WO2014171407A1 - 電動車両管理システム - Google Patents

電動車両管理システム Download PDF

Info

Publication number
WO2014171407A1
WO2014171407A1 PCT/JP2014/060497 JP2014060497W WO2014171407A1 WO 2014171407 A1 WO2014171407 A1 WO 2014171407A1 JP 2014060497 W JP2014060497 W JP 2014060497W WO 2014171407 A1 WO2014171407 A1 WO 2014171407A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric vehicle
battery
information
unit
power
Prior art date
Application number
PCT/JP2014/060497
Other languages
English (en)
French (fr)
Inventor
考平 森
藤岡 宏司
昭暢 杉山
松永 隆徳
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112014002012.5T priority Critical patent/DE112014002012T5/de
Priority to US14/771,256 priority patent/US9333873B2/en
Priority to CN201480022221.7A priority patent/CN105122585B/zh
Publication of WO2014171407A1 publication Critical patent/WO2014171407A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • the present invention relates to an electric vehicle management system that controls charging / discharging of a battery of an electric vehicle using an energy management system (abbreviation: EMS).
  • EMS energy management system
  • smart grid a next-generation power network that incorporates automatic control of power demand and supply into the power network has attracted attention in recent years.
  • the power flow in the power network is controlled not only from the supply side but also from the demand side, thereby optimizing or balancing the power demand and supply.
  • a storage battery (battery) of an electric vehicle owned by each household can be used as a buffer for smoothing by reducing the peak of power demand.
  • the power demand peak can be reduced by using the electric power of the battery of the electric vehicle charged in a time zone with little power demand, such as midnight, at the time of the peak power demand.
  • electricity charges are set cheaper in time periods when there is less power demand such as late at night than in periods where there is much power demand such as during the daytime, this also leads to savings in electricity charges for each household.
  • the smart grid is intended to automatically perform such power supply and demand control.
  • EMS manages power generation facilities such as photovoltaic (photovoltaic) power generation (abbreviation: PV) devices, large-scale power load facilities such as electric water heaters and air conditioners, and power storage facilities such as vehicle batteries.
  • the power generation equipment, power load equipment, and power storage equipment described above are controlled so as to smooth the power demand. As a result, the power supply and demand is balanced, and the amount of power purchased from the power company can be reduced.
  • the battery mounted on the electric vehicle As the battery mounted on the electric vehicle, a large-capacity battery is used so as to ensure a sufficient cruising distance for the user's daily travel.
  • the capacity of the battery mounted on the electric vehicle is such a large capacity that one electric vehicle can supply several days of electric power used in a general household. Therefore, in the case where the EMS makes a power supply / demand operation plan for consumers, whether or not the battery can be used is a major factor.
  • the battery of the electric vehicle cannot be used for smoothing the electric power demand of the house while the user is driving the electric vehicle.
  • the electric power stored in the battery is used for running the electric vehicle, the amount of electric power remaining in the battery (hereinafter sometimes referred to as “battery remaining amount”) differs between the departure time and the return time.
  • the user needs to store in advance the electric power necessary for traveling in the battery of the electric vehicle before departure.
  • the amount of battery power consumed by the motor during travel of the electric vehicle is necessary for the travel route of the electric vehicle, particularly when the travel route is known in advance, per travel route and pre-measured travel distance. It is possible to calculate from the amount of electric power.
  • EMS corresponding to an electric vehicle
  • a charge / discharge plan that calculates the amount of battery power consumed during the running of the electric vehicle based on the running schedule of the electric vehicle and also takes into account the remaining battery level when the electric vehicle returns. Develop in advance.
  • an electric vehicle management probe is mounted on each electric vehicle.
  • the electric vehicle management probe measures the state of the electric vehicle (hereinafter sometimes referred to as “vehicle state”), and transmits probe information as a measurement result to the EMS by communication.
  • vehicle state the state of the electric vehicle
  • probe information it has begun to consider using probe information in a smart grid (see, for example, Patent Document 2).
  • the electric vehicle management probe When the electric vehicle management probe is directly attached to the electric vehicle as an in-vehicle exclusive product, the electric vehicle management probe includes a life cycle and environment resistance of a communication terminal device such as a mobile phone (hereinafter sometimes simply referred to as “communication terminal”). Unlike the requirements, it is necessary to design in accordance with the life cycle and environmental resistance requirements of the electric vehicle.
  • “life cycle” refers to the expected life in designing a product.
  • the electric vehicle management probe When the electric vehicle management probe is directly attached to the electric vehicle as an in-vehicle exclusive product, the electric vehicle management probe needs to be designed assuming a life cycle of about 10 years, similar to the life cycle of the electric vehicle. Therefore, it is necessary to use a component having a longer life and durability than the component used for the communication terminal for the electric vehicle management probe.
  • the price of the electric vehicle management probe itself becomes expensive, which not only imposes a burden on the initial investment of the user, but also hinders the spread of EMS corresponding to the electric vehicle management probe.
  • the life cycle of the electric vehicle management probe is the same as that of the electric vehicle as described above, and is significantly different from that of the communication terminal. If the communication method cannot be replaced, the telecommunications carrier is forced to use both the old and new communication methods for many years.
  • the communication carrier needs to secure a new area for installing the base station apparatus of the new method.
  • the maintenance cost of the old base station apparatus increases.
  • the base station apparatus of both the new and old communication systems is operated simultaneously, the power consumption increases.
  • a user who owns an electric vehicle for example, a driver who drives the electric vehicle, has a communication function, and is also operating a communication terminal such as a mobile phone or a smartphone that can be connected to the Internet, separately from the electric vehicle management probe. Many of them are owned.
  • the electric vehicle management probe operates mainly during user operation, that is, communicates. Conversely, the communication terminal does not communicate during operation of the electric vehicle. Therefore, the user pays the communication fee to the communication carrier for the two communication devices that are not used at the same time, which increases the financial burden on the user.
  • An object of the present invention is to provide an electric vehicle management system capable of managing an electric power network including an electric vehicle while suppressing initial introduction cost and communication cost of a user of the electric vehicle.
  • the electric vehicle management system of the present invention includes an electric vehicle having a motor used for traveling and a battery for supplying electric power to the motor, and an energy management having a battery charge / discharge plan formulation unit for formulating a charge / discharge plan for the battery.
  • a portable terminal having a system, a portable terminal device, a position acquisition unit that acquires terminal position information representing the position of the device itself, and a terminal side communication unit that communicates with the energy management system using a communication line
  • a charging / discharging device that performs at least one of charging and discharging of the battery according to a charging / discharging plan of the battery, and the terminal-side communication unit is configured such that the portable terminal device is present inside the electric vehicle.
  • Vehicle shape including the terminal position information acquired by the position acquisition unit and representing the state of the electric vehicle Information is transmitted to the energy management system, the energy management system has a vehicle state receiving unit that receives the vehicle state information transmitted from the terminal side communication unit, the battery charge and discharge plan formulation unit, The battery state information received by the vehicle state receiving unit is used to formulate a charge / discharge plan for the battery.
  • the electric vehicle information including the terminal position information acquired by the position acquisition unit is transmitted to the energy management system by the terminal side communication unit. Sent to.
  • the terminal position information included in the vehicle state information is acquired by the position acquisition unit when the mobile terminal device exists inside the electric vehicle, and thus represents the position of the electric vehicle.
  • the vehicle state information including this terminal position information is received by the vehicle state receiving unit of the energy management system.
  • a battery charge / discharge plan is formulated by the battery charge / discharge plan formulation unit using the received vehicle state information. At least one of charging and discharging of the battery of the electric vehicle is performed according to the established battery charging / discharging plan. Electric power is supplied to the motor by the battery, and the electric vehicle travels using the motor.
  • the vehicle state information used for formulating the battery charge / discharge plan is transmitted from the terminal side communication unit of the portable terminal device to the energy management system. Further, terminal position information included in the vehicle state information and representing the position of the electric vehicle is acquired by the position acquisition unit of the mobile terminal device. Thereby, in order to acquire information indicating the position of the electric vehicle and transmit vehicle state information including the information, there is no need to provide a dedicated communication terminal device in each electric vehicle. Therefore, management of the electric power network including the electric vehicle can be realized while suppressing the initial introduction cost and communication cost of the user of the electric vehicle.
  • FIG. 1 is a block diagram showing a schematic configuration of an electric vehicle management system 10 according to a first embodiment of the present invention. It is a block diagram which shows the structure of the consumer 1, EMS2, the electric vehicle 5, and the portable terminal 6 in the electric vehicle management system 10 of the 1st Embodiment of this invention. It is a block diagram which shows the structure of the consumer 1, EMS2, the electric vehicle 5, and the portable terminal 6 in the electric vehicle management system 10 of the 1st Embodiment of this invention. It is a figure which shows an example of the past data of the electric power consumption of the consumer 1, and an example of a prediction result. It is a figure which shows an example of the past data of the power consumption for every household appliance 4 and generated electric power, and an example of a prediction result.
  • FIG. It is a figure which shows an example of the prediction result of the electric power consumption of the consumer. It is a figure which shows an example of utilization plan information S2 of the electric vehicle 5.
  • FIG. It is a figure which puts in order and shows an example of the prediction result of the electric power consumption of the consumer 1, the utilization plan of the electric vehicle 5, and a battery charging / discharging plan. It is a figure which puts in order and shows an example of the prediction result of the electric power consumption of the consumer 1 in case the user is going out with the electric vehicle 5, the utilization plan of the electric vehicle 5, and a battery charging / discharging plan.
  • 7 is a flowchart showing a processing procedure of energy consumption estimated value calculation processing in an electric vehicle energy consumption estimating unit 27; 7 is a flowchart showing a processing procedure of calculation processing of braking / driving force of an electric vehicle in an electric vehicle energy consumption estimation unit 27.
  • FIG. 1 An example of a prediction result of the power usage amount of the consumer 1 when the user goes out on the electric vehicle 5, an utilization plan of the electric vehicle 5, an estimation result of a change in the remaining amount of the battery, and a battery charge / discharge plan before the change FIG.
  • It is a block diagram which shows the structure of the consumer 1, EMS2, the electric vehicle 5, and the portable terminal 6 in the electric vehicle management system 10B of the 3rd Embodiment of this invention.
  • FIG. 1 is a block diagram showing a schematic configuration of an electric vehicle management system 10 according to the first embodiment of the present invention.
  • the electric vehicle management system 10 includes a customer 1, an energy management system (EMS) 2, a charge / discharge device 3, a home appliance 4, an electric vehicle 5, a mobile terminal device 6, a base station device 8, and a server device 9, and a diagram to be described later. 3 and the communication line 20 shown in FIG.
  • the EMS 2, the charge / discharge device 3 and the home appliance 4 are installed in the customer 1.
  • the home appliance 4 includes, for example, a photovoltaic power generation (abbreviation: PV) device 4a, an air conditioner (hereinafter referred to as “air conditioner”) 4b, an AV (Audio Visual) device 4c, and a refrigerator 4d.
  • the electric vehicle 5 includes a motor 51 and a battery 52.
  • the base station apparatus 8 is installed by a telecommunications carrier.
  • the EMS 2 is communicably connected to the home appliance 4 in the consumer 1, the electric vehicle 5 connected to the charge / discharge device 3, the base station device 8, and the server device 9.
  • the EMS 2 controls the battery 52 of the home appliance 4 and the electric vehicle 5 so that the electric power demand is smoothed under the control of the battery 52 of the home appliance 4 and the electric vehicle 5. In this way, the power supply and demand is balanced.
  • the EMS 2 deployed in the customer 1 is called differently depending on the control target.
  • the EMS 2 is called a home energy management system (abbreviation: HEMS).
  • HEMS home energy management system
  • BEMS building energy management system
  • FEMS factory energy management system
  • the charging / discharging device 3 is controlled by the EMS 2.
  • the charging / discharging device 3 is connected to the electric vehicle 5 through a charging / discharging equipment side connector, a power line, and a control signal line (not shown).
  • Control related to charging / discharging of the electric vehicle 5 is performed by exchanging commands and information between the charging / discharging device 3 and the electric vehicle 5.
  • the exchange of instructions and information is performed via control signal lines.
  • Transmission / reception of electric power related to charging / discharging of the electric vehicle 5 is performed between the charging / discharging device 3 and the battery 52 via a power line.
  • the charging / discharging device 3 is configured to receive power from a power system (not shown) and to output power to the power system, that is, to discharge the power.
  • the power system includes a commercial power network.
  • the electric vehicle 5 is, for example, an electric vehicle (Electric Vehicle; abbreviation: EV) or a plug-in hybrid ⁇ ⁇ ⁇ Electric Vehicle (abbreviation: PHEV).
  • EV Electric Vehicle
  • PHEV plug-in hybrid ⁇ ⁇ ⁇ Electric Vehicle
  • the electric vehicle 5 travels using the motor 51 as a drive source.
  • the electric vehicle 5 is PHEV, the electric vehicle 5 travels using both the motor 51 and an engine (not shown) as drive sources.
  • the mobile terminal device (hereinafter also referred to as “mobile terminal”) 6 is owned by the user of the electric vehicle 5, for example, a driver.
  • the portable terminal 6 receives a radio signal transmitted from a Global Positioning System (abbreviation: GPS) satellite 7.
  • GPS Global Positioning System
  • the portable terminal 6 measures the current position of the portable terminal 6 using a radio wave signal received from the GPS satellite 7.
  • the current position of the mobile terminal 6 (hereinafter, simply referred to as “position” may be referred to). ) Corresponds to the current position of the electric vehicle 5. Therefore, the current position of the electric vehicle 5 can be measured by measuring the current position of the mobile terminal 6.
  • the mobile terminal 6 generates terminal position information indicating the current position of the mobile terminal 6 based on the measured current position of the mobile terminal 6.
  • the terminal position information corresponds to vehicle position information that represents the position of the electric vehicle 5.
  • the mobile terminal 6 is connected to the EMS 2 via the base station device 8 so as to be communicable.
  • the portable terminal 6 transmits / receives information to / from the EMS 2.
  • the mobile terminal 6 transmits terminal position information corresponding to the vehicle position information indicating the current position of the electric vehicle 5 to the EMS 2 via the base station device 8.
  • the server device 9 estimates, for example, energy consumption when the electric vehicle 5 travels, and calculates an energy consumption estimated value that is an estimated value of energy consumed by the electric vehicle 5.
  • the estimated energy consumption value calculated by the server device 9 is transmitted to the EMS 2.
