WO2014176888A1 - 无铅玻璃粉、无铅复合玻璃粉及其应用、用其封接的显示装置 - Google Patents

无铅玻璃粉、无铅复合玻璃粉及其应用、用其封接的显示装置 Download PDF

Info

Publication number
WO2014176888A1
WO2014176888A1 PCT/CN2013/087152 CN2013087152W WO2014176888A1 WO 2014176888 A1 WO2014176888 A1 WO 2014176888A1 CN 2013087152 W CN2013087152 W CN 2013087152W WO 2014176888 A1 WO2014176888 A1 WO 2014176888A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
glass powder
free
free composite
glass
Prior art date
Application number
PCT/CN2013/087152
Other languages
English (en)
French (fr)
Inventor
朱志梁
秦国斌
Original Assignee
京东方科技集团股份有限公司
北京北旭电子玻璃有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京北旭电子玻璃有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2014176888A1 publication Critical patent/WO2014176888A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Definitions

  • Embodiments of the present invention relate to a lead-free glass frit, a lead-free composite glass frit containing the lead-free glass frit and a filler, and an application thereof, and a display device including the lead-free composite glass frit. Background technique
  • connection between various materials such as metals and metals, metals and non-metals, non-metals and non-metals, etc.
  • glass frits especially low-melting glass frits.
  • the use of low-melting glass powder for the connection or sealing of various materials involves performance matching problems, the most important of which is the expansion coefficient of the material and the matching of the use temperature, which is also the two most important properties of the sealing material. .
  • lead glass powder the most widely used one is lead glass powder, because the two most important performance parameters of the softening temperature and expansion coefficient of lead glass powder have a wide adjustable range and High controllability.
  • the promulgation of the EU ROHS Directive has largely restricted the application of lead glass, so researchers have begun to look for new lead-free glass powder systems to replace the traditional lead glass powder.
  • the sealing temperature of borosilicate glass powder is at least 500 degrees and it is difficult to further reduce, and the sealing temperature is lower, the glass powder and lead are lower.
  • the minimum sealing temperature of the bismuth glass powder is about 440 degrees, and the minimum sealing temperature of the vanadium glass powder and the lead glass powder is about 350 degrees.
  • lead glass powder has a wide adjustable range and strong adjustability, but its application in many fields is limited by ROHS.
  • the expansion coefficient of bismuth glass powder is equivalent to that of lead glass powder, but it can be controlled.
  • vanadium glass powder expansion coefficient range is small, moderate controllability
  • the change of its expansion coefficient is just in the range of medium expansion coefficient, so its application is not limited by the expansion coefficient and controllability. Therefore, vanadium glass powder has potential for research.
  • Cib Patent Application Publication No. CN 101723589A discloses a Bi 2 0 3 -ZnO-B 2 0 3 glass powder for plasma display (hereinafter referred to as PDP) sealing, and the sealing temperature is 470 to 490 degrees.
  • PDP Bi 2 0 3 -ZnO-B 2 0 3 glass powder for plasma display
  • the sealing temperature is 470 to 490 degrees.
  • the sealing temperature used by PDP manufacturers is currently 450 to 465 degrees, which is lower than the sealing temperature of the glass powder in the patent document, and the overall cost of the material is high, and the density is large, and the cost of the manufacturer is also high.
  • the Chinese Patent Licensing Notice CN 100412017C only clarified a V 2 0 5 -P 2 0 5 -Sb 2 0 5 series glass powder, which can be used for sealing at 430-550 degrees.
  • the glass powder prepared in this patent has a low sealing strength, and the overall cost of the material is also high, and there is often a phenomenon that it cannot be effectively bonded to the glass substrate before and after the PDP.
  • the sealing glass powder used by various PDP manufacturers is mainly leaded glass powder and lead-free glass powder.
  • Lead-free glass powder pollutes the environment, does not comply with the EU ROHS directive, and is limited in application; while lead-free glass powder is currently mainly glass-lined, its price is extremely high, and the technical threshold is high, resulting in an increase in the production cost of PDP.
  • the glass frit powder is sealed at a low temperature, the expansion coefficient is liable to increase, which is difficult to adjust, and the glass frit powder is limited in temperature, and is easily crystallized at a low temperature sealing. Summary of the invention
  • An embodiment of the present invention provides a lead-free glass powder.
  • the lead-free glass powder comprises: V 2 0 5 35% ⁇ 70%, P 2 0 5 15% ⁇ 35 %, Sb 2 0 3 3% ⁇ 35%, ZnO 3% ⁇ 15%, BaO 3% ⁇ 15%.
  • a lead-free composite glass frit comprising lead-free glass frit and a filler as described above.
  • the weight percentage of the filler is 2% to 35% based on the total weight of the lead-free composite glass frit.
  • the filler comprises alumina powder, and the alumina powder has an average particle diameter of 2 to 8 ⁇ m.
  • the filler further includes glass beads, and the glass beads are added in a weight percentage of less than or equal to 3% based on the total weight of the lead-free composite glass powder.
  • the glass beads have a diameter of 100 to 150 meters.
  • the lead-free composite glass frit has an average particle diameter of 10 ⁇ m or less.
