WO2020130608A2 - 그래핀 제조장치 및 이를 이용한 그래핀 제조방법 - Google Patents

그래핀 제조장치 및 이를 이용한 그래핀 제조방법 Download PDF

Info

Publication number
WO2020130608A2
WO2020130608A2 PCT/KR2019/017939 KR2019017939W WO2020130608A2 WO 2020130608 A2 WO2020130608 A2 WO 2020130608A2 KR 2019017939 W KR2019017939 W KR 2019017939W WO 2020130608 A2 WO2020130608 A2 WO 2020130608A2
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst metal
roller portion
roller
graphene
chamber
Prior art date
Application number
PCT/KR2019/017939
Other languages
English (en)
French (fr)
Other versions
WO2020130608A3 (ko
Inventor
정현준
김재현
원세정
박종진
곽준혁
이학주
장봉균
박현성
김경식
Original Assignee
재단법인 파동에너지 극한제어연구단
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 파동에너지 극한제어연구단, 한국기계연구원 filed Critical 재단법인 파동에너지 극한제어연구단
Priority to US17/416,518 priority Critical patent/US11712674B2/en
Publication of WO2020130608A2 publication Critical patent/WO2020130608A2/ko
Publication of WO2020130608A3 publication Critical patent/WO2020130608A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0073Sealings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1887Stationary reactors having moving elements inside forming a thin film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/22Stationary reactors having moving elements inside in the form of endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/03Pressure vessels, or vacuum vessels, having closure members or seals specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/001Controlling catalytic processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the present invention relates to a graphene manufacturing apparatus and a graphene manufacturing method using the same, in detail, to a graphene manufacturing apparatus using joule heating to generate heat by passing current through a conductor and a graphene manufacturing method using the same It is about.
  • CarbonNanotube CarbonNanotube
  • Graphene Graphite
  • graphene is a structure in which carbon atoms consist of a layer of atoms in a two-dimensional plane.
  • graphene has excellent electrical, mechanical, and chemical properties, and is an excellent conductive material. It transfers electrons much faster than silicon and can flow a much larger current than copper, which separates graphene from graphite in 2004. As a method was discovered, it was proved through experiments, and many studies have been conducted so far.
  • the electrical properties of graphene can be changed according to the crystal orientation of graphene of a given thickness, so that the user can express electrical properties in a selected direction, and thus the device can be designed easily. Therefore, graphene can be effectively used in carbon-based electrical or electromagnetic devices.
  • An object of the present invention is to solve the conventional problems, the present invention is arranged so that at least a portion of the catalytic metal passing between the first roller portion and the second roller portion to be heated to have a movement path facing each other , To provide a graphene manufacturing apparatus and a graphene manufacturing method using the graphene manufacturing apparatus to compensate for the temperature deviation of the catalytic metal generated between the first roller portion and the second roller portion to maintain a uniform temperature over the entire area.
  • a graphene manufacturing apparatus includes a chamber in which a space for graphene synthesis is provided; And a first roller part and a second roller part arranged to be spaced apart from each other in the chamber to support the catalytic metal penetrating the inside of the chamber and to heat the catalytic metal by receiving a current for graphene synthesis.
  • the first region of the catalyst metal close to the first roller portion and the second roller portion close It characterized in that the second region of the catalyst metal is disposed to have a movement path facing each other.
  • the catalytic metal may have a movement path in which the first region and the second region face each other as it is stretched downward between the first roller portion and the second roller portion.
  • a displacement sensor disposed on the lower side of the first roller portion and the second roller portion to detect whether the lengths extending from the first roller portion and the second roller portion to the lower side of the catalyst metal coincide with the reference deflection length; And it may further include a control unit for controlling the rotational speed of the first roller portion or the second roller portion so that the elongated length of the catalytic metal sensed by the displacement sensor matches the reference deflection length.
  • the chamber the introduction portion for introducing the catalyst metal into the interior; And a discharge portion for discharging the catalyst metal synthesized with graphene to the outside, which is disposed in the introduction portion and the discharge portion, and guides the movement of the catalyst metal while simultaneously blocking the inflow of external air. It may further include; a sealing guide having a guide hole elastically contacting the surface of the catalytic metal being moved.
  • the sealing guide includes a pair of sealing guides arranged to be spaced apart from each other in the moving direction of the catalyst metal, and may further include an auxiliary vacuum pump that creates a space between the pair of sealing guides in a vacuum atmosphere.
  • the sealing guide a guide body having a first through hole through which the catalyst metal is formed; A guide cover having a second through hole through which the catalytic metal passes; A sealing member interposed between the guide body and the guide cover, wherein the guide hole is formed; And a fastening member for fastening the guide body and the guide cover with the sealing member interposed therebetween.
  • the size of the guide hole disposed in the discharge portion may be formed larger than the size of the guide hole disposed in the introduction portion.
  • it is disposed inside the chamber, it may further include a protective film supply for forming a protective layer on the graphene layer of the catalyst metal passing through the first roller portion and the second roller portion.
  • first roller portion and the second roller portion may be further adjacent to or spaced apart from each other, and may further include a roller moving member that adjusts a gap between the first region and the second region.
  • the method for manufacturing graphene according to the present invention comprises: a supply step of supplying the catalyst metal into the chamber; In order to compensate for the temperature deviation of the catalyst metal passing between the first roller portion and the second roller portion, the catalyst close to the first roller portion and the first region of the catalyst metal and the second roller portion A disposing step of disposing the catalytic metal in the chamber such that the second regions of the metal have moving paths facing each other; A synthesis step of synthesizing graphene on the catalyst metal; And a recovery step of recovering the catalyst metal synthesized from the graphene from the chamber.
  • the first region and the second region may have a movement path facing each other.
  • the sensing step of detecting whether the length extending from the first roller portion and the second roller portion to the lower side of the catalyst metal matches the reference deflection length; And an adjusting step of controlling the rotational speed of the first roller portion or the second roller portion so that the length of the catalyst metal sagging coincides with the reference deflection length.
  • the first roller portion and the second roller portion may further include a protective film forming step of forming a protective layer on the graphene layer of the catalyst metal.
  • the graphene manufacturing apparatus and the graphene manufacturing method according to an embodiment of the present invention with respect to the catalyst metal passing between the first roller portion and the second roller portion, have a first region close to the electrode centered on an intermediate region farthest from the electrode.
  • the second region has a movement path facing each other, by exchanging radiant heat between the first region and the second region, the total area of the catalytic metal passing between the first roller portion and the second roller portion is It is possible to form a uniform temperature profile. As a result, uniform graphene can be obtained by this.
  • the present invention can not only thermally compensate for the mutual interaction between the first and second regions of the catalytic metal, but also promote the greenhouse action in the internal space, so that the high temperature profile of the catalytic metal as a whole can be uniformly maintained even under limited power. have.
  • the present invention can maintain a uniform temperature profile with respect to the long length (area) of the catalyst metal passing between the first roller portion and the second roller portion, the yield of high-quality graphene is greatly increased compared to the prior art. I can do it.
  • the present invention can accurately set and adjust the lengths of the first and second regions facing the catalyst metal by controlling the first roller portion and the second roller portion based on the values sensed by the displacement sensor. Even during the synthesis process, it is possible to maintain the temperature profile of the catalyst metal uniformly.
  • the present invention by arranging the supply unit/recovery unit outside the chamber, that is, in the atmospheric pressure state, enables space-saving and reduced design of the chamber, and facilitates preparation for graphene production and management in the front and rear processes.
  • the present invention includes a sealing guide that guides the catalyst metal moving in and out of the chamber, thereby ensuring stable movement without damage or loss of the catalyst metal and the catalyst metal synthesized by graphene, and at the same time By blocking the inflow, it is possible to stably maintain the vacuum atmosphere inside the vacuum chamber.
  • FIG. 1 is a view schematically showing a graphene manufacturing apparatus according to an embodiment of the present invention.
  • Figure 2 is an exploded perspective view showing a sealing guide of the graphene manufacturing apparatus according to an embodiment of the present invention.
  • 3 is a temperature profile for each location of the catalyst metal passing between the first electrode roller and the second electrode roller, and the location of the catalyst metal passing between the first electrode roller and the second electrode roller according to an embodiment of the present invention. It is a diagram for comparing and explaining the temperature profiles of stars.
  • Figure 4 is a schematic diagram showing the movement path of the catalyst metal under the control of the first roller portion and the second roller portion according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram showing a change in the movement path of the catalyst metal under the control of the roller moving member according to an embodiment of the present invention.
  • FIG. 6 is a view schematically showing a graphene manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 1 is a view schematically showing a graphene manufacturing apparatus according to an embodiment of the present invention.
  • the manufacturing apparatus includes a chamber 100, a supply unit 200, a recovery unit 300, a first roller unit 400, a second roller unit 500, and a control unit It may include (600).
  • the chamber 100 is provided with an internal space for forming graphene (G).
  • the chamber 100 may be provided with a gas inlet 101 through which gas for synthesizing graphene (G) is introduced and a gas outlet 102 through which gas is discharged.
  • G graphene
  • a reaction gas which is a gas containing carbon
  • the reaction gas is, for example, one selected from the group consisting of methane, carbon monoxide, carbon dioxide, ethane, ethylene, ethanol, acetylene, propane, propylene, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene and toluene.
  • the above can be used.
  • a carrier gas for transporting the reaction gas onto the catalyst metal (M) and a reducing gas for removing impurities on the surface of the catalyst metal (M) are also included.
  • the carrier gas may be an inert gas such as helium or argon
  • the reducing gas may be a non-reactive gas such as hydrogen. That is, the hydrogen gas used as the reducing gas can induce a reducing atmosphere, thereby removing impurities by controlling impurities in the catalyst metal (M) through reduction with the catalyst metal (M).
  • the reaction gas required for the synthesis of graphene (G), the carrier gas and the reducing gas may be filled or exhausted in the chamber 100.
  • a main vacuum pump 150 may be provided at the gas outlet 102 of the chamber 100.
  • the interior of the chamber 100 through the main vacuum pump 150 may be composed of a vacuum atmosphere.
  • the chamber 100 may be provided with an introduction portion 110 for introducing the catalyst metal (M) into the interior, and a discharge portion 120 for discharging the catalyst metal (M) synthesized with graphene (G) to the outside. have.
  • the supply unit 200 supplies the catalyst metal M for graphene (G) synthesis, and may be disposed outside the chamber 100.
  • the supply unit 200 may be disposed outside the chamber 100 in an atmospheric pressure state, not inside the chamber 100 of the vacuum atmosphere.
  • the supply unit 200 may include a supply roller 201, and the catalyst metal M wound on the supply roller 201 is released as the supply roller 201 is rotated, and the chamber 100 is released. It can be supplied internally.
  • the part contacting the catalytic metal (M) is made of an insulating material.
  • the recovery unit 300 is to recover the catalyst metal (M) synthesized graphene (G), and may be disposed outside the chamber 100 as in the supply unit 200. In other words, the recovery unit 300 may be disposed outside the chamber 100 in an atmospheric pressure state, not inside the chamber 100 of the vacuum atmosphere.
  • the recovery unit 300 may include a recovery roller 301, and the catalyst metal M synthesized with graphene (G) is recovered from the recovery roller 301 by rotating the recovery roller 301. Can be recovered by winding.
  • the recovery roller 301 can also directly contact the catalytic metal (M) to be heated, it is preferable that the part in contact with the catalytic metal (M) is made of an insulating material.
  • the catalyst metal M can be moved at a uniform speed by rotating the supply roller of the supply unit 200 and the recovery roller 301 of the recovery unit 300 at the same rotational speed in the same direction.
  • the supply unit 200 and the recovery unit 300 may be controlled independently of each other.
  • the rotational speeds of the supply roller 201 of the supply unit 200 and the recovery roller 301 of the recovery unit 300 are controlled independently of each other through the control unit 600 to supply and recover the catalyst metal M Speed can be adjusted.
  • the horizontal state of the catalyst metal passing through the section between the supply part 200 and the first roller part 400 may be uniformly maintained, and similarly, passing through the section between the second roller part 500 and the recovery part 300 It is possible to maintain the horizontal state of the catalyst metal uniformly.
  • the chamber 100 has an introduction unit for introducing the catalyst metal M supplied from the supply unit 200 into the chamber 100 ( 110), and toward the recovery unit 300 may be configured with a discharge portion 120 for discharging the catalytic metal (M) synthesized graphene (G) to the outside.
  • Figure 2 is an exploded perspective view showing a sealing guide of the graphene manufacturing apparatus according to an embodiment of the present invention.
  • the introduction part 110 and the exit part 120 guide the movement of the catalyst metal M and at the same time block the inflow of external air, and move the catalyst metal M through.
  • the sealing guides 111 and 121 are disposed inside the introduction part 110 and the exit part 120, respectively, so that the inner spaces of the introduction part 110 and the exit part 120 are separated by the sealing guides 111 and 121. have.
  • the sealing guides 111 and 121 include a guide body 1111 formed with a first through hole 1111a through which the catalyst metal M passes, and a second through hole 1112a through which the catalyst metal M passes.
  • the formed guide cover 1112 and the guide body 1111 and the guide cover 1112 is interposed between the guide hole 1110a which is elastically contacting the surface of the catalytic metal (M) to be penetrated is formed.
  • the member 1110 and the sealing member 1110 may be interposed between the guide body 1111 and the guide cover 1112 to include a fastening member 1113 for fastening.
  • Reference numerals 1110b, 1111b, and 1112b are fasteners to which the fastening members 1113 are fastened.
  • the sealing member 1110 may be either rubber or silicone.
  • the sealing member 1110 is not limited thereto, and any material may be applied as long as it has a material having its own elastic force. Furthermore, the absence of a metamaterial or auxetic structure may be applied.
  • the guide hole 1110a formed in the sealing member 1110 is preferably formed smaller than the cross-sectional profile of the catalyst metal (M).
  • M catalyst metal
  • the size of the sealing guide 121 side guide hole 1110a disposed in the discharge part 120 is larger than the size of the sealing guide 111 side guide hole 1110a disposed in the introduction portion 110. It is desirable.
  • the sealing guide 111 of the introduction portion 110 is to pass the catalyst metal (M) flowing from the supply portion 200
  • the sealing guide 121 of the exit portion 120 is graphene (G) is synthesized
  • the exit portion 120 side sealing guide 121 The size of the guide hole 1110a provided in may be larger than the size of the guide hole 1110a provided in the sealing guide 121 on the introduction part 110 side.
  • a guide hole 1110a having a size corresponding to a cross-sectional profile of the catalyst metal (M) is formed in the sealing member 1110 on the introduction part 110 side, and the sealing member 1110 on the exit part 120 side is graphene.
  • a guide hole 1110a having a size corresponding to the cross-sectional profile of the catalyst metal M in which (G) is synthesized may be formed.
  • a plurality of the sealing guides 111 and 121 may be configured with respect to the moving direction of the catalyst metal M in the interior spaces of the introduction part 110 and the exit part 120.
  • a pair of sealing guides 111 and 121 are respectively spaced apart from the moving direction of the catalyst metal M in the inner spaces of the introduction part 110 and the exit part 120.
  • the space between the pair of sealing guides 111 and 121 may be connected to the auxiliary vacuum pump 155.
  • the space between the pair of sealing guides 111 and 121 can be formed with a vacuum atmosphere, and when the space between the pair of sealing guides 111 and 121 is formed with a vacuum atmosphere, the sealing members interposed in each of the sealing guides 111 and 121 ( 1110) to maintain a stable vacuum pressure.
  • the auxiliary vacuum pump 155 unlike the main vacuum pump 150 is provided to create a vacuum atmosphere inside the chamber 100, a pair of sealing guides disposed in the inlet 110 and the outlet 120 The space between (111 and 121) is created as a vacuum atmosphere, and a low specification pump may be provided.
  • the auxiliary vacuum pump 155 is excluded, and the space between the pair of sealing guides 111 and 121 may be directly connected to the main vacuum pump 150 connected to the chamber 100. That is, at the same time that the inside of the chamber 100 is formed as a vacuum atmosphere through the main vacuum pump 150, the interior space of the pair of sealing guides 111 and 121 disposed in the introduction section 110 and the exit section 120 is vacuum atmosphere. It can also be composed of.
  • the supply part 200 and the recovery part 300 are disposed outside the chamber 100, which is an atmospheric pressure environment, the catalyst metal (M), the supply roller 201, the supply motor, and the recovery roller 301, Since related devices such as a recovery motor can be completely excluded from inside the chamber 100, a greater effect is generated in space-saving and reduced design inside the chamber 100.
  • the supply part 200 and the recovery part 300 are disposed outside the chamber 100, which is an atmospheric pressure environment, process preparation of the catalyst metal (M) for graphene (G) preparation and linkage work with before and after processes are performed. Another advantage is ease of management.
  • first roller part 400 and the second roller part 500 provide a substantial graphene (G) composite region for the catalyst metal (M), and are spaced apart from each other inside the chamber 100, (100) It supports the catalyst metal (M) penetrating the inside and receives the current from an external power supply (not shown) for graphene (G) synthesis to heat the catalyst metal.
  • the first roller part 400 and the second roller part 500 may be installed to support the catalyst metal M passing through the chamber 100. That is, as it is configured to be in close contact with the catalyst metal M at the same time as supporting, it is possible to smoothly supply the current for heating the string to the catalyst metal M.
  • first roller part 400 may include a first electrode roller 410 and a first support roller 420