  • FIGS. 2 and 3 are block diagrams showing configurations of the customer 1, the EMS 2, the electric vehicle 5, and the portable terminal 6 in the electric vehicle management system 10 according to the first embodiment of the present invention. 2 and 3 are connected at the position of the boundary line BL1.
  • the electric vehicle management system 10 includes a customer 1, an EMS 2, a charge / discharge device 3, a home appliance 4, an electric vehicle 5, a portable terminal 6, and a communication line 20, and the base station device 8 and the server device 9 shown in FIG. It is configured with.
  • FIGS. 2 and 3 information handled in the electric vehicle management system 10 is indicated by a broken-line frame.
  • FIG. 2 and FIG. 3 only functions essential to the explanation of the customer 1, the EMS 2, and the electric vehicle 5 of the present invention are extracted and described for easy understanding.
  • the electric vehicle 5 includes a motor 51, a battery 52, and a battery management device 53.
  • the battery 52 supplies electric power to the motor 51 when the electric vehicle 5 is traveling.
  • the battery management device 53 is connected to the battery 52 and manages the state of the battery 52.
  • the battery management device 53 acquires battery information that is information related to the battery 52 from the battery 52, and manages the state of the battery 52 based on the acquired battery information.
  • the battery information includes, for example, battery remaining amount information S5 related to the amount of power remaining in the battery 52 (hereinafter sometimes referred to as “battery remaining amount”).
  • the battery remaining amount information S5 represents the value of the amount of power remaining in the battery 52.
  • the battery management device 53 measures the amount of power remaining in the battery 52, and generates battery remaining amount information S5 representing the value of the measured power amount.
  • the electric vehicle 5 When the electric vehicle 5 is parked in the customer 1, the electric vehicle 5 is connected to the charging / discharging device 3 in order to store electric power necessary for the next travel or to smooth the electric power demand of the customer 1. Connected. When the electric vehicle 5 is connected to the charging / discharging device 3, the battery 52 of the electric vehicle 5 is placed under the management of the EMS 2.
  • the battery management device 53 transmits battery remaining amount information S ⁇ b> 5 of the battery 52 to the charging / discharging device 3.
  • the charging / discharging device 3 transmits the battery remaining amount information S5 of the battery 52 transmitted from the electric vehicle 5 to the EMS 2.
  • the charging / discharging device 3 charges or discharges the battery 52 of the electric vehicle 5 based on the battery remaining amount information S5 of the battery 52 transmitted from the electric vehicle 5.
  • the charging / discharging device 3 and the battery 52 are directly connected through a power supply port (not shown) of the electric vehicle 5, and power supply / demand and control signals, etc.
  • a method for performing transmission and reception In this case, the format of voltage and power of battery 52 of electric vehicle 5 is, for example, direct current, and the format of voltage and power received by consumer 1 is, for example, alternating current. Requires a converter to perform These voltage and power converters may be installed inside the charging / discharging device 3 or inside the electric vehicle 5.
  • connection method of the charging / discharging device 3 and the electric vehicle 5 is a method other than the method of directly connecting the charging / discharging device 3 and the battery 52 as described above, for example, a method of connecting by a non-contact power feeding technique. Also good.
  • a method of connection using a non-contact power feeding technique can also be implemented in the same manner as in this embodiment.
  • the electric vehicle 5 When the electric vehicle 5 is traveling, it is assumed that the electric vehicle 5 has a portable terminal 6 owned by the user, that is, the driver of the electric vehicle 5. At this time, the portable terminal 6 only needs to be present inside the electric vehicle 5 and does not need to be connected to the electric vehicle 5 to transmit and receive signals.
  • the connection between the portable terminal 6 and the electric vehicle 5 is not prohibited and is not necessary in the present embodiment, and can be connected for other purposes. Even when the portable terminal 6 and the electric vehicle 5 are connected, it can be implemented in the same manner as in the present embodiment.
  • the mobile terminal 6 includes a position detection unit 61 and a terminal side communication unit 62.
  • the position detection unit 61 obtains position information (hereinafter also referred to as “position information of the mobile terminal 6”) S7 indicating the position of the mobile terminal 6 that is the device itself.
  • the position information S7 of the mobile terminal 6 corresponds to terminal position information
  • the position detection unit 61 corresponds to a position acquisition unit.
  • the position detection unit 61 includes a GPS sensor.
  • the position detection unit 61 uses a radio wave signal transmitted from the GPS satellite 7 shown in FIG. 1 to obtain the position including the latitude, longitude, and altitude of the measurement point and the position acquisition time by calculation.
  • the position detection unit 61 generates information representing the position including the latitude, longitude, and altitude of the measurement point obtained by the calculation as the position information S7 of the mobile terminal 6. Further, the position detection unit 61 further calculates and calculates the speed and direction of the mobile terminal 6 that is its own device from the latitude, longitude, altitude, and acquisition time of the obtained measurement point.
  • the position information of the base station device 8 with which the mobile terminal 6 is communicating is used.
  • the position information S7 is an effective method when the communication range of the base station apparatus 8 is sufficiently small.
  • the position detection unit 61 uses an acceleration sensor, a magnetic sensor, a tilt sensor, and the like separately provided in the mobile terminal 6 to separately use the mobile terminal 6.
  • the position information S7 of the portable terminal 6 is acquired.
  • the terminal-side communication unit 62 transmits vehicle state information S4 representing the state of the electric vehicle 5 (hereinafter sometimes referred to as “vehicle state”) to the EMS 2 via the communication line 20.
  • vehicle state information S4 of the electric vehicle 5 includes at least the position information S7 of the mobile terminal 6 acquired by the position detection unit 61. Since the position information S7 of the portable terminal 6 is acquired when the portable terminal 6 exists inside the electric vehicle 5, it corresponds to the vehicle position information described above and represents the position of the electric vehicle 5.
  • the communication line 20 is, for example, a public wireless line or an internet line.
  • the type of the communication line 20 is not limited to this.
  • the base station apparatus 8 shown in FIG. 1 is connected to the communication line 20.
  • the mobile terminal 6 communicates with the EMS 2 via the base station device 8.
  • the vehicle state information S4 of the electric vehicle 5 may include information detected by an acceleration sensor, a magnetic sensor, an inclination sensor, and the like of the mobile terminal 6 in addition to the position information S7 of the mobile terminal 6. Further, the vehicle state information S4 of the electric vehicle 5 may include information indicating the acquisition time of the position of the measurement point obtained by the position detection unit 61 described above, the speed and direction of the mobile terminal 6, and the like.
  • the operation in which the mobile terminal 6 transmits the vehicle state information S4 of the electric vehicle 5 including the position information S7 of the mobile terminal 6 to the EMS 2 includes the hardware of the mobile terminal 6 and the software operating on the hardware of the mobile terminal 6. Executed by.
  • the software is provided by, for example, a manufacturer of EMS 2 or a manufacturer of electric vehicle 5. Further, the hardware itself of the mobile terminal 6 is sold to the user by the communication carrier or the manufacturer of the mobile terminal 6.
  • the portable terminal 6 is provided with a selection means capable of selecting execution and stop of the software operation. Accordingly, the user can operate the software only when traveling by the electric vehicle 5. Therefore, it is possible to prevent the electric vehicle management system 10 from malfunctioning when movement without using the electric vehicle 5, for example, movement using public transportation, walking, or bicycle movement is performed.
  • a software may be provided with a means for executing and stopping the operation of the terminal-side communication unit 62 without stopping the operation of the software by providing a graphical user interface (Graphical User Interface; abbreviated as GUI).
  • GUI graphical User Interface
  • the position detection unit 61 includes a GPS sensor
  • communication between the GPS satellite 7 and the position detection unit 61 is performed. It is necessary to be a place where is not disturbed. Further, since the mobile terminal 6 needs to communicate with the base station device 8 of the communication carrier, it is necessary to install the mobile terminal 6 so that communication with the base station device 8 is not hindered.
  • the mobile terminal 6 is installed in any location of the electric vehicle 5 as long as both the communication between the mobile terminal 6 and the GPS satellite 7 and the communication between the mobile terminal 6 and the base station device 8 are not hindered. May be. Further, the portable terminal 6 does not need to be fixed to the electric vehicle 5. The user of the electric vehicle 5 may wear the portable terminal 6 while the electric vehicle 5 is driving.
  • the EMS 2 is installed in the consumer 1 and measures the power usage status of the home appliance 4 in the consumer 1.
  • the EMS 2 is capable of the amount of power that the customer 1 purchases from a commercial power network (not shown) based on the usage status of the home appliances 4 in the customer 1 (hereinafter sometimes referred to as “the amount of purchased power”).
  • the power consumption of each home electric appliance 4 is controlled within a controllable range so as to be as small as possible.
  • Examples of the home appliances 4 to be controlled by the EMS 2 include power load facilities such as an air conditioner 4b, an AV device 4c, a refrigerator 4d, an electric water heater, and an induction heating (abbreviation: IH) cooking heater, which consume relatively large power. It is done.
  • power load facilities such as an air conditioner 4b, an AV device 4c, a refrigerator 4d, an electric water heater, and an induction heating (abbreviation: IH) cooking heater, which consume relatively large power. It is done.
  • IH induction heating
  • the home appliance 4 to be controlled by the EMS 2 includes a cogeneration system such as a PV device 4a.
  • a cogeneration system unlike ordinary home appliances, it is not power consumption suppression control but generated power suppression control. The suppression control of generated power will be described below.
  • power generation amount When the amount of power generated by the customer 1 (hereinafter sometimes simply referred to as “power generation amount”) greatly exceeds the amount of power consumed by the customer 1, the customer 1 configures the power system with surplus power.
  • the electric power is sold, that is, sold, to the commercial power network so that it can be consumed by other consumers in the vicinity of the customer 1, for example, neighbors, via the commercial power network.
  • the configuration as described above is provided inside the power conditioner that converts the electricity generated by the solar panel into power suitable for the power system, and so-called reverse power flow related technology. Therefore, it operates independently for each device.
  • the consumer 1 when the power generation amount of the cogeneration system increases, the consumer 1 not only suppresses the power generation amount but also temporarily increases the power consumption of the other home appliances 4. The reverse power flow from 1 to the power system is reduced, and the power supply / demand balance of the customer 1 is adjusted.
  • the EMS2 performs charge / discharge management for the battery 52 of the electric vehicle 5 in addition to the functions described above.
  • the EMS 2 includes a power usage amount prediction unit 21, a utilization plan input unit 22, an EMS side parameter acquisition unit 23, a vehicle state reception unit 24, and a battery charge / discharge plan.
  • a formulation unit 25 and an EMS side communication unit 26 are provided.
  • the power usage amount prediction unit 21 calculates a value (hereinafter also referred to as a “power usage amount prediction value”) predicted by the customer 1 on the day of use on the day before use. It is calculated as information S1 indicating the predicted power usage value (hereinafter sometimes referred to as “power usage prediction information”) S1.
  • FIG. 4 is a diagram illustrating an example of past data on the power consumption of the customer 1 and an example of a prediction result.
  • FIG. 4A shows past data of the power usage amount of the customer 1
  • FIG. 4B shows a prediction result of the power usage amount of the customer 1.
  • FIG. 4 the past data and the prediction result of the total electric power consumption of the consumer 1 including all the electric power consumption and generated electric power of each household appliances 4 are shown.
  • the vertical axis above the one-dot chain line horizontal to the horizontal axis represents power consumption (kW), and the vertical axis below the one-dot chain line represents generated power. (KW).
  • the horizontal axis indicates time (hour).
  • the power usage amount prediction unit 21 obtains the power usage amount prediction information S1 of the customer 1 as follows, for example.
  • the EMS 2 stores data on the past power consumption of the customer 1 for a plurality of days.
  • Each data includes information on the date, day of the week, weather, and temperature of the date when the data was acquired.
  • the date is described as “ ⁇ / ⁇ ”
  • the day of the week is described as “( ⁇ )” in parentheses.
  • the temperature is described as “temperature ⁇ ° C./ ⁇ ° C.” in order of the lowest temperature and the highest temperature.
  • the date and day of the week included in each data are “ ⁇ / ⁇ ( ⁇ )”
  • the weather is “sunny”
  • the temperature is “temperature ⁇ ° C./ ⁇ ° C.”.
  • the power usage amount prediction unit 21 takes into account the predicted weather and temperature on the day of use, and holidays and seasons from the stored data, and extracts the past power usage data closest thereto.
  • the power usage amount prediction unit 21 uses the extracted power usage amount data as the power usage amount prediction information S1 of the customer 1 on the day of use, as shown in FIG.
  • the power usage amount prediction unit 21 calculates the power usage amount prediction information S1 of the customer 1 only once on the day before use.
  • the power usage amount prediction unit 21 does not continue to use the power usage amount prediction information S1 of the customer 1 calculated on the day before use on the day of use, but the actual amount of power used for each predetermined period on the day of use.
  • the next predicted power usage amount is corrected based on the deviation between the predicted power usage amount on the day before use.
  • FIG. 4 as the past power consumption, not the power consumption and generated power of individual home appliances 4 but the total power consumption of customer 1 including all power consumption and generated power of individual home appliances 4 is used.
  • the method for obtaining the power usage amount prediction information S1 of the consumer 1 on the day of use has been described. However, the method for obtaining the power usage amount prediction information S1 of the customer 1 is not limited to this method.
  • the EMS 2 stores past power consumption and generated power of each home appliance 4 as shown in FIG.
  • the power usage amount prediction information S1 of the customer 1 may be obtained in consideration of the predicted weather and temperature on the day of use, and holidays and seasons.
  • FIG. 5 is a diagram illustrating an example of past data of power consumption and generated power for each home appliance 4 and an example of a prediction result.
  • FIG. 6 is a diagram illustrating an example of a prediction result of the power usage amount of the customer 1.
  • FIG. 5A, FIG. 5C, and FIG. 5E show past power consumption or generated power data of each home appliance 4.
  • FIG. 5A shows past power consumption data of the air conditioner 4b
  • FIG. 5C shows past power consumption data of the refrigerator 4d
  • FIG. Data of past generated power of the PV device 4a is shown.
  • FIG. 5 (b), FIG. 5 (d), and FIG. 5 (f) show prediction results of power consumption or generated power of each home appliance 4.
  • FIG. 5 (b) shows the prediction result of the power consumption of the air conditioner 4b
  • FIG. 5 (d) shows the prediction result of the power consumption of the refrigerator 4d
  • FIG. 5 (f) shows the PV device.
