WO2014175560A1 - 플라즈마에 의한 단결정 성장 방법 - Google Patents

플라즈마에 의한 단결정 성장 방법 Download PDF

Info

Publication number
WO2014175560A1
WO2014175560A1 PCT/KR2014/002577 KR2014002577W WO2014175560A1 WO 2014175560 A1 WO2014175560 A1 WO 2014175560A1 KR 2014002577 W KR2014002577 W KR 2014002577W WO 2014175560 A1 WO2014175560 A1 WO 2014175560A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
single crystal
crystal growth
raw material
growth method
Prior art date
Application number
PCT/KR2014/002577
Other languages
English (en)
French (fr)
Inventor
김형락
한승호
박재영
Original Assignee
오씨아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오씨아이 주식회사 filed Critical 오씨아이 주식회사
Publication of WO2014175560A1 publication Critical patent/WO2014175560A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/06Epitaxial-layer growth by reactive sputtering

Definitions

  • a single crystal growth method by plasma A single crystal growth method by plasma.
  • SiC is a material of silicon and carbon having a semiconductor crystal structure of the diamond crystal structure
  • SiC single crystal wafer can be applied as a substrate for the device, such as semiconductor, LED.
  • SiC single crystal wafers can be manufactured by techniques such as sublimation recrystallization (Physical Vapor Transport, PVT), High Temperature Chemical Vapor Deposition (HTCVD). It can be produced into a single crystal ingot by the above method and then made into a wafer through a conventional wafering process.
  • One embodiment of the present invention provides a single crystal growth method by plasma capable of producing a high quality single crystal with a fast growth rate.
  • the step of introducing a single gas and the carrier gas for growth into a plasma reactor The raw material and carrier gas mixture is activated in a plasma activation region of a plasma reactor; And forming a single crystal by reaching the single crystal growth portion of the raw material activated by the plasma.
  • the voltage applied to the plasma reactor may be a digitally adjusted pulse voltage.
  • the voltage applied to the plasma reactor may be controlled by a pulsed radio frequency (RF).
  • RF radio frequency
  • Pulsed RF having a duration of about 1 ⁇ s to about 10 ms may be applied to the plasma activation region.
  • Pulsed RF having a frequency of about 10 kHz to about 30 MHz may be applied to the plasma activation region.
  • the internal pressure of the plasma reactor may be about 1 to about 2,000 Torr.
  • the internal pressure of the plasma reactor may be about 5 to about 2,000 Torr.
  • the raw material may include at least one selected from a gaseous raw material, a solid bulk raw material, and a combination thereof.
  • the solid bulk raw material may be particles having an average particle diameter of about 0.01 ⁇ m to about 100 ⁇ m.
  • the method may further include a preheating step of raising the temperature before the raw material is introduced into the plasma activation region in the raw material supply step.
  • the preheating step may be performed by an RF induction heater provided in the plasma reactor.
  • the temperature of the plasma may be about 1,000 to about 10,000 ° C.
  • the carrier gas may be at least one selected from the group consisting of argon, nitrogen, helium, and combinations thereof.
  • the carrier gas may further include a dopant.
  • step of forming a single crystal may further comprise the step of heating through additional heating means provided in the plasma reactor.
  • the additional heating means may further include a single crystal surface heating means for heating the single crystal growth surface.
  • the single crystal surface heating means may be at least one selected from the group consisting of an RF induction heater, a plasma heater, an infrared laser, and a combination thereof.
  • the additional heating means may further include auxiliary heating means for heating the plasma materialized material leaving the plasma activation region.
  • the auxiliary heating means may be an RF induction heater.
  • the plasma reactor may further include a preheater for heating the raw material and single crystal surface heating means for heating the single crystal growth surface before being introduced into the plasma activation region.
  • the plasma reactor may further include a preheater for heating the raw material before being introduced into the plasma activation region and auxiliary heating means for heating the plasmalized raw material leaving the activation region.
  • the plasma reactor includes a preheater for heating the raw material, single crystal surface heating means for heating the single crystal growth surface, and a plasmalized raw material leaving the plasma activation region before being introduced into the plasma activation region.
  • a preheater for heating the raw material
  • single crystal surface heating means for heating the single crystal growth surface
  • a plasmalized raw material leaving the plasma activation region before being introduced into the plasma activation region.
  • Auxiliary heating means for heating may be further included.
  • the single crystal produced by the single crystal growth method by the plasma has excellent crystallinity with a very short growth rate and very few defects.
  • FIG. 1 is a cross-sectional view of a schematic plasma reactor that may be used to perform a single crystal growth method by plasma according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a schematic plasma reactor that may be used to perform a single crystal growth method by plasma according to another embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a schematic plasma reactor that may be used to perform a single crystal growth method by plasma according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a schematic plasma reactor that may be used to perform a single crystal growth method by plasma according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a schematic plasma reactor that may be used to perform a single crystal growth method by plasma according to another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a schematic plasma reactor that may be used to perform a single crystal growth method by plasma according to another embodiment of the present invention.
  • FIG. 7 is a cross-sectional schematic view of a plasma reactor that may be used to perform a single crystal growth method by plasma according to another embodiment of the present invention.
  • the step of introducing a single gas and the carrier gas for growth into a plasma reactor The raw material and carrier gas mixture is activated in an activation region of a plasma reactor; And forming a single crystal by reaching the single crystal growth portion of the raw material activated by the plasma.
  • the single crystal growth method by the plasma may be performed by the plasma reactor 10 schematically shown in FIG.
  • the interior of the plasma reactor 10 may be composed of a raw material introduction region (A), a plasma activation region (B) by the plasma, and a crystal growth region (C).
  • the raw material for single crystal growth is introduced into the plasma activation region B from the raw material input unit 12 provided in the support 11 through the raw material introduction region A of the plasma reactor 10.
  • the raw material input unit 12 is illustrated in the case where the plasma reactor 10 is located at the lower end of the plasma reactor 10, but the position of the raw material input unit 12 is not limited thereto. For example, it may be located at the upper end of the plasma reactor 10, in addition to various modifications to the position of the raw material input unit 12 is possible.
  • the raw material introduced through the raw material input unit 12 may be moved by a carrier gas or transferred by ultrasonic vibration to be injected into the plasma activation area B.
  • the raw material may include at least one selected from a gaseous raw material, a solid bulk raw material, and a combination thereof of a material to be grown into a single crystal.
  • the type of single crystal obtained by the single crystal growth method using the plasma is not limited, and for example, various kinds of nitrides such as carbides such as SiC, WC, and MoC, nitrides such as GaN, AlN, and SiN, etc. It includes a kind of substance.
  • group III-V semiconductors such as GaAs and InP, group II-VI semiconductors such as ZnO, and the like can also be produced by the single crystal growth method using the plasma.
  • the plasma activation region B may include a plasma generator.
  • the plasma reactor 10 may form a plasma in the plasma activation region B by a voltage applied to a pulsed power supplied by the power supply electrode coil 13.
  • the carrier gas is formed into a plasma, and the raw material introduced into the plasma activation region B is immediately heated up by the plasma, and activated with gaseous unit atoms / molecules in an excited state to finally form a single crystal. You can grow.
  • the voltage applied to the plasma reactor 10 may be a digitally adjusted pulse voltage.
  • the plasma of the plasma activation region B may be formed by a pulse high frequency voltage, more specifically, pulsed radio frequency (RF) power.
  • RF radio frequency
  • RF power ionizes a crystal growth raw material and mixed gas, such as a carrier gas, a dopant gas, and / or a reaction gas, inside a plasma reactor.
  • a crystal growth raw material and mixed gas such as a carrier gas, a dopant gas, and / or a reaction gas
  • the electrons inside the plasma absorb energy from RF power to thermally and chemically activate the carrier gas and the crystal growth raw material.
  • the thermal energy transfer between the electrons and the carrier gas and the crystal growth raw material in the plasma can be expressed by the following equation, and the electrons in the plasma transfer energy to the gas molecules by elastic collisions, and consequently The gas is raised.
  • T gas is the gas temperature
  • n e is the electron density inside the plasma
  • s is the elastic cross section of the electron
  • u is the electron velocity
  • T e is the electron temperature
  • m e / m gas represents the mass ratio of electrons and gas atoms.
  • a high power plasma has a plasma electron density of about 1.4x10 16 cm -3 , considering an ionization fraction of about 5% with a pulse power of about 100 kW to about 500 kW. Can be obtained.
  • the plasma density is adjustable by the input power, and based on experimental and theoretical results of steady state RF thermal plasma, the average electron temperature in the plasma is about 5 to about 10 eV.
  • an electron temperature of about 5 eV is used to obtain an electron temperature of about 5,700 Kelvin and an electron thermal velocity of about 9.4x10 7 cm / s.
  • the impact cross section is about 1 ⁇ 10 ⁇ 15 cm 2 .
  • the dT gas / dt value is 1x10 8 Kelvin / s or 100 Kelvin / s.
  • the calculation results show that the gas particles in the plasma reactor can be heated up rapidly during the plasma duration when heated by the plasma electrons.
  • the temperature of the gas can be heated from about 20 ° C. to about 1000 ° C. for about 10 s based on the above formula and about 5000 for about 50 s duration.
  • Can be raised to < RTI ID 0.0 >
  • the temperature of the gas can be controlled by changing the duration of the internal plasma of the raw material for crystal growth.
