovery device 4 to transport the substrate P from the substrate supply device 2 toward the substrate recovery device 4. Further, the host control device 5 controls the plurality of processing devices U1 to Un to perform various processes on the substrate P while synchronizing with the transport of the substrate P.
<露光装置(基板処理装置)>
 次に、第1実施形態の処理装置U3としての露光装置(基板処理装置)の構成について、図2から図5を参照して説明する。図2は、第1実施形態の露光装置(基板処理装置)の全体構成を示す図である。図3は、図2に示す露光装置の照明領域及び投影領域の配置を示す図である。図4は、図2に示す露光装置の照明光学系及び投影光学系の構成を示す図である。図5は、マスクに照射される照明光束、及びマスクから射出する投影光束の状態を示す図である。
<Exposure device (substrate processing device)>
Next, the configuration of an exposure apparatus (substrate processing apparatus) as the processing apparatus U3 of the first embodiment will be described with reference to FIGS. FIG. 2 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the first embodiment. FIG. 3 is a view showing the arrangement of illumination areas and projection areas of the exposure apparatus shown in FIG. FIG. 4 is a diagram showing the configuration of the illumination optical system and the projection optical system of the exposure apparatus shown in FIG. FIG. 5 is a diagram showing a state of an illumination light beam irradiated on the mask and a projected light beam emitted from the mask.
 図2に示す露光装置U3は、いわゆる走査露光装置であり、基板Pを搬送方向に搬送しながら、円筒状のマスクMの外周面に形成されたマスクパターンの像を、基板Pの表面に投影露光する。尚、図2では、X方向、Y方向及びZ方向が直交する直交座標系となっており、図1と同様の直交座標系となっている。 The exposure apparatus U3 shown in FIG. 2 is a so-called scanning exposure apparatus, and projects a mask pattern image formed on the outer peripheral surface of the cylindrical mask M onto the surface of the substrate P while transporting the substrate P in the transport direction. Exposure. 2 is an orthogonal coordinate system in which the X direction, the Y direction, and the Z direction are orthogonal to each other, and is an orthogonal coordinate system similar to that in FIG.
 先ず、露光装置U3に用いられるマスクM(図1中の円筒マスクM)について説明する。マスクMは、例えば金属製の円筒体を用いた反射型のマスクとなっている。マスクMのパターンは、Y方向に延びる第1軸AX1を中心とする曲率半径Rmとなる外周面(円周面)を有する円筒基材に形成される。マスクMの円周面は、所定のマスクパターンが形成されたマスク面(第1面)P1となっている。マスク面P1は、所定方向に光束を高い効率で反射する高反射部と所定方向に光束を反射しないまたは低い効率で反射する反射抑制部(低反射部)とを含む。マスクパターンは、高反射部及び反射抑制部により形成されている。ここで、反射抑制部は、所定方向に反射する光が少なくなればよい。このため、反射抑制部は、光を吸収する材料や、光を透過する材料、或いは特定方向以外に光を回折させる材料で構成することができる。露光装置U3は、上記構成のマスクMとして、アルミニウムやSUS等の金属の円筒基材で作成したマスクを用いることができる。このため、露光装置U3は、安価なマスクを用いて露光を行うことができる。 First, the mask M (cylindrical mask M in FIG. 1) used in the exposure apparatus U3 will be described. The mask M is a reflective mask using, for example, a metal cylinder. The pattern of the mask M is formed on a cylindrical base material having an outer peripheral surface (circumferential surface) having a curvature radius Rm centered on the first axis AX1 extending in the Y direction. The circumferential surface of the mask M is a mask surface (first surface) P1 on which a predetermined mask pattern is formed. The mask surface P1 includes a high reflection part that reflects the light beam in a predetermined direction with high efficiency and a reflection suppression part (low reflection part) that does not reflect the light beam in the predetermined direction or reflects it with low efficiency. The mask pattern is formed by a high reflection portion and a reflection suppression portion. Here, the reflection suppressing unit only needs to reflect less light in a predetermined direction. For this reason, the reflection suppressing unit can be made of a material that absorbs light, a material that transmits light, or a material that diffracts light in a direction other than a specific direction. The exposure apparatus U3 can use a mask made of a cylindrical cylindrical base material made of metal such as aluminum or SUS as the mask M having the above configuration. Therefore, the exposure apparatus U3 can perform exposure using an inexpensive mask.
 尚、マスクMは、1個の表示デバイスに対応するパネル用パターンの全体または一部が形成されていてもよいし、複数個の表示デバイスに対応するパネル用パターンが形成されていてもよい。また、マスクMは、パネル用パターンが第1軸AX1周りの周方向に繰り返し複数個形成された多面取り、或いは小型のパネル用パターンが第1軸AX1に平行な方向に繰り返し複数形成された多面取りでもよい。さらに、マスクMは、第1の表示デバイスのパネル用パターンと、第1の表示デバイスとサイズ等が異なる第2の表示デバイスのパネル用パターンとが形成された異サイズパターンの多面取りであってもよい。また、マスクMは、第1軸AX1を中心とする曲率半径Rmとなる円周面を有していればよく、円筒体の形状に限定されない。例えば、マスクMは、円周面を有する円弧状の板材であってもよい。また、マスクMは、薄板状であってもよく、薄板状のマスクMを湾曲させて、円周面を有するようにしてもよい。 The mask M may be formed with all or part of the panel pattern corresponding to one display device, or may be formed with a panel pattern corresponding to a plurality of display devices. The mask M has a multi-face pattern in which a plurality of panel patterns are repeatedly formed in the circumferential direction around the first axis AX1, or a plurality of small panel patterns in a direction parallel to the first axis AX1. It may be chamfered. Further, the mask M is a multi-face pattern of different size patterns in which a panel pattern for the first display device and a panel pattern for a second display device having a size different from that of the first display device are formed. Also good. Moreover, the mask M should just have the circumferential surface used as the curvature radius Rm centering on 1st axis | shaft AX1, and is not limited to the shape of a cylindrical body. For example, the mask M may be an arc-shaped plate having a circumferential surface. In addition, the mask M may be a thin plate, or the thin plate mask M may be curved to have a circumferential surface.
 次に、図2に示す露光装置U3について説明する。露光装置U3は、上記した駆動ローラDR4、DR6、DR7、基板支持ドラム25、エッジポジションコントローラEPC3及びアライメント顕微鏡AMG1、AMG2の他に、マスク保持機構11と、基板支持機構12と、照明光学系ILと、投影光学系PLと、下位制御装置16と、を有する。露光装置U3は、光源装置13から射出された照明光を、照明光学系ILと投影光学系PLの一部とを介して、マスク保持機構11のマスク保持ドラム21(以下、円筒ドラム21とも呼ぶ)に支持されるマスクMのパターンが形成されているマスク面P1に照射し、マスクMのマスク面P1で反射した投影光束(結像光)を、投影光学系PLを介して基板支持機構12の基板支持ドラム25で支持される基板Pに投射する。 Next, the exposure apparatus U3 shown in FIG. 2 will be described. In addition to the driving rollers DR4, DR6, DR7, the substrate support drum 25, the edge position controller EPC3, and the alignment microscopes AMG1, AMG2, the exposure apparatus U3 includes a mask holding mechanism 11, a substrate support mechanism 12, and an illumination optical system IL. A projection optical system PL, and a low-order control device 16. The exposure apparatus U3 illuminates the light emitted from the light source device 13 via the illumination optical system IL and a part of the projection optical system PL. The mask holding drum 21 of the mask holding mechanism 11 (hereinafter also referred to as the cylindrical drum 21). ) Is irradiated onto the mask surface P1 on which the pattern of the mask M supported by the substrate M is formed, and the projection light beam (imaging light) reflected by the mask surface P1 of the mask M is supplied to the substrate support mechanism 12 via the projection optical system PL. Is projected onto the substrate P supported by the substrate support drum 25.
 下位制御装置16は、露光装置U3の各部を制御し、各部に処理を実行させる。下位制御装置16は、デバイス製造システム1の上位制御装置5の一部または全部であってもよい。また、下位制御装置16は、上位制御装置5に制御され、上位制御装置5とは別の装置であってもよい。下位制御装置16は、例えば、コンピュータを含む。 The lower-level control device 16 controls each part of the exposure apparatus U3 and causes each part to execute processing. The lower level control device 16 may be a part or all of the higher level control device 5 of the device manufacturing system 1. Further, the lower level control device 16 may be a device controlled by the higher level control device 5 and different from the higher level control device 5. The lower control device 16 includes, for example, a computer.
 マスク保持機構11は、マスクMを保持する円筒ドラム21と、円筒ドラム21を回転させる第1駆動部22とを有している。円筒ドラム21は、マスクMの第1軸AX1を回転中心とする曲率半径Rmの円筒となるようにマスクMを保持する。第1駆動部22は、下位制御装置16に接続され、第1軸AX1を回転中心に円筒ドラム21を回転させる。 The mask holding mechanism 11 includes a cylindrical drum 21 that holds the mask M, and a first drive unit 22 that rotates the cylindrical drum 21. The cylindrical drum 21 holds the mask M so as to be a cylinder having a radius of curvature Rm with the first axis AX1 of the mask M as the rotation center. The first drive unit 22 is connected to the lower control device 16 and rotates the cylindrical drum 21 around the first axis AX1.
 尚、マスク保持機構11の円筒ドラム21は、その外周面に高反射部と低反射部とでマスクパターンを直接形成したが、この構成に限らない。マスク保持機構11としての円筒ドラム21は、その外周面に倣って薄板状の反射型マスクMを巻き付けて保持してもよい。また、マスク保持機構11としての円筒ドラム21は、予め半径Rmで円弧状に湾曲させた板状の反射型マスクMを円筒ドラム21の外周面に着脱可能に保持してもよい。 The cylindrical drum 21 of the mask holding mechanism 11 directly forms a mask pattern with a high reflection portion and a low reflection portion on the outer peripheral surface thereof, but is not limited to this configuration. The cylindrical drum 21 as the mask holding mechanism 11 may wind and hold a thin plate-like reflective mask M following the outer peripheral surface thereof. Further, the cylindrical drum 21 as the mask holding mechanism 11 may detachably hold a plate-shaped reflective mask M that is previously curved in an arc shape with a radius Rm on the outer peripheral surface of the cylindrical drum 21.
 基板支持機構12は、基板Pを支持する基板支持ドラム25と、基板支持ドラム25を回転させる第2駆動部26と、一対のエア・ターンバーATB1、ATB2と、一対のガイドローラ27、28とを有している。基板支持ドラム25は、Y方向に延びる第2軸AX2を中心とする曲率半径Rpとなる外周面(円周面)を有する円筒形状に形成されている。ここで、第1軸AX1と第2軸AX2とは互いに平行になっており、第1軸AX1及び第2軸AX2を通る(含む)面を中心面CLとしている。基板支持ドラム25の円周面の一部は、基板Pを支持する支持面P2となっている。つまり、基板支持ドラム25は、その支持面P2に基板Pが巻き付けられることで、基板Pを円筒面状に湾曲させて安定に支持する。第2駆動部26は、下位制御装置16に接続され、第2軸AX2を回転中心に基板支持ドラム25を回転させる。一対のエア・ターンバーATB1,ATB2と一対のガイドローラ27、28が、基板支持ドラム25を挟んで、基板Pの搬送方向の上流側及び下流側にそれぞれ設けられている。ガイドローラ27は駆動ローラDR4から搬送された基板Pをエア・ターンバーATB1を介して基板支持ドラム25に案内し、ガイドローラ28は基板支持ドラム25を経てエア・ターンバーATB2から搬送された基板Pを駆動ローラDR6に案内する。 The substrate support mechanism 12 includes a substrate support drum 25 that supports the substrate P, a second drive unit 26 that rotates the substrate support drum 25, a pair of air turn bars ATB1 and ATB2, and a pair of guide rollers 27 and 28. Have. The substrate support drum 25 is formed in a cylindrical shape having an outer peripheral surface (circumferential surface) having a curvature radius Rp with the second axis AX2 extending in the Y direction as the center. Here, the first axis AX1 and the second axis AX2 are parallel to each other, and a plane passing (including) the first axis AX1 and the second axis AX2 is a center plane CL. A part of the circumferential surface of the substrate support drum 25 is a support surface P2 that supports the substrate P. That is, the substrate support drum 25 supports the substrate P stably by curving the substrate P into a cylindrical surface by winding the substrate P around the support surface P2. The second drive unit 26 is connected to the lower control device 16 and rotates the substrate support drum 25 about the second axis AX2. A pair of air turn bars ATB1 and ATB2 and a pair of guide rollers 27 and 28 are provided on the upstream side and the downstream side, respectively, in the transport direction of the substrate P with the substrate support drum 25 interposed therebetween. The guide roller 27 guides the substrate P conveyed from the driving roller DR4 to the substrate support drum 25 via the air turn bar ATB1, and the guide roller 28 guides the substrate P conveyed from the air turn bar ATB2 via the substrate support drum 25. Guide to the drive roller DR6.
 基板支持機構12は、第2駆動部26により基板支持ドラム25を回転させることで、基板支持ドラム25に導入した基板Pを、基板支持ドラム25の支持面P2で支持しながら、所定速度で長尺方向(X方向)に送る。 The substrate support mechanism 12 rotates the substrate support drum 25 by the second driving unit 26, thereby supporting the substrate P introduced into the substrate support drum 25 on the support surface P <b> 2 of the substrate support drum 25 and at a predetermined speed. Send in the scale direction (X direction).
 このとき、第1駆動部22及び第2駆動部26に接続された下位制御装置16は、円筒ドラム21と基板支持ドラム25とを所定の回転速度比で同期回転させることによって、マスクMのマスク面P1に形成されたマスクパターンの投影像が、基板支持ドラム25の支持面P2に巻き付けられた基板Pの表面(円周面に倣って湾曲した面)に連続的に繰り返し走査露光される。露光装置U3、第1駆動部22及び第2駆動部26が本実施形態の移動機構となる。また、図2に示した露光装置U3においては、ガイドローラ27よりも基板Pの搬送方向上流側の部分が基板支持ドラム25の支持面P2に基板Pを供給する基板供給部となる。基板供給部には、図1で示した供給用ロールFR1を直接設けても良い。同様に、ガイドローラ28よりも基板Pの搬送方向下流側の部分が基板支持ドラム25の支持面P2から基板Pを回収する基板回収部となる。基板回収部に、図1で示した回収用ロールFR2を直接設けても良い。 At this time, the lower-level control device 16 connected to the first drive unit 22 and the second drive unit 26 rotates the cylindrical drum 21 and the substrate support drum 25 synchronously at a predetermined rotation speed ratio, thereby masking the mask M. The projected image of the mask pattern formed on the surface P1 is continuously and repeatedly scanned and exposed on the surface of the substrate P (surface curved along the circumferential surface) wound around the support surface P2 of the substrate support drum 25. The exposure apparatus U3, the first drive unit 22, and the second drive unit 26 serve as the moving mechanism of this embodiment. In the exposure apparatus U <b> 3 shown in FIG. 2, a portion upstream of the guide roller 27 in the transport direction of the substrate P serves as a substrate supply unit that supplies the substrate P to the support surface P <b> 2 of the substrate support drum 25. The substrate supply unit may be directly provided with the supply roll FR1 shown in FIG. Similarly, a portion downstream of the guide roller 28 in the transport direction of the substrate P is a substrate recovery unit that recovers the substrate P from the support surface P <b> 2 of the substrate support drum 25. The substrate collection unit may be directly provided with the collection roll FR2 shown in FIG.
 光源装置13は、マスクMに照明される照明光束EL1を出射する。光源装置13は、光源31と導光部材32とを有する。光源31は、所定の波長の光を射出する光源である。光源31は、例えば水銀ランプ等のランプ光源、エキシマレーザ等の気体レーザ光源、レーザーダイオード、発光ダイオード(LED)等の固体レーザ光源である。光源31が射出する照明光は、例えば水銀ランプを用いる場合は紫外域の輝線(g線、h線、i線)が利用でき、エキシマレーザ光源を用いる場合はKrFエキシマレーザ光(波長248nm)やArFエキシマレーザ光(波長193nm)等の遠紫外光(DUV光)が利用できる。ここで、光源31は、i線(365nmの波長)より短い波長を含む照明光束EL1を射出することが好ましい。そのような照明光束EL1として、YAGレーザの第3高調波として射出されるレーザ光(波長355nm)、YAGレーザの第4高調波として射出されるレーザ光(波長266nm)を使うこともできる。 The light source device 13 emits an illumination light beam EL1 that is illuminated by the mask M. The light source device 13 includes a light source 31 and a light guide member 32. The light source 31 is a light source that emits light of a predetermined wavelength. The light source 31 is, for example, a lamp light source such as a mercury lamp, a gas laser light source such as an excimer laser, a solid-state laser light source such as a laser diode or a light emitting diode (LED). Illumination light emitted from the light source 31 can use, for example, ultraviolet emission lines (g-line, h-line, i-line) when using a mercury lamp, and KrF excimer laser light (wavelength 248 nm) when using an excimer laser light source. Far ultraviolet light (DUV light) such as ArF excimer laser light (wavelength 193 nm) can be used. Here, it is preferable that the light source 31 emits the illumination light beam EL1 including a wavelength shorter than the i-line (365 nm wavelength). As such illumination light beam EL1, laser light (wavelength 355 nm) emitted as the third harmonic of the YAG laser and laser light (wavelength 266 nm) emitted as the fourth harmonic of the YAG laser can also be used.
 導光部材32は、光源31から出射された照明光束EL1を照明光学系ILに導く。導光部材32は、光ファイバ、またはミラーを用いたリレーモジュール等で構成される。また、導光部材32は、照明光学系ILが複数設けられている場合、光源31からの照明光束EL1を複数に分割し、複数の照明光束EL1を複数の照明光学系ILに導く。本実施形態の導光部材32は、光源31から射出された照明光束EL1を所定の偏光状態の光として偏光ビームスプリッタPBSに入射させる。偏光ビームスプリッタPBSは、マスクMを落射照明するためにマスクMと投影光学系PLとの間に設けられ、S偏光の直線偏光となる光束を反射し、P偏光の直線偏光となる光束を透過する。このため、光源装置13は、偏光ビームスプリッタPBSに入射する照明光束EL1が直線偏光(S偏光)の光束となる照明光束EL1を出射する。光源装置13は、偏光ビームスプリッタPBSに波長及び位相が揃った偏光レーザを出射する。例えば、光源装置13は、光源31から射出される光束が偏光された光である場合、導光部材32として、偏波面保存ファイバを用い、光源装置13から出力されたレーザ光の偏光状態を維持したまま導光する。また、例えば、光源31から出力された光束を光ファイバで案内し、光ファイバから出力された光を偏光板で偏光させてもよい。つまり光源装置13は、ランダム偏光の光束が案内されている場合、ランダム偏光の光束を偏光板で偏光してもよい。また光源装置13は、レンズ等を用いたリレー光学系により、光源31から出力された光束を案内してもよい。 The light guide member 32 guides the illumination light beam EL1 emitted from the light source 31 to the illumination optical system IL. The light guide member 32 includes an optical fiber or a relay module using a mirror. Further, when a plurality of illumination optical systems IL are provided, the light guide member 32 divides the illumination light beam EL1 from the light source 31 into a plurality, and guides the plurality of illumination light beams EL1 to the plurality of illumination optical systems IL. The light guide member 32 of the present embodiment causes the illumination light beam EL1 emitted from the light source 31 to enter the polarization beam splitter PBS as light of a predetermined polarization state. The polarizing beam splitter PBS is provided between the mask M and the projection optical system PL for incident illumination of the mask M, reflects a light beam that becomes S-polarized linearly polarized light, and transmits a light beam that becomes P-polarized linearly polarized light. To do. For this reason, the light source device 13 emits the illumination light beam EL1 in which the illumination light beam EL1 incident on the polarization beam splitter PBS becomes a linearly polarized light (S-polarized light). The light source device 13 emits a polarized laser having the same wavelength and phase to the polarization beam splitter PBS. For example, when the light beam emitted from the light source 31 is polarized light, the light source device 13 uses a polarization plane preserving fiber as the light guide member 32 and maintains the polarization state of the laser light output from the light source device 13. Guide the light as it is. For example, the light beam output from the light source 31 may be guided by an optical fiber, and the light output from the optical fiber may be polarized by a polarizing plate. That is, the light source device 13 may polarize the randomly polarized light beam by the polarizing plate when the randomly polarized light beam is guided. Further, the light source device 13 may guide the light beam output from the light source 31 by a relay optical system using a lens or the like.
 ここで、図3に示すように、第1実施形態の露光装置U3は、いわゆるマルチレンズ方式を想定した露光装置である。尚、図3には、円筒ドラム21に保持されたマスクM上の照明領域IRを-Z側から見た平面図(図3の左図)と、基板支持ドラム25に支持された基板P上の投影領域PAを+Z側から見た平面図(図3の右図)とが図示されている。図3の符号Xsは、円筒ドラム21及び基板支持ドラム25の移動方向(回転方向)を示す。マルチレンズ方式の露光装置U3は、マスクM上の複数(第1実施形態では例えば6つ)の照明領域IR1~IR6に照明光束EL1をそれぞれ照明し、各照明光束EL1が各照明領域IR1~IR6に反射されることで得られる複数の投影光束EL2を、基板P上の複数(第1実施形態では例えば6つ)の投影領域PA1~PA6に投影露光する。 Here, as shown in FIG. 3, the exposure apparatus U3 of the first embodiment is an exposure apparatus assuming a so-called multi-lens system. 3 is a plan view of the illumination area IR on the mask M held by the cylindrical drum 21 as viewed from the −Z side (the left figure of FIG. 3), and on the substrate P supported by the substrate support drum 25. A plan view of the projection area PA from the + Z side (the right view of FIG. 3) is shown. 3 indicates the moving direction (rotating direction) of the cylindrical drum 21 and the substrate support drum 25. The multi-lens type exposure apparatus U3 illuminates a plurality of (for example, six in the first embodiment) illumination areas IR1 to IR6 on the mask M with the illumination light beam EL1, respectively, and each illumination light beam EL1 corresponds to each illumination area IR1 to IR6. A plurality of projection light beams EL2 obtained by being reflected by the projection are projected and exposed to a plurality of projection areas PA1 to PA6 (for example, six in the first embodiment) on the substrate P.
 先ず、照明光学系ILにより照明される複数の照明領域IR1~IR6について説明する。図3に示すように、複数の照明領域IR1~IR6は、中心面CLを挟んで、回転方向の上流側のマスクM上に第1照明領域IR1、第3照明領域IR3及び第5照明領域IR5が配置され、回転方向の下流側のマスクM上に第2照明領域IR2、第4照明領域IR4及び第6照明領域IR6が配置される。各照明領域IR1~IR6は、マスクMの軸方向(Y方向)に延びる平行な短辺及び長辺を有する細長い台形状の領域となっている。このとき、台形状の各照明領域IR1~IR6は、その短辺が中心面CL側に位置し、その長辺が外側に位置する領域となっている。第1照明領域IR1、第3照明領域IR3及び第5照明領域IR5は、軸方向に所定の間隔を空けて配置されている。また、第2照明領域IR2、第4照明領域IR4及び第6照明領域IR6は、軸方向に所定の間隔を空けて配置されている。このとき、第2照明領域IR2は、軸方向において、第1照明領域IR1と第3照明領域IR3との間に配置される。同様に、第3照明領域IR3は、軸方向において、第2照明領域IR2と第4照明領域IR4との間に配置される。第4照明領域IR4は、軸方向において、第3照明領域IR3と第5照明領域IR5との間に配置される。第5照明領域IR5は、軸方向において、第4照明領域IR4と第6照明領域IR6との間に配置される。各照明領域IR1~IR6は、Y方向に隣り合う台形状の照明領域の斜辺部の三角部同士が、マスクMの周方向(X方向)に回したときに互いに重なるように(オーバーラップするように)配置されている。尚、第1実施形態において、各照明領域IR1~IR6は、台形状の領域としたが、長方形状の領域でもあってよい。 First, a plurality of illumination areas IR1 to IR6 illuminated by the illumination optical system IL will be described. As shown in FIG. 3, the plurality of illumination areas IR1 to IR6 includes the first illumination area IR1, the third illumination area IR3, and the fifth illumination area IR5 on the mask M on the upstream side in the rotation direction across the center plane CL. And the second illumination region IR2, the fourth illumination region IR4, and the sixth illumination region IR6 are disposed on the mask M on the downstream side in the rotation direction. Each illumination region IR1 to IR6 is an elongated trapezoidal region having parallel short sides and long sides extending in the axial direction (Y direction) of the mask M. At this time, each of the trapezoidal illumination areas IR1 to IR6 is an area where the short side is located on the center plane CL side and the long side is located outside. The first illumination region IR1, the third illumination region IR3, and the fifth illumination region IR5 are arranged at predetermined intervals in the axial direction. In addition, the second illumination region IR2, the fourth illumination region IR4, and the sixth illumination region IR6 are arranged at a predetermined interval in the axial direction. At this time, the second illumination region IR2 is disposed between the first illumination region IR1 and the third illumination region IR3 in the axial direction. Similarly, the third illumination region IR3 is disposed between the second illumination region IR2 and the fourth illumination region IR4 in the axial direction. The fourth illumination region IR4 is disposed between the third illumination region IR3 and the fifth illumination region IR5 in the axial direction. The fifth illumination region IR5 is disposed between the fourth illumination region IR4 and the sixth illumination region IR6 in the axial direction. The illumination areas IR1 to IR6 are overlapped so that the triangular portions of the hypotenuses of the trapezoidal illumination areas adjacent in the Y direction overlap each other when rotated in the circumferential direction (X direction) of the mask M. Is arranged). In the first embodiment, the illumination areas IR1 to IR6 are trapezoidal areas, but may be rectangular areas.
 また、マスクMは、マスクパターンが形成されるパターン形成領域A3と、マスクパターンが形成されないパターン非形成領域A4とを有する。パターン非形成領域A4は、照明光束EL1を反射し難い低反射領域(反射抑制部)であり、パターン形成領域A3を枠状に囲んで配置されている。第1~第6照明領域IR1~IR6は、パターン形成領域A3のY方向の全幅をカバーするように、配置されている。 The mask M has a pattern formation area A3 where a mask pattern is formed and a pattern non-formation area A4 where a mask pattern is not formed. The pattern non-formation area A4 is a low reflection area (reflection suppression part) that hardly reflects the illumination light beam EL1, and is arranged so as to surround the pattern formation area A3 in a frame shape. The first to sixth illumination regions IR1 to IR6 are arranged so as to cover the entire width in the Y direction of the pattern formation region A3.
 照明光学系ILは、複数の照明領域IR1~IR6に応じて複数(第1実施形態では例えば6つ)設けられている。複数の照明光学系(分割照明光学系)IL1~IL6には、光源装置13からの照明光束EL1がそれぞれ入射する。各照明光学系IL1~IL6は、光源装置13から入射された各照明光束EL1を、各照明領域IR1~IR6にそれぞれ導く。つまり、第1照明光学系IL1は、照明光束EL1を第1照明領域IR1に導き、同様に、第2~第6照明光学系IL2~IL6は、照明光束EL1を第2~第6照明領域IR2~IR6に導く。複数の照明光学系IL1~IL6は、中心面CLを挟んで、第1、第3、第5照明領域IR1、IR3、IR5が配置される側(図2の左側)に、第1照明光学系IL1、第3照明光学系IL3及び第5照明光学系IL5が配置される。第1照明光学系IL1、第3照明光学系IL3及び第5照明光学系IL5は、Y方向に所定の間隔を空けて配置される。また、複数の照明光学系IL1~IL6は、中心面CLを挟んで、第2、第4、第6照明領域IR2、IR4、IR6が配置される側(図2の右側)に、第2照明光学系IL2、第4照明光学系IL4及び第6照明光学系IL6が配置される。第2照明光学系IL2、第4照明光学系IL4及び第6照明光学系IL6は、Y方向に所定の間隔を空けて配置される。このとき、第2照明光学系IL2は、軸方向において、第1照明光学系IL1と第3照明光学系IL3との間に配置される。同様に、第3照明光学系IL3、第4照明光学系IL4、第5照明光学系IL5は、軸方向において、第2照明光学系IL2と第4照明光学系IL4との間、第3照明光学系IL3と第5照明光学系IL5との間、第4照明光学系IL4と第6照明光学系IL6との間に配置される。また、第1照明光学系IL1、第3照明光学系IL3及び第5照明光学系IL5と、第2照明光学系IL2、第4照明光学系IL4及び第6照明光学系IL6とは、Y方向からみて対称に配置されている。 A plurality of (for example, six in the first embodiment) illumination optical systems IL are provided according to the plurality of illumination regions IR1 to IR6. The illumination light beam EL1 from the light source device 13 is incident on each of the plurality of illumination optical systems (divided illumination optical systems) IL1 to IL6. Each illumination optical system IL1 to IL6 guides each illumination light beam EL1 incident from the light source device 13 to each illumination region IR1 to IR6. That is, the first illumination optical system IL1 guides the illumination light beam EL1 to the first illumination region IR1, and similarly, the second to sixth illumination optical systems IL2 to IL6 transmit the illumination light beam EL1 to the second to sixth illumination regions IR2. Lead to IR6. The plurality of illumination optical systems IL1 to IL6 are arranged on the side where the first, third, and fifth illumination regions IR1, IR3, and IR5 are arranged (left side in FIG. 2) with the center plane CL interposed therebetween. IL1, third illumination optical system IL3, and fifth illumination optical system IL5 are arranged. The first illumination optical system IL1, the third illumination optical system IL3, and the fifth illumination optical system IL5 are arranged at a predetermined interval in the Y direction. In addition, the plurality of illumination optical systems IL1 to IL6 has the second illumination on the side where the second, fourth, and sixth illumination regions IR2, IR4, and IR6 are disposed (right side in FIG. 2) with the center plane CL interposed therebetween. An optical system IL2, a fourth illumination optical system IL4, and a sixth illumination optical system IL6 are arranged. The second illumination optical system IL2, the fourth illumination optical system IL4, and the sixth illumination optical system IL6 are arranged at a predetermined interval in the Y direction. At this time, the second illumination optical system IL2 is disposed between the first illumination optical system IL1 and the third illumination optical system IL3 in the axial direction. Similarly, the third illumination optical system IL3, the fourth illumination optical system IL4, and the fifth illumination optical system IL5 are arranged between the second illumination optical system IL2 and the fourth illumination optical system IL4 in the axial direction. They are arranged between the system IL3 and the fifth illumination optical system IL5, and between the fourth illumination optical system IL4 and the sixth illumination optical system IL6. The first illumination optical system IL1, the third illumination optical system IL3, and the fifth illumination optical system IL5, and the second illumination optical system IL2, the fourth illumination optical system IL4, and the sixth illumination optical system IL6 are from the Y direction. They are arranged symmetrically.
 次に、図4を参照して、各照明光学系IL1~IL6について説明する。尚、各照明光学系IL1~IL6は、同様の構成となっているため、第1照明光学系IL1(以下、単に照明光学系ILという)を例に説明する。 Next, the illumination optical systems IL1 to IL6 will be described with reference to FIG. Since each of the illumination optical systems IL1 to IL6 has the same configuration, the first illumination optical system IL1 (hereinafter simply referred to as the illumination optical system IL) will be described as an example.
 照明光学系ILは、照明領域IR(第1照明領域IR1)を均一な照度で照明すべく、光源装置13の光源31からの照明光束EL1をマスクM上の照明領域IRにケーラー照明する。また、照明光学系ILは、偏光ビームスプリッタPBSを用いた落射照明系となっている。照明光学系ILは、光源装置13からの照明光束EL1の入射側から順に、照明光学モジュールILMと、偏光ビームスプリッタPBSと、1/4波長板41とを有する。 The illumination optical system IL Koehler-illuminates the illumination region IR on the mask M with the illumination light beam EL1 from the light source 31 of the light source device 13 so as to illuminate the illumination region IR (first illumination region IR1) with uniform illuminance. The illumination optical system IL is an epi-illumination system using a polarization beam splitter PBS. The illumination optical system IL includes an illumination optical module ILM, a polarization beam splitter PBS, and a quarter wavelength plate 41 in order from the incident side of the illumination light beam EL1 from the light source device 13.
 図4に示すように、照明光学モジュールILMは、照明光束EL1の入射側から順に、コリメータレンズ51と、フライアイレンズ52と、複数のコンデンサーレンズ53と、シリンドリカルレンズ54と、照明視野絞り55と、リレーレンズ系56とを含んでおり、第1光軸BX1上に設けられている。コリメータレンズ51は、導光部材32から射出する光を入射して、フライアイレンズ52の入射側の面全体を照射する。フライアイレンズ52の出射側の面の中心は、第1光軸BX1上に配置される。フライアイレンズ52は、コリメータレンズ51からの照明光束EL1を、多数の点光源像に分割した面光源像を生成する。照明光束EL1はその面光源像から生成される。このとき、点光源像が生成されるフライアイレンズ52の出射側の面は、フライアイレンズ52から照明視野絞り55を介して後述する投影光学系PLの第1凹面鏡72に至る各種レンズによって、第1凹面鏡72の反射面が位置する瞳面と光学的に共役となるように配置される。フライアイレンズ52の出射側に設けられるコンデンサーレンズ53の光軸は、第1光軸BX1上に配置される。コンデンサーレンズ53は、フライアイレンズ52の出射側に形成された多数の点光源像の各々からの光を、照明視野絞り55上で重畳させて、均一な照度分布で照明視野絞り55を照射する。照明視野絞り55は、図3に示した照明領域IRと相似となる台形又は長方形の矩形状の開口部を有し、その開口部の中心は第1光軸BX1上に配置される。照明視野絞り55からマスクMに至る光路中に設けられるリレーレンズ系(結像系)56、偏光ビームスプリッタPBS、1/4波長板41によって、照明視野絞り55の開口部はマスクM上の照明領域IRと光学的に共役な関係に配置される。リレーレンズ系56は、第1光軸BX1に沿って配置された複数のレンズ56a、56b、56c、56dで構成され、照明視野絞り55の開口部を透過した照明光束EL1を偏光ビームスプリッタPBSを介してマスクM上の照明領域IRに照射する。コンデンサーレンズ53の出射側であって、照明視野絞り55に隣接した位置には、シリンドリカルレンズ54が設けられている。シリンドリカルレンズ54は、入射側が平面となり出射側が凸円筒レンズ面となる平凸シリンドリカルレンズである。シリンドリカルレンズ54の光軸は、第1光軸BX1上に配置される。シリンドリカルレンズ54は、マスクM上の照明領域IRを照射する照明光束EL1の各主光線を、XZ面内では収れんさせ、Y方向に関しては平行状態にする。 As shown in FIG. 4, the illumination optical module ILM includes a collimator lens 51, a fly-eye lens 52, a plurality of condenser lenses 53, a cylindrical lens 54, and an illumination field stop 55 in order from the incident side of the illumination light beam EL1. The relay lens system 56 is provided on the first optical axis BX1. The collimator lens 51 receives light emitted from the light guide member 32 and irradiates the entire surface on the incident side of the fly-eye lens 52. The center of the exit side surface of the fly-eye lens 52 is disposed on the first optical axis BX1. The fly-eye lens 52 generates a surface light source image obtained by dividing the illumination light beam EL1 from the collimator lens 51 into a number of point light source images. The illumination light beam EL1 is generated from the surface light source image. At this time, the exit-side surface of the fly-eye lens 52 on which the point light source image is generated is formed by various lenses from the fly-eye lens 52 through the illumination field stop 55 to the first concave mirror 72 of the projection optical system PL described later. The reflecting surface of the first concave mirror 72 is arranged so as to be optically conjugate with the pupil plane on which it is located. The optical axis of the condenser lens 53 provided on the emission side of the fly-eye lens 52 is disposed on the first optical axis BX1. The condenser lens 53 superimposes light from each of a large number of point light source images formed on the emission side of the fly-eye lens 52 on the illumination field stop 55, and irradiates the illumination field stop 55 with a uniform illuminance distribution. . The illumination field stop 55 has a trapezoidal or rectangular rectangular opening similar to the illumination region IR shown in FIG. 3, and the center of the opening is arranged on the first optical axis BX1. The relay lens system (imaging system) 56, polarization beam splitter PBS, and quarter wavelength plate 41 provided in the optical path from the illumination field stop 55 to the mask M allow the opening of the illumination field stop 55 to be illuminated on the mask M. Arranged in an optically conjugate relationship with the region IR. The relay lens system 56 includes a plurality of lenses 56a, 56b, 56c, and 56d arranged along the first optical axis BX1, and converts the illumination light beam EL1 transmitted through the opening of the illumination field stop 55 into the polarization beam splitter PBS. The illumination area IR on the mask M is irradiated through A cylindrical lens 54 is provided on the exit side of the condenser lens 53 and adjacent to the illumination field stop 55. The cylindrical lens 54 is a plano-convex cylindrical lens in which the incident side is a flat surface and the output side is a convex cylindrical lens surface. The optical axis of the cylindrical lens 54 is disposed on the first optical axis BX1. The cylindrical lens 54 converges each principal ray of the illumination light beam EL1 that irradiates the illumination region IR on the mask M in the XZ plane and makes it parallel in the Y direction.
