WO2014171796A1 - 외피재를 갖는 단열재의 연속식 제조 방법 - Google Patents

외피재를 갖는 단열재의 연속식 제조 방법 Download PDF

Info

Publication number
WO2014171796A1
WO2014171796A1 PCT/KR2014/003436 KR2014003436W WO2014171796A1 WO 2014171796 A1 WO2014171796 A1 WO 2014171796A1 KR 2014003436 W KR2014003436 W KR 2014003436W WO 2014171796 A1 WO2014171796 A1 WO 2014171796A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
heat insulating
insulating material
supplying
steps
Prior art date
Application number
PCT/KR2014/003436
Other languages
English (en)
French (fr)
Inventor
윤종현
백범규
이상윤
강태윤
Original Assignee
주식회사 경동원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동원 filed Critical 주식회사 경동원
Publication of WO2014171796A1 publication Critical patent/WO2014171796A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies

Definitions

  • the present invention relates to a continuous manufacturing method of a heat insulating material having an outer shell material. More particularly, the present invention relates to a continuous production method of a heat insulating material having an outer shell having excellent physical properties by preventing the damage of the product by the continuous production, preventing the damage to the product, and can be manufactured at a low density, and the use of binders.
  • Inorganic materials used as a heat insulator mostly have a cell with a specific surface area. This is molded by compression molding to give a large specific surface area therein to produce a heat insulating material having good heat insulating performance.
  • a heat insulating material In the case of manufacturing a heat insulating material, if it is nano size and has a large specific surface area, such as a synthetic silica, it does not use a binder (binder) in order to have a large specific surface area, or even a small amount is used, so it has moldability. In order to prepare a high density. In addition, there is a possibility of being damaged in the post-processing, such as transporting or cutting the produced molded product, such a manufacturing method is a big burden due to the increase in the material cost and the manufacturing cost due to high density compression.
  • a binder binder
  • expanded perlite or vermiculite In the case of expanded perlite or vermiculite, it is manufactured by compression molding by mixing with a binder. In this case, it can be manufactured to a desired strength by the use of a binder.
  • a binder there is a disadvantage in that the internal specific surface area is reduced by the binder, and thermal efficiency is lowered due to increased conduction by the binder.
  • the present invention is a continuous manufacturing method of a heat insulating material having an outer shell material which is moldable at a low density without using a binder, prevents damage during the process, and can reduce the material cost and process cost as the manufacturing process is continuously performed.
  • the purpose is to provide.
  • Continuous production method of a heat insulating material having an outer shell material the first step of manufacturing the mixture by mixing the heat insulating material, the second step of supplying the lower outer shell material, the upper of the lower outer shell material of the second step Step 3 of supplying the mixture prepared in step 1, step 4 of supplying the upper shell material over the mixture of step 3, 5 step of sealing the upper shell material and the lower shell material containing the mixture from the fourth step (sealing) , And the six steps of compressing and molding the mixture of the upper outer shell material and the lower outer shell material from the fifth step.
  • the continuous production method of the heat insulating material having the outer skin material of the present invention excellent molding strength even at a low density, good thermal efficiency by not using a binder, it is possible to prevent damage to the heat insulating material during manufacturing or use by the outer skin material. .
  • the production cost can be reduced by the continuous production method.
  • FIG. 1 is a view showing a continuous step of manufacturing a heat insulating material having an envelope according to an embodiment of the present invention.
  • FIGS. 2 to 5 are electron micrographs of the inside of the insulating material
  • Figure 2 is a photograph taken by the electron microscope of the cut surface of the insulating material
  • Figure 3 is an enlarged photo of a portion of Figure 2
  • Figure 4 is a cut surface during simple mixing molding Of the silica agglomerated site is a photograph taken by an electron microscope
  • Figure 5 is a photograph taken by electron microscope a site where the agglomeration of the perlite of the cut surface during simple mixing molding.
  • FIG. 6 is a view showing a form of replacing the upper envelope by folding the lower envelope according to another embodiment of the present invention.
  • FIG. 7 is a view showing a groove, such as the shape of the heat insulating material on the lower outer cover material according to another embodiment of the present invention.
  • FIG 8 is a view illustrating a compression flow using a compression roller.
  • the ash consists of six steps to compress and mold the sealed mixture.
  • the heat insulating material is preferably an inorganic material having a heat insulating performance, but is not intended to be limited thereto, for example, synthetic silica, Refers to expanded perlite and expanded vermiculite, the mixture may be prepared by selecting at least one or more of the inorganic materials.
  • the synthetic silica is more than 90% silica content purity
  • the inorganic material with excellent thermal insulation the particles are several nanometer to tens of microns of fumed silica, precipitated silica, colloidal silica, porous silica, aerogel, white carbon, etc., It has properties that can impart hydrophilicity and hydrophobicity according to in-process treatment method.
  • Expanded perlite is a generic name for natural minerals such as pearl rock, pine rock, obsidian, and pumice that are expanded by vitrifying the surface of a high-temperature flame and vaporizing water (crystal water) inside.
  • the shape of the expanded perlite particles is characteristic according to the size and distribution of the particles before expansion and the amount of crystal water according to the drying, the prepared expanded perlite is composed of a myriad of cells inside the particle has a large specific surface area, It has a low specific gravity and has suitable conditions as a heat insulating material.
  • Expanded vermiculite is a mineral belonging to a monoclinic system having a mica-like crystal structure, which is expanded in a high temperature flame. When expanded, it has a myriad of cells inside and is suitably used as an insulating material.
  • the mixture means at least one selected from the above insulating materials.
  • dry mixing is used with a stirring mixer such as a gravityless mixer or a ribbon mixer.
  • opacifying agents include, but are not limited to, silicon carbide, graphite, zirconia, zircon, alumina or titanium oxide.
  • the fiber may be, but is not limited to, inorganic fibers such as glass fiber, mineral wool and zirconium, and organic fibers such as polyethylene, polypropylene, polyester, nylon, and the like.
  • the irregular glass shard expanded perlite particles are uniformly dispersed to make a structural framework between the synthetic silica, thereby increasing the strength at low density. I can reinforce it. This is not simply mixing different particles together. Since simple mixing causes problems such as agglomeration and separation of layers, in the present invention, the expanded perlite is dispersed between the synthetic silicas by crushing the expanded perlite to an appropriate size on a high speed mixer, thereby making a structural framework between the synthetic silicas.
  • synthetic silica is in the form of agglomerates of several tens of micro-sizes due to high moisture hygroscopicity in the atmosphere or electrostatic attraction between particles, but the particles can be instantly separated by external strong force or pressure. Instantly separates and disperses synthetic silica to its original size by high rpm and force of high speed mixer, and coats the fine particles to adhere to the surface of expanded perlite particles to eliminate particle phase separation of synthetic silica and expanded perlite. It is possible to form a structure of glass fragments expanded perlite and synthetic silica to a size of 300 ⁇ m.
  • 2 to 5 are electron micrographs of the interior of the mixture.
  • 2 is an electron micrograph of a composite material in which a structural skeleton of expanded perlite is formed on synthetic silica
  • FIG. 3 is an enlarged photograph of a portion of FIG. 2, and it can be seen that the expanded perlite fragment forms a structural skeleton.
  • the synthetic silica particles are uniformly dispersed on the surface of the perlite particles, thereby making it possible to make a heat insulating material having excellent molding strength while maintaining heat insulating performance in a form in which the boundary of the phase is ambiguous.
  • the second step is the step of supplying the lower shell material.
  • the lower envelope material used in the present invention is not intended to be limited thereto, but for example, a woven cloth composed of organic fibers, a nonwoven fabric composed of organic fibers, a woven fabric composed of inorganic fibers, a nonwoven fabric composed of inorganic fibers, and the like. At least one or more of (Nonwoven) may be selected and used.
  • the reason for using a woven or nonwoven fabric without using a completely sealed film form is to remove air in the mixture and improve moldability in the six-stage compression molding.
  • the lower sheath material with a thickness of about 0.1 mm or more and 5 mm or less, and if it is thinner than 0.1 mm, it is difficult to act as a sheath material, and when it exceeds 5 mm, a problem occurs that thermal efficiency is lowered by the sheath material. It is preferable to apply in the said range.
  • one side of the vertical width in the advancing direction (arrow direction) of the lower skin material is folded, or both sides are folded. Fold in place of the four steps to supply the upper shell material.
  • the step of supplying the mixture to the upper surface of the lower envelope is a step in which the lower envelope is continuously progressed and a predetermined amount of the mixture is supplied thereon.
  • the fixed amount of the mixture is an amount that satisfies the thickness and density of the heat insulating material to be made finally.