  • the prediction result of the generated electric power of 4a is shown.
  • the vertical axis represents power consumption (kW)
  • the vertical axes of FIGS. 5E and 5F represent generated power (kW).
  • the upper side of the alternate long and short dash line on the horizontal axis indicates power consumption (kW)
  • the lower side of the alternate long and short dash line indicates generated power (kW).
  • the horizontal axis indicates time (hour).
  • the EMS2 may obtain the power usage amount prediction information S1 of the customer 1 as follows, for example.
  • the EMS 2 stores power consumption and generated power data of each home appliance 4 for a plurality of days in a storage unit (not shown). deep.
  • Each data includes information on the date, day of the week, weather, and temperature of the date when the data was acquired.
  • the date and day of the week included in each data are “ ⁇ / ⁇ ( ⁇ )”, the weather is “sunny”, and the temperature is “temperature ⁇ ° C./ ⁇ ° C.”.
  • the power usage amount prediction unit 21 considers the predicted weather and temperature on the day of use, and holidays and seasons from the stored data of the home appliances 4, and displays past data closest thereto as shown in FIG. b), respectively, as shown in FIG. 5 (d) and FIG. 5 (f).
  • the power usage amount prediction unit 21 adds and subtracts the extracted power consumption and generated power of the home appliance 4 to calculate a predicted value of the power usage amount of the entire consumer 1, and the power usage amount of the consumer 1 shown in FIG. 6. Used as prediction information S1.
  • the EMS 2 stores the past power usage data of a plurality of consumers 1 in the server device 9 in order to further improve the prediction accuracy, and the power usage amount prediction unit 21 makes a relatively large number of data samples. May be obtained as the power usage amount prediction information S1 of the customer 1.
  • the usage plan information S2 of the electric vehicle 5 is input to the usage plan input unit 22.
  • the use plan information S2 of the electric vehicle 5 includes, for example, information on the use date and time of the electric vehicle 5 such as a use date, a departure time, a return time, and a travel time, as well as a destination, a transit point, a planned travel distance, and power consumption of the battery 52.
  • One or more pieces of information relating to the traveling of the electric vehicle 5 such as a quantity are included.
  • the power consumption is power consumption per unit time, for example, one hour.
  • the use plan information S2 of the electric vehicle 5 may include a use time zone instead of the departure time, return time, and travel time.
  • FIG. 7 is a diagram illustrating an example of the usage plan information S2 of the electric vehicle 5.
  • the usage plan information S ⁇ b> 2 of the electric vehicle 5 includes a use date, a use time zone, a destination, a planned travel distance, and power consumption of the battery 52.
  • the use date is indicated by ⁇ / ⁇ , ⁇ / ⁇ ,..., ⁇ / ⁇
  • the use time zone is indicated by ⁇ : ⁇ to ⁇ : ⁇ , ⁇ : ⁇ to ⁇ : ⁇ ,..., ⁇ : ⁇ .
  • the utilization plan information S2 of the electric vehicle 5 is managed for each electric vehicle 5 by using an electric vehicle management number (No.) assigned to each electric vehicle 5 as shown in FIG.
  • the usage plan information S2 of the electric vehicle 5 is registered as follows using the usage plan input unit 22, for example.
  • a user can use a portable terminal 6, a personal computer (abbreviation: PC) installed in the consumer 1, or a television receiver (hereinafter simply referred to as “TV”) through a network.
  • the usage plan input unit 22 of the EMS 2 is accessed, and the usage schedule is input within a range of several days to several months.
  • the user may input a use schedule several times at a time.
  • the user accesses the usage plan input unit 22 of the EMS 2 and changes or deletes the previously input usage schedule.
  • the usage plan input unit 22 may be provided with an input screen in the EMS 2 itself and capable of inputting the usage plan information S2 of the electric vehicle 5.
  • the user may input all the contents of the usage plan information S2 of the electric vehicle 5 by the usage plan input unit 22, but some of the contents are supplemented by the user in the usage plan input unit 22. Or you may make it correct and output the utilization plan information S2 of the electric vehicle 5.
  • the contents input by the user are, for example, only the departure time and return time of the electric vehicle 5, the destination, and the waypoint.
  • the utilization plan input unit 22 accesses the map information inside the EMS 2 or the map information of the server device 9 and the like based on the search result of the travel route, Complement the missing information.
  • the usage plan information S2 of the electric vehicle 5 is created for each electric vehicle 5 belonging to EMS2. That is, when a plurality of electric vehicles 5 are managed by EMS 2, usage plan information S2 for the electric vehicles 5 is created for the number of electric vehicles 5.
  • the created use plan information S2 of the electric vehicle 5 is managed for each electric vehicle 5 using the electric vehicle management number (No.) assigned to each electric vehicle 5 as described above.
  • the EMS-side parameter acquisition unit 23 is the electric vehicle parameter information of the electric vehicle 5 that is necessary for formulating a charge / discharge plan for the battery 52 (hereinafter also referred to as “battery charge / discharge plan”) in the battery charge / discharge plan formulation unit 25 described later.
  • S3 is acquired.
  • the electric vehicle parameter information S3 is required when the battery charge / discharge plan formulation unit 25 described later calculates the battery charge / discharge plan information S6.
  • the electric vehicle parameter information S3 includes, for example, battery capacity of the electric vehicle 5, restrictions on power input / output during charging and discharging, power consumption with respect to travel distance and travel time.
  • the acquisition of the electric vehicle parameter information S3 by the EMS side parameter acquisition unit 23 is performed as follows, for example. For example, when the user purchases the electric vehicle 5, the user accesses the EMS-side parameter acquisition unit 23 of the EMS 2 from the portable terminal 6 possessed, the PC installed in the customer 1, or the television via the network.
  • the electric vehicle parameter information S3 may be set individually.
  • the electric vehicle parameter information S3 is acquired by the EMS-side parameter acquisition unit 23.
  • the EMS side parameter acquisition unit 23 may download and acquire data that matches the electric vehicle 5 from the server device 9.
  • the EMS-side parameter acquisition unit 23 acquires information acquired by the EMS-side communication unit 26 from the battery management device 53 of the electric vehicle 5 when the electric vehicle 5 is connected to the charge / discharge device 3 for charging / discharging power. May be registered as the electric vehicle parameter information S3.
  • the EMS 2 may feed back data to the already-registered electric vehicle parameter information S3 based on the operation status of the charging / discharging device 3 to re-register, that is, update.
  • the vehicle state receiving unit 24 is connected to the communication line 20 provided by the communication carrier.
  • the vehicle state receiving unit 24 receives vehicle state information S4 of the electric vehicle 5 transmitted from the mobile terminal 6 in the electric vehicle 5 via the communication line 20.
  • the vehicle state information S4 of the electric vehicle 5 includes at least the position information S7 of the mobile terminal 6.
  • connection method between the vehicle state receiving unit 24 and the communication line 20 provided by the communication carrier is not limited, for example, the communication line such as the Internet line may be shared with other information devices of the customer 1.
  • FIG. 8 is a diagram illustrating an example of a prediction result of the amount of power used by the customer 1, an example of a use plan for the electric vehicle 5, and a battery charge / discharge plan.
  • FIG. 8A shows an example of a prediction result of the power usage amount of the customer 1 represented by the power usage amount prediction information S1 of the customer 1.
  • FIG. 8B shows an example of a usage plan for the electric vehicle 5 represented by the usage plan information S ⁇ b> 2 for the electric vehicle 5.
  • FIG.8 (c) shows an example of the battery charging / discharging plan represented by battery charging / discharging plan information S6.
  • zone which should charge the electric vehicle 5 are shown collectively.
  • the horizontal axis indicates time (hour).
  • the vertical axis above the one-dot chain line horizontal to the horizontal axis represents power consumption (kW)
  • the vertical axis below the one-dot chain line represents generated power (kW).
  • the vertical axis above the one-dot chain line horizontal to the horizontal axis represents the charging power
  • the vertical axis below the one-dot chain line represents the discharge power.
  • the battery charge / discharge plan formulation unit 25 creates battery charge / discharge plan information S6 that satisfies the two objectives of “smoothing the power demand of the customer 1” and “securing power necessary for running the electric vehicle 5”.
  • the battery charge / discharge plan formulation unit 25 As shown in FIG. A time zone in which the power consumption of the customer 1 increases and a time zone in which the generated power increases are extracted.
  • the time zones in which the power consumption of the customer 1 increases are from 3:00 to 8:00 and from 16:00 to 24:00.
  • the time period during which the generated power of the customer 1 increases is from 9:00 to 15:00.
  • a time zone in which the electric vehicle 5 is to be discharged to the consumer 1 and a time zone in which the electric vehicle 5 is to be charged are extracted.
  • the time zone in which the electric vehicle 5 is connected to the charging / discharging device 3 is 0:00 to 6:00, 8:00 to 16:00, and 18:00 to 24:00.
  • the time zones in which the electric vehicle 5 is to be discharged to the customer 1 are 3:00 to 6:00 and 18:00 to 24:00.
  • the time zone for charging the electric vehicle 5 is from 9:00 to 15:00.
  • the battery charge / discharge plan formulation unit 25 finally ends up in a time zone in which the electric vehicle 5 is to be discharged to the consumer 1 and a time zone in which the electric vehicle 5 is to be charged. Based on this, battery charging / discharging plan information S6 defining charging power and discharging power is obtained.
  • the required charging power and discharging power of the battery charging / discharging plan information S6 are calculated based on the power consumption prediction information S1 of the customer 1 and “the power consumption that the customer 1 wants to reduce and the power generation power that the customer 1 wants to reduce”
  • the value is limited by the capacity of the battery 52 included in the electric vehicle parameter information S3, the remaining battery capacity information S5, and the conversion capacity of the power converter provided in the charge / discharge device 3.
  • the capacity of the battery 52 is defined by the total capacity of the battery 52, the usable capacity range, and the current limit.
  • the battery charge / discharge plan formulation unit 25 consumes the time when the electric vehicle 5 departs from the usage plan information S ⁇ b> 2 of the electric vehicle 5 and the traveling.
  • the plan was formulated for the purpose of “smoothing the power demand of the customer 1” so that the battery 52 can secure the amount of power necessary for traveling by the time the electric vehicle 5 departs from The battery charge / discharge plan information S6 is corrected.
  • the battery charge / discharge plan formulation unit 25 creates a new charge schedule and adds the schedule to the battery charge / discharge plan information S6.
  • the EMS 2 is not necessarily fixed so as to give priority to “securing electric power necessary for driving the electric vehicle 5”, but is configured so that the user can select which one is given priority.
  • a plan for the purpose of “securing electric power required for driving the electric vehicle 5” is corrected with respect to a plan for the purpose of “smoothing the power demand of the customer 1”.
  • a configuration in which adjustments are made to each other is also possible.
  • FIG. 9 is a diagram illustrating an example of a prediction result of the power usage amount of the consumer 1 when the user is out of the electric vehicle 5, a usage plan of the electric vehicle 5, and a battery charge / discharge plan.
  • FIG. 9A shows an example of a prediction result of the power usage amount of the customer 1 represented by the power usage amount prediction information S1 of the customer 1.
  • FIG. 9B shows an example of the usage plan of the electric vehicle 5 represented by the initial usage plan information S2 of the electric vehicle 5.
  • FIG. 9C shows an example of the usage plan of the electric vehicle 5 represented by the latest usage plan information S2 of the electric vehicle 5.
  • FIG. 9D shows an example of the battery charge / discharge plan represented by the latest battery charge / discharge plan information S6.
  • zone which should charge the electric vehicle 5 are shown collectively.
  • FIG. 9A corresponds to FIG. 8A
  • FIG. 9B corresponds to FIG. 8B.
  • the horizontal axis indicates time (hour).
  • the vertical axis above the one-dot chain line horizontal to the horizontal axis represents power consumption (kW)
  • the vertical axis below the one-dot chain line represents generated power (kW).
  • the vertical axis above the one-dot chain line horizontal to the horizontal axis represents the charging power
  • the vertical axis below the one-dot chain line represents the discharge power.
  • the vehicle state receiving unit 24 receives the position information S 7 of the mobile terminal 6 from the user's mobile terminal 6.
  • the vehicle state information S4 of the included electric vehicle 5 is received.
  • the battery charge / discharge plan formulation unit 25 detects that the use plan information S2 of the electric vehicle 5 that was originally scheduled has changed. For example, the latest usage plan for the electric vehicle 5 shown in FIG. 9C indicates that the return of the electric vehicle 5 is delayed with respect to the initial usage plan for the electric vehicle 5 shown in FIG. Yes.
  • the delay of the return of the electric vehicle 5 can be estimated from the deviation between the position information S7 of the mobile terminal 6 and the position information of the customer 1 and the decreasing rate of the deviation. That is, the return time of the electric vehicle 5 can be estimated from the deviation between the position information S7 of the mobile terminal 6 and the position information of the customer 1 and the reduction rate of the deviation.
  • the battery charge / discharge plan formulation unit 25 uses the changed use plan information S2 of the electric vehicle 5 to recharge the battery represented by the battery charge / discharge plan information S6 (hereinafter referred to as “battery charge / discharge plan”). )). At this time, the battery charge / discharge plan formulation unit 25 delays the scheduled discharge start time by, for example, one hour in response to the delay in the return. As a result, as shown in FIG. 9 (d), the initial battery charge / discharge plan indicated by the two-dot chain line curve is corrected to the solid line curve.
  • the time zone to be discharged from the electric vehicle 5 to the customer 1 is shortened by 1 hour from the time zone from 18:00 to 24:00 shown in FIG. It will be between midnight and 24:00.
  • the time zone for charging the electric vehicle 5 is from 9:00 to 15:00 as in the case shown in FIG.
  • the battery charge / discharge plan represented by the battery charge / discharge plan information S6 is formulated again, so that it matches the usage status of the electric vehicle 5.
  • the battery charge / discharge plan can be modified. Thereby, smoothing of electric power demand and balancing of electric power supply and demand can be performed more appropriately.
  • the present invention is not limited to this.
  • the present invention is not limited to this.
  • the return of the electric vehicle 5 is earlier than the initial use plan of the electric vehicle 5
  • the same effect can be obtained by regenerating the battery charge / discharge plan information S6 in the same manner as in the present embodiment. Can be obtained. Since the method for creating the battery charge / discharge plan information S6 at this time is the same as the method when the electric vehicle 5 is connected to the charge / discharge device 3, the description thereof is omitted.