  • the duration can be adjusted by adjusting the gas flow rate, and in the pulse plasma operation applicable to the single crystal growth method by the plasma, the duration of the pulse is changed between about 1 ⁇ s and about 10 ms. This is a useful means to control the gas temperature inside the plasma.
  • the pulsed RF having a duration of about 1 ⁇ s to about 10 ms may be applied to the plasma activation region B.
  • Gas temperature control is one of the key variables that determine the thermal and chemical reactions of the raw material for crystal growth, which in turn enables the plasma reaction control.
  • thermal energy is supplied to the solid raw material from the plasma electrons, the ions, and the heated gas particles in a similar manner, thereby enabling activation of unit particles that can grow into single crystals.
  • the plasma may be formed by supplying power of about 10 kW to about 10 MW to the plasma activation region B.
  • Pulsed RF having a duration of about 1 ⁇ s to about 10 ms may be applied to the plasma activation region B.
  • plasma may be formed by an alternating voltage having a frequency of about 10 kHz to about 30 MHz.
  • the internal pressure of the plasma reactor 10 may be about 1 to about 2,000 Torr. Specifically, the internal pressure of the plasma reactor may be about 5 to about 2,000 Torr.
  • Process conditions such as power, pulse duration, frequency, etc., supplied to form the plasma activation region B may include the type of the single crystal material to be grown, the characteristics of the single crystal to be obtained, and the single crystal growth rate to be obtained. Thus it can be adjusted.
  • the single crystal growth method by plasma has an advantage that a solid bulk raw material can be used.
  • powder raw materials can be converted directly to single crystals.
  • SiC powder can be used to grow SiC single crystals.
  • the size of the raw material particles can be appropriately selected in consideration of the characteristics of the single crystal to be obtained, the single crystal growth rate to be obtained, and the like.
  • the solid bulk raw material may be particles having an average particle diameter of about 0.01 ⁇ m to about 100 ⁇ m.
  • the raw material is transferred from the raw material input unit 12 to the plasma activation region B by a carrier gas, or transferred to the plasma activation region B by ultrasonic vibration.
  • an ultrasonic treatment means (not shown) is further provided in the raw material input unit 12 of the plasma reactor 10 of FIG. 1 to sonicate the raw material supplied to the raw material input unit 12 to thereby activate the plasma activation region ( B) can be added.
  • the raw material may be supplied continuously.
  • the carrier gas may include a gas such as nitrogen, argon, helium, or the like or a combination thereof.
  • a dopant gas and a reaction gas may be further supplied together with a carrier gas as necessary.
  • the dopant may include nitrogen (N), boron (B), aluminum (Al), and the like.
  • the plasma temperature of the plasma activation region B may be about 1,000 to about 10,000 ° C. As such, the high temperature plasma present in the plasma activation region B enables the use of a raw material in a solid state.
  • the raw material may further include a preheating step before being introduced into the plasma activation region (B).
  • a preheater may be further included to perform the preheating step, and the plasma reactor 10 schematically illustrated in FIG. 2 is provided with the preheater 16.
  • the plasma reactor 10 may include a preheater in the vicinity of the raw material inlet in order to activate the plasma reaction of the raw material introduced.
  • the raw material inlet 12 may optionally further include a preheater 16, and the raw material inlet 12 is a predetermined level before the raw material is introduced into the plasma activation region (B) by the preheater 16. It may be added in a heated state.
  • the raw material may be preheated to about 500 to about 1,500 ° C. before being introduced into the plasma activation region B, and then introduced into the plasma activation region B.
  • the preheater 16 may be, for example, an RF induction heater.
  • the raw material may be preheated, and the preliminary heating may smooth the temperature gradient in the reaction chamber 15 and reduce the power required to form the plasma activation region B.
  • the overall efficiency of the growth method can be improved.
  • the raw material activated by the plasma forms a plume (indicated by the X region in FIG. 1) until it leaves the plasma activation region B and cools down to reach the surface of the crystal growth seed 14 ( 1, the plum is formed in the crystal growth region C).
  • the single crystal growth method by plasma may further include heating through additional heating means in the single crystal forming step.
  • the additional heating means may be a single crystal surface heating means, it is possible to heat the single crystal growth surface by the single crystal surface heating means, through which the temperature gradient of the crystal growth surface is optimally maintained to defect of the single crystal ) Can be minimized.
  • FIG 3 shows a plasma reactor 10 equipped with single crystal surface heating means 18 as a separate means for heating the single crystal growth surface.
  • the single crystal surface heating means 18 may be controlled by, for example, an RF induction heater, a plasma heater, an infrared laser, or the like.
  • the plasma reactor may be equipped with a preheater 16 and single crystal surface heating means 18 simultaneously to optimally implement the single crystal growth process and minimize single crystal defects.
  • the plasma reactor may further comprise auxiliary heating means for heating the plasmalized raw material leaving the plasma activation region B as the additional heating means described above.
  • the entire crystal growth region C may be heated by the auxiliary heating means.
  • the raw material material plasma-formed by the auxiliary heating means may be heated up to the optimum temperature for crystal growth in consideration of the decrease in temperature while leaving the plasma activation region (B).
  • the temperature of the crystal growth region C may be controlled to be lower than that of the plasma activation region B.
  • FIG. 4 shows a plasma reactor 10 further comprising auxiliary heating means 19.
  • the auxiliary heating means 19 can be, for example, an RF induction heater.
  • the plasma reactor may be equipped with a preheater 16 and single crystal surface heating means 18 simultaneously to optimally implement the single crystal growth process and minimize single crystal defects.
  • FIG. 5 schematically shows a plasma reactor 10 having a preheater 16 and a single crystal surface heating means 18 simultaneously.
  • the plasma reactor may be equipped with a preheater 16 and auxiliary heating means 19 simultaneously to optimally implement the single crystal growth process and minimize single crystal defects.
  • FIG. 6 schematically shows a plasma reactor 10 having a preheater 16 and an auxiliary heating means 19 at the same time.
  • the plasma reactor may be equipped with a preheater 16, single crystal surface heating means 18 and auxiliary heating means 19 simultaneously to optimally implement the single crystal growth process and minimize single crystal defects. have.
  • FIG. 7 schematically shows a plasma reactor 10 having a preheater 16, a single crystal surface heating means 18 and an auxiliary heating means 19 simultaneously.
  • the temperature gradient can be adjusted to form a single crystal having excellent crystallinity and minimize defects.
  • the temperature of the crystal growth region (C) and the surface of the crystal growth seed 14 may be independently controlled by adding additional heating means in the plasma reactor 10, respectively, and may be controlled according to the type of single crystal to be grown.
  • the adjustment range can vary.
  • the temperature of the surface of the crystal growth seed 14 may be, for example, about 1500 to about 2500 ° C.
  • high power high temperature plasma is suitable for rapidly thermally and chemically activating the crystal growth raw material.
  • the activated raw material reaches the crystal growth seed 14 located above the plasma and grows into a single crystal.
  • the SiC bulk solid raw material is vaporized by plasma while flowing into the plasma activation region B through the raw material introduction region A.
  • the excited atoms and molecules reach the surface of the crystal growth seed 14 whose temperature is maintained at about 2500 ° C. or lower when the auxiliary heating means 19 is provided, thereby allowing SiC single crystal growth to proceed.
  • the crystal growth surface temperature is kept lower than the gaseous activating material, and thermal relaxation such as surface recombination or vibrational dexicitation is performed on the surface.
  • the energy generated as the vibration activated SiC molecules transition to the stabilized SiC generates phonons that can be moved on the crystal growth surface. These phonons provide annealing energy to reach defects that occur during crystal growth and minimize defect structures.
  • the main advantages of activating the crystal growth raw material using plasma are first, rapid and easily controlled thermal activation, and second, efficient decomposition and activation of raw materials due to the impact of electrons in the plasma. Third, it is possible to activate molecules of a solid bulk raw material such as SiC into a high energy level vibration phase without a high temperature growth furnace.
  • This method is superior in energy efficiency compared to the existing high temperature growth furnace and can increase the crystal growth rate.
  • the plasma reactor When the plasma reactor is operated at a pressure of 1 to 2,000 torr, the plasma electrons continuously collide with the generated ions and gases, and the electron energy transfer caused by these continuous collisions causes the plasma electrons and the generated ions to collide with the crystal growth surface.
  • the sufficient recombination prevents damage to the crystal growth surface structure due to electrostatic plasma. In the case of low pressure plasma between 1 and 50 mtorr, surface structure damage due to plasma electrons or generated ions can be easily found.
  • the concentration of crystal growth raw materials such as Si (gas), C (gas) and SiC x (gas) is determined by the raw material injection rate and plasma power. , The speed of movement, and the duration of the plasma pulse.
  • the transport velocity of the plasma gas is a decisive variable that controls the rate at which the activated material reaches the crystal growth surface.
  • the growth rate of the single crystal by the plasma single crystal growth method may be implemented at about 0.1 to about 100 mm / hr, and a single crystal having a width of about 5 cm to about 50 cm may be obtained.
  • SiC powder having an average particle diameter of 50 ⁇ m was placed in a raw material inlet of the plasma reactor 10 manufactured as shown in FIG. After injecting into, it was grown into an ingot formed of a SiC wafer having a diameter of 50 mm.
  • the plasma reaction region was formed under the following conditions.
  • the plasma reaction zone was carried out under the following conditions.
  • Power supplied 500 kW peak during pulse duration of 100-200 ⁇ s.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