 偏光ビームスプリッタPBSは、照明光学モジュールILMと中心面CLとの間に配置されている。偏光ビームスプリッタPBSは、波面分割面でS偏光の直線偏光となる光束を反射し、P偏光の直線偏光となる光束を透過する。ここで、偏光ビームスプリッタPBSに入射する照明光束EL1をS偏光の直線偏光とすると、照明光束EL1は偏光ビームスプリッタPBSの波面分割面で反射し、1/4波長板41を透過して円偏光となってマスクM上の照明領域IRを照射する。マスクM上の照明領域IRで反射した投影光束EL2は、再び1/4波長板41を通ることによって円偏光から直線P偏光に変換され、偏光ビームスプリッタPBSの波面分割面を透過して投影光学系PLに向かう。偏光ビームスプリッタPBSは、波面分割面に入射された照明光束EL1の大部分を反射すると共に、投影光束EL2の大部分を透過することが好ましい。偏光ビームスプリッタPBSの波面分割面での偏光分離特性は消光比で表されるが、その消光比は波面分割面に向かう光線の入射角によっても変わる為、波面分割面の特性は、実用上の結像性能への影響が問題にならないように、照明光束EL1や投影光束EL2のNA(開口数)も考慮して設計される。 The polarization beam splitter PBS is disposed between the illumination optical module ILM and the center plane CL. The polarization beam splitter PBS reflects a light beam that becomes S-polarized linearly polarized light at the wavefront dividing plane and transmits a light beam that becomes P-polarized linearly polarized light. Here, if the illumination light beam EL1 incident on the polarization beam splitter PBS is linearly polarized light of S polarization, the illumination light beam EL1 is reflected by the wavefront dividing surface of the polarization beam splitter PBS, passes through the quarter wavelength plate 41, and is circularly polarized light. The illumination area IR on the mask M is irradiated. The projection light beam EL2 reflected by the illumination area IR on the mask M is again converted from circularly polarized light to linear P polarized light by passing through the quarter-wave plate 41, and is transmitted through the wavefront splitting surface of the polarizing beam splitter PBS to project optically. Head to the system PL. The polarization beam splitter PBS preferably reflects most of the illumination light beam EL1 incident on the wavefront splitting surface and transmits most of the projection light beam EL2. The polarization splitting characteristic at the wavefront splitting plane of the polarization beam splitter PBS is expressed by the extinction ratio, but the extinction ratio also changes depending on the incident angle of the light beam toward the wavefront splitting plane. The design is made in consideration of the NA (numerical aperture) of the illumination light beam EL1 and the projection light beam EL2 so that the influence on the imaging performance is not a problem.
 図5は、マスクM上の照明領域IRに照射される照明光束EL1と、照明領域IRで反射された投影光束EL2との振る舞いを、XZ面(第1軸AX1と垂直な面)内で誇張して示した図である。図5に示すように、上記した照明光学系ILは、マスクMの照明領域IRで反射される投影光束EL2の主光線がテレセントリック(平行系)となるように、マスクMの照明領域IRに照射される照明光束EL1の各主光線を、XZ面(第1軸AX1と垂直な面)内では意図的に非テレセントリックな状態にし、YZ面(中心面CLと平行)内ではテレセントリックな状態にする。照明光束EL1のそのような特性は、図4中に示したシリンドリカルレンズ54によって与えられる。 FIG. 5 exaggerates the behavior of the illumination light beam EL1 applied to the illumination region IR on the mask M and the projection light beam EL2 reflected by the illumination region IR in the XZ plane (plane perpendicular to the first axis AX1). FIG. As shown in FIG. 5, the illumination optical system IL described above irradiates the illumination area IR of the mask M so that the principal ray of the projection light beam EL2 reflected by the illumination area IR of the mask M becomes telecentric (parallel system). Each principal ray of the illumination light beam EL1 to be generated is intentionally non-telecentric in the XZ plane (plane perpendicular to the first axis AX1) and telecentric in the YZ plane (parallel to the center plane CL). . Such a characteristic of the illumination light beam EL1 is given by the cylindrical lens 54 shown in FIG.
 具体的には、マスク面P1上の照明領域IRの周方向の中央の点Q1を通って第1軸AX1に向かう線と、マスク面P1の半径Rmの1/2の円との交点Q2(1/2半径位置)を設定したとき、照明領域IRを通る照明光束EL1の各主光線が、XZ面では交点Q2に向かうように、シリンドリカルレンズ54の凸円筒レンズ面の曲率を設定する。このようにすると、照明領域IR内で反射した投影光束EL2の各主光線は、XZ面内では、第1軸AX1、点Q1、交点Q2を通る直線と平行(テレセントリック)な状態となる。 Specifically, an intersection point Q2 (a line extending from the center point Q1 in the circumferential direction of the illumination region IR on the mask surface P1 toward the first axis AX1 and a circle having a half radius Rm of the mask surface P1 ( When the ½ radius position is set, the curvature of the convex cylindrical lens surface of the cylindrical lens 54 is set so that each principal ray of the illumination light beam EL1 passing through the illumination region IR is directed to the intersection point Q2 on the XZ plane. In this way, each principal ray of the projection light beam EL2 reflected in the illumination region IR is in a state (telecentric) parallel to a straight line passing through the first axis AX1, the point Q1, and the intersection point Q2 in the XZ plane.
 次に、投影光学系PLにより投影露光される複数の投影領域PA1~PA6について説明する。図3に示すように、基板P上の複数の投影領域PA1~PA6は、マスクM上の複数の照明領域IR1~IR6と対応させて配置されている。つまり、基板P上の複数の投影領域PA1~PA6は、中心面CLを挟んで、搬送方向の上流側の基板P上に第1投影領域PA1、第3投影領域PA3及び第5投影領域PA5が配置され、搬送方向の下流側の基板P上に第2投影領域PA2、第4投影領域PA4及び第6投影領域PA6が配置される。各投影領域PA1~PA6は、基板Pの幅方向(Y方向)に延びる短辺及び長辺を有する細長い台形状(矩形状)の領域となっている。このとき、台形状の各投影領域PA1~PA6は、その短辺が中心面CL側に位置し、その長辺が外側に位置する領域となっている。第1投影領域PA1、第3投影領域PA3及び第5投影領域PA5は、幅方向に所定の間隔を空けて配置されている。また、第2投影領域PA2、第4投影領域PA4及び第6投影領域PA6は、幅方向に所定の間隔を空けて配置されている。このとき、第2投影領域PA2は、軸方向において、第1投影領域PA1と第3投影領域PA3との間に配置される。同様に、第3投影領域PA3は、軸方向において、第2投影領域PA2と第4投影領域PA4との間に配置される。第4投影領域PA4は、軸方向において、第3投影領域PA3と第5投影領域PA5との間に配置される。第5投影領域PA5は、軸方向において、第4投影領域PA4と第6投影領域PA6との間に配置される。各投影領域PA1~PA6は、各照明領域IR1~IR6と同様に、Y方向に隣り合う台形状の投影領域PAの斜辺部の三角部同士が、基板Pの搬送方向に関して重なるように(オーバーラップするように)配置されている。このとき、投影領域PAは、隣り合う投影領域PAの重複する領域での露光量が、重複しない領域での露光量と実質的に同じになるような形状になっている。そして、第1~第6投影領域PA1~PA6は、基板P上に露光される露光領域A7のY方向の全幅をカバーするように、配置されている。 Next, a plurality of projection areas PA1 to PA6 that are projected and exposed by the projection optical system PL will be described. As shown in FIG. 3, the plurality of projection areas PA1 to PA6 on the substrate P are arranged in correspondence with the plurality of illumination areas IR1 to IR6 on the mask M. That is, the plurality of projection areas PA1 to PA6 on the substrate P have the first projection area PA1, the third projection area PA3, and the fifth projection area PA5 on the substrate P on the upstream side in the transport direction across the center plane CL. The second projection area PA2, the fourth projection area PA4, and the sixth projection area PA6 are arranged on the substrate P on the downstream side in the transport direction. Each of the projection areas PA1 to PA6 is an elongated trapezoidal (rectangular) area having a short side and a long side extending in the width direction (Y direction) of the substrate P. At this time, each of the trapezoidal projection areas PA1 to PA6 is an area where the short side is located on the center plane CL side and the long side is located outside. The first projection area PA1, the third projection area PA3, and the fifth projection area PA5 are arranged at predetermined intervals in the width direction. Further, the second projection area PA2, the fourth projection area PA4, and the sixth projection area PA6 are arranged at a predetermined interval in the width direction. At this time, the second projection area PA2 is arranged between the first projection area PA1 and the third projection area PA3 in the axial direction. Similarly, the third projection area PA3 is arranged between the second projection area PA2 and the fourth projection area PA4 in the axial direction. The fourth projection area PA4 is arranged between the third projection area PA3 and the fifth projection area PA5 in the axial direction. The fifth projection area PA5 is arranged between the fourth projection area PA4 and the sixth projection area PA6 in the axial direction. In each of the projection areas PA1 to PA6, as in the illumination areas IR1 to IR6, the triangular portions of the oblique sides of the trapezoidal projection area PA adjacent in the Y direction overlap with each other in the transport direction of the substrate P (overlapping). To be arranged). At this time, the projection area PA has such a shape that the exposure amount in the area where the adjacent projection areas PA overlap is substantially the same as the exposure amount in the non-overlapping area. The first to sixth projection areas PA1 to PA6 are arranged so as to cover the entire width in the Y direction of the exposure area A7 exposed on the substrate P.
 ここで、図2において、XZ面内で見たとき、マスクM上の照明領域IR1(及びIR3、IR5)の中心点から照明領域IR2(及びIR4、IR6)の中心点までの周長は、支持面P2に倣った基板P上の投影領域PA1(及びPA3、PA5)の中心点から投影領域PA2(及びPA4、PA6)の中心点までの周長と、実質的に等しく設定されている。 Here, in FIG. 2, when viewed in the XZ plane, the circumference from the center point of the illumination region IR1 (and IR3, IR5) on the mask M to the center point of the illumination region IR2 (and IR4, IR6) is The circumferential length from the center point of the projection area PA1 (and PA3, PA5) on the substrate P following the support surface P2 to the center point of the projection area PA2 (and PA4, PA6) is set to be substantially equal.
 投影光学系PLは、複数の投影領域PA1~PA6に応じて複数(第1実施形態では例えば6つ)設けられている。複数の投影光学系(分割投影光学系)PL1~PL6には、複数の照明領域IR1~IR6から反射された複数の投影光束EL2がそれぞれ入射する。各投影光学系PL1~PL6は、マスクMで反射された各投影光束EL2を、各投影領域PA1~PA6にそれぞれ導く。つまり、第1投影光学系PL1は、第1照明領域IR1からの投影光束EL2を第1投影領域PA1に導き、同様に、第2~第6投影光学系PL2~PL6は、第2~第6照明領域IR2~IR6からの各投影光束EL2を第2~第6投影領域PA2~PA6に導く。複数の投影光学系PL1~PL6は、中心面CLを挟んで、第1、第3、第5投影領域PA1、PA3、PA5が配置される側(図2の左側)に、第1投影光学系PL1、第3投影光学系PL3及び第5投影光学系PL5が配置される。第1投影光学系PL1、第3投影光学系PL3及び第5投影光学系PL5は、Y方向に所定の間隔を空けて配置される。また、複数の投影光学系PL1~PL6は、中心面CLを挟んで、第2、第4、第6投影領域PA2、PA4、PA6が配置される側(図2の右側)に、第2投影光学系PL2、第4投影光学系PL4及び第6投影光学系PL6が配置される。第2投影光学系PL2、第4投影光学系PL4及び第6投影光学系PL6は、Y方向に所定の間隔を空けて配置される。このとき、第2投影光学系PL2は、軸方向において、第1投影光学系PL1と第3投影光学系PL3との間に配置される。同様に、第3投影光学系PL3、第4投影光学系PL4、第5投影光学系PL5は、軸方向において、第2投影光学系PL2と第4投影光学系PL4との間、第3投影光学系PL3と第5投影光学系PL5との間、第4投影光学系PL4と第6投影光学系PL6との間に配置される。また、第1投影光学系PL1、第3投影光学系PL3及び第5投影光学系PL5と、第2投影光学系PL2、第4投影光学系PL4及び第6投影光学系PL6とは、Y方向からみて対称に配置されている。 A plurality of projection optical systems PL (for example, six in the first embodiment) are provided according to the plurality of projection areas PA1 to PA6. A plurality of projection light beams EL2 reflected from the plurality of illumination regions IR1 to IR6 are incident on the plurality of projection optical systems (divided projection optical systems) PL1 to PL6, respectively. Each projection optical system PL1 to PL6 guides each projection light beam EL2 reflected by the mask M to each projection area PA1 to PA6. That is, the first projection optical system PL1 guides the projection light beam EL2 from the first illumination area IR1 to the first projection area PA1, and similarly, the second to sixth projection optical systems PL2 to PL6 are second to sixth. Each projection light beam EL2 from the illumination regions IR2 to IR6 is guided to the second to sixth projection regions PA2 to PA6. The plurality of projection optical systems PL1 to PL6 has a first projection optical system on the side (left side in FIG. 2) on which the first, third, and fifth projection areas PA1, PA3, and PA5 are arranged with the center plane CL interposed therebetween. PL1, a third projection optical system PL3, and a fifth projection optical system PL5 are arranged. The first projection optical system PL1, the third projection optical system PL3, and the fifth projection optical system PL5 are arranged at a predetermined interval in the Y direction. Further, the plurality of projection optical systems PL1 to PL6 has the second projection on the side (the right side in FIG. 2) on which the second, fourth, and sixth projection areas PA2, PA4, and PA6 are arranged with the center plane CL interposed therebetween. An optical system PL2, a fourth projection optical system PL4, and a sixth projection optical system PL6 are arranged. The second projection optical system PL2, the fourth projection optical system PL4, and the sixth projection optical system PL6 are arranged at a predetermined interval in the Y direction. At this time, the second projection optical system PL2 is disposed between the first projection optical system PL1 and the third projection optical system PL3 in the axial direction. Similarly, the third projection optical system PL3, the fourth projection optical system PL4, and the fifth projection optical system PL5 are arranged between the second projection optical system PL2 and the fourth projection optical system PL4 in the axial direction. Arranged between the system PL3 and the fifth projection optical system PL5, and between the fourth projection optical system PL4 and the sixth projection optical system PL6. The first projection optical system PL1, the third projection optical system PL3, and the fifth projection optical system PL5, and the second projection optical system PL2, the fourth projection optical system PL4, and the sixth projection optical system PL6 are from the Y direction. They are arranged symmetrically.
 再び、図4を参照して、各投影光学系PL1~PL6について説明する。尚、各投影光学系PL1~PL6は、同様の構成となっているため、第1投影光学系PL1(以下、単に投影光学系PLという)を例に説明する。 Again, the projection optical systems PL1 to PL6 will be described with reference to FIG. Since the projection optical systems PL1 to PL6 have the same configuration, the first projection optical system PL1 (hereinafter simply referred to as the projection optical system PL) will be described as an example.
 投影光学系PLは、マスクM上の照明領域IR(第1照明領域IR1)におけるマスクパターンの像を、基板P上の投影領域PAに投影する。投影光学系PLは、マスクMからの投影光束EL2の入射側から順に、上記の1/4波長板41と、上記の偏光ビームスプリッタPBSと、投影光学モジュールPLMとを有する。 The projection optical system PL projects an image of the mask pattern in the illumination area IR (first illumination area IR1) on the mask M onto the projection area PA on the substrate P. The projection optical system PL includes the quarter-wave plate 41, the polarization beam splitter PBS, and the projection optical module PLM in order from the incident side of the projection light beam EL2 from the mask M.
 1/4波長板41及び偏光ビームスプリッタPBSは、照明光学系ILと兼用となっている。換言すれば、照明光学系IL及び投影光学系PLは、1/4波長板41及び偏光ビームスプリッタPBSを共有している。 The quarter-wave plate 41 and the polarization beam splitter PBS are also used as the illumination optical system IL. In other words, the illumination optical system IL and the projection optical system PL share the quarter wavelength plate 41 and the polarization beam splitter PBS.
 照明領域IRで反射された投影光束EL2は、テレセントリックな状態(各主光線が互いに平行な状態)となって、投影光学系PLに入射する。照明領域IRで反射された円偏光となる投影光束EL2は、1/4波長板41により円偏光から直線偏光(P偏光)に変換された後、偏光ビームスプリッタPBSに入射する。偏光ビームスプリッタPBSに入射した投影光束EL2は、偏光ビームスプリッタPBSを透過した後、投影光学モジュールPLMに入射する。 The projection light beam EL2 reflected by the illumination region IR enters a projection optical system PL in a telecentric state (in which each principal ray is parallel to each other). The projection light beam EL2 that is circularly polarized light reflected by the illumination region IR is converted from circularly polarized light to linearly polarized light (P-polarized light) by the quarter wavelength plate 41, and then enters the polarization beam splitter PBS. The projection light beam EL2 incident on the polarization beam splitter PBS passes through the polarization beam splitter PBS and then enters the projection optical module PLM.
 投影光学モジュールPLMは、照明光学モジュールILMに対応して設けられている。つまり、第1投影光学系PL1の投影光学モジュールPLMは、第1照明光学系IL1の照明光学モジュールILMによって照明される第1照明領域IR1のマスクパターンの像を、基板P上の第1投影領域PA1に投影する。同様に、第2~第6投影光学系PL2~PL6の投影光学モジュールLMは、第2~第6照明光学系IL2~IL6の照明光学モジュールILMによって照明される第2~第6照明領域IR2~IR6のマスクパターンの像を、基板P上の第2~第6投影領域PA2~PA6に投影する。 The projection optical module PLM is provided corresponding to the illumination optical module ILM. That is, the projection optical module PLM of the first projection optical system PL1 converts the mask pattern image of the first illumination area IR1 illuminated by the illumination optical module ILM of the first illumination optical system IL1 into the first projection area on the substrate P. Project to PA1. Similarly, the projection optical modules LM of the second to sixth projection optical systems PL2 to PL6 have second to sixth illumination regions IR2 to IR2 illuminated by the illumination optical modules ILM of the second to sixth illumination optical systems IL2 to IL6. The image of the IR6 mask pattern is projected onto the second to sixth projection areas PA2 to PA6 on the substrate P.
 図4に示すように、投影光学モジュールPLMは、照明領域IRにおけるマスクパターンの像を中間像面P7に結像する第1光学系61と、第1光学系61により結像した中間像の少なくとも一部を基板Pの投影領域PAに再結像する第2光学系62と、中間像が形成される中間像面P7に配置された投影視野絞り63とを備える。また、投影光学モジュールPLMは、フォーカス補正光学部材64と、像シフト用光学部材65と、倍率補正用光学部材66と、ローテーション補正機構67と、偏光調整機構(偏光調整手段)68とを備える。 As shown in FIG. 4, the projection optical module PLM includes a first optical system 61 that forms an image of the mask pattern in the illumination region IR on the intermediate image plane P7, and at least an intermediate image formed by the first optical system 61. A second optical system 62 for re-imaging a part of the image on the projection area PA of the substrate P, and a projection field stop 63 disposed on the intermediate image plane P7 on which the intermediate image is formed are provided. The projection optical module PLM includes a focus correction optical member 64, an image shift optical member 65, a magnification correction optical member 66, a rotation correction mechanism 67, and a polarization adjustment mechanism (polarization adjustment means) 68.
 第1光学系61及び第2光学系62は、例えばダイソン系を変形したテレセントリックな反射屈折光学系である。第1光学系61は、その光軸(以下、第2光軸BX2という)が中心面CLに対して実質的に直交する。第1光学系61は、第1偏向部材70と、第1レンズ群71と、第1凹面鏡72とを備える。第1偏向部材70は、第1反射面P3と第2反射面P4とを有する三角プリズムである。第1反射面P3は、偏光ビームスプリッタPBSからの投影光束EL2を反射させ、反射させた投影光束EL2を第1レンズ群71を通って第1凹面鏡72に入射させる面となっている。第2反射面P4は、第1凹面鏡72で反射された投影光束EL2が第1レンズ群71を通って入射し、入射した投影光束EL2を投影視野絞り63へ向けて反射する面となっている。第1レンズ群71は、各種レンズを含み、各種レンズの光軸は、第2光軸BX2上に配置されている。第1凹面鏡72は、第1光学系61の瞳面に配置され、フライアイレンズ52により生成される多数の点光源像と光学的に共役な関係に設定される。 The first optical system 61 and the second optical system 62 are, for example, telecentric catadioptric optical systems obtained by modifying a Dyson system. The first optical system 61 has its optical axis (hereinafter referred to as the second optical axis BX2) substantially orthogonal to the center plane CL. The first optical system 61 includes a first deflecting member 70, a first lens group 71, and a first concave mirror 72. The first deflecting member 70 is a triangular prism having a first reflecting surface P3 and a second reflecting surface P4. The first reflecting surface P3 is a surface that reflects the projection light beam EL2 from the polarization beam splitter PBS and causes the reflected projection light beam EL2 to enter the first concave mirror 72 through the first lens group 71. The second reflecting surface P4 is a surface on which the projection light beam EL2 reflected by the first concave mirror 72 enters through the first lens group 71 and reflects the incident projection light beam EL2 toward the projection field stop 63. . The first lens group 71 includes various lenses, and the optical axes of the various lenses are disposed on the second optical axis BX2. The first concave mirror 72 is disposed on the pupil plane of the first optical system 61 and is set in an optically conjugate relationship with a number of point light source images generated by the fly-eye lens 52.
 偏光ビームスプリッタPBSからの投影光束EL2は、第1偏向部材70の第1反射面P3で反射され、第1レンズ群71の上半分の視野領域を通って第1凹面鏡72に入射する。第1凹面鏡72に入射した投影光束EL2は、第1凹面鏡72で反射され、第1レンズ群71の下半分の視野領域を通って第1偏向部材70の第2反射面P4に入射する。第2反射面P4に入射した投影光束EL2は、第2反射面P4で反射され、フォーカス補正光学部材64及び像シフト用光学部材65を通過し、投影視野絞り63に入射する。 The projection light beam EL2 from the polarization beam splitter PBS is reflected by the first reflecting surface P3 of the first deflecting member 70, and enters the first concave mirror 72 through the upper half field region of the first lens group 71. The projection light beam EL2 incident on the first concave mirror 72 is reflected by the first concave mirror 72, passes through the lower half field of view of the first lens group 71, and enters the second reflective surface P4 of the first deflecting member 70. The projection light beam EL2 incident on the second reflection surface P4 is reflected by the second reflection surface P4, passes through the focus correction optical member 64 and the image shift optical member 65, and enters the projection field stop 63.
 投影視野絞り63は、投影領域PAの形状を規定する開口を有する。すなわち、投影視野絞り63の開口の形状が投影領域PAの実質的な形状を規定することになる。従って、照明光学系IL内の照明視野絞り55の開口の形状を、投影領域PAの実質的な形状と相似の台形状にする場合は、投影視野絞り63を省略することができる。 The projection field stop 63 has an opening that defines the shape of the projection area PA. That is, the shape of the opening of the projection field stop 63 defines the substantial shape of the projection area PA. Therefore, the projection field stop 63 can be omitted when the shape of the opening of the illumination field stop 55 in the illumination optical system IL is a trapezoid similar to the substantial shape of the projection area PA.
 第2光学系62は、第1光学系61と同様の構成であり、中間像面P7を挟んで第1光学系61と対称に設けられている。第2光学系62は、その光軸(以下、第3光軸BX3という)が中心面CLに対して実質的に直交し、第2光軸BX2と平行になっている。第2光学系62は、第2偏向部材80と、第2レンズ群81と、第2凹面鏡82とを備える。第2偏向部材80は、第3反射面P5と第4反射面P6とを有する。第3反射面P5は、投影視野絞り63からの投影光束EL2を反射させ、反射させた投影光束EL2を第2レンズ群81を通って第2凹面鏡82に入射させる面となっている。第4反射面P6は、第2凹面鏡82で反射された投影光束EL2が第2レンズ群81を通って入射し、入射した投影光束EL2を投影領域PAへ向けて反射する面となっている。第2レンズ群81は、各種レンズを含み、各種レンズの光軸は、第3光軸BX3上に配置されている。第2凹面鏡82は、第2光学系62の瞳面に配置され、第1凹面鏡72に結像した多数の点光源像と光学的に共役な関係に設定される。 The second optical system 62 has the same configuration as that of the first optical system 61, and is provided symmetrically with the first optical system 61 with the intermediate image plane P7 interposed therebetween. The second optical system 62 has an optical axis (hereinafter referred to as a third optical axis BX3) that is substantially perpendicular to the center plane CL and parallel to the second optical axis BX2. The second optical system 62 includes a second deflecting member 80, a second lens group 81, and a second concave mirror 82. The second deflecting member 80 has a third reflecting surface P5 and a fourth reflecting surface P6. The third reflecting surface P5 is a surface that reflects the projection light beam EL2 from the projection field stop 63 and causes the reflected projection light beam EL2 to enter the second concave mirror 82 through the second lens group 81. The fourth reflecting surface P6 is a surface on which the projection light beam EL2 reflected by the second concave mirror 82 enters through the second lens group 81 and reflects the incident projection light beam EL2 toward the projection area PA. The second lens group 81 includes various lenses, and the optical axes of the various lenses are disposed on the third optical axis BX3. The second concave mirror 82 is disposed on the pupil plane of the second optical system 62 and is set in an optically conjugate relationship with a number of point light source images formed on the first concave mirror 72.
 投影視野絞り63からの投影光束EL2は、第2偏向部材80の第3反射面P5で反射され、第2レンズ群81の上半分の視野領域を通って第2凹面鏡82に入射する。第2凹面鏡82に入射した投影光束EL2は、第2凹面鏡82で反射され、第2レンズ群81の下半分の視野領域を通って第2偏向部材80の第4反射面P6に入射する。第4反射面P6に入射した投影光束EL2は、第4反射面P6で反射され、倍率補正用光学部材66を通過し、投影領域PAに投射される。これにより、照明領域IRにおけるマスクパターンの像は、投影領域PAに等倍(×1)で投影される。 The projection light beam EL2 from the projection field stop 63 is reflected by the third reflecting surface P5 of the second deflecting member 80, and enters the second concave mirror 82 through the upper half field region of the second lens group 81. The projection light beam EL <b> 2 that has entered the second concave mirror 82 is reflected by the second concave mirror 82, passes through the lower half field of view of the second lens group 81, and enters the fourth reflecting surface P <b> 6 of the second deflecting member 80. The projection light beam EL2 incident on the fourth reflection surface P6 is reflected by the fourth reflection surface P6, passes through the magnification correction optical member 66, and is projected onto the projection area PA. Thereby, the image of the mask pattern in the illumination area IR is projected to the projection area PA at the same magnification (× 1).
 フォーカス補正光学部材64は、第1偏向部材70と投影視野絞り63との間に配置されている。フォーカス補正光学部材64は、基板P上に投影されるマスクパターンの像のフォーカス状態を調整する。フォーカス補正光学部材64は、例えば、2枚のクサビ状のプリズムを逆向き(図4ではX方向について逆向き)にして、全体として透明な平行平板になるように重ね合わせたものである。この1対のプリズムを互いに対向する面間の間隔を変えずに斜面方向にスライドさせることにより、平行平板としての厚みを可変にする。これによって第1光学系61の実効的な光路長を微調整し、中間像面P7及び投影領域PAに形成されるマスクパターンの像のピント状態が微調整される。 The focus correction optical member 64 is disposed between the first deflection member 70 and the projection field stop 63. The focus correction optical member 64 adjusts the focus state of the mask pattern image projected onto the substrate P. For example, the focus correction optical member 64 is formed by superposing two wedge-shaped prisms in opposite directions (in the opposite direction in the X direction in FIG. 4) so as to form a transparent parallel plate as a whole. By sliding the pair of prisms in the direction of the slope without changing the distance between the faces facing each other, the thickness of the parallel plate is made variable. As a result, the effective optical path length of the first optical system 61 is finely adjusted, and the focus state of the mask pattern image formed on the intermediate image plane P7 and the projection area PA is finely adjusted.
 像シフト用光学部材65は、第1偏向部材70と投影視野絞り63との間に配置されている。像シフト用光学部材65は、基板P上に投影されるマスクパターンの像を像面内において移動可能に調整する。像シフト用光学部材65は、図4のXZ面内で傾斜可能な透明な平行平板ガラスと、図4のYZ面内で傾斜可能な透明な平行平板ガラスとで構成される。その2枚の平行平板ガラスの各傾斜量を調整することで、中間像面P7及び投影領域PAに形成されるマスクパターンの像をX方向やY方向に微少シフトさせることができる。 The image shifting optical member 65 is disposed between the first deflecting member 70 and the projection field stop 63. The image shift optical member 65 adjusts the image of the mask pattern projected onto the substrate P so as to be movable in the image plane. The image shifting optical member 65 is composed of a transparent parallel flat glass that can be tilted in the XZ plane of FIG. 4 and a transparent parallel flat glass that can be tilted in the YZ plane of FIG. By adjusting the respective tilt amounts of the two parallel flat glass plates, the image of the mask pattern formed on the intermediate image plane P7 and the projection area PA can be slightly shifted in the X direction and the Y direction.
 倍率補正用光学部材66は、第2偏向部材80と基板Pとの間に配置されている。倍率補正用光学部材66は、例えば、凹レンズ、凸レンズ、凹レンズの3枚を所定間隔で同軸に配置し、前後の凹レンズは固定して、間の凸レンズを光軸(主光線)方向に移動させるように構成したものである。これによって、投影領域PAに形成されるマスクパターンの像は、テレセントリックな結像状態を維持しつつ、等方的に微少量だけ拡大または縮小される。尚、倍率補正用光学部材66を構成する3枚のレンズ群の光軸は、投影光束EL2の主光線と平行になるようにXZ面内では傾けられている。 The magnification correcting optical member 66 is disposed between the second deflection member 80 and the substrate P. In the magnification correcting optical member 66, for example, a concave lens, a convex lens, and a concave lens are arranged coaxially at predetermined intervals, the front and rear concave lenses are fixed, and the convex lens between them is moved in the optical axis (principal ray) direction. It is configured. As a result, the mask pattern image formed in the projection area PA is isotropically enlarged or reduced by a small amount while maintaining a telecentric imaging state. The optical axes of the three lens groups constituting the magnification correcting optical member 66 are inclined in the XZ plane so as to be parallel to the principal ray of the projection light beam EL2.
 ローテーション補正機構67は、例えば、アクチュエータ(図示略)によって、第1偏向部材70をZ軸と平行な軸周りに微少回転させるものである。このローテーション補正機構67は、第1偏向部材70の回転によって、中間像面P7に形成されるマスクパターンの像を、その中間像面P7内で微少回転させることができる。 The rotation correction mechanism 67 is a mechanism that slightly rotates the first deflection member 70 around an axis parallel to the Z axis by an actuator (not shown), for example. The rotation correction mechanism 67 can slightly rotate the image of the mask pattern formed on the intermediate image plane P7 within the intermediate image plane P7 by the rotation of the first deflection member 70.
 偏光調整機構68は、例えば、アクチュエータ(図示略)によって、1/4波長板41を、板面に直交する軸周りに回転させて、偏光方向を調整するものである。偏光調整機構68は、1/4波長板41を回転させることによって、投影領域PAに投射される投影光束EL2の照度を調整することができる。 The polarization adjustment mechanism 68 adjusts the polarization direction by rotating the quarter-wave plate 41 around an axis orthogonal to the plate surface by an actuator (not shown), for example. The polarization adjusting mechanism 68 can adjust the illuminance of the projection light beam EL2 projected on the projection area PA by rotating the quarter wavelength plate 41.
 このように構成された投影光学系PLにおいて、マスクMからの投影光束EL2は、照明領域IRからテレセントリックな状態(各主光線が互いに平行な状態)で出射し、1/4波長板41及び偏光ビームスプリッタPBSを通って第1光学系61に入射する。第1光学系61に入射した投影光束EL2は、第1光学系61の第1偏向部材70の第1反射面(平面鏡)P3で反射され、第1レンズ群71を通って第1凹面鏡72で反射される。第1凹面鏡72で反射された投影光束EL2は、再び第1レンズ群71を通って第1偏向部材70の第2反射面(平面鏡)P4で反射されて、フォーカス補正光学部材64及び像シフト用光学部材65を透過して、投影視野絞り63に入射する。投影視野絞り63を通った投影光束EL2は、第2光学系62の第2偏向部材80の第3反射面(平面鏡)P5で反射され、第2レンズ群81を通って第2凹面鏡82で反射される。第2凹面鏡82で反射された投影光束EL2は、再び第2レンズ群81を通って第2偏向部材80の第4反射面(平面鏡)P6で反射されて、倍率補正用光学部材66に入射する。倍率補正用光学部材66から出射した投影光束EL2は、基板P上の投影領域PAに入射し、照明領域IR内に現れるマスクパターンの像が投影領域PAに等倍(×1)で投影される。 In the projection optical system PL configured as described above, the projection light beam EL2 from the mask M is emitted from the illumination region IR in a telecentric state (each principal ray is parallel to each other), and the ¼ wavelength plate 41 and the polarization are emitted. The light enters the first optical system 61 through the beam splitter PBS. The projection light beam EL2 incident on the first optical system 61 is reflected by the first reflecting surface (plane mirror) P3 of the first deflecting member 70 of the first optical system 61, passes through the first lens group 71, and is reflected by the first concave mirror 72. Reflected. The projection light beam EL2 reflected by the first concave mirror 72 passes through the first lens group 71 again and is reflected by the second reflecting surface (planar mirror) P4 of the first deflecting member 70, and the focus correction optical member 64 and the image shifter. The light passes through the optical member 65 and enters the projection field stop 63. The projection light beam EL2 that has passed through the projection field stop 63 is reflected by the third reflecting surface (planar mirror) P5 of the second deflecting member 80 of the second optical system 62, and then reflected by the second concave mirror 82 through the second lens group 81. Is done. The projection light beam EL2 reflected by the second concave mirror 82 passes through the second lens group 81 again, is reflected by the fourth reflecting surface (plane mirror) P6 of the second deflecting member 80, and enters the magnification correcting optical member 66. . The projection light beam EL2 emitted from the magnification correcting optical member 66 is incident on the projection area PA on the substrate P, and an image of the mask pattern appearing in the illumination area IR is projected to the projection area PA at the same magnification (× 1). .
 本実施形態において、第1偏向部材70の第2反射面(平面鏡)P4と、第2偏向部材80の第3反射面(平面鏡)P5は、中心面CL(或いは光軸BX2、BX3)に対して45°傾いた面となっているが、第1偏向部材70の第1反射面(平面鏡)P3と、第2偏向部材80の第4反射面(平面鏡)P6は、中心面CL(或いは光軸BX2、BX3)に対して45°以外の角度に設定される。第1偏向部材70の第1反射面P3の中心面CL(或いは光軸BX2)に対する角度α°(絶対値)は、図5において、点Q1、交点Q2、第1軸AX1を通る直線と中心面CLとのなす角度をθs°としたとき、α°=45°+θs°/2の関係に定められる。同様に、第2偏向部材80の第4反射面P6の中心面CL(或いは第2光軸BX2)に対する角度β°(絶対値)は、基板支持ドラム25の外周面の周方向に関する投影領域PA内の中心点を通る投影光束EL2の主光線と中心面CLとのZX面内での角度をεs°としたとき、β°=45°+εs°/2の関係に定められる。 In the present embodiment, the second reflecting surface (plane mirror) P4 of the first deflecting member 70 and the third reflecting surface (plane mirror) P5 of the second deflecting member 80 are relative to the center plane CL (or the optical axes BX2, BX3). The first reflecting surface (plane mirror) P3 of the first deflecting member 70 and the fourth reflecting surface (plane mirror) P6 of the second deflecting member 80 are center plane CL (or light). An angle other than 45 ° is set with respect to the axes BX2, BX3). The angle α ° (absolute value) with respect to the center plane CL (or the optical axis BX2) of the first reflecting surface P3 of the first deflecting member 70 is the straight line and center passing through the point Q1, the intersection point Q2, and the first axis AX1 in FIG. When the angle between the surface CL and the surface CL is θs °, the relationship is defined as α ° = 45 ° + θs ° / 2. Similarly, the angle β ° (absolute value) with respect to the center plane CL (or the second optical axis BX2) of the fourth reflecting surface P6 of the second deflecting member 80 is a projection area PA related to the circumferential direction of the outer peripheral surface of the substrate support drum 25. When the angle in the ZX plane between the principal ray of the projection light beam EL2 passing through the center point and the center plane CL is εs °, the relationship is defined as β ° = 45 ° + εs ° / 2.
<マスク及びマスク支持ドラム>
 次に、図6及び図7を用いて、第1実施形態の露光装置U3におけるマスク保持機構11の円筒ドラム(マスク保持ドラム)21とマスクMの構成について説明する。図6は、円筒ドラム21及びその外周面に形成されるマスクMの概略構成を示す斜視図である。図7は、円筒ドラム21の外周面を平面に展開したときのマスク面P1の概略構成を示す展開図である。
<Mask and mask support drum>
Next, the configuration of the cylindrical drum (mask holding drum) 21 and the mask M of the mask holding mechanism 11 in the exposure apparatus U3 of the first embodiment will be described with reference to FIGS. FIG. 6 is a perspective view showing a schematic configuration of the cylindrical drum 21 and the mask M formed on the outer peripheral surface thereof. FIG. 7 is a development view showing a schematic configuration of the mask surface P1 when the outer peripheral surface of the cylindrical drum 21 is developed on a plane.