  • the softening temperature of the lead-free composite glass powder is 400 ° C ⁇ 430 ° C, and the average expansion coefficient of room temperature ⁇ 300 ° C is 68 ⁇ 76 x 10 7 / ° C.
  • the lead-free glass powder or the lead-free composite glass powder can be used for the connection between metal and metal, metal and non-metal, non-metal and non-metal.
  • the embodiment of the invention further provides a display device, wherein the display device is sealed by using the lead-free glass powder or the lead-free composite glass powder.
  • Embodiments of the present invention provide a lead-free composite glass frit, comprising a lead-free glass frit and a filler, wherein the lead-free glass frit comprises the following components by weight based on the total weight of the lead-free glass frit: V 2 0 5 35 % ⁇ 70% (preferably 40% ⁇ 65%, more preferably 45% ⁇ 60%), P 2 0 5 15% ⁇ 35% (preferably 18% ⁇ 30%), Sb 2 0 3 3% ⁇ 35% (preferred 5% ⁇ 30%), Zn0 3% ⁇ 15%, Ba0 3% ⁇ 15%.
  • the preparation method of the lead-free glass powder is not particularly limited, but it is particularly noted that the glass liquid of the system is prohibited from being fried by water during cooling molding, otherwise the glass component may react with water, and other processes may use glass commonly used in the art.
  • each component of the above base powder may be sufficiently mixed according to the above weight percentage, and then melted at a high temperature to form a glass liquid, which is then cold rolled and pulverized into lead-free glass powder.
  • the above lead-free glass frit may have an average particle diameter of 10 ⁇ m or less, and preferably has an average particle diameter of 2 to 8 ⁇ m.
  • the lead-free glass powder having the above composition may have a softening temperature of 400 ° C to 430 ° C, preferably 405 ° C to 425 ° C, more preferably a softening temperature of 410 ° C to 420 ° C; and 70 to 80 ⁇ 10 .
  • the average expansion coefficient of C at room temperature to 300 ° C is preferably 70 to 76 x 1 (the average expansion coefficient of room temperature to 300 ° C of T 7 / ° C.
  • the above filler may be alumina powder.
  • the alumina powder may have an average particle diameter of 2 to 8 ⁇ m.
  • the alumina powder is added in an amount of 2% to 35% by weight based on the total weight of the lead-free composite glass powder, preferably 8% to 30%.
  • the addition of the alumina filler is advantageous for reducing the cost, and is advantageous for forming a composite material with the base glass powder, thereby achieving the purpose of increasing the sealing strength of the composite glass powder. If the above content is too high, the high-temperature fluidity of the glass powder is liable to be poor.
  • the filler may further include glass beads, and the diameter of the glass beads may be, for example, 100 to 150 m.
  • the glass microbeads are added in an amount of 0% to 3% by weight based on the total weight of the lead-free composite glass powder, preferably 0.1% to 2%.
  • the glass beads do not soften and support between the glass frit pastes. The function is to ensure that the spacing between the front and rear glass substrates is consistent and the spacing is up to the requirements of use.
  • the lead-free composite glass powder of the embodiment of the invention adopts the above-mentioned lead-free glass powder and filler as filler
  • the weight ratio of 2% to 35% of the total weight of the lead-free composite glass powder is mixed, thereby having an average expansion coefficient of 68 to 76 x 1 (T 7 /° C room temperature to 300 ° C, preferably 69 to 75 x 1 ( The average expansion coefficient of room temperature to 300 ° C at T 7 / ° C, and the softening temperature of 400 ° C to 430 ° C, preferably a softening temperature of 410 ° C to 420 ° C.
  • the softening temperature and expansion coefficient of the above lead-free composite glass powder can be controlled, so that the sealing temperature requirement of the PDP substrate can be better satisfied.
  • the combination of ZnO and BaO and filler in the above weight range further increases the softening temperature and the adjustable range of the expansion coefficient of the lead-free composite glass powder, the most important is because of the combination of ZnO and BaO and filler.
  • the addition of the system completely improves the problem that the glass of the system can not effectively connect the front and rear substrates of the glass when used for sealing the flat glass (such as PDP), and greatly increases the strength of the sealing material and reduces the material cost of the sealing material.
  • the lead-free composite glass powder of the embodiment of the invention does not contain the ROHS banned substance, has a low softening temperature, is easy to control, has a large controllable range, and has small fluctuation of the expansion coefficient, and can be applied to sealing between various materials whose expansion coefficient is matched.
  • metal to metal, metal and non-metal, and non-metal to non-metal sealing especially suitable for sealing between glass (such as PDP).
  • the lead-free composite glass powder of the embodiment of the present invention improves the characteristics of the substrate before and after the PDP is effectively connected, and is suitable for sealing the substrate before and after the PDP.
  • the above mixture is kept in a high temperature furnace at 900 ° C ⁇ 1200 ° C for 30 min ⁇ 120 min to completely melt into a glass liquid;
  • the glass piece is ball milled, pulverized, and passed through a 100 mesh sieve to collect the undersize portion to obtain a lead-free glass powder having an average particle diameter of 10 ⁇ m or less;