  • second roller part 500 may include a second electrode roller 510 and a first electrode part.
  • 2 may include a support roller (520).
  • the first roller part 400 and the second roller part 500 have the same configuration, and only the first roller part 400 will be described in detail.
  • the first electrode roller 410 which is supplied with current from the power supply unit and heats the catalyst metal (M), stably contacts and supports the catalyst metal (M) by line contact or surface contact with the catalyst metal (M). It can supply a uniform current, it can prevent damage caused by slip of the catalyst metal (M) by rolling in conjunction with the movement of the catalyst metal (M).
  • the first electrode roller 410 may be made of a copper material.
  • the first support roller 420 is disposed to face the first electrode roller 410 with the catalyst metal (M) therebetween, and the catalyst metal (M) is brought into line contact or surface contact with the catalyst metal (M). ) Can be stably contacted, and the damage caused by slip of the catalyst metal M can also be prevented by rolling in conjunction with the movement of the catalyst metal M.
  • the first electrode roller 410 and the first support roller 420 guide the movement of the catalyst metal M while stably supporting the lower surface and the upper surface of the catalyst metal M.
  • the first electrode roller 410 and the first support roller 410 may be connected to the gap adjusting member 430.
  • the gap adjusting member 430 has one end connected to the rotating shaft of the first electrode roller 410, the other end connected to the rotating shaft of the first support roller 420, and at least one end of the first electrode roller ( 410) or the first support roller 420 may be implemented as a slot is formed so that the rotating shaft is slidable.
  • the distance between the first electrode roller 410 and the first support roller 420 may be adjusted.
  • the first electrode roller 410 and the first support roller 420 using the gap adjusting member 430 the first electrode roller 410 and the first support roller 420 using the gap adjusting member 430 .
  • the distance between the second electrode roller 510 and the second support roller 520 can be adjusted, the catalytic metal (M) or the graphene (G) synthesized catalytic metal (M) is stably supported. I can do it.
  • the length of the catalytic metal M passing between the first roller part 400 and the second roller part 500 can be uniformly maintained.
  • the first supporting roller 420 and the second supporting roller 520 are also supplied with current for heating the string of the catalyst metal M.
  • the first support roller 420 and the second support roller 520 may also be made of copper material, such as the first electrode roller 410 and the second electrode roller 510.
  • the rotational speeds of the first roller unit 400 and the second roller unit 500 may be controlled independently of each other.
  • each rotational speed of the first electrode roller 410 and the first support roller 420 and the second electrode roller 510 and the second support roller 520 are individually controlled through the control unit 600. Can be.
  • the first electrode roller 410 may be a drive shaft
  • the first support roller 420 may be a driven shaft
  • the second electrode roller 510 may be a drive shaft
  • the second support roller 520 may be a driven shaft.
  • first support roller 420 may be the drive shaft
  • first electrode roller 410 may be the driven shaft
  • second support roller 520 may be the drive shaft
  • second electrode roller 510 may be the driven shaft.
  • the catalyst metal passing between the first roller part 400 and the second roller part 500 can be fine-tuned. This will be described later in more detail.
  • the manufacturing apparatus according to an embodiment of the present invention, means for compensating the temperature deviation between the first roller portion 400 and the second roller portion 500, that is, the catalyst metal (M) passing through the synthetic region Gives
  • a first region of the catalyst metal M close to the first roller part 400 (A1) and the second region A2 of the catalyst metal M close to the second roller part 500 may be arranged to have a movement path facing each other.
  • the catalyst metal M passing between the first roller part 400 and the second roller part 500 is stretched downward between the first roller part 400 and the second roller part 500. Accordingly, the first area A1 and the second area A2 have a movement path facing each other.
  • FIG. 3 is a graph showing a temperature profile for each location of a catalyst metal passing between a first electrode roller and a second electrode roller, and a catalyst passing between a first electrode roller and a second electrode roller according to an embodiment of the present invention It is a diagram comparing graphs showing temperature profiles for each metal location.
  • the temperature profile for each location is indicated by a dotted line on the graph.
  • the temperature may be lowered toward both ends closer to the electrode roller.
  • the first region (A1) and the second region (A2) leading to both ends close to the electrode roller are spaced apart, except for the middle region of the catalyst metal (M) that is farthest from the electrode roller. Since they are disposed to face each other, the radiant heat is exchanged with each other as the radiant heat is radiated toward the catalytic metal M facing each other. As a result, the temperature profiles of the first region A1 and the second region A2 of the catalytic metal M facing each other are substantially raised.
  • the temperature profile (solid line) of the catalyst metal (M) according to the embodiment of the present invention is uniform over the entire area of the catalyst metal (M) compared to the temperature profile (dashed line) of the conventional catalyst metal
  • One temperature profile is shown, whereby uniform graphene (G) can be obtained as a whole.
  • the catalyst metal (M) since the catalyst metal (M) according to an embodiment of the present invention is stretched downward between the first roller portion 400 and the second roller portion 500, it maintains a U-shaped movement path, and thus the catalyst It is also possible to implement a so-called greenhouse function that traps heat in the interior spaces facing each other in the first region A1 and the second region A2 of the metal M.
  • the temperature profile (solid line) according to the present invention is due to the greenhouse action generated in the interior spaces facing each other in the first region A1 and the second region A2 of the catalyst metal M It is also possible to maintain the temperature T1 ⁇ T2 as a whole higher than the conventional temperature profile (dotted line).
  • Figure 4 is a schematic diagram showing the movement path of the catalyst metal under the control of the first roller portion and the second roller portion according to an embodiment of the present invention.
  • the graphene manufacturing apparatus detects the movement path of the catalyst metal (M) passing through the first roller part 400 and the second roller part 500 It may include a displacement sensor 700.
  • the displacement sensor 700 is disposed under the first roller portion 400 and the second roller portion 500, so that the first roller portion 400 and the second roller portion It is possible to detect whether the length extending downward from the catalyst metal M from the 500 coincides with the reference deflection length L.
  • the displacement sensor 700 is disposed at a height H spaced a predetermined distance below the first roller portion 400 and the second roller portion 500, and the lowermost portion (middle) of the catalyst metal M By measuring the height H1 of the negative), it is possible to detect whether the deflection length of the catalyst metal M coincides with the reference deflection length L.
  • the controller 600, the first roller unit 400 or the second roller unit (so that the length of the catalytic metal (M) detected from the displacement sensor 700 coincides with the reference deflection length (L) ( The rotation speed of 500) can be controlled.
  • the rotational speed of the first roller unit 400 is relatively slow or the rotational speed of the second roller unit 500
  • the elongated length of the catalyst metal M can be matched to the reference deflection length L
  • the first The length of the catalyst metal M can be matched to the reference deflection length L by making the rotational speed of the roller 400 relatively fast or relatively slowing the rotational speed of the second roller 500.
  • the reference deflection length (L) is the optimum deflection forming a uniform temperature profile as a whole for the catalyst metal (M) passing between the first roller portion 400 and the second roller portion 500 It corresponds to the length.
  • the catalyst metal M passing between the first roller part 400 and the second roller part 500 is shorter than the reference deflection length L, the catalyst metal M may face each other. Since the first region A1 and the second region A2 are reduced, the synthesis of graphene G is performed in a relatively narrow region, and between the first region A1 and the second region A2. Effective heat transfer may not be secured.
  • the catalyst metals M face each other. Since the first region A1 and the second region A2 are enlarged, graphene G may be synthesized in relatively many regions, but between the first region A1 and the second region A2. Due to excessive heat transfer and large greenhouse action, the catalyst metal (M) can be heated above the required temperature.
  • the catalyst metal M passing between the first roller part 400 and the second roller part 500 is in a state in which tension is excluded regardless of the supply speed of the supply unit 200 and the recovery speed of the recovery unit 300. Accordingly, it is possible to prevent the phenomenon that the catalyst metal is cut off due to excessive tension in the graphene synthesis process.
  • the control unit 600 controls the supply unit 200 and the recovery unit 300 individually, so that the catalyst metal passing through the section between the supply unit 200 and the first roller unit 400, the recovery unit 300, and It is possible to compensate for the horizontal state of the catalyst metal passing through the section between the two rollers 500.
  • the graphene manufacturing apparatus may include a temperature sensor for sensing the temperature of the catalyst metal.
  • the temperature sensor may measure the temperature of the catalyst metal (M) in real time, and transmit the measured value to the controller 600.
  • control unit 600 supplies appropriate power to the first roller unit 400 and the second roller unit 500 through a power supply unit (not shown) to match the preset reference temperature (graphene synthesis temperature). To do.
  • Figure 5 is a schematic diagram showing a change in the movement path of the catalyst metal (M) under the control of the roller moving member according to an embodiment of the present invention.
  • the manufacturing apparatus according to an embodiment of the present invention, the first roller portion 400 and the second roller portion 500 adjacent to or separated from each other, the first roller portion It includes a roller moving member 450 for adjusting the gap between the first region (A1) and the second region (A2) of the catalyst metal (M) passing between the 400 and the second roller portion 500 You can.
  • the roller moving member 450 is connected to each rotation axis of the first electrode roller 410 and the second electrode roller 510, but each rotation axis of the first electrode roller 410 and the second electrode roller 510 A slot may be formed to be slidable in the horizontal direction.
  • first electrode roller 410 and the second electrode roller 510 are brought into close proximity to each other by sliding each axis of rotation of the first electrode roller 410 and the second electrode roller 510 on the slot. As it moves away, the distance between the first electrode roller 410 and the second electrode roller 510 can be adjusted.
  • roller moving member 450 may be configured in the first support roller 420 and the second support roller 520.
  • the agent for facing the catalyst metal M As shown in FIG. 5, for example, when the first roller part 400 and the second roller part 500 are moved close by driving the roller moving member 450, the agent for facing the catalyst metal M The first area A1 and the second area A2 are moved closer to each other, and at the same time, the deflection length is also increased. As the distance D between the first region A1 and the second region A2 approaches, the heat transfer between the first region A1 and the second region A2 becomes more active and confines heat. Also improved.
  • the first roller part 400 and the second roller part 500 are moved away from each other by driving the roller moving member 450, the first area A1 and the second area facing the catalyst metal M (A2) moves away from each other, and at the same time, the deflection length becomes shorter.
  • the distance D between the first region A1 and the second region A2 increases, the heat transfer between the first region A1 and the second region A2 is relatively reduced and the greenhouse traps heat. The action is also relatively reduced.
  • FIG. 6 is a view schematically showing a graphene manufacturing apparatus according to another embodiment of the present invention.
  • the graphene manufacturing apparatus is disposed inside the chamber 100, the graph of the catalyst metal (M) passing through the first roller portion 400 and the second roller portion 500
  • a protective film supply unit 800 for forming the protective film layer F on the pin G layer may be included.
  • the protective film (F) is made of an adhesive material, and is attached on the graphene (G) layer of the catalyst metal (M).
  • the protective film supply unit 800 may be implemented by a supply roller that rotates at the same rotational speed as the supply unit 200 and the recovery unit 300, and the first roller unit 400 and the second As the graphene (G) passes through the roller portion 500 and provides a protective film (F) toward the synthesized catalyst metal (M), the protective film (F) on the graphene (G) layer of the catalyst metal (M) ) Can be attached.
  • the catalyst metal (M) in which graphene (G) is synthesized to the outside under atmospheric pressure in the state where the protective film (F) is attached on the graphene (G) layer inside the chamber 100 of the vacuum atmosphere As it is discharged, it is possible to minimize the loss of graphene (G), and obtain graphene (G) of excellent quality.
  • a method for manufacturing graphene may include a supply step, a batch step, a synthesis step, and a recovery step.
  • the supply step is a step of supplying the catalyst metal (M) inside the chamber 100, for example, by driving the supply roller 201 of the supply unit 200 to the catalyst metal (M) inside the chamber 100 Can supply.
  • the catalyst metal M passes through the first roller part 400 and the second roller part 500 disposed inside the chamber 100, and close to the first roller part 400.
  • the catalyst metal (M) supplied into the chamber 100 passes between the first roller part 400 and the second roller part 500, and the first and second roller parts 400 are self-weighted. ) 500, and thus the first region A1 and the second region A2 may have movement paths facing each other.
  • the deflection length of the catalyst metal (M) in a state in which the movement paths facing each other of the catalyst metal (M) passing between the first roller part 400 and the second roller part 500 are secured L: see Fig. 4).
  • the interval between the first and second roller parts 400 which are initially preset the amount of power transmitted from the power supply part and the power supply time (heating time), the material of the catalyst metal (M), and Under the synthetic environment such as the profile size and the type of reaction gas inside the chamber 100, it is possible to more accurately set whether the corresponding catalyst metal M maintains the optimum reference deflection length L.
  • the displacement sensor 700 is used to detect whether the lengths of the catalytic metals M extending downward from the first roller part 400 and the second roller part 500 coincide with a preset reference deflection length L. And an adjusting step of controlling the rotational speed of the first roller part 400 or the second roller part 500 so that the length of the catalyst metal M is equal to the reference deflection length L. It can contain.
  • the adjustment step of controlling the reference deflection length (L) of the catalyst metal (M) using the displacement sensor 700 can be continuously performed during the graphene (G) synthesis process, whereby the catalyst metal being synthesized ( It is possible to keep the temperature profile of M) uniform.
  • reaction gas necessary for the synthesis of graphene (G) is injected into the chamber 100, and the first roller part 400 and the second roller part 500 are supplied with electric current from a power supply part to generate a catalytic metal ( M) will be heated.
  • the catalyst metal M disposed between the first roller part 400 and the second roller part 500 is heated to increase the temperature, and in this process, the first roller part 400 and the second roller part ( As the first region A1 and the second region A2 of the catalytic metal M close to 500) face each other at regular intervals and emit radiant heat, the first roller portion 400 and the second roller portion ( 500) to maintain a uniform temperature profile required for synthesis for the entire area of the catalyst metal (M) passing through.
  • Synthesis of graphene (G) is performed for a predetermined time with respect to the catalyst metal (M) maintaining a uniform temperature profile as described above.
  • a protective film supply part 800 (see FIG. 6) is used. It may further include a protective film forming step of forming a protective layer (F) on the graphene (G) layer of the catalyst metal (M) passing through the first roller portion 400 and the second roller portion 500 by have.
  • the recovery step is a step of recovering the catalyst metal (M) synthesized with graphene (G) to the outside of the chamber, as described above for the catalyst metal disposed between the first roller portion and the second roller portion.
  • the recovery roller of the recovery unit is driven to recover the catalyst metal (M) synthesized with the graphene (G) outside the chamber.
  • the graphene manufacturing apparatus As described above, the graphene manufacturing apparatus according to the embodiment of the present invention, the intermediate region farthest from the electrode with respect to the catalyst metal (M) passing between the first roller portion 400 and the second roller portion 500 As the first region A1 and the second region A2 close to the electrode have a movement path facing each other, by radiating heat from each other between the first region A1 and the second region A2, , It is possible to form a uniform temperature profile for the entire area of the catalyst metal (M) passing between the first roller part 400 and the second roller part 500. As a result, a uniform graphene (G) can be obtained.
  • the graphene manufacturing apparatus and the graphene manufacturing method according to the embodiment of the present invention as well as thermal compensation between the first region (A1) and the second region (A2) facing the catalytic metal (M) in the internal space Since the greenhouse action can be achieved, a high temperature profile can be uniformly maintained over the entire area of the catalyst metal M even under limited power.
  • the graphene manufacturing apparatus and the graphene manufacturing method according to an embodiment of the present invention by controlling the first roller unit 400 and the second roller unit 500 based on the value detected by the displacement sensor 700 , It is possible to accurately set and adjust the lengths of the first region A1 and the second region A2 facing the catalytic metal M, thereby making the temperature profile of the catalytic metal M even during the graphene (G) synthesis process. Can be kept uniform.
  • the graphene manufacturing apparatus and graphene manufacturing method according to an embodiment of the present invention by arranging the supply unit 200 / recovery unit 300 outside the chamber 100, that is, in an atmospheric pressure state, saves space in the chamber 100 And it is possible to reduce the design accordingly, there is an advantage of easy preparation and preparation in the pre- and post-process for manufacturing graphene (G).
  • the graphene manufacturing apparatus and the graphene manufacturing method according to an embodiment of the present invention by including a sealing guide 111, 121 for guiding the catalyst metal (M) moving in and out of the chamber 100, the catalyst Stable movement can be secured without damage or loss of the catalyst metal (M) in which the metal (M) and graphene (G) are synthesized, and at the same time, by blocking the inflow of external air, the vacuum atmosphere inside the vacuum chamber (100). It can be kept stable.
  • the present invention is industrially applicable in the field of graphene manufacturing technology that uses Joule heating to generate heat by passing current through a conductor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 도체에 전류를 흘려 열을 발생시키는 줄 히팅(Joule heating)을 이용한 그래핀 제조장치를 제공함에 있다. 이를 위한 본 발명은 그래핀 합성을 위한 공간이 마련되는 챔버; 및 상기 챔버 내부에서 서로 이격되게 배치되어, 상기 챔버 내부를 관통하는 촉매금속을 지지하고 그래핀 합성을 위해 전류를 공급받아 상기 촉매금속을 줄 히팅하는 제1 롤러부 및 제2 롤러부;를 포함하며, 상기 제1 롤러부와 상기 제2 롤러부 사이를 통과하는 상기 촉매금속의 온도편차를 보상하기 위하여, 상기 제1 롤러부와 가까운 상기 촉매금속의 제1 영역과 상기 제2 롤러부와 가까운 상기 촉매금속의 제2 영역이 서로 마주하는 이동경로를 가지도록 배치되는 특징을 개시한다.