 本実施形態では、マスクMを反射型の薄いシートマスクとし、円筒ドラム21の外周面に巻き付ける場合と、円筒ドラム21を金属製の円筒基材で構成し、円筒基材の外周面に反射型のマスクパターンを直接形成する場合とのどちらであっても適用可能であるが、ここでは簡単のため、後者の場合で説明する。円筒ドラム21の外周面(直径φ)であるマスク面P1に形成されるマスクMは、先の図3に示したように、パターン形成領域A3とパターン非形成領域(遮光帯領域)A4とで構成される。図6、図7中に示すマスクMは、投影光学系PL1~PL6の各投影領域PA1~PA6を介して、図3中の基板P上の露光領域A7に投影されるパターン形成領域A3に対応している。マスクM(パターン形成領域A3)は、円筒ドラム21の外周面の周方向のほぼ全域に形成されるが、その第1軸AX1と平行な方向(Y方向)の幅(長さ)をLとすると、円筒ドラム21の外周面の第1軸AX1と平行な方向(Y方向)の長さLaよりも小さい。また、本実施形態の場合、マスクMは円筒ドラム21の外周面の360°に渡って密に配置されるのではなく、周方向に関して所定寸法の余白部92を挟んで設けられる。従って、その余白部92の周方向の両端は、マスクM(パターン形成領域A3)の走査露光方向に関する終端と始端とに対応する。 In this embodiment, the mask M is a reflection-type thin sheet mask and is wound around the outer peripheral surface of the cylindrical drum 21, and the cylindrical drum 21 is formed of a metal cylindrical base material, and the reflective type is formed on the outer peripheral surface of the cylindrical base material. The mask pattern can be applied either directly or directly, but for the sake of simplicity, the latter case will be described here. As shown in FIG. 3, the mask M formed on the mask surface P1 that is the outer peripheral surface (diameter φ) of the cylindrical drum 21 is composed of a pattern formation region A3 and a pattern non-formation region (light-shielding band region) A4. Composed. The mask M shown in FIGS. 6 and 7 corresponds to the pattern formation region A3 projected onto the exposure region A7 on the substrate P in FIG. 3 via the projection regions PA1 to PA6 of the projection optical systems PL1 to PL6. is doing. The mask M (pattern formation region A3) is formed almost in the entire circumferential direction of the outer peripheral surface of the cylindrical drum 21, and the width (length) in the direction parallel to the first axis AX1 (Y direction) is L. Then, the length La of the outer peripheral surface of the cylindrical drum 21 is smaller than the length La in the direction parallel to the first axis AX1 (Y direction). In the present embodiment, the mask M is not densely arranged over 360 ° of the outer peripheral surface of the cylindrical drum 21 but is provided with a blank portion 92 having a predetermined dimension in the circumferential direction. Accordingly, both ends in the circumferential direction of the blank portion 92 correspond to the end and start of the mask M (pattern formation region A3) in the scanning exposure direction.
 また、図6において、円筒ドラム21の両端面部には第1軸AX1と同軸のシャフトSFが設けられる。シャフトSFは、露光装置U3内の所定位置に設けられたベアリングを介して円筒ドラム21を支持する。ベアリングは、金属のボールやニードル等を使った接触式のもの、或いは静圧気体軸受のような非接触式のものが使われる。さらに、円筒ドラム21の外周面(マスク面P1)のうち、第1軸AX1と平行なY方向に関して、マスクMの領域よりも外側の端部領域の各々に、円筒ドラム21(マスクM)の回転角度位置を高精度に計測する為のエンコーダスケールを周方向の全面に形成しても良い。回転角度位置を計測するエンコーダスケールが刻設されたスケール円板をシャフトSFと同軸に固定しても良い。 Further, in FIG. 6, shafts SF coaxial with the first axis AX1 are provided at both end surfaces of the cylindrical drum 21. The shaft SF supports the cylindrical drum 21 via a bearing provided at a predetermined position in the exposure apparatus U3. As the bearing, a contact type using a metal ball or needle or a non-contact type such as a static pressure gas bearing is used. Further, the cylindrical drum 21 (mask M) has an outer peripheral surface (mask surface P1) of the cylindrical drum 21 (mask M) in each end region outside the region of the mask M in the Y direction parallel to the first axis AX1. An encoder scale for measuring the rotational angle position with high accuracy may be formed on the entire surface in the circumferential direction. A scale disk engraved with an encoder scale for measuring the rotational angle position may be fixed coaxially with the shaft SF.
 ここで、図7は、図6の円筒ドラム21の外周面を、余白部92中の切断線94で切断し、展開した状態である。また、以下では、外周面を展開した状態でY方向に直交する方向をθ方向とする。図7に示すように、マスク面P1の全周長は、直径がφであるので、円周率をπとして、πφとなる。また、マスク面P1の第1軸AX1と平行な方向の全長Laに対して、マスクM(パターン形成領域A3)の第1軸AX1と平行なY方向の長さLは、L≦Laで形成され、θ方向には長さLbで形成される。マスク面P1の全周長πφから長さLbを差し引いた長さが、余白部92のθ方向の合計寸法である。余白部92内のY方向の離散的な位置の各々には、マスクMの位置合わせの為のアライメントマークも形成される。 Here, FIG. 7 shows a state in which the outer peripheral surface of the cylindrical drum 21 of FIG. 6 is cut along the cutting line 94 in the blank portion 92 and developed. In the following, the direction orthogonal to the Y direction in a state where the outer peripheral surface is expanded is defined as the θ direction. As shown in FIG. 7, since the diameter of the entire circumference of the mask surface P1 is φ, the circumference ratio is πφ. Further, the length L in the Y direction parallel to the first axis AX1 of the mask M (pattern formation region A3) is formed by L ≦ La with respect to the total length La in the direction parallel to the first axis AX1 of the mask surface P1. And is formed with a length Lb in the θ direction. The length obtained by subtracting the length Lb from the total circumferential length πφ of the mask surface P1 is the total dimension of the blank portion 92 in the θ direction. An alignment mark for aligning the mask M is also formed at each of the discrete positions in the Y direction in the blank portion 92.
 ここで、図7に示したマスクMは、液晶表示ディスプレイ、有機ELディスプレイ等で使用される表示パネルの1つに対応したパターンを形成するためのマスクとする。その場合、マスクMに形成されるパターンとしては、表示パネルの表示画面の各画素を駆動させるTFT用の電極や配線を形成するパターンや、表示デバイスの表示画面の各画素のパターンや、表示デバイスのカラーフィルターやブラックマトリックスのパターン等がある。マスクM(パターン形成領域A3)には、図7に示すように、表示パネルの表示画面に対応するパターンが形成される表示画面領域DPAと、表示画面領域DPAの周囲に配置され、表示画面を駆動する為の回路等のパターンが形成される周辺回路領域TABが設けられる。 Here, the mask M shown in FIG. 7 is a mask for forming a pattern corresponding to one of display panels used in a liquid crystal display, an organic EL display, or the like. In that case, as a pattern formed on the mask M, a pattern for forming an electrode or wiring for TFT for driving each pixel of the display screen of the display panel, a pattern of each pixel of the display screen of the display device, or a display device Color filters and black matrix patterns. As shown in FIG. 7, the mask M (pattern formation area A3) is arranged around the display screen area DPA on which a pattern corresponding to the display screen of the display panel is formed, and the display screen area DPA. A peripheral circuit region TAB in which a pattern such as a circuit for driving is formed is provided.
 マスクM上の表示画面領域DPAの大きさは、製造する表示パネルの表示部の大きさ(対角長Leのインチサイズ)に対応するが、図2、図4に示した投影光学系PLの投影倍率が等倍(×1)の場合は、マスクM上の表示画面領域DPAの実寸(対角長Le)が実際の表示画面のインチサイズとなる。本実施形態では、表示画面領域DPAが、長辺Ldと短辺Lcの長方形とするが、長辺Ldと短辺Lcの長さの比(アスペクト比)は、典型的な例では、Ld:Lc=16:9やLd:Lc=2:1となる。アスペクト比16:9はいわゆるハイビジョンサイズ(ワイドサイズ)で用いる画面の縦横比である。また、アスペクト比2:1はスコープサイズと呼ばれる画面の縦横比であり、テレビ画像では4K2Kのスーパーハイビジョンサイズで使われるアスペクト比である。一例として、アスペクト比が16:9で画面サイズが50インチ(Le=127cm)の表示パネルの場合、マスクM上の表示画面領域DPAの長辺Ldは約110.7cm、短辺Lcは約62.3cmとなる。また、同じ画面サイズ(50インチ)で、アスペクト比が2:1の場合は、表示画面領域DPAの長辺Ldは約113.6cm、短辺Lcは約56.8cmとなる。 The size of the display screen area DPA on the mask M corresponds to the size of the display portion of the display panel to be manufactured (inch size of diagonal length Le), but the projection optical system PL shown in FIGS. When the projection magnification is equal (× 1), the actual size (diagonal length Le) of the display screen area DPA on the mask M is the inch size of the actual display screen. In the present embodiment, the display screen area DPA is a rectangle having a long side Ld and a short side Lc. Lc = 16: 9 and Ld: Lc = 2: 1. The aspect ratio 16: 9 is an aspect ratio of a screen used in a so-called high vision size (wide size). An aspect ratio of 2: 1 is an aspect ratio of a screen called a scope size, and is an aspect ratio used for a 4K2K super high-definition size in a television image. As an example, in the case of a display panel having an aspect ratio of 16: 9 and a screen size of 50 inches (Le = 127 cm), the long side Ld of the display screen area DPA on the mask M is about 110.7 cm and the short side Lc is about 62. .3cm. When the screen size is the same (50 inches) and the aspect ratio is 2: 1, the long side Ld of the display screen area DPA is about 113.6 cm and the short side Lc is about 56.8 cm.
 図7のように、1つの表示パネル用のマスクM(表示画面領域DPAと周辺回路領域TABを含む)を円筒ドラム21の外周面に形成する場合、表示画面領域DPAの長辺Ldの方向がθ方向(円筒ドラム21の周方向)になるように配置するのが良い。これは、円筒ドラム21の直径φを余り小さくすることなく、円筒ドラム21の第1軸AX1方向の長さLaを余り大きくしないためである。そこで、周辺回路領域TABの幅寸法を含めたマスクMの大きさ(Lb×L)の一例を挙げてみる。周辺回路領域TABの幅寸法は回路構成によって様々であるが、図7中の表示画面領域DPAのY方向の両端側に位置する周辺回路領域TABのY方向の幅の合計を、表示画面領域DPAのY方向の長さLcの10%、表示画面領域DPAのθ方向の両端側に位置する周辺回路領域TABのθ方向の幅の合計を、表示画面領域DPAのθ方向の長さLdの10%としてみる。 As shown in FIG. 7, when a mask M for display panel (including the display screen area DPA and the peripheral circuit area TAB) is formed on the outer peripheral surface of the cylindrical drum 21, the direction of the long side Ld of the display screen area DPA is It is preferable to arrange them in the θ direction (circumferential direction of the cylindrical drum 21). This is because the length La of the cylindrical drum 21 in the direction of the first axis AX1 is not increased too much without reducing the diameter φ of the cylindrical drum 21. Therefore, an example of the size (Lb × L) of the mask M including the width dimension of the peripheral circuit region TAB will be given. Although the width dimension of the peripheral circuit area TAB varies depending on the circuit configuration, the total of the widths in the Y direction of the peripheral circuit area TAB located at both ends in the Y direction of the display screen area DPA in FIG. The total of the width in the θ direction of the peripheral circuit area TAB located at both ends in the θ direction of the display screen area DPA is 10% of the length Ld in the Y direction of the display screen area DPA, As a percentage.
 この場合、アスペクト比16:9の50インチの表示パネルでは、マスクMの長辺Lbは121.76cm、短辺Lは68.49cmとなる。余白部92のθ方向の寸法はゼロ以上であるので、円筒ドラム21の直径φは、φ≧Lb/πの計算より、38.76cm以上となる。よって、アスペクト比16:9の50インチの表示パネルのパターンを基板Pに走査露光する為には、直径φが38.76mm以上、マスク面P1の第1軸AX1と平行な方向の長さLaが短辺L(68.49cm)以上の円筒ドラム21が必要となる。この場合、直径φとマスクMの短辺Lの比L/φは約1.77である。尚、周辺回路領域TABのθ方向の幅の合計を、表示画面領域DPAのθ方向の長さLdの20%と仮定してみると、マスクMの長辺Lbは132.83cm、短辺Lは68.49cm、円筒ドラム21の直径φは42.28cm以上となり、直径φとマスクMの短辺Lの比L/φは約1.62である。 In this case, in a 50-inch display panel having an aspect ratio of 16: 9, the long side Lb of the mask M is 121.76 cm and the short side L is 68.49 cm. Since the size of the blank portion 92 in the θ direction is zero or more, the diameter φ of the cylindrical drum 21 is 38.76 cm or more from the calculation of φ ≧ Lb / π. Therefore, in order to scan and expose a 50-inch display panel pattern having an aspect ratio of 16: 9 onto the substrate P, the diameter La is 38.76 mm or more, and the length La is parallel to the first axis AX1 of the mask surface P1. The cylindrical drum 21 having a short side L (68.49 cm) or more is required. In this case, the ratio L / φ between the diameter φ and the short side L of the mask M is about 1.77. Assuming that the total width in the θ direction of the peripheral circuit area TAB is 20% of the length Ld in the θ direction of the display screen area DPA, the long side Lb of the mask M is 132.83 cm, and the short side L Is 68.49 cm, the diameter φ of the cylindrical drum 21 is 42.28 cm or more, and the ratio L / φ between the diameter φ and the short side L of the mask M is about 1.62.
 同様の条件で、アスペクト比2:1の50インチの表示パネルの場合、マスクMの長辺Lbは124.96cm、短辺Lは62.48cmとなる。これより、円筒ドラム21の直径φは、φ≧Lb/πの計算より、39.78cm以上となる。よって、アスペクト比2:1の50インチの表示パネルのパターンを基板Pに走査露光する為には、直径φが39.78cm以上、マスク面P1の第1軸AX1と平行な方向の長さLaが短辺L(62.48cm)以上の円筒ドラム21が必要となる。この場合、直径φとマスクMの短辺Lの比L/φは約1.57である。尚、周辺回路領域TABのθ方向の幅の合計を、表示画面領域DPAのθ方向の長さLdの20%と仮定してみると、マスクMの長辺Lbは136.31cm、短辺Lは62.48cm、円筒ドラム21の直径φは43.39cm以上となり、直径φとマスクMの短辺Lの比L/φは約1.44である。 Under the same conditions, in the case of a 50-inch display panel with an aspect ratio of 2: 1, the long side Lb of the mask M is 124.96 cm, and the short side L is 62.48 cm. Accordingly, the diameter φ of the cylindrical drum 21 is 39.78 cm or more from the calculation of φ ≧ Lb / π. Therefore, in order to scan and expose a 50-inch display panel pattern with an aspect ratio of 2: 1 onto the substrate P, the diameter La is 39.78 cm or more and the length La is parallel to the first axis AX1 of the mask surface P1. Requires a cylindrical drum 21 having a short side L (62.48 cm) or more. In this case, the ratio L / φ between the diameter φ and the short side L of the mask M is about 1.57. Assuming that the total width in the θ direction of the peripheral circuit area TAB is 20% of the length Ld in the θ direction of the display screen area DPA, the long side Lb of the mask M is 136.31 cm, and the short side L Is 62.48 cm, the diameter φ of the cylindrical drum 21 is 43.39 cm or more, and the ratio L / φ between the diameter φ and the short side L of the mask M is about 1.44.
 図7のように、単一の表示パネル用のパターンが形成されたマスクMを円筒ドラム(マスク保持ドラム)21の外周面に配置する場合、走査露光方向と直交するY方向のマスクMの長さLと、マスク面P1の直径φとの関係は、1.3≦L/φ≦3.8の範囲に収まる。ところが、図7に示したマスクMの配置を図7中で90°回転させて、マスクMの長辺LbをY方向、短辺Lをθ方向した場合は、上記の関係から外れてくる。例えば、先のアスペクト比16:9の50インチの表示パネルの場合、周辺回路領域TABのθ方向の幅を表示画面領域DPAの長さLdの10%とすると、マスクMの長辺Lbは121.76cm、短辺Lは68.49cmであるから、マスク面P1の第1軸AX1と平行な方向の長さLの最小値はLb(121.76cm)となり、円筒ドラム21の直径φは、φ≧L/πの計算より、21.80cm以上となる。よって、直径φとマスクMの第1軸AX1と平行な方向の長さLbとの比Lb/φは約5.59となる。同様に、アスペクト比2:1の50インチの表示パネルの場合は、マスクMの長辺Lbが124.96cm、短辺Lが62.48cmであるから、マスク面P1の第1軸AX1と平行な方向の長さLの最小値はLb(124.96cm)、円筒ドラム21の直径φは、φ≧L/πの計算より、19.89cm以上となる。よって、直径φとマスクMの第1軸AX1と平行な方向の長さLbとの比Lb/φは約6.28となる。 When the mask M on which a single display panel pattern is formed is arranged on the outer peripheral surface of the cylindrical drum (mask holding drum) 21 as shown in FIG. 7, the length of the mask M in the Y direction orthogonal to the scanning exposure direction. The relationship between the length L and the diameter φ of the mask surface P1 falls within the range of 1.3 ≦ L / φ ≦ 3.8. However, when the arrangement of the mask M shown in FIG. 7 is rotated by 90 ° in FIG. 7 so that the long side Lb of the mask M is in the Y direction and the short side L is in the θ direction, it is out of the above relationship. For example, in the case of a 50-inch display panel with an aspect ratio of 16: 9, if the width of the peripheral circuit area TAB in the θ direction is 10% of the length Ld of the display screen area DPA, the long side Lb of the mask M is 121. Since the short side L is 68.49 cm, the minimum value of the length L in the direction parallel to the first axis AX1 of the mask surface P1 is Lb (121.76 cm), and the diameter φ of the cylindrical drum 21 is From the calculation of φ ≧ L / π, it is 21.80 cm or more. Therefore, the ratio Lb / φ between the diameter φ and the length Lb of the mask M in the direction parallel to the first axis AX1 is about 5.59. Similarly, in the case of a 50-inch display panel with an aspect ratio of 2: 1, the long side Lb of the mask M is 124.96 cm and the short side L is 62.48 cm, so that it is parallel to the first axis AX1 of the mask surface P1. The minimum value of the length L in this direction is Lb (124.96 cm), and the diameter φ of the cylindrical drum 21 is 19.89 cm or more from the calculation of φ ≧ L / π. Therefore, the ratio Lb / φ between the diameter φ and the length Lb of the mask M in the direction parallel to the first axis AX1 is about 6.28.
 このように、マスクMのサイズ(Lb×L)が同じでも、その長辺と短辺の方向によって、比L/φ(又はLb/φ)の値が大きく変化する。比L/φ(又はLb/φ)が大きいということは、円筒ドラム21の直径φが小さく、マスク面P1の湾曲が急峻になることから、パターン転写の忠実度を維持する為に、図3に示した照明領域IR又は投影領域PAの走査露光方向Xsの幅を狭くすることにつながる。或いは、円筒ドラム21の第1軸AX1と平行な方向の長さが倍増することになり、Y方向に配置する複数の投影光学系PL(照明光学系IL)の数をさらに増やすことにつながる。一方、比L/φ(又はLb/φ)が小さくなるということは、1つは円筒ドラム21上のマスクMの第1軸AX1と平行な方向の長さが小さく、例えば図3中の6つの投影領域PA1~PA6のうちの半分程度しか使わないような状況であり、もう一つは円筒ドラム21の直径φが大きすぎて、図6、図7で示した余白部92のθ方向の寸法が必要以上に大きくなるような状況である。以上のようなことから、円筒ドラム(マスク保持ドラム)21の外形の寸法条件を、1.3≦L/φ≦3.8の関係にすることで、表示パネル用のパターンが形成されたマスクMを使った精密な露光作業が効率的に実施でき、生産性を上げることができる。 Thus, even if the size (Lb × L) of the mask M is the same, the value of the ratio L / φ (or Lb / φ) varies greatly depending on the direction of the long side and the short side. When the ratio L / φ (or Lb / φ) is large, the diameter φ of the cylindrical drum 21 is small, and the curvature of the mask surface P1 becomes steep. Therefore, in order to maintain the fidelity of pattern transfer, FIG. As a result, the width of the scanning exposure direction Xs of the illumination area IR or projection area PA shown in FIG. Alternatively, the length of the cylindrical drum 21 in the direction parallel to the first axis AX1 is doubled, leading to a further increase in the number of projection optical systems PL (illumination optical systems IL) arranged in the Y direction. On the other hand, when the ratio L / φ (or Lb / φ) is small, one is that the length of the mask M on the cylindrical drum 21 in the direction parallel to the first axis AX1 is small, for example, 6 in FIG. The situation is such that only about half of the projection areas PA1 to PA6 are used, and the other is that the diameter φ of the cylindrical drum 21 is too large, and the blank portion 92 shown in FIGS. The situation is such that the dimensions are larger than necessary. In view of the above, the mask on which the pattern for the display panel is formed is obtained by setting the dimensional condition of the outer shape of the cylindrical drum (mask holding drum) 21 to a relationship of 1.3 ≦ L / φ ≦ 3.8. Precise exposure work using M can be performed efficiently, and productivity can be increased.
 図6及び図7に示す例では、円筒ドラム(マスク保持ドラム)21の外周面(マスク面P1)に、1面の表示パネル用のパターンを有するマスクMが担持される例であったが、マスク面P1に複数面の表示パネル用のパターンを形成する場合もある。その場合の幾つかの例を図8~図10により説明する。 In the example shown in FIGS. 6 and 7, the mask M having the pattern for one display panel is carried on the outer peripheral surface (mask surface P <b> 1) of the cylindrical drum (mask holding drum) 21. A pattern for a plurality of display panels may be formed on the mask surface P1. Some examples in that case will be described with reference to FIGS.
 図8は、マスク面P1上に3つの同一サイズのマスクM1を円筒ドラム21の周長方向(θ方向)に配置する場合の概略構成を示す展開図である。図9は、マスク面P1上に4つの同一サイズのマスクM2を円筒ドラム21の周長方向(θ方向)に配置する場合の概略構成を示す展開図である。図10は、図9に示したマスクM2を90°回転させて、マスク面P1上でY方向に2つのマスクM2を並べ、それを円筒ドラム21の周長方向(θ方向)に2組配置する場合の概略構成を示す展開図である。図8から図10に示す例は、円筒ドラム21の1回転中に、基板P上に同一サイズの表示パネルが複数個(ここでは3個または4個)露光されることから、多面取りのマスクMと呼ばれる。また、図8に示すように、投影光学系PLを介して基板P上に走査露光すべきマスク面P1上の領域の全体を、図7に合わせてマスクMとし、マスクMの中には表示パネルとなるべきマスクM1(図9、10ではM2)が、走査露光方向(θ方向)に所定の間隔Sxを伴って配列される。各マスクM1(図9、10ではM2)には、図7と同様に、対角長Leの表示画面領域DPAと、それを取り囲む周辺回路領域TABとが含まれている。 FIG. 8 is a development view showing a schematic configuration when three masks M1 of the same size are arranged in the circumferential direction (θ direction) of the cylindrical drum 21 on the mask surface P1. FIG. 9 is a developed view showing a schematic configuration when four masks M2 of the same size are arranged in the circumferential direction (θ direction) of the cylindrical drum 21 on the mask surface P1. 10 rotates the mask M2 shown in FIG. 9 by 90 °, arranges two masks M2 in the Y direction on the mask surface P1, and arranges two sets in the circumferential direction (θ direction) of the cylindrical drum 21. It is an expanded view which shows schematic structure in the case of doing. In the example shown in FIGS. 8 to 10, multiple display panels of the same size are exposed on the substrate P during one rotation of the cylindrical drum 21 (three or four in this case). Called M. Further, as shown in FIG. 8, the entire region on the mask surface P1 to be scanned and exposed on the substrate P via the projection optical system PL is set as a mask M in accordance with FIG. A mask M1 (M2 in FIGS. 9 and 10) to be a panel is arranged with a predetermined interval Sx in the scanning exposure direction (θ direction). Each mask M1 (M2 in FIGS. 9 and 10) includes a display screen area DPA having a diagonal length Le and a peripheral circuit area TAB surrounding the same, as in FIG.
 まず、図8に示す例から詳述する。図8において、最も大きい長方形は、円筒ドラム21の外周面であるマスク面P1である。マスク面P1は、切断線94をθ方向の原点としたとき、0°から360°までの回転角に渡ってθ方向に長さπφを有し、第1軸AX1と平行なY方向に長さLaを有する。マスク面P1の内側に破線で示した領域は、基板P上に露光すべき全領域(図3中の露光領域A7)に対応したマスクMとなる。マスクM内にθ方向に並べられる3つのマスクM1は、表示画面領域DPAの長辺方向がY方向となり、短辺方向がθ方向となるように配置される。また、各マスクM1のθ方向に隣接する間隔Sx内には、円筒ドラム21上のマスクM(又はM1)の位置を特定する為のアライメントマーク(マスクマーク)96が、Y方向の3ヶ所に離散的に設けられている。こられのマスクマーク96は、円筒ドラム21の周方向の所定位置に外周面(マスク面P1)に対向して配置された不図示のマスクアライメント光学系を介して検出される。露光装置U3は、マスクアライメント光学系によって検出される各マスクマーク96の位置に基づいて、円筒ドラム21全体、或いは各マスクM1毎の回転方向(θ方向)の位置ずれとY方向の位置ずれとを計測する。 First, the example shown in FIG. 8 will be described in detail. In FIG. 8, the largest rectangle is a mask surface P <b> 1 that is the outer peripheral surface of the cylindrical drum 21. The mask surface P1 has a length πφ in the θ direction over a rotation angle from 0 ° to 360 ° when the cutting line 94 is the origin in the θ direction, and is long in the Y direction parallel to the first axis AX1. Has La. A region indicated by a broken line inside the mask surface P1 is a mask M corresponding to the entire region to be exposed on the substrate P (exposure region A7 in FIG. 3). The three masks M1 arranged in the θ direction in the mask M are arranged so that the long side direction of the display screen area DPA is the Y direction and the short side direction is the θ direction. In addition, within an interval Sx adjacent to each mask M1 in the θ direction, alignment marks (mask marks) 96 for specifying the position of the mask M (or M1) on the cylindrical drum 21 are provided at three positions in the Y direction. Discretely provided. These mask marks 96 are detected through a mask alignment optical system (not shown) disposed at a predetermined position in the circumferential direction of the cylindrical drum 21 so as to face the outer peripheral surface (mask surface P1). Based on the position of each mask mark 96 detected by the mask alignment optical system, the exposure apparatus U3 determines the positional deviation in the rotational direction (θ direction) and the positional deviation in the Y direction for the entire cylindrical drum 21 or each mask M1. Measure.
 一般に、基板P上に表示パネルのデバイスを形成する場合は多数の層を積層する必要があり、そのため露光装置は、基板P上のどの位置にマスクM(又はM1)のパターンを露光したかを特定する為のアライメントマーク(基板マーク)を、マスクM(又はM1)と共に基板P上に転写する。図8では、そのような基板マーク96aが各マスクM1のY方向の両端部分であって、θ方向に離れた3ヶ所の各々に形成されている。基板マーク96aが占有するマスク(又は基板P)上の領域は、Y方向の幅として数mm程度である。従って、基板P上に露光すべきマスク面P1上のマスクMのY方向の長さLは、各マスクM1のY方向の寸法と、各マスクM1のY方向の両側に確保される基板マーク96aの領域のY方向の寸法との合計となる。 In general, when forming a display panel device on a substrate P, it is necessary to stack a large number of layers. Therefore, the exposure apparatus determines on which position on the substrate P the pattern of the mask M (or M1) has been exposed. An alignment mark (substrate mark) for identification is transferred onto the substrate P together with the mask M (or M1). In FIG. 8, such a substrate mark 96a is formed at each of the three positions separated in the θ direction on both end portions in the Y direction of each mask M1. The area on the mask (or the substrate P) occupied by the substrate mark 96a is about several mm as the width in the Y direction. Therefore, the length L in the Y direction of the mask M on the mask surface P1 to be exposed on the substrate P is the dimension in the Y direction of each mask M1 and the substrate mark 96a secured on both sides of each mask M1 in the Y direction. It is the sum total of the dimension of the area | region of the Y direction.
 また、マスク面P1上のマスクM全体のθ方向の長さLbは、各マスクM1のθ方向の寸法と各間隔SxのY方向の寸法とを合計した長さをPxとすると、Lb=3Pxとなる。先の図7のように、単一の表示パネルに対応したマスクMを配置する場合は、所定長の余白部92を設けるのが良いが、図8のように、θ方向に間隔Sxを設けて複数のマスクM1を配置する場合は、余白部92のθ方向の長さをゼロにすることができる。すなわち、各マスクM1のθ方向の長さは表示パネルのサイズによって自ずと決まり、間隔Sxとして必要な最小寸法も予め決められるので、φ=3Px/πの関係を満たすように、円筒ドラム21の直径φを設定すれば良い。逆に、露光装置U3に装着可能な円筒ドラム21の直径φの範囲が概ね決まっている場合は、間隔Sxの寸法を変える(大きくする)ことで調整することができる。 The length Lb in the θ direction of the entire mask M on the mask surface P1 is Lb = 3Px, where Px is a total length of the dimension in the θ direction of each mask M1 and the dimension in the Y direction of each interval Sx. It becomes. As shown in FIG. 7, when the mask M corresponding to a single display panel is arranged, it is preferable to provide a margin 92 having a predetermined length. However, as shown in FIG. 8, an interval Sx is provided in the θ direction. When a plurality of masks M1 are arranged, the length of the blank portion 92 in the θ direction can be made zero. That is, the length of each mask M1 in the θ direction is naturally determined by the size of the display panel, and the minimum dimension required as the interval Sx is also determined in advance. φ should be set. On the other hand, when the range of the diameter φ of the cylindrical drum 21 that can be mounted on the exposure apparatus U3 is generally determined, it can be adjusted by changing (increasing) the dimension of the interval Sx.
 ここで、図8のようなマスクMの具体的な寸法の一例を説明する。図8において、マスクM1の表示画面領域DPAの対角長Leを32インチ(81.28cm)、周辺回路領域TABのY方向、θ方向の各寸法を表示画面領域DPAの寸法の10%程度とし、基板マーク96aを形成する領域のY方向の寸法を0.5cm(両側を合せて1cm)とした場合を想定する。アスペクト比16:9の表示パネルでは、マスクM1の短辺寸法が48.83cm、長辺寸法が77.93cmとなり、アスペクト比2:1の表示パネルでは、マスクM1の短辺寸法が43.83cm、長辺寸法が79.97cmとなる。余白部92の寸法をゼロとし、Lb=πφ=3Pxを満たすように、3つのマスクM1と3つの間隔Sxをθ方向に並べる場合、マスクM1のθ方向の長さをLgとすると、間隔Sxは、Sx=(Lb-3Lg)/3で求まる。 Here, an example of specific dimensions of the mask M as shown in FIG. 8 will be described. In FIG. 8, the diagonal length Le of the display screen area DPA of the mask M1 is 32 inches (81.28 cm), and each dimension in the Y direction and θ direction of the peripheral circuit area TAB is about 10% of the dimension of the display screen area DPA. Assume that the dimension in the Y direction of the region where the substrate mark 96a is to be formed is 0.5 cm (1 cm on both sides). In the display panel having an aspect ratio of 16: 9, the short side dimension of the mask M1 is 48.83 cm and the long side dimension is 77.93 cm. In the display panel having an aspect ratio of 2: 1, the short side dimension of the mask M1 is 43.83 cm. The long side dimension is 79.97 cm. When arranging the three masks M1 and the three intervals Sx in the θ direction so that the size of the blank portion 92 is zero and satisfies Lb = πφ = 3Px, if the length of the mask M1 in the θ direction is Lg, the interval Sx Is obtained by Sx = (Lb−3Lg) / 3.
 そこで、アスペクト比16:9の表示パネル用のマスクM1と、アスペクト比2:1の表示パネル用のマスクM1とのいずれもが、同一径の円筒ドラム21のマスク面P1上に配置可能とする場合には、円筒ドラム21の直径φを43cm程度にすると良い。この場合、アスペクト比16:9の表示パネルではマスクM1の間の間隔Sxを1.196cm、アスペクト比2:1の表示パネルではマスクM1の間の間隔Sxを5.045cmに設定すれば良い。 Therefore, both the display panel mask M1 having an aspect ratio of 16: 9 and the display panel mask M1 having an aspect ratio of 2: 1 can be arranged on the mask surface P1 of the cylindrical drum 21 having the same diameter. In this case, the diameter φ of the cylindrical drum 21 is preferably about 43 cm. In this case, in the display panel having an aspect ratio of 16: 9, the interval Sx between the masks M1 may be set to 1.196 cm, and in the display panel having an aspect ratio of 2: 1, the interval Sx between the masks M1 may be set to 5.045 cm.
 マスク面P1上のマスクMのY方向の長さLは、マスクM1のY方向寸法と基板マーク96aの形成領域のY方向寸法(1cm)との合計であるので、アスペクト比16:9の表示パネル用のマスクMでは、L=78.93cm、アスペクト比2:1の表示パネル用のマスクMでは、L=80.97cmとなる。従って、円筒ドラム21の直径φ(43cm)とマスクMのY方向の長さLとの比は、アスペクト比16:9の表示パネル用の円筒ドラム21では、L/φ=1.84、アスペクト比2:1の表示パネル用の円筒ドラム21では、L/φ=1.88となる。いずれの場合も、その比L/φは、1.3~3.8の範囲に収まっている。 Since the length L in the Y direction of the mask M on the mask surface P1 is the sum of the Y direction dimension of the mask M1 and the Y direction dimension (1 cm) of the formation region of the substrate mark 96a, an aspect ratio of 16: 9 is displayed. In the panel mask M, L = 78.93 cm, and in the display panel mask M having an aspect ratio of 2: 1, L = 80.97 cm. Accordingly, the ratio of the diameter φ (43 cm) of the cylindrical drum 21 to the length L in the Y direction of the mask M is L / φ = 1.84 in the display panel cylindrical drum 21 having an aspect ratio of 16: 9. In the cylindrical drum 21 for a display panel having a ratio of 2: 1, L / φ = 1.88. In any case, the ratio L / φ is in the range of 1.3 to 3.8.
 また、アスペクト比16:9の表示パネルのパターンを基板P上に露光する場合と、アスペクト比2:1の表示パネルのパターンを基板P上に露光する場合とで、基板P上の間隔Sxのθ方向の寸法を必要最小限にする場合は、自ずと円筒ドラム21の直径φを変える必要がある。例えば、間隔Sxを2cmにする場合、アスペクト比16:9の表示パネル用のマスクM1が形成される円筒ドラム21の直径φは、πφ=3(Lg+Sx)の関係から、φ≧43.77cmとなる。一方、アスペクト比2:1の表示パネル用のマスクM1が形成される円筒ドラム21の直径φは、φ≧40.1cmとなる。この場合も、アスペクト比16:9の表示パネル用の円筒ドラム21では、比L/φ=1.80、アスペクト比2:1の表示パネル用の円筒ドラム21では、比L/φ=2.02となり、1.3~3.8の範囲に収まる。 In addition, when the pattern of the display panel having an aspect ratio of 16: 9 is exposed on the substrate P and when the pattern of the display panel having an aspect ratio of 2: 1 is exposed on the substrate P, the spacing Sx on the substrate P is set. In order to minimize the dimension in the θ direction, it is necessary to change the diameter φ of the cylindrical drum 21 by itself. For example, when the interval Sx is 2 cm, the diameter φ of the cylindrical drum 21 on which the display panel mask M1 having an aspect ratio of 16: 9 is formed is φ ≧ 43.77 cm from the relationship of πφ = 3 (Lg + Sx). Become. On the other hand, the diameter φ of the cylindrical drum 21 on which the display panel mask M1 having an aspect ratio of 2: 1 is formed is φ ≧ 40.1 cm. Also in this case, the ratio L / φ = 1.80 in the display panel cylindrical drum 21 having an aspect ratio of 16: 9, and the ratio L / φ = 2.2 in the display panel cylindrical drum 21 having an aspect ratio of 2: 1. 02, which falls within the range of 1.3 to 3.8.
 尚、そのように露光装置U3に装着すべき円筒ドラム21(マスクM)の直径φが変わる場合に備えて、露光装置U3には、その直径φの差分の1/2程度、円筒ドラム21の第1軸AX1のZ方向の位置をシフトさせる機構が設けられる。上記の例では、直径φの差は、3.67cmであるので、円筒ドラム21の第1軸AX1(シャフトSF)はZ方向に1.835cm程度シフトさせて支持される。さらに、円筒ドラム21の第1軸AX1のZ方向へのシフト量が大きい場合は、図4中に示したシリンドリカルレンズ54を、図5のような照明条件を満たすような凸円筒面の曲率を持つものに変更し、第1偏向部材70の第1反射面(平面鏡)P3の角度α°を調整すると共に、偏光ビームスプリッタPBSと1/4波長板41を全体的にXZ面内で微小量傾ける必要もある。 Incidentally, in preparation for the case where the diameter φ of the cylindrical drum 21 (mask M) to be mounted on the exposure apparatus U3 changes, the exposure apparatus U3 has about 1/2 of the difference of the diameter φ. A mechanism for shifting the position of the first axis AX1 in the Z direction is provided. In the above example, since the difference in diameter φ is 3.67 cm, the first axis AX1 (shaft SF) of the cylindrical drum 21 is supported by being shifted by about 1.835 cm in the Z direction. Furthermore, when the shift amount of the first axis AX1 of the cylindrical drum 21 in the Z direction is large, the cylindrical lens 54 shown in FIG. 4 has a curvature of the convex cylindrical surface that satisfies the illumination condition as shown in FIG. In addition to adjusting the angle α ° of the first reflecting surface (plane mirror) P3 of the first deflecting member 70, the polarization beam splitter PBS and the quarter-wave plate 41 are entirely small in the XZ plane. You also need to tilt.
 以上、図8のように円筒ドラム21に形成されるマスクM(3つのマスクM1を含む)には、基板P上に転写される表示パネル用のパターン(マスクM1)に付随して、複数の基板マーク96aがθ方向(走査露光方向)に設けられている。従って、露光装置U3によって、基板P上に表示パネル用のパターン(マスクM1)と共に複数の基板マーク96aを順次転写しておくと、露光時の各種問題を確認することができる。例えば、基板P上に転写された基板マーク96aを用いて、基板P上に生じた欠陥(例えばゴミ付着)の位置を特定したり、或いはマスクのパターンニング誤差、フォーカス誤差、重ね合わせ露光時の重ね誤差等の各種オフセット誤差を計測することができる。計測されたオフセット誤差は、マスク全体の管理に加えて、円筒マスク21上の各マスクM1の位置管理、基板P上に転写される各表示パネルのパターン(マスクM1)の位置管理(補正)に利用される。 As described above, the mask M (including the three masks M1) formed on the cylindrical drum 21 as shown in FIG. 8 includes a plurality of display panel patterns (masks M1) transferred onto the substrate P. A substrate mark 96a is provided in the θ direction (scanning exposure direction). Therefore, if the plurality of substrate marks 96a are sequentially transferred onto the substrate P together with the display panel pattern (mask M1) by the exposure apparatus U3, various problems during exposure can be confirmed. For example, the position of a defect (for example, dust adhesion) generated on the substrate P is specified using the substrate mark 96a transferred onto the substrate P, or a mask patterning error, focus error, overlay exposure is performed. Various offset errors such as overlay errors can be measured. In addition to managing the entire mask, the measured offset error is used for position management of each mask M1 on the cylindrical mask 21 and position management (correction) of each display panel pattern (mask M1) transferred onto the substrate P. Used.
 図9は、例えばアスペクト比2:1の表示パネル用のマスクM2をY方向が表示画面領域DPAの長辺となるように、θ方向に4個並べて円筒ドラム21のマスク面P1上に配置した例を示す。各マスクM2のθ方向の側辺(長辺)には間隔Sxが設けられ、マスクマーク96、基板マーク96aも先の図8と同様に設けられる。この場合、マスク面P1の周方向(θ方向)の全長πφ(=Lb)は、πφ=4Px=4(Lg+Sx)となる。ここで、表示画面領域DPAの画面サイズを24インチ(Le=60.96cm)とし、周辺回路領域TABのθ方向の合計幅を表示画面領域DPAのθ方向長さの10%、周辺回路領域TABのY方向の合計幅を表示画面領域DPAのY方向長さの20%、さらに、マスクM2のY方向の両端部の各々に配置される基板マーク96aの形成領域のY方向の合計幅を1cmとする。 In FIG. 9, for example, four masks M2 for a display panel having an aspect ratio of 2: 1 are arranged on the mask surface P1 of the cylindrical drum 21 so as to be arranged in the θ direction so that the Y direction is the long side of the display screen area DPA. An example is shown. An interval Sx is provided on the side (long side) in the θ direction of each mask M2, and the mask mark 96 and the substrate mark 96a are also provided in the same manner as in FIG. In this case, the total length πφ (= Lb) in the circumferential direction (θ direction) of the mask surface P1 is πφ = 4Px = 4 (Lg + Sx). Here, the screen size of the display screen area DPA is 24 inches (Le = 60.96 cm), the total width in the θ direction of the peripheral circuit area TAB is 10% of the length of the display screen area DPA in the θ direction, and the peripheral circuit area TAB. The total width in the Y direction of the display screen region DPA is 20% of the length in the Y direction, and the total width in the Y direction of the formation region of the substrate mark 96a disposed at each of both ends in the Y direction of the mask M2 is 1 cm. And