  • the primary compression of the mixture may be added before supply to the lower shell material. The reason for the primary compression is to reduce the volume when the volume of the mixture is too large to supply the gap between the lower skin and the upper skin. It can be used by passing the compression roller 30 as shown in Figure 8 to compress while supplying continuously. By adjusting the distance between the rollers, the amount to be compressed can be adjusted.
  • Step 4 is a step of supplying the upper shell material, as shown in FIG. It has a mixture on the upper part of the lower shell material, and is supplied over it so as to surround the mixture.
  • the upper outer cover material may be supplied separately, or in the second step, the lower outer cover material may be folded to one or both sides of the upper outer cover material.
  • the upper envelope material used in the present invention is not intended to be limited thereto, but for example, a woven cloth composed of organic fibers, a nonwoven fabric composed of organic fibers, a woven fabric composed of inorganic fibers, a nonwoven fabric composed of inorganic fibers, and the like. At least one or more of (Nonwoven) may be selected and used.
  • the reason for using a woven or nonwoven fabric without using a completely sealed film form is to remove air in the mixture and improve moldability in the six-stage compression molding.
  • the upper shell material with a thickness of about 0.1mm or more to 5mm or less, and if it is thinner than 0.1mm, it is difficult to act as the skin material, and if it exceeds 5mm, the problem of thermal efficiency deteriorated by the skin material occurs. It is preferable to apply in the said range.
  • step 5 is a step of sealing the lower envelope and the upper envelope with the mixture.
  • the sealing method is not intended to be limited thereto, but, for example, stitching or overlocking through sewing machines, fusion by high frequency or heat, and the like may be used.
  • step 6 is a step of manufacturing a heat insulating material by compression molding the mixture of the inner core material which is supplied sealed, but not limited to the belt press, It can be optionally used in roll press or plate press.
  • the composite material is sealed to prevent leakage or loss to the outside and is easily compressed since the inner gas is discharged through the envelope.
  • the planarization process may be further performed to have a uniform height. The reason for the flattening is to prevent the phenomenon that the film is slid to one side during compression molding.
  • after the step 6 may further include a quilting (Quilting) process penetrating the upper shell material and the lower shell material.
  • a drying process may be added after 6 steps. This is to remove the moisture absorbed on the surface during the raw material or the molding process, the temperature is preferably about 50 °C to about 200 °C, not limited to this, for example, hot air drying, far infrared drying, microwave drying, etc. Various applications are possible.
  • the step of imparting minority and water repellency may be added.
  • hydrophobicity is not intended to be limited to this, but there is a method of granting only the shell material, a method of granting only the inner core material, and a method of granting both the shell material and the inner material.
  • hydrophobicity is given to the shell material, it can be carried out at the previous stage of supply of the shell material.
  • the lower sheath or the upper sheath may be dipped in a water repellent and passed through a dryer, for example about 50 ° C. to about 200 ° C., to impart hydrophobicity.
  • the hydrophobic outer shell material may be supplied in two and four stages.
  • the method of providing hydrophobicity to the mixture which is an internal core material by giving a hydrophobic treatment to the particle
  • hydrophobizing the particles it is also possible to hydrophobize all of the particles or to mix hydrophobic and hydrophilic (non-hydrophobic) particles in certain proportions.
  • the water repellent is not intended to be limited to this, for example, may be used one selected from silicon-based, fluorine-based, silane-based.
  • Stage 1 To 50 kg by weight of fumed silica, 5 kg by weight of fibers, 7.5 kg by weight of the opacifier are mixed in a zero gravity mixer for 5 minutes to prepare a mixture.
  • Step 2 A PP nonwoven fabric having a width of 1.2 m (20 g / m 2) is supplied to the lower envelope at a rate of 2 m / sec.
  • Step 3 The mixture is fed over the lower shell material to be supplied.
  • the width is 1m and is supplied at a speed of 1.2 kg / m.
  • Step 4 A PP nonwoven fabric having a width of 1.2 m (20 g / m 2) is supplied to the upper envelope at a rate of 2 m / sec.
  • Step 5 Seal the upper envelope and the lower envelope at 180 ° C.
  • Step 6 Consolidate so that the final height is 10mm through a continuous compression roller, and removes the outer skin material attached to the sealing portion and to prepare a heat insulating material having an outer material having a density of 120kg / m3.
  • Stage 1 20 kg by weight of expanded perlite is mixed with 30 kg by weight of fumed silica, mixed and dispersed for 60 seconds at 2000 rpm in a mixer equipped with a blade, and then 5 kg by weight of fiber and 7.5 kg by weight of an opacifier are mixed in a zero gravity mixer for 5 minutes. Prepare the mixture.
  • Step 2 A PP nonwoven fabric having a width of 1.2 m (20 g / m 2) is supplied to the lower envelope at a rate of 2 m / sec.
  • Step 3 The mixture is fed over the lower shell material to be supplied.
  • the width is 1m and is supplied at a speed of 1.2 kg / m.
  • Step 4 A PP nonwoven fabric having a width of 1.2 m (20 g / m 2) is supplied to the upper envelope at a rate of 2 m / sec.
  • Step 5 Seal the upper envelope and the lower envelope at 180 ° C.
  • Step 6 Consolidate so that the final height is 10mm through a continuous compression roller, and removes the outer skin material attached to the sealing portion and to prepare a heat insulating material having an outer material having a density of 120kg / m3.
  • Stage 1 To 50 kg by weight of fumed silica, 5 kg by weight of fibers, 7.5 kg by weight of the opacifier are mixed in a zero gravity mixer for 5 minutes to prepare a mixture.
  • Step 2 A glass fiber woven fabric having a width of 1.2 m (225 g / m 2) is supplied to the lower envelope at a speed of 2 m / sec.
  • Step 3 The mixture is fed over the lower shell material to be supplied.
  • the width is 1m and is supplied at a speed of 1.2 kg / m.
  • Step 4 A glass fiber woven fabric having a width of 1.2 m (225 g / m 2) is supplied to the upper envelope at a speed of 2 m / sec.
  • Step 5 The upper skin and the lower skin are sewn with glass fiber to seal it.
  • Step 6 Consolidate so that the final height is 10mm through the continuous compression roller, and remove the extra sheath material attached to the sealing part and insulate the insulation material with the sheath material of density 165kg / m3 (120kg / m3 of material + 45kg / m3 of sheath material).
  • the following steps are carried out by adding a line that is continuously supplied to an aqueous solution containing 5% of a silicone-based water repellent and dipping and continuously dried at a temperature of 150 ° C.
  • Stage 1 To 50 kg by weight of fumed silica, 5 kg by weight of fibers, 7.5 kg by weight of the opacifier are mixed in a zero gravity mixer for 5 minutes to prepare a mixture.
  • Step 2 A glass fiber woven fabric having a width of 1.2 m (225 g / m 2) is supplied to the lower envelope at a speed of 2 m / sec.
  • Step 3 The mixture is fed over the lower shell material to be supplied.
  • the width is 1m and is supplied at a speed of 1.2 kg / m.
  • Step 4 A glass fiber woven fabric having a width of 1.2 m (225 g / m 2) is supplied to the upper envelope at a speed of 2 m / sec.
  • Step 5 The upper skin and the lower skin are sewn with glass fiber to seal it.
  • Step 6 Consolidate so that the final height is 10mm through the continuous compression roller, and remove the extra sheath material attached to the sealing part and insulate the insulation material with the sheath material of density 165kg / m3 (120kg / m3 of material + 45kg / m3 of sheath material).
  • Stage 1 To 49 kg by weight of expanded perlite, 1 kg by weight of fiber is sufficiently mixed for 5 minutes in a gravity-free mixer to prepare a mixture.
  • Step 2 A glass fiber woven fabric having a width of 1.2 m (225 g / m 2) is supplied to the lower envelope at a speed of 2 m / sec.
  • Step 3 The mixture is fed onto the lower sheath that is supplied, at a speed of 1.16 kg / m with a width of 1 m.
  • Step 4 A glass fiber woven fabric having a width of 1.2 m (225 g / m 2) is supplied to the upper envelope at a speed of 2 m / sec.
  • Step 5 The upper skin and the lower skin are sewn with glass fiber to seal it.
  • Step 6 Consolidate so that the final height is 10mm through the continuous compression roller, remove the extra envelope material attached to the sealing part, and insulate the insulation material having an envelope material of density 161kg / m3 (clad material 116kg / m3 + shell material 45kg / m3).
  • Example 3 165 (120 + 45) * 130 0.023 Can not measure much water absorption Can be handled by the sheath Example 4 165 (120 + 45) * 132 0.022 99.6% Can be handled by the sheath Example 5 161 (116 + 45) * 88 0.042 - Can be handled by the sheath Comparative Example 1 120 Not measurable Not measurable - Not handled and broken after molding Comparative Example 2 200 151 0.022 - Handleable Comparative Example 3 154 (116 + 38) * 688 0.055 - Handleable
  • Example 1 Example 2, Comparative Example 1 and Comparative Example 2
  • Comparative Example 1 which has a low density, is not handled after molding and is broken, and physical properties are not measured, whereas Example 1 and Example 2 Can be handled by the shell material, and the physical properties were measured accordingly.
  • Example 2 shows no significant difference from Comparative Example 2, which is high in spite of the low density due to the structural skeleton formation of the expanded perlite.
  • Example 3 and Example 4 is a comparison of the water repellent performance according to whether or not the water repellent treatment on the outer shell material can be seen that a large water repellent effect appears only by the water repellent treatment on the outer shell material.
  • Example 5 and Comparative Example 3 compares the insulation using the expanded perlite.
  • the expanded perlite insulation material is compression molded using sodium silicate as an adhesive as in Comparative Example 3.
  • Example 5 was compressed similar to the use of the same expanded perlite as Comparative Example 3, but did not use the adhesive, showing a low thermal conductivity performance.
  • it can be handled by the outer shell material to show that it is possible to manufacture a heat insulating material with excellent thermal properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)