단결정 성장용 원료 및 캐리어 가스를 플라즈마 반응기 내에 도입하는 단계; 상기 원료 및 캐리어 가스 혼합물이 플라즈마 반응기의 플라즈마 활성화 영역에서 활성화되는 단계; 및 상기 플라즈마에 의해 활성화된 원료를 단결정 성장부에 도달시켜 단결정을 형성시키 단계;를 포함하는 플라즈마에 의한 단결정 성장 방법 이 제공된다.

Description

플라즈마에 의한 단결정 성장 방법
플라즈마에 의한 단결정 성장 방법에 관한 것이다.
SiC는 규소와 탄소의 화합물로서 다이아몬드 결정 구조의 반도체 특성을 지니는 소재로서, SiC 단결정 웨이퍼는 반도체, LED 등의 소자 구현을 위한 기판으로 적용될 수 있다. SiC 단결정 웨이퍼는 승화재결정법 (Physical Vapor Transport, PVT), 고온화학기상증착법 (High Temperature Chemical Vapor Deposition, HTCVD) 등의 기술에 의해 제조될 수 있다. 상기 방법으로 단결정 잉곳으로 제조한 다음 통상의 웨이퍼링 공정을 거쳐 웨이퍼로 제작할 수 있다.
본 발명의 일 구현예는 빠른 성장 속도를 가지면서 고품질의 단결정을 제조할 있는 플라즈마에 의한 단결정 성장 방법을 제공한다.
본 발명의 일 구현예에서, 단결정 성장용 원료 및 캐리어 가스를 플라즈마 반응기 내에 도입하는 단계; 상기 원료 및 캐리어 가스 혼합물이 플라즈마 반응기의 플라즈마 활성화 영역에서 활성화되는 단계; 및 상기 플라즈마에 의해 활성화된 원료를 단결정 성장부에 도달시켜 단결정을 형성시키 단계;를 포함하는 플라즈마에 의한 단결정 성장 방법을 제공한다.
상기 플라즈마 반응기에 인가하는 전압이 디지털 방식으로 조절된 펄스 전압일 수 있다.
상기 플라즈마 반응기에 인가하는 전압이 펄스(pulsed) RF(radio frequency)에 의하여 조절될 수 있다.
상기 플라즈마 활성화 영역에 약 1μs 내지 약 10ms의 지속시간을 갖는 펄스 RF를 인가할 수 있다.
상기 플라즈마 활성화 영역에 약 10 kHz 내지 약 30 MHz의 주파수를 갖는 펄스 RF를 인가할 수 있다.
상기 플라즈마 반응기의 내부 압력이 약 1 내지 약 2,000 Torr일 수 있다.
상기 플라즈마 반응기의 내부 압력이 약 5 내지 약 2,000 Torr 일 수 있다.
상기 원료는 기체상 원료, 고체상 벌크 원료 및 이들의 조합에서 선택된 적어도 하나를 포함할 수 있다.
상기 고체상의 벌크 원료는 약 0.01㎛ 내지 약 100㎛의 평균 입경을 갖는 입자 일 수 있다.
상기 원료 공급 단계에서 원료를 상기 플라즈마 활성화 영역으로 투입하기 전에 승온시키는 예비 가열 단계를 더 포함할 수 있다.
상기 예비 가열 단계가 상기 플라즈마 반응기에 구비된 RF 유도 가열기에 의해 이루어질 수 있다.
상기 플라즈마의 온도는 약 1,000 내지 약 10,000℃ 일 수 있다.
상기 캐리어 가스는 아르곤, 질소, 헬륨 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나 일 수 있다.
상기 캐리어 가스는 도판트를 더 포함할 수 있다.
상기 단결정 형성 단계에서 상기 플라즈마 반응기에 구비된 추가적인 가열수단을 통해 가열하는 단계를 더 포함할 수 있다.
상기 추가적인 가열수단으로서 단결정 성장 표면을 가열하는 단결정 표면 가열수단을 더 포함할 수 있다.
상기 단결정 표면 가열수단은 RF 유도 가열기(RF induction heater), 플라즈마 가열기(plasma heater), 적외선 레이져(IR laser) 및 이들의 조합으로 이루어진 군에서 선택된 하나 이상 일 수 있다.
상기 추가적인 가열수단으로서 플라즈마 활성화 영역을 떠나는 플라즈마화된 원료 물질을 가열하는 보조 가열수단을 더 포함할 수 있다.
상기 보조 가열수단은 RF 유도 가열기(RF induction heater)일 수 있다.
일 구현예에서, 상기 플라즈마 반응기는 상기 플라즈마 활성화 영역으로 투입되기 전에 상기 원료를 가열하는 예비가열기 및 상기 단결정 성장 표면을 가열하는 단결정 표면 가열수단을 더 포함할 수 있다.
다른 구현예에서, 상기 플라즈마 반응기는 상기 플라즈마 활성화 영역으로 투입되기 전에 상기 원료를 가열하는 예비가열기 및 활성화 영역을 떠나는 플라즈마화된 원료 물질을 가열하는 보조 가열수단을 더 포함할 수 있다.
또 다른 구현예에서, 상기 플라즈마 반응기는 상기 플라즈마 활성화 영역으로 투입되기 전에 상기 원료를 가열하는 예비가열기, 상기 단결정 성장 표면을 가열하는 단결정 표면 가열수단 및 플라즈마 활성화 영역을 떠나는 플라즈마화된 원료 물질을 가열하는 보조 가열수단을 더 포함할 수 있다.
상기 플라즈마에 의한 단결정 성장 방법에 의해 제조된 단결정은 그 성장 속도가 빠르면서 결함이 매우 적은 우수한 결정성을 갖는다.
도 1은 본 발명의 일 구현예에 따른 플라즈마에 의한 단결정 성장 방법을 수행하는데 사용될 수 있는 개략적인 플라즈마 반응기의 단면도이다.
도 2는 본 발명의 다른 구현예에 따른 플라즈마에 의한 단결정 성장 방법을 수행하는데 사용될 수 있는 개략적인 플라즈마 반응기의 단면도이다.
도 3은 본 발명의 또 다른 구현예에 따른 플라즈마에 의한 단결정 성장 방법을 수행하는데 사용될 수 있는 개략적인 플라즈마 반응기의 단면도이다.
도 4는 본 발명의 또 다른 구현예에 따른 플라즈마에 의한 단결정 성장 방법을 수행하는데 사용될 수 있는 개략적인 플라즈마 반응기의 단면도이다.
도 5는 본 발명의 또 다른 구현예에 따른 플라즈마에 의한 단결정 성장 방법을 수행하는데 사용될 수 있는 개략적인 플라즈마 반응기의 단면도이다.
도 6은 본 발명의 또 다른 구현예에 따른 플라즈마에 의한 단결정 성장 방법을 수행하는데 사용될 수 있는 개략적인 플라즈마 반응기의 단면도이다.
도 7은 본 발명의 또 다른 구현예에 따른 플라즈마에 의한 단결정 성장 방법을 수행하는데 사용될 수 있는 개략적인 플라즈마 반응기의 단면도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
본 발명의 일 구현예에서, 단결정 성장용 원료 및 캐리어 가스를 플라즈마 반응기 내에 도입하는 단계; 상기 원료 및 캐리어 가스 혼합물이 플라즈마 반응기의 활성화 영역에서 활성화되는 단계; 및 상기 플라즈마에 의해 활성화된 원료를 단결정 성장부에 도달시켜 단결정을 형성시키는 단계;를 포함하는 플라즈마에 의한 단결정 성장 방법을 제공한다.