 この場合、表示画面領域DPAのサイズは、長辺54.52cm、短辺27.26cmであるから、マスク面P1上の露光用のマスクMのY方向の全長Lは、マスクM2と基板マーク96aの形成領域とを含み、L=66.43cmとなる。また、マスク面P1上のマスクM2のθ方向の長さLgは、Lg=29.99cmとなるから、間隔Sxを1cmとすると、マスクM(円筒ドラム21)の直径φは、πφ≧4Pxより、39.46cm以上となる。従って、図9のように、アスペクト比2:1の表示パネル用のマスクM2の4面分を円筒ドラム21に設けた場合も、比L/φは1.67となり、1.3~3.8の範囲に収まる。 In this case, since the size of the display screen area DPA is 54.52 cm in the long side and 27.26 cm in the short side, the total length L in the Y direction of the mask M for exposure on the mask surface P1 is the mask M2 and the substrate mark 96a. And L = 66.43 cm. The length Lg in the θ direction of the mask M2 on the mask surface P1 is Lg = 29.99 cm. Therefore, when the interval Sx is 1 cm, the diameter φ of the mask M (cylindrical drum 21) is from πφ ≧ 4Px. 39.46 cm or more. Accordingly, as shown in FIG. 9, even when four portions of the display panel mask M2 having an aspect ratio of 2: 1 are provided on the cylindrical drum 21, the ratio L / φ is 1.67, and 1.3-3. It falls within the range of 8.
 図10は、図9に示したマスクM2を90°回転させて長辺をθ方向に向けて配置し、θ方向に2つ、Y方向に2つの計4つをマスク面P1上に配列した場合の例を示す。またここでは、Y方向に並ぶ2つのマスクMの間に、基板マーク96aの形成領域が設けられるものとする。従って、基板マーク96aの形成領域のY方向の合計幅を2cmとすると、マスク面P1上に形成されるマスクMのY方向の全長(短辺)Lは、61.98cmとなり、マスクMのθ方向の全長(長辺)πφは132.86cm、マスクM(円筒マスク21)の直径φは42.29cm以上となり、比L/φは1.47となる。 In FIG. 10, the mask M2 shown in FIG. 9 is rotated by 90 °, and the long sides are arranged in the θ direction, and two in the θ direction and two in the Y direction are arranged on the mask surface P1. An example of the case is shown. Here, it is assumed that a formation region of the substrate mark 96a is provided between two masks M arranged in the Y direction. Accordingly, if the total width in the Y direction of the formation region of the substrate mark 96a is 2 cm, the total length (short side) L in the Y direction of the mask M formed on the mask surface P1 is 61.98 cm, and θ of the mask M The total length (long side) πφ in the direction is 132.86 cm, the diameter φ of the mask M (cylindrical mask 21) is 42.29 cm or more, and the ratio L / φ is 1.47.
 ところで、4つのマスクM2を図9、又は図10のように配置する場合、間隔Sxを調整すれば、円筒ドラム21の直径φとマスク面P1のY方向の寸法Laを一定にしておくことができる。図9と図10の場合に、マスクMとしてY方向の長さLが大きいのは、図9の場合のL=66.43cmであり、円筒ドラム21(マスクM)として直径φが大きいのは、図10の場合のφ≧42.29cmである。そこで、外周面(マスク面P1)のY方向の寸法LaがLa≧66.43cm、直径φがφ≧42.3cmの円筒ドラム21を用いれば、図9と図10のいずれの配置であっても、マスクM2の4面取りが可能である。この場合も、比L/φは1.57となり、1.3~3.8の範囲になる。 When the four masks M2 are arranged as shown in FIG. 9 or FIG. 10, the diameter φ of the cylindrical drum 21 and the dimension La in the Y direction of the mask surface P1 can be kept constant by adjusting the interval Sx. it can. 9 and 10, the length L in the Y direction as the mask M is large as L = 66.43 cm in the case of FIG. 9, and the diameter φ is large as the cylindrical drum 21 (mask M). In the case of FIG. 10, φ ≧ 42.29 cm. Therefore, if the cylindrical drum 21 having a dimension La in the Y direction of the outer peripheral surface (mask surface P1) of La ≧ 66.43 cm and a diameter φ of φ ≧ 42.3 cm is used, the arrangement of FIGS. 9 and 10 is obtained. Also, it is possible to chamfer the mask M2. Also in this case, the ratio L / φ is 1.57, which is in the range of 1.3 to 3.8.
 図8から図10に示すように、マスク面P1には、種々の配置規則で表示デバイス用のマスクパターン(マスクM、M1、M2)が配置される可能性がある。これに対して、円筒ドラム(マスク保持ドラム)21のマスク面P1(外周面)の走査露光方向(θ方向)と直交する方向(Y方向)の長さLと円筒ドラム21の直径φとの関係が、1.3≦L/φ≦3.8の関係を満たすことで、図8から図10のように、多様なサイズの表示パネルのマスクパターン(マスクM1、M2)を複数配置した場合も、隙間(間隔Sx)を少なくした状態でマスクパターンを配置することができる。 As shown in FIG. 8 to FIG. 10, display device mask patterns (masks M, M1, M2) may be arranged on the mask surface P1 according to various arrangement rules. On the other hand, the length L in the direction (Y direction) orthogonal to the scanning exposure direction (θ direction) of the mask surface P1 (outer peripheral surface) of the cylindrical drum (mask holding drum) 21 and the diameter φ of the cylindrical drum 21. When the relationship satisfies the relationship of 1.3 ≦ L / φ ≦ 3.8, a plurality of mask patterns (masks M1 and M2) of display panels of various sizes are arranged as shown in FIGS. However, the mask pattern can be arranged in a state where the gap (interval Sx) is reduced.
 また、円筒ドラム21は、1.3≦L/φ≦3.8の関係を満たすことで、照明光学系IL及び投影光学系PLの数の増加を抑制しつつ、装置の大型化を抑制することができる。つまり、円筒ドラム21が細長くなり、照明光学系IL及び投影光学系PLの数が増加することを抑制できる。また、円筒ドラム21の直径φが大きくなって、装置のZ方向の寸法が大きくなることを抑制することができる。 Further, the cylindrical drum 21 satisfies the relationship of 1.3 ≦ L / φ ≦ 3.8, thereby suppressing an increase in the size of the apparatus while suppressing an increase in the number of illumination optical systems IL and projection optical systems PL. be able to. That is, it is possible to prevent the cylindrical drum 21 from becoming elongated and increasing the number of illumination optical systems IL and projection optical systems PL. Moreover, it can suppress that the diameter (phi) of the cylindrical drum 21 becomes large and the dimension of the Z direction of an apparatus becomes large.
 ここで、図7のように、アスペクト比2:1の表示パネル用の1面取りのマスクMを、円筒ドラム21の外周面(マスク面P1)の全面に形成する場合に、図6、図7中の余白部92のθ方向の寸法をゼロとし、マスク面P1のY方向(第1軸AX1方向)の寸法LaをLa=Lとする場合を想定する。また、先に説明したように、画面表示領域DPAの周囲に配置される周辺回路領域TABは、画面表示領域DPAの20%程度となる場合がある。しかしながら、周辺回路領域TABの寸法割合は、実際のパターンの仕様、設計によって画面表示領域DPAの周囲のどの部分に回路となる端子部が配置されるかによって変化する。そのため、正確には特定できないが、マスクMとしての縦横比がより拡大する方向に増えるものとし、画面表示領域DPAの短辺に隣接する周辺回路領域TABの合計幅が、画面表示領域DPAの長辺Ldの20%程度になるものと仮定する。また画面表示領域DPAの長辺に隣接する周辺回路領域TABの合計幅は、画面表示領域DPAの短辺Lcの0~10%程度であると仮定する。そのような仮定の下で、画面表示領域DPAがアスペクト比2:1の50インチ表示パネルの場合、画面表示領域DPAの長辺Ldは113.59cm、短辺Lcは56.8cmとなる。従って、図7中のマスクMのθ方向の長さLb(=πφ)は136.31cm、円筒ドラム21(マスクM)の直径φは43.39cm、Y方向の長さL(=La)は56.8~62.48cmとなり、長さLと直径φの比L/φは、1.30~1.44となる。このように、アスペクト比の大きい表示パネル用のマスクの全体を、円筒ドラム21の外周面(マスク面P1)の全面に1面取りで形成する場合に、比L/φは最も小さな値1.3となる。尚、画面表示領域DPAのアスペクト比2:1の場合で、マスクMが長辺方向のみに周辺回路領域TABの幅を含んで20%大きくなる場合は、図7のような1面取りのマスクMの縦横比(Lb/L)が2.4になることであり、Lb=πφより、比L/φ=π/2.4≒1.30として導かれる。 Here, as shown in FIG. 7, when a one-sided mask M for a display panel having an aspect ratio of 2: 1 is formed on the entire outer peripheral surface (mask surface P1) of the cylindrical drum 21, FIGS. Assume that the dimension of the inner blank portion 92 in the θ direction is zero and the dimension La of the mask surface P1 in the Y direction (first axis AX1 direction) is La = L. Further, as described above, the peripheral circuit area TAB arranged around the screen display area DPA may be about 20% of the screen display area DPA. However, the dimensional ratio of the peripheral circuit area TAB varies depending on which part of the periphery of the screen display area DPA is arranged with the terminal portion depending on the actual pattern specification and design. Therefore, although it cannot be specified accurately, it is assumed that the aspect ratio as the mask M increases in a further expanding direction, and the total width of the peripheral circuit area TAB adjacent to the short side of the screen display area DPA is the length of the screen display area DPA. It is assumed that it is about 20% of the side Ld. It is assumed that the total width of the peripheral circuit area TAB adjacent to the long side of the screen display area DPA is about 0 to 10% of the short side Lc of the screen display area DPA. Under such an assumption, when the screen display area DPA is a 50-inch display panel having an aspect ratio of 2: 1, the long side Ld of the screen display area DPA is 113.59 cm and the short side Lc is 56.8 cm. Accordingly, the length Lb (= πφ) in the θ direction of the mask M in FIG. 7 is 136.31 cm, the diameter φ of the cylindrical drum 21 (mask M) is 43.39 cm, and the length L (= La) in the Y direction is 56.8 to 62.48 cm, and the ratio L / φ of the length L to the diameter φ is 1.30 to 1.44. In this way, when the entire mask for a display panel having a large aspect ratio is formed on the entire outer peripheral surface (mask surface P1) of the cylindrical drum 21, the ratio L / φ is the smallest value 1.3. It becomes. When the aspect ratio of the screen display area DPA is 2: 1 and the mask M is increased by 20% including the width of the peripheral circuit area TAB only in the long side direction, the one-sided mask M as shown in FIG. The aspect ratio (Lb / L) is 2.4, and the ratio L / φ = π / 2.4≈1.30 is derived from Lb = πφ.
 また、印刷機のように、図7中のマスクMを90°回転させて円筒ドラム21のマスク面P1のほぼ全面に配置させる場合は、先に説明したとおり、比L/φが大きくなり過ぎる。上記の条件のように、画面表示領域DPAのアスペクト比2:1の場合で、1面取りのマスクMが長辺方向のみに周辺回路領域TABの幅を含んで20%大きくなり、余白部92のθ方向の寸法がゼロである場合、L/Lb(πφ)=2.4/1となり、比L/φは7.54となる。この場合、先に例示した50インチの表示パネル用の1面取りのマスクMの場合、Y方向の長さLが136.31cm、θ方向の長さLb(πφ)が56.8cmとなり、円筒ドラム21(マスクM)の直径φは18.1cmとなる。このように、マスクMの長辺方向をθ方向にした場合とY方向にした場合とで、比L/φは大きく変化する。 Further, when the mask M in FIG. 7 is rotated by 90 ° and disposed almost on the entire mask surface P1 of the cylindrical drum 21 as in the printing press, the ratio L / φ becomes too large as described above. . In the case where the aspect ratio of the screen display area DPA is 2: 1 as in the above-described conditions, the one-sided mask M is increased by 20% including the width of the peripheral circuit area TAB only in the long side direction. When the dimension in the θ direction is zero, L / Lb (πφ) = 2.4 / 1 and the ratio L / φ is 7.54. In this case, in the case of the single-sided mask M for the 50-inch display panel exemplified above, the length L in the Y direction is 136.31 cm, and the length Lb (πφ) in the θ direction is 56.8 cm. The diameter φ of 21 (mask M) is 18.1 cm. As described above, the ratio L / φ varies greatly depending on whether the long side direction of the mask M is the θ direction or the Y direction.
 露光装置U3の投影光学系PLは、円筒ドラム21の直径φが大きく変化する場合、特に直径φが小さくなる場合には、射影によるディストーション誤差や円弧による投影像面の変化の点が大きくなるため、良好な投影像を基板P上に露光することが困難になる。その場合は、例えば図11のように、アスペクト比2:1の画面表示領域DPAを有する表示パネル用の長辺方向をY方向としたマスクM2の2つをθ方向に並べると良い。 In the projection optical system PL of the exposure apparatus U3, when the diameter φ of the cylindrical drum 21 changes greatly, especially when the diameter φ decreases, the distortion error due to projection and the point of change in the projected image plane due to the arc increase. It becomes difficult to expose a good projection image on the substrate P. In this case, for example, as shown in FIG. 11, two masks M2 having a long side direction for a display panel having a screen display area DPA with an aspect ratio of 2: 1 in the Y direction may be arranged in the θ direction.
 図11において、2つのマスクM2の各々は、アスペクト比2:1の画面表示領域DPAと、画面表示領域DPAのY方向の両側に配置される周辺回路領域TABとを含む。周辺回路領域TABのY方向の幅の合計は、画面表示領域DPAの長辺の寸法Ldの20%とし、マスクM2の右隣りには間隔Sxが設けられるものとする。マスクM2の周囲に基板マーク96aやマスクマーク96を配置しないと仮定とすると、2つのマスクM2と間隔Sxとを含むマスクMの全体(マスク面P1)のY方向の寸法LはL=1.2・Ld、θ方向の寸法πφ(Lb)はπφ=2(Lc+Sx)となる。画面表示領域DPAのアスペクト比Aspを、Asp=Ld/Lcとすると、比L/φは以下のように表される。
L/φ=0.6・π・Asp・Lc/(Lc+Sx)
In FIG. 11, each of the two masks M2 includes a screen display area DPA with an aspect ratio of 2: 1 and peripheral circuit areas TAB arranged on both sides in the Y direction of the screen display area DPA. It is assumed that the total width in the Y direction of the peripheral circuit area TAB is 20% of the long side dimension Ld of the screen display area DPA, and a space Sx is provided on the right side of the mask M2. Assuming that the substrate mark 96a and the mask mark 96 are not arranged around the mask M2, the dimension L in the Y direction of the entire mask M (mask surface P1) including the two masks M2 and the interval Sx is L = 1. The dimension πφ (Lb) in the 2 · Ld, θ direction is πφ = 2 (Lc + Sx). When the aspect ratio Asp of the screen display area DPA is Asp = Ld / Lc, the ratio L / φ is expressed as follows.
L / φ = 0.6 · π · Asp · Lc / (Lc + Sx)
 ここで、間隔Sxをゼロにすると、比L/φは、L/φ=0.6・π・Aspとなり、アスペクト比2:1の表示パネル用のマスクM2の2つを図11のような方向で配置した場合、円筒ドラム21(マスク面P1)の直径φと第1軸AX1方向の長さL(=La)との比L/φは3.77(約3.8)となる。この場合、画面表示領域DPA(2:1)が50インチであれば、直径φは36.16cm、長さL(La)は136.31cmとなる。同様に、図11に示したマスクM2を、アスペクト比16:9の表示パネル用とした場合は、間隔Sxをゼロとすると、L/φ=0.6・π・Aspの関係より、比L/φは3.35となる。この場合、画面表示領域DPA(16:9)が50インチであれば、直径φは39.64cm、長さL(La)は132.83cmとなる。 Here, when the interval Sx is set to zero, the ratio L / φ becomes L / φ = 0.6 · π · Asp, and two masks M2 for a display panel having an aspect ratio of 2: 1 are as shown in FIG. When arranged in the direction, the ratio L / φ between the diameter φ of the cylindrical drum 21 (mask surface P1) and the length L (= La) in the first axis AX1 direction is 3.77 (about 3.8). In this case, if the screen display area DPA (2: 1) is 50 inches, the diameter φ is 36.16 cm and the length L (La) is 136.31 cm. Similarly, when the mask M2 shown in FIG. 11 is used for a display panel with an aspect ratio of 16: 9, if the interval Sx is zero, the ratio L / φ = 0.6 · π · Asp / Φ is 3.35. In this case, if the screen display area DPA (16: 9) is 50 inches, the diameter φ is 39.64 cm and the length L (La) is 132.83 cm.
 以上のように、画面表示領域DPAの短辺方向が円筒ドラム21の周方向(θ方向)に向き、長辺方向が円筒ドラム21の第1軸AX1の方向(Y方向)に向くようにマスクMを配置する場合でも、2つ以上の同じマスクM2をθ方向に並べることで、比L/φを3.8以下とすることができる。尚、図11で示したマスクM2を、同じ条件でθ方向にn個並べるとすると、先の比L/φを表す関係式は以下のようになる。
L/φ=1.2・π・Asp・Lc/n(Lc+Sx)
 この関係式から、製造したい表示パネル用のマスクM2の円筒ドラム21上での配置、必要な間隔Sx等を、1.3≦L/φ≦3.8を満たすように設定することができる。
As described above, the mask is so arranged that the short side direction of the screen display area DPA is oriented in the circumferential direction (θ direction) of the cylindrical drum 21 and the long side direction is oriented in the direction of the first axis AX1 (Y direction) of the cylindrical drum 21. Even when M is arranged, the ratio L / φ can be made 3.8 or less by arranging two or more same masks M2 in the θ direction. If n masks M2 shown in FIG. 11 are arranged in the θ direction under the same conditions, the relational expression representing the above ratio L / φ is as follows.
L / φ = 1.2 · π · Asp · Lc / n (Lc + Sx)
From this relational expression, it is possible to set the arrangement of the mask M2 for the display panel to be manufactured on the cylindrical drum 21 and the necessary interval Sx so as to satisfy 1.3 ≦ L / φ ≦ 3.8.
 また、マスク面P1は、表示パネルデバイス用のマスクパターンのマスクM1、M2を、先の図8のように3つ並べたり、図9のように4つ並べたりすることで、比L/φを3.8よりも小さくして配置することが可能となる。この場合、比L/φがどのような値になるかは、Y方向が長手となるようなマスクM1、M2をθ方向にn個並べる場合の関係式から求められる。表示画面領域DPAの周りの周辺回路領域TABの幅によって、マスクM1、M2の縦横寸法も変わってくる為、表示画面領域DPAの長手方向の両側(又は片側)の周辺回路領域TABによって拡大するマスクM1、M2の長手方向の寸法の拡大倍率をe1、表示画面領域DPAの短手方向の両側(又は片側)の周辺回路領域TABによって拡大するマスクM1、M2の短手方向の寸法の拡大倍率をe2とする。 Further, the mask surface P1 has a ratio L / φ by arranging three masks M1 and M2 of the mask pattern for the display panel device as shown in FIG. 8 or four as shown in FIG. Can be arranged smaller than 3.8. In this case, the value of the ratio L / φ is obtained from the relational expression when n masks M1 and M2 having the longitudinal direction in the Y direction are arranged in the θ direction. The vertical and horizontal dimensions of the masks M1 and M2 also vary depending on the width of the peripheral circuit area TAB around the display screen area DPA. Therefore, the mask is enlarged by the peripheral circuit area TAB on both sides (or one side) in the longitudinal direction of the display screen area DPA. The magnification of the dimension in the longitudinal direction of M1 and M2 is e1, and the magnification of the dimension in the lateral direction of the masks M1 and M2 enlarged by the peripheral circuit area TAB on both sides (or one side) of the display screen area DPA in the lateral direction. Let e2.
 よって、マスク面P1のY方向の寸法LaがマスクM1、M2の長手方向の寸法と一致するように配置する場合、マスク面P1上のマスク領域のY方向の長さLは、L=La=e1・Ldとなる。同様に、マスク面P1上のマスク領域のθ方向の長さπφ(Lb)は、πφ=n(e2・Lc+Sx)となり、比L/φは以下の関係式で表される。
L/φ=e1・π・Asp・Lc/n(e2・Lc+Sx)
 この関係式において、図11に示したマスクM2の場合は、n=2、e1=1.2、e2=1.0とした。
Accordingly, when the mask surface P1 is arranged so that the dimension La in the Y direction of the mask coincides with the dimension in the longitudinal direction of the masks M1 and M2, the length L in the Y direction of the mask region on the mask surface P1 is L = La = e1 · Ld. Similarly, the length πφ (Lb) in the θ direction of the mask region on the mask surface P1 is πφ = n (e2 · Lc + Sx), and the ratio L / φ is expressed by the following relational expression.
L / φ = e1 · π · Asp · Lc / n (e2 · Lc + Sx)
In this relational expression, in the case of the mask M2 shown in FIG. 11, n = 2, e1 = 1.2, and e2 = 1.0.
 例えば、表示パネルデバイス用のマスクM2の表示画面領域DPAの縦横比を16:9(Asp=1.778)とした場合に、マスクM2をθ方向に3面並列に配置(n=3)すると、間隔Sxがゼロの場合、比L/φは、L/φ=e1・π・Asp/n・e2、となり、拡大倍率e1を1.2、拡大倍率e2を1.0にしたとしても、比L/φは2.23となる。 For example, when the aspect ratio of the display screen area DPA of the mask M2 for the display panel device is 16: 9 (Asp = 1.778), the mask M2 is arranged in parallel in three planes in the θ direction (n = 3). When the interval Sx is zero, the ratio L / φ is L / φ = e1 · π · Asp / n · e2, and even if the enlargement magnification e1 is 1.2 and the enlargement magnification e2 is 1.0, The ratio L / φ is 2.23.
 さらに、先の図10に示したように、2行2列でマスクM2(24インチ)を配置した4面取り全体のマスク領域の縦横比が、θ方向に表示画面領域DPAの長辺方向を向けた1面取りのマスクM(50インチ)の縦横比とほぼ同じであれば、周辺回路領域TABの端子部の寸法の違い、或いは間隔Sxの違いだけで、同一寸法の円筒ドラム21にすることが可能になる。 Furthermore, as shown in FIG. 10, the aspect ratio of the mask area of the entire four-chamfer arrangement in which the mask M2 (24 inches) is arranged in 2 rows and 2 columns is directed to the long side direction of the display screen area DPA in the θ direction. If the aspect ratio of the single-sided mask M (50 inches) is substantially the same, the cylindrical drum 21 having the same dimensions can be formed only by the difference in the size of the terminal portion of the peripheral circuit area TAB or the difference in the spacing Sx. It becomes possible.
 以上のように、表示パネルの表示画面領域DPAのアスペクト比が16:9や2:1等のように、2:1に近い場合、その表示パネル用のマスクM、M1、M2を効率的に円筒ドラム21の外周面に配列する為には、円筒ドラム(円筒マスク)21の走査露光方向(θ方向)と直交する方向(Y方向)の長さLと直径φとの関係が、1.3≦L/φ≦3.8を満たすようにするのが良い。さらに、単一のマスクM、M1、M2の縦横比が2:1に近い場合、それらのマスクを多面取りで複数配列する際は、多面取りによって占有されるマスク面P1上のマスク領域全体の縦横比(L:Lb)を、1:1に近くすると良い。また、間隔Sx(又は余白部92)は一定にすることが好ましい。 As described above, when the aspect ratio of the display screen area DPA of the display panel is close to 2: 1 such as 16: 9 or 2: 1, the masks M, M1, and M2 for the display panel are efficiently used. In order to arrange on the outer peripheral surface of the cylindrical drum 21, the relationship between the length L of the cylindrical drum (cylindrical mask) 21 in the direction (Y direction) orthogonal to the scanning exposure direction (θ direction) and the diameter φ is 1. It is preferable to satisfy 3 ≦ L / φ ≦ 3.8. Furthermore, when the aspect ratio of the single masks M, M1, and M2 is close to 2: 1, when arranging a plurality of these masks by multi-chamfering, the entire mask area on the mask surface P1 occupied by multi-chamfering is used. The aspect ratio (L: Lb) is preferably close to 1: 1. Further, it is preferable that the interval Sx (or the blank portion 92) is constant.
 また、円筒ドラム21の外周面(マスク面P1)の直径φと、マスク面P1に形成されるマスクパターンの第1軸AX1の方向の全長L(La)との関係は、1.3≦L/φ≦3.8を満たすようにするのが良いが、さらには、1.3≦L/φ≦2.6とすると、上記の効果を好適に得ることができる。一例としては、図11に示したマスクM2の長手方向がθ方向になるように、マスクM2を90°回転させ、Y方向に間隔を空けずに2個並べて2面取りにする場合、L/φ≒2.6となる。この場合、1つのマスクM2のθ方向の長さπφ(Lb)は、πφ=e1・Ldであり、Y方向に並ぶ2つのマスクM2の合計の長さLは、L=2・e2・Lcである。従って、Asp=Ld/Lcより、比L/φは、L/φ=2π・e2/e1・Aspとなり、e1=1.2、e2=1.0、Asp=2/1とすると、L/φ=π/1.2≒2.6となる。 The relationship between the diameter φ of the outer peripheral surface (mask surface P1) of the cylindrical drum 21 and the total length L (La) in the direction of the first axis AX1 of the mask pattern formed on the mask surface P1 is 1.3 ≦ L It is preferable to satisfy /φ≦3.8. Furthermore, when 1.3 ≦ L / φ ≦ 2.6, the above-described effect can be preferably obtained. As an example, when the mask M2 is rotated 90 ° so that the longitudinal direction of the mask M2 shown in FIG. ≈2.6. In this case, the length πφ (Lb) in the θ direction of one mask M2 is πφ = e1 · Ld, and the total length L of the two masks M2 arranged in the Y direction is L = 2 · e2 · Lc. It is. Therefore, from Asp = Ld / Lc, the ratio L / φ is L / φ = 2π · e2 / e1 · Asp, where e1 = 1.2, e2 = 1.0, and Asp = 2/1. φ = π / 1.2≈2.6.
 また、露光装置U3は、マスクM(M1、M2)を交換可能とすることが好ましい。マスクを交換可能とすることで、種々のサイズの表示パネル、或いは電子回路基板用のマスクパターンを基板Pに投影露光することができる。また、円筒ドラム21のマスク面P1に形成されるマスク(M、M1、M2等)の面数が種々の場合であっても、各マスク間に生じる隙間(間隔Sx)を必要以上に大きく取ることがなくなる。すなわち、マスク面P1の全面積に占める有効なマスク領域の比率(マスク利用率)の低下を抑えられる。 Further, it is preferable that the exposure apparatus U3 can replace the mask M (M1, M2). By making the mask exchangeable, various sizes of display panels or mask patterns for electronic circuit boards can be projected and exposed on the substrate P. Even if the number of masks (M, M1, M2, etc.) formed on the mask surface P1 of the cylindrical drum 21 is various, the gap (interval Sx) generated between the masks is made larger than necessary. Nothing will happen. That is, it is possible to suppress a decrease in the ratio of the effective mask region (mask utilization rate) in the entire area of the mask surface P1.
 また、マスクM(M1、M2)は、円筒ドラム21のマスク面P1の直径φと、走査露光方向と直交する方向(Y方向)のマスク領域の長さLとが、共に略同じとなるように交換可能とすることが好ましい。これにより、マスクM(M1、M2)を交換するのみで、露光装置U3側の投影光学系PLや照明光学系IL、或いは基板Pとマスク面P1との距離等の他の部分の調整が不要、若しくは極めて僅かな調整量で済ませることができ、マスク交換後も同等の像品質で種々のデバイスのパターンを転写することができる。 In the mask M (M1, M2), the diameter φ of the mask surface P1 of the cylindrical drum 21 and the length L of the mask region in the direction (Y direction) orthogonal to the scanning exposure direction are substantially the same. It is preferable to be replaceable. Thereby, only the mask M (M1, M2) is exchanged, and adjustment of the projection optical system PL and the illumination optical system IL on the exposure apparatus U3 side or other parts such as the distance between the substrate P and the mask surface P1 is unnecessary. Alternatively, an extremely small adjustment amount can be used, and patterns of various devices can be transferred with the same image quality even after mask replacement.
 また、上記の実施形態では、円筒ドラム21の直径φを一定として、面取り数や配列の方向を異ならせた種々の面数のデバイス用マスク(M1、M2)をマスク面P1上に配置する場合、或いは円筒ドラム21の直径φを異ならせて種々の面数のデバイスをマスク面P1上に配置する場合がある。しかしながら、いずれの場合も、円筒状のマスク面P1の形状を、1.3≦L/φ≦3.8の関係を満たすようにすることで、マスク面P1に複数のマスクパターンを少ない隙間で配置することができる。これにより、デバイス(表示パネル)のパターンを基板Pに効率よく転写させることができる。また、円筒ドラム21による円筒マスクを、1.3≦L/φ≦3.8の関係を満たす形状とすることで、複数のデバイスパターンの隙間を少なくしつつ、種々の大きさのデバイスのパターンを効率よく配置でき、しかも円筒マスクの直径φの変化を少なくすることができる。 Further, in the above-described embodiment, when the diameter φ of the cylindrical drum 21 is constant and the device masks (M1, M2) having various numbers of chamfering numbers and different arrangement directions are arranged on the mask surface P1. Alternatively, devices having various numbers of surfaces may be arranged on the mask surface P1 with different diameters φ of the cylindrical drum 21. However, in any case, by making the shape of the cylindrical mask surface P1 satisfy the relationship of 1.3 ≦ L / φ ≦ 3.8, a plurality of mask patterns can be formed on the mask surface P1 with a small gap. Can be arranged. Thereby, the pattern of the device (display panel) can be efficiently transferred onto the substrate P. In addition, by forming the cylindrical mask by the cylindrical drum 21 into a shape satisfying the relationship of 1.3 ≦ L / φ ≦ 3.8, the device patterns of various sizes can be obtained while reducing the gap between the plurality of device patterns. Can be arranged efficiently, and the change in the diameter φ of the cylindrical mask can be reduced.
 また、図8から図11に示すように、マスクM1、M2の取り付け面数は、製造する表示パネル(デバイス)のサイズに応じて、2面、3面、4面、或いはそれ以上にすることができる。マスクM1、M2の取り付け面数を3面、4面と増やしていくと隙間(間隔Sx)の寸法をより小さくすることができる。 Further, as shown in FIGS. 8 to 11, the number of attachment surfaces of the masks M1 and M2 is two, three, four, or more depending on the size of the display panel (device) to be manufactured. Can do. When the number of attachment surfaces of the masks M1 and M2 is increased to three and four, the size of the gap (interval Sx) can be further reduced.
 また、円筒ドラム21は、1.3≦L/φ≦3.8を満たすことで、ロール径(直径φ)に対して、照明領域IR又は投影領域PAの走査露光方向(θ方向)の幅、いわゆる露光スリット幅を最適化(大きく)することができる。以下、図12を用いて、円筒ドラム21のマスク面P1の直径φと、走査露光方向の露光スリット幅との関係について説明する。 Further, the cylindrical drum 21 satisfies 1.3 ≦ L / φ ≦ 3.8 so that the width of the scanning exposure direction (θ direction) of the illumination area IR or the projection area PA with respect to the roll diameter (diameter φ). The so-called exposure slit width can be optimized (increased). Hereinafter, the relationship between the diameter φ of the mask surface P1 of the cylindrical drum 21 and the exposure slit width in the scanning exposure direction will be described with reference to FIG.
 図12は、円筒ドラム21(マスク面P1)の直径φと露光スリット幅Dの関係を、デフォーカス(Defocus)量を変えてシミュレーションしたグラフである。図12において、縦軸は露光スリット幅D[mm]を表し、これは基板P上に形成される投影領域PA(図3)のθ方向(X方向)の幅を表す。縦軸は円筒ドラム21(マスク面P1)の直径φ[mm]を表す。また、デフォーカス量とは、露光装置U3の投影光学系PLの像側(基板P側)の開口数NA、露光用の照明光の波長λ、プロセス定数k(k≦1)によって定義される焦点深度DOFに基づいて決められる。ここでは、投影像のベストフォーカス面と基板Pの表面とのフォーカス方向の偏差量(デフォーカス量)が、25μmと50μmの2通りの場合についてシミュレーションした。 FIG. 12 is a graph simulating the relationship between the diameter φ of the cylindrical drum 21 (mask surface P1) and the exposure slit width D while changing the defocus amount. In FIG. 12, the vertical axis represents the exposure slit width D [mm], which represents the width of the projection area PA (FIG. 3) formed on the substrate P in the θ direction (X direction). The vertical axis represents the diameter φ [mm] of the cylindrical drum 21 (mask surface P1). The defocus amount is defined by the numerical aperture NA on the image side (substrate P side) of the projection optical system PL of the exposure apparatus U3, the wavelength λ of illumination light for exposure, and the process constant k (k ≦ 1). It is determined based on the depth of focus DOF. Here, the simulation was performed for the case where the deviation amount (defocus amount) in the focus direction between the best focus surface of the projection image and the surface of the substrate P was 25 μm and 50 μm.
 ここで、図12のシミュレーションでは、投影光学系PLの開口数NAを0.0875、照明光の波長λを水銀ランプのi線の365nm、プロセス定数kを0.5程度としたので、焦点深度DOFは、DOF=k・λ/NA、より、幅で約50μm(約-25μm~+25μm)程度得られる。尚、この条件での解像力としては、2.5μmL/Sを得ることができる。図12中の破線で示した25μmデフォーカス時とは、露光スリット幅D内で焦点深度DOFの1/2程度のフォーカス偏差が生じる状態であり、実線で示した50μmデフォーカス時とは、露光スリット幅D内で焦点深度DOF程度のフォーカス偏差が生じる状態である。すなわち、破線で示した25μmデフォーカス時のグラフは、焦点深度DOFの幅の1/2(幅で25μm)を、この円筒ドラム21のマスク面P1の湾曲による誤差として許容した場合の直径φと露光スリット幅Dの関係を示し、実線で示した50μmデフォーカス時のグラフは、焦点深度DOFの幅程度までを、この円筒ドラム21のマスク面P1の湾曲による誤差として許容した場合の直径φと露光スリット幅Dの関係を示している。 Here, in the simulation of FIG. 12, the numerical aperture NA of the projection optical system PL is 0.0875, the wavelength λ of the illumination light is 365 nm of the i-line of the mercury lamp, and the process constant k is about 0.5. DOF = k · λ / NA 2 , and a width of about 50 μm (about −25 μm to +25 μm) is obtained. In addition, as a resolving power under these conditions, 2.5 μmL / S can be obtained. In the case of defocusing at 25 μm indicated by a broken line in FIG. 12, a focus deviation of about ½ of the depth of focus DOF occurs within the exposure slit width D, and at the time of defocusing by 50 μm indicated by a solid line. This is a state in which a focus deviation of the depth of focus DOF occurs within the slit width D. That is, the graph at the time of 25 μm defocusing indicated by a broken line shows the diameter φ in the case where ½ of the width of the focal depth DOF (25 μm in width) is allowed as an error due to the curvature of the mask surface P1 of the cylindrical drum 21. The graph of the relationship between the exposure slit width D and the 50 μm defocus shown by the solid line is the diameter φ when the depth of the DOF is allowed as an error due to the curvature of the mask surface P1 of the cylindrical drum 21. The relationship of the exposure slit width D is shown.
 図12では、円筒ドラム21の直径φを100mm~1000mmの範囲で変えたときに許容されるデフォーカス量(ΔZとする)が、25μmになる露光スリット幅Dと、50μmになる露光スリット幅Dとを、以下の計算により求めた。
D=2・〔(φ/2)-(φ/2-ΔZ)0.5
In FIG. 12, when the diameter φ of the cylindrical drum 21 is changed in the range of 100 mm to 1000 mm, the defocus amount (assumed as ΔZ) allowed is 25 μm, and the exposure slit width D is 50 μm. Was determined by the following calculation.
D = 2 · [(φ / 2) 2 − (φ / 2−ΔZ) 2 ] 0.5
 このシミュレーションより、例えば、直径φが500mmの場合、デフォーカス量ΔZとして25μmまで許容するとした場合の露光スリット幅Dの最大値は約7.1mmとなり、デフォーカス量ΔZとして50μmまで許容するとした場合の露光スリット幅Dの最大値は約10.0mmとなる。 From this simulation, for example, when the diameter φ is 500 mm, the maximum value of the exposure slit width D when the defocus amount ΔZ is allowed up to 25 μm is about 7.1 mm, and the defocus amount ΔZ is allowed up to 50 μm. The maximum value of the exposure slit width D is about 10.0 mm.
 図12に示すように、円筒ドラム21の直径φが大きくなるほど、許容されるデフォーカス量を満足する露光スリット幅Dは大きくなる。表示画面領域DPAのアスペクト比が2:1で、表示画面領域DPAの長手方向のみに周辺回路領域TABが設けられる図11のようなマスクM2の場合、そのマスクM2の1面のみを円筒ドラム21のマスク面P1の全周に、余白部92(間隔Sx)を作らずに形成すると、そのマスクM2の長手方向を、円筒ドラム21の周方向(θ方向)にするか、第1軸AX1の方向(Y方向)にするかで、比L/φは大きく変わる。マスクM2の長手方向を図11のようにY方向にすると、マスクM2の1面のθ方向の長さLc(短手)が、円筒ドラム21の外周面の全周長πφと等しくなり、φ=Lc/πとなる。このとき、円筒ドラム21上のマスクM2の第1軸AX1の方向(Y方向)の長さLは、図11の場合と同様に、L=1.2・Ldとなる。アスペクト比2:1より、Ld=2Lcであるから、この場合の比L/φは、L/φ=2.4・π≒7.5となる。一方、マスクM2の短手方向をY方向にすると、マスクM2の1面のθ方向の全周長πφは1.2・Ldとなり、円筒ドラム21上のマスクM2のY方向の長さLはLcとなる。従って、この場合の比L/φは、L/φ=π/2.4≒1.3となる。 As shown in FIG. 12, as the diameter φ of the cylindrical drum 21 increases, the exposure slit width D that satisfies the allowable defocus amount increases. In the case of the mask M2 as shown in FIG. 11 in which the aspect ratio of the display screen area DPA is 2: 1 and the peripheral circuit area TAB is provided only in the longitudinal direction of the display screen area DPA, only one surface of the mask M2 is the cylindrical drum 21. If the mask portion P2 is formed on the entire circumference of the mask surface P1 without creating the blank portion 92 (interval Sx), the longitudinal direction of the mask M2 is set to the circumferential direction (θ direction) of the cylindrical drum 21 or the first axis AX1. The ratio L / φ varies greatly depending on the direction (Y direction). When the longitudinal direction of the mask M2 is set to the Y direction as shown in FIG. 11, the length Lc (short side) of one surface of the mask M2 in the θ direction becomes equal to the entire circumferential length πφ of the outer peripheral surface of the cylindrical drum 21, and φ = Lc / π. At this time, the length L of the mask M2 on the cylindrical drum 21 in the direction (Y direction) of the first axis AX1 is L = 1.2 · Ld, as in the case of FIG. Since the aspect ratio is 2: 1 and Ld = 2Lc, the ratio L / φ in this case is L / φ = 2.4 · π≈7.5. On the other hand, when the short direction of the mask M2 is the Y direction, the total circumferential length πφ in the θ direction of one surface of the mask M2 is 1.2 · Ld, and the length L in the Y direction of the mask M2 on the cylindrical drum 21 is Lc. Accordingly, the ratio L / φ in this case is L / φ = π / 2.4≈1.3.
 マスクのY方向の長さLを、露光装置U3の投影光学系PLの各投影領域PA1~PA6(図3)のY方向の合計寸法の範囲内に設定するとして、長さLを一定とすると、比L/φが1.3から7.5に約6倍変化するということは、円筒ドラム21の直径φが約6倍変化することを意味する。直径φの約6倍の変化は、図12中では、例えば、直径φ=150mmから900mmへの変化に相当する。この場合、許容デフォーカス量ΔZを25μmとした場合の露光スリット幅Dは、φ150mmのときの約3.9mmからφ900mmのときの約9.5mmに変化する。従って、マスクのY方向の長さLを一定とする場合、直径φが900mmの円筒マスクから、直径φが150mmの円筒マスクに変わると、露光スリット幅Dは約40%に減少することになる。許容デフォーカス量ΔZを50μmとした場合も同様である。 If the length L in the Y direction of the mask is set within the total dimension in the Y direction of the projection areas PA1 to PA6 (FIG. 3) of the projection optical system PL of the exposure apparatus U3, the length L is constant. When the ratio L / φ changes from 1.3 to 7.5 by about 6 times, it means that the diameter φ of the cylindrical drum 21 changes by about 6 times. The change of about 6 times the diameter φ corresponds to, for example, a change from diameter φ = 150 mm to 900 mm in FIG. In this case, the exposure slit width D when the allowable defocus amount ΔZ is 25 μm changes from about 3.9 mm when φ150 mm to about 9.5 mm when φ900 mm. Therefore, when the length L in the Y direction of the mask is constant, the exposure slit width D is reduced to about 40% when the cylindrical mask having a diameter φ of 900 mm is changed to a cylindrical mask having a diameter φ of 150 mm. . The same applies when the allowable defocus amount ΔZ is 50 μm.
 このため、比L/φが1.3から7.5の範囲を対象とすると、投影像のコントラストを一定で露光を行う場合には、単純には基板Pに与えられる露光量が40%に減少してしまう。基板Pに与えられる露光量を適正値(100%)にする為には、露光スリット幅Dとして9.5mmで設定される投影領域PAによる露光時の基板Pの移動速度に対して、約40%の速度で基板Pを移動させることになる。即ち、基板Pの搬送速度自体を約40%に落とすことになるので、スループット(生産性)は半分以下になってしまう。露光スリット幅Dとして3.9mmで設定される投影領域PAを使った露光時でも、基板Pの搬送速度を落とさない為には、投影領域PA内の投影像の輝度、即ち照明光束EL1の照度を高めることが考えられる。その場合、マスク面P1を照射する照明光束EL1の照度は、露光スリット幅Dが9.5mmの場合の照度に対して約2.5倍にする必要がある。 Therefore, when the ratio L / φ is in the range of 1.3 to 7.5, when exposure is performed with a constant contrast of the projected image, the exposure amount given to the substrate P is simply 40%. It will decrease. In order to set the exposure amount given to the substrate P to an appropriate value (100%), it is about 40 with respect to the moving speed of the substrate P at the time of exposure by the projection area PA set as the exposure slit width D of 9.5 mm. The substrate P is moved at a speed of%. That is, since the transport speed of the substrate P itself is reduced to about 40%, the throughput (productivity) becomes half or less. Even in the exposure using the projection area PA set as the exposure slit width D of 3.9 mm, the brightness of the projection image in the projection area PA, that is, the illuminance of the illumination light beam EL1 is set so as not to decrease the transport speed of the substrate P. It is conceivable to increase. In that case, the illuminance of the illumination light beam EL1 that irradiates the mask surface P1 needs to be about 2.5 times the illuminance when the exposure slit width D is 9.5 mm.