Description

그래핀 제조장치 및 이를 이용한 그래핀 제조방법
본 발명은 그래핀 제조장치 및 이를 이용한 그래핀 제조방법에 관한 것으로, 상세하게는 도체에 전류를 흘려 열을 발생시키는 줄 히팅(Joule heating)을 이용한 그래핀 제조장치 및 이를 이용한 그래핀 제조방법에 관한 것이다.
탄소 원자들로 구성된 물질로는 풀러렌(fullerene), 탄소나노튜브(CarbonNanotube), 그래핀(Graphene), 흑연(Graphite) 등이 존재한다. 이 중에서 그래핀은 탄소 원자들이 2 차원 평면상으로 원자 한 층으로 이루어지는 구조이다.
특히 그래핀은 전기적, 기계적, 화학적인 특성이 매우 안정적이고 뛰어날 뿐 아니라 우수한 전도성 물질로서 실리콘보다 매우 빠르게 전자를 이동시키며 구리보다도 매우 큰 전류를 흐르게 할 수 있는데, 이는 2004년 흑연으로부터 그래핀을 분리하는 방법이 발견되면서 실험을 통하여 증명되었으며 현재까지 많은 연구가 진행이 되고 있다.
이러한 그래핀은 대면적으로 형성할 수 있으며, 전기적, 기계적, 화학적인 안정성을 가지고 있을 뿐만 아니라, 뛰어난 도전성의 성질을 가지므로, 전자 회로의 기초 소재로 관심을 받고 있다.
또한 그래핀은 일반적으로 주어진 두께의 그래핀의 결정 방향성에 따라 전기적 특성이 변화할 수 있으므로 사용자가 선택 방향으로의 전기적 특성을 발현시킬 수 있고, 이에 따라 쉽게 소자를 디자인할 수 있다. 따라서 그래핀은 탄소계 전기 또는 전자기 소자 등에 효과적으로 이용될 수 있다.
그러나 종래의 줄 히팅을 이용한 그래핀 제조장치 및 제조방법은 촉매금속의 공급과 회수를 위한 일련의 장비가 진공챔버 내부에 포함되어 있기 때문에, 그래핀 합성 전후 공정과의 연계공정이 효율적이지 못하였고, 진공 챔버가 불필요하게 비대해지는 문제가 있었다.
또한 종래의 줄 히팅을 이용한 그래핀 제조장치 및 제조방법은 양쪽 전극에 전류가 공급되어 촉매금속이 가열되면, 양쪽 전극을 통과하면서 저항에 의해 열이 방출되기 때문에, 전극에서 가장 먼 위치인 촉매금속의 중간영역 보다, 전극에 가까운 양쪽 단부로 갈수록 온도가 급격히 낮아지는 온도편차가 발생되며, 결국 균일한 형태의 그래핀을 합성하기 어려운 문제점이 있었다.
본 발명의 목적은 종래의 문제점을 해결하기 위한 것으로서, 본 발명은 줄 히팅하는 제1 롤러부 및 제2 롤러부 사이를 통과하는 촉매금속의 적어도 일부영역이 서로 마주하는 이동경로를 가지도록 배치하여, 제1 롤러부 및 제2 롤러부 사이에서 발생되는 촉매금속의 온도편차를 보상하여 전체 면적에 대하여 균일한 온도가 유지되도록 하는 그래핀 제조장치 및 이를 이용한 그래핀 제조방법을 제공함에 있다.
상술한 본 발명의 목적을 달성하기 위하여, 본 발명에 따른 그래핀 제조장치는 그래핀 합성을 위한 공간이 마련되는 챔버; 및 상기 챔버 내부에서 서로 이격되게 배치되어, 상기 챔버 내부를 관통하는 촉매금속을 지지하고 그래핀 합성을 위해 전류를 공급받아 상기 촉매금속을 줄 히팅하는 제1 롤러부 및 제2 롤러부;를 포함하며, 상기 제1 롤러부와 상기 제2 롤러부 사이를 통과하는 상기 촉매금속의 온도편차를 보상하기 위하여, 상기 제1 롤러부와 가까운 상기 촉매금속의 제1 영역과 상기 제2 롤러부와 가까운 상기 촉매금속의 제2 영역이 서로 마주하는 이동경로를 가지도록 배치되는 것을 특징으로 한다.
이때 상기 촉매금속은 상기 제1 롤러부와 상기 제2 롤러부 사이에서 하측으로 늘어짐에 따라 상기 제1 영역과 상기 제2 영역이 서로 마주하는 이동경로를 가지는 것일 수 있다.
또한 상기 제1 롤러부 및 상기 제2 롤러부의 하측에 배치되어, 상기 제1 롤러부 및 제2 롤러부로부터 상기 촉매금속의 하측으로 늘어진 길이가 기준 처짐길이와 일치하는지 여부를 감지하는 변위센서; 및 상기 변위센서로부터 감지된 상기 촉매금속의 늘어진 길이가 기준 처짐길이와 일치되도록 상기 제1 롤러부 또는 상기 제2 롤러부의 회전속도를 제어하는 제어부를 더 포함할 수 있다.
또한 상기 챔버는, 상기 촉매금속을 내부로 유입하는 도입부; 및 그래핀이 합성된 상기 촉매금속을 외부로 배출하는 퇴출부;를 포함하며, 상기 도입부 및 상기 퇴출부에 배치되며, 상기 촉매금속의 이동을 안내하는 동시에 외부 공기의 유입이 차단되도록, 관통하여 이동되는 상기 촉매금속의 표면에 탄성적으로 접촉하는 가이드홀이 구비된 실링가이드;를 더 포함할 수 있다.
이때 상기 실링가이드는 상기 촉매금속의 이동방향으로 서로 이격되게 배치되는 한 쌍의 실링가이드를 포함하며, 상기 한 쌍의 실링가이드 사이 공간을 진공분위기로 조성하는 보조진공펌프를 더 포함할 수 있다.
또한 상기 실링가이드는, 상기 촉매금속이 관통되는 제1 관통홀이 형성된 가이드몸체; 상기 촉매금속이 관통되는 제2 관통홀이 형성된 가이드커버; 상기 가이드몸체와 상기 가이드커버 사이에 개재되며, 상기 가이드홀이 형성된 실링부재; 및 상기 실링부재를 사이에 두고 상기 가이드몸체와 상기 가이드커버를 체결하는 체결부재;를 포함한 것일 수 있다.
또한 상기 퇴출부를 관통하는 그래핀이 합성된 촉매금속의 그래핀 손실을 최소화하기 위하여, 상기 퇴출부에 배치되는 상기 가이드홀의 크기는 상기 도입부에 배치되는 상기 가이드홀의 크기보다 더 크게 형성될 수 있다.
또한 상기 챔버 내부에 배치되어, 상기 제1 롤러부 및 상기 제2 롤러부를 통과한 촉매금속의 그래핀 층 상에 보호층을 형성하기 위한 보호필름 공급부를 더 포함할 수 있다.
또한 상기 제1 롤러부와 상기 제2 롤러부를 서로 근접시키거나 이격시키며, 상기 제1 영역과 상기 제2 영역의 사이 간격을 조정하는 롤러이동부재를 더 포함할 수도 있다.
한편 본 발명에 따른 그래핀 제조방법은, 상기 챔버 내에 상기 촉매금속을 공급하는 공급단계; 상기 제1 롤러부와 상기 제2 롤러부 사이를 통과하는 상기 촉매금속의 온도편차를 보상하기 위하여, 상기 제1 롤러부와 가까운 상기 촉매금속의 제1 영역과 상기 제2 롤러부와 가까운 상기 촉매금속의 제2 영역이 서로 마주하는 이동경로를 가지도록 상기 챔버 내에 상기 촉매금속을 배치하는 배치단계; 상기 촉매금속 상에 그래핀을 합성하는 합성단계; 및 상기 챔버로부터 상기 그래핀이 합성된 촉매금속을 회수하는 회수단계;를 포함하는 것을 특징으로 한다.
이때 상기 배치단계에서는, 상기 촉매금속이 상기 제1 롤러부와 상기 제2 롤러부 사이에서 하측으로 늘어짐에 따라 상기 제1 영역과 상기 제2 영역이 서로 마주하는 이동경로를 가질 수 있다.
또한 상기 배치단계 이후에는, 상기 제1 롤러부 및 상기 제2 롤러부로부터 상기 촉매금속의 하측으로 늘어진 길이가 기준 처짐길이와 일치하는지를 감지하는 감지단계; 및 상기 촉매금속의 늘어진 길이가 기준 처짐길이와 일치되도록 상기 제1 롤러부 또는 상기 제2 롤러부의 회전속도를 제어하는 조정단계를 더 포함할 수 있다.
또한 상기 합성단계 이후에는, 상기 제1 롤러부 및 상기 제2 롤러부를 통과한 촉매금속의 그래핀 층 상에 보호층을 형성하는 보호필름 형성단계를 더 포함할 수도 있다.
본 발명의 실시예에 따른 그래핀 제조장치 및 그래핀 제조방법은 제1 롤러부 및 제2 롤러부 사이를 통과하는 촉매금속에 대하여 전극에서 가장 먼 중간영역을 중심으로 전극에 가까운 제1 영역과 제2 영역이 서로 마주하는 이동경로를 가짐에 따라, 제1 영역과 제2 영역 상호 간에 방사열을 서로 주고받음으로써, 제1 롤러부와 제2 롤러부를 사이를 통과하는 촉매금속의 전체 면적에 대하여 균일한 온도 프로파일을 형성할 수 있다. 결국 이로써 균일한 그래핀을 획득할 수 있다.
또한 본 발명은 촉매금속의 마주하는 제1 영역과 제2 영역 상호 간의 열적 보상뿐만 아니라 내부 공간에서의 온실작용을 도모할 수 있어, 제한된 전력 하에서도 촉매금속 전체적으로 높은 온도 프로파일을 균일하게 유지시킬 수 있다.
또한 본 발명은 제1 롤러부와 제2 롤러부의 사이를 통과하는 촉매금속의 긴 길이(면적)에 대하여 균일한 온도 프로파일을 유지할 수 있기 때문에, 종래와 비교하여 고품질의 그래핀의 수율을 크게 증대시킬 수 있다.
또한 본 발명은 변위센서에 의해 감지된 값을 기반으로 제1 롤러부 및 제2 롤러부를 제어함으로써, 촉매금속의 마주하는 제1 영역과 제2 영역의 길이를 정확히 설정 및 조정할 수 있고, 이로 인하여 합성 과정 중에도 촉매금속의 온도 프로파일을 균일하게 유지시킬 수 있다.
또한 본 발명은 챔버 외부 즉, 대기압 상태에 공급부/회수부를 배치함으로써, 챔버의 공간절약과 이에 따른 축소설계가 가능하며, 그래핀 제조를 위한 준비 및 전후 공정에서의 관리가 수월한 이점이 있다.
또한 그래핀이 합성되는 챔버 내부와 그래핀이 합성된 촉매금속을 회수하는 회수부를 분리 배치함으로써, 회수부측의 합성된 그래핀이 오염되는 것을 방지할 수 있는 이점도 있다.
또한 본 발명은 챔버 내, 외측으로 이동하는 촉매금속을 안내하는 실링가이드를 포함함으로써, 촉매금속 및 그래핀이 합성된 촉매금속의 손상이나 손실 없이 안정적인 이동을 확보할 수 있고, 이와 동시에 외부 공기의 유입을 차단하여 진공 챔버 내부의 진공분위기를 안정적으로 유지시킬 수 있다.
도 1은 본 발명의 실시예에 따른 그래핀 제조장치를 개략적으로 나타낸 도면이다.
도 2는 본 발명의 실시예에 따른 그래핀 제조장치의 실링가이드를 나타낸 분리 사시도이다.
도 3은 종래 제1 전극롤러와 제2 전극롤러 사이를 통과하는 촉매금속의 위치별 온도 프로파일과, 본 발명의 실시예에 따른 제1 전극롤러와 제2 전극롤러 사이를 통과하는 촉매금속의 위치별 온도 프로파일을 비교 설명하기 위한 도면이다.
도 4는 본 발명의 실시예에 따른 제1 롤러부와 제2 롤러부의 제어에 따른 촉매금속의 이동경로를 나타낸 개략도이다.
도 5는 본 발명의 실시예에 따른 롤러이동부재의 제어에 따른 촉매금속의 이동경로 변화 모습을 나타낸 개략도이다.
도 6은 본 발명의 다른 실시예에 따른 그래핀 제조장치를 개략적으로 나타낸 도면이다.
이하 상술한 해결하고자 하는 과제가 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예들이 첨부된 도면을 참조하여 설명된다. 본 실시예들을 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략된다.
도 1은 본 발명의 실시예에 따른 그래핀 제조장치를 개략적으로 나타낸 도면이다.
도 1을 참조하면, 본 발명의 실시예에 따른 제조장치는 챔버(100), 공급부(200), 회수부(300), 제1 롤러부(400), 제2 롤러부(500), 및 제어부(600)를 포함할 수 있다.
상기 챔버(100)는 그래핀(G)을 형성하기 위한 내부공간이 마련된다.
또한 챔버(100)에는 그래핀(G) 합성을 위한 가스가 유입되는 가스유입구(101)와 가스가 배출되는 가스배출구(102)가 구비될 수 있다.
상기 챔버(100)의 가스유입구(101)를 통해서는 탄소를 함유한 가스인 반응가스(원료 가스)가 공급될 수 있다. 반응가스는 예를 들어 메탄, 일산화탄소, 이산화탄소, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 프로필렌, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로 헥산, 벤젠 및 톨루엔으로 이루어진 군으로부터 선택된 하나 이상이 사용될 수 있다.
또한 상기 챔버(100)의 가스유입구(101)를 통해서는 반응가스 이외에도 반응가스를 촉매금속(M) 상으로 운반하기 위한 캐리어가스와 촉매금속(M) 표면의 불순물을 제거하기 위한 환원가스도 함께 공급될 수 있다. 상기 캐리어가스는 헬륨, 아르곤 등과 같은 불활성가스가 사용될 수 있고, 상기 환원가스는 수소 등의 비 반응가스가 사용될 수 있다. 즉, 환원가스로 사용된 수소가스는 환원분위기를 유도하여, 촉매금속(M)와의 환원을 통해 촉매금속(M)에 있는 불순물을 조절함으로써 불순물을 제거할 수 있다.
한편 상기 챔버(100)의 가스배출구(102)를 통해서는 그래핀(G)의 합성 시 필요한 반응가스와, 캐리어가스 및 환원가스가 챔버(100) 내부에 채워지거나 배기될 수 있다.