상기 플라즈마에 의한 단결정 성장 방법은 도 1에 개략적으로 도시된 플라즈마 반응기(10)에 의해 수행될 수 있다.
이하, 도 1을 참조하여 상기 플라즈마에 의한 단결정 성장 방법을 보다 구체적으로 설명한다.
상기 플라즈마 반응기(10)의 내부는 크게 원료 도입 영역(A), 플라즈마에 의한 플라즈마 활성화 영역(B) 및 결정성장 영역(C)으로 이루어질 수 있다.
먼저, 지지대(11)에 구비된 원료 투입부(12)로부터 단결정 성장용 원료가 플라즈마 반응기(10)의 원료 도입 영역(A)을 거쳐 상기 플라즈마 활성화 영역(B)에 투입된다.
도 1에서 상기 원료 투입부(12)는 상기 플라즈마 반응기(10)의 하단부에 위치하는 경우의 플라즈마 반응기(10)가 예시되고 있으나, 원료 투입부(12)의 위치는 이에 한정되지 않고, 예를 들어 플라즈마 반응기(10)의 상단부에 위치할 수도 있으며, 그 외에도 원료 투입부(12)의 위치에 대한 다양한 변형이 가능하다.
상기 원료 투입부(12)를 통해 투입된 원료는 캐리어 가스에 의해 이동되거나, 초음파 진동에 의해 이송되어 상기 플라즈마 활성화 영역(B)으로 투입될 수 있다.
상기 원료는 단결정으로 성장시키고자 하는 물질의 기체상 원료, 고체상 벌크 원료 및 이들의 조합에서 선택된 적어도 하나를 포함할 수 있다.
상기 플라즈마를 사용하는 단결정 성장 방법에 의해 얻을 수 있는 단결정의 종류는 제한되지 않고, 예를 들어 SiC, WC 및 MoC 등의 카바이드류(Carbides), GaN, AlN, SiN 등의 질화물(nitrides) 등 다양한 종류의 물질을 포함한다. 또한, GaAs, InP 등의 III-V족 반도체, ZnO 등의 II-VI족 반도체 등도 상기 플라즈마에 의한 단결정 성장 방법에 의해 제조될 수 있다.
상기 플라즈마 활성화 영역(B)은 플라즈마 발생기를 포함할 수 있다.
상기 플라즈마 반응기(10)는 전원 공급용 전극 코일(13)에 의해 공급되는 펄스(pulsed) 전원에 인가되는 전압에 의해 상기 플라즈마 활성화 영역(B)에 플라즈마를 형성할 수 있다.
상기 플라즈마 활성화 영역(B)에서 캐리어 가스는 플라즈마로 형성되고, 상기 플라즈마 활성화 영역(B)으로 투입된 원료는 상기 플라즈마에 의해 즉각적으로 승온되어 여기 상태의 기체상 단위 원자/분자로 활성화되어 최종적으로 단결정으로 성장할 수 있게 된다.
상기 플라즈마 반응기(10)에 인가하는 전압은 디지털 방식으로 조절된 펄스 전압일 수 있다.
구체적으로, 상기 플라즈마 활성화 영역(B)의 플라즈마는 펄스 고주파 전압, 보다 구체적으로 펄스(pulsed) RF (radio frequency) 전력에 의해 형성될 수 있다.
예를 들어, RF 전력은 플라즈마 반응기 내부에서 캐리어 가스, 도판트 가스(dophant gas) 및/또는 반응 가스(reaction gas)와 같은 혼합 가스와 결정성장 원료 물질을 이온화시킨다. 플라즈마 내부의 전자들은 RF 전력으로부터 에너지를 흡수하여 캐리어 가스와 결정성장 원료 물질을 열적으로, 화학적으로 활성화시킨다.
플라즈마 내부에서 전자와 캐리어 가스 및 결정성장 원료 물질 간의 열적 에너지 이동은 아래 수식에 의해 표현될 수 있으며, 플라즈마 내부의 전자는 탄성적 충돌(elastic collisions)에 의해 가스 분자에 에너지를 전달하고, 결과적으로 가스를 승온시킨다.
플라즈마 내부의 전자에 의한 가스의 승온 효과의 일반적인 수식 표현은 하기 계산식으로 나타낼 수 있다.
[계산식 1]
dTgas/dt ~ ne <su> Te( me/mgas)
상기 계산식에서, Tgas는 가스 온도, ne는 플라즈마 내부의 전자밀도, s 는 전자의 탄성충돌 단위면적(cross section), u 는 전자 속도, Te 는 전자의 온도, 그리고, me/mgas 는 전자와 가스 원자의 질량비를 나타낸다.
일례로 10 torr의 가스압에서 운전되는 아르곤 플라즈마의 경우 약 100 kW 내지 약 500 kW의 펄스전력으로 약 5%의 이온화 비(fraction)를 고려한다면 고출력 플라즈마는 약 1.4x1016 cm-3 의 플라즈마 전자 밀도를 얻을 수 있다. 플라즈마 밀도는 입력되는 전력에 의해 조절 가능하며, 정상상태(steady state)의 RF 열플라즈마의 실험적 및 이론적 결과를 바탕으로, 플라즈마 내 평균 전자온도는 약 5 내지 약 10 eV 이다.
일 구현예에서, 약 5 eV의 전자온도를 사용하여 약 5,700 켈빈(Kelvin)의 전자온도와 약 9.4x107 cm/s의 전자 열속도(thermal velocity)를 얻으며, 아르곤 플라즈마의 경우 전자와 가스간 충돌 단면은 약 1x10-15 cm2 이다.
이와 같은 수치를 플라즈마 내 가스의 승온 효과에 대한 상기 계산식에 대입하면 dTgas/dt 값은 1x108 Kelvin/s 또는 100 Kelvin/ s이 얻어진다.
이와 같은 계산 결과는 플라즈마 반응기 내부에서 가스 입자가 플라즈마 전자에 의해 가열될 경우 플라즈마 지속 시간 동안 급격히 승온될 수 있음을 보여준다.
즉, 약 1.4x1016 cm-3 의 플라즈마 전자 밀도 하에서 가스의 온도는 상기 계산식을 바탕으로 약 10 s 동안 약 20℃의 초기온도에서 약 1000℃까지 가열될 수 있으며 약 50 s 지속시간에는 약 5000℃까지 상승될 수 있다.
결과적으로, 결정성장용 원료 물질의 플라즈마 내부 지속 시간을 변경함에 따라 가스의 온도를 조절할 수 있게 된다.
정상상태의 플라즈마에서 지속 시간은 가스 이송 속도(flow rate)를 조절함으로써 조절될 수 있으며, 상기 플라즈마에 의한 단결정 성장 방법에서 적용될 수 있는 펄스 플라즈마 운전에서는 펄스의 지속시간을 약 1μs 내지 약 10ms 사이로 변경함으로써 플라즈마 내부 가스 온도를 조절할 수 있는 유용한 수단이 된다.
일 구현예에서, 상기 플라즈마 활성화 영역(B)에 약 1μs 내지 약 10ms의 지속시간을 갖는 펄스 RF를 인가할 수 있다.
가스 온도 조절은 결정성장용 원료 물질의 열적, 화학적 반응을 결정하는 주요 변수 중의 한가지로서 결국 플라즈마의 반응 조절을 가능하게 한다.
상기 계산에서는 열전도, 대류 그리고 복사에 의한 에너지 손실을 고려하지 않았기에 온도 상승은 계산치 보다 낮을 것으로 예상되어 실제로는 약 5,000℃ 내지 약 10,000℃에 이를 것으로 예상된다.
고상의 원료물질을 사용하는 경우에도 유사한 방식으로 플라즈마 전자와 이온 그리고 승온된 가스 입자로부터 고체상 원료 물질에 열적 에너지가 공급되어 단결정으로 성장할 수 있는 단위 입자로의 활성화가 가능하게 된다.