 これに対して、図11のようなマスクM2の2面取りを採用すると、比L/φを約3.8(1.2・π)以下の範囲(1.3~3.8)とすることができる。マスクのY方向の長さLを一定とする場合、円筒マスク(円筒ドラム21)の直径φの変化は約3倍の範囲となり、例えばφ=900mm~300mmの間で考えればよい。図12のシミュレーションより、直径φが300mmのときに許容デフォーカス量ΔZを25μmとする場合の露光スリット幅Dは、約5.5mmとなる。従って、露光スリット幅Dが約9.5mmの場合に対して、基板Pの搬送速度は約60%程度までの減少で済む。このように、円筒ドラム21のマスク面P1上に形成されるマスク領域の縦横の比(L:πφ)を、比L/φが約1.3~約3.8となるように制限することにより、露光スリット幅Dの変化を抑制することができる。 On the other hand, when the two-chamfering of the mask M2 as shown in FIG. 11 is adopted, the ratio L / φ is set within a range (1.3 to 3.8) of about 3.8 (1.2 · π) or less. Can do. When the length L in the Y direction of the mask is made constant, the change of the diameter φ of the cylindrical mask (cylindrical drum 21) is in a range of about three times. For example, it can be considered that φ = 900 mm to 300 mm. From the simulation of FIG. 12, the exposure slit width D when the allowable defocus amount ΔZ is 25 μm when the diameter φ is 300 mm is about 5.5 mm. Accordingly, when the exposure slit width D is about 9.5 mm, the transport speed of the substrate P can be reduced to about 60%. As described above, the aspect ratio (L: πφ) of the mask region formed on the mask surface P1 of the cylindrical drum 21 is limited so that the ratio L / φ is about 1.3 to about 3.8. Thus, a change in the exposure slit width D can be suppressed.
 同様に、図11のマスクM2を、図8のようにθ方向に間隔Sxゼロにして3つ並べる場合は、L/φ=0.4π・Aspとなり、円筒ドラム21の直径φは、例えば、500mm~900mmまで約1.8倍の範囲で変化する可能性がある。デフォーカス量25μmでの露光スリット幅Dは、直径φが900mmの場合の約9.5mmから約7.1mmに減少するが、これはスループットが約75%に低減することに相当する。しかしながら、先の例のように、スループットが半分以下になる場合よりも改善される。さらに、図11のマスクM2を、図9のようにθ方向に間隔Sxゼロにして4つ並べる場合は、L/φ=0.3π・Aspとなり、円筒ドラム21の直径φは、例えば、700mm~900mmまで約1.3倍の範囲で変化する可能性がある。デフォーカス量25μmでの露光スリット幅Dは、直径φが900mmの場合の約9.5mmから約8.4mmに減少する。これはスループットが約88%に低減することに相当するが、先の例のようにスループットが半分以下になる場合よりも大幅に改善され、実質的にロスの無い露光が可能となる。また、露光スリット幅Dの75%や88%程度の減少であれば、光源31の発光強度を高めたり、光源の数を増やしたりすることで、容易に照明光束EL1の照度を上げることができ、スループットの低下を皆無にできる。尚、マスク領域のサイズは、一定値に近づくにしたがって、スループットが一定になることがわかる。すなわち、表示画像領域DPAの画面サイズ(対角長Le)に応じて、マスクMの1面取り、マスクM1やマスクM2の多面取りを使い分けることで、マスク領域のサイズ(L×πφ)が一定の円筒ドラム21(直径φが変わらない)とすることができ、スループットは一定に保たれる。 Similarly, when three masks M2 in FIG. 11 are arranged with a spacing Sx of zero in the θ direction as shown in FIG. 8, L / φ = 0.4π · Asp, and the diameter φ of the cylindrical drum 21 is, for example, There is a possibility of changing within a range of about 1.8 times from 500 mm to 900 mm. The exposure slit width D at a defocus amount of 25 μm decreases from about 9.5 mm when the diameter φ is 900 mm to about 7.1 mm, which corresponds to a reduction of throughput to about 75%. However, as in the previous example, this is an improvement over the case where the throughput is less than half. Furthermore, when four masks M2 in FIG. 11 are arranged with a spacing Sx of zero in the θ direction as shown in FIG. 9, L / φ = 0.3π · Asp, and the diameter φ of the cylindrical drum 21 is 700 mm, for example. There is a possibility of changing within a range of about 1.3 times from ˜900 mm. The exposure slit width D at a defocus amount of 25 μm decreases from about 9.5 mm when the diameter φ is 900 mm to about 8.4 mm. This corresponds to a reduction of the throughput to about 88%, but is significantly improved as compared to the case where the throughput is reduced to half or less as in the previous example, and exposure with substantially no loss is possible. If the exposure slit width D is reduced by about 75% or 88%, the illuminance of the illumination light beam EL1 can be easily increased by increasing the emission intensity of the light source 31 or increasing the number of light sources. , It can eliminate the decrease in throughput. It can be seen that the throughput becomes constant as the size of the mask region approaches a constant value. That is, the size (L × πφ) of the mask area is constant by properly using one chamfering of the mask M and multiple chamfering of the mask M1 and the mask M2 according to the screen size (diagonal length Le) of the display image area DPA. It can be a cylindrical drum 21 (the diameter φ does not change), and the throughput is kept constant.
 ところで、比L/φの範囲を約1.3~約3.8としたが、これは図11で示したように、アスペクト比2:1の表示パネル用のマスクM2の長手方向の寸法が、周辺回路領域TABの幅を含んで、表示画面領域DPAの長手方向の寸法Ldに対して20%増加する場合(1.2倍になる場合)を想定したからである。そこで、マスクの長手方向の寸法が、表示画面領域DPAの長手方向の寸法Ldに対してe1倍に拡大したとすると、比L/φは、Asp=Ld/Lcとして、以下の範囲で表される。
π/(e1・Asp)≦L/φ≦e1・π
 この条件を満たすような円筒ドラム21(円筒マスク)を用いることで、本実施形態の露光装置U3は、円筒面による射影誤差によって生じる投影像のディストーションや、円弧による投影像面の変化(フォーカスずれ)を抑制しつつ、表示パネル(デバイス)用のマスクパターンの複数を、隙間を少なくして基板P上に並べて転写することができる。
The range of the ratio L / φ is about 1.3 to about 3.8. As shown in FIG. 11, the longitudinal dimension of the mask M2 for a display panel having an aspect ratio of 2: 1 is as follows. This is because it is assumed that the width of the peripheral circuit area TAB is increased by 20% with respect to the longitudinal dimension Ld of the display screen area DPA (when it is 1.2 times). Therefore, if the longitudinal dimension of the mask is enlarged by e1 times the longitudinal dimension Ld of the display screen area DPA, the ratio L / φ is expressed in the following range as Asp = Ld / Lc. The
π / (e1 · Asp) ≦ L / φ ≦ e1 · π
By using the cylindrical drum 21 (cylindrical mask) that satisfies this condition, the exposure apparatus U3 of the present embodiment is capable of distorting the projected image caused by the projection error due to the cylindrical surface, or changing the projected image surface due to the arc (focus shift). ), A plurality of mask patterns for the display panel (device) can be transferred side by side on the substrate P with a small gap.
 以上、本実施形態における円筒マスク(円筒ドラム21)上に形成されるマスクM、M1、M2等の配置例をまとめてみると、図13、図14のようになる。図13は、先の図7と同様に、θ方向を長手方向とするマスクMの1面取りの場合を示し、図14は、先の図11と同様に、Y方向を長手方向とするマスクM2をθ方向に2つ並べる2面取りの場合を示す。図13は、図7と同様に、表示画面領域DPAの対角長Le(インチ)の表示パネル用のマスクMを長辺がθ方向となる向きで配置した場合である。この場合、表示画面領域DPAの長辺寸法Ldと短辺寸法Lcの比(Ld/Lc)をアスペクト比Aspとし、表示画面領域DPAの周りの周辺回路領域TABを含むマスクMの全体を、円筒ドラム21の外周面(マスク面P1)に余白なく形成すると、マスクMのθ方向の長さπφは、πφ=e1・Ld=e1・Asp・Lcとなり、Y方向の長さLは、L=e2・Lcとなる。先に説明した通り、e1は、表示画面領域DPAの長手方向の両側又は片側に付属する周辺回路領域TABの合計幅によって、マスクMの長手方向が表示画面領域DPAの長手方向に対してどの程度拡大するかを表した拡大倍率である。同様に、e2は、表示画面領域DPAの短手方向の両側又は片側に付属する周辺回路領域TABの合計幅(図13中のTa)によって、マスクMの短手方向が表示画面領域DPAの短手方向に対してどの程度拡大するかを表した拡大倍率である。以上のことから、円筒ドラム21の外周面(マスク面P1)として最低限必要な大きさは、πφ×Lであり、このときのマスクMの長さLと直径φの比L/φは、以下のように表される。
L/φ=π・e2/e1・Asp
The arrangement examples of the masks M, M1, M2, etc. formed on the cylindrical mask (cylindrical drum 21) in the present embodiment are summarized as shown in FIGS. FIG. 13 shows the case of a single chamfering of the mask M with the θ direction as the longitudinal direction, as in FIG. 7, and FIG. 14 shows the mask M2 with the Y direction as the longitudinal direction, as in FIG. A case of two chamfering in which two are arranged in the θ direction is shown. FIG. 13 shows a case where a display panel mask M having a diagonal length Le (inches) of the display screen area DPA is arranged in the orientation in which the long side is in the θ direction, as in FIG. 7. In this case, the ratio of the long side dimension Ld to the short side dimension Lc (Ld / Lc) of the display screen area DPA is the aspect ratio Asp, and the entire mask M including the peripheral circuit area TAB around the display screen area DPA is cylindrical. When the drum 21 is formed with no margin on the outer peripheral surface (mask surface P1), the length πφ of the mask M in the θ direction is πφ = e1 · Ld = e1 · Asp · Lc, and the length L in the Y direction is L = e2 · Lc. As described above, e1 indicates how much the longitudinal direction of the mask M is relative to the longitudinal direction of the display screen area DPA depending on the total width of the peripheral circuit area TAB attached to both sides or one side of the display screen area DPA in the longitudinal direction. This is an enlargement magnification representing whether to enlarge. Similarly, e2 indicates that the short direction of the mask M is short of the display screen area DPA depending on the total width (Ta in FIG. 13) of the peripheral circuit area TAB attached to both sides or one side of the display screen area DPA. This is an enlargement magnification representing how much the image is enlarged with respect to the hand direction. From the above, the minimum required size as the outer peripheral surface (mask surface P1) of the cylindrical drum 21 is πφ × L, and the ratio L / φ between the length L and the diameter φ of the mask M at this time is It is expressed as follows.
L / φ = π · e2 / e1 · Asp
 マスクMの縦横比(πφ:L)がより大きくなる場合を想定して、表示画面領域DPAの長辺に隣接した周辺回路領域TABの幅Taをゼロ(e2=1)とし、拡大倍率e1を1.2(20%増)とすると、比L/φは、π/1.2・Aspとなる。従って、アスペクト比Aspが2(2/1)の場合、比L/φは、π/2.4≒1.3となり、アスペクト比Aspが1.778(16/9)の場合、比L/φは、π/2.134≒1.47となる。 Assuming that the aspect ratio (πφ: L) of the mask M becomes larger, the width Ta of the peripheral circuit area TAB adjacent to the long side of the display screen area DPA is set to zero (e2 = 1), and the enlargement magnification e1 is set. Assuming 1.2 (20% increase), the ratio L / φ is π / 1.2 · Asp. Therefore, when the aspect ratio Asp is 2 (2/1), the ratio L / φ is π / 2.4≈1.3, and when the aspect ratio Asp is 1.778 (16/9), the ratio L / φ is π / 2.134≈1.47.
 図14は、図11と同様に、表示画面領域DPAの長辺方向をY方向とする2つのマスクM2を、θ方向に並べた2面取りの場合であり、アスペクト比Asp、拡大倍率e1、e2の定義は図13の場合と同じである。表示画面領域DPAの回りの周辺回路領域TABを含む1つのマスクM2のサイズはL×Lgとなり、このマスクM2の2つがθ方向に間隔Sxを挟んで並置される。従って、2つのマスクM2と2つの間隔Sxとを含むマスク全体を、円筒ドラム21の外周面(マスク面P1)に余白なく形成する場合、マスク全体のθ方向の長さπφは、πφ=2(Lg+Sx)となり、Y方向の長さLは、L=e1・Ldとなる。よって、このときの比L/φは、以下のように表される。
L/φ=π・e1・Ld/2(Lg+Sx)
FIG. 14 shows a case of two chamfers in which two masks M2 having the long side direction of the display screen area DPA in the Y direction are arranged in the θ direction, as in FIG. 11, and the aspect ratio Asp, the magnifications e1, e2 Is the same as in FIG. The size of one mask M2 including the peripheral circuit area TAB around the display screen area DPA is L × Lg, and the two masks M2 are juxtaposed in the θ direction with an interval Sx therebetween. Accordingly, when the entire mask including the two masks M2 and the two spaces Sx is formed without a blank on the outer peripheral surface (mask surface P1) of the cylindrical drum 21, the length πφ in the θ direction of the entire mask is πφ = 2. (Lg + Sx), and the length L in the Y direction is L = e1 · Ld. Therefore, the ratio L / φ at this time is expressed as follows.
L / φ = π · e1 · Ld / 2 (Lg + Sx)
 ここで、拡大倍率e1を1.2(20%増)、表示画面領域DPAの長辺に隣接した周辺回路領域TABの幅Taをゼロ(e2=1)とし、間隔Sxもゼロと仮定すると、Lg=e2・Lc、Ld=Asp・Lcの関係から、比L/φは、0.6π・Aspとなる。
従って、アスペクト比Aspが2(2/1)の場合、比L/φは、約3.8となり、アスペクト比Aspが1.778(16/9)の場合、比L/φは、約3.4となる。
Here, assuming that the magnification e1 is 1.2 (20% increase), the width Ta of the peripheral circuit area TAB adjacent to the long side of the display screen area DPA is zero (e2 = 1), and the interval Sx is also zero. From the relationship of Lg = e2 · Lc and Ld = Asp · Lc, the ratio L / φ is 0.6π · Asp.
Therefore, when the aspect ratio Asp is 2 (2/1), the ratio L / φ is about 3.8, and when the aspect ratio Asp is 1.778 (16/9), the ratio L / φ is about 3 .4.
 このように、円筒状のマスク面P1上に配置する表示パネル(デバイス)のサイズ(インチ数)、表示画面領域DPAのアスペクト比Asp、周辺回路領域TABの幅等が定まれば、それに基づいて、比L/φが露光装置U3の装置仕様に適合した好適な円筒マスク(円筒ドラム21)を簡単に作製することができる。 As described above, if the size (number of inches) of the display panel (device) arranged on the cylindrical mask surface P1, the aspect ratio Asp of the display screen area DPA, the width of the peripheral circuit area TAB, and the like are determined, based on them. A suitable cylindrical mask (cylindrical drum 21) having a ratio L / φ suitable for the apparatus specification of the exposure apparatus U3 can be easily produced.
 さらに、図15から図18を用いて具体例を説明する。まず、上述の図7或いは図13に示すように、表示画面領域DPAの長辺方向をθ方向にしたマスクMを円筒ドラム21のマスク面P1上に1面取りする場合を比較の基準とする。ここで、具体例では、露光装置U3の投影光学系PLは等倍でマスクパターンを基板P上に投影するものとする。従って、円筒ドラム21のマスク面P1には、実際の表示パネルと実寸大のマスクパターンが形成される。また、表示パネルの表示画面領域DPAは、ハイビジョンサイズ(アスペクト比16:9)で60インチの画面とする。この場合、表示画面領域DPAの短辺寸法Lcは74.7cm、長辺寸法Ldは132.8cm、対角長Leは152.4cmとなる。また、周辺回路領域TABも含めたマスクM全体の大きさは、表示画面領域DPAの長辺方向に関する拡大倍率e1を1.2(20%増)、短辺方向に関する拡大倍率e2を1.15(15%増)として、長手方向(θ方向)にe1・Ld=159.4cm、短手方向(Y方向)にe2・Lc=85.9cmとした。さらに、図6又は図7に示した余白部92のθ方向の長さを5.0cmとする。以上の条件でマスクMを円筒ドラム21のマスク面P1に設けることから、マスク面P1のθ方向の寸法πφは164.4cmとなる。よって、円筒ドラム21の直径φは、52.33cm以上である必要があり、例えば、52.5cmに設定される。また、以上の条件のマスクM全体のY方向の長さは、85.9cmとしたが、このマスクMを基準とするので、露光装置U3の各投影光学系PL1~PL6の投影領域PA1~PA6をY方向につなげた露光領域のY方向の全幅は、85.9cmよりも少し大きく、87cmあるものとする。ここで、図12に示すシミュレーション結果より、円筒ドラム21(円筒マスクM)の直径φを52.5cmすると、許容されるデフォーカス量を25μmとした場合の露光スリット幅Dは7.4mmとなり、許容されるデフォーカス量を50μmとした場合の露光スリット幅Dは10.3mmとなる。従って、図13に示した基準となるマスクM(円筒ドラム21)を使って基板Pを走査露光する際は、露光スリット幅Dの7.4mm以下、又は10.3mm以下を基準として各種露光条件(基板Pの移動速度、照明光束EL1の照度等)が最適化されているものとする。すなわち、許容されるデフォーカス量ΔZを25μm以下にしたい場合は、露光スリット幅D(投影領域PAの走査露光方向の幅)が7.4mm以下の所定値となるように、図4中の照明視野絞り55の開口、又は投影光学系PL内の投影視野絞り63の開口が調整される。 Further, a specific example will be described with reference to FIGS. First, as shown in FIG. 7 or FIG. 13 described above, a case where a mask M having the long side direction of the display screen area DPA in the θ direction is chamfered on the mask surface P1 of the cylindrical drum 21 is used as a reference for comparison. Here, in a specific example, it is assumed that the projection optical system PL of the exposure apparatus U3 projects the mask pattern onto the substrate P at the same magnification. Therefore, an actual display panel and an actual size mask pattern are formed on the mask surface P1 of the cylindrical drum 21. The display screen area DPA of the display panel is a high-vision size (aspect ratio 16: 9) and a 60-inch screen. In this case, the short side dimension Lc of the display screen area DPA is 74.7 cm, the long side dimension Ld is 132.8 cm, and the diagonal length Le is 152.4 cm. The overall size of the mask M including the peripheral circuit area TAB is 1.2 (20% increase) in the magnification direction e1 in the long side direction of the display screen area DPA and 1.15 in the magnification ratio e2 in the short side direction. (15% increase), e1 · Ld = 159.4 cm in the longitudinal direction (θ direction) and e2 · Lc = 85.9 cm in the short direction (Y direction). Furthermore, the length in the θ direction of the blank portion 92 shown in FIG. 6 or 7 is set to 5.0 cm. Since the mask M is provided on the mask surface P1 of the cylindrical drum 21 under the above conditions, the dimension πφ in the θ direction of the mask surface P1 is 164.4 cm. Therefore, the diameter φ of the cylindrical drum 21 needs to be 52.33 cm or more, and is set to 52.5 cm, for example. Further, the length in the Y direction of the entire mask M under the above conditions is 85.9 cm. However, since this mask M is used as a reference, the projection areas PA1 to PA6 of the projection optical systems PL1 to PL6 of the exposure apparatus U3 are used. It is assumed that the total width in the Y direction of the exposure region in which is connected in the Y direction is slightly larger than 85.9 cm and 87 cm. Here, from the simulation result shown in FIG. 12, when the diameter φ of the cylindrical drum 21 (cylindrical mask M) is 52.5 cm, the exposure slit width D when the allowable defocus amount is 25 μm is 7.4 mm. When the allowable defocus amount is 50 μm, the exposure slit width D is 10.3 mm. Therefore, when the substrate P is scanned and exposed using the reference mask M (cylindrical drum 21) shown in FIG. 13, the exposure slit width D is 7.4 mm or less, or 10.3 mm or less. (The moving speed of the substrate P, the illuminance of the illumination light beam EL1, etc.) are optimized. That is, when it is desired to set the allowable defocus amount ΔZ to 25 μm or less, the illumination slit width D (the width of the projection area PA in the scanning exposure direction) has a predetermined value of 7.4 mm or less. The opening of the field stop 55 or the opening of the projection field stop 63 in the projection optical system PL is adjusted.
 次に、図13に示した60インチ表示パネル用のマスクMの為に設定した円筒ドラム21の外周面(マスク面P1)に、アスペクト比16:9(Asp=16/9)の32インチ表示パネル用のマスクM3を配置する場合を説明する。円筒ドラム21のマスク面P1の大きさは、Y方向の長さL=85.9cm、θ方向の長さπφ=164.4cmであるが、基準となるマスクMと同様に、表示画面領域DPAの長手方向がθ方向となるように32インチ表示パネル用のマスクM3の1つを配置(1面取り)すると、マスク面P1上のマスクM3の周囲に広い余白部ができてしまう。 Next, a 32-inch display with an aspect ratio of 16: 9 (Asp = 16/9) is provided on the outer peripheral surface (mask surface P1) of the cylindrical drum 21 set for the mask M for the 60-inch display panel shown in FIG. The case where the panel mask M3 is arranged will be described. The size of the mask surface P1 of the cylindrical drum 21 is a Y-direction length L = 85.9 cm and a θ-direction length πφ = 164.4 cm, but the display screen area DPA is similar to the reference mask M. If one of the masks M3 for a 32-inch display panel is arranged (one chamfering) so that the longitudinal direction is the θ direction, a wide margin is formed around the mask M3 on the mask surface P1.
 この32インチ表示パネルの場合、表示画面領域DPAの長辺の寸法Ldは70.8cm、短辺の寸法Lcは39.9cmになる。また、表示画面領域DPAの長手方向の両側又は片側に隣接する周辺回路領域TABによる拡大倍率e1を1.2(20%増)程度とすると、マスクM3のθ方向の寸法は15cm程拡大し、85.8cmとなり、さらにθ方向に5cm程度の余白部92を設けるとすると、全長では90.8cmとなる。従って、マスクM3は、基準のマスクM用に用意した円筒ドラム21のマスク面P1上で全周長(πφ=164.4cm)の約55%に形成されるに過ぎない。また、基準となる円筒ドラム21のマスク面P1のY方向の長さLが85.9cmであるのに対し、マスクM3のY方向の長さは、表示画面領域DPAの短手方向の拡大倍率e2を1.15(15%増)程度とすると、45.8cmになる。従って、マスクM3は、基準となる円筒ドラム21のマスク面P1上でY方向の寸法(L=85.9cm)の約53%に形成されるに過ぎない。従って、表示画面領域DPAの長手方向がθ方向となるように32インチ表示パネル用のマスクM3の1つを、基準となる円筒ドラム21のマスク面P1に配置すると、マスクM3の占有面積はマスク面P1の全面積の約30%に過ぎず、効率的ではない。 In the case of this 32-inch display panel, the long side dimension Ld of the display screen area DPA is 70.8 cm, and the short side dimension Lc is 39.9 cm. Further, when the magnification e1 by the peripheral circuit area TAB adjacent to both sides or one side in the longitudinal direction of the display screen area DPA is about 1.2 (20% increase), the dimension in the θ direction of the mask M3 is increased by about 15 cm, If the margin portion 92 of about 5 cm is provided in the θ direction, the total length is 90.8 cm. Therefore, the mask M3 is only formed to be about 55% of the total circumference (πφ = 164.4 cm) on the mask surface P1 of the cylindrical drum 21 prepared for the reference mask M. The length L in the Y direction of the mask surface P1 of the reference cylindrical drum 21 is 85.9 cm, whereas the length in the Y direction of the mask M3 is the magnification in the short direction of the display screen area DPA. If e2 is about 1.15 (15% increase), it becomes 45.8 cm. Therefore, the mask M3 is only formed in about 53% of the dimension in the Y direction (L = 85.9 cm) on the mask surface P1 of the cylindrical drum 21 serving as a reference. Therefore, when one of the 32-inch display panel masks M3 is arranged on the mask surface P1 of the reference cylindrical drum 21 so that the longitudinal direction of the display screen area DPA is the θ direction, the occupied area of the mask M3 is the mask. It is only about 30% of the total area of the surface P1, and is not efficient.
 そこで、1つのマスクM3を円筒ドラム21に効率的に配置する為に、マスクM3のθ方向の寸法と余白部92の寸法との合計である全長90.8cmが全周長となるように、円筒ドラム21の直径φを変えたとすると、直径φは最低でも28.91cmあれば良い。そこで、マスクM3用の円筒ドラム21として、直径φが29cmのものを用意したとすると、図12のシミュレーション結果より、直径φ=29cmの場合の露光スリット幅Dは、許容デフォーカス量ΔZが25μmのときは約5.4mm、許容デフォーカス量ΔZが50μmのときは約7.6mmとなる。 Therefore, in order to efficiently arrange one mask M3 on the cylindrical drum 21, the total length of 90.8 cm, which is the sum of the dimension in the θ direction of the mask M3 and the dimension of the blank portion 92, is the total circumference length. If the diameter φ of the cylindrical drum 21 is changed, the diameter φ may be at least 28.91 cm. Therefore, if a cylindrical drum 21 having a diameter φ of 29 cm is prepared as the cylindrical drum 21 for the mask M3, the allowable defocus amount ΔZ is 25 μm from the simulation result of FIG. Is about 5.4 mm, and when the allowable defocus amount ΔZ is 50 μm, it is about 7.6 mm.
 これを、基準となる円筒ドラム21に対して設定された露光スリット幅D(7.4mm、又は10.3mm)と比較してみる。基準となるマスク面P1(直径φ=52.5cmの円筒ドラム21)の場合、露光スリット幅Dを10.3mm(許容デフォーカス量50μm)にして、適正露光量が得られるように設定された基板Pの移動速度をV1とする。このとき、同じ条件の基板Pに、直径φ=29cmの円筒ドラム21に形成された32インチ表示パネル用の1面取りのマスクM3のパターンを露光する場合、露光スリット幅Dが7.6mm(許容デフォーカス量50μm)であるため、照度一定とした場合に、適正露光量を得る為の基板Pの移動速度V2は、V2=(7.6/10.3)V1となり、製造ラインの基板処理速度は全体的に、ほぼ25%低下してしまう。許容デフォーカス量ΔZが25μmの場合も、生産性は同程度に低下する。 Compare this with the exposure slit width D (7.4 mm or 10.3 mm) set for the standard cylindrical drum 21. In the case of the reference mask surface P1 (cylindrical drum 21 having a diameter φ = 52.5 cm), the exposure slit width D was set to 10.3 mm (allowable defocus amount 50 μm) so as to obtain an appropriate exposure amount. The moving speed of the substrate P is V1. At this time, when the pattern of the single-sided mask M3 for the 32-inch display panel formed on the cylindrical drum 21 having the diameter φ = 29 cm is exposed to the substrate P under the same conditions, the exposure slit width D is 7.6 mm (allowable). Since the defocus amount is 50 μm), when the illuminance is constant, the moving speed V2 of the substrate P for obtaining an appropriate exposure amount is V2 = (7.6 / 10.3) V1, and the substrate processing of the production line Overall, the speed is reduced by almost 25%. Even when the allowable defocus amount ΔZ is 25 μm, the productivity is reduced to the same extent.
 そこで、アスペクト比16:9の32インチ表示パネル用のマスクM3を、先の図14に示すような配置で、2面取りした円筒マスク(円筒ドラム21)の具体例を図15により説明する。この図15において、表示画面領域DPAの長辺寸法Ldは70.8cm、短辺寸法Lcは39.9cmとなる。また、周辺回路領域TABによるマスクM3の長手方向(Y方向)の拡大倍率e1は1.2程度、短手方向(θ方向)の拡大倍率e2は1.15程度としたので、マスクM3のY方向の長さLは、15cm程度増えて85.8cmとなり、マスクM3のθ方向の長さLgは、6cm程度増えて45.9cmとなる。 Therefore, a specific example of a cylindrical mask (cylindrical drum 21) in which a mask M3 for a 32-inch display panel having an aspect ratio of 16: 9 is chamfered in the arrangement as shown in FIG. 14 will be described with reference to FIG. In FIG. 15, the long side dimension Ld of the display screen area DPA is 70.8 cm, and the short side dimension Lc is 39.9 cm. Further, since the enlargement magnification e1 in the longitudinal direction (Y direction) of the mask M3 by the peripheral circuit region TAB is about 1.2 and the enlargement magnification e2 in the short direction (θ direction) is about 1.15, the Y of the mask M3 The length L in the direction increases by about 15 cm to 85.8 cm, and the length Lg of the mask M3 in the θ direction increases by about 6 cm to 45.9 cm.
 ここで、マスクM3の長辺に隣接する間隔Sx(余白部92)のθ方向の寸法を10cmとすると、2つのマスクM3と2つの間隔Sxとを含むマスク領域全体のθ方向の長さは、2(Lg+Sx)より、110.8cmとなる。従って、この場合の円筒ドラム21の直径φは、35.3cm程度であれば良いことになる。また、円筒ドラム21上のマスク面P1のY方向の長さLは最低85.8cmとなる。この長さL(85.8cm)は、基準となる円筒ドラム21で設定した露光領域のY方向の全幅(投影領域PA1~PA6のY方向の合計長)87cmの範囲内に丁度収まる。よって、図15に示したマスクM3の2面取り用の円筒マスク(φ=35.3cm、L=85.8cmの円筒ドラム21)は、基準となる円筒マスク(φ=52.5cm、L=85.9cmの円筒ドラム21)と同様に、露光装置U3に装着してマスクM3のパターンを基板P上に効率的に露光することができる。 Here, if the dimension in the θ direction of the interval Sx (margin portion 92) adjacent to the long side of the mask M3 is 10 cm, the length in the θ direction of the entire mask region including the two masks M3 and the two intervals Sx is 2 (Lg + Sx), it is 110.8 cm. Accordingly, the diameter φ of the cylindrical drum 21 in this case may be about 35.3 cm. Further, the length L in the Y direction of the mask surface P1 on the cylindrical drum 21 is at least 85.8 cm. This length L (85.8 cm) is just within the range of 87 cm of the entire width in the Y direction of the exposure area set by the reference cylindrical drum 21 (the total length of the projection areas PA1 to PA6 in the Y direction). Therefore, the cylindrical mask for double chamfering of the mask M3 shown in FIG. 15 (the cylindrical drum 21 with φ = 35.3 cm, L = 85.8 cm) is the reference cylindrical mask (φ = 52.5 cm, L = 85). Similarly to the .9 cm cylindrical drum 21), the pattern of the mask M3 can be efficiently exposed on the substrate P by being mounted on the exposure apparatus U3.
 図16は、図15に示した32インチ表示パネル用のマスクM3を2面取りする他の例の概略構成を示す展開図である。ここでは、図15と同じ寸法のマスクM3が、表示画面領域DPAの長手方向をθ方向とするように、Y方向に2つ並べて隙間なく配置されるものと仮定し、2つのマスクM3によるY方向の寸法Lは、91.8cm(2×45.9cm)となる。この長さL(91.8cm)は、基準となる円筒ドラム21で設定した露光領域のY方向の全幅(投影領域PA1~PA6のY方向の合計長)87cmの範囲内に収まらない。すなわち、図15と同じマスクM3を90°回転させた2面取りは、基準となる円筒ドラム21のマスク面P1上には配置できないことになる。 FIG. 16 is a developed view showing a schematic configuration of another example in which two masks M3 for the 32-inch display panel shown in FIG. 15 are chamfered. Here, it is assumed that two masks M3 having the same dimensions as those in FIG. 15 are arranged in the Y direction with no gap so that the longitudinal direction of the display screen area DPA is the θ direction. The direction dimension L is 91.8 cm (2 × 45.9 cm). This length L (91.8 cm) does not fall within the range of 87 cm of the entire width in the Y direction of the exposure region set by the reference cylindrical drum 21 (the total length of the projection regions PA1 to PA6 in the Y direction). That is, the two chamfers obtained by rotating the same mask M3 as in FIG. 15 by 90 ° cannot be arranged on the mask surface P1 of the reference cylindrical drum 21.
 図17は、図15に示した32インチ表示パネル用のマスクM3を1面取りする他の例の概略構成を示す展開図である。ここでは、図15と同じ寸法のマスクM3の1つが、表示画面領域DPAの短手方向をθ方向とするように配置されるものと仮定し、θ方向の余白部92の間隔Sxを10cmとする。このような、マスクM3の配置は、標準となる円筒ドラム21のマスク面P1に対する占有面積が極めて小さく、非効率である。そこで、図17のような1面取りのマスクM3に適した寸法の円筒ドラム21を想定してみると、円筒ドラム21の全周長πφは、マスクM3のθ方向の寸法Lg(45.9cm)と余白部92(Sx)の寸法(10cm)との合計より、πφ=55.9cmとなる。従って、円筒ドラム21の直径φは17.8cm以上となるので、18cmとしてみる。尚、この場合のマスクM3のY方向の長さLは、図15と同様で85.8cmであるので、比L/φは約4.77となる。 FIG. 17 is a developed view showing a schematic configuration of another example in which the mask M3 for the 32-inch display panel shown in FIG. 15 is chamfered. Here, it is assumed that one of the masks M3 having the same dimensions as in FIG. 15 is arranged so that the short direction of the display screen area DPA is the θ direction, and the interval Sx of the blank portion 92 in the θ direction is 10 cm. To do. Such an arrangement of the mask M3 is inefficient because the area occupied by the standard cylindrical drum 21 with respect to the mask surface P1 is extremely small. Therefore, assuming a cylindrical drum 21 having a size suitable for the one-sided mask M3 as shown in FIG. 17, the total circumferential length πφ of the cylindrical drum 21 is a dimension Lg (45.9 cm) in the θ direction of the mask M3. And the size (10 cm) of the blank portion 92 (Sx), πφ = 55.9 cm. Therefore, since the diameter φ of the cylindrical drum 21 is 17.8 cm or more, it is considered as 18 cm. In this case, the length L in the Y direction of the mask M3 is 85.8 cm as in FIG. 15, so the ratio L / φ is about 4.77.
 このように、標準となる円筒マスク(円筒ドラム21)の直径φ(52.5cm)よりも小さい直径φ(18cm)にすると、マスク面P1上に効率的にマスクM3を配置できるが、スループット(生産性)は低下する。図12のシミュレーションによると、マスク面P1の直径を18.0cmとすると、許容デフォーカス量ΔZを25μmとした場合の露光スリット幅Dは約4.3mmとなり、許容デフォーカス量ΔZを50μmとした場合の露光スリット幅Dは約6.0mmとなる。従って、基板Pの移動速度V2は、標準となる円筒マスク(円筒ドラム21)を用いたときの基板Pの移動速度V1に対して、露光スリット幅Dの狭小化に応じて低減する。許容デフォーカス量ΔZを25μmとする場合は、V2=(4.3/7.4)V1となり、許容デフォーカス量ΔZを50μmとする場合は、V2=(6.0/10.3)V1となり、いずれの場合も、標準となる円筒マスクを使った場合と比べ、スループットは約58%に低下する。 Thus, when the diameter φ (18 cm) is smaller than the diameter φ (52.5 cm) of the standard cylindrical mask (cylindrical drum 21), the mask M3 can be efficiently arranged on the mask surface P1, but the throughput ( Productivity) decreases. According to the simulation of FIG. 12, when the diameter of the mask surface P1 is 18.0 cm, the exposure slit width D when the allowable defocus amount ΔZ is 25 μm is about 4.3 mm, and the allowable defocus amount ΔZ is 50 μm. In this case, the exposure slit width D is about 6.0 mm. Therefore, the moving speed V2 of the substrate P is reduced according to the narrowing of the exposure slit width D with respect to the moving speed V1 of the substrate P when the standard cylindrical mask (cylindrical drum 21) is used. When the allowable defocus amount ΔZ is 25 μm, V2 = (4.3 / 7.4) V1, and when the allowable defocus amount ΔZ is 50 μm, V2 = (6.0 / 10.3) V1. In either case, the throughput is reduced to about 58% compared to the case of using a standard cylindrical mask.
 次に、図15と同じサイズのマスクM3を、図15のように長手方向がY方向に向くように、θ方向に3つ配列する場合の具体例を、図18により説明する。図18のマスクM3の配置は、先の図8と同様の3面取りである。 Next, a specific example in which three masks M3 of the same size as FIG. 15 are arranged in the θ direction so that the longitudinal direction is in the Y direction as shown in FIG. 15 will be described with reference to FIG. The arrangement of the mask M3 in FIG. 18 is a three-chamfer pattern similar to that in FIG.
 ここで、3つのマスクM3の各々の長辺に隣接した余白部92(Sx)や間隔Sxのθ方向の寸法を何れも9cmとすると、マスクM3の短辺方向の寸法Lgが45.9cmであるので、マスク領域全体のθ方向の長さは、3(Lg+Sx)より、164.7cmとなる。この場合、マスク領域全体のθ方向の長さを円筒ドラム21の全周長πφと一致するようにすると、円筒ドラム21の直径φは、52.43cm以上となる。この値は、標準となる円筒マスクの直径φ=52.5cmとほぼ同じである。また、マスク領域のY方向の寸法Lは85.8cmであり、露光領域(投影領域PA1~PA6)のY方向の合計幅87cm以内に収まる。 Here, if the dimension in the θ direction of the blank portion 92 (Sx) adjacent to the long side of each of the three masks M3 and the interval Sx is 9 cm, the dimension Lg in the short side direction of the mask M3 is 45.9 cm. Therefore, the length of the entire mask region in the θ direction is 164.7 cm from 3 (Lg + Sx). In this case, the diameter φ of the cylindrical drum 21 is 52.43 cm or more when the length in the θ direction of the entire mask region is made to coincide with the total circumferential length πφ of the cylindrical drum 21. This value is almost the same as the diameter φ = 52.5 cm of the standard cylindrical mask. Further, the dimension L in the Y direction of the mask area is 85.8 cm, which is within the total width 87 cm of the exposure area (projection areas PA1 to PA6) in the Y direction.
 このように、アスペクト比16:9の32インチ表示パネル用のマスクM3であれば、図18のような3面取りによって、標準となる円筒ドラム21(φ=52.5cm)のマスク面P1上に、余白部92や間隔Sxの寸法を調整するだけで、効率的にマスクM3を配置することができる。従って、マスクM3を図18のように3面取りする場合は、標準となる円筒マスクのサイズ(φ×L)をそのまま使えるので、スループットの低下は生じない。尚、この図18の場合、比L/φは約1.63となり、効率的な生産が可能とみなされる範囲、1.3≦L/φ≦3.8になっている。 As described above, in the case of the mask M3 for a 32-inch display panel having an aspect ratio of 16: 9, the mask surface P1 of the standard cylindrical drum 21 (φ = 52.5 cm) is formed by three-chamfering as shown in FIG. The mask M3 can be efficiently arranged only by adjusting the size of the blank portion 92 and the interval Sx. Therefore, when the mask M3 is chamfered as shown in FIG. 18, the standard cylindrical mask size (φ × L) can be used as it is, so that the throughput does not decrease. In the case of FIG. 18, the ratio L / φ is about 1.63, and 1.3 ≦ L / φ ≦ 3.8, which is considered to be an efficient production.
 図15から図18に示すように、露光装置U3に装着可能な基準となる円筒マスク(円筒ドラム21)のマスク面P1の大きさを基準として、任意の大きさの表示パネルデバイスを作成する場合、円筒ドラム21にマスクを1面取り、或いは多面取りで配置する際の比L/φを1.3~3.8の範囲にするように、方向性や面数を調整することで、生産効率を低下させずに、効率的にパターンの転写を行うことができる。 As shown in FIGS. 15 to 18, when a display panel device having an arbitrary size is created with reference to the size of the mask surface P1 of a cylindrical mask (cylindrical drum 21) that can be mounted on the exposure apparatus U3. By adjusting the directionality and the number of faces so that the ratio L / φ when the mask is arranged on the cylindrical drum 21 by one chamfering or multiple chamfering is in the range of 1.3 to 3.8, the production efficiency is improved. The pattern can be transferred efficiently without lowering.