  • the deviation between the position information S7 of the portable terminal 6 and the position information of the customer 1 and the reduction rate of the deviation, that is, the straight line between the electric vehicle 5 and the customer 1 are simplified.
  • the return time is estimated based on a typical positional relationship. For example, instead of the linear positional relationship between the electric vehicle 5 and the customer 1, the travel route information is reflected and the remaining travel distance and the decrease rate of the remaining travel distance are used to determine the arrival time. An estimation may be performed. In that case, a more accurate return time can be obtained from information such as a road information communication system (Vehicle Information and Communication System; abbreviation: VICS (registered trademark)) and the like in consideration of traffic conditions.
  • VICS Vehicle Information and Communication System
  • the vehicle state receiving unit 24 may receive the vehicle state information S4 of the electric vehicle 5 transmitted from the user's portable terminal 6. In this case, there is a high possibility that the user leaves the electric vehicle 5 in the consumer 1 and goes out by another moving means and keeps the software installed in the portable terminal 6 operating by mistake. In this case, the battery charge / discharge plan formulation unit 25 performs an operation when the electric vehicle 5 is connected to the charge / discharge device 3 described above.
  • the vehicle state reception unit 24 does not receive the vehicle state information S4 of the electric vehicle 5 transmitted from the user's portable terminal 6 or transmits from the user's portable terminal 6.
  • the vehicle state information S4 of the electric vehicle 5 to be received is received, the position information may not be updated.
  • the battery charge / discharge plan formulation unit 25 holds a plan formulated before going out of the electric vehicle 5.
  • the battery charge / discharge formulation unit 25 of the EMS 2 returns to the operation based on the conventional battery charge / discharge plan information 6.
  • the EMS side communication unit 26 communicates with the charge / discharge device 3 installed in the consumer 1.
  • the EMS side communication unit 26 acquires the remaining battery amount information S ⁇ b> 5 from the battery management device 53 of the electric vehicle 5.
  • the EMS side communication part 26 transmits the instruction
  • the EMS side communication unit 26 continuously receives the remaining battery amount information S5 from the battery management device 53 in order to monitor the battery state.
  • the vehicle state information S4 of the electric vehicle 5 used for developing the battery charge / discharge plan is transmitted from the terminal side communication unit 62 of the portable terminal 6 to the EMS 2. Further, the position information S7 of the portable terminal 6 included in the vehicle state information S4 of the electric vehicle 5 and indicating the position of the electric vehicle 5 is acquired by the position acquisition unit 61 of the portable terminal 6. Thereby, in order to acquire the position information S7 of the portable terminal 6 representing the position of the electric vehicle 5 and to transmit the vehicle state information S4 of the electric vehicle 5 including the position information S7, a dedicated communication terminal device is provided in each electric vehicle 5. There is no need. Therefore, management of the electric power network including the electric vehicle 5 can be realized while suppressing the initial introduction cost and communication cost of the user of the electric vehicle 5.
  • the electric vehicle management system 10 uses the portable terminal 6 including the position detection unit 61 instead of the electric vehicle management probe that is a vehicle-mounted dedicated product, to detect the position information of the electric vehicle 5.
  • the position information S7 of the portable terminal 6 corresponding to is transmitted to EMS2.
  • the battery charge / discharge plan formulation unit 25 of the EMS 2 can realize the formulation and correction of the battery charge / discharge plan represented by the battery charge / discharge plan information S6 of the electric vehicle 5 as usual.
  • the initial introduction expense of the user of the electric vehicle 5 can be suppressed, and the spread of EMS2 linked to the operation of the electric vehicle 5 can be promoted.
  • the electric vehicle 5 and the charging / discharging device 3 have been described on the premise that the electric power of the battery 52 can be discharged for smoothing the electric power demand of the consumer 1, but the electric vehicle 5 and the charging / discharging device 3 are not necessarily electric.
  • the vehicle 5 and the charging / discharging device 3 do not have to cope with the discharge. For example, the case where it can respond only to the charge for storing the electric power required for the next driving
  • the battery charge / discharge plan formulation unit 25 described in the present embodiment is one of the two purposes of “smoothing of the power demand of the customer 1” and “securing the power necessary for driving the electric vehicle 5”. Therefore, the latter “maintaining electric power necessary for traveling the electric vehicle 5” is controlled with priority.
  • FIGS. 10 and 11 are block diagrams showing configurations of the customer 1, the EMS 2, the electric vehicle 5, and the portable terminal 6 in the electric vehicle management system according to the second embodiment of the present invention. 10 and 11 are connected at the position of the boundary line BL2. Since the configuration of the electric vehicle management system of the present embodiment is similar to that of the electric vehicle management system 10 of the first embodiment described above, the same configurations are denoted by the same reference numerals and are common. Description is omitted. In the following description, the electric vehicle management system of the present embodiment is shown with a reference sign “10A”.
  • the electric vehicle management system 10A of the present embodiment includes a customer 1, an EMS 2, a charge / discharge device 3, a home appliance 4, an electric vehicle 5, a portable terminal 6, and a communication line 20, and the base station device 8 shown in FIG. And a server device 9.
  • the EMS 2 includes an electric vehicle energy consumption estimation unit 27. That is, the EMS 2 includes a power usage amount prediction unit 21, a utilization plan input unit 22, an EMS side parameter acquisition unit 23, a vehicle state reception unit 24, a battery charge / discharge plan formulation unit 25, an EMS side communication unit 26, and an electric vehicle energy consumption estimation.
  • the unit 27 is provided.
  • the electric vehicle energy consumption estimation unit 27 estimates an energy consumption amount due to traveling of the electric vehicle 5 from the electric vehicle parameter information S3 and the vehicle state information S4 of the electric vehicle 5. Specifically, the electric vehicle energy consumption estimation unit 27 calculates the energy consumption estimated value represented by the energy consumption estimated value information S8.
  • FIG. 12 is a flowchart showing a processing procedure of an energy consumption estimated value calculation process in the electric vehicle energy consumption estimating unit 27. Each process of the flowchart shown in FIG. 12 is executed by the electric vehicle energy consumption estimation unit 27. In the processing of the flowchart shown in FIG. 12, the electric vehicle energy consumption estimation unit 27 is given the electric vehicle parameter information S3 from the EMS side parameter acquisition unit 23, and the vehicle state information S4 of the electric vehicle 5 is given from the vehicle state reception unit 24. Is started, the process proceeds to step a1.
  • the electric vehicle energy consumption estimation unit 27 calculates the acceleration of the electric vehicle based on the position information S7 of the mobile terminal 6 included in the vehicle state information S4 of the electric vehicle 5.
  • the position information S7 of the mobile terminal 6 acquired by the position detection unit 61 includes the latitude, longitude, altitude, acquisition time, speed, and direction of the measurement point.
  • the acceleration Acc of the electric vehicle can be obtained from the latest GPS acquisition time and speed information and the GPS acquisition time and speed information measured one cycle before by the following equation (1).
  • the data acquisition interval is widened in places where the radio wave signal transmitted from the GPS satellite 7 does not reach. Therefore, the electric vehicle 5 is separately used by using an acceleration sensor provided in the portable terminal.
  • the acceleration Acc data may be supplemented.
  • step a2 the electric vehicle energy consumption estimation unit 27 calculates the traveling gradient of the electric vehicle 5 based on the position information S7 of the mobile terminal 6 included in the vehicle state information S4 of the electric vehicle 5 in the same manner as the acceleration Acc. Do.
  • the traveling gradient ⁇ of the electric vehicle 5 is obtained from the latest GPS acquisition time and altitude information included in the position information S7 of the mobile terminal 6 and the GPS acquisition time and altitude information measured one cycle before. It can be obtained by the equation (2) shown.
  • the data acquisition interval is widened in a place where the radio signal transmitted from the GPS satellite 7 does not reach.
  • the data of the traveling gradient ⁇ of the electric vehicle 5 may be supplemented by using a tilt sensor.
  • the electric vehicle energy consumption estimation unit 27 includes the acceleration Acc of the electric vehicle obtained in step a1, the traveling gradient ⁇ of the electric vehicle obtained in step a2, and the electric vehicle 5 included in the position information S7 of the portable terminal 6.
  • the braking / driving force of the electric vehicle is calculated based on the speed Vel. The calculation of the braking / driving force of the electric vehicle will be described with reference to the flowchart shown in FIG.
  • FIG. 13 is a flowchart showing a processing procedure for calculating the braking / driving force of the electric vehicle in the electric vehicle energy consumption estimation unit 27.
  • Each process of the flowchart shown in FIG. 13 is executed by the electric vehicle energy consumption estimation unit 27.
  • the process of the flowchart shown in FIG. 13 is started when the process of step a2 of the flowchart shown in FIG. 12 is completed, and the process proceeds to step b1.
  • step b1 the electric vehicle energy consumption estimation unit 27 calculates the climbing resistance Rs of the electric vehicle 5.
  • the climbing resistance Rs is a component in the slope direction that is generated when the electric vehicle 5 climbs the slope.
  • the climbing resistance Rs can be obtained from the vehicle weight m of the electric vehicle 5, the gravitational acceleration g, and the traveling gradient ⁇ of the electric vehicle 5 by the following equation (3).
  • the electric vehicle energy consumption estimation unit 27 calculates the rolling resistance Rr.
  • the rolling resistance Rr is basically a resistance force generated between the tire and the road surface, and is a value inherent to the material, structure, and dimensions of the tire.
  • the rolling resistance Rr can be obtained from the weight m of the electric vehicle 5, the gravitational acceleration g, and the coefficient ⁇ r specific to the electric vehicle 5 by the following equation (4).
  • the electric vehicle energy consumption estimation unit 27 calculates the air resistance Rl.
  • the air resistance Rl is energy loss due to air, such as a frictional force between the vehicle body and air, and a force with which the front surface of the vehicle body collides with air.
  • the air resistance Rl is a value proportional to the front projected area A of the vehicle body, the air resistance coefficient ⁇ a, and the square of the velocity Vel, and can be obtained by the following equation (5).
  • step b4 the electric vehicle energy consumption estimation unit 27 calculates the acceleration resistance Ra.
  • the acceleration resistance Ra is an inertia force generated when the electric vehicle 5 accelerates and decelerates.
  • the acceleration resistance Ra is a value proportional to the vehicle weight m of the electric vehicle and the acceleration Acc of the electric vehicle 5, and can be obtained by the following equation (6).
  • step b5 the electric vehicle energy consumption estimation unit 27 calculates the braking / driving force of the electric vehicle.
  • the climbing resistance Rs obtained in step b1, the rolling resistance Rr obtained in step b2, the air resistance Rl obtained in step b3, and the acceleration resistance Ra obtained in step b4 are resistances generated in the longitudinal motion of the electric vehicle 5. Which is equal to the braking / driving force Ftrac of the electric vehicle 5. Accordingly, the braking / driving force Ftrac of the electric vehicle can be obtained by the following equation (7).
  • the vehicle weight m of the electric vehicle 5 is the vehicle specifications of the electric vehicle 5. It is a value that is uniquely determined if is determined. These are acquired by the EMS side parameter acquisition unit 23 and stored as the electric vehicle parameter information S3.
  • the gravitational acceleration g is a fixed value and is stored as the electric vehicle parameter information S3 and used for calculation.
  • the electric vehicle energy consumption estimation unit 27 calculates the torque and the rotational speed of the motor. Specifically, the electric vehicle energy consumption estimation unit 27 obtains the output torque Tmtr of the motor 51 and the motor rotation speed Nmtr.
  • the braking / driving force Ftrac of the electric vehicle described above is a force generated on the ground contact surface between the drive wheels (tires) of the electric vehicle 5 and the road surface.
  • the output torque Tmtr of the motor 51 can be obtained by the following equation (8).
  • the wheel speed W is obtained from the vehicle speed Vel, and the gear ratio G between the drive shaft and the motor is integrated. That is, the rotational speed Nmtr of the motor 51 can be obtained by the following equation (9).
  • the above formulas (8) and (9) are cases where a gear exists between the drive shaft and the motor.
  • the gear ratio G is “1”.
  • a configuration in which the gear ratio G is variable by control is conceivable. In this case, it is necessary to change the value of the gear ratio G used for calculation by control.
  • the tire radius r and the gear ratio G are values that are uniquely determined according to the specifications of the electric vehicle 5, are acquired by the EMS-side parameter acquisition unit 23, are stored as the electric vehicle parameter information S3, and are used for calculation.
  • step a5 the electric vehicle energy consumption estimation unit 27 calculates the input / output energy of the battery 52. Specifically, the electric vehicle energy consumption estimation unit 27 obtains energy E input / output to / from the battery 52.
  • the energy E can be obtained by the following equation (10).
  • ⁇ mtr represents the efficiency of the motor 51
  • ⁇ inv represents the efficiency of the inverter connected between the motor 51 and the battery 52.
  • the efficiency ⁇ mtr of the motor 51 and the efficiency ⁇ inv of the inverter are variables that are influenced by the motor output torque Tmtr, the motor rotation speed Nmtr, and the direction of energy input / output.
  • the efficiency ⁇ mtr of the motor 51 and the efficiency ⁇ inv of the inverter are values that are uniquely determined by the specifications of the electric vehicle 5, acquired by the EMS-side parameter acquisition unit 23, stored as the electric vehicle parameter information S 3, and calculated. Used.
  • the electric vehicle energy consumption estimation unit 27 calculates an energy consumption estimated value. Specifically, the electric vehicle energy consumption estimation unit 27 obtains energy consumption estimated value information S8 representing an energy consumption estimated value consumed by the electric vehicle 5 by traveling.
  • the estimated energy consumption value is the total sum of energy E obtained from the start of measurement until the present time in the above equation (10), and can be obtained by the following equation (11).
  • the electric vehicle energy consumption estimation unit 27 obtains the energy consumption estimated value information S8 from the vehicle state information S4 of the electric vehicle 5 and the electric vehicle parameter information S3.
  • the electric vehicle energy consumption estimation unit 27 of the present embodiment only the movement in the front-rear direction of the electric vehicle 5 that accounts for a large proportion of the power consumption of the battery 52, that is, only the energy consumption consumed in direct travel, is calculated to estimate the energy consumption.
  • the energy consumption estimated value represented by the value information S8 is used, in order to improve the estimation accuracy of the energy consumption estimated value of the electric vehicle 5, power consumption by auxiliary equipment not related to traveling may be considered.