상기 플라즈마 반응기(10)의 개별적인 플라즈마 공정 조건에 대하여 구체적인 예를 들면 다음과 같다.
상기 플라즈마 활성화 영역(B)에 약 10 kW 내지 약 10 MW의 전력을 공급하여 플라즈마를 형성할 수 있다.
상기 플라즈마 활성화 영역(B)에 약 1μs 내지 약 10ms의 지속시간을 갖는 펄스 RF를 인가할 수 있다.
상기 플라즈마 활성화 영역(B)에서, 약 10 kHz 내지 약 30 MHz의 주파수의 교류 전압에 의해 플라즈마가 형성될 수 있다.
상기 플라즈마 반응기(10) (또는 반응 챔버(15))의 내부 압력이 약 1 내지 약 2,000 Torr일 수 있다. 구체적으로, 상기 플라즈마 반응기의 내부 압력이 약 5 내지 약 2,000 Torr일 수 있다.
이러한 상기 플라즈마 활성화 영역(B)을 형성하기 위하여 공급되는 전력, 펄스 지속시간, 주파수 등의 공정 조건은 성장시키고자 하는 단결정의 물질의 종류, 얻고자 하는 단결정의 특성, 얻고자 하는 단결정 성장 속도 등에 따라서 조절될 수 있다.
상기 플라즈마에 의한 단결정 성장 방법은 고체상 벌크 원료를 사용할 수 있다는 이점이 있다. 예를 들어, 분말 원료를 단결정으로 직접적으로 변환시킬 수 있다. 예를 들어, SiC 단결정을 성장시키기 위해, SiC 분말을 사용할 수 있다.
고체상 벌크 원료를 사용하는 경우, 얻고자 하는 단결정의 특성, 얻고자 하는 단결정 성장 속도 등을 고려하여 그 원료 입자의 크기를 적절하게 선택할 수 있다.
구체적으로, 상기 고체상 벌크 원료는 약 0.01㎛ 내지 약 100㎛의 평균 입경을 갖는 입자일 수 있다.
상기 원료는 특히, 고체상 벌크 원료인 경우, 캐리어 가스에 의해 원료 투입부(12)로부터 플라즈마 활성화 영역(B)으로 이송되거나, 또는, 초음파 진동에 의해 플라즈마 활성화 영역(B)으로 이송된다.
예를 들어, 도 1의 플라즈마 반응기(10)의 원료 투입부(12)에 초음파 처리 수단 (미도시)을 더 구비하여 상기 원료 투입부(12)에 공급된 원료를 초음파 처리하여 플라즈마 활성화 영역(B)으로 투입할 수 있다.
상기 원료는 연속적으로 공급될 수 있다.
상기 캐리어 가스는 질소, 아르곤, 헬륨 등 또는 이들의 조합과 같은 기체를 포함할 수 있다.
상기 반응 챔버(15) 내에 필요에 따라 캐리어 가스와 더불어 도판트 가스(dophant gas) 및 반응 가스(reaction gas)를 추가로 더 공급할 수 있다.
상기 도판트의 구체적인 예로서 질소(N), 붕소(B), 알루미늄(Al) 등을 포함할 수 있다.
상기 플라즈마 활성화 영역(B)의 플라즈마의 온도는 약 1,000 내지 약 10,000℃일 수 있다. 이와 같이 상기 플라즈마 활성화 영역(B)에 존재하는 고온의 플라즈마는 고체 상태의 원료의 사용을 가능하게 한다.
상기 플라즈마에 의한 단결정 성장 방법에서, 상기 원료는 상기 플라즈마 활성화 영역(B)으로 투입되기 전에 예비 가열단계를 더 포함할 수 있다.
상기 예비 가열단계를 수행하기 위하여 예비가열기(preheater)를 더 포함할 수 있고, 도 2에 개략적으로 도시된 플라즈마 반응기(10)는 상기 예비가열기(16)를 구비하고 있다.
도 2에서 보는 바와 같이, 상기 플라즈마 반응기(10)는 투입되는 원료의 플라즈마 반응을 활성화하기 위해 예비가열기를 원료 투입구 부근에 포함할 수 있다.
일 구현예에서, 상기 원료 투입구(12)는 선택적으로 예비가열기(16)를 더 구비할 수 있고, 상기 예비가열기(16)에 의해서 원료가 플라즈마 활성화 영역(B)에 투입되기 전에 일정 수준으로 가열된 상태로 투입될 수 있다.
예를 들어, 상기 원료는 상기 플라즈마 활성화 영역(B)으로 투입되기 전에 약 500 내지 약 1,500℃로 예비 가열되어 상기 플라즈마 활성화 영역(B)으로 투입될 수 있다.
상기 예비가열기(16)는, 예를 들어 RF 유도 가열기일 수 있다.
구체적으로 상기 원료를 예비 가열할 수 있으며, 예비 가열을 통해 반응 챔버(15) 내의 온도 구배를 완만히 하고, 플라즈마 활성화 영역(B)을 형성하기 위해 요구되는 전력을 감소시킬 수 있으므로 상기 플라즈마에 의한 단결정 성장 방법의 전체적인 효율을 향상시킬 수 있다.
상기 플라즈마에 의해 활성화된 원료가 상기 플라즈마 활성화 영역(B)을 떠나면서 냉각되고 결정성장 시드(14) 표면에 도달하기까지의 플룸(plume) (도 1에서 X 영역으로 표시함)을 형성한다 (도 1에서 상기 플룸은 결정성장 영역(C) 내에 형성되고 있다).
상기 플라즈마에 의한 단결정 성장 방법은 상기 단결정 형성 단계에서 추가적인 가열수단을 통해 가열하는 단계를 더 포함할 수 있다.
상기 추가적인 가열수단은 단결정 표면 가열수단일 수 있고, 상기 단결정 표면 가열수단에 의해 상기 단결정 성장 표면을 가열할 수 있고, 이를 통하여, 상기 결정성장 표면의 온도 구배를 최적으로 유지하여 단결정의 결점(defect)을 최소화할 수 있다.
도 3에서 상기 단결정 성장 표면을 가열하는 별도의 수단으로 단결정 표면 가열수단(18)이 구비된 플라즈마 반응기(10)가 도시되어 있다.
상기 단결정 표면 가열수단(18), 예를 들어, RF 유도 가열기(RF induction heater), 플라즈마 가열기(plasma heater) 및/또는 적외선 레이져(IR laser) 등에 의해 조절할 수 있다.
일 구현예에서, 상기 플라즈마 반응기는 상기 단결정 성장 공정을 최적으로 구현하고 단결정 결점을 최소화하기 위해서 예비가열기(16)와 단결정 표면 가열수단(18)을 동시에 구비할 수 있다.
상기 플라즈마 반응기는 플라즈마 활성화 영역(B)을 떠나는 플라즈마화된 원료 물질을 가열해주는 보조 가열수단을 전술한 추가적인 가열수단으로서 더 포함할 수 있다.
상기 보조 가열수단에 의해 상기 결정성장 영역(C) 전체가 가열될 수 있다.
상기 보조 가열수단에 의해 플라즈마화된 원료 물질이 플라즈마 활성화 영역(B)을 떠나면서 온도가 저하되는 것을 고려하여 결정 성장의 최적 온도까지 가열할 수 있다.
단 상기 결정성장 영역(C)의 온도는 플라즈마 활성화 영역(B)보다는 낮게 조절하는 것이 바람직하다.
도 4는 보조 가열수단(19)을 더 구비한 플라즈마 반응기(10)를 나타낸다.
상기 보조 가열수단은(19)은, 예를 들어 RF 유도 가열기(RF induction heater)일 수 있다.
일 구현예에서, 상기 플라즈마 반응기는 단결정 성장 공정을 최적으로 구현하고 단결정 결점을 최소화하기 위해서 예비가열기(16) 및 단결정 표면 가열수단(18)을 동시에 구비할 수 있다.