또한 상기 챔버(100)의 가스배출구(102)에는 메인진공펌프(150)가 구비될 수 있다. 메인진공펌프(150)를 통해 챔버(100) 내부는 진공분위기로 조성될 수 있다.
또한 상기 챔버(100)에는 촉매금속(M)을 내부로 유입하는 도입부(110)와, 그래핀(G)이 합성된 촉매금속(M)을 외부로 배출하는 퇴출부(120)가 구비될 수 있다.
한편 공급부(200)는 그래핀(G) 합성을 위한 촉매금속(M)을 공급하는 것으로, 챔버(100) 외부에 배치될 수 있다. 다시 말해 공급부(200)는 진공분위기의 챔버(100) 내부가 아닌 대기압 상태인 챔버(100) 외부에 배치될 수 있다.
일예로 공급부(200)는 공급롤러(201)를 포함할 수 있고, 상기 공급롤러(201)를 회전시킴에 따라 공급롤러(201) 상에 감겨진 촉매금속(M)가 풀리면서 챔버(100) 내부로 공급될 수 있다.
이때 상기 공급롤러(201)은 줄 히팅되는 촉매금속(M)과 직접적으로 접촉될 수 있기 때문에, 촉매금속(M)과 접촉되는 부분에 대하여 절연 재질로 이루어지는 것이 바람직하다.
이처럼 챔버(100)의 내부가 아닌 외부에 공급부(200)를 배치함으로써, 공급부(200)가 배제됨에 따른 챔버(100)의 공간절약과 이에 따른 축소설계가 가능하다는 이점이 있다.
한편 회수부(300)는 그래핀(G)이 합성된 촉매금속(M)을 회수하는 것으로, 공급부(200)와 마찬가지 챔버(100) 외부에 배치될 수 있다. 다시 말해 회수부(300)는 진공분위기의 챔버(100) 내부가 아닌 대기압 상태인 챔버(100) 외부에 배치될 수 있다.
일예로 회수부(300)는 회수롤러(301)를 포함할 수 있고, 상기 회수롤러(301)를 회전시킴에 따라 그래핀(G)이 합성된 촉매금속(M)을 회수롤러(301)에 감는 방식으로 회수할 수 있다.
이때 상기 회수롤러(301) 역시 줄 히팅되는 촉매금속(M)과 직접적으로 접촉될 수 있기 때문에, 촉매금속(M)과 접촉되는 부분에 대하여 절연 재질로 이루어지는 것이 바람직하다.
이처럼 챔버(100)의 내부가 아닌 외부에 회수부(300)를 배치함으로써, 회수부(300)가 배제됨에 따른 챔버(100) 내부의 공간절약과 이에 따른 축소설계가 가능하다는 이점이 있다.
결국 공급부(200)의 공급롤러와 회수부(300)의 회수롤러(301)를 동일 방향 동일 회전속도로 회전시킴에 따라 상기 촉매금속(M)을 균일한 속도로 이동시킬 수 있다.
이때 공급부(200) 및 회수부(300)는 서로 독립적으로 제어될 수 있다.
즉, 공급부(200)의 공급롤러(201)와, 회수부(300)의 회수롤러(301)의 회전속도는 제어부(600)를 통해 서로 독립적으로 제어함으로써, 촉매금속(M)의 공급 및 회수 속도를 조정할 수 있다. 또한 공급부(200)와 상기 제1 롤러부(400) 사이 구간을 지나는 촉매금속의 수평 상태를 균일하게 유지시킬 수 있고, 마찬가지 상기 제2 롤러부(500)와 회수부(300) 사이 구간을 지나는 촉매금속의 수평 상태를 균일하게 유지시킬 수 있다.
전술한 바와 같이, 공급부(200) 및 회수부(300)를 챔버(100) 외부에 배치함에 따라, 챔버(100)에는 공급부(200)로부터 공급되는 촉매금속(M)을 내부로 유입하는 도입부(110)와, 회수부(300)를 향해 그래핀(G)이 합성된 촉매금속(M)을 외부로 배출하는 퇴출부(120)가 구성될 수 있다.
도 2는 본 발명의 실시예에 따른 그래핀 제조장치의 실링가이드를 나타낸 분리 사시도이다.
도 1 및 도 2를 참조하면, 상기 도입부(110) 및 퇴출부(120)에는 상기 촉매금속(M)의 이동을 안내하는 동시에 외부 공기의 유입이 차단되도록, 관통하여 이동되는 상기 촉매금속(M)의 표면에 탄성적으로 접촉하는 가이드홀(1110a)이 구비된 실링가이드(111,121)를 포함할 수 있다.
상기 실링가이드(111,121)는 도입부(110) 및 퇴출부(120)의 내부에 각각 배치되어, 실링가이드(111,121)로 인하여 도입부(110) 및 퇴출부(120)의 내측 공간이 격리되도록 구성될 수 있다.
실시예에 따른 실링가이드(111,121)는, 촉매금속(M)이 관통되는 제1 관통홀(1111a)이 형성된 가이드몸체(1111)와, 촉매금속(M)이 관통되는 제2 관통홀(1112a)이 형성된 가이드커버(1112)와, 상기 가이드몸체(1111)와 상기 가이드커버(1112) 사이에 개재되며, 관통되는 촉매금속(M)의 표면에 탄성적으로 접촉하는 가이드홀(1110a)이 형성된 실링부재(1110) 및 상기 실링부재(1110)를 사이에 두고 상기 가이드몸체(1111)와 상기 가이드커버(1112)를 관통하여 체결하는 체결부재(1113)를 포함할 수 있다. 미 설명부호 1110b,1111b,1112b는 체결부재(1113)가 체결되는 체결공이다.
상기 실링부재(1110)는 고무, 실리콘 중 어느 하나일 수 있다. 이에 한정되지 않고 실링부재(1110)는 자체 탄성력을 갖는 재료이면 어떠한 것이든 적용될 수 있다. 나아가 메타물질(Metamaterial), 옥제틱(Auxetic) 구조의 부재를 적용할 수도 있다.
또한 상기 실링부재(1110)에 형성된 가이드홀(1110a)은 촉매금속(M)의 단면 프로파일보다 작게 형성됨이 바람직하다. 결국 가이드홀(1110a)의 내주면은 통과하는 촉매금속(M)의 표면에 탄성적으로 밀착되고, 이로써 촉매금속(M)과 가이드홀(1110a) 사이를 통해 외부 공기가 내부로 유입되는 것이 차단된다.
또한 가이드홀(1110a)을 통과하는 촉매금속(M)은 가이드홀(1110a)에 탄성적으로 접촉되기 때문에, 이동 중 저항을 최소화하고, 스크래치 등의 표면 손상을 예방할 수 있다.
이때 상기 퇴출부(120)에 배치되는 실링가이드(121)측 가이드홀(1110a)의 크기는 상기 도입부(110)에 배치되는 상기 실링가이드(111)측 가이드홀(1110a)의 크기보다 더 크게 형성시키는 것이 바람직하다.
즉, 도입부(110)의 실링가이드(111)는 상기 공급부(200)로부터 유입되는 촉매금속(M)을 통과시키는 것이고, 퇴출부(120)의 실링가이드(121)는 그래핀(G)이 합성된 촉매금속(M)을 통과시키는 것으로, 그래핀(G)의 합성여부에 따른 촉매금속(M)의 단면 프로파일의 크기(두께)에 상응하도록, 상기 퇴출부(120)측 실링가이드(121)에 구비된 가이드홀(1110a)의 크기가 상기 도입부(110)측 실링가이드(121)에 구비된 가이드홀(1110a)의 크기보다 크게 형성될 수 있다.
예를 들어 도입부(110)측 실링부재(1110)에는 촉매금속(M)의 단면 프로파일과 상응하는 크기의 가이드홀(1110a)을 형성하고, 퇴출부(120)측 실링부재(1110)는 그래핀(G)이 합성된 촉매금속(M)의 단면 프로파일과 상응하는 크기의 가이드홀(1110a)이 형성될 수 있다.
이로 인하여 퇴출부(120)를 관통하는 그래핀(G)이 합성된 촉매금속(M)에 대해 그래핀(G)의 손실을 최소화할 수 있다.
한편 상기 실링가이드(111,121)는 도입부(110) 및 퇴출부(120)의 내부공간에서 촉매금속(M)의 이동방향에 대해 복수개가 구성될 수도 있다. 도 1에 도시된 실시예에서는 도입부(110) 및 퇴출부(120)의 내부공간에 각각 한 쌍의 실링가이드(111,121)가 촉매금속(M)의 이동방향에 대해 이격되게 배치되어 있다.
이때 한 쌍의 실링가이드(111,121)의 사이 공간은 보조진공펌프(155)와 연결될 수 있다.
즉, 한 쌍의 실링가이드(111,121) 사이 공간을 진공분위기로 조성할 수 있으며, 한 쌍의 실링가이드(111,121) 사이 공간을 진공분위기로 조성하는 경우 각 실링가이드(111,121)에 개재된 실링부재(1110)에 의해 진공 압을 안정적으로 유지시킬 수 있다.
결국 대기압 상태에 마련된 공급부(200)로부터 촉매금속(M)이 챔버(100) 내부로 이동되는 과정에서, 고 진공분위기가 조성되는 챔버(100) 내부의 진공 압이 떨어지는 현상을 예방할 수 있다.
이때 상기 보조진공펌프(155)는 챔버(100) 내부를 진공분위기로 조성하기 위해 마련되는 메인진공펌프(150)와 달리, 도입부(110) 및 퇴출부(120)에 배치된 한 쌍의 실링가이드(111,121)의 사이 공간을 진공분위기로 조성하는 것으로, 저사양의 펌프가 구비될 수 있다.
한편 도시된 것과 달리, 보조진공펌프(155)를 배재하고, 한 쌍의 실링가이드(111,121)의 사이 공간은 상기 챔버(100)와 연결된 메인진공펌프(150)와 직접 연결될 수도 있다. 즉, 메인진공펌프(150)를 통해 챔버(100) 내부를 진공분위기로 조성하는 것과 동시에 도입부(110) 및 퇴출부(120)에 배치된 한 쌍의 실링가이드(111,121)의 내부 공간을 진공분위기로 조성할 수도 있다.
이상에서와 같이, 대기압 환경인 챔버(100) 외부에 공급부(200) 및 회수부(300)를 배치함에 따라, 촉매금속(M), 공급롤러(201), 공급모터, 회수롤러(301), 회수모터 등의 관련 장치들을 챔버(100) 내부에서 완전히 배제할 수 있기 때문에, 챔버(100) 내부의 공간절약과 축소설계에 있어서 보다 큰 효과가 발생된다.
또한 대기압 환경인 챔버(100) 외부에 공급부(200) 및 회수부(300)를 배치함에 따라, 그래핀(G) 제조를 위한 촉매금속(M)의 공정 준비 및 전후 공정과의 연계작업 등의 관리가 용이한 이점도 있다.
또한 그래핀(G)이 합성되는 챔버(100) 내부로부터 그래핀(G)이 합성된 촉매금속(M)을 회수하는 회수부(300)를 분리 배치함으로써, 챔버(100) 내부에서 합성 중 발생되는 다양한 증발가스로부터 합성이 완료된 그래핀(G)이 오염되는 것을 차단시킬 수 있는 이점도 있다.
한편 제1 롤러부(400) 및 제2 롤러부(500)은 촉매금속(M)에 대한 실질적인 그래핀(G) 합성영역을 제공하는 것으로, 챔버(100) 내부에서 서로 이격되게 배치되어, 챔버(100) 내부를 관통하는 촉매금속(M)을 지지하고 그래핀(G) 합성을 위해 외부 전원공급부(미도시)로부터 전류를 공급받아 상기 촉매금속을 줄(Joule) 히팅시킨다.
상기 제1 롤러부(400) 및 제2 롤러부(500)은 챔버(100) 내부를 통과하는 촉매금속(M)을 지지하도록 설치될 수 있다. 즉, 지지하는 것과 동시에 촉매금속(M)과 긴밀하게 접촉되도록 구성됨에 따라, 촉매금속(M)으로 줄 히팅을 위한 전류를 원활하게 공급할 수 있다.
즉, 상기 제1 롤러부(400)는 제1 전극롤러(410) 및 제1 지지롤러(420)를 포함할 수 있고, 상기 제2 롤러부(500)는 제2 전극롤러(510) 및 제2 지지롤러(520)를 포함할 수 있다.
상기 제1 롤러부(400)와 제2 롤러부(500)는 동일한 구성을 가지는 것으로, 제1 롤러부(400)에 대해서만 상세히 설명한다.
상기 제1 전극롤러(410)는, 전원공급부로부터 전류를 공급받아 촉매금속(M)를 가열하는 것으로, 촉매금속(M)과 선 접촉 또는 면 접촉함으로써 촉매금속(M)을 안정적으로 접촉 지지할 수 있고, 균일한 전류를 공급할 수 있으며, 촉매금속(M)의 이동과 연동하여 구름 동작함으로써 촉매금속(M)의 슬립에 의한 손상도 예방할 수 있다. 이러한 제1 전극롤러(410)는 구리 재질로 구성될 수 있다.
상기 제1 지지롤러(420)는, 촉매금속(M)을 사이에 두고 상기 제1 전극롤러(410)을 대향하게 배치되는 것으로, 촉매금속(M)과 선 접촉 또는 면 접촉함으로써 촉매금속(M)을 안정적으로 접촉 지지할 수 있고, 마찬가지 촉매금속(M)의 이동과 연동하여 구름 동작함으로써 촉매금속(M)의 슬립에 의한 손상도 예방할 수 있다.
결국 제1 전극롤러(410)와 제1 지지롤러(420)는 촉매금속(M)의 하면과 상면을 안정적으로 밀착 지지하면서 촉매금속(M)의 이동을 안내하게 된다.
이때 상기 제1 전극롤러(410)와 상기 제1 지지롤러(410)는 간격조정부재(430)로 연결될 수 있다. 일예로, 간격조정부재(430)는 일단이 제1 전극롤러(410)의 회전축과 연결되고, 타단이 제1 지지롤러(420)의 회전축과 연결되며, 적어도 한쪽 단부에는 상기 제1 전극롤러(410) 또는 상기 제1 지지롤러(420)의 회전축이 슬라이딩 가능하도록 슬롯이 형성된 것으로 구현될 수 있다.