Abstract

본 발명은 외피재를 단열성 물질을 혼합하여 합재를 제조하는 1단계; 하부 외피재가 공급되는 2단계; 하부 외피재 상부로 합재를 공급하는 3단계; 상부 외피재가 공급되는 4단계; 합재를 포함하는 상부 외피재와 하부 외피재를 씰링하는 5단계; 압축 및 성형하는 6단계로 제조함으로써 연속식 생산에 의해 경제적이면서도 제품의 훼손을 방지하고, 낮은 밀도와 바인더 사용을 제거함으로써 물성이 우수한 외피재를 갖는 단열재 연속식 제조 방법에 관한 것이다.

Description

외피재를 갖는 단열재의 연속식 제조 방법
본 발명은 외피재를 갖는 단열재의 연속식 제조 방법에 관한 것이다. 더욱 상세하게는 연속식 생산에 의해 경제적이면서도 제품의 훼손을 방지하고, 낮은 밀도로 제조가 가능하고 바인더 사용을 제거함으로써 물성이 우수한 외피재를 갖는 단열재의 연속식 제조방법에 관한 것이다.
단열재로 사용되는 무기소재는 대부분 내부에 셀을 갖는 구조로 비표면적을 갖는다. 이것을 압축 성형하여 내부에 많은 비표면적을 부여함으로써 단열성능이 좋은 단열재를 제조한다.
단열재를 제조할 때 합성 실리카와 같이 나노 사이즈면서 많은 비표면적을 갖는 경우는, 내부에 많은 비표면적을 갖게 하기 위해 바인더(결합재)를 사용하지 않거나, 사용하더라도 아주 소량을 사용하기 때문에 성형성을 갖게 하기 위해 높은 밀도로 제조한다. 또한 제조된 성형체를 공정 중 이송하거나 절단 등 후가공에 있어서 훼손될 가능성이 있어, 이러한 제조 방법은 재료비 상승과 고밀도 압축에 따른 제조비용 상승으로 큰 부담이 된다.
팽창 퍼라이트나 질석(蛭石, Vermiculite)의 경우는 바인더와 혼합하여 압축 성형하여 제조한다. 이 경우 바인더의 사용에 의해 원하는 강도로 제조 가능하다. 그러나, 바인더에 의해 내부 비표면적이 축소되고, 바인더에 의한 전도 증가로 열효율이 떨어지는 단점이 있다.
또한, 상기 방법 들은 단속적인 배치(batch) 형태의 압축 성형으로 제조하기 때문에 설비 투자비 증가와 제조 비용의 증가를 가지고 있다.
미국특허 제3,962,014호“Thermal insulating materials”에 의하면, 단열성 패널을 만드는 방법에 있어서, 미세 다공성 단열 소재의 입자를 다공질 시트 소재로 구성된 봉투(bag)에 넣어 압축 성형하는 방법에 대해 제시하여, 성형성 향상 및 성형 후 훼손되는 것을 방지하고 있으나 이는 개별로 된 봉투형태에 넣어 제조하는 배치(batch)식 형태로 공정이 복잡하다.
미국특허 제6,863,949호“FOIL-ENVELOPED EVACUATED THERMAL INSULATION ELEMENTS”에 의하면, 가스가 통하지 않는 진공상태의 안정화된 다공성의 심재를 외피재로 둘러싼 개별의 단열재 제조 공정으로 성형된 개별의 심재가 연속으로 공급되고 외피재로 포장하는 공정을 제시하고 있으나, 이는 심재가 개별적으로 성형하여 공급되고, 심재가 외피재로 포장되기 전까지 공정에서 훼손되는 문제가 있다.
한국특허공보 제10-2009-0117701호“진공다열재 내부심재의 연속 제조공정”에 의하면, 진공단열재 심재를 연속으로 제조할 수 있는 연속 제조 공정에 관한 것으로, 실리카 분체 및 분말을 성형시 벨트 프레스 및 재단기를 이용하여 연속적으로 시재를 제조할 수 있음을 제시하고 있으나, 연속된 벨트 콘베이어에서 실리카 소재 등의 분체를 압축하게 되면 압축 후 이송 중 심재에 크랙의 발생이나, 실리카 소재는 유동성이 좋아 압축시 작은 틈(컨베어 좌우 등)으로 분출 또는 흘러 내려 불균일하여 적정 밀도로 제조하기 어렵고, 분진 발생이 심한 문제가 있다.
본 발명은 바인더를 사용하지 않고 낮은 밀도에서도 성형성을 갖고, 공정 중 훼손을 방지하며 제조 공정을 연속적으로 실시함에 따라 재료비 감소와 공정 비용을 감소시킬 수 있는 외피재를 갖는 단열재의 연속식 제조 방법을 제공하는데 그 목적이 있다.
본 발명의 한 구현예에 따른 외피재를 갖는 단열재의 연속식 제조 방법은, 단열성 물질을 혼합하여 합재를 제조하는 1단계, 하부 외피재를 공급하는 2단계, 상기 2단계의 하부 외피재 상부로 1단계에서 제조한 합재를 공급하는 3단계, 상기 3단계의 합재 위로 상부 외피재를 공급하는 4단계, 상기 4단계로부터 합재를 포함하는 상부 외피재와 하부 외피재를 씰링(sealing)하는 5단계, 및 상기 5단계로부터 상부 외피재와 하부 외피재가 씰링된 합재를 압축 및 성형하는 6단계로 이루어진 것을 특징으로 한다.
본 발명에 있어서 단열성 물질을 혼합하여 제조되는 합재는, 팽창 퍼라이트를 이용하여 형상이 불규칙한 유리파편 모양의 퍼라이트 입자를 고르게 분산시켜 합성 실리카 사이에서 구조적 골조(framework)를 갖도록 만듦으로써, 낮은 밀도에서 강도를 보강할 수 있다.
본 발명의 외피재를 갖는 단열재의 연속식 제조 방법에 따르면, 낮은 밀도에서도 성형강도가 우수하고, 바인더를 사용하지 않음으로써 열효율이 좋고, 외피재에 의해 제조시 또는 사용시 단열재 훼손을 방지할 수 있다. 또한 연속식 생산방법에 의해 제조비용 저감의 효과를 얻을 수 있다.
도 1은 본 발명의 한 구현예에 따른 외피재를 갖는 단열재의 연속식 제조 단계를 나타낸 도면이다.
도 2 내지 도 5는 단열재 내부의 전자현미경 사진으로서, 도 2는 단열재의 절단면을 전자현미경으로 촬영한 사진이고, 도 3는 도 2의 일부분을 확대한 사진이며, 도 4는 단순 혼합 성형시 절단면 중 실리카가 뭉친 부위를 전자현미경으로 촬영한 사진이고, 도 5는 단순 혼합 성형시 절단면 중 퍼라이트가 뭉친 부위를 전자현미경으로 촬영한 사진이다.
도 6은 본 발명의 다른 구현예에 따른 하부 외피재를 접어 상부 외피재를 대신하는 형태를 나타낸 도면이다.
도 7는 본 발명의 또 다른 구현예에 따른 하부 외피재에 단열재 형상과 같은 홈을 나타낸 도면이다.
도 8는 압축롤러를 이용한 압축흐름을 나타내는 도면이다.
상기 목적을 달성하기 위한 본 발명의 외피재를 갖는 단열재의 연속식 제조 방법은, 도 1에 예시한 바와 같이, 단열성 물질을 혼합하여 합재를 제조하는 1단계, 하부 외피재를 공급하는 2단계, 상기 하부 외피재 상부로 상기 합재를 공급하는 3단계, 상부 외피재를 공급하는 4단계, 합재를 포함하는 상부 외피재와 하부 외피재를 씰링(sealing)하는 5단계, 및 상부 외피재와 하부 외피재가 씰링된 합재를 압축 및 성형하는 6단계로 이루어진다.