도 5는 예비가열기(16) 및 단결정 표면 가열수단(18)을 동시에 구비한 플라즈마 반응기(10)를 개략적으로 나타낸다.
다른 구현예에서, 상기 플라즈마 반응기는 단결정 성장 공정을 최적으로 구현하고 단결정 결점을 최소화하기 위해서 예비가열기(16) 및 보조 가열수단(19)을 동시에 구비할 수 있다.
도 6은 예비가열기(16) 및 보조 가열수단(19)을 동시에 구비한 플라즈마 반응기(10)를 개략적으로 나타낸다.
또 다른 구현예에서, 상기 플라즈마 반응기는 단결정 성장 공정을 최적으로 구현하고 단결정 결점을 최소화하기 위해서 예비가열기(16), 단결정 표면 가열수단(18) 및 보조 가열수단(19)을 동시에 구비할 수 있다.
도 7은 예비가열기(16), 단결정 표면 가열수단(18) 및 보조 가열수단(19)을 동시에 구비한 플라즈마 반응기(10)를 개략적으로 나타낸다.
이와 같이 온도 구배를 조절하여 우수한 결정질을 갖는 단결정을 형성하고, 결함을 최소화할 수 있다.
결정성장 영역(C) 및 결정성장 시드(14) 표면의 온도는 각각 상기 플라즈마 반응기(10) 내에서 추가적인 가열 수단 등을 부가하여 독립적으로 조절될 수 있으며, 성장시키고자 하는 단결정의 종류에 따라 온도 조절 범위는 달라질 수 있다.
상기 결정성장 시드(14) 표면의 온도는, 예를 들어, 약 1500 내지 약 2500℃일 수 있다.
상기 플라즈마에 의해 활성화된 원료는 상기 결정성장 영역(C)에서 이온과 전자가 재결합하면서 결정성장 시드(14) 표면에 도달하여 단결정으로 성장하기 때문에, 이온종에 의해 단결정 손상이 발생하지 않는다.
전술한 바와 같이 고출력 고온 플라즈마는 결정성장 원료 물질을 신속하게 열적으로, 화학적으로 활성화시키기에 적합하다. 이와 같이 활성화된 원료 물질은 플라즈마 상부에 위치한 결정성장 시드(14)에 도달하여 단결정으로 성장하게 된다.
일례로서, SiC 벌크 고체 원료를 사용한 SiC 결정성장의 경우를 들어 설명하면, SiC 벌크 고체원료가 원료 도입 영역(A)을 거쳐 플라즈마 활성화 영역(B)에 유입되면서 플라즈마에 의해 기화된다. 플라즈마 내부 전자와의 충돌로 인하여 Si 와 C 원자로 분해되며, 또한 플라즈마 전자로 인한 진동 여기(vibrational excition)로 SiC 기상 분자가 고준위의 진동 여기 구조에 이를 수도 있다.
이와 같이 여기된 원자와 분자들은 보조 가열수단(19)이 있는 경우, 약 2500℃ 이하로 온도가 유지되는 결정성장 시드(14) 표면에 이르러 SiC 단결정 성장이 진행된다.
결정성장 표면 온도는 기체상 활성화 물질보다 낮게 유지됨으로써 표면에서 표면 재배치(surface recombination)나 진동 천이(vibrational dexicitation)와 같은 열적 완화(thermal relaxation)가 진행된다.
진동 활성화 상태의 SiC 분자가 안정화 상태의 SiC로 천이를 거치면서 발생되는 에너지는 결정성장 표면에서 이동될 수 있는 포논(phonons)을 발생한다. 이러한 포논은 결정성장중에 발생하는 결함부위에 도달하여 결함구조를 최소화할 수 있는 에너지(annealing energy)를 공급한다.
플라즈마를 이용하여 결정성장 원료 물질을 활성화하는 경우의 주된 장점으로는 첫째, 신속하면서도 조절이 용이한 열적 활성화가 가능하다는 점과, 둘째, 플라즈마 내부 전자의 충격으로 인한 효율적인 원료물질의 분해와 활성화가 가능하다는 점, 셋째, 고온 성장로 없이 SiC와 같은 고체상 벌크 원료의 분자를 고에너지 준위 진동상으로 활성화할 수 있다는 점을 들 수 있다.
이와 같은 방식은 기존의 고온 성장로에 비해 에너지 효율이 우수하며 결정성장 속도를 증대할 수 있다.
플라즈마 반응기를 1 내지 2,000 torr의 압력으로 운전할 경우 플라즈마 전자는 발생 이온 및 가스와 지속적으로 충돌하게 되며 이러한 지속적인 충돌로 인해 발생하는 전자 에너지 전이에 의해 플라즈마 전자와 발생 이온이 결정성장 표면과 충돌하기 전에 충분히 재결합하게 되므로 정전기적 플라즈마로 인한 결정 성장 표면구조 훼손을 방지할 수 있다. 만약 1 내지 50 mtorr 사이의 저압 플라즈마의 경우에는 플라즈마 전자나 발생이온으로 인한 표면구조 훼손이 쉽게 발견할 수 있다.
예를 들어, 상기 플라즈마에 의한 단결정 성장 방법에 의한 SiC 결정성장의 경우, Si (기체), C (기체) 및 SiCx (기체)와 같은 결정성장 원료 물질의 농도는 원료물질 주입 속도, 플라즈마 전력, 이동 속도 그리고 플라즈마 펄스의 지속시간 등으로 조절될 수 있다. 플라즈마 가스의 이송 속도는 활성화된 물질이 결정성장 표면에 이르는 속도를 조정하는 결정적인 변수가 된다. 결정성장 시드 표면 온도와 전술한 인자들을 조절함으로써 고품위의 SiC, GaN, AlN 등의 단결정 성장이 가능하게 된다. 상기 플라즈마에 의한 단결정 성장 방법은 빠른 속도의 단결정 성장을 가능하게 하면서도, 결함이 최소화된 단결정을 형성할 수 있게 한다. 또한, 상기 플라즈마에 의한 단결정 성장 방법에 의해 넓은 표면적의 잉곳 성장이 가능하다.
예를 들어, 상기 플라즈마에 의한 단결정 성장 방법에 의한 단결정의 성장 속도를 약 0.1 내지 약 100 mm/hr으로 구현할 수 있으며, 또한 너비가 직경 약 5cm 내지 약 50cm인 단결정을 얻을 수 있다.
실시예 1
도 1과 같이 제조된 플라즈마 반응기(10)의 원료 투입구에 평균 입경 50㎛의 SiC 분말을 넣고, 캐리어 가스로서 아르곤 가스를 10 liter/min의 속도로 투입시키고, 500℃로 예비 가열시켜 플라즈마 반응 영역에 투입한 뒤, 직경 50mm의 SiC 웨이퍼로 형성된 잉곳으로 성장시켰다. 상기 플라즈마 반응 영역은 하기 조건으로 형성하였다. 플라즈마 반응 영역은 하기 조건 하에 수행되었다.
< 플라즈마 반응 영역 조건 >
- 공급되는 전력: 500 kW peak during pulse duration of 100 - 200 μs.
- 펄스 지속시간: 100 Hz
- 교류 주파수: 0.5 - 2 MHz
- 온도: 3,000 ℃ - 5,000 ℃
[부호의 설명]
10: 플라즈마 반응기
11: 지지대
12: 원료 투입부
13: 전원 공급용 전극 코일
14: 결정성장 시드
15: 반응 챔버
16: 예비가열기
18: 단결정 표면 가열수단
19: 보조 가열수단
A: 원료 도입 영역
B: 플라즈마 활성화 영역
C: 결정성장 영역
X: 플룸