  • the power consumption proportional to the driving time may be added to the estimated energy consumption.
  • the power consumption of the wipers and lights of the electric vehicle 5 can be considered as the power consumption that is affected by the environment such as rainy weather or nighttime. It is good to add to the estimated energy consumption.
  • the battery charge / discharge plan formulation unit 25 of the present embodiment performs the “smoothing of the power demand of the customer 1” and “securing power necessary for traveling of the electric vehicle 5” performed in the above-described first embodiment.
  • the energy consumption estimated value information S8 is used for further planning. The operation of the battery charge / discharge plan formulation unit 25 reflecting the energy consumption estimated value information S8 will be described below.
  • FIG. 14 shows a prediction result of the power usage amount of the customer 1 when the user is out of the electric vehicle 5, a utilization plan of the electric vehicle 5, an estimation result of a change in the remaining battery level, and a battery charge / discharge before the change. It is a figure which shows an example of a plan.
  • FIG. 14A shows an example of a prediction result of the power usage amount of the customer 1 represented by the power usage amount prediction information S1 of the customer 1.
  • FIG. 14B shows an example of the usage plan for the electric vehicle 5 represented by the usage plan information S ⁇ b> 2 for the electric vehicle 5.
  • FIG. 14C shows an example of the estimation result of the change in the remaining battery level.
  • FIG. 14D shows an example of the battery charge / discharge plan represented by the battery charge / discharge plan information S6 before the change.
  • zone which should charge the electric vehicle 5 are shown collectively. 14 (a) corresponds to FIG. 8 (a), FIG. 14 (b) corresponds to FIG. 8 (b), and FIG. 14 (d) corresponds to FIG. 8 (c).
  • the horizontal axis indicates time (hour).
  • the vertical axis above the one-dot chain line horizontal to the horizontal axis represents power consumption (kW)
  • the vertical axis below the one-dot chain line represents generated power (kW).
  • shaft shows the battery remaining charge (%) which is a battery remaining charge.
  • the vertical axis above the one-dot chain line horizontal to the horizontal axis represents the charging power
  • the vertical axis below the one-dot chain line represents the discharge power.
  • FIG. 14 shows the operation of the battery charge / discharge plan formulation unit 25 when the electric vehicle 5 is out.
  • the battery charge / discharge plan formulation unit 25 as in the first embodiment, before the departure of the electric vehicle 5, “smoothing of electric power demand of the customer 1” and “securing electric power necessary for traveling of the electric vehicle 5”. Assume that the battery charge / discharge plan information S6 that satisfies the two objectives has already been created.
  • the user when the user goes out on the electric vehicle 5, the user operates the software installed on the mobile terminal 6. Receives the vehicle state information S4 of the electric vehicle 5 including the position information S7 of the portable terminal 6 from the portable terminal 6 of the user.
  • the EMS 2 uses the electric vehicle energy consumption estimation unit 27 to estimate the amount of electric power consumed by the electric vehicle 5 currently going out from the position information S7 of the portable terminal 6 included in the vehicle state information S4 of the electric vehicle 5. Is calculated as the energy consumption estimated value represented by the energy consumption estimated value information S8.
  • the battery charge / discharge plan formulation unit 25 when the electric vehicle 5 is connected to the charge / discharge device 3 will be described.
  • the battery charge / discharge plan formulation unit 25 in the present embodiment is configured to “smooth the power demand of the customer 1” and “ensure the power necessary for running the electric vehicle 5”.
  • Battery charge / discharge plan information S6 that satisfies two purposes is created.
  • the battery charge / discharge plan formulation unit 25 uses the power consumption of the customer 1 as in the first embodiment. From the prediction information S1, a time zone in which the power consumption of the customer 1 increases and a time zone in which the generated power increases are extracted. The battery charge / discharge plan formulation unit 25 sends the electric vehicle 5 to the customer 1 based on the extracted time zone and the time zone in which the electric vehicle 5 is connected to the EMS 2 in the usage plan information S2 of the electric vehicle 5. The time zone to be discharged and the time zone to be charged are extracted.
  • the battery charge / discharge plan formulation unit 25 in the present embodiment predicts a change in the remaining battery level in one day other than the same process as the process executed by the battery charge / discharge plan formulation unit 25 in the first embodiment. Perform the process. Specifically, the battery charge / discharge plan formulation unit 25 is based on the remaining battery information S5 of the electric vehicle 5 obtained from the charge / discharge device 3 and the power consumption included in the use plan information S2 of the electric vehicle 5. The change of the remaining battery level in a day including after returning is predicted.
  • the time zone in which the electric vehicle 5 is not connected to the charging / discharging device 3, that is, the time zone in which the user goes out with the electric vehicle 5 is 6 o'clock.
  • the battery charge / discharge plan formulation unit 25 determines from the use plan information S2 of the electric vehicle 5 the end points of the first outing time zone T1 and the second outing time zone T2, that is, the remaining amount of the battery 52 of the electric vehicle 5 at the time of return. The remaining battery level is estimated.
  • the battery charge / discharge plan formulation unit 25 obtains the battery charge / discharge plan information S6 from the time zone to be discharged from the electric vehicle 5 to the consumer 1 and the time zone to be charged.
  • Battery charging / discharging plan information S6 includes values of charging power and discharging power.
  • the values of the charging power and the discharging power included in the battery charging / discharging plan information S6 obtained at this time are calculated from the power usage amount prediction information S1 of the customer 1 as in the first embodiment.
  • the value of “power consumption and generated power to be reduced” is a value limited by the electric vehicle parameter information S3. Specifically, the value is limited by the capacity of the battery 52 included in the electric vehicle parameter information S3, the remaining battery capacity information S5, and the conversion capacity of the power converter provided in the charge / discharge device 3.
  • the capacity of the battery 52 is represented by the total capacity of the battery 52, the usable capacity range, and the current limit.
  • the battery charge / discharge plan formulation unit 25 corrects the battery charge / discharge plan information S 6 as in the first embodiment. Specifically, the battery charge / discharge plan formulation unit 25 determines from the time when the electric vehicle 5 departs in the use plan information S2 of the electric vehicle 5 and the amount of power consumed by the travel to the time when the electric vehicle 5 departs. In addition, the battery charge / discharge plan information S ⁇ b> 6 planned for the purpose of “smoothing the power demand of the customer 1” is corrected so that the battery 52 has a power amount necessary for traveling.
  • FIG. 15 shows a prediction result of the power usage amount of the consumer 1 when the user is out of the electric vehicle 5, a utilization plan of the electric vehicle 5, an estimation result of a change in the remaining amount of the battery, and a battery charge / discharge after the change It is a figure which shows an example of a plan.
  • FIG. 15A shows an example of a prediction result of the power usage amount of the customer 1 represented by the power usage amount prediction information S1 of the customer 1.
  • FIG. 15B shows an example of a usage plan for the electric vehicle 5 represented by the usage plan information S ⁇ b> 2 for the electric vehicle 5.
  • FIG. 15C shows an estimation result of the change in the remaining battery level.
  • FIG. 15D shows an example of the battery charge / discharge plan represented by the changed battery charge / discharge plan information S6.
  • FIG. 15 (d) the time zone when the electric vehicle 5 should be discharged to the consumer 1 and the time zone when the electric vehicle 5 should be charged are shown together.
  • FIG. 15A corresponds to FIG. 8A
  • FIG. 15B corresponds to FIG. 8B.
  • the horizontal axis indicates time (hour).
  • the vertical axis above the one-dot chain line horizontal to the horizontal axis represents power consumption (kW)
  • the vertical axis below the one-dot chain line represents generated power (kW).
  • shaft shows the battery remaining charge (%) which is a battery remaining charge.
  • the vertical axis above the one-dot chain line horizontal to the horizontal axis represents the charging power
  • the vertical axis below the one-dot chain line represents the discharge power.
  • the battery charge / discharge plan formulation unit 25 the battery charge / discharge satisfying two purposes of “smoothing power demand of the customer 1” and “securing power necessary for running the electric vehicle 5” before the departure of the electric vehicle 5. It is assumed that the plan information S6 has already been created.
  • the battery charge / discharge plan formulation unit 25 uses the energy consumption represented by the energy consumption estimated value information S8 estimated by the electric vehicle energy consumption estimation unit 27 for the power consumption included in the use plan information S2 of the electric vehicle 5.
  • the energy consumption estimated value is reflected on the change in the remaining battery level predicted in advance, and the change in the remaining battery level is changed.
  • the change in the remaining battery level for the day predicted in advance is represented by a solid line indicated by reference numeral “11”, and the change in the remaining battery level for the day after This is indicated by a two-dot chain line indicated by reference numeral “12”.
  • the change in the remaining amount of the battery predicted in advance is as indicated by a solid line indicated by reference numeral “11” in FIG.
  • the remaining battery capacity at the time of return which is the end point of the second outing time zone T2 is Expected to be significantly lower than predicted. Therefore, the estimated value of the remaining battery capacity is lowered as indicated by a two-dot chain line indicated by reference numeral “12”.
  • the battery charge / discharge plan formulation unit 25 then creates the battery charge / discharge plan information S6 again based on the change in the remaining battery level for the day. For example, it is estimated that the energy consumption when actually traveling increases due to an error in the route of the user or the road condition with respect to the energy consumption during traveling planned in the usage plan information S2 of the electric vehicle 5 in advance. If it has been done, as shown in FIG. 15 (d), the battery charge / discharge plan information S 6 is changed before the return of the electric vehicle 5, such as changing the discharge power after the return low. As a result, the EMS 2 can quickly determine that the discharge power after the return of the electric vehicle 5 cannot be expected with respect to the prior plan, and reduce the power consumption of the other home appliances 4 at an early stage. It becomes possible.
  • the battery charge / discharge plan formulation unit 25 of the present embodiment can also change the battery charge / discharge plan information S6 by changing the return time using the position information S7 of the mobile terminal 6.
  • the electric vehicle energy consumption estimation unit 27 calculates the energy consumption estimated value from the vehicle state information S4 and the electric vehicle parameter information S3 of the electric vehicle 5.
  • the battery charge / discharge plan formulation unit 25 calculates the battery charge / discharge plan information S6 by calculating the energy consumption estimated value represented by the information S8 and using the energy consumption estimated value information S8 obtained from the electric vehicle energy consumption estimation unit 27. Calculate. Therefore, even when the battery remaining amount at the time of return of the electric vehicle 5 predicted at the time of going out changes, the battery charge / discharge plan represented by the battery charge / discharge plan information S6 of the electric vehicle 5 can be quickly changed. it can. Thereby, in this Embodiment, it becomes possible to change a plan beforehand also with respect to the electric energy of charging / discharging, and the advancement of battery charging / discharging plan information S6 can be achieved.
  • FIGS. 16 and 17 are block diagrams illustrating configurations of the customer 1, the EMS 2, the electric vehicle 5, and the portable terminal 6 in the electric vehicle management system according to the third embodiment of the present invention. 16 and 17 are connected at the position of the boundary line BL3. Since the configuration of the electric vehicle management system of the present embodiment is similar to that of the electric vehicle management system 10 of the first embodiment described above, the same configurations are denoted by the same reference numerals and are common. Description is omitted. In the following description, the electric vehicle management system of the present embodiment is shown with a reference sign “10B”.
  • the electric vehicle management system 10B of the present embodiment includes a customer 1, an EMS 2, a charge / discharge device 3, a home appliance 4, an electric vehicle 5, a portable terminal 6, and a communication line 20, and the base station device 8 shown in FIG. And a server device 9.
  • the mobile terminal 6 includes a terminal-side parameter acquisition unit 63 and an electric vehicle energy consumption estimation unit 64. That is, the mobile terminal 6 includes a position detection unit 61, a terminal side communication unit 62, a terminal side parameter acquisition unit 63, and an electric vehicle energy consumption estimation unit 64.
  • the terminal-side parameter acquisition unit 63 and the electric vehicle energy consumption estimation unit 64 perform functions similar to those of the EMS-side parameter acquisition unit 23 and the electric vehicle energy consumption estimation unit 27 of the EMS 2 in the second embodiment on the mobile terminal 6.
  • the energy consumption estimated value represented by the energy consumption estimated value information S8 is calculated.
  • the terminal-side communication unit 62 includes position information S7 of the mobile terminal 6 acquired by the position detection unit 61, and energy consumption estimated value information S8 representing an energy consumption estimated value calculated by the electric vehicle energy consumption estimating unit 64.
  • the vehicle state information S4 of the electric vehicle 5 is transmitted to the EMS 2 via the communication line.
  • the interval at which the battery charge / discharge plan formulation unit 25 of the EMS 2 recalculates the battery charge / discharge plan information S6 is several minutes to several hours. Even if recalculation of the charge / discharge plan information S6 is performed at a period equal to or shorter than the above-described interval, at present, the control of the home appliance 4 that the EMS 2 commands often does not follow, and in order to improve followability, For the home appliance 4, a microcomputer having a high computing capability and an actuator having a high control performance are required.
  • the calculation interval In order to maintain a certain accuracy, it is desirable to set the calculation interval to about 1 second. This is because the acceleration / deceleration time when an electric vehicle user stops or reaccelerates with a signal or the like is about 5 to 20 seconds. In order to estimate the energy consumption due to acceleration or deceleration, the calculation interval is about 1 second. It is necessary to make it.
  • the electric vehicle energy consumption estimation unit 27 of the EMS 2 is configured to calculate the energy consumption estimated value represented by the energy consumption estimated value information S8 of the electric vehicle 5.
  • the portable terminal 6 transmits the vehicle state information S4 of the electric vehicle 5 to the EMS 2 at a short interval required by the electric vehicle energy consumption estimation unit 27. There is a need to. Further, in order to make a transmission interval from the mobile terminal 6 to the EMS 2, it is necessary to transmit the acquired data a plurality of times collectively. In this case, the amount of data transmitted once increases in proportion to the transmission interval.
  • the energy consumption represented by the energy consumption estimated value information S8 of the electric vehicle 5 by the electric vehicle energy consumption estimation unit 64 of the mobile terminal 6 is shown.
  • the estimated value is calculated. Accordingly, the terminal-side communication unit 62 is not affected by the calculation interval in the electric vehicle energy consumption estimation unit 64, and the vehicle of the electric vehicle 5 including the energy consumption estimated value that is the calculation result of the electric vehicle energy consumption estimation unit 27.
  • the status information S4 can be transmitted at intervals required by the battery charge / discharge plan formulation unit 25.