즉, 슬롯 상에서 제1 전극롤러(410) 또는 제1 지지롤러(420)의 회전축을 슬라이드 시킴에 따라 제1 전극롤러(410)과 제1 지지롤러(420)를 근접시키거나 멀어지게 이동시키면서, 제1 전극롤러(410)과 제1 지지롤러(420)의 사이 간격을 조정할 수 있다.
결국 촉매금속(M) 또는 그래핀(G)이 합성된 촉매금속(M)의 두께 정도에 따라, 상기 간격조정부재(430)를 이용하여 제1 전극롤러(410)과 제1 지지롤러(420) 및 제2 전극롤러(510)과 제2 지지롤러(520)의 사이간격을 조정할 수 있기 때문에, 촉매금속(M) 또는 그래핀(G)이 합성된 촉매금속(M)을 안정적으로 접촉 지지시킬 수 있다. 또한 이로 인하여 제1 롤러부(400)와 제2 롤러부(500) 사이를 통과하는 촉매금속(M)의 길이도 균일하게 유지시킬 수 있다.
또한 제1 전극롤러(410)과 제1 지지롤러(420) 및 제2 전극롤러(510)과 제2 지지롤러(520)의 사이를 통과하는 촉매금속(M)과의 균일한 접촉 상태를 구현함으로써, 촉매금속(M)으로 보다 균일한 전류를 공급할 수 있고, 사이를 통과하는 촉매금속(M)의 이동과 연동하여 안정적인 구름 동작을 구현함으로써, 촉매금속(M)의 슬립에 의한 촉매금속(M)의 손상을 더욱 예방할 수 있다.
이때 제1 전극롤러(410) 및 제2 전극롤러(510)과 마찬가지, 상기 제1 지지롤러(420) 및 제2 지지롤러(520)에도 촉매금속(M)의 줄 히팅을 위한 전류를 공급하도록 구성될 수 있다. 이를 위해 제1 지지롤러(420) 및 제2 지지롤러(520) 역시 제1 전극롤러(410) 및 제2 전극롤러(510)과 같이 구리 재질로 구성될 수 있다.
한편 상기 제1 롤러부(400) 및 제2 롤러부(500)의 회전속도는 서로 독립적으로 제어될 수 있다.
보다 상세하게는 제1 전극롤러(410) 및 제1 지지롤러(420)와, 제2 전극롤러(510) 및 제2 지지롤러(520)의 각 회전속도는 제어부(600)를 통하여 개별적으로 제어될 수 있다.
이때 제1 전극롤러(410)는 구동축을, 제1 지지롤러(420)는 피동축이 될 수 있고, 마찬가지 제2 전극롤러(510)는 구동축을, 제2 지지롤러(520)는 피동축이 될 수 있다.
이와 반대로 제1 지지롤러(420)가 구동축을, 제1 전극롤러(410)가 피동축이 될 수 있고, 마찬가지 제2 지지롤러(520)가 구동축을, 제2 전극롤러(510)가 피동축이 될 수 있다.
이상과 같이 제1 롤러부(400)와 제2 롤러부(500)의 회전속도를 서로 다르게 제어함으로서, 제1 롤러부(400)와 제2 롤러부(500)의 사이를 통과하는 촉매금속의 총 길이를 미세 조정할 수 있다. 이에 대한 추가 설명은 후술하여 보다 상세히 한다.
한편 본 발명의 실시예에 따른 제조장치는, 상기 제1 롤러부(400) 및 제2 롤러부(500)의 사이 즉, 합성영역을 통과하는 촉매금속(M)의 온도편차를 보상하기 위한 수단을 제공한다.
즉, 상기 제1 롤러부(400)와 상기 제2 롤러부(500) 사이를 통과하는 촉매금속(M)에 대하여, 상기 제1 롤러부(400)와 가까운 촉매금속(M)의 제1 영역(A1)과 상기 제2 롤러부(500)와 가까운 촉매금속(M)의 제2 영역(A2)이 서로 마주하는 이동경로를 가지도록 배치할 수 있다.
다시 말해, 상기 제1 롤러부(400)와 상기 제2 롤러부(500) 사이를 통과하는 촉매금속(M)에 대하여, 제1 롤러부(400) 및 제2 롤러부(500)에서 가장 먼 중간영역을 중심으로 제1 롤러부(400) 및 제2 롤러부(500)에 가까운 양쪽에 위치하는 제1 영역(A1)과 제2 영역(A2)이 일정 간격을 두고 서로 마주하는 이동경로를 가질 수 있다.
실시예에 의하면, 제1 롤러부(400)와 제2 롤러부(500) 사이를 통과하는 촉매금속(M)은 제1 롤러부(400)와 제2 롤러부(500) 사이에서 하측으로 늘어짐에 따라 제1 영역(A1)과 제2 영역(A2)이 서로 마주하는 이동경로를 가진다.
도 3은 종래 제1 전극롤러와 제2 전극롤러 사이를 통과하는 촉매금속의 위치별 온도 프로파일을 나타낸 그래프와, 본 발명의 실시예에 따른 제1 전극롤러와 제2 전극롤러 사이를 통과하는 촉매금속의 위치별 온도 프로파일을 나타낸 그래프를 비교한 도면이다.
먼저 도 3(a)에 도시된 종래 제1 전극롤러 제2 전극롤러 사이에서 수평 경로를 유지하는 촉매금속(M)에 대하여, 그 위치별 온도 프로파일은 그래프 상에 점선으로 표시된다.
즉, 그래프의 점선 표시된 부분과 같이, 제1 전극롤러 및 제2 전극롤러에 의해 전류가 공급되어 촉매금속(M)이 가열되면, 제1 전극롤러 및 제2 전극롤러를 통과하면서 저항에 의해 열이 방출되기 때문에, 전극에서 가장 먼 위치인 촉매금속(M)의 중간영역 보다, 전극롤러에 가까운 양쪽 단부로 갈수록 온도가 급격히 낮아지는 온도편차가 발생된다.
결국 종래 제1 전극롤러와 제2 전극롤러 사이의 수평 경로의 경우, 각 전극롤러를 통하여 촉매금속(M)이 줄 히팅되면, 제1 전극롤러와 제2 전극롤러 사이를 통과하는 촉매금속(M)의 전체 면적에 대하여 온도편차가 발생함으로서, 그래핀의 균일한 합성이 어렵다.
반면에 도 3(b)에 도시된 제1 롤러부(400)와 제2 롤러부(500)의 사이를 통과하는 촉매금속(M)이 하측으로 늘어짐에 따라 제1 전극롤러(410)와 제2 전극롤러(510)에 가까운 제1 영역(A1)과 제2 영역(A2)가 서로 마주하는 이동경로를 가지는 촉매금속(M)에 대하여, 그 위치별 온도 프로파일은 그래프 상에 실선으로 표시된다.
이러한 본 발명의 실시예에 의하면, 제1 전극롤러(410) 및 제2 전극롤러(510)에 의해 전류가 공급되어 촉매금속(M)이 가열되는 초기에는, 전극롤러에서 가장 떨어진 촉매금속(M)의 중간영역 보다, 전극롤러에 가까운 양쪽 단부로 갈수록 온도가 낮아질 수 있다.
하지만 그래프의 실선 표시된 부분과 같이, 전극롤러에서 가장 떨어진 촉매금속(M)의 중간영역을 제외한, 전극롤러에 가까운 양쪽 단부로 이어지는 제1 영역(A1)과 제2 영역(A2)가 일정 간격을 두고 서로 마주하여 배치되기 때문에, 서로 대향하는 촉매금속(M)을 향해 서로 방사열을 발산함에 따라 서로 간에 방사열을 주고 받는다. 결국 서로 마주하는 촉매금속(M)의 제1 영역(A1)과 제2 영역(A2)의 온도 프로파일이 실질적으로 상승된다.
이로 인하여 그래프에 표시된 바와 같이, 본 발명의 실시예에 따른 촉매금속(M)의 온도 프로파일(실선)은 종래 촉매금속의 온도 프로파일(점선)과 비교하여, 촉매금속(M) 전체 면적에 대해 균일한 온도 프로파일을 보이게 되고, 이로써, 전체적으로 균일한 그래핀(G)을 얻을 수 있다.
또한 본 발명의 실시예에 따른 촉매금속(M)은 제1 롤러부(400) 및 제2 롤러부(500) 사이에서 하측으로 늘어짐에 따라, 마치 U자 형상의 이동경로를 유지하기 때문에, 촉매금속(M)의 제1 영역(A1)과 제2 영역(A2)의 서로 마주하는 내부공간에는 열을 가두는 이른바, 온실 작용을 구현할 수도 있다.
결국 그래프에 표시된 바와 같이, 촉매금속(M)의 제1 영역(A1)과 제2 영역(A2)의 서로 마주하는 내부공간에서 발생되는 온실 작용으로 인하여, 본 발명에 따른 온도 프로파일(실선)이 종래 온도 프로파일(점선) 보다 전체적으로 높은 온도(T1<T2)를 유지할 수도 있다.
이로 인해 제1 영역(A1)과 제2 영역(A2)의 서로 마주하는 내부공간에 가둬진 열은 그래핀(G)이 합성되는 촉매금속(M)의 전체 면적에 대하여 보다 균일한 온도를 유지할 수 있을 뿐만 아니라, 상대적으로 적은 에너지로도 높은 온도 프로파일을 유지할 수 있기 때문에, 균일한 그래핀(G)을 보다 효율적으로 제조할 수 있다.
또한 종래와 비교하여, 제1 롤러부(400)와 제2 롤러부(500)의 사이를 통과하는 촉매금속(M)의 긴 길이(면적)에 대하여 균일한 온도 프로파일을 유지할 수 있기 때문에, 고품질의 그래핀(G)의 수율을 크게 증대시킬 수 있다.
도 4는 본 발명의 실시예에 따른 제1 롤러부와 제2 롤러부의 제어에 따른 촉매금속의 이동경로를 나타낸 개략도이다.
도 1 및 도 4를 참조하면, 본 발명의 실시예에 따른 그래핀 제조장치는 상기 제1 롤러부(400)와 제2 롤러부(500)를 통과하는 촉매금속(M)의 이동경로를 감지하는 변위센서(700)를 포함할 수 있다.
보다 상세하게, 실시예에 따른 상기 변위센서(700)는, 제1 롤러부(400) 및 제2 롤러부(500)의 하측에 배치되어, 상기 제1 롤러부(400) 및 제2 롤러부(500)로부터 촉매금속(M)의 하측으로 늘어진 길이가 기준 처짐길이(L)와 일치하는지 여부를 감지할 수 있다.
예를 들어, 변위센서(700)는 제1 롤러부(400) 및 제2 롤러부(500)의 하측으로 일정 거리 이격된 높이(H)에 배치되고, 상기 촉매금속(M)의 최하단부(중간부)의 높이(H1)를 측정함으로써, 촉매금속(M)의 처짐길이가 기준 처짐길이(L)와 일치하는지 여부를 감지할 수 있다.
이때 상기 제어부(600)는 상기 변위센서(700)로부터 감지된 촉매금속(M)의 늘어진 길이가 기준 처짐길이(L)와 일치되도록, 상기 제1 롤러부(400) 또는 상기 제2 롤러부(500)의 회전속도를 제어할 수 있다.
예를 들어, 촉매금속(M)의 늘어진 길이가 기준 처짐길이(L)보다 길게 형성되는 경우에는 제1 롤러부(400)의 회전속도를 상대적으로 느리게 하거나 제2 롤러부(500)의 회전속도를 상대적으로 빠르게 함으로서 촉매금속(M)의 늘어진 길이를 기준 처짐길이(L)에 일치시킬 수 있고, 반대로 촉매금속(M)의 늘어진 길이가 기준 처짐길이(L)보다 짧게 형성되는 경우에는 제1 롤러부(400)의 회전속도를 상대적으로 빠르게 하거나 제2 롤러부(500)의 회전속도를 상대적으로 느리게 함으로서 촉매금속(M)의 늘어진 길이를 기준 처짐길이(L)에 일치시킬 수 있다.
결국 실시예에 따른 상기 기준 처짐길이(L)는 제1 롤러부(400)과 제2 롤러부(500) 사이를 통과하는 촉매금속(M)에 대해 전체적으로 균일한 온도 프로파일을 형성하는 최적의 처짐길이에 해당된다.
만약 제1 롤러부(400)와 제2 롤러부(500) 사이를 통과하는 촉매금속(M)의 늘어진 길이가 기준 처짐길이(L)보다 짧은 경우는, 촉매금속(M)의 서로 마주하는 제1 영역(A1)과 제2 영역(A2)이 축소되는 것을 의미함으로, 상대적으로 좁은 영역에서 그래핀(G)의 합성이 이루어지게 되고, 제1 영역(A1)과 제2 영역(A2) 간의 효과적인 열전달이 확보되지 못할 수 있다.
반대로 제1 롤러부(400)와 제2 롤러부(500) 사이를 통과하는 촉매금속(M)의 늘어진 길이가 기준 처짐길이(L)보다 긴 경우는, 촉매금속(M)의 서로 마주하는 제1 영역(A1)과 제2 영역(A2)이 확대되는 것을 의미함으로, 상대적으로 많은 영역에서 그래핀(G)의 합성이 이루어질 수 있으나, 제1 영역(A1)과 제2 영역(A2) 간의 과도한 열전달과 큰 온실작용으로 인하여 요구되는 온도 이상으로 촉매금속(M)이 가열될 수 있다.
이렇게 합성영역(A)을 통과하는 촉매금속(M)의 기준 처짐길이(L)를 지속적으로 유지함으로서, 촉매금속(M)의 전체적으로 균일한 온도 프로파일을 지속적으로 유지시키며, 그래핀(G)을 지속하여 균일하게 제조할 수 있다.
이상과 같이 제1 롤러부(400)와 제2 롤러부(500) 사이를 통과하는 촉매금속(M)이 자중에 의해 하측으로 늘어지도록 배치함으로써, 제1 롤러부(400)와 제2 롤러부(500) 사이를 통과하는 촉매금속(M)은 공급부(200)의 공급속도 및 회수부(300)의 회수속도와 무관하게 장력이 배제된 상태이다. 이에 따라, 그래핀 합성 과정에서 무리한 장력으로 인하여 촉매금속이 끊어지는 현상을 예방할 수도 있다.