  • the above lead-free glass powder is 80%, the filler alumina powder is 19.9%, and the filler glass microspheres are 0.1% according to the total weight of the lead-free composite glass powder;
  • lead-free composite glass powder 2# ⁇ 5# was obtained in the same manner as in Example 1.
  • the lead-free composite glass powder samples of Examples 1 to 5 were made of lead-free glass powder samples of No. 1 to No. 5, and the lead-free glass powder samples of Comparative Examples 1 to 4 were lead-free composite glass powders of 1# to 4# and Comparative Examples 5 to 6.
  • the sample performs the following performance tests on 5# ⁇ 6#:
  • the softening temperature was measured on a Shimadzu DTA-50 device at a heating rate of 10 °C/min.
  • Softening state Take appropriate amount of powder, then put it into the steel mold and apply pressure to press molding. Place the molded body on the flat glass and heat it into the muffle furnace. Keep it at 460 °C for 30 minutes and cool with the furnace temperature. After taking out, observe the surface state, observe whether it becomes a flat sphere or a round cake shape, and observe whether the surface is bright. If it is satisfied, it is marked as OK, otherwise it is recorded as NG.
  • Bending strength pour an appropriate amount of powder into a container prepared with aluminum foil, hold it at 460 ° C for 30 minutes, remove it with the furnace temperature, remove the aluminum foil, and then grind the fired material into strips. Shape, the material is tested by the material universal testing machine.
  • the glass cake cannot be effectively connected to the glass plate, and the easily smashed is marked as "NG", thereby measuring the risk of the glass powder in sealing.
  • the sample of "OK” is less risky, and the sample of "NG” is more risky.
  • Overall evaluation We evaluate whether the glass softening state and the effective connection are used as a whole to evaluate whether the glass powder can be applied to the PDP substrate sealing. , the record that both is ' ⁇ ' is ' ⁇ ', otherwise there is a record of "NG" as "NG”.
  • the softening temperature increases with the increase of P 2 0 5 content, and when the percentage content exceeds 35% (Comparative Example 3)
  • the softening temperature of the glass produced by the batch material will be too low (Comparative Example 2), and it is not suitable for sealing of the PDP substrate. .
  • the production method is the same, adding the same proportion of filler, just adding different types of filler, real 2# adding alumina powder as filler, adding 5# analytical pure As a filler, pentoxide pentoxide is used as a filler for 6#.
  • Lithium stellite is difficult to synthesize. High-temperature sintering method is difficult to synthesize pure cryptite. It often contains many associated phases.
  • the lithium nepheline added here is The purchased materials are expensive, and are about ten times the cost price of the glass powder. If it is not necessary, the lithium nepheline is not added as a filler.
  • the glass with the addition of antimony pentoxide as the filler becomes a porous expansion material after sintering, which may be related to the pyrolysis of the antimony pentoxide. Therefore, the antimony pentoxide cannot be added as a filler.
  • the glass powder of the nepheline material its properties are all OK, but it has little effect on the bending strength. It is not as good as the increased bending strength of the added alumina.
  • alumina is preferred as the filler.
  • the prepared lead-free composite glass powder is prepared into a glass paste using a terpineol-based binder, and the viscosity of the slurry is controlled at 15 to 25 Pa.s, and the bubbles in the slurry are removed as much as possible.
  • the back substrate is aligned with the qualified front substrate that has completed all the previous processes, and is clamped around with the clip, and then placed in the furnace and heated to 450 ° C for 30 minutes for sealing and exhausting. .
  • the lead-free composite glass powder of the invention achieves the technical requirements required for the actual sealing of the PDP substrate, thereby solving the problem of industrialization of the PDP lead-free sealing glass powder.
  • the lead-free composite glass powder of the present invention has a significant cost advantage as compared with conventional bismuth glass powder, and has a sealing temperature and a coefficient of expansion comparable to conventional strontium glass powder.
  • the lead-free composite glass powder of the present application has greater adjustability than the above-mentioned bismuth glass powder, makes the low temperature sealing easy, and the expansion coefficient thereof is stable.
  • the lead-free composite glass powder of the present invention is compared with the glass powder of the V 2 0 5 -P 2 0 5 -Sb 2 0 5 system disclosed in Chinese Patent Application No. 1616365: because of the addition of other inexpensive oxides and inexpensive fillers , further reducing the cost (about 70% of the cost of the above glass powder), and at the same time, the sealing strength of the glass powder itself is greatly improved, and more importantly, the effective connection characteristics of the glass powder and the glass substrate are improved, thereby It has reached the stage of actual industrial application and has great industrial application value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种无铅玻璃粉、无铅复合玻璃粉及其应用和用其封接的显示装置。该无铅复合玻璃粉包括无铅玻璃粉和填料,其中,基于无铅玻璃粉总重量,所述无铅玻璃粉包括:V2O535%~70%,P2O515%~35%,Sb2O33%~35%,ZnO 3%~15%、BaO 3%~15%。所述无铅复合玻璃粉不含ROHS禁令物质,熔点低,软化温度可控范围大,膨胀系数波动小,且其膨胀系数适用于许多材料之间的封接要求。因为其它氧化物和填料的加入,进一步降低了该无铅复合玻璃粉的制备成本。同时,该无铅复合玻璃粉增大了封接强度,并且改善了PDP前后基板不能有效连接的缺陷,从而适用于PDP基板的封接。