본 발명의 한 구현예에 의하면, 단열성 물질을 혼합하여 합재를 제조하는 1단계에서, 단열성 물질로는 단열성능을 갖는 무기질 소재가 바람직하며, 이에 한정하고자 하는 것은 아니지만, 예를 들면, 합성실리카, 팽창퍼라이트 및 팽창 질석을 말하며, 합재는 상기 무기질 소재 중에서 적어도 1종 이상을 선택하여 제조할 수 있다.
상기에서, 합성실리카는 실리카 함량 순도 90% 이상이며, 단열성이 우수한 무기물로 그 입자가 수 나노미터에서 수십 마이크로의 흄드 실리카나 침강 실리카, 콜로이드 실리카, 다공성 실리카, 에어로겔, 화이트 카본 등을 통칭하며, 공정 중 처리방법에 따라 친수성과 소수성을 부여할 수 있는 성상을 갖고 있다.
팽창 퍼라이트는 진주암, 송지암, 흑요석, 경석 등의 천연 광물을 고온의 화염에서 표면을 유리질화하고, 내부에 수분(결정수)을 증기화하여 팽창되는 것을 통칭한다. 팽창된 퍼라이트 입자의 형태는 팽창 전 입자의 크기와 분포 및 건조에 따른 결정수의 양에 따라 특징적으로 이루어지며, 제조된 팽창 퍼라이트는 그 입자 내부의 무수한 셀로 구성되어 있어 넓은 비표면적을 가지고 있고, 비중이 낮아 단열 소재로서 적합한 조건을 갖추고 있다.
팽창 질석은 운모와 같은 결정구조를 갖는 단사정계에 속하는 광물로 고온의 화염에 팽창된 것을 말하며, 팽창시 내부에 무수한 셀을 갖게 되어 단열 소재로 적합하게 사용된다.
본 발명에서 합재는 상기 단열성 물질중 선택된 하나 이상을 의미한다. 한 종 이상을 사용할 경우에, 무중력 믹서, 리본 믹서 등의 교반 믹서로 건식 혼합하여 사용한다. 또한 단열성을 향상시키기 위해 불투명화제를, 강도를 보강하기 위해 섬유를 추가할 수 있다. 불투명화제로는 이에 한정하고자 하는 것은 아니지만, 예를 들면 탄화규소, 그라파이트, 지르코니아, 지르콘, 알루미나 또는 산화티탄 등을 들 수 있다. 섬유로는 이에 한정하고자 하는 것은 아니지만, 예를 들면 유리섬유, 미네랄울 및 지르코늄 등과 같은 무기섬유와 폴리에틸렌, 폴리프로필렌, 폴리에스테르, 나일론 등과 같은 유기섬유를 사용할 수 있다.
본 발명의 바람직한 구현예에 의하면 부가적으로, 합재를 제조하는 1단계에서 불규칙한 유리파편 모양의 팽창 퍼라이트 입자를 고르게 분산시켜 합성 실리카 사이에서 구조적 골조(framework)를 갖도록 만듦으로써, 낮은 밀도에서 강도를 보강할 수 있다. 이것은 서로 다른 입자끼리의 단순히 혼합하는 것이 아니다. 단순히 혼합하는 경우 뭉침이나 층분리 등의 문제가 발생하기 때문에 본 발명에서는 고속 믹서상에서 팽창 퍼라이트를 적절한 크기로 파쇄하면서 합성 실리카 사이에 분산시켜, 합성 실리카 사이에서 구조적 골조 역할을 하도록 만드는 것이다.
좀더 자세히 설명하면, 합성 실리카는 대기 중 수분 흡습성이 높거나 입자간 정전기적 인력으로 인해 수십 마이크로 사이즈의 응집된 형태로 있지만, 외부의 강한 힘이나 압력에 의해 입자들이 순간적으로 분리가 가능하다. 고속 믹서의 높은 rpm과 힘에 의해서 순간적으로 합성 실리카를 본래의 사이즈로 분리, 이를 분산 시키고, 팽창 퍼라이트 입자 표면에 그 미세한 입자들이 부착되도록 코팅하여 합성 실리카와 팽창 퍼라이트의 입자 상분리를 해소시켜 1 ~ 300㎛ 크기로 유리 파편화된 팽창 퍼라이트와 합성 실리카의 구조체를 형성시킬 수 있다.
도 2 내지 도 5는 합재 내부의 전자현미경 사진이다. 이 중 도 2는 합성 실리카에 팽창 퍼라이트의 구조적 골조를 형성한 합재의 전자현미경 사진이며, 도 3은 도 2의 일부분 확대한 사진으로서, 팽창 퍼라이트 조각이 구조적 골조를 형성하고 있음을 알 수 있다. 이에 따라 합성 실리카 입자가 퍼라이트 입자 표면에 고루 분산되어 상의 경계가 모호한 형태로 단열성능은 유지하면서도 우수한 성형강도를 갖는 단열재를 만들 수 있다.
일반적으로 단순 혼합하면 합성 실리카와 팽창 퍼라이트는 서로 응집된 상태로 상분리가 발생한다. 이를 합재로 제조하여 단면을 확인해 보면 합성 실리카는 도 4에서와 같이, 팽창 퍼라이트는 파편화 되어 도 5에서와 같이 서로 응집되어 분포하게 된다. 이 때, 합성 실리카 응집군은 결합 강도가 약해 쉽게 파손되고, 퍼라이트 응집군은 대류와 전도 현상이 발생하여 열전도율이 높아진다. 팽창 퍼라이트의 구조적 골조를 형성한 성형체는 유동성이 있는 합성 실리카 입자들로만 구성된 성형체보다 성형강도가 우수하다.
본 발명의 바람직한 구현예에 의하면 도 1에 나타낸 바와 같이, 2단계는 하부 외피재를 공급하는 단계이다.
본 발명에서 사용되는 하부 외피재는 이에 한정하고자 하는 것은 아니지만, 예를 들면 유기질 섬유로 구성된 직포(Cloth), 유기질 섬유로 구성된 부직포(Nonwoven), 무기질 섬유로 구성된 직포(Cloth), 무기질 섬유로 구성된 부직포(Nonwoven) 중 적어도 하나 이상을 선택하여 사용할 수 있다. 완전 밀폐한 필름형태를 사용하지 않고 직포나 부직포를 사용하는 이유는 6단계 압축성형할 때 합재 내부의 공기를 제거하고, 성형성을 좋게 하기 위함이다. 하부 외피재는 약 0.1mm 이상 ~ 5mm 이하의 두께로 사용하는 것이 바람직하고, 만일, 0.1mm 보다 얇으면 외피재 역할을 하기 어렵고, 5mm를 초과하면 외피재에 의해 열효율이 저하되는 문제가 발생하게 되므로 상기 범위로 적용하는 것이 바람직하다.
본 발명의 다른 구현예에 의하면, 하부 외피재를 공급하는 2단계에서, 도 6에 나타낸 바와 같이, 하부 외피재의 진행방향(화살표 방향)의 수직인 폭의 한쪽 면을 접거나, 또는 양쪽 면을 접어 상부 외피재를 공급하는 4단계를 대신할 수 있다.
또한, 본 발명의 또 다른 구현예로서, 도 7에 나타낸 바와 같이 하부 외피재를 미리 단열재 형상과 같이 홈을 제작하거나 성형할 수 있다. 이는 제작하고자 하는 단열재의 두께가 높거나, 형상이 불규칙한 형상일 때 더욱 유리할 수 있다.
본 발명의 한 구현예에 따른 3단계는 도 1에 나타낸 바와 같이, 하부 외피재의 상부면으로 합재를 공급하는 단계로, 하부 외피재가 연속적으로 진행되고 그 위에 합재를 일정량 공급하는 단계이다. 여기서 합재의 일정량이란, 최종 만들고자 하는 단열재의 두께와 밀도를 만족하는 양이다. 이때 하부 외피재로 공급전에 합재의 1차 압축을 추가할 수 있다. 1차 압축하는 이유는 합재의 부피가 너무 많아 하부 외피재와 상부 외피재의 간격에 공급하기 어려울 때, 부피를 축소해서 사용하기 위함이다. 연속식으로 공급하면서 압축하기 위해 도 8와 같이 압축롤러(30)를 통과 시켜 사용 가능하다. 롤러의 간격을 조정하여, 압축하고자 하는 양을 조절할 수 있다.