한편 상기와 같이 제1 롤러부(400)과 제2 롤러부(500)의 회전속도를 제어함에 따른 촉매금속(M)의 길이변화(처짐길이 변화)로 인하여, 상기 공급부(200)와 제1 롤러부(400) 사이 구간을 지나는 촉매금속과, 상기 회수부(300)와 제2 롤러부(500) 사이 구간을 지나는 촉매금속의 수평상태가 변화될 수 있다. 이를 위해 제어부(600)는 공급부(200) 및 회수부(300)를 개별적으로 제어함으로서, 공급부(200)와 제1 롤러부(400) 사이 구간을 지나는 촉매금속과, 회수부(300)와 제2 롤러부(500) 사이 구간을 지나는 촉매금속의 수평상태를 보상시킬 수 있다.
한편 도시되진 않았지만, 실시예에 따른 그래핀 제조장치는, 촉매금속의 온도를 감지하는 온도센서를 포함할 수도 있다.
상기 온도센서는 촉매금속(M)의 온도를 실시간으로 측정하고, 이렇게 측정된 값을 상기 제어부(600)로 송신할 수 있다.
기본적으로 제어부(600)는 미리 설정된 기준온도(그래핀 합성 온도)와 일치되도록, 전력공급부(미도시)를 통해 제1 롤러부(400) 및 제2 롤러부(500)으로 적정의 전력을 공급시키기 된다.
도 5는 본 발명의 실시예에 따른 롤러이동부재의 제어에 따른 촉매금속(M)의 이동경로 변화 모습을 나타낸 개략도이다.
도 1 및 도 5를 참조하면, 본 발명의 실시예에 따른 제조장치는, 상기 제1 롤러부(400)과 상기 제2 롤러부(500)을 서로 근접시키거나 이격시키며, 상기 제1 롤러부(400)과 상기 제2 롤러부(500) 사이를 통과하는 촉매금속(M)의 제1 영역(A1)과 제2 영역(A2)의 사이 간격을 조정하는 롤러이동부재(450)를 포함할 수 있다.
일예로, 롤러이동부재(450)는 제1 전극롤러(410) 및 제2 전극롤러(510)의 각 회전축과 연결되되, 제1 전극롤러(410) 및 제2 전극롤러(510)의 각 회전축이 수평방향으로 슬라이딩 가능하도록 슬롯이 형성된 것으로 구현될 수 있다.
즉, 슬롯 상에서 제1 전극롤러(410) 및 제2 전극롤러(510)의 각 회전축을 수평방향으로 슬라이드 시킴에 따라 제1 전극롤러(410)과 제2 전극롤러(510)를 서로 근접시키거나 멀어지게 이동시킴에 따라, 제1 전극롤러(410)와 제2 전극롤러(510)의 사이 간격을 조정할 수 있다.
또한 상기 롤러이동부재(450)는 제1 지지롤러(420) 및 제2 지지롤러(520)에 구성될 수도 있다.
도 5에 도시된 바와 같이, 예를 들어 롤러이동부재(450)를 구동시켜 제1 롤러부(400)와 제2 롤러부(500)을 근접하게 이동시키면, 촉매금속(M)의 마주하는 제1 영역(A1)과 제2 영역(A2)이 서로 근접 이동되고 이와 동시에 처짐길이도 길어진다. 이렇게 제1 영역(A1)과 제2 영역(A2)의 간격(D)이 가까워짐에 따라, 제1 영역(A1)과 제2 영역(A2) 간의 열전달이 보다 활성화되고, 열을 가두는 온실 작용도 보다 향상된다.
반대로 롤러이동부재(450)를 구동시켜 제1 롤러부(400)와 제2 롤러부(500)를 서로 멀어지게 이동시키면, 촉매금속(M)의 마주하는 제1 영역(A1)과 제2 영역(A2)이 서로 멀어지고 이와 동시에 처짐길이도 짧아진다. 이렇게 제1 영역(A1)과 제2 영역(A2)의 간격(D)이 멀어짐에 따라, 제1 영역(A1)과 제2 영역(A2) 간의 열전달이 상대적으로 저감되고, 열을 가두는 온실 작용도 상대적으로 저감된다.
결국 촉매금속(M)의 마주하는 제1 영역(A1)과 제2 영역(A2)의 길이(L)뿐만 아니라 사이 간격(D)을 조정함으로써, 제한된 전력 하에서 요구되는 합성 온도까지 도달시키기 위한 보다 효율적인 장치 제어가 가능하다.
한편 도 6은 본 발명의 다른 실시예에 따른 그래핀 제조장치를 개략적으로 나타낸 도면이다.
도 6을 참조하면, 실시예에 따른 그래핀 제조장치는, 챔버(100) 내부에 배치되어, 제1 롤러부(400) 및 제2 롤러부(500)를 통과한 촉매금속(M)의 그래핀(G) 층 상에 보호필름층(F)을 형성하기 위한 보호필름 공급부(800)를 포함할 수 있다.
상기 보호필름(F)은 점착성이 있는 재질로 이루어지며, 상기 촉매금속(M)의 그래핀(G) 층 상에 부착된다.
예를 들어 보호필름 공급부(800)는 상기 공급부(200) 및 상기 회수부(300)와 동일한 회전속도로 회전하는 공급롤러에 의해 구현될 수 있으며, 상기 제1 롤러부(400) 및 상기 제2 롤러부(500)를 통과하며 그래핀(G)이 합성된 촉매금속(M)을 향해 보호필름(F)을 제공함에 따라 촉매금속(M)의 그래핀(G) 층 상에 보호필름(F)을 부착시킬 수 있다.
상기와 같이, 진공분위기의 챔버(100) 내부에서 그래핀(G) 층 상에 보호필름(F)을 부착시킨 상태에서 대기압 상태인 외부로 그래핀(G)이 합성된 촉매금속(M)을 배출함에 따라, 그래핀(G)의 손실을 최소화시킬 수 있고, 우수한 품질의 그래핀(G)을 획득할 수 있다.
이하 전술한 그래핀 제조장치를 이용한 그래핀 제조방법을 설명한다.
다시 도 1을 참조하면, 본 발명의 실시에에 따른 그래핀 제조방법은 공급단계, 배치단계, 합성단계, 및 회수단계를 포함할 수 있다.
상기 공급단계는, 챔버(100) 내부에 촉매금속(M)을 공급하는 단계로써, 일예로, 공급부(200)의 공급롤러(201)를 구동시켜 챔버(100) 내부에 촉매금속(M)을 공급할 수 있다.
다음으로 상기 배치단계는, 챔버(100) 내부에 배치된 제1 롤러부(400)와 제2 롤러부(500)를 촉매금속(M)이 통과하면서, 상기 제1 롤러부(400)와 가까운 촉매금속(M)의 제1 영역(A1)과 제2 롤러부(500)와 가까운 촉매금속(M)의 제2 영역(A2)이 서로 마주하는 이동경로를 가지도록 배치하는 단계이다.
상세하게, 상기 챔버(100) 내부로 공급된 촉매금속(M)은 제1 롤러부(400)와 제2 롤러부(500)의 사이를 통과하며 자중에 의해 상기 제1,2 롤러부(400)(500)로부터 하측으로 늘어지게 되고, 이에 따라 상기 제1 영역(A1)과 상기 제2 영역(A2)이 서로 마주하는 이동경로를 가질 수 있다.
이상과 같이, 제1 롤러부(400)와 제2 롤러부(500)의 사이를 통과하는 촉매금속(M)의 서로 마주하는 이동경로가 확보된 상태에서, 촉매금속(M)의 처짐길이(L: 도 4 참조)를 보다 정확히 세팅할 수 있다.
다시 말해, 초기 미리 설정되어 있는 제1 롤러부(400)와 제2 롤러부(500)의 사이 간격, 전원공급부로부터 전달되는 전력량 및 전력 공급시간(가열시간), 촉매금속(M)의 재료 및 프로파일 크기, 챔버(100) 내부의 반응가스의 종류 등의 합성 환경 하에서 해당 촉매금속(M)이 최적의 기준 처짐길이(L)를 유지하는지를 보다 정확히 세팅할 수 있다.
일예로, 변위센서(700)를 이용하여 제1 롤러부(400) 및 제2 롤러부(500)로부터 하측으로 늘어진 촉매금속(M)의 길이가 미리 설정된 기준 처짐길이(L)와 일치하는지를 감지하는 감지단계와, 상기 촉매금속(M)의 늘어진 길이가 기준 처짐길이(L)와 일치되도록 상기 제1 롤러부(400) 또는 상기 제2 롤러부(500)의 회전속도를 제어하는 조정단계를 포함할 수 있다.
이상과 같이, 변위센서(700)를 이용한 촉매금속(M)의 기준 처짐길이(L)를 제어하는 조정단계는 그래핀(G) 합성 과정 중에도 지속적으로 할 수 있고, 이로 인하여 합성 중인 촉매금속(M)의 온도 프로파일을 지속해서 균일하게 유지시킬 수 있다.
다음으로 상기 합성단계는, 상기와 같이 챔버(100) 내부에 촉매금속(M)의 이동 경로 배치가 최종 완료되면, 제1 롤러부(400)와 제2 롤러부(500)를 사이에 배치된 촉매금속(M)에 대하여 실제 그래핀(G)을 합성하는 단계이다.
즉, 상기 챔버(100) 내부에 그래핀(G)의 합성 시 필요한 반응가스를 주입하고, 제1 롤러부(400)와 제2 롤러부(500)는 전원공급부로부터 전류를 공급받아 촉매금속(M)을 줄 히팅시키게 된다.
결국 제1 롤러부(400)와 제2 롤러부(500)의 사이에 배치된 촉매금속(M)이 가열되어 온도가 상승되고, 이 과정에서 제1 롤러부(400)와 제2 롤러부(500)에 가까운 촉매금속(M)의 제1 영역(A1)과 제2 영역(A2)이 일정 간격을 두고 서로 마주하여 방사열을 발산함에 따라, 제1 롤러부(400)와 제2 롤러부(500)의 사이를 통과하는 촉매금속(M)의 전체 면적에 대하여 합성에 요구되는 균일한 온도 프로파일을 유지하게 된다.
이상과 같이 균일한 온도 프로파일을 유지하는 촉매금속(M)에 대하여 일정 시간 동안 그래핀(G) 합성이 이루어진다.
한편 제1 롤러부(400)와 제2 롤러부(500) 사이에 배치된 촉매금속(M)에 대하여 그래핀(G) 합성이 완료된 이후에는, 보호필름 공급부(800:도 6참조)를 이용하여 제1 롤러부(400)와 제2 롤러부(500)를 통과한 촉매금속(M)의 그래핀(G) 층 상에 보호층(F)을 형성하는 보호필름 형성단계를 더 포함할 수도 있다.
다음으로 상기 회수단계는, 그래핀(G)이 합성된 촉매금속(M)을 챔버 외부로 회수하는 단계로써, 이상과 같이 제1 롤러부와 제2 롤러부의 사이에 배치된 촉매금속에 대하여 그래핀(G) 합성 및 보호층(F) 형성이 완료되면, 회수부의 회수롤러를 구동시켜 챔버 외부로 그래핀(G)이 합성된 촉매금속(M)을 회수하게 된다.
이상에서와 같이 본 발명의 실시예에 따른 그래핀 제조장치는, 제1 롤러부(400) 및 제2 롤러부(500) 사이를 통과하는 촉매금속(M)에 대하여 전극에서 가장 먼 중간영역을 중심으로 전극에 가까운 제1 영역(A1)과 제2 영역(A2)이 서로 마주하는 이동경로를 가짐에 따라, 제1 영역(A1)과 제2 영역(A2) 상호 간에 방사열을 서로 주고받음으로써, 제1 롤러부(400)와 제2 롤러부(500)를 사이를 통과하는 촉매금속(M) 전체 면적에 대하여 균일한 온도 프로파일을 형성할 수 있다. 결국 이로써 균일한 그래핀(G)을 획득할 수 있다.
또한 본 발명의 실시예에 따른 그래핀 제조장치 및 그래핀 제조방법은, 촉매금속(M)의 마주하는 제1 영역(A1)과 제2 영역(A2) 상호 간의 열적 보상뿐만 아니라 내부 공간에서의 온실작용을 도모할 수 있어, 제한된 전력 하에서도 촉매금속(M) 전체 면적에 대하여 높은 온도 프로파일을 균일하게 유지시킬 수 있다.
또한 본 발명의 실시예에 따른 그래핀 제조장치 및 그래핀 제조방법은, 변위센서(700)에 의해 감지된 값을 기반으로 제1 롤러부(400) 및 제2 롤러부(500)를 제어함으로써, 촉매금속(M)의 마주하는 제1 영역(A1)과 제2 영역(A2)의 길이를 정확히 설정 및 조정할 수 있고, 이로 인하여 그래핀(G) 합성 과정 중에도 촉매금속(M)의 온도 프로파일을 균일하게 유지시킬 수 있다.
또한 본 발명의 실시예에 따른 그래핀 제조장치 및 그래핀 제조방법은, 챔버(100) 외부 즉, 대기압 상태에 공급부(200)/회수부(300)를 배치함으로써, 챔버(100)의 공간절약과 이에 따른 축소설계가 가능하며, 그래핀(G) 제조를 위한 준비 및 전후 공정에서의 관리가 수월한 이점이 있다.
특히 그래핀(G)이 합성되는 챔버(100) 내부로부터 그래핀(G)이 합성된 촉매금속(M)을 회수하는 회수부(300)를 분리 배치함으로써, 챔버(100) 내부에서 합성 중 발생되는 다양한 증발가스로부터 합성이 완료된 그래핀(G)이 오염되는 것을 차단시킬 수 있는 이점도 있다.
또한 본 발명의 실시예에 따른 그래핀 제조장치 및 그래핀 제조방법은, 챔버(100) 내, 외측으로 이동하는 촉매금속(M)을 안내하는 실링가이드(111)(121)를 포함함으로써, 촉매금속(M) 및 그래핀(G)이 합성된 촉매금속(M)의 손상이나 손실 없이 안정적인 이동을 확보할 수 있고, 이와 동시에 외부 공기의 유입을 차단하여 진공 챔버(100) 내부의 진공분위기를 안정적으로 유지시킬 수 있다.
상술한 바와 같이 도면을 참조하여 본 발명의 바람직한 실시예를 설명하였지만, 해당 기술 분야의 숙련된 당업자라면, 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변경시킬 수 있다.
본 발명은 도체에 전류를 흘려 열을 발생시키는 줄 히팅(Joule heating)을 이용하는 그래핀 제조 기술 분야에서 산업상 이용가능하다.