Description

无铅玻璃粉、 无铅复合玻璃粉及其应用、 用其封接的显示装置 技术领域
本发明实施例涉及一种无铅玻璃粉、 含有该无铅玻璃粉和填料的无铅复 合玻璃粉及其应用, 以及包括该无铅复合玻璃粉的显示装置。 背景技术
各种材料(诸如金属与金属、 金属与非金属、 非金属与非金属等)之间 的连接, 包括有气密性要求的封接, 常常会用到玻璃粉, 尤其是低熔点玻璃 粉。 采用低熔点玻璃粉进行各种材料的连接或封接时, 都涉及到性能匹配问 题, 其中最主要的就是材料的膨胀系数以及使用温度的匹配, 这也是封接材 料中两个最为主要的性能。 目前世界上用于封接的玻璃粉有很多体系, 其中 应用最为广泛的就是铅玻璃粉, 因为铅玻璃粉的软化温度和膨胀系数这两个 最重要的性能参数具有较宽的可调范围和高可控性特性。 然而, 欧盟 ROHS 指令的颁布, 在很大程度上制约了铅玻璃的应用, 所以研究者们纷纷开始寻 觅新的无铅玻璃粉体系来代替传统的铅玻璃粉。
在用于封接的玻璃粉体系中, 在封接温度方面, 硼硅酸盐玻璃粉的封接 温度最低为五百多度且难于进一步降低, 封接温度较低的有铋玻璃粉、 铅玻 璃粉和钒玻璃粉。 铋玻璃粉最低封接温度在 440度左右, 而钒玻璃粉和铅玻 璃粉的最低封接温度在 350度左右。 在膨胀系数方面, 铅玻璃粉的可调范围 较宽, 可调节性较强, 但其在很多领域中的应用均受到 ROHS限制; 铋玻璃 粉的膨胀系数范围和铅玻璃粉相当, 但可控性差, 难于调节, 铋玻璃粉因为 封接温度稍高和膨胀系数可控范围小, 所以难以用于低温封接和中膨胀要求 的情况; 钒玻璃粉膨胀系数范围变化不大, 可控性适中, 但其膨胀系数变化 正好处于中膨胀系数范围内, 所以其应用并不会因膨胀系数、 可控能力而受 到过多限制, 因此钒玻璃粉具备可供研究的潜质。
中国专利申请公开 CN 101723589A报道了一种等离子显示器(以下筒称 PDP )封接用的 Bi203-ZnO-B203玻璃粉,封接温度为 470~490度。但目前 PDP 生产厂家所用的封接温度为 450~465度, 低于该专利文献中玻璃粉的封接温 度, 且该材料总体成本较高, 并且密度较大, 厂家使用成本也较高。 此外, 铋玻璃粉低温化困难, 且温度降低后膨胀系数上升较多, 而膨胀系数调节比 较困难, 故难于达到 PDP面板的匹配封接。
中国专利授权公告 CN 100412017C才艮道了一种 V205-P205-Sb205系的玻 璃粉, 该玻璃粉可用于 430~550度的封接。 但该专利中制备的玻璃粉封接强 度较低,材料整体成本也较高, 且常常会出现不能和 PDP前后玻璃基板有效 粘结的现象。
目前各个 PDP 生产厂家使用的封接玻璃粉主要为含铅玻璃粉和无铅玻 璃粉。 含铅玻璃粉污染环境, 不符合欧盟 ROHS指令, 应用受限; 而无铅玻 璃粉目前主要是铋玻璃, 其价格极其高昂, 技术门槛较高, 致使 PDP的生产 成本增大。 此外, 铋玻璃粉在低温封接时易造成膨胀系数增大, 难于调节, 且铋玻璃粉低温化程度有限, 并在低温封接时容易结晶。 发明内容
本发明的实施例提供一种无铅玻璃粉, 基于所述无铅玻璃粉的总重量, 所述无铅玻璃粉包括: V205 35%~70%, P205 15%~35%, Sb203 3%~35%, ZnO 3%~15%、 BaO 3%~15%。
一种无铅复合玻璃粉, 包括如上所述的无铅玻璃粉和填料。
在所述的无铅复合玻璃粉中, 基于所述无铅复合玻璃粉的总重量, 所述 填料的重量百分比为 2%~35%。
所述填料包括氧化铝粉, 所述氧化铝粉的平均粒径为 2~8微米。
所述填料还包括玻璃微珠, 基于所述无铅复合玻璃粉的总重量, 所述玻 璃微珠添加的重量百分比为小于或等于 3%。
所述玻璃 珠的直径为 100~150 米。
所述无铅复合玻璃粉的平均粒径为 10微米以下。
所述无铅复合玻璃粉的软化温度为 400°C~430°C , 室温〜 300 °C的平均膨 胀系数为 68~76xl0— 7/°C。
所述的无铅玻璃粉或所述的无铅复合玻璃粉可用于金属与金属、 金属与 非金属、 非金属与非金属之间的连接。
本发明实施例还提供一种显示装置, 所述显示装置采用所述的无铅玻璃 粉或所述的无铅复合玻璃粉封接。 具体实施方式
下面结合具体实施例对本发明做进一步说明。 显然, 所描述的实施例 仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的 实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的 所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种无铅复合玻璃粉, 包括无铅玻璃粉和填料, 其 中基于无铅玻璃粉的总重量, 上述无铅玻璃粉包括如下重量百分比的组分: V205 35%~70% (优选 40%~65%, 更优选 45%~60% ), P205 15%~35% (优选 18%~30% ), Sb203 3%~35% (优选 5%~30% ), Zn0 3%~15%, Ba0 3%~15%。