본 발명의 한 구현예에 따른 4단계는 도 1에 나타낸 바와 같이, 상부 외피재가 공급되는 단계이다. 하부 외피재의 상부에 합재를 갖고, 그 위로 공급되어 합재를 감싸는 형태가 되도록 한다. 이때 상부 외피재는 따로 공급하거나, 2단계에서 하부 외피재가 한쪽 또는 양쪽으로 접은 면이 상부 외피재가 되도록 할 수 있다.
본 발명에서 사용되는 상부 외피재는 이에 한정하고자 하는 것은 아니지만, 예를 들면 유기질 섬유로 구성된 직포(Cloth), 유기질 섬유로 구성된 부직포(Nonwoven), 무기질 섬유로 구성된 직포(Cloth), 무기질 섬유로 구성된 부직포(Nonwoven) 중 적어도 하나 이상을 선택하여 사용할 수 있다. 완전 밀폐한 필름형태를 사용하지 않고 직포나 부직포를 사용하는 이유는 6단계 압축성형할 때 합재 내부의 공기를 제거하고, 성형성을 좋게 하기 위함이다. 상부 외피재는 약 0.1mm 이상 ~ 5mm 이하의 두께로 사용하는 것이 바람직하고, 만일, 0.1mm 보다 얇으면 외피재 역할을 하기 어렵고, 5mm를 초과하면 외피재에 의해 열효율이 저하되는 문제가 발생하게 되므로 상기 범위로 적용하는 것이 바람직하다.
본 발명의 한 구현예에 따르면, 도 1에 나타낸 바와 같이, 5단계는 합재를 갖는 하부 외피재와 상부 외피재를 씰링하는 단계이다. 씰링 방법은 이에 한정하고자 하는 것은 아니지만, 예를 들면 미싱을 통한 바느질 형태의 박음이나 오바로크(Overlock), 고주파나 열에 의한 융착 등이 사용가능하다.
본 발명의 한 구현예에 따르면, 도 1에 나타낸 바와 같이, 6단계는 씰링되어 공급되는 내부 심재인 합재를 압축성형하여 단열재를 제조하는 단계로, 이에 한정하고자 하는 것은 아니지만 압축성형기로는 벨트프레스, 롤프레스, 판형프레스 중 선택적으로 사용가능하다. 합재는 외피재가 씰링되어 외부로 새거나 손실되는 것이 방지되며, 외피재를 통해 내부 가스가 빠지기 때문에 압축이 용이하다. 6단계를 실시하기 전에 균일한 높이가 되도록 평탄화 공정을 추가로 실시할 수 있다. 평탄화 하는 이유는 압축 성형시 한쪽으로 쏠리는 현상을 방지하기 위한 것이다.
본 발명의 다른 구현예에 의하면, 6단계 이후에 상부 외피재와 하부 외피재를 관통하는 누비(Quilting) 공정을 추가로 포함할 수 있다.
본 발명의 다른 구현예에 의하면, 6단계 이후에 건조공정을 추가할 수 있다. 이는 원재료 또는 성형 가공 중 표면에 흡수된 수분을 제거하기 위한 것이며, 온도는 약 50℃ 내지 약 200 ℃가 바람직하며, 이에 한정하고자 하는 것은 아니지만 예를 들면 열풍건조, 원적외선 건조, 마이크로웨이브 건조 등을 다양하게 적용 가능하다.
본 발명의 또 다른 구현예에 의하면, 소수 및 발수성(이하 소수성으로 표현)을 부여하는 단계를 추가할 수 있다. 단열재는 수분의 흡수나 흡습이 발생되면, 열전도율이 급격히 나빠져 단열성능이 떨어진다. 그 이유는 물의 열전도율이 대략 0.6W/mK로 높고, 내부 수분에 의해 대류현상 등이 증가하기 때문이다. 소수성 부여는 이에 한정하고자 하는 것은 아니지만, 외피재만 부여하는 방법, 내부 심재인 합재에만 부여하는 방법, 외피재와 내부 합재 둘다 부여하는 방법이 있다.
외피재에 소수성을 부여하는 경우는 외피재 공급하는 전단계에 실시할 수 있다. 하부 외피재나, 상부 외피재를 발수제에 디핑(dipping)하고 건조기, 예를 들면 약 50℃ 내지 약 200℃를 통과시켜 소수성을 부여할 수 있다. 이렇게 소수성을 갖는 외피재를 2단계와 4단계로 공급하면 된다.
내부 심재인 합재에 소수성을 부여하는 방법은, 합재에 사용하는 입자에 소수 처리를 하여 사용하는 것이 바람직하다. 입자에 소수처리를 할 때 입자 전부를 소수 처리하거나 소수 처리된 입자와 친수성(소수처리 되지 않은)입자를 일정 비율로 혼합하여 사용도 가능하다. 이때 발수제는 이에 한정하고자 하는 것은 아니지만, 예를 들면 실리콘계, 불소계, 실란계 중에서 선택된 한 종류를 사용할 수 있다.
<실시예 1> 본 발명의 외피재를 갖는 단열재의 연속식 제조.
1단계; 흄드실리카 50kg 중량부에, 섬유 5kg 중량부, 불투명화제 7.5kg 중량부를 무중력 믹서에서 5분간 충분히 혼합하여 합재를 제조한다.
2단계; 폭이 1.2m인 PP부직포를(20g/㎡) 2m/sec의 속도로 하부 외피재로 공급한다.
3단계; 공급되는 하부 외피재 위로 합재를 공급하는데, 공급되는 넓이(폭)이 1m로 해서 1.2kg/m의 속도로 공급한다.
4단계; 폭이 1.2m인 PP부직포를(20g/㎡) 2m/sec의 속도로 상부 외피재로 공급한다.
5단계; 상부 외피재와 하부 외피재를 180 ℃온도로 씰링한다.
6단계; 연속된 압축롤러를 통해 최종 높이가 10mm가 되도록 합축하고, 씰링부에 붙어 있는 여분의 외피재를 제거하고 밀도 120kg/㎥인 외피재를 갖는 단열재를 제조한다.
<실시예 2>본 발명의 외피재를 갖는 단열재의 연속식 제조.
1단계; 흄드실리카 30kg 중량부에, 팽창퍼라이트 20kg 중량부를 혼합하여 블레이드가 장착되어 있는 믹서에서 2000rpm으로 60초간 혼합 분산 시킨후, 섬유 5kg중량부, 불투명화제 7.5kg 중량부를 무중력 믹서에서 5분간 충분히 혼합하여 합재를 제조한다.
2단계; 폭이 1.2m인 PP부직포를(20g/㎡) 2m/sec의 속도로 하부 외피재로 공급한다.
3단계; 공급되는 하부 외피재 위로 합재를 공급하는데, 공급되는 넓이(폭)이 1m로 해서 1.2kg/m의 속도로 공급한다.
4단계; 폭이 1.2m인 PP부직포를(20g/㎡) 2m/sec의 속도로 상부 외피재로 공급한다.
5단계; 상부 외피재와 하부 외피재를 180 ℃온도로 씰링한다.
6단계; 연속된 압축롤러를 통해 최종 높이가 10mm가 되도록 합축하고, 씰링부에 붙어 있는 여분의 외피재를 제거하고 밀도 120kg/㎥인 외피재를 갖는 단열재를 제조한다.
<실시예 3>본 발명의 외피재를 갖는 단열재의 연속식 제조.
1단계; 흄드실리카 50kg 중량부에, 섬유 5kg 중량부, 불투명화제 7.5kg 중량부를 무중력 믹서에서 5분간 충분히 혼합하여 합재를 제조한다.
2단계; 폭이 1.2m인 유리섬유 직포를(225g/㎡) 2m/sec의 속도로 하부 외피재로 공급한다.
3단계; 공급되는 하부 외피재 위로 합재를 공급하는데, 공급되는 넓이(폭)이 1m로 해서 1.2kg/m의 속도로 공급한다.
4단계; 폭이 1.2m인 유리섬유 직포를(225g/㎡) 2m/sec의 속도로 상부 외피재로 공급한다.