 また、図15から図18は、表示画面領域DPAがアスペクト比16:9の60インチの1面の表示パネルデバイスを作成する為のマスク面P1の大きさを基準とした。しかしながら、これに限定されない。例えば、表示画面領域DPAを、アスペクト比16:9のハイビジョンサイズで65インチの画面としてもよい。この場合、図13のように配置される表示画面領域DPAの対角長Leは165.1cm、Y方向に延びる短辺Lcは80.9cm、θ方向に延びる長辺Ldは143.9cmとなる。また、周辺回路領域TABも含めたマスクM全体の大きさは、長辺方向(θ方向)に拡大倍率e1=1.2(表示画面領域DPAの長手方向に20%増大)、短辺方向(Y方向)に拡大倍率e2=1.15(表示画面領域DPAの短手方向に15%増大)だけ、表示画面領域DPAのサイズよりも大きくなるものとする。従って、アスペクト比16:9の65インチ表示パネル用の1面取りマスクMの場合、マスクMの長手方向の寸法は、図13に示したようにe1・Asp・Lcより、172.7cm、短手方向の寸法は、図13に示したようにe2・Lcより、93.1cmとなる。1面取りマスクMの場合、θ方向に隣接して余白部92が設けられるが、そのθ方向の寸法(Sx)を5cmとすると、マスク面P1のθ方向の寸法は約178cmとなり、直径φは56.7cm以上となる。また、マスク面P1のY方向の長さは、93.1cmとなるので、この65インチ用の円筒マスクを基準のマスクとして装着可能な露光装置U3には、露光領域のY方向の全幅(投影領域PA1~PA6のY方向幅の合計)が、例えば、95.0cmなるように、投影領域PAのY方向寸法を変えた6本の投影光学系PLが設けられる。或いは、Y方向にもう1本の投影光学系PLを追加した7本の投影光学系が設けられる。このアスペクト比16:9の65インチ表示パネルの1面取り用の円筒マスク(円筒ドラム21)の比L/φは、L/φ=1.64(≒93.1/56.7)となる。また、円筒マスクの直径φが56.7cmなので、図12のシミュレーション結果より、露光スリット幅Dは、許容デフォーカス量ΔZを25μmとする場合は約7.5mm、許容デフォーカス量ΔZを50μmとする場合は約10.6mmとなる。 15 to 18 are based on the size of the mask surface P1 for creating a 60-inch display panel device with a display screen area DPA having an aspect ratio of 16: 9. However, it is not limited to this. For example, the display screen area DPA may be a high-vision size 65-inch screen with an aspect ratio of 16: 9. In this case, the diagonal length Le of the display screen area DPA arranged as shown in FIG. 13 is 165.1 cm, the short side Lc extending in the Y direction is 80.9 cm, and the long side Ld extending in the θ direction is 143.9 cm. . Further, the size of the mask M including the peripheral circuit area TAB has an enlargement factor e1 = 1.2 (increased by 20% in the longitudinal direction of the display screen area DPA) in the long side direction (θ direction), and the short side direction ( It is assumed that the size of the display screen area DPA is larger than the size of the display screen area DPA by an enlargement factor e2 = 1.15 (15% increase in the short direction of the display screen area DPA) Accordingly, in the case of a single-sided mask M for a 65-inch display panel having an aspect ratio of 16: 9, the longitudinal dimension of the mask M is 172.7 cm shorter than e1, Asp, and Lc as shown in FIG. The dimension in the direction is 93.1 cm from e2 · Lc as shown in FIG. In the case of the single-sided mask M, a blank portion 92 is provided adjacent to the θ direction. If the dimension (Sx) in the θ direction is 5 cm, the dimension in the θ direction of the mask surface P1 is about 178 cm, and the diameter φ is It becomes 56.7 cm or more. Since the length of the mask surface P1 in the Y direction is 93.1 cm, the exposure apparatus U3 that can be mounted with the 65-inch cylindrical mask as a reference mask has a full width (projection) in the Y direction of the exposure region. Six projection optical systems PL in which the dimensions in the Y direction of the projection area PA are changed so that the total width in the Y direction of the areas PA1 to PA6 is, for example, 95.0 cm are provided. Alternatively, seven projection optical systems in which another projection optical system PL is added in the Y direction are provided. The ratio L / φ of the single-sided cylindrical mask (cylindrical drum 21) of the 65-inch display panel having an aspect ratio of 16: 9 is L / φ = 1.64 (≈93.1 / 56.7). Further, since the diameter φ of the cylindrical mask is 56.7 cm, the exposure slit width D is about 7.5 mm when the allowable defocus amount ΔZ is 25 μm and the allowable defocus amount ΔZ is 50 μm from the simulation result of FIG. When doing so, it is about 10.6 mm.
 そこで、アスペクト比16:9の65インチ表示パネルの1面取り用の円筒マスク(φ=56.7cm、L=93.1cm)に、37インチ表示パネル用のマスクM4の3つを、図18のような配置で多面取りする具体例を、図19を参照して説明する。図19において、37インチの表示画面領域DPAの長辺Ld(Y方向)は、81.9cm、短辺Lc(θ方向)は46.1cmであり、長辺方向への拡大倍率e1、短辺方向への拡大倍率e2を共に1.15(15%増)とすると、マスクM4の長辺寸法L(e1・Ld)は約94.2cm、短辺寸法Lg(e2・Lc)は約53.0cmとなる。 Therefore, three masks M4 for a 37-inch display panel are used as a cylindrical mask (φ = 56.7 cm, L = 93.1 cm) for a single chamfer of a 65-inch display panel having an aspect ratio of 16: 9, as shown in FIG. A specific example of multi-planar arrangement in such an arrangement will be described with reference to FIG. In FIG. 19, the long side Ld (Y direction) of the 37-inch display screen area DPA is 81.9 cm, the short side Lc (θ direction) is 46.1 cm, the magnification e1 in the long side direction, and the short side When the magnification e2 in the direction is 1.15 (15% increase), the mask M4 has a long side dimension L (e1 · Ld) of about 94.2 cm and a short side dimension Lg (e2 · Lc) of about 53. 0 cm.
 ここで、マスクM4とマスクM4との間隔Sxを、6.0cm程度とすると、マスク面P1上の3つのマスクM4と3つの間隔Sxとのθ方向の合計寸法である全周長πφは、πφ=3Lg+3Sxより、約177cmとなり、直径φは56.4cm以上となる。また、マスクM4のY方向の長さLは、94.2cmであるので、露光領域のY方向の全幅(95cm)内に収まる。尚、図19の場合、7本目の投影光学系PL(投影領域PA7)をY方向に追加して、露光領域のY方向の全幅が95cmになるようにした。以上のことから、図19に示すような37インチ表示パネル用のマスクを3面取りする場合は、65インチ表示パネル用のマスクMを1面取りする為の円筒マスク(円筒ドラム21)と同じ形状寸法のものが使える。このように、図19に示すマスクM4の場合も、基準となる円筒ドラム21のマスク面P1の全面積に対して、3つのマスクM4の間の間隔Sxを少なくして効率的に配置できると共に、基準となる円筒マスクと同等の直径φの円筒ドラム21を使えることから、露光スリット幅Dの減少に伴うスループット低下も抑えられる。 Here, if the interval Sx between the mask M4 and the mask M4 is about 6.0 cm, the total circumferential length πφ which is the total dimension in the θ direction of the three masks M4 on the mask surface P1 and the three intervals Sx is: From πφ = 3Lg + 3Sx, it is about 177 cm, and the diameter φ is 56.4 cm or more. Further, since the length L in the Y direction of the mask M4 is 94.2 cm, it is within the full width (95 cm) of the exposure region in the Y direction. In the case of FIG. 19, a seventh projection optical system PL (projection area PA7) is added in the Y direction so that the entire width of the exposure area in the Y direction is 95 cm. From the above, in the case where three masks for a 37-inch display panel as shown in FIG. 19 are cut, the same shape and dimensions as a cylindrical mask (cylindrical drum 21) for cutting one mask for a 65-inch display panel are used. Can be used. As described above, also in the case of the mask M4 shown in FIG. 19, the space Sx between the three masks M4 can be reduced with respect to the entire area of the mask surface P1 of the reference cylindrical drum 21, and the mask M4 can be efficiently arranged. Since the cylindrical drum 21 having the same diameter φ as that of the reference cylindrical mask can be used, a decrease in throughput due to a decrease in the exposure slit width D can be suppressed.
 また、表示パネルデバイスの表示画面領域DPAの大きさを37インチとし、その為のマスクM4を2面配置する場合は、上述した図15と同様の配置とすることでも良い。この場合、2つのマスクM4と2つの間隔Sxとのθ方向の合計寸法を円筒マスクの全周長πφとし、間隔Sxを6cm程度にすると、πφ≒118.0cmとなる。従って、マスクM4の2面を周方向に効率的に配置する場合の円筒マスク(円筒ドラム21)の直径φは37.6cm以上となる。 Further, when the size of the display screen area DPA of the display panel device is 37 inches and two masks M4 are arranged for this purpose, the arrangement may be the same as that shown in FIG. In this case, if the total dimension in the θ direction of the two masks M4 and the two intervals Sx is the total circumferential length πφ of the cylindrical mask, and the interval Sx is about 6 cm, πφ≈118.0 cm. Therefore, the diameter φ of the cylindrical mask (cylindrical drum 21) when the two surfaces of the mask M4 are efficiently arranged in the circumferential direction is 37.6 cm or more.
 この場合、比L/φは、約2.5(≒94.2/37.6)となる。また、直径φ=37.6cmの円筒ドラム21の場合、図12のシミュレーションより、露光スリット幅Dは、許容デフォーカス量ΔZが25μmの場合は約6mm、許容デフォーカス量ΔZが50μmの場合は約8.6mmとなる。基準となる直径φ=56.7cmの円筒マスクに対して設定される基準となる露光スリット幅D(7.5mm、10.6mm)と比較してみると、許容デフォーカス量ΔZを25μmと50μmのいずれにした場合も、生産性(基板Pの移動速度)は約80%となる。しかしながら、照明光束EL1の照度を、基準となる円筒マスクによる露光時に比べて20%程度大きくすることができれば、実質的な生産性の低下は生じない。 In this case, the ratio L / φ is about 2.5 (≈94.2 / 37.6). Further, in the case of the cylindrical drum 21 having a diameter φ = 37.6 cm, the exposure slit width D is about 6 mm when the allowable defocus amount ΔZ is 25 μm and when the allowable defocus amount ΔZ is 50 μm from the simulation of FIG. It is about 8.6 mm. Compared with the reference exposure slit width D (7.5 mm, 10.6 mm) set for a cylindrical mask with a reference diameter φ = 56.7 cm, the allowable defocus amount ΔZ is 25 μm and 50 μm. In either case, the productivity (moving speed of the substrate P) is about 80%. However, if the illuminance of the illumination light beam EL1 can be increased by about 20% compared to the exposure with the reference cylindrical mask, no substantial reduction in productivity occurs.
 尚、本実施形態の露光装置U3は、円筒マスク(円筒ドラム21)のマスクパターンを等倍で基板Pに投射したが、これに限定されない。露光装置U3は、投影光学系PLの構成や、円筒マスク(円筒ドラム21)の周速度と基板Pの移動速度等を調整し、マスクMのパターンを所定の倍率で拡大して基板Pに投射しても、所定の倍率で縮小して基板Pに投射してもよい。 In addition, although the exposure apparatus U3 of this embodiment projected the mask pattern of the cylindrical mask (cylindrical drum 21) on the board | substrate P by equal magnification, it is not limited to this. The exposure apparatus U3 adjusts the configuration of the projection optical system PL, the peripheral speed of the cylindrical mask (cylindrical drum 21), the moving speed of the substrate P, etc., enlarges the pattern of the mask M at a predetermined magnification, and projects it onto the substrate P. Alternatively, the image may be projected on the substrate P after being reduced at a predetermined magnification.
 以上、本実施形態の露光装置U3に装着可能な円筒マスクにおいて、図8、9、図14、15、図18、19に示したように、長方形の表示画面領域DPAの長手方向をY方向として、θ方向に2つ以上のマスク領域(マスクM1、M2、M3、M4)を間隔Sxを空けて並べる多面取りの場合、その円筒マスク(円筒ドラム21)は以下のように構成される。 As described above, in the cylindrical mask that can be attached to the exposure apparatus U3 of the present embodiment, as shown in FIGS. 8, 9, 14, 15, 18, and 19, the longitudinal direction of the rectangular display screen area DPA is set to the Y direction. In the case of multiple chamfering in which two or more mask regions (masks M1, M2, M3, M4) are arranged at intervals Sx in the θ direction, the cylindrical mask (cylindrical drum 21) is configured as follows.
 中心線(AX1)から一定半径(Rm)の円筒面(P1)に沿ってマスクパターン(マスクM1~M4)が形成され、前記中心線の回りに回転可能に露光装置に装着される円筒マスクであって、前記円筒面には、長辺寸法Ld、短辺寸法Lcのアスペクト比Asp(=Ld/Lc)の表示画面領域(DPA)と、その周辺に隣接した周辺回路領域(TAB)とを含む表示パネル用の長方形のマスク領域(マスクM1~M4)が、前記円筒面の周方向(θ方向)に間隔Sxを空けて、n(n≧2)個並べて形成され、前記マスク領域の長手方向(Y方向)の寸法Lを前記表示画面領域の長辺寸法Ldのe1倍(拡大倍率e1≧1)、前記マスク領域の短手方向(θ方向)の寸法を前記表示画面領域の短辺寸法Lcのe2倍(拡大倍率e2≧1)としたとき、前記円筒面の前記中心線の方向(Y方向)の長さは前記寸法L(=e1・Ld)以上に設定され、前記円筒面の直径をφとした前記円筒面の全周長πφは、n(e2・Lc+Sx)に設定され、さらに、寸法Lと直径φとの比が、1.3≦L/φ≦3.8の範囲になるように、前記直径φ、前記個数n、前記間隔Sxが設定される。 A mask pattern (masks M1 to M4) is formed along a cylindrical surface (P1) having a constant radius (Rm) from the center line (AX1), and is a cylindrical mask mounted on an exposure apparatus so as to be rotatable around the center line. The cylindrical surface includes a display screen area (DPA) having an aspect ratio Asp (= Ld / Lc) having a long side dimension Ld and a short side dimension Lc, and a peripheral circuit area (TAB) adjacent to the periphery thereof. A rectangular mask region (masks M1 to M4) for the display panel is formed by arranging n (n ≧ 2) pieces at intervals Sx in the circumferential direction (θ direction) of the cylindrical surface. The dimension L in the direction (Y direction) is e1 times the long side dimension Ld of the display screen area (enlargement magnification e1 ≧ 1), and the dimension in the short side direction (θ direction) of the mask area is the short side of the display screen area. E2 times the dimension Lc (enlargement magnification e2 ≧ 1) The length of the cylindrical surface in the direction of the center line (Y direction) is set to be not less than the dimension L (= e1 · Ld), and the entire circumference of the cylindrical surface with the diameter of the cylindrical surface being φ. The length πφ is set to n (e 2 · Lc + Sx), and further, the diameter φ and the number of the numbers so that the ratio of the dimension L to the diameter φ is in the range of 1.3 ≦ L / φ ≦ 3.8. n, the interval Sx is set.
[第2実施形態]
 次に、図20を参照して、第2実施形態の露光装置U3aについて説明する。尚、重複する記載を避けるべく、第1実施形態と異なる部分についてのみ説明し、第1実施形態と同様の構成要素については、第1実施形態と同じ符号を付して説明する。図20は、第2実施形態の露光装置(基板処理装置)の全体構成を示す図である。第1実施形態の露光装置U3は、円筒状の基板支持ドラム25で、投影領域を通過する基板Pを保持する構成であったが、第2実施形態の露光装置U3aは、XY平面内を1次元又は2次元で移動可能な基板支持機構12aによって、基板Pを平面状に保持する構成となっている。従って、本実施形態における基板Pは、可撓性の樹脂(PETやPEN等)をベースとする枚葉のシート基板だけでなく、枚葉の薄いガラス基板であっても良い。
[Second Embodiment]
Next, an exposure apparatus U3a according to the second embodiment will be described with reference to FIG. In order to avoid overlapping description, only the parts different from the first embodiment will be described, and the same components as those in the first embodiment will be described with the same reference numerals as those in the first embodiment. FIG. 20 is a view showing the overall configuration of the exposure apparatus (substrate processing apparatus) of the second embodiment. The exposure apparatus U3 of the first embodiment is configured to hold the substrate P that passes through the projection region by the cylindrical substrate support drum 25. However, the exposure apparatus U3a of the second embodiment has a configuration in which 1 in the XY plane. The substrate P is held in a planar shape by the substrate support mechanism 12a that can move in two dimensions. Therefore, the substrate P in the present embodiment may be not only a single sheet substrate based on a flexible resin (PET, PEN, etc.) but also a thin glass substrate.
 第2実施形態の露光装置U3aにおいて、基板支持機構12aは、平面状に基板Pを保持する支持面P2を備えた基板ステージ102と、基板ステージ102を中心面CLと直交する面内でX方向に沿って走査移動させる移動装置(図示略)とを備える。 In the exposure apparatus U3a of the second embodiment, the substrate support mechanism 12a includes a substrate stage 102 having a support surface P2 that holds the substrate P in a planar shape, and the substrate stage 102 in the X direction within a plane orthogonal to the center plane CL. And a moving device (not shown) for scanning and moving along the line.
 図20の基板Pの支持面P2は実質的にXY面と平行な平面(中心面CLと直交する平面)であるので、マスクMから反射され、投影光学モジュールPLM(投影光学系PL1~PL6)を通過し、基板Pに投射される投影光束EL2の主光線は、XY面と垂直になるように設定される。 Since the support surface P2 of the substrate P in FIG. 20 is a plane substantially parallel to the XY plane (a plane orthogonal to the center plane CL), it is reflected from the mask M and is projected into the projection optical module PLM (projection optical systems PL1 to PL6). The principal ray of the projection light beam EL2 that passes through and is projected onto the substrate P is set to be perpendicular to the XY plane.
 また、第2実施形態においても、投影光学モジュールPLMの投影倍率を等倍(×1)とすると、先の図2と同様に、XZ面内で見たとき、マスクM上の奇数番の照明領域IR1(及びIR3、IR5)の中心点から偶数番の照明領域IR2(及びIR4、IR6)の中心点までの周長距離CCMは、支持面P2に倣った基板P上の奇数番の投影領域PA1(及びPA3、PA5)の中心点から偶数番の第2投影領域PA2(及びPA4、PA6)の中心点までのX方向(走査露光方向)の距離CCPと、実質的に等しく設定されている。 Also in the second embodiment, assuming that the projection magnification of the projection optical module PLM is equal (× 1), similarly to FIG. 2, the odd-numbered illumination on the mask M when viewed in the XZ plane. The circumferential distance CCM from the center point of the region IR1 (and IR3, IR5) to the center point of the even-numbered illumination region IR2 (and IR4, IR6) is an odd-numbered projection region on the substrate P following the support surface P2. The distance CCP in the X direction (scanning exposure direction) from the center point of PA1 (and PA3, PA5) to the center point of the even-numbered second projection area PA2 (and PA4, PA6) is set substantially equal. .
 図20の露光装置U3aにおいても、下位制御装置16が、基板支持機構12aの移動装置(走査露光用のリニアモータや微動用のアクチュエータ等)を制御し、円筒マスクMを保持する円筒ドラム21の回転と精密に同期して基板ステージ102を駆動する。その為に、基板ステージ102のX方向やY方向の移動位置は、測長用のレーザ干渉計又はリニアエンコーダによって精密に計測され、円筒ドラム21の回転位置はロータリーエンコーダによって精密に計測される。尚、基板ステージ102の支持面P2は、走査露光中に基板Pを真空吸着、静電吸着する吸着ホルダで構成しても良いし、支持面P2と基板Pとの間に静圧気体ベアリングを形成して基板Pを非接触状態又は低摩擦状態で支持するベール・ヌイ型ホルダで構成しても良い。 In the exposure apparatus U3a of FIG. 20 as well, the lower order control device 16 controls the moving device (linear motor for scanning exposure, actuator for fine movement, etc.) of the substrate support mechanism 12a, and the cylindrical drum 21 holding the cylindrical mask M is controlled. The substrate stage 102 is driven in synchronism with the rotation. Therefore, the movement position of the substrate stage 102 in the X direction and the Y direction is accurately measured by a laser interferometer for length measurement or a linear encoder, and the rotational position of the cylindrical drum 21 is precisely measured by a rotary encoder. The support surface P2 of the substrate stage 102 may be constituted by a suction holder that vacuum-sucks and electrostatically sucks the substrate P during scanning exposure, or a static pressure gas bearing is provided between the support surface P2 and the substrate P. It may be formed of a bale-nuis type holder that is formed and supports the substrate P in a non-contact state or a low friction state.
 ベール・ヌイ型ホルダの場合は、基板Pを可撓性の長尺のシート基板(ウェブ)とし、基板PにX方向(及びY方向)のテンションを与えつつ、基板PをX方向に移動させることができるので、基板ステージ102(ベール・ヌイ型ホルダ)は、X、Y方向に移動させる必要が無く、また支持面P2も投影領域PA1~PA6を覆う範囲の面積であれば良く、基板ステージ102の小型化が図られる。また、ベール・ヌイ型ホルダの場合は、基板Pが長尺のシート基板であれば、基板Pを長尺方向に連続移動させながら走査露光することができるので、基板Pの吸着/開放等の付加的な時間を必要とする吸着ホルダの場合に比べ、よりロール・ツー・ロール方式の製造に適している。 In the case of a Bale-Nui holder, the substrate P is a flexible long sheet substrate (web), and the substrate P is moved in the X direction while applying tension in the X direction (and Y direction) to the substrate P. Therefore, the substrate stage 102 (bale / Nui holder) does not need to be moved in the X and Y directions, and the support surface P2 may be an area that covers the projection areas PA1 to PA6. The size of 102 can be reduced. Also, in the case of a bale / nuis type holder, if the substrate P is a long sheet substrate, scanning exposure can be performed while continuously moving the substrate P in the longitudinal direction. Compared to the case of the suction holder that requires additional time, it is more suitable for the production of the roll-to-roll method.
 露光装置U3aのように、支持面P2を実質的にXY面と平行な平面とし、基板Pを平面状に支持した場合も、マスクM(M1~M4)を円筒状に保持する円筒ドラム21の形状の条件(L/φ)が、先の第1実施形態で説明した関係を満たすことで、各種のサイズの表示パネルのマスクパターンを基板P上に効率的に並べて露光することができると共に、生産性の低下を抑えることができる。 Even when the support surface P2 is a plane substantially parallel to the XY plane and the substrate P is supported in a planar shape as in the exposure apparatus U3a, the cylindrical drum 21 that holds the mask M (M1 to M4) in a cylindrical shape is also used. When the shape condition (L / φ) satisfies the relationship described in the first embodiment, the mask patterns of the display panels of various sizes can be efficiently arranged and exposed on the substrate P. A reduction in productivity can be suppressed.
[第3実施形態]
 次に、図21を参照して、第3実施形態の露光装置U3bについて説明する。尚、重複する記載を避けるべく、第1、第2実施形態と異なる部分についてのみ説明し、第1、第2実施形態と同様の構成要素については、第1、第2実施形態と同じ符号を付して説明する。図21は、第3実施形態の露光装置(基板処理装置)の全体構成を示す図である。第2実施形態の露光装置U3aは、マスクで反射した光が投影光束EL2となる反射型マスクを用いる構成であったが、第3実施形態の露光装置U3bは、マスクを透過した光が投影光束EL2となる透過型マスクを用いる構成となっている。
[Third Embodiment]
Next, an exposure apparatus U3b according to the third embodiment will be described with reference to FIG. In order to avoid overlapping descriptions, only the parts different from the first and second embodiments will be described, and the same reference numerals as those in the first and second embodiments will be used for the same components as those in the first and second embodiments. A description will be given. FIG. 21 is a view showing the overall arrangement of an exposure apparatus (substrate processing apparatus) according to the third embodiment. The exposure apparatus U3a of the second embodiment is configured to use a reflective mask in which the light reflected by the mask becomes the projection light beam EL2, but the exposure apparatus U3b of the third embodiment uses the light transmitted through the mask as the projection light beam. It is configured to use a transmission type mask that becomes EL2.
 第3実施形態の露光装置U3bにおいて、マスク保持機構11aは、円筒状にマスクMAを保持する円筒ドラム(マスク保持ドラム)21aと、マスク保持ドラム21aを支持するガイドローラ93と、マスク保持ドラム21aを駆動する駆動ローラ98と、駆動部99と、を備える。 In the exposure apparatus U3b of the third embodiment, the mask holding mechanism 11a includes a cylindrical drum (mask holding drum) 21a that holds the mask MA in a cylindrical shape, a guide roller 93 that supports the mask holding drum 21a, and a mask holding drum 21a. Drive roller 98 and drive unit 99.
 マスク保持ドラム21aは、マスクMA上の照明領域IRが配置されるマスク面(P1)を形成する。本実施形態において、マスク面は、Y方向に延びる中心線AX1’から半径Rm(直径φ=2Rm)の円筒面として設定される。円筒面は、例えば、円筒の外周面、円柱の外周面等である。マスク保持ドラム21aは、例えばガラスや石英等で構成され、一定の肉厚を有する円環状の透明筒として構成され、その外周面(円筒面)がマスク面を形成する。 The mask holding drum 21a forms a mask surface (P1) on which the illumination area IR on the mask MA is arranged. In the present embodiment, the mask surface is set as a cylindrical surface having a radius Rm (diameter φ = 2Rm) from a center line AX1 ′ extending in the Y direction. The cylindrical surface is, for example, an outer peripheral surface of a cylinder, an outer peripheral surface of a column, or the like. The mask holding drum 21a is made of, for example, glass or quartz and is formed as an annular transparent cylinder having a certain thickness, and its outer peripheral surface (cylindrical surface) forms a mask surface.
 マスクMAは、例えば平坦性のよい短冊状の極薄ガラス板(例えば厚さ100~500μm)の一方の面にクロム等の遮光層でパターンを形成した透過型の平面状シートマスクとして作成され、それをマスク保持ドラム21aの外周面に倣って湾曲させ、この外周面に巻き付けた(貼り付けた)状態で使用される。マスクMAは、パターンが形成されていないパターン非形成領域を有し、パターン非形成領域(周辺の余白部92等に相当)においてマスク保持ドラム21aに取付けられている。従って、この場合、マスクMAはマスク保持ドラム21aに対して着脱可能である。平面状シートマスクをマスク保持ドラム21a(円環状の透明筒)の外周面に巻き付けてマスクMAとする代わりに、円環状の透明筒によるマスク保持ドラム21aの外周面に直接クロム等の遮光層によるマスクパターンを描画形成して一体化してもよい。この場合も、マスク保持ドラム21aがマスクMAの支持部材(マスク支持部材)として機能する。 The mask MA is created as a transmission type planar sheet mask in which a pattern is formed with a light-shielding layer such as chromium on one surface of a strip-like ultrathin glass plate (for example, a thickness of 100 to 500 μm) with good flatness, It is used in a state in which it is curved along the outer peripheral surface of the mask holding drum 21a and wound (attached) around this outer peripheral surface. The mask MA has a pattern non-formation region where no pattern is formed, and is attached to the mask holding drum 21a in the pattern non-formation region (corresponding to the peripheral blank portion 92). Therefore, in this case, the mask MA can be attached to and detached from the mask holding drum 21a. Instead of wrapping a flat sheet mask around the outer peripheral surface of the mask holding drum 21a (annular transparent cylinder) to form the mask MA, the outer peripheral surface of the mask holding drum 21a made of an annular transparent cylinder is directly covered with a light shielding layer such as chromium. A mask pattern may be drawn and integrated. Also in this case, the mask holding drum 21a functions as a support member (mask support member) of the mask MA.
 ガイドローラ93及び駆動ローラ98は、マスク保持ドラム21aの中心線AX1’に対して平行なY軸方向に延びている。ガイドローラ93及び駆動ローラ98は、マスク保持ドラム21aのY方向の端部付近に外接するが、マスク保持ドラム21aに保持されているマスクMAのパターン形成領域には接触しないように、設けられている。駆動ローラ98は、駆動部99と接続されている。駆動ローラ98は、駆動部99から供給されるトルクをマスク保持ドラム21aに伝えることによって、マスク保持ドラム21aを中心軸周りに回転させる。 The guide roller 93 and the driving roller 98 extend in the Y-axis direction parallel to the center line AX1 'of the mask holding drum 21a. The guide roller 93 and the driving roller 98 are provided so as to circumscribe the end portion in the Y direction of the mask holding drum 21a, but not to contact the pattern formation region of the mask MA held on the mask holding drum 21a. Yes. The drive roller 98 is connected to the drive unit 99. The drive roller 98 transmits the torque supplied from the drive unit 99 to the mask holding drum 21a, thereby rotating the mask holding drum 21a around the central axis.
 本実施形態の光源装置13aは、第1実施形態と同様の光源(図示略)及び複数の照明光学系ILa(ILa1~ILa6)を備える。各照明光学系ILa1~ILa6の一部又は全部が、マスク保持ドラム21a(環状の透明筒)の内側に配置され、マスク保持ドラム21aの外周面(マスク面P1)に保持されているマスクMA上の各照明領域IR1~IR6を、内側から照明する。 The light source device 13a of the present embodiment includes a light source (not shown) similar to that of the first embodiment and a plurality of illumination optical systems ILa (ILa1 to ILa6). A part or all of each of the illumination optical systems ILa1 to ILa6 is disposed on the inner side of the mask holding drum 21a (annular transparent cylinder), and is on the mask MA held on the outer peripheral surface (mask surface P1) of the mask holding drum 21a. The illumination areas IR1 to IR6 are illuminated from the inside.
 各照明光学系ILa1~ILa6は、フライアイレンズやロッドインテグレータ等を備え、各照明領域IR1~IR6を、照明光束EL1によって均一な照度で照明する。尚、光源は、マスク保持ドラム21aの内側に配置されていてもよいし、マスク保持ドラム21aの外側に配置されていてもよい。また、光源は、露光装置U3bと別に設置して、光ファイバやリレーレンズ等の導光ユニットを介して導いてもよい。 Each illumination optical system ILa1 to ILa6 includes a fly-eye lens, a rod integrator, and the like, and illuminates each illumination region IR1 to IR6 with an illumination light beam EL1 with a uniform illuminance. The light source may be arranged inside the mask holding drum 21a or may be arranged outside the mask holding drum 21a. The light source may be installed separately from the exposure apparatus U3b and guided through a light guide unit such as an optical fiber or a relay lens.
 本実施形態のように、マスクとして透過型円筒マスクを用いた場合も、マスクMAを円筒状に保持するマスク支持ドラム21aの形状の条件(L/φ)が、先の第1実施形態で説明した関係を満たすことで、各種のサイズの表示パネルのマスクパターンを基板P上に効率的に並べて露光することができると共に、生産性の低下を抑えることができる。 Even when a transmission type cylindrical mask is used as a mask as in this embodiment, the condition (L / φ) of the shape of the mask support drum 21a that holds the mask MA in a cylindrical shape is described in the first embodiment. By satisfying the above relationship, mask patterns of various sizes of display panels can be efficiently arranged and exposed on the substrate P, and a decrease in productivity can be suppressed.
 以上、第1、第2、第3の各実施形態の露光装置U3、U3a、U3bは、いずれも円筒状のマスク面P1(円筒ドラム21、マスク保持ドラム21a)に形成されたマスクパターンを、投影光学モジュールPLM(PL1~PL6)を介して、基板P上に投影露光する方式であった。しかしながら、第3の実施形態のように透過型円筒マスク(MA)とする場合は、透過型円筒マスクの外周面(マスク面P1)と被露光対象である基板Pの表面との間が一定のギャップ(数十μm~数百μm)に保たれるように、透過型円筒マスク(MA)と基板Pとを近接配置し、透過型円筒マスクを回転させつつ基板Pを一方向に同期移動させるプロキシミティ方式の走査露光装置としても良い。 As described above, the exposure apparatuses U3, U3a, U3b of the first, second, and third embodiments all have the mask pattern formed on the cylindrical mask surface P1 (cylindrical drum 21, mask holding drum 21a), The projection exposure was performed on the substrate P through the projection optical module PLM (PL1 to PL6). However, when the transmission type cylindrical mask (MA) is used as in the third embodiment, the distance between the outer peripheral surface (mask surface P1) of the transmission type cylindrical mask and the surface of the substrate P to be exposed is constant. The transmission type cylindrical mask (MA) and the substrate P are arranged close to each other so that the gap (several tens to several hundreds of μm) is maintained, and the substrate P is synchronously moved in one direction while rotating the transmission type cylindrical mask. A proximity-type scanning exposure apparatus may be used.
 また、第1~第3の各実施形態の露光装置U3、U3a、U3bでは、装着可能な円筒マスク(円筒ドラム21、マスク保持ドラム21a)の直径φが変わり得ることに対応する為、円筒マスクの支持位置(Z位置)を調整可能とする機構、或いは照明光学系ILや投影光学系PL内の光学素子の状態を調整する機構等が設けられる。その場合、露光装置が装着可能な円筒マスクの直径φには、最小の直径φ1から最大の直径φ2までの範囲が存在する。従って、製造しようとする表示パネルのサイズに応じて、マスク(M、M1~M4)の1面取り、又は多面取りで円筒マスクを作成する際は、1.3≦L/φ≦3.8の関係と共に、φ1≦φ≦φ2の関係も満たすように、円筒ドラム21やマスク保持ドラム21aの形状寸法を設定するのが良い。 Further, in the exposure apparatuses U3, U3a, U3b of the first to third embodiments, the cylindrical mask (cylindrical drum 21, mask holding drum 21a) can be adapted to change the diameter φ of the cylindrical mask. A mechanism that can adjust the support position (Z position) of the lens, or a mechanism that adjusts the state of the optical elements in the illumination optical system IL and the projection optical system PL is provided. In that case, the diameter φ of the cylindrical mask to which the exposure apparatus can be mounted has a range from the minimum diameter φ1 to the maximum diameter φ2. Therefore, when creating a cylindrical mask with one chamfering of the mask (M, M1 to M4) or multiple chamfering according to the size of the display panel to be manufactured, 1.3 ≦ L / φ ≦ 3.8. The shape dimensions of the cylindrical drum 21 and the mask holding drum 21a are preferably set so as to satisfy the relationship of φ1 ≦ φ ≦ φ2 along with the relationship.
<デバイス製造方法>
 次に、図22を参照して、デバイス製造方法について説明する。図22は、デバイス製造システムによるデバイス製造方法を示すフローチャートである。
<Device manufacturing method>
Next, a device manufacturing method will be described with reference to FIG. FIG. 22 is a flowchart showing a device manufacturing method by the device manufacturing system.
 図22に示すデバイス製造方法では、まず、例えば有機EL等の自発光素子による表示パネルの機能・性能設計を行い、必要な回路パターンや配線パターンをCAD等で設計する(ステップS201)。次いで、CAD等で設計された各種レイヤー毎のマスクパターンに基づいて、必要なレイヤー分の円筒マスクを製作する(ステップS202)。この時、円筒マスクは、直径φと長さL(La)の関係が、1.3≦L/φ≦3.8を満たし、露光装置に装着可能な条件、φ1≦φ≦φ2を満たすように製作される。また、表示パネルの基材となる可撓性の基板P(樹脂フィルム、金属箔膜、プラスチック等)が巻かれた供給用ロールFR1を準備しておく(ステップS203)。尚、このステップS203にて用意しておくロール状の基板Pは、必要に応じてその表面を改質したもの、下地層(例えばインプリント方式による微小凹凸)を事前形成したもの、光感応性の機能膜や透明膜(絶縁材料)を予めラミネートしたものでもよい。 In the device manufacturing method shown in FIG. 22, first, the function / performance design of a display panel using, for example, a self-luminous element such as an organic EL is performed, and necessary circuit patterns and wiring patterns are designed using CAD or the like (step S201). Next, cylindrical masks for necessary layers are manufactured based on mask patterns for various layers designed by CAD or the like (step S202). At this time, the cylindrical mask is such that the relationship between the diameter φ and the length L (La) satisfies 1.3 ≦ L / φ ≦ 3.8, and satisfies the conditions for mounting on the exposure apparatus, φ1 ≦ φ ≦ φ2. To be produced. In addition, a supply roll FR1 around which a flexible substrate P (resin film, metal foil film, plastic, etc.) serving as a display panel base material is wound is prepared (step S203). Note that the roll-shaped substrate P prepared in step S203 has a surface modified as necessary, a pre-formed base layer (for example, fine unevenness by an imprint method), and light sensitivity. These functional films and transparent films (insulating materials) may be laminated in advance.
 次いで、基板P上に表示パネルデバイスを構成する電極や配線、絶縁膜、TFT(薄膜半導体)等によって構成されるバックプレーン層を形成すると共に、そのバックプレーン層に積層されるように、有機EL等の自発光素子による発光層(表示画素部)が形成される(ステップS204)。このステップS204には、先の各実施形態で説明した露光装置U3、U3a、U3bに所定の円筒マスクを装着して、基板Pの表面に塗布された光感応層(フォトレジスト層、感光性シランカップリング層等)を露光して、表面にマスクパターンの像(潜像等)を形成する露光工程、露光によってマスクパターンが形成された基板Pを、必要に応じて現像した後、無電解メッキ法によって金属膜のパターン(配線、電極等)を形成する湿式工程、或いは、銀ナノ粒子を含有した導電性インク等によってパターンを描画する印刷工程、等の処理が含まれる。 Next, a backplane layer composed of electrodes, wiring, insulating films, TFTs (thin film semiconductors), etc. constituting the display panel device is formed on the substrate P, and the organic EL is stacked on the backplane layer. A light emitting layer (display pixel portion) is formed by a self-luminous element such as (Step S204). In this step S204, a photosensitive layer (photoresist layer, photosensitive silane) applied to the surface of the substrate P with a predetermined cylindrical mask attached to the exposure apparatuses U3, U3a, U3b described in the previous embodiments. An exposure process for exposing a coupling layer or the like to form an image of a mask pattern (latent image or the like) on the surface, and developing the substrate P on which the mask pattern is formed by exposure, if necessary, and then electroless plating Processes such as a wet process for forming a metal film pattern (wiring, electrodes, etc.) by a method, or a printing process for drawing a pattern with a conductive ink containing silver nanoparticles are included.
 次いで、ロール方式で長尺の基板P上に連続的に製造される表示パネルデバイス毎に、基板Pをダイシングしたり、各表示パネルデバイスの表面に、保護フィルム(対環境バリア層)やカラーフィルターシート等を貼り合せたりして、デバイスを組み立てる(ステップS205)。次いで、表示パネルデバイスが正常に機能するか、所望の性能や特性を満たしているかの検査工程が行なわれる(ステップS206)。以上のようにして、表示パネル(フレキシブル・ディスプレイ)を製造することができる。 Next, the substrate P is diced for each display panel device continuously manufactured on the long substrate P by a roll method, and a protective film (environmental barrier layer) or a color filter is formed on the surface of each display panel device. A device is assembled by pasting sheets or the like (step S205). Next, an inspection process is performed to determine whether the display panel device functions normally or satisfies desired performance and characteristics (step S206). As described above, a display panel (flexible display) can be manufactured.
 1 デバイス製造システム
 2 基板供給装置
 4 基板回収装置
 5 上位制御装置
 11 マスク保持機構
 12、12a 基板支持機構
 13 光源装置
 16 下位制御装置
 21 円筒ドラム
 21a マスク保持ドラム
 25 基板支持ドラム
 31 光源
 32 導光部材
 41 1/4波長板
 51 コリメータレンズ
 52 フライアイレンズ
 53 コンデンサーレンズ
 54 シリンドリカルレンズ
 55 照明視野絞り
 56 リレーレンズ系
 61 第1光学系
 62 第2光学系
 63 投影視野絞り
 64 フォーカス補正光学部材
 65 像シフト用光学部材
 66 倍率補正用光学部材
 67 ローテーション補正機構
 68 偏光調整機構
 70 第1偏向部材
 71 第1レンズ群
 72 第1凹面鏡
 80 第2偏向部材
 81 第2レンズ群
 82 第2凹面鏡
 92 余白部
 P 基板
 FR1 供給用ロール
 FR2 回収用ロール
 U1~Un 処理装置
 U3、U3a、U3b 露光装置(基板処理装置)
 M、M1、M2、M3 マスク
 AX1 第1軸
 AX2 第2軸
 P1 マスク面
 P2 支持面
 P7 中間像面
 EL1 照明光束
 EL2 投影光束
 Rm 曲率半径
 Rp 曲率半径
 CL 中心面
 PBS 偏光ビームスプリッタ
 IR1~IR6 照明領域
 IL1~IL6 照明光学系
 ILM 照明光学モジュール
 PA1~PA7 投影領域
 PLM 投影光学モジュール
DESCRIPTION OF SYMBOLS 1 Device manufacturing system 2 Substrate supply apparatus 4 Substrate collection | recovery apparatus 5 High-order control apparatus 11 Mask holding mechanism 12, 12a Substrate support mechanism 13 Light source apparatus 16 Low-order control apparatus 21 Cylindrical drum 21a Mask holding drum 25 Substrate support drum 31 Light source 32 Light guide member 41 1/4 wavelength plate 51 Collimator lens 52 Fly eye lens 53 Condenser lens 54 Cylindrical lens 55 Illumination field stop 56 Relay lens system 61 First optical system 62 Second optical system 63 Projection field stop 64 Focus correction optical member 65 For image shift Optical member 66 Magnification correcting optical member 67 Rotation correcting mechanism 68 Polarization adjusting mechanism 70 First deflecting member 71 First lens group 72 First concave mirror 80 Second deflecting member 81 Second lens group 82 Second concave mirror 92 Margin P substrate FR1 Supply Roll FR2 Collection roll U1 to Un Processing equipment U3, U3a, U3b Exposure equipment (substrate processing equipment)
M, M1, M2, M3 Mask AX1 First axis AX2 Second axis P1 Mask surface P2 Support surface P7 Intermediate image plane EL1 Illumination beam EL2 Projection beam Rm Curvature radius Rp Curvature radius CL Center plane PBS Polarization beam splitter IR1 to IR6 Illumination region IL1 to IL6 Illumination optical system ILM Illumination optical module PA1 to PA7 Projection area PLM Projection optical module