该无铅玻璃粉的制备方法没有特别限制, 但要特别注意的是此体系的玻 璃液在冷却成型时禁止用水炸方式, 否则玻璃成分会和水发生反应, 其他工 序可采用本领域常用的玻璃粉制备方法, 例如可将上述基础粉的各组分按上 述重量百分比充分混合后, 经高温熔化形成玻璃液, 再经冷轧、 粉碎成无铅 玻璃粉。 上述无铅玻璃粉可具有 10微米以下的平均粒径, 优选具有 2~8微 米的平均粒径。
具有上述组成的无铅玻璃粉可具有 400°C~430°C的软化温度, 优选 405°C~425°C , 更优选 410°C~420°C的软化温度; 以及 70~80χ10 。 C的室温 ~300°C的平均膨胀系数, 优选 70~76xl(T7/°C的室温〜 300°C的平均膨胀系数。
上述填料可为氧化铝粉, 例如, 该氧化铝粉的平均粒径可为 2~8微米。 基于无铅复合玻璃粉的总重量,氧化铝粉的添加重量百分比为 2% ~ 35%,优 选 8%~30%。 氧化铝填料的加入有利于降低成本, 且有利于和基础玻璃粉形 成复合材料,从而达到增加复合玻璃粉封接强度的目的,如果上述含量过高, 容易造成玻璃粉的高温流动性不良。
另外, 上述复合玻璃粉如果用于 PDP面板封接时, 填料还可进一步包括 玻璃 珠, 玻璃 珠的直径例如可为 100~150 米。 基于无铅复合玻璃粉的 总重量, 玻璃微珠的添加重量百分比为 0%~3%, 优选 0.1%~2%。 在封接过 程中, 随着玻璃粉料的软化, 前后基板之间的间距会减小, 而在使用的封接 温度下, 玻璃微珠不会发生软化, 在玻璃粉浆料间起到支撑作用, 以保证前 后玻璃基板的间距保持一致, 并使其间距达到使用要求。
本发明实施例的无铅复合玻璃粉通过将上述无铅玻璃粉与填料以填料占 无铅复合玻璃粉总重量的 2%~35%的重量比混合制得, 由此具有 68~76x l(T7/°C的室温〜 300°C的平均膨胀系数, 优选 69~75x l(T7/°C的室温 ~300°C的平均膨胀系数, 以及 400°C~430°C的软化温度, 优选 410°C~420°C 的软化温度。
通过对上述无铅玻璃粉中各个氧化物含量的调整, 可控制上述无铅复合 玻璃粉的软化温度和膨胀系数, 使其能更好地满足 PDP基板的封接温度要 求。 同时, 因为上述重量份范围内的 ZnO和 BaO以及填料的组合加入, 进 一步增大了无铅复合玻璃粉的软化温度和膨胀系数的可调范围, 最重要的是 因为 ZnO和 BaO以及填料的组合加入, 而完全改善了该体系玻璃在用于平 板玻璃(如 PDP )封接时不能有效连接玻璃前后基板的问题, 同时极大地提 高了封接材料的强度并降低了封接材料的材料成本。 然而, 如果无铅玻璃粉 中 ZnO或 BaO的含量超过 15%, 会造成玻璃析晶倾向增大从而使玻璃达不 到使用条件。 本发明实施例的无铅复合玻璃粉不含 ROHS禁令物质, 其软化 温度低, 控制容易且可控范围大, 且膨胀系数波动小, 能适用于膨胀系数匹 配的各种材料之间的封接, 例如金属与金属、 金属与非金属以及非金属与非 金属之间的封接, 特别适用于玻璃(如 PDP )之间的封接。 特别地, 本发明 实施例的无铅复合玻璃粉改善了有效连接 PDP前后基板的特性,从而适用于 PDP前后基板的封接。
提供了下述实施例来阐述所述无铅复合玻璃粉的制备过程, 所述实施例 仅仅是描述性的, 并非限定本发明的范围。
一、 无铅复合玻璃粉的制备
实施例 1
按照基于无铅玻璃粉总重量的百分比准确称取各氧化物: V205 49.5%, Sb203 13.5%, P205 27%, ZnO 5%, BaO 5%;
将称量好的各氧化物混合 60分钟制备成混合料;
将上述混合料在高温炉内在 900°C~1200°C保温 30min~120min至完全熔 化成玻璃液;
将熔化后的玻璃液倒入辊轧机经辊轧成玻璃片;
将上述玻璃片^球磨机内, 进行粉碎, 并过 100目筛, 收集筛下部分, 得到平均粒径在 10微米以下的无铅玻璃粉; 按照基于无铅复合玻璃粉总重量的百分比称取上述无铅玻璃粉 80% , 填 料氧化铝粉 19.9%; 填料玻璃微珠 0.1%;
将称取的上述材料在 V型混料机内混合 1小时, 即得到平均粒径在 10 微米以下的无铅复合玻璃粉实 1#。
实施例 2~5
按照如表 1中实施例 2~5所示的配比, 以与实施例 1相同的方法, 得到 无铅复合玻璃粉实 2#〜实 5#。
对比例 1~4
按照如表 1中对比例 1~4所示的配比, 以与实施例 1制备无铅玻璃粉相 同的方法, 得到无铅玻璃粉对 1#〜对 4#。
对比例 5~6
按照如表 1中对比例 5~6所示的配比, 以与实施例 1相同的方法, 得到 无铅复合玻璃粉对 5#〜对 6#。
对实施例 1~5的无铅复合玻璃粉样品实 W〜实 5#、 对比例 1~4的无铅玻 璃粉样品对 1#〜对 4#和对比例 5~6的无铅复合玻璃粉样品对 5#〜对 6#进行以 下性能测试:
膨胀系数 (x lO-7/°C): 室温〜 300 °C的平均膨胀系数。
软化温度 (°C):软化温度测量在岛津 DTA-50设备上进行测量,升温速率 10°C/min。
软化状态: 取适量粉体, 然后装入钢模内施加一定压力压制成型, 将成 型体放在平板玻璃上并进入马弗炉内升温,在 460 °C的温度下保温 30分钟随 炉温冷却后取出观察其表面状态, 观察其是否变成扁球体或者圓饼形, 同时 观察其表面是否光亮, 如果都满足则记为 OK, 否则记为 NG。