5단계; 상부 외피재와 하부 외피재를 유리섬유로 박음질하여 씰링한다.
6단계; 연속된 압축롤러를 통해 최종 높이가 10mm가 되도록 합축하고, 씰링부에 붙어 있는 여분의 외피재를 제거하고 밀도 165kg/㎥(합재 120kg/㎥ + 외피재 45kg/㎥)인 외피재를 갖는 단열재를 제조한다.
<실시예 4> 본 발명의 외피재를 갖는 단열재의 연속식 제조.
외피재를 2단계, 4단계에 공급하기 전에 실리콘계 발수제 5%가 포함된 수용액에 연속적으로 공급하여 디핑(dipping)하고 150℃온도에서 연속적으로 건조하는 라인을 추가하여 아래 단계를 진행한다.
1단계; 흄드실리카 50kg 중량부에, 섬유 5kg 중량부, 불투명화제 7.5kg 중량부를 무중력 믹서에서 5분간 충분히 혼합하여 합재를 제조한다.
2단계; 폭이 1.2m인 유리섬유 직포를(225g/㎡) 2m/sec의 속도로 하부 외피재로 공급한다.
3단계; 공급되는 하부 외피재 위로 합재를 공급하는데, 공급되는 넓이(폭)이 1m로 해서 1.2kg/m의 속도로 공급한다.
4단계; 폭이 1.2m인 유리섬유 직포를(225g/㎡) 2m/sec의 속도로 상부 외피재로 공급한다.
5단계; 상부 외피재와 하부 외피재를 유리섬유로 박음질하여 씰링한다.
6단계; 연속된 압축롤러를 통해 최종 높이가 10mm가 되도록 합축하고, 씰링부에 붙어 있는 여분의 외피재를 제거하고 밀도 165kg/㎥(합재 120kg/㎥ + 외피재 45kg/㎥)인 외피재를 갖는 단열재를 제조한다.
<실시예 5>본 발명의 외피재를 갖는 단열재의 연속식 제조.
1단계; 팽창퍼라이트 49kg 중량부에, 섬유 1kg 중량부를 무중력 믹서에서 5분간 충분히 혼합하여 합재를 제조한다.
2단계; 폭이 1.2m인 유리섬유 직포를(225g/㎡) 2m/sec의 속도로 하부 외피재로 공급한다.
3단계; 공급되는 하부 외피재 위로 합재를 공급하는데, 공급되는 넓이(폭)이 1m로 해서 1.16kg/m의 속도로 공급한다.
4단계; 폭이 1.2m인 유리섬유 직포를(225g/㎡) 2m/sec의 속도로 상부 외피재로 공급한다.
5단계; 상부 외피재와 하부 외피재를 유리섬유로 박음질하여 씰링한다.
6단계; 연속된 압축롤러를 통해 최종 높이가 10mm가 되도록 합축하고, 씰링부에 붙어 있는 여분의 외피재를 제거하고 밀도 161kg/㎥(합재 116kg/㎥ + 외피재 45kg/㎥)인 외피재를 갖는 단열재를 제조한다.
<비교예 1>외피재가 없는 일반적인 단열재 제조
흄드실리카 50kg 중량부에, 섬유 5kg 중량부, 불투명화제 7.5kg 중량부를 무중력 믹서에서 5분간 충분히 혼합하여 합재를 제조한다. 제조한 합재를 1.25kg을 1m*1m*1m 크기의 압축식 금형에 넣고 두께가 10mm가 되도록 압축하여 밀도 120kg/㎥인 단열재를 제조한다.
<비교예 2>외피재가 없는 일반적인 단열재 제조
흄드실리카 50kg 중량부에, 섬유 5kg 중량부, 불투명화제 7.5kg 중량부를 무중력 믹서에서 5분간 충분히 혼합하여 합재를 제조한다. 제조한 합재를 2kg을 1m*1m*1m 크기의 압축식 금형에 넣고 두께가 10mm가 되도록 압축하여 밀도 200kg/㎥인 단열재를 제조한다.
<비교예 3>외피재가 없는 일반적인 단열재 제조
팽창퍼라이트 75.38kg 중량부에, 섬유 1kg 중량부, 규산소다 50kg 중량부를 무중력 믹서에서 5분간 충분히 혼합하여 합재를 제조한다. 제조한 합재를 1.54kg을 1m*1m*1m 크기의 압축식 금형에 넣고 두께가 10mm가 되도록 압축하여 150℃ 온도에서 24시간 건조하여 밀도 154kg/㎥(팽창퍼라이트 116kg/㎥+기타 38kg/㎥)인 단열재를 제조한다.
<실험예 1> 단열재 물성 비교
상기 실시예와 비교예를 ASTM C 165에 의거해 압축강도를 비교하였으며, 사용 핸들링 등을 육안으로 관찰하였다. 또한 발수성능 및 열전도율은 KS F 4714를 통해 비교하여 아래 표 1에 나타내었다.(발수성능은 동일조건에서 발수 여부인 실시예 3과 4만 비교)
표 1 제조방법에 따른 단열재 물성 비교
구 분 밀도(kg/㎥) 압축강도(Kpa) 열전도율(W/mK) 발수성능 육안 관찰
실시예 1 120 104 0.022 - 외피에 의해 핸들링 가능
실시예 2 120 148 0.021 - 구조적 골조로 비교예 2와 유사함.
실시예 3 165(120+45)* 130 0.023 수분흡수 많음측정불가 외피에 의해 핸들링 가능
실시예 4 165(120+45)* 132 0.022 99.6% 외피에 의해 핸들링 가능
실시예 5 161(116+45)* 88 0.042 - 외피에 의해 핸들링 가능
비교예 1 120 측정 불가 측정 불가 - 성형후 핸들링 안되고 부서짐
비교예 2 200 151 0.022 - 핸들링 가능
비교예 3 154(116+38)* 688 0.055 - 핸들링 가능
* (120+45)는 합재 120 kg/㎥와 외피재 45 kg/㎥ 표현임
* (116+45)는 팽창퍼라이트 116 kg/㎥와 외피재 45 kg/㎥ 표현임
* (116+38)는 팽창퍼라이트 116 kg/㎥와 기타 38 kg/㎥ 표현임
실시예 1과 실시예 2와 비교예 1 및 비교예 2를 보면 흄드실리카의 경우 밀도가 낮은 비교예 1은 성형후 핸들링이 안되어 부서지고, 물성측정도 안된 반면, 실시예 1과 실시예 2는 외피재에 의해 핸들링이 가능하고, 그에 따른 물성 측정도 되었다. 특히 실시예 2는 팽창 퍼라이트의 구조적 골조 형성에 의해 낮은 밀도임에도 불구하고, 밀도가 높은 비교예 2와 큰 차이가 없음을 보인다.
실시예 3과 실시예 4는 외피재에 발수 처리 여부에 따른 발수 성능을 비교한 것으로 외피재에 발수처리만으로 도 큰 발수 효과가 나타남을 알 수 있다.
실시예 5와 비교예 3은 팽창퍼라이트를 이용한 단열재를 비교한 것이다. 일반적으로 팽창퍼라이트 단열재는 비교예 3과 같이 규산소다를 접착제로 하여 압축 성형한다. 그러나 접착제 사용에 따라 열전도율이 나빠진 반면, 실시예 5는 비교예 3과 동일한 팽창퍼라이트의 사용과 유사한 압축을 했으나 접착제를 사용하지 않아서, 열전도율이 낮은 성능을 나타내었다. 특히 외피재에 의해 핸들링까지 가능하여 경제적이면서 열물성이 우수한 단열재를 제조 가능함을 보여준다.
상기 본 발명의 설명은 이들의 범위를 제한하는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면, 본 발명의 원칙을 벗어나지 않는 범위에서 변형 가능함을 알 수 있다.
[부호의 설명]
30 : 압축롤러