  • the EMS 2 of the present embodiment includes a power usage amount prediction unit 21, a utilization plan input unit 22, an EMS side parameter acquisition unit 23, a vehicle state reception unit 24, a battery charge / discharge plan formulation unit 25, and an EMS side communication unit 26. .
  • the vehicle state information S4 of the electric vehicle 5 received by the vehicle state receiver 24 of the present embodiment includes the position information S7 of the portable terminal 6 and the energy consumption estimated value information S8 of the electric vehicle 5.
  • the battery charge / discharge plan formulation unit 25 Based on the vehicle state information S4 of the electric vehicle 5 received by the vehicle state reception unit 24, the battery charge / discharge plan formulation unit 25 performs the same calculation as in the second embodiment and calculates the battery charge / discharge plan information S6. To do.
  • the electric vehicle energy consumption estimation unit 64 of the mobile terminal 6 uses the vehicle state information S4 and the electric vehicle parameter information S3 of the electric vehicle 5 to An energy consumption estimated value represented by energy consumption estimated value information S8 is calculated.
  • the battery charge / discharge plan formulation unit 25 calculates battery charge / discharge plan information S6 using the energy consumption estimated value information S8 obtained from the electric vehicle energy consumption estimation unit 64. Thereby, even when the battery remaining amount at the time of return changes while going out, the battery charge / discharge plan information S6 of the electric vehicle 5 can be changed.
  • the plan can be changed in advance for the charge / discharge power amount, and the battery charge / discharge plan information S6 can be enhanced. Can do.
  • the electric vehicle management system 10A of the second embodiment is configured to perform the energy consumption estimation of the electric vehicle 5 with the EMS 2
  • the electric vehicle management system 10B of the present embodiment includes the mobile terminal 6. Is configured to estimate energy consumption. Therefore, it is possible to further reduce the amount of communication between the mobile terminal 6 using the communication line 20 such as the public wireless line and the Internet line provided by the communication carrier and the EMS 2.
  • 18 and 19 are block diagrams illustrating configurations of the customer 1, the EMS 2, the electric vehicle 5, the portable terminal 6, and the server device 9 in the electric vehicle management system according to the fourth embodiment of the present invention. 18 and 19 are connected at the position of the boundary line BL4. Since the configuration of the electric vehicle management system of the present embodiment is similar to that of the electric vehicle management system 10 of the first embodiment described above, the same configurations are denoted by the same reference numerals and are common. Description is omitted. In the following description, the electric vehicle management system of the present embodiment is shown with a reference sign “10C”.
  • the electric vehicle management system 10C includes the customer 1, the EMS 2, the charge / discharge device 3, the home appliance 4, the electric vehicle 5, the mobile terminal 6, the server device 9, and the communication line 20, and the above-described FIG. And a base station apparatus 8.
  • server device 9 terminal-side communication unit 62 in portable terminal 6 that transmits vehicle state information S4 of electric vehicle 5 to server device 9, and vehicle of electric vehicle 5 transmitted from server device 9.
  • the vehicle state receiving unit 24 that receives the state information S4 will be described.
  • the vehicle state information S4 of the electric vehicle 5 is transmitted to the EMS 2 using the communication line 20 provided by the communication carrier.
  • the vehicle state information S4 of the electric vehicle 5 is transmitted to the server device 9 by the terminal side communication unit 62 using the communication line 20 provided by the communication carrier.
  • the server device 9 is provided with an electric vehicle parameter server 91 in which a plurality of electric vehicle parameter information S3 including the electric vehicle 5 is stored in advance, and the electric vehicle parameter information S3 of the electric vehicle 5 is taken out. Further, the server device 9 includes an electric vehicle energy consumption estimation unit 92 that estimates the energy consumption estimated value information S8 of the electric vehicle 5.
  • the electric vehicle energy consumption estimation unit 92 determines the electric vehicle 5 from the vehicle state information S4 of the electric vehicle 5 including the electric vehicle parameter information S3 of the electric vehicle 5 and the position information S7 of the mobile terminal 6 received from the mobile terminal 6.
  • the energy estimated value information S8 is estimated.
  • the method for estimating the electric vehicle parameter information S3 of the electric vehicle 5 in the electric vehicle energy consumption estimation unit 92 is the electric vehicle energy consumption estimation unit 27 of the second embodiment and the electric vehicle energy estimation unit 64 of the third embodiment. Since the contents are the same as those in FIG.
  • the vehicle state receiving unit 24 of the present embodiment includes, from the server device 9, the electric vehicle 5 including the energy consumption estimated value information S ⁇ b> 8 that is the estimation result of the electric vehicle energy consumption estimating unit 92 and the position information S ⁇ b> 7 of the mobile terminal 6. Vehicle state information S4 is received.
  • the method for calculating the battery charge / discharge plan represented by the battery charge / discharge plan information S6 in the battery charge / discharge plan formulation unit 25 of the EMS 2 is the same as that in the second embodiment, and thus the description thereof is omitted. .
  • the server device 9 further includes the vehicle state information S4 and electric An electric vehicle energy consumption estimation unit 92 that estimates energy consumption estimated value information S8 from the vehicle parameter information S3 is provided.
  • the battery charge / discharge plan formulation unit 25 uses the energy consumption estimated value information S8 obtained from the electric vehicle energy consumption estimation unit 92 to calculate a battery charge / discharge plan represented by the battery charge / discharge plan information S6. Thereby, even when the battery remaining amount at the time of return changes while going out, the battery charge / discharge plan represented by the battery charge / discharge plan information S6 of the electric vehicle 5 can be changed.
  • the charge / discharge power The plan can be changed in advance for the quantity.
  • the battery charge / discharge plan represented by the battery charge / discharge plan information S6 can be enhanced.
  • the server device 9 performs the processing by the electric vehicle energy consumption estimation unit which has been performed by the EMS 2 or the portable terminal 6 in the second and third embodiments. Therefore, even when the calculation content of the electric vehicle energy consumption estimation unit is complicated, the calculation load on both the EMS 2 and the portable terminal 6 can be reduced.
  • the server device 9 according to the present embodiment is not necessarily provided by the manufacturer of the EMS 2 and can be provided by the manufacturer of the electric vehicle 5.
  • the manufacturer of EMS 2 needs to provide an electric vehicle energy consumption estimation unit corresponding to each electric vehicle existing in the market, and identifies electric vehicle parameters to be used for estimation of electric vehicle energy consumption. There is no need to do it. Therefore, since it can be entrusted to the provider of the server device 9 for these measures, the development man-hours can be reduced.
  • the manufacturer of the electric vehicle 5 provides the server device 9, detailed parameters of the electric vehicle 5 that are not normally disclosed, for example, the efficiency ⁇ mtr of the motor 51 used in the above-described equation (10), the motor 51 and the battery 52. It is possible to calculate an estimated energy consumption value using the efficiency ⁇ inv of the inverter connected between and, and the plan accuracy of the battery charge / discharge plan represented by the battery charge / discharge plan information S6 performed by EMS2 It is possible to improve.
  • the manufacturer of the electric vehicle 5 provides the server device 9
  • the manufacturer of the electric vehicle 5 wants to disclose the electric vehicle parameter information S 3 that is desired to be kept confidential in design and not to be disclosed to other companies in the same industry.
  • the electric vehicle energy consumption estimation unit 92 incorporates an energy consumption estimation value calculation method that reflects no detailed control logic, the contents of these can be kept in the server device 9 and the energy that is the calculation result Only the energy consumption estimated value information S8 representing the consumption estimated value can be provided to the EMS 2. This eliminates the need for the manufacturer of the electric vehicle 5 to disclose the internal information of the electric vehicle 5 and facilitates participation in this type of electric vehicle management system.
  • the EMS side parameter acquisition part 23 of this Embodiment can also consider the structure which acquires the electric vehicle parameter information S3 from the electric vehicle parameter server 91 of the server apparatus 9.
  • FIG. all the unique parameters related to the electric vehicle 5 can be collected in the electric vehicle parameter server 91 of the server device 9.
  • the EMS-side parameter acquisition unit 23 of the EMS 2 performs the electric vehicle at a constant update cycle. If it is set to acquire the electric vehicle parameter information S3 of the parameter server 91, it becomes possible to distribute new electric vehicle parameter information S3 to all EMS2 in the market.
  • 20 and 21 are block diagrams showing configurations of the customer 1, the EMS 2, the electric vehicle 5, the portable terminal 6, and the server device 9 in the electric vehicle management system according to the fifth embodiment of the present invention. 20 and 21 are connected at the position of the boundary line BL5. Since the configuration of the electric vehicle management system of the present embodiment is similar to that of the electric vehicle management system 10B of the third embodiment described above, the same components are denoted by the same reference numerals and are common. Description is omitted. In the following description, the electric vehicle management system of the present embodiment is shown with reference numeral “10D”.
  • the electric vehicle management system 10D of the present embodiment includes a customer 1, an EMS 2, a charge / discharge device 3, a home appliance 4, an electric vehicle 5, a portable terminal 6, and a communication line 20, and the base station device 8 shown in FIG. And a server device 9.
  • the electric vehicle management system 10D of the present embodiment further includes a battery remaining amount input unit 28 for inputting the remaining battery amount, specifically, the remaining battery amount information S5, to the EMS 2 in the third embodiment described above. Composed.
  • the battery remaining amount input unit 28 acquires the latest battery remaining amount information S5 of the electric vehicle 5.
  • the input method of the battery remaining amount input unit 28 is not limited, but as an example, from the mobile terminal 6 possessed by the user, the PC installed in the consumer 1 or the television, using a network
  • the user accesses the battery remaining amount input unit 28 of the EMS 2, and the user inputs the latest battery remaining amount information S5.
  • the charging spot automatically accesses and inputs the battery remaining amount input unit 28 of the EMS 2 when charging of the electric vehicle 5 ends. Also good.
  • the battery remaining amount information S5 obtained only by the EMS side communication unit 26 is also obtained by access from the outside of the EMS 2.
  • the battery remaining amount information S5 can be updated. Thereby, for example, even when the electric vehicle 5 performs charging at a charging spot other than the charging / discharging device 3 of the customer 1, the user accesses the battery remaining amount input unit 28 of the EMS 2 using the portable terminal 6, It becomes possible to reset the latest battery remaining amount information S5 after charging.
  • the remaining battery amount input unit 28 at the above timing. It is possible to eliminate the dissociation between the estimated energy consumption value calculated by the electric vehicle energy consumption estimation unit 64 and the actual energy consumption amount of the electric vehicle 5 by re-inputting the battery remaining amount information S5 using Become.
  • the EMS 2 further receives the remaining battery level information S5.
  • An input unit 28 is provided. Thereby, it is possible to update the battery remaining amount information S5 even by access from outside the EMS2. Therefore, even when the electric vehicle 5 performs charging at a charging spot other than the charging / discharging device 3 of the consumer 1, the user accesses the battery remaining amount input unit 28 of the EMS 2 using the portable terminal 6, and the latest battery remaining amount is reached. It is possible to provide the electric vehicle management system 10D capable of resetting the quantity information S5.