抗弯强度: 取适量粉体倒入用铝箔制备好的容器内, 在 460°C下保温 30 分钟, 随炉温冷却后取出并将其铝箔纸除去, 然后将烧制的材料磨制成长条 形, 用材料万能试验机测试其抗弯强度。
有效封接: 钒磷锑体系玻璃在测量其软化温度和膨胀系数都无问题的情 况下, 将玻璃粉压为坯体后放入马弗炉内烧结。 待其软化为饼状时冷却后发 现经常出现下述问题: 软化后的玻璃料和平板玻璃无法有效粘结; 或者玻璃 饼边缘和玻璃连接, 但中心位置却和玻璃板不能连接, 中间存在缝隙, 这种 现象的存在对玻璃粉在封接玻璃基板时的影响是致命的。 将能和玻璃基板紧 密有效连接的玻璃粉记为' ΌΚ", 如玻璃饼无法和玻璃板有效连接, 容易被抠 掉的记为" NG", 以此衡量玻璃粉在封接中的风险性。 "OK"的样品风险性小, "NG"的样品风险性大。 整体评价: 我们将玻璃的软化状态和是否有效连接作 5 为一个整体来评价玻璃粉是否能应用在 PDP基板封接中, 将两者都为' ΌΚ" 的记录为' ΌΚ", 否则有一个为 "NG"的记录为" NG"。
表 1
Figure imgf000007_0001
从表 1中可以看出: 1、 当 V205含量超过 70% (对比例 2 ) 时, ^^通过调整其他组分使之 达到 PDP的封接要求。 即, V205含量过高时, 容易造成无铅复合玻璃粉的 软化温度过低, 而 V205含量过低时, 无铅复合玻璃粉的软化温度会较高。 P205的含量和 V205有着相反的趋势, 在其它含量不变情况下, 随着 P205含 量增加而软化温度升高, 当其百分比含量超过 35% (对比例 3 ) 时, 不能通 过调整其它含量使其达到合适的软化温度, 而当其含量低于 15%时, 其配合 料制作的玻璃的软化温度将过低(对比例 2 ),不适宜 PDP基板的封接。 Sb203 对软化温度的影响不是很大,但软化温度会随着 Sb203含量增加而略微降低, 但其增加过多时, 即当 Sb203百分比含量超过 35% (对比例 4 ) 时, 容易造 成析晶现象, 从而使其不适于封接使用。
2、从对 1#与实 1#〜实 5#的对比中可以看出, 当玻璃配方中加入 BaO时, 能有效改善玻璃粉与玻璃基板的有效粘结问题。
3、对 5#与对 6#配方和实 2#相同,制作方法一致,加入相同比例的填料, 只是加入填料种类不同, 实 2#加入氧化铝粉体作为填料,对 5#加入分析纯的 五氧化二铌作为填料, 对 6#加入锂霞石作为填料, 锂霞石因合成困难, 高温 烧结法很难合成纯正的锂霞石, 往往含有很多伴生相, 此处添加的锂霞石为 外购的材料, 价格高昂, 是玻璃粉成本价格的十多倍左右, 如无必要, 一般 不添加锂霞石作为填料。 从不同填料对材料性能的影响来看, 添加五氧化二 铌作为填料的玻璃烧结后变为了多孔膨胀材料, 这可能与五氧化二铌高温分 解释放气体有关, 因而五氧化二铌不能作为填料添加到封接玻璃里。 加入锂 霞石材料的玻璃粉, 其各项性能都还可以, 但对抗弯强度影响不大, 不如添 加氧化铝增加的抗弯强度大, 综上所述, 鉴于氧化铝的低成本和对材料强度 的快速增加效应, 优选氧化铝作为填料最佳。
4、 无铅玻璃粉样品对 2#〜对 4#因其软化温度和软化状态不能达标, 后 续其他测试放弃。
二、 无铅复合玻璃粉的应用
将制备好的无铅复合玻璃粉用松油醇为主的粘合剂制备成玻璃浆料, 浆 料粘度控制在 15~25Pa.S, 并尽量将浆料里的气泡排除干净。
将制备好的玻璃浆料倒入涂覆设备内, 然后将玻璃浆料涂覆在已经完成 前期所有工艺的 PDP后基板上, 将涂覆好的后基板放入轨道炉内在 120°C下 保温 20分钟进行排粘烘干。待其自然冷却后将其放入一次烧结炉内,升温到 460 °C并保温 30分钟进行一次烧结。
一次烧结工艺完成后, 将后基板和已经完成前期所有工序的合格前基板 进行对合, 并用夹子将其四周夹紧, 然后放入炉子内升温到 450°C并保温 30 分钟进行封接排气。
完成封接排气后的 PDP检查后如无漏气现象则可进入后续的老化点亮 等程序。
本发明的无铅复合玻璃粉达到了 PDP基板实际封接所要求的各项技术 要求, 从而解决了 PDP无铅封接玻璃粉产业化的问题。
本发明的无铅复合玻璃粉和常规铋玻璃粉相比较,具有明显的成本优势, 同时具有与常规铋玻璃粉相当的封接温度和膨胀系数。 在面对低温封接的倾 向时, 本申请的无铅复合玻璃粉比上述铋玻璃粉具有更大的可调节性, 使低 温封接变得容易, 且其膨胀系数稳定。
本发明的无铅复合玻璃粉和公开号为 1616365 的中国专利申请报道的 V205-P205-Sb205系的玻璃粉相比较: 因为其它廉价氧化物和廉价填料的加 入, 进一步降低了成本(约为上述玻璃粉成本的 70% ), 同时, 也使得玻璃 粉本身的封接强度大幅提高, 更重要的是改善了玻璃粉和玻璃基板的有效连 接特性, 从而使其达到实际工业应用阶段, 具有艮大的工业应用价值。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围。