Claims (17)

  1.  照明光の照明領域に配置されるマスクのパターンからの光束を、基板が配置される投影領域に投射する投影光学系を備えた基板処理装置であって、
     前記照明領域において所定曲率で円筒面状に湾曲した第1面に沿うように、前記マスクのパターンを支持するマスク支持部材と、
     前記投影領域において所定の第2面に沿うように、前記基板を支持する基板支持部材と、
     前記マスクのパターンが所定の走査露光方向に移動するように前記マスク支持部材を回転させ、かつ、前記基板が前記走査露光方向に移動するように前記基板支持部材を移動させる駆動機構と、を備え、
     前記マスク支持部材は、前記第1面の直径をφとし、前記走査露光方向に直交する方向の前記第1面の長さをLとした場合、1.3≦L/φ≦3.8である基板処理装置。
    A substrate processing apparatus including a projection optical system that projects a light beam from a pattern of a mask arranged in an illumination area of illumination light onto a projection area where a substrate is arranged,
    A mask support member that supports the pattern of the mask so as to follow a first surface curved in a cylindrical surface shape with a predetermined curvature in the illumination region;
    A substrate support member for supporting the substrate so as to follow a predetermined second surface in the projection region;
    A driving mechanism that rotates the mask support member so that the pattern of the mask moves in a predetermined scanning exposure direction and moves the substrate support member so that the substrate moves in the scanning exposure direction. ,
    When the diameter of the first surface is φ and the length of the first surface in the direction orthogonal to the scanning exposure direction is L, the mask support member satisfies 1.3 ≦ L / φ ≦ 3.8. A substrate processing apparatus.
  2.  前記基板支持部材に向けて前記基板を供給する基板供給部と、前記基板支持部材を通過した前記基板を回収する基板回収部と、を有する基板搬送機構を備え、
     前記基板は、前記基板供給部から前記基板回収部まで繋がっているシート形状である請求項1に記載の基板処理装置。
    A substrate transport mechanism having a substrate supply unit that supplies the substrate toward the substrate support member, and a substrate recovery unit that recovers the substrate that has passed through the substrate support member;
    The substrate processing apparatus according to claim 1, wherein the substrate has a sheet shape connected from the substrate supply unit to the substrate recovery unit.
  3.  前記マスク支持部材は、前記直径φの第1面を外周面とする円筒形状の基材を備え、前記マスクのパターンを前記基材の外周面に形成した請求項1又は2に記載の基板処理装置。 The substrate processing according to claim 1, wherein the mask support member includes a cylindrical base material having a first surface of the diameter φ as an outer peripheral surface, and the mask pattern is formed on the outer peripheral surface of the base material. apparatus.
  4.  前記第1面の直径φと、前記走査露光方向に直交する方向の前記第1面の長さLとの関係がL/φ≦2.6を満たす請求項1から3のいずれか一項に記載の基板処理装置。 The relationship between the diameter φ of the first surface and the length L of the first surface in a direction orthogonal to the scanning exposure direction satisfies L / φ ≦ 2.6. 5. The substrate processing apparatus as described.
  5.  前記マスク支持部材は、支持するマスクを交換可能であり、前記直径φと、前記長さLとの関係L/φが異なる複数のマスクを支持することができる請求項4に記載の基板処理装置。 The substrate processing apparatus according to claim 4, wherein the mask support member is capable of exchanging a mask to be supported, and can support a plurality of masks having different relationships L / φ between the diameter φ and the length L. .
  6.  前記マスク支持部材は、支持するマスクを交換可能であり、前記直径φと、前記長さLとの関係L/φが略同一の複数のマスクを支持することができる請求項4に記載の基板処理装置。 5. The substrate according to claim 4, wherein the mask support member is capable of exchanging a mask to be supported, and can support a plurality of masks having substantially the same relationship L / φ between the diameter φ and the length L. 6. Processing equipment.
  7.  前記マスクに形成された識別情報を取得し、前記識別情報に基づいて、前記パターンの位置を検出するパターン位置検出部をさらに有する請求項1から6のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 6, further comprising a pattern position detection unit that acquires identification information formed on the mask and detects a position of the pattern based on the identification information.
  8.  前記識別情報は、前記パターンに対応した位置の前記マスク上に形成されたアライメントマークである請求項7に記載の基板処理装置。 The substrate processing apparatus according to claim 7, wherein the identification information is an alignment mark formed on the mask at a position corresponding to the pattern.
  9.  前記マスクは、前記マスク支持部材の回転方向に沿って、デバイスのパターンが形成されている請求項1から8のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 8, wherein the mask has a device pattern formed along a rotation direction of the mask support member.
  10.  前記マスクは、前記マスク支持部材の回転方向に沿って、複数のデバイスのパターンが形成されている請求項1から8のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the mask has a plurality of device patterns formed along a rotation direction of the mask support member.
  11.  前記マスクは、前記マスク支持部材の円筒形状の軸方向に沿って、複数のデバイスのパターンが形成されている請求項1から8のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 8, wherein the mask has a plurality of device patterns formed along a cylindrical axial direction of the mask support member.
  12.  前記デバイスは、表示デバイスのパターンが含まれる請求項9又は10に記載の基板処理装置。 The substrate processing apparatus according to claim 9, wherein the device includes a display device pattern.
  13.  前記基板に転写すべき前記マスクの前記デバイスのパターン毎に前記基板の露光条件を調整する露光条件調整機構を備える請求項8から12のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 8 to 12, further comprising an exposure condition adjusting mechanism that adjusts an exposure condition of the substrate for each pattern of the device of the mask to be transferred to the substrate.
  14.  前記マスクは、複数のデバイスの各々に対応したパターンと、該デバイスに対応した識別マークとを備え、
     前記投影光学系は、前記識別マークを前記基板に投射する請求項8から13のいずれか一項に記載の基板処理装置。
    The mask includes a pattern corresponding to each of a plurality of devices, and an identification mark corresponding to the device,
    The substrate processing apparatus according to claim 8, wherein the projection optical system projects the identification mark onto the substrate.
  15.  請求項1から14のいずれか一項に記載の基板処理装置に前記基板を供給することと、
    前記基板処理装置を用いて前記基板に前記マスクのパターンを形成することと、
     を含むデバイス製造方法。
    Supplying the substrate to the substrate processing apparatus according to any one of claims 1 to 14,
    Forming a pattern of the mask on the substrate using the substrate processing apparatus;
    A device manufacturing method including:
  16.  円筒状の外周面に沿って電子デバイス用のマスクパターンが形成され、所定の露光装置に装着されて、中心線の回りに回転可能な円筒マスクであって、
     前記外周面の前記中心線の方向の長さがLa、前記外周面の直径がφとなるような円筒基材を有し、
     該円筒基材の外周面に形成可能な前記マスクパターンの前記中心線の方向の最大の長さをLとしたとき、L≦Laの範囲で、前記直径φと前記長さLの比率L/φが、1.3≦L/φ≦3.8の範囲に設定される円筒マスク。
    A mask pattern for an electronic device is formed along a cylindrical outer peripheral surface, is mounted on a predetermined exposure apparatus, and is a cylindrical mask that can rotate around a center line,
    A length of the outer peripheral surface in the direction of the center line is La, and the cylindrical base material has a diameter of the outer peripheral surface of φ,
    When the maximum length in the direction of the center line of the mask pattern that can be formed on the outer peripheral surface of the cylindrical base material is L, a ratio L / of the diameter φ and the length L in a range of L ≦ La. A cylindrical mask in which φ is set in a range of 1.3 ≦ L / φ ≦ 3.8.
  17.  所定の中心線から一定半径の円筒面に沿ってマスクパターンが形成され、前記中心線の回りに回転可能に露光装置に装着される円筒マスクであって、
     前記円筒面には、長辺寸法Ld、短辺寸法Lc、アスペクト比AspをLd/Lcとする表示画面領域と、その周辺に隣接して設けられる周辺回路領域とを含む表示パネル用の長方形のマスク領域が、前記円筒面の周方向に間隔Sxを空けて、n個(n≧2)並べて形成され、
     前記マスク領域の長手方向の寸法Lを前記表示画面領域の長辺寸法Ldのe倍(e≧1)、前記マスク領域の短手方向の寸法を前記表示画面領域の短辺寸法Lcのe倍(e≧1)としたとき、前記円筒面の前記中心線の方向に関する長さは前記寸法L以上に設定されると共に、前記円筒面の直径をφ、円周率をπとしたとき、πφ=n(e・Lc+Sx)に設定され、さらに、
     前記寸法Lと前記直径φとの比L/φが、1.3≦L/φ≦3.8の範囲になるように、前記直径φ、前記個数n、前記間隔Sxが設定される円筒マスク。
    A cylindrical mask is formed in a mask pattern along a cylindrical surface with a constant radius from a predetermined center line, and is mounted on an exposure apparatus so as to be rotatable around the center line,
    The cylindrical surface has a rectangular shape for a display panel including a display screen area having a long side dimension Ld, a short side dimension Lc, and an aspect ratio Asp of Ld / Lc, and a peripheral circuit area provided adjacent to the periphery thereof. N (n ≧ 2) mask regions are formed side by side with an interval Sx in the circumferential direction of the cylindrical surface,
    The dimension L in the longitudinal direction of the mask area is e 1 times the long side dimension Ld of the display screen area (e 1 ≧ 1), and the dimension in the short direction of the mask area is the short side dimension Lc of the display screen area. When e 2 times (e 2 ≧ 1), the length of the cylindrical surface in the direction of the center line is set to be not less than the dimension L, the diameter of the cylindrical surface is φ, and the circumference is π. Πφ = n (e 2 · Lc + Sx), and
    Cylindrical mask in which the diameter φ, the number n, and the interval Sx are set so that the ratio L / φ of the dimension L to the diameter φ is in the range of 1.3 ≦ L / φ ≦ 3.8. .
PCT/JP2014/058590 2013-04-30 2014-03-26 Substrate processing apparatus, device manufacturing method, and cylindrical mask WO2014178244A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201480037519.5A CN105359040B (en) 2013-04-30 2014-03-26 Substrate board treatment and device making method
JP2015514784A JP6269660B2 (en) 2013-04-30 2014-03-26 Substrate processing apparatus, device manufacturing method, and cylindrical mask
KR1020197025601A KR102079793B1 (en) 2013-04-30 2014-03-26 Scanning exposure method
KR1020157033942A KR101924255B1 (en) 2013-04-30 2014-03-26 Substrate processing apparatus, device manufacturing method, and cylindrical mask
KR1020187034083A KR102019620B1 (en) 2013-04-30 2014-03-26 Cylindrical mask
KR1020187034082A KR101979562B1 (en) 2013-04-30 2014-03-26 Cylindrical mask
KR1020207004470A KR102096961B1 (en) 2013-04-30 2014-03-26 Display panel manufacturing method
HK16103220.8A HK1215308A1 (en) 2013-04-30 2016-03-18 Substrate processing apparatus, device manufacturing method, and cylindrical mask