Claims (13)

  1. 그래핀 합성을 위한 공간이 마련되는 챔버; 및
    상기 챔버 내부에서 서로 이격되게 배치되어, 상기 챔버 내부를 관통하는 촉매금속을 지지하고 그래핀 합성을 위해 전류를 공급받아 상기 촉매금속을 줄 히팅하는 제1 롤러부 및 제2 롤러부;를 포함하며,
    상기 제1 롤러부와 상기 제2 롤러부 사이를 통과하는 상기 촉매금속의 온도편차를 보상하기 위하여, 상기 제1 롤러부와 가까운 상기 촉매금속의 제1 영역과 상기 제2 롤러부와 가까운 상기 촉매금속의 제2 영역이 서로 마주하는 이동경로를 가지도록 배치되는 것을 특징으로 하는 그래핀 제조장치.
  2. 제1항에 있어서,
    상기 촉매금속은 상기 제1 롤러부와 상기 제2 롤러부 사이에서 하측으로 늘어짐에 따라 상기 제1 영역과 상기 제2 영역이 서로 마주하는 이동경로를 가지는 것을 특징으로 하는 그래핀 제조장치.
  3. 제2항에 있어서,
    상기 제1 롤러부 및 상기 제2 롤러부의 하측에 배치되어, 상기 제1 롤러부 및 제2 롤러부로부터 상기 촉매금속의 하측으로 늘어진 길이가 기준 처짐길이와 일치하는지 여부를 감지하는 변위센서; 및
    상기 변위센서로부터 감지된 상기 촉매금속의 늘어진 길이가 기준 처짐길이와 일치되도록 상기 제1 롤러부 또는 상기 제2 롤러부의 회전속도를 제어하는 제어부;를 더 포함하는 것을 특징으로 하는 그래핀 제조장치.
  4. 제1항에 있어서,
    상기 챔버는,
    상기 촉매금속을 내부로 유입하는 도입부; 및
    그래핀이 합성된 상기 촉매금속을 외부로 배출하는 퇴출부;를 포함하며,
    상기 도입부 및 상기 퇴출부에 배치되며, 상기 촉매금속의 이동을 안내하는 동시에 외부 공기의 유입이 차단되도록, 관통하여 이동되는 상기 촉매금속의 표면에 탄성적으로 접촉하는 가이드홀이 구비된 실링가이드;를 더 포함하는 것을 특징으로 하는 그래핀 제조장치.
  5. 제4항에 있어서,
    상기 실링가이드는 상기 촉매금속의 이동방향으로 서로 이격되게 배치되는 한 쌍의 실링가이드를 포함하며,
    상기 한 쌍의 실링가이드 사이 공간을 진공분위기로 조성하는 보조진공펌프를 더 포함하는 것을 특징으로 하는 그래핀 제조장치.
  6. 제4항에 있어서,
    상기 실링가이드는,
    상기 촉매금속이 관통되는 제1 관통홀이 형성된 가이드몸체;
    상기 촉매금속이 관통되는 제2 관통홀이 형성된 가이드커버;
    상기 가이드몸체와 상기 가이드커버 사이에 개재되며, 상기 가이드홀이 형성된 실링부재; 및
    상기 실링부재를 사이에 두고 상기 가이드몸체와 상기 가이드커버를 체결하는 체결부재;를 포함하는 것을 특징으로 하는 그래핀 제조장치.
  7. 제4항에 있어서,
    상기 퇴출부에 배치되는 상기 가이드홀의 크기는 상기 도입부에 배치되는 상기 가이드홀의 크기보다 더 크게 형성되는 것을 특징으로 하는 그래핀 제조장치.
  8. 제1항에 있어서,
    상기 챔버 내부에 배치되어, 상기 제1 롤러부 및 상기 제2 롤러부를 통과한 촉매금속의 그래핀 층 상에 보호층을 형성하기 위한 보호필름 공급부;를 더 포함하는 것을 특징으로 하는 그래핀 제조장치.
  9. 제1항에 있어서,
    상기 제1 롤러부와 상기 제2 롤러부를 서로 근접시키거나 이격시키며, 상기 제1 영역과 상기 제2 영역의 사이 간격을 조정하는 롤러이동부재를 더 포함하는 것을 특징으로 하는 그래핀 제조장치.
  10. 제1항에 기재된 그래핀 제조장치를 이용하며,
    상기 챔버 내에 상기 촉매금속을 공급하는 공급단계;
    상기 제1 롤러부와 상기 제2 롤러부 사이를 통과하는 상기 촉매금속의 온도편차를 보상하기 위하여, 상기 제1 롤러부와 가까운 상기 촉매금속의 제1 영역과 상기 제2 롤러부와 가까운 상기 촉매금속의 제2 영역이 서로 마주하는 이동경로를 가지도록 상기 챔버 내에 상기 촉매금속을 배치하는 배치단계;
    상기 촉매금속 상에 그래핀을 합성하는 합성단계; 및
    상기 챔버로부터 상기 그래핀이 합성된 촉매금속을 회수하는 회수단계;를 포함하는 것을 특징으로 하는 그래핀 제조방법.
  11. 제10항에 있어서,
    상기 배치단계는,
    상기 촉매금속이 상기 제1 롤러부와 상기 제2 롤러부 사이에서 하측으로 늘어짐에 따라 상기 제1 영역과 상기 제2 영역이 서로 마주하는 이동경로를 가지는 것을 특징으로 하는 그래핀 제조방법.
  12. 제11항에 있어서,
    상기 배치단계 이후에 수행되며,
    상기 제1 롤러부 및 상기 제2 롤러부로부터 상기 촉매금속의 하측으로 늘어진 길이가 기준 처짐길이와 일치하는지를 감지하는 감지단계;
    상기 촉매금속의 늘어진 길이가 기준 처짐길이와 일치되도록 상기 제1 롤러부 또는 상기 제2 롤러부의 회전속도를 제어하는 조정단계;를 더 포함하는 것을 특징으로 하는 그래핀 제조방법.
  13. 제10항에 있어서,
    상기 합성단계 이후에 수행되며,
    상기 제1 롤러부 및 상기 제2 롤러부를 통과한 촉매금속의 그래핀 층 상에 보호층을 형성하는 보호필름 형성단계;를 더 포함하는 것을 특징으로 하는 그래핀 제조방법.
PCT/KR2019/017939 2018-12-21 2019-12-18 그래핀 제조장치 및 이를 이용한 그래핀 제조방법 WO2020130608A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/416,518 US11712674B2 (en) 2018-12-21 2019-12-18 Graphene manufacturing device and graphene manufacturing method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180167284A KR102173057B1 (ko) 2018-12-21 2018-12-21 그래핀 제조장치 및 이를 이용한 그래핀 제조방법
KR10-2018-0167284 2018-12-21