Claims

权利要求书
1、 一种无铅玻璃粉, 其基于所述无铅玻璃粉的总重量, 包括: V205 35%~70%, P205 15%~35%, Sb203 3%~35%, Zn0 3%~15%、 Ba0 3%~15%。
2、 一种无铅复合玻璃粉, 包括如权利要求 1所述的无铅玻璃粉和填料。
3、如权利要求 2所述的无铅复合玻璃粉, 其中,基于所述无铅复合玻璃 粉的总重量, 所述填料的重量百分比为 2%~35%。
4、如权利要求 2所述的无铅复合玻璃粉,其中,所述填料包括氧化铝粉, 所述氧化铝粉的平均粒径为 2~8微米。
5、 如权利要求 2-4任一项所述的无铅复合玻璃粉, 其中, 所述填料还包 括玻璃微珠, 基于所述无铅复合玻璃粉的总重量, 所述玻璃微珠添加的重量 百分比为小于或等于 3%。
6、如权利要求 5所述的无铅复合玻璃粉, 其中, 所述玻璃微珠的直径为 100~150微米。
7、 如权利要求 2~6任一项所述的无铅复合玻璃粉, 其中, 所述无铅复 合玻璃粉的平均粒径为 10微米以下。
8、 如权利要求 2~6任一项所述的无铅复合玻璃粉, 其中, 所述无铅复 合玻璃粉的软化温度为 400°C~430°C , 室温〜 300°C的平均膨胀系数为
68~76xlO-7/°C。
9、 一种如权利要求 1所述的无铅玻璃粉或如权利要求 2~8中任一项所 述的无铅复合玻璃粉在金属与金属、 金属与非金属、 非金属与非金属之间的 连接上的应用。
10、 一种显示装置, 其中, 所述显示装置采用如权利要求 1所述的无铅 玻璃粉或如权利要求 2~8中任一项所述的无铅复合玻璃粉封接。
PCT/CN2013/087152 2013-04-28 2013-11-14 无铅玻璃粉、无铅复合玻璃粉及其应用、用其封接的显示装置 WO2014176888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310157036.6A CN104118990A (zh) 2013-04-28 2013-04-28 无铅玻璃粉、无铅复合玻璃粉及其应用、显示装置
CN201310157036.6 2013-04-28