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-095647 2013-04-30
JP2013095647 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014178244A1 true WO2014178244A1 (en) 2014-11-06

Family

ID=51843379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058590 WO2014178244A1 (en) 2013-04-30 2014-03-26 Substrate processing apparatus, device manufacturing method, and cylindrical mask

Country Status (6)

Country Link
JP (5) JP6269660B2 (en)
KR (5) KR101979562B1 (en)
CN (4) CN108227408B (en)
HK (3) HK1246405B (en)
TW (5) TWI717946B (en)
WO (1) WO2014178244A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438751A4 (en) * 2016-03-30 2020-01-22 Nikon Corporation Pattern drawing device, pattern drawing method, and method for manufacturing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108227408B (en) * 2013-04-30 2020-02-14 株式会社尼康 Exposure apparatus and exposure method
WO2017199658A1 (en) * 2016-05-19 2017-11-23 株式会社ニコン Substrate support device, exposure device, and patterning device
JP7047986B2 (en) * 2020-01-31 2022-04-05 日本精工株式会社 Manufacturing method of rotation angle sensor, electric power steering device and rotation angle sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227438A (en) * 2006-02-21 2007-09-06 Nikon Corp Exposure apparatus and exposure method, and mask for light exposure
JP2007299918A (en) * 2006-04-28 2007-11-15 Nikon Corp Exposure system and method, exposure mask, and manufacturing method of device
JP2009237305A (en) * 2008-03-27 2009-10-15 Mitsubishi Paper Mills Ltd Winding mechanism of mask pattern film and exposure apparatus
JP2011221536A (en) * 2010-04-13 2011-11-04 Nikon Corp Mask moving device, exposure device, substrate processor and device manufacturing method
JP2012248864A (en) * 2012-07-19 2012-12-13 Nikon Corp Exposure equipment, exposure method, and device manufacturing method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019037U (en) * 1983-07-18 1985-02-08 株式会社リコー exposure equipment
JPH01128069A (en) * 1987-11-12 1989-05-19 Dainippon Screen Mfg Co Ltd Trialingly photographed image exposing device for slit scan exposure type copying camera
JPH01175730A (en) * 1987-12-29 1989-07-12 Matsushita Electric Ind Co Ltd Aligner
US5640227A (en) 1993-12-06 1997-06-17 Nikon Corporation Exposure apparatus and exposure method for minimizing defocusing of the transferred pattern
US6018383A (en) * 1997-08-20 2000-01-25 Anvik Corporation Very large area patterning system for flexible substrates
JP2000035677A (en) * 1998-07-17 2000-02-02 Adtec Engineeng:Kk Aligner
US6411362B2 (en) * 1999-01-04 2002-06-25 International Business Machines Corporation Rotational mask scanning exposure method and apparatus
AU2003211404A1 (en) * 2002-02-28 2003-09-09 Fujitsu Limited Dynamic pressure bearing manufacturing method, dynamic pressure bearing, and dynamic pressure bearing manufacturing device
WO2008029917A1 (en) * 2006-09-08 2008-03-13 Nikon Corporation Mask, exposure apparatus and device manufacturing method
JP2009026933A (en) * 2007-07-19 2009-02-05 Konica Minolta Holdings Inc Method of manufacturing electromagnetic wave shield film, and electromagnetic wave shield film
JP5724564B2 (en) * 2010-04-13 2015-05-27 株式会社ニコン Mask case, mask unit, exposure apparatus, substrate processing apparatus, and device manufacturing method
CN102834778A (en) * 2010-04-13 2012-12-19 株式会社尼康 Exposure apparatus, substrate processing apparatus, and device manufacturing method
JP2012252076A (en) 2011-06-01 2012-12-20 Nikon Corp Exposure apparatus
JP6056756B2 (en) * 2011-09-06 2017-01-11 株式会社ニコン Substrate processing apparatus and pattern exposure method
CN103477286A (en) * 2011-09-07 2013-12-25 株式会社尼康 Substrate processing device
CN103958379B (en) 2011-11-04 2016-12-28 株式会社尼康 Substrate board treatment and substrate processing method using same
TWI641915B (en) 2012-01-12 2018-11-21 尼康股份有限公司 Substrate processing apparatus, substrate processing method, and cylindrical mask
KR101405251B1 (en) * 2012-09-10 2014-06-17 경북대학교 산학협력단 Lithography and apparatus for processing substrate using the same
CN108227408B (en) * 2013-04-30 2020-02-14 株式会社尼康 Exposure apparatus and exposure method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227438A (en) * 2006-02-21 2007-09-06 Nikon Corp Exposure apparatus and exposure method, and mask for light exposure
JP2007299918A (en) * 2006-04-28 2007-11-15 Nikon Corp Exposure system and method, exposure mask, and manufacturing method of device
JP2009237305A (en) * 2008-03-27 2009-10-15 Mitsubishi Paper Mills Ltd Winding mechanism of mask pattern film and exposure apparatus
JP2011221536A (en) * 2010-04-13 2011-11-04 Nikon Corp Mask moving device, exposure device, substrate processor and device manufacturing method
JP2012248864A (en) * 2012-07-19 2012-12-13 Nikon Corp Exposure equipment, exposure method, and device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438751A4 (en) * 2016-03-30 2020-01-22 Nikon Corporation Pattern drawing device, pattern drawing method, and method for manufacturing device

Also Published As

Publication number Publication date
JP2019074769A (en) 2019-05-16
KR20200019782A (en) 2020-02-24
CN105359040B (en) 2018-01-19
KR101924255B1 (en) 2018-11-30
TWI646407B (en) 2019-01-01
CN108227408B (en) 2020-02-14
KR101979562B1 (en) 2019-05-16
TWI610143B (en) 2018-01-01
JP6816814B2 (en) 2021-01-20
CN108227408A (en) 2018-06-29
JP2020064317A (en) 2020-04-23
KR20160003181A (en) 2016-01-08
CN107390480B (en) 2019-08-13
KR20190104256A (en) 2019-09-06
TWI681263B (en) 2020-01-01
TW201809909A (en) 2018-03-16
CN107255910B (en) 2019-04-02
HK1215308A1 (en) 2016-08-19
JP2019070840A (en) 2019-05-09
KR102079793B1 (en) 2020-02-21
HK1245419B (en) 2019-11-29
TW201445262A (en) 2014-12-01
TW201908880A (en) 2019-03-01
KR102096961B1 (en) 2020-04-03
JPWO2014178244A1 (en) 2017-02-23
JP2018081320A (en) 2018-05-24
CN107255910A (en) 2017-10-17
JP6269660B2 (en) 2018-01-31
JP6638835B2 (en) 2020-01-29
CN107390480A (en) 2017-11-24
JP6662473B2 (en) 2020-03-11
KR102019620B1 (en) 2019-09-06
TWI677767B (en) 2019-11-21
HK1246405B (en) 2020-05-15
TW201907244A (en) 2019-02-16
CN105359040A (en) 2016-02-24
JP6485535B2 (en) 2019-03-20
TW202014807A (en) 2020-04-16
KR20180128521A (en) 2018-12-03
TWI717946B (en) 2021-02-01
KR20180128520A (en) 2018-12-03

Similar Documents

Publication Publication Date Title
JP6638835B2 (en) Substrate processing equipment
JP6256338B2 (en) Substrate processing apparatus and device manufacturing method
JP6690695B2 (en) Scanning exposure device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480037519.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015514784

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157033942

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14791470

Country of ref document: EP

Kind code of ref document: A1