Publications (2)

Publication Number Publication Date
WO2020130608A2 true WO2020130608A2 (ko) 2020-06-25
WO2020130608A3 WO2020130608A3 (ko) 2020-08-06

Family

ID=71102261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017939 WO2020130608A2 (ko) 2018-12-21 2019-12-18 그래핀 제조장치 및 이를 이용한 그래핀 제조방법

Country Status (3)

Country Link
US (1) US11712674B2 (ko)
KR (1) KR102173057B1 (ko)
WO (1) WO2020130608A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102558765B1 (ko) * 2021-04-20 2023-07-25 주식회사 참그래핀 트윈챔버형 롤투롤 그래핀 필름 제조장치
KR102672557B1 (ko) * 2021-12-29 2024-06-05 재단법인 파동에너지 극한제어 연구단 줄히팅 기반 롤투롤 그래핀 제조방법 및 그래핀 제조장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101168259B1 (ko) * 2012-03-05 2012-07-30 한국기계연구원 롤투롤 기반의 그래핀 연속 합성 장치
KR101581362B1 (ko) * 2012-04-09 2015-12-30 엘지전자 주식회사 줄 히팅을 이용한 그래핀의 제조 장치
KR101706957B1 (ko) * 2012-05-18 2017-02-15 엘지전자 주식회사 유도 가열을 이용한 그래핀의 제조 장치
WO2013191347A1 (ko) * 2012-06-19 2013-12-27 에스 알 씨 주식회사 연속 그래핀 제조장치
KR101238450B1 (ko) * 2012-07-04 2013-02-28 에스 알 씨 주식회사 양면형 그래핀 제조장치 및 제조방법
KR20140121664A (ko) * 2013-04-08 2014-10-16 엘지전자 주식회사 롤투롤 방식의 박막 제작 장치
KR101801272B1 (ko) * 2014-05-09 2017-11-30 주식회사 참트론 그래핀 필름 제조장치
KR101716785B1 (ko) * 2015-03-02 2017-03-28 서울대학교산학협력단 그래핀의 제조 방법 및 제조 장치
KR101797655B1 (ko) * 2015-11-24 2017-11-15 해성디에스 주식회사 그래핀 합성 장치

Also Published As

Publication number Publication date
US11712674B2 (en) 2023-08-01
WO2020130608A3 (ko) 2020-08-06
KR20200078764A (ko) 2020-07-02
US20220055001A1 (en) 2022-02-24
KR102173057B1 (ko) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2020130608A2 (ko) 그래핀 제조장치 및 이를 이용한 그래핀 제조방법
WO2019135502A1 (ko) 줄 히팅을 이용한 그래핀 제조장치 및 이의 제조방법
WO2012150761A1 (ko) 그래핀의 제조 방법 및 그래핀의 제조 장치
WO2014073831A1 (ko) 기판 트레이 및 이를 포함하는 기판처리장치
WO2015064882A1 (ko) 모바일 기기용 곡면 윈도우 글라스 제조방법
WO2018151511A1 (ko) 배관내부 주행로봇
WO2011132885A2 (en) Substrate processing apparatus
WO2017204408A1 (ko) 전선 구조체 및 이의 제조 방법
WO2015099224A1 (ko) 압연장치, 연주압연장치 및 방법
WO2013141473A1 (ko) 멀티-도가니 타입 실리콘 잉곳 성장 장치
WO2020162661A1 (ko) 카세트 조립체 및 이를 구비한 배터리용 트레이
WO2022065740A1 (ko) 잉곳 성장 장치
WO2021215578A1 (ko) 롤투롤 대면적 그래핀 합성 장치, 대면적 그래핀의 제조방법 및 산화그래핀 직물의 환원방법
WO2019083261A1 (ko) 증착 장치
WO2018151364A1 (ko) 로이유리 열처리 방법 및 시스템
WO2014038803A1 (en) Catalyst metal film-supporting device and method and apparatus for synthesizing multiple graphene films
WO2011136604A2 (ko) 기판 처리 장치
WO2013025072A2 (ko) 반도체 또는 금속산화물 잉곳 제조장치
WO2013191347A1 (ko) 연속 그래핀 제조장치
WO2012002666A2 (en) Graphene manufacturing apparatus and method
WO2023128398A1 (ko) 줄히팅 기반 롤투롤 그래핀 제조방법 및 그래핀 제조장치
WO2019132313A1 (ko) 줄 히팅을 이용한 그래핀 제조방법
WO2011002204A2 (ko) 라미네이팅 시스템 및 방법
WO2016175514A1 (ko) 롤투롤 방식의 그래핀 제조장치 및 롤투롤 방식으로 기판을 공급하는 제조장치
WO2020138634A1 (ko) Pet 발포시트 제조장치 및 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900870

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900870

Country of ref document: EP

Kind code of ref document: A2