Abstract

 本発明の電動車両管理システムでは、電動車両(5)内のユーザが所有する携帯端末(6)は、携帯端末(6)の位置検出部(61)で検出した携帯端末(6)の位置情報(S7)を含む電動車両(5)の車両状態情報(S4)を、需要家(1)に設置されるエネルギーマネジメントシステム(EMS)(2)の車両状態受信部(24)に送信する。EMS(2)のバッテリ充放電計画策定部(25)は、電動車両(5)の車両状態情報(S4)を用いて、バッテリ(52)の充放電計画(S6)を策定する。充放電装置(3)は、策定されたバッテリ充放電計画(S6)に従って、電動車両(5)のバッテリ(52)の充電および放電の少なくとも一方を行う。

Description

電動車両管理システム
 本発明は、エネルギーマネジメントシステム(Energy Management System;略称:EMS)を用いて電動車両のバッテリの充放電の制御を行う電動車両管理システムに関する。
 電力網に電力の需要および供給の自動制御手段を組み込んだ「スマートグリッド」と呼ばれる次世代電力網の開発が、近年注目を浴びている。スマートグリッドでは、電力網における電力の流れを供給側だけでなく需要側からも制御することによって、電力の需要と供給との最適化または平衡化が図られる。
 一例を挙げると、各家庭が所有する電動車両の蓄電池(バッテリ(battery))は、電力需要のピークを低減して平滑化を図るためのバッファとして利用することができる。たとえば、深夜などの電力需要の少ない時間帯に充電された電動車両のバッテリの電力を、電力需要のピーク時に住宅で使用することによって、電力需要のピークを低減することができる。また、深夜などの電力需要の少ない時間帯は、昼間などの電力需要の多い時間帯に比べて電気料金が安く設定されているので、各家庭の電気料金の節約にもつながる。スマートグリッドは、このような電力の需給制御を自動的に行おうとするものである。
 スマートグリッドによって管理される電力網では、住宅から電動車両への電力の供給による電動車両のバッテリの充電だけでなく、電動車両から住宅への電力の供給による電動車両のバッテリの放電も積極的に行われることが想定される。この電力の流れは、各需要家に配備されるエネルギーマネジメントシステム(Energy Management System;略称:EMS)によって管理される。
 EMSは、太陽光発電(Photo voltaic power generation;略称:PV)装置などの発電設備、電気温水器およびエアコンディショナなどの主に大型の電力負荷設備、ならびに車両のバッテリなどの蓄電設備などを管理下に置き、電力需要が平滑化されるように、前述の発電設備、電力負荷設備および蓄電設備を制御する。これによって、電力需給の平衡化を図り、電力会社からの電力購入量が少なくて済むようにする。
 これらの技術の対象範囲を家庭内から広げて、社会全体の環境性能を向上させる試みが為されている。また、たとえば隣家、近隣の工場およびビルなどの近隣の需要家を含めた街単位および都市単位での電力需要の平滑化ならびに電力需給の平衡化を目的としたコミュニティエネルギーマネジメントシステム(Community Energy Management System;略称CEMS)を、商用電力網に配備する実験および構想も行われ始めている。
 電動車両に搭載されるバッテリとしては、ユーザの日常的な走行に充分な航続距離が確保されるように、大容量のバッテリが用いられる。電動車両に搭載されるバッテリの容量は、一般家庭において使用される数日間の電力を電動車両1台でまかなうことが可能なほどの大容量である。したがって、EMSが需要家の電力需給運用計画を立案する場合において、バッテリの使用可否は大きな要素となる。
 しかし、電動車両はユーザの走行に用いられるので、ユーザが電動車両を走行させている間は、電動車両のバッテリを住宅の電力需要の平滑化に用いることができない。しかも、電動車両の走行には、バッテリに蓄えられた電力が使用されるので、出発時と帰着時とでは、バッテリに残存する電力量(以下「バッテリ残量」という場合がある)が異なる。また、ユーザは、出発前に、走行に必要な電力を予め電動車両のバッテリに蓄えることが必要である。
 したがって、電動車両に対応したEMSでは、需要家の電力使用の予測のみに応じた電力需要の平滑化だけでなく、電動車両の利用計画および電動車両の状態なども考慮して、電動車両のバッテリの充放電計画を策定し、運用することが必要になる(たとえば、特許文献1参照)。
 電動車両の走行中に、モータによって消費されるバッテリの電力量は、電動車両の走行予定、特に走行ルートが予め分かっている場合には、走行ルートと、予め測定された走行距離あたりに必要な電力量とから算出することが可能である。電動車両に対応したEMSでは、電動車両の走行予定に基づいて、電動車両の走行中に消費されるバッテリの電力量を計算し、電動車両が帰着したときのバッテリ残量も考慮した充放電計画を事前に策定する。
 しかし、電動車両が、予め規定された走行ルートを走行する保証はない。たとえば、経路間違い、渋滞による電力消費、または立ち寄り地点でのバッテリの充放電などによって、事前に推定された帰着時のバッテリ残量で帰着しない場合もある。
 このような場合に対応するために、電動車両管理プローブが電動車両1台1台に搭載される。電動車両管理プローブは、電動車両の状態(以下「車両状態」という場合がある)を計測して、計測結果であるプローブ情報を通信によってEMSに送信する。このように、プローブ情報をスマートグリッドで活用することが検討され始めている(たとえば、特許文献2参照)。
特許第4713623号公報 特開2012-196028号公報
 電動車両管理プローブが車載専用品として電動車両に直接取り付けられる場合、電動車両管理プローブには、携帯電話機などの通信端末装置(以下、単に「通信端末」という場合がある)のライフサイクルおよび耐環境要求とは異なり、電動車両のライフサイクルおよび耐環境要求に併せて設計を行う必要が発生する。ここで、「ライフサイクル」とは、製品を設計する上で想定される寿命をいう。
 通信端末は、新しい通信規格への対応および通信端末自体の機能の向上が毎年行われるので、約2~3年の周期での置き換えを想定して、製品が設計されている。他方、電動車両は、日本国内の場合、ガソリンエンジンを駆動源として走行する自家用車両と同様に、約10年前後での置き換えを想定して、製品が設計されている。
 電動車両管理プローブを車載専用品として電動車両に直接取り付ける場合、電動車両管理プローブは、電動車両のライフサイクルと同様に、約10年前後のライフサイクルを想定して設計を行う必要がある。したがって、電動車両管理プローブには、通信端末に使用される部品よりも高寿命および高耐久の部品を使用することが必要となる。
 その結果、電動車両管理プローブ自体の価格が高価になってしまい、ユーザの初期投資に負担をかけるだけでなく、電動車両管理プローブに対応したEMSの普及をも阻害することになる。
 また、電動車両管理プローブに対して通信回線を提供する通信事業者は、近年、加入者および加入回線の増加に伴い、限られた少ない周波数帯域で、より多くの通信量を確保するために、効率の良い通信方式への置き換えを進めている。今後も短い周期で技術革新が進んでいくことが予想される。
 これに対し、電動車両管理プローブのライフサイクルは、前述のように電動車両と同じであり、通信端末と大きく異なるので、通信事業者が行う通信方式の置き換えを阻害するおそれがある。通信方式の置き換えができないと、通信事業者は、新旧両方の通信方式を長年にわたり併用せざるを得なくなる。
 その結果、以下の問題が発生する。通信事業者は、新方式の基地局装置を設置するための面積を新たに確保する必要がある。また、旧方式の基地局装置のメンテナンス費用が増加する。また、新旧両方の通信方式の基地局装置を同時に稼動させるので、電力使用量が増加する。
 また、電動車両を所有するユーザ、たとえば電動車両を運転するドライバーは、電動車両管理プローブとは別に、通信機能を有し、インターネットに接続可能な携帯電話機またはスマートフォンなどの通信端末を、運転中も含めて保有していることが多い。この場合、電動車両内には、通信機能を有する装置(以下「通信装置」という場合がある)として、電動車両管理プローブと、ユーザが保有する通信端末との少なくとも2つが存在することになる。
 電動車両管理プローブは、ユーザの運転中に主に動作する、すなわち通信する。逆に、通信端末は、電動車両の運転中は通信しない。したがって、ユーザは、同時に使用しない2つの通信装置に対して、それぞれの通信料を通信事業者へ支払うことになり、ユーザの金銭的な負担を大きくする原因となっている。
 また、一人のユーザが複数台の電動車両を所有する場合、電動車両管理プローブは、電動車両の台数分存在することになり、ユーザが通信事業者へ支払う通信料の金銭的な負担は、さらに大きなものとなる。
 本発明の目的は、電動車両のユーザの初期導入費用および通信費を抑えつつ、電動車両を含む電力網の管理を実現することができる電動車両管理システムを提供することである。
 本発明の電動車両管理システムは、走行に使用されるモータ、および前記モータに電力を供給するバッテリを有する電動車両と、前記バッテリの充放電計画を策定するバッテリ充放電計画策定部を有するエネルギーマネジメントシステムと、携帯可能な携帯端末装置であって、自装置の位置を表す端末位置情報を取得する位置取得部、および通信回線を用いて前記エネルギーマネジメントシステムと通信する端末側通信部を有する携帯端末装置と、前記バッテリの充放電計画に従って、前記バッテリの充電および放電の少なくとも一方を行う充放電装置とを備え、前記端末側通信部は、前記携帯端末装置が前記電動車両の内部に存在するとき、前記位置取得部によって取得される前記端末位置情報を含み、前記電動車両の状態を表す車両状態情報を、前記エネルギーマネジメントシステムに送信し、前記エネルギーマネジメントシステムは、前記端末側通信部から送信される前記車両状態情報を受信する車両状態受信部を有し、前記バッテリ充放電計画策定部は、前記車両状態受信部によって受信される前記車両状態情報を用いて、前記バッテリの充放電計画を策定することを特徴とする。
 本発明の電動車両管理システムによれば、携帯端末装置が電動車両の内部に存在するとき、位置取得部によって取得される端末位置情報を含む電動車両情報が、端末側通信部によって、エネルギーマネジメントシステムに送信される。車両状態情報に含まれる端末位置情報は、携帯端末装置が電動車両の内部に存在するときに位置取得部によって取得されるので、電動車両の位置を表す。この端末位置情報を含む車両状態情報が、エネルギーマネジメントシステムの車両状態受信部によって受信される。受信された車両状態情報を用いて、バッテリ充放電計画策定部によって、バッテリの充放電計画が策定される。策定されたバッテリの充放電計画に従って、電動車両のバッテリの充電および放電の少なくとも一方が行われる。このバッテリによってモータに電力が供給され、モータを使用して電動車両が走行する。
 このように、バッテリの充放電計画の策定に用いられる車両状態情報は、携帯端末装置の端末側通信部からエネルギーマネジメントシステムに送信される。また、車両状態情報に含まれ、電動車両の位置を表す端末位置情報は、携帯端末装置の位置取得部によって取得される。これによって、電動車両の位置を表す情報を取得し、それを含む車両状態情報を送信するために、専用の通信端末装置を各電動車両に設ける必要がない。したがって、電動車両のユーザの初期導入費用および通信費を抑えつつ、電動車両を含む電力網の管理を実現することができる。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の第1の実施の形態である電動車両管理システム10の概略的な構成を示すブロック図である。 本発明の第1の実施の形態の電動車両管理システム10における需要家1、EMS2、電動車両5および携帯端末6の構成を示すブロック図である。 本発明の第1の実施の形態の電動車両管理システム10における需要家1、EMS2、電動車両5および携帯端末6の構成を示すブロック図である。 需要家1の電力使用量の過去のデータの一例と予測結果の一例とを示す図である。 家電製品4毎の消費電力および発電電力の過去のデータの一例と予測結果の一例とを示す図である。 需要家1の電力使用量の予測結果の一例を示す図である。 電動車両5の利用計画情報S2の一例を示す図である。 需要家1の電力使用量の予測結果、電動車両5の利用計画およびバッテリ充放電計画の一例を並べて示す図である。 ユーザが電動車両5で外出している場合の需要家1の電力使用量の予測結果、電動車両5の利用計画およびバッテリ充放電計画の一例を並べて示す図である。 本発明の第2の実施の形態の電動車両管理システム10Aにおける需要家1、EMS2、電動車両5および携帯端末6の構成を示すブロック図である。 本発明の第2の実施の形態の電動車両管理システム10Aにおける需要家1、EMS2、電動車両5および携帯端末6の構成を示すブロック図である。 電動車両エネルギー消費推定部27におけるエネルギー消費推定値の算出処理の処理手順を示すフローチャートである。 電動車両エネルギー消費推定部27における電動車両の制駆動力の算出処理の処理手順を示すフローチャートである。 ユーザが電動車両5で外出している場合の需要家1の電力使用量の予測結果、電動車両5の利用計画、バッテリ残量の変化の推定結果、および変更前のバッテリ充放電計画の一例を示す図である。 ユーザが電動車両5で外出している場合の需要家1の電力使用量の予測結果、電動車両5の利用計画、バッテリ残量の変化の推定結果、および変更後のバッテリ充放電計画の一例を示す図である。 本発明の第3の実施の形態の電動車両管理システム10Bにおける需要家1、EMS2、電動車両5および携帯端末6の構成を示すブロック図である。 本発明の第3の実施の形態の電動車両管理システム10Bにおける需要家1、EMS2、電動車両5および携帯端末6の構成を示すブロック図である。 本発明の第4の実施の形態の電動車両管理システム10Cにおける需要家1、EMS2、電動車両5、携帯端末6およびサーバ装置9の構成を示すブロック図である。 本発明の第4の実施の形態の電動車両管理システム10Cにおける需要家1、EMS2、電動車両5、携帯端末6およびサーバ装置9の構成を示すブロック図である。 本発明の第5の実施の形態である電動車両管理システム10Dにおける需要家1、EMS2、電動車両5、携帯端末6およびサーバ装置9の構成を示すブロック図である。 本発明の第5の実施の形態である電動車両管理システム10Dにおける需要家1、EMS2、電動車両5、携帯端末6およびサーバ装置9の構成を示すブロック図である。
 <第1の実施の形態>
 図1は、本発明の第1の実施の形態である電動車両管理システム10の概略的な構成を示すブロック図である。電動車両管理システム10は、需要家1、エネルギーマネジメントシステム(EMS)2、充放電装置3、家電製品4、電動車両5、携帯端末装置6、基地局装置8およびサーバ装置9と、後述する図3に示す通信回線20とを含んで構成される。
 EMS2、充放電装置3および家電製品4は、需要家1に設置される。家電製品4は、たとえば、太陽光発電(略称:PV)装置4a、エアコンディショナ(以下「エアコン」という)4b、AV(Audio Visual)機器4cおよび冷蔵庫4dを含む。電動車両5は、モータ51およびバッテリ52を備える。基地局装置8は、通信事業者によって設置される。
 EMS2は、需要家1内の家電製品4、充放電装置3に接続される電動車両5、基地局装置8およびサーバ装置9とそれぞれ通信可能に接続される。EMS2は、家電製品4および電動車両5のバッテリ52を管理下におき、電力需要が平滑化されるように、家電製品4および電動車両5のバッテリ52を制御する。これによって、電力需給の平衡化を図るようにしている。
 需要家1に配備されるEMS2は、その制御対象によって呼び方が異なる。たとえば、制御対象が一般家庭である場合には、EMS2は、家庭用エネルギーマネジメントシステム(Home Energy Management System;略称:HEMS)と呼ばれる。制御対象がオフィスビルおよびデパートなどの建屋である場合には、EMS2は、ビルエネルギーマネジメントシステム(Building Energy Management System;略称:BEMS)と呼ばれる。制御対象が工場である場合には、EMS2は、工場エネルギーマネジメントシステム(Factory Energy Management System;略称:FEMS)と呼ばれる。