Claims (22)

  1. 단결정 성장용 원료 및 캐리어 가스를 플라즈마 반응기 내에 도입하는 단계;
    상기 원료 및 캐리어 가스 혼합물이 플라즈마 반응기의 플라즈마 활성화 영역에서 활성화되는 단계; 및
    상기 플라즈마에 의해 활성화된 원료를 단결정 성장부에 도달시켜 단결정을 형성시키 단계;
    를 포함하는 플라즈마에 의한 단결정 성장 방법.
  2. 제1항에 있어서,
    상기 플라즈마 반응기에 인가하는 전압이 디지털 방식으로 조절된 펄스 전압인
    플라즈마에 의한 단결정 성장 방법.
  3. 제1항에 있어서,
    상기 플라즈마 반응기에 인가하는 전압이 펄스(pulsed) RF(radio frequency)에 의하여 조절되는
    플라즈마에 의한 단결정 성장 방법.
  4. 제3항에 있어서,
    상기 플라즈마 활성화 영역에 1μs 내지 10ms의 지속시간을 갖는 펄스 RF를 인가하는
    플라즈마에 의한 단결정 성장 방법.
  5. 제3항에 있어서,
    상기 플라즈마 활성화 영역에 10 kHz 내지 30 MHz의 주파수를 갖는 펄스 RF를 인가하는
    플라즈마에 의한 단결정 성장 방법.
  6. 제1항에 있어서,
    상기 플라즈마 반응기의 내부 압력이 1 내지 2,000 Torr인
    플라즈마에 의한 단결정 성장 방법.
  7. 제1항에 있어서,
    상기 플라즈마 반응기의 내부 압력이 5 내지 2,000 Torr인
    플라즈마에 의한 단결정 성장 방법.
  8. 제1항에 있어서,
    상기 원료는 기체상 원료, 고체상 벌크 원료 및 이들의 조합에서 선택된 적어도 하나를 포함하는
    플라즈마에 의한 단결정 성장 방법.
  9. 제8항에 있어서,
    상기 고체상의 벌크 원료는 0.01㎛ 내지 100㎛의 평균 입경을 갖는 입자인
    플라즈마에 의한 단결정 성장 방법.
  10. 제1항에 있어서,
    상기 원료 공급 단계에서 원료를 상기 플라즈마 활성화 영역으로 투입하기 전에 승온시키는 예비 가열 단계를 더 포함하는
    플라즈마에 의한 단결정 성장 방법.
  11. 제10항에 있어서,
    상기 예비 가열 단계가 상기 플라즈마 반응기에 구비된 RF 유도 가열기에 의해 이루어지는
    플라즈마에 의한 단결정 성장 방법.
  12. 제1항에 있어서,
    상기 플라즈마의 온도는 1,000 내지 10,000℃인
    플라즈마에 의한 단결정 성장 방법.
  13. 제1항에 있어서,
    상기 캐리어 가스는 아르곤, 질소, 헬륨 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나인
    플라즈마에 의한 단결정 성장 방법.
  14. 제13항에 있어서,
    상기 캐리어 가스는 도판트를 더 포함하는
    플라즈마에 의한 단결정 성장 방법.
  15. 제1항에 있어서,
    상기 단결정 형성 단계에서 상기 플라즈마 반응기에 구비된 추가적인 가열수단을 통해 가열하는 단계를 더 포함하는
    플라즈마에 의한 단결정 성장 방법.
  16. 제15항에 있어서,
    상기 추가적인 가열수단으로서 단결정 성장 표면을 가열하는 단결정 표면 가열수단을 더 포함하는
    플라즈마에 의한 단결정 성장 방법.
  17. 제16항에 있어서,
    상기 단결정 표면 가열수단은 RF 유도 가열기(RF induction heater), 플라즈마 가열기(plasma heater), 적외선 레이져(IR laser) 및 이들의 조합으로 이루어진 군에서 선택된 하나 이상인
    플라즈마에 의한 단결정 성장 방법.
  18. 제15항에 있어서,
    상기 추가적인 가열수단으로서 플라즈마 활성화 영역을 떠나는 플라즈마화된 원료 물질을 가열하는 보조 가열수단을 더 포함하는
    플라즈마에 의한 단결정 성장 방법.
  19. 제18항에 있어서,
    상기 보조 가열수단은 RF 유도 가열기(RF induction heater)인
    플라즈마에 의한 단결정 성장 방법.
  20. 제1항에 있어서,
    상기 플라즈마 반응기는 상기 플라즈마 활성화 영역으로 투입되기 전에 상기 원료를 가열하는 예비가열기 및 상기 단결정 성장 표면을 가열하는 단결정 표면 가열수단을 더 포함하는
    플라즈마에 의한 단결정 성장 방법.
  21. 제1항에 있어서,
    상기 플라즈마 반응기는 상기 플라즈마 활성화 영역으로 투입되기 전에 상기 원료를 가열하는 예비가열기 및 활성화 영역을 떠나는 플라즈마화된 원료 물질을 가열하는 보조 가열수단을 더 포함하는
    플라즈마에 의한 단결정 성장 방법.
  22. 제1항에 있어서,
    상기 플라즈마 반응기는 상기 플라즈마 활성화 영역으로 투입되기 전에 상기 원료를 가열하는 예비가열기, 상기 단결정 성장 표면을 가열하는 단결정 표면 가열수단 및 플라즈마 활성화 영역을 떠나는 플라즈마화된 원료 물질을 가열하는 보조 가열수단을 더 포함하는
    플라즈마에 의한 단결정 성장 방법.
PCT/KR2014/002577 2013-04-26 2014-03-26 플라즈마에 의한 단결정 성장 방법 WO2014175560A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0046981 2013-04-26
KR1020130046981A KR20140128157A (ko) 2013-04-26 2013-04-26 플라즈마에 의한 단결정 성장 방법