Claims (15)

  1. 단열성 물질을 혼합하여 합재를 제조하는 1단계;
    하부 외피재를 공급하는 2단계;
    상기 2단계의 하부 외피재 상부로 1단계에서 제조한 합재를 공급하는 3단계;
    상기 3단계의 합재 위로 상부 외피재를 공급하는 4단계;
    상기 4단계로부터 합재를 포함하는 상부 외피재와 하부 외피재를 씰링(sealing)하는 5단계; 및 상기 5단계로부터 상부 외피재와 하부 외피재가 씰링된 합재를 압축 및 성형하는 6단계로 이루어진 것을 특징으로 하는 외피재를 갖는 단열재의 연속식 제조 방법.
  2. 제1항에 있어서, 상기 단열성 물질은 합성실리카, 팽창퍼라이트 및 팽창 질석 중에서 적어도 1종 이상을 선택하여서 되는 것을 특징으로 하는 외피재를 갖는 단열재의 연속식 제조 방법.
  3. 제1항에 있어서, 상기 단열성 물질은 단열성 향상을 위해 불투명화제를, 강도를 보강하기 위해 섬유를 각각 추가로 혼합하는 것을 특징으로 하는 외피재를 갖는 단열재의 연속식 제조 방법.
  4. 제2항에 있어서, 상기 불투명화제는 탄화규소, 그라파이트, 지르코니아, 지르콘, 알루미나 및 산화티탄 중에서 적어도 하나를 선택하며, 상기 섬유로는 유리섬유, 미네랄울 또는 지르코늄과 같은 무기섬유와 폴리에틸렌, 폴리프로필렌, 폴리에스테르 또는 나일론과 같은 유기섬유 중에서 적어도 하나를 선택하여서 되는 것을 특징으로 하는 외피재를 갖는 단열재의 연속식 제조 방법.
  5. 제1항에 있어서, 상기 합재는 팽창 퍼라이트를 파편화 하고 팽창 퍼라이트 파편에 미립의 합성실리카를 분산시켜 합성실리카에 팽창 퍼라이트 구조체를 만드는 것을 특징으로 하는 외피재를 갖는 단열재의 연속식 제조 방법.
  6. 제1항에 있어서, 상기 외피재는 유기질 섬유로 구성된 직포, 유기질 섬유로 구성된 부직포, 무기질 섬유로 구성된 직포 및 무기질 섬유로 구성된 부직포 중에서 적어도 하나를 선택하여서 된 것을 특징으로 하는 외피재를 갖는 단열재의 연속식 제조 방법.
  7. 제1항에 있어서, 상기 하부 외피재가 공급되는 2단계에 있어서, 하부 외피재가 공급되는 방향의 수직인 폭 방면으로 접어서, 접힌 한쪽 또는 양쪽 면이 4단계의 상부 외피재를 대신할 수 있는 것을 특징으로 하는 외피재를 갖는 단열재의 연속식 제조 방법.
  8. 제1항에 있어서, 상기 하부 외피재가 공급되는 2단계에 있어서, 하부 외피재는 단열재 형상의 홈을 추가할 수 있는 것을 특징으로 하는 외피재를 갖는 단열재의 연속식 제조 방법.
  9. 제1항에 있어서, 상기 합재는 압축롤러를 통해서 압축시켜 부피를 줄여서 공급하는 공정을 추가 할 수 있는 것을 특징으로 하는 외피재를 갖는 단열재의 연속식 제조 방법.
  10. 제1항에 있어서, 상기 하부 외피재와 상부 외피재는 2단계, 4단계 각각 공급전의 외피재 표면에 발수처리하는 공정을 추가 할 수 있는 것을 특징으로 하는 외피재를 갖는 단열재의 연속식 제조 방법.
  11. 제10항에 있어서, 상기 발수제는 실리콘계, 불소계 및 실란계 중에서 적어도 하나를 선택하여서 되는 것을 특징으로 하는 외피재를 갖는 단열재의 연속식 제조 방법.
  12. 제1항에 있어서, 상기 5단계에서 씰링하는 방법은 미싱을 통한 바느질 형태의 박음이나 오바로크 고주파나 열에 의한 융착을 실시하는 것을 특징으로 하는 외피재를 갖는 단열재의 연속식 제조 방법.
  13. 제1항에 있어서, 상기 씰링하는 5단계와 압축 및 성형하는 6단계 사이에 일정 높이로 평탄화하는 공정을 추가할 수 있는 것을 특징으로 하는 외피재를 갖는 단열재의 연속식 제조 방법.
  14. 제1항에 있어서, 상기 압축 및 성형하는 6단계 이후 상부 외피재와 하부 외피재를 관통하는 누비공정을 포함할 수 있는 것을 특징으로 하는 외피재를 갖는 단열재의 연속식 제조 방법.
  15. 제1항에 있어서, 상기 압축 및 성형하는 6단계 이후 건조공정을 포함할 수 있는 것을 특징으로 하는 외피재를 갖는 단열재의 연속식 제조 방법.
PCT/KR2014/003436 2013-04-18 2014-04-18 외피재를 갖는 단열재의 연속식 제조 방법 WO2014171796A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0043227 2013-04-18
KR20130043227A KR101480295B1 (ko) 2013-04-18 2013-04-18 외피재를 갖는 단열재의 연속식 제조 방법