Publications (1)

Publication Number Publication Date
WO2014176888A1 true WO2014176888A1 (zh) 2014-11-06

Family

ID=51764660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087152 WO2014176888A1 (zh) 2013-04-28 2013-11-14 无铅玻璃粉、无铅复合玻璃粉及其应用、用其封接的显示装置

Country Status (2)

Country Link
CN (1) CN104118990A (zh)
WO (1) WO2014176888A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342943A (en) * 1979-10-17 1982-08-03 Owens-Illinois, Inc. P2 O5 -V2 O5 -PbO glass which reduces arcing in funnel portion of CRT
CN1284528A (zh) * 1999-08-13 2001-02-21 旭硝子株式会社 密封组合物
CN102344249A (zh) * 2010-06-29 2012-02-08 旭硝子株式会社 玻璃料及使用该玻璃料的导电性糊料、电子器件
CN102531390A (zh) * 2011-12-30 2012-07-04 四川虹欧显示器件有限公司 用于等离子显示屏的封接材料、包含其的封接带及制备方法
CN102548921A (zh) * 2009-06-30 2012-07-04 格尔德殿工业公司 熔块糊或包括熔珠的焊料玻璃化合物及含有其之组件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800849B2 (ja) * 2006-06-02 2011-10-26 株式会社日立製作所 ガラス封着材料、平面型表示装置用枠ガラス及び平面型表示装置
CN101265024A (zh) * 2008-04-08 2008-09-17 中国计量学院 一种低熔点无铅硼磷酸盐封接玻璃粉及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342943A (en) * 1979-10-17 1982-08-03 Owens-Illinois, Inc. P2 O5 -V2 O5 -PbO glass which reduces arcing in funnel portion of CRT
CN1284528A (zh) * 1999-08-13 2001-02-21 旭硝子株式会社 密封组合物
CN102548921A (zh) * 2009-06-30 2012-07-04 格尔德殿工业公司 熔块糊或包括熔珠的焊料玻璃化合物及含有其之组件
CN102344249A (zh) * 2010-06-29 2012-02-08 旭硝子株式会社 玻璃料及使用该玻璃料的导电性糊料、电子器件
CN102531390A (zh) * 2011-12-30 2012-07-04 四川虹欧显示器件有限公司 用于等离子显示屏的封接材料、包含其的封接带及制备方法

Also Published As

Publication number Publication date
CN104118990A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
CN105934799B (zh) 导电糊和用于使用其制造半导体装置的方法
JP5349694B2 (ja) 接合材
US3414465A (en) Sealed glass article of manufacture
KR101020143B1 (ko) 비스무트계 봉착 재료 및 비스무트계 페이스트 재료
JP6966461B2 (ja) 結晶化ガラス封着材
CN110217998B (zh) 一种无铅可低温烧结的导电银浆及其制备方法与应用
CN103319097A (zh) 一种低温无铅玻璃粉及其制备方法
CN109455940A (zh) 一种软质无铅低温封接玻璃及其制备方法
CN109133648B (zh) 一种低软化点无铅玻璃组合物及包含该玻璃组合物的低温无铅封接材料和低温无铅焊接料浆
WO2014176888A1 (zh) 无铅玻璃粉、无铅复合玻璃粉及其应用、用其封接的显示装置
JP2007297249A (ja) ガラスフリット
JP2004311438A (ja) 電子回路における使用のための伝導体組成物
JP5842561B2 (ja) 低膨張ガラス及びペースト状ガラス組成物
WO2011052336A1 (ja) ガラス組成物及びそれを用いた導体形成用組成物
CN113716874B (zh) 玻璃材料、玻璃粉、玻璃粉的制备方法及其应用
CN106782942A (zh) 一种铝基绝缘介质浆料及其制备方法
JPH02269172A (ja) ダイ取付用接着剤組成物
US10964441B2 (en) Conductive particles, articles, and methods
CN102775067B (zh) 封装玻璃组合物及包含该组合物的显示板
JPH0375240A (ja) 封着材料
CN114590999A (zh) 一种低熔点无铅玻璃粉及其制备方法
KR20100129644A (ko) 평판 디스플레이 패널의 실링 소자용 슬러리 조성물 및 이를 이용하여 제조한 실링 소자
CN107500549B (zh) 一种微晶玻璃粉体、其制备方法与银浆
CN113860749A (zh) 一种玻璃粉及其制备方法
CN106847375A (zh) 一种含片状二氧化硅的铝基介质浆料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/03/2016).

122 Ep: pct application non-entry in european phase

Ref document number: 13883495

Country of ref document: EP

Kind code of ref document: A1