Publications (1)

Publication Number Publication Date
WO2014175560A1 true WO2014175560A1 (ko) 2014-10-30

Family

ID=51792083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002577 WO2014175560A1 (ko) 2013-04-26 2014-03-26 플라즈마에 의한 단결정 성장 방법

Country Status (2)

Country Link
KR (1) KR20140128157A (ko)
WO (1) WO2014175560A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116240624A (zh) * 2023-03-21 2023-06-09 通威微电子有限公司 等离子辅助晶体生长装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020069608A (ko) * 2001-02-27 2002-09-05 한국과학기술연구원 펄스 플라즈마를 이용한 이온 주입 방법 및 그 시스템
JP2003137696A (ja) * 2001-11-05 2003-05-14 Denso Corp 炭化珪素単結晶の製造方法および製造装置
JP2011073915A (ja) * 2009-09-30 2011-04-14 Fuji Electric Holdings Co Ltd SiC単結晶製造方法、およびそれを用いて製造するSiC結晶
JP5019326B2 (ja) * 2008-02-23 2012-09-05 シチズンホールディングス株式会社 MgaZn1−aO単結晶薄膜の作製方法
KR101203877B1 (ko) * 2010-11-26 2012-11-22 한국표준과학연구원 단결정 제조 방법, 단결정 제조 장치, 및 단결정

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020069608A (ko) * 2001-02-27 2002-09-05 한국과학기술연구원 펄스 플라즈마를 이용한 이온 주입 방법 및 그 시스템
JP2003137696A (ja) * 2001-11-05 2003-05-14 Denso Corp 炭化珪素単結晶の製造方法および製造装置
JP5019326B2 (ja) * 2008-02-23 2012-09-05 シチズンホールディングス株式会社 MgaZn1−aO単結晶薄膜の作製方法
JP2011073915A (ja) * 2009-09-30 2011-04-14 Fuji Electric Holdings Co Ltd SiC単結晶製造方法、およびそれを用いて製造するSiC結晶
KR101203877B1 (ko) * 2010-11-26 2012-11-22 한국표준과학연구원 단결정 제조 방법, 단결정 제조 장치, 및 단결정

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116240624A (zh) * 2023-03-21 2023-06-09 通威微电子有限公司 等离子辅助晶体生长装置和方法
CN116240624B (zh) * 2023-03-21 2023-09-26 通威微电子有限公司 等离子辅助晶体生长装置和方法

Also Published As

Publication number Publication date
KR20140128157A (ko) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2013103194A1 (ko) 처리유닛을 포함하는 기판 처리 장치
EP0442304A3 (en) Polycrystalline cvd diamond substrate for single crystal epitaxial growth of semiconductors
WO2014175560A1 (ko) 플라즈마에 의한 단결정 성장 방법
KR20110032695A (ko) 유도가열 금속 증착원
EP2284122A1 (en) Low nitrogen concentration carbonaceous material and manufacturing method thereof
WO2018143581A1 (ko) 면취 장치 및 면취 방법
WO2020130608A2 (ko) 그래핀 제조장치 및 이를 이용한 그래핀 제조방법
JP2004297034A (ja) 熱処理装置及びそれを用いた熱処理方法
US4565711A (en) Method of and apparatus for the coating of quartz crucibles with protective layers
RU2032765C1 (ru) Способ нанесения алмазного покрытия из паровой фазы и устройство для его осуществления
CN113174631A (zh) 符合产业化生产的高厚度低缺陷六英寸碳化硅晶体生长方法
JP5262203B2 (ja) 化合物半導体単結晶の製造装置および製造方法
KR101632798B1 (ko) 열플라즈마에 의한 단결정 성장 방법
WO2013062221A1 (ko) 타이타늄-니켈 합금박막 및 다중 스퍼터링법을 이용한 타이타늄-니켈 합금박막의 제조 방법
JP2007123675A (ja) 単結晶SiC基板の製造方法
JP4449307B2 (ja) ウエーハの熱処理方法及び熱処理装置
WO2016122046A1 (en) Inductive heating linear evaporation deposition apparatus
WO2021235590A1 (ko) 붕소 전구체의 열처리를 통한 질화붕소나노튜브의 제조방법 및 장치
WO2022039320A1 (ko) 나노 재료의 제조방법 및 장치
WO2022108037A1 (ko) 나노 재료 합성용 독립형 전구체 및 이를 이용한 나노 재료 합성 장치
WO2010098604A2 (ko) 플라즈마를 이용한 어닐링 장치
WO2023277559A1 (ko) 정전 척, 이를 포함하는 정전 척 히터 및 반도체 유지장치
JPH0226895A (ja) ダイヤモンド気相合成方法及びその装置
Kawama et al. In-situ control in zone-melting recrystallization process for formation of high-quality thin film polycrystalline Si
KR102105049B1 (ko) 기판 처리 장치용 윈도우, 기판 처리 장치 및 기판 처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788001

Country of ref document: EP

Kind code of ref document: A1