Publications (1)

Publication Number Publication Date
WO2014171796A1 true WO2014171796A1 (ko) 2014-10-23

Family

ID=51731641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003436 WO2014171796A1 (ko) 2013-04-18 2014-04-18 외피재를 갖는 단열재의 연속식 제조 방법

Country Status (2)

Country Link
KR (1) KR101480295B1 (ko)
WO (1) WO2014171796A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269781A (ja) * 1994-03-31 1995-10-20 Toshiba Corp 真空断熱材およびその製造方法、ならびにその真空断熱材を用いた断熱箱体
JP2000283385A (ja) * 1999-03-31 2000-10-13 Kurabo Ind Ltd 真空断熱材およびその製造方法
JP2005282626A (ja) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd 真空断熱材の製造方法、真空断熱材、および真空断熱材搭載断熱体
KR20110061149A (ko) * 2009-12-01 2011-06-09 엘지전자 주식회사 냉수공급장치 및 이를 이용한 제어방법
KR20130021528A (ko) * 2011-08-23 2013-03-06 (주)엘지하우시스 수분 및 가스 흡착용 게터재를 구비한 진공 단열재 및 그 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130184B1 (ko) * 2009-12-01 2012-03-29 오씨아이 주식회사 진공단열재 내부심재의 연속 제조공정

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269781A (ja) * 1994-03-31 1995-10-20 Toshiba Corp 真空断熱材およびその製造方法、ならびにその真空断熱材を用いた断熱箱体
JP2000283385A (ja) * 1999-03-31 2000-10-13 Kurabo Ind Ltd 真空断熱材およびその製造方法
JP2005282626A (ja) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd 真空断熱材の製造方法、真空断熱材、および真空断熱材搭載断熱体
KR20110061149A (ko) * 2009-12-01 2011-06-09 엘지전자 주식회사 냉수공급장치 및 이를 이용한 제어방법
KR20130021528A (ko) * 2011-08-23 2013-03-06 (주)엘지하우시스 수분 및 가스 흡착용 게터재를 구비한 진공 단열재 및 그 제조 방법

Also Published As

Publication number Publication date
KR20140125266A (ko) 2014-10-28
KR101480295B1 (ko) 2015-01-08

Similar Documents

Publication Publication Date Title
WO2014025210A1 (ko) 팽창 퍼라이트를 이용한 저밀도 무기질 파우더 단열재, 이의 제조 방법 및 이의 성형기
CN108610000B (zh) 一种防脱粉气凝胶复合保温毡的制备方法
WO2013131300A1 (zh) 一种纤维毡、制备方法和用于真空绝热板的芯材
KR101222732B1 (ko) 에어로겔 함유 블랭킷
US20180105472A1 (en) Aerogel composite and preparation method thereof
CN106747540B (zh) 一种气凝胶纤维复合材料的制备方法
CN101468906B (zh) 一种富含SiO2纳米复合无机阻燃绝热保温板及其制备工艺
CN107263948B (zh) 一种防火保温装饰一体化板及其制备方法
EP2982660B1 (de) Verfahren zur herstellung eines hydrophoben wärmedämm-formkörpers
WO2011108856A4 (ko) 닫힌셀의 팽창 퍼라이트를 이용한 보온재
CN101100370A (zh) 一种可溶性耐高温陶瓷纤维及其制备方法和应用
WO2015184695A1 (zh) 采用红土镍矿联产镍生铁和岩棉制品的工艺
WO2015002488A1 (en) Heat-insulating composition, method of preparing the same, and heat-insulating element using the same
JP2014521579A (ja) 疎水性の断熱成形体を製造する方法
KR101363423B1 (ko) 팽창 퍼라이트·실리카 성형 구조체를 갖는 저밀도 무기질 파우더 진공단열재, 이의 제조 방법 및 이의 성형기
WO2017142245A1 (ko) 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치
CN109734460A (zh) 一种纳米微孔隔热板及其制备方法
WO2022075781A1 (ko) 에어로젤 블랑켓 제조방법 및 그에 의한 에어로젤 블랑켓
CN110655379A (zh) 一种纳米复合隔热板及其制备方法
WO2013103199A1 (ko) 무기바인더를 포함한 유리섬유 보드 및 그의 제조 방법
WO2016114503A1 (ko) 열전도율과 안정성이 우수한 에어로겔 복합화 멜라민 발포체 및 제조 방법
WO2014171796A1 (ko) 외피재를 갖는 단열재의 연속식 제조 방법
WO2017142244A1 (ko) 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치
CN108794034A (zh) 一种可弯曲的氧化锆纤维毡及其制备方法和用途
CN107759190A (zh) 纳米硅基复合断热瓦壳及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785690

Country of ref document: EP

Kind code of ref document: A1