 充放電装置3は、EMS2によって制御される。充放電装置3は、不図示の充放電設備側コネクタ、電力線および制御信号線を介して、電動車両5に接続される。電動車両5の充放電に関する制御は、充放電装置3と電動車両5との間で命令および情報を交換することによって行われる。命令および情報の交換は、制御信号線を介して行われる。
 電動車両5の充放電に関する電力の授受は、充放電装置3とバッテリ52との間で、電力線を介して行われる。充放電装置3は、不図示の電力系統から電力の供給を受けるとともに、電力系統に電力を出力する、すなわち放電することが可能に構成される。電力系統は、商用電力網を含む。
 電動車両5は、たとえば、電気自動車(Electric Vehicle;略称:EV)またはプラグインハイブリッド自動車(Plug-in Hybrid Electric Vehicle;略称:PHEV)である。電動車両5がEVである場合、電動車両5は、モータ51を駆動源として走行する。電動車両5がPHEVである場合、電動車両5は、モータ51と、不図示のエンジンとの双方を駆動源として走行する。
 携帯端末装置(以下「携帯端末」という場合がある)6は、電動車両5のユーザ、たとえばドライバーが所有する。携帯端末6は、全地球測位システム(Global Positioning System;略称:GPS)衛星7から送信される電波信号を受信する。携帯端末6は、たとえば、GPS衛星7から受信した電波信号を用いて、携帯端末6の現在位置を計測する。
 携帯端末6が電動車両5の内部に存在するとき、たとえば携帯端末6を所有するユーザが電動車両5に乗車しているとき、携帯端末6の現在位置(以下、単に「位置」という場合がある)は、電動車両5の現在位置に相当する。したがって、携帯端末6の現在位置を計測することによって、電動車両5の現在位置を計測することができる。
 携帯端末6は、計測した携帯端末6の現在位置に基づいて、携帯端末6の現在位置を表す端末位置情報を生成する。端末位置情報は、電動車両5の位置を表す車両位置情報に相当する。
 また、携帯端末6は、基地局装置8を介して、EMS2と通信可能に接続される。携帯端末6は、EMS2との間で情報の送受信を行う。たとえば、携帯端末6は、電動車両5の現在位置を表す車両位置情報に相当する端末位置情報を、基地局装置8を介してEMS2に送信する。
 サーバ装置9は、たとえば、電動車両5の走行時のエネルギー消費の推定を行い、電動車両5によって消費されるエネルギーの推定値であるエネルギー消費推定値を算出する。サーバ装置9によって算出されたエネルギー消費推定値は、EMS2に送信される。
 図2および図3は、本発明の第1の実施の形態の電動車両管理システム10における需要家1、EMS2、電動車両5および携帯端末6の構成を示すブロック図である。図2と図3とは、境界線BL1の位置で、つながっている。電動車両管理システム10は、需要家1、EMS2、充放電装置3、家電製品4、電動車両5、携帯端末6および通信回線20と、前述の図1に示す基地局装置8およびサーバ装置9とを備えて構成される。図2および図3では、電動車両管理システム10内で取り扱われる情報を破線の枠で示している。図2および図3では、理解を容易にするために、本発明の需要家1、EMS2および電動車両5の説明に不可欠な機能のみを抽出して記載している。
 まず、電動車両5および携帯端末6について説明する。電動車両5は、モータ51、バッテリ52およびバッテリ管理装置53を備える。バッテリ52は、電動車両5の走行時に、モータ51に電力を供給する。バッテリ管理装置53は、バッテリ52に接続され、バッテリ52の状態を管理する。具体的には、バッテリ管理装置53は、バッテリ52から、バッテリ52に関する情報であるバッテリ情報を取得し、取得したバッテリ情報に基づいて、バッテリ52の状態を管理する。バッテリ情報は、たとえば、バッテリ52に残存する電力量(以下「バッテリ残量」という場合がある)に関するバッテリ残量情報S5を含む。
 本実施の形態では、バッテリ残量情報S5は、バッテリ52に残存する電力量の値を表す。バッテリ管理装置53は、バッテリ52に残存する電力量を測定し、測定した電力量の値を表すバッテリ残量情報S5を生成する。
 電動車両5が需要家1に駐車中である場合、電動車両5は、次回の走行に必要な電力を蓄えるために、または需要家1の電力需要の平滑化のために、充放電装置3に接続される。電動車両5が充放電装置3に接続されると、電動車両5のバッテリ52は、EMS2の管理下に置かれる。
 電動車両5が充放電装置3に接続されると、バッテリ管理装置53は、バッテリ52のバッテリ残量情報S5を充放電装置3に送信する。充放電装置3は、電動車両5から送信されたバッテリ52のバッテリ残量情報S5をEMS2に送信する。充放電装置3は、電動車両5から送信されたバッテリ52のバッテリ残量情報S5に基づいて、電動車両5のバッテリ52に対して、充電または放電を行う。
 充放電装置3と電動車両5との接続方法としては、たとえば、充放電装置3とバッテリ52とを、電動車両5の不図示の給電口を通じて直接接続し、電力の需供給と制御信号などの送受信とを行う方法がある。この場合、電動車両5のバッテリ52の電圧および電力の形式は、たとえば直流であり、需要家1が受電している電圧および電力の形式は、たとえば交流であるので、電圧および電力の形式の変換を行う変換器が必要になる。これら電圧および電力の変換器に関しては、充放電装置3の内部に設置してもよいし、電動車両5の内部に設置してもよい。
 また、充放電装置3と電動車両5との接続方法は、前述のように充放電装置3とバッテリ52とを直接接続する方法以外の方法、たとえば、非接触給電技術によって接続する方法であってもよい。非接触給電技術によって接続する方法でも、本実施の形態と同様に実施可能である。
 電動車両5が走行中である場合、電動車両5には、ユーザ、すなわち電動車両5のドライバーが所有する携帯端末6が存在するとする。このとき、携帯端末6は、電動車両5の内部に存在していればよく、電動車両5と接続して信号の送受信を行う必要はない。携帯端末6と電動車両5との接続は、禁止されるわけではなく、本実施の形態では必要としないだけであり、他の目的のために接続することは可能である。携帯端末6と電動車両5とを接続した場合でも、本実施の形態と同様に実施可能である。
 携帯端末6は、位置検出部61および端末側通信部62を備える。位置検出部61は、自装置である携帯端末6の位置を表す位置情報(以下「携帯端末6の位置情報」という場合がある)S7を取得する。携帯端末6の位置情報S7は、端末位置情報に相当し、位置検出部61は、位置取得部に相当する。
 本実施の形態では、位置検出部61は、GPSセンサを含んで構成される。位置検出部61は、図1に示すGPS衛星7から送信される電波信号を用いて、測定点の緯度、経度および高度を含む位置、ならびに位置の取得時間を演算で求める。位置検出部61は、演算で求めた測定点の緯度、経度および高度を含む位置を表す情報を、携帯端末6の位置情報S7として生成する。また、位置検出部61は、求めた測定点の緯度、経度、高度および取得時間から、さらに、自装置である携帯端末6の速度および方位を演算して求める。
 位置検出部61による位置の計測方法としては、GPS衛星7から送信される電波信号を用いる方法以外にも、携帯端末6が通信を行っている基地局装置8の位置情報を、携帯端末6の位置情報S7として用いる方法がある。この方法は、基地局装置8の通信範囲が十分に小さい場合には、有効な方法である。
 また、GPS衛星7から送信される電波信号が届かない場所では、位置検出部61は、別途、携帯端末6に備えられている加速度センサ、磁気センサおよび傾きセンサなどを利用して、携帯端末6の位置を計測し、携帯端末6の位置情報S7を取得する。
 端末側通信部62は、電動車両5の状態(以下「車両状態」という場合がある)を表す車両状態情報S4を、通信回線20を介して、EMS2に送信する。電動車両5の車両状態情報S4は、少なくとも、位置検出部61によって取得された携帯端末6の位置情報S7を含む。携帯端末6の位置情報S7は、携帯端末6が電動車両5の内部に存在するときに取得されるので、前述の車両位置情報に相当し、電動車両5の位置を表す。
 通信回線20は、たとえば、公衆無線回線またはインターネット回線である。通信回線20の種類については、これに限定されない。図2および図3では記載を省略するが、通信回線20には、前述の図1に示す基地局装置8が接続される。携帯端末6は、基地局装置8を介して、EMS2と通信する。
 電動車両5の車両状態情報S4は、携帯端末6の位置情報S7以外に、携帯端末6の加速度センサ、磁気センサおよび傾きセンサなどで検出された情報を含んでもよい。また電動車両5の車両状態情報S4は、前述の位置検出部61によって求められる測定点の位置の取得時間、携帯端末6の速度および方位などを表す情報を含んでもよい。
 携帯端末6が、携帯端末6の位置情報S7を含む電動車両5の車両状態情報S4をEMS2に送信する動作は、携帯端末6のハードウェアと、携帯端末6のハードウェア上で動作するソフトウェアとによって実行される。ソフトウェアは、たとえば、EMS2の製造メーカ、電動車両5の製造メーカなどによって提供される。また、携帯端末6のハードウェア自体は、通信事業者または携帯端末6の製造メーカによって、ユーザに販売される。
 ソフトウェアの不要な動作を防ぐために、携帯端末6には、ソフトウェアの動作の実行および停止を選択可能な選択手段が備えられる。これによって、ユーザは、電動車両5による走行時にのみソフトウェアを動作させることができる。したがって、電動車両5を用いない移動、たとえば、公共交通機関を用いた移動、徒歩、または自転車などによる移動を行った場合に、電動車両管理システム10が誤動作することを防ぐことが可能となる。
 また、ソフトウェアにグラフィカルユーザインタフェース(Graphical User Interface;略称:GUI)を設けて、ソフトウェアの動作は停止させずに、端末側通信部62の動作を実行および停止する手段をユーザに提供してもよい。
 携帯端末6を電動車両5の内部に設置する場合の具体的な場所については限定しないが、位置検出部61がGPSセンサを含んで構成される場合、GPS衛星7と位置検出部61との通信が阻害されない場所であることが必要である。また、携帯端末6は、通信事業者の基地局装置8とも通信を行う必要があるので、基地局装置8との通信も阻害されないように携帯端末6を設置する必要がある。
 言い換えれば、携帯端末6は、携帯端末6とGPS衛星7との通信、および携帯端末6と基地局装置8との通信の双方が阻害されない場所であれば、電動車両5のどの場所に設置されてもよい。また、携帯端末6は、電動車両5に固定する必要もない。電動車両5のユーザ自身が、電動車両5の運転中に携帯端末6を身に付けていてもよい。
 次に、需要家1に設置されるEMS2および充放電装置3について説明する。EMS2は、需要家1に設置され、需要家1内の家電製品4の電力の使用状況を計測する。また、EMS2は、需要家1内の家電製品4の電力の使用状況に基づいて、需要家1が不図示の商用電力網から購入する電力量(以下「買電電力量」という場合がある)が可能な限り少なくなるように、制御可能な範囲で個々の家電製品4の電力消費を制御する。
 EMS2の制御対象となる家電製品4としては、エアコン4b、AV機器4c、冷蔵庫4d、電気温水器および誘導加熱(Induction Heating;略称:IH)クッキングヒータなどの消費電力が比較的大きい電力負荷設備が挙げられる。消費電力が比較的大きい電力負荷設備は、動作時の消費電力が需要家1の総電力消費に占める要素が大きく、EMS2が行う需要家1の買電電力量の調整に大きく影響を及ぼすので、EMS2の制御対象にしている。
 EMS2の制御対象となる家電製品4には、PV装置4aなどのコジェネレーションシステムも含まれる。コジェネレーションシステムの場合、通常の家電製品とは異なり、消費電力の抑制制御ではなく、発電電力の抑制制御となる。発電電力の抑制制御について、以下に説明する。
 需要家1は、需要家1の発電電力量(以下、単に「発電量」という場合がある)が、需要家1の消費電力量を大幅に上回った場合、余剰の電力を、電力系統を構成する商用電力網を介して需要家1の近隣の他の需要家、たとえば隣家で消費できるように、商用電力網に対して電力を販売、すなわち売電するように構成されている。
 しかし、需要家1が接続する配電網で電力需要が少ない場合、配電網内の系統電圧の上昇および周波数の変動が引き起こされる。したがって、電力系統に売電するコジェネレーションシステムの場合、発電量の抑制が必要となる。
 太陽光発電の場合、前述のような構成は、太陽光パネルが発電した電気を、電力系統に適した電力に変換するパワーコンディショナの内部に備えられており、いわゆる逆潮流に関する系統連係の技術によって、機器単位で独立して動作するようになっている。
 EMS2が導入された需要家1では、コジェネレーションシステムの発電量が増加した場合、発電量を抑制するだけでなく、他の家電製品4の電力消費量を一時的に増加させることによって、需要家1から電力系統への逆潮流を減らし、需要家1の電力需給バランスを調整するように構成される。
 EMS2は、前述の機能に加えて、さらに、電動車両5のバッテリ52に対する充放電の管理も行う。電動車両5のバッテリ52に対する充放電の管理を実現するために、EMS2は、電力使用量予測部21、利用計画入力部22、EMS側パラメータ取得部23、車両状態受信部24、バッテリ充放電計画策定部25およびEMS側通信部26を備える。
 電力使用量予測部21は、使用前日に、使用当日の需要家1の時間毎の電力の使用量を予測した値(以下「電力使用量予測値」という場合がある)を、需要家1の電力使用量予測値を表す情報(以下「電力使用量予測情報」という場合がある)S1として算出する。
 図4は、需要家1の電力使用量の過去のデータの一例と予測結果の一例とを示す図である。図4(a)は、需要家1の電力使用量の過去のデータを示し、図4(b)は、需要家1の電力使用量の予測結果を示す。図4では、各家電製品4の消費電力および発電電力を全て含めた需要家1の総電力使用量の過去のデータと予測結果とを示している。
 図4(a)および図4(b)において、横軸に水平な1点鎖線よりも上側の縦軸は消費電力(kW)を示し、前記1点鎖線よりも下側の縦軸は発電電力(kW)を示す。また図4(a)および図4(b)において、横軸は時刻(時)を示す。電力使用量予測部21は、たとえば以下のようにして、需要家1の電力使用量予測情報S1を求める。
 たとえば、EMS2は、図4(a)に示すように、需要家1の過去の電力使用量のデータを複数日分記憶しておく。各データは、そのデータが取得された日の日付、曜日、天気および気温の情報を含む。以下の説明では、日付を「〇/△」のように記載し、曜日を、丸括弧で括って「(□)」のように記載する。また気温は、最低気温、最高気温の順に、「気温×℃/×℃」のように記載する。図4に示す例では、各データに含まれる日付および曜日は「〇/△(□)」であり、天気は「晴天」であり、気温は「気温×℃/×℃」である。
 電力使用量予測部21は、記憶されているデータから、予測される使用当日の天気および気温、ならびに祝祭日および季節を考慮して、それに最も近い過去の電力使用量のデータを抽出する。電力使用量予測部21は、抽出した電力使用量のデータを、図4(b)に示すように、使用当日の需要家1の電力使用量予測情報S1として用いる。
 また、電力使用量予測部21は、使用前日に1度だけ需要家1の電力使用量予測情報S1を算出する。電力使用量予測部21は、使用当日には、使用前日に算出した需要家1の電力使用量予測情報S1を使い続けるのではなく、使用当日においても予め定める期間毎に、電力の実使用量と使用前日の電力使用量予測値との偏差から、次の電力使用量予測値の補正を行う。
 図4では、過去の電力使用量として、個々の家電製品4の消費電力および発電電力ではなく、個々の家電製品4の消費電力および発電電力を全て含めた需要家1の総電力使用量を用いて、使用当日の需要家1の電力使用量予測情報S1を求める方法について説明したが、需要家1の電力使用量予測情報S1を求める方法は、この方法に限定されない。
 たとえば、需要家1の電力使用量予測情報S1の精度を向上させるために、EMS2は、後述する図5に示すように、各家電製品4の過去の消費電力および発電電力を記憶しておき、予測される使用当日の天気および気温、ならびに祝祭日および季節を考慮して、需要家1の電力使用量予測情報S1を求めてもよい。
 図5は、家電製品4毎の消費電力および発電電力の過去のデータの一例と予測結果の一例とを示す図である。図6は、需要家1の電力使用量の予測結果の一例を示す図である。
 図5(a)、図5(c)および図5(e)は、各家電製品4の過去の消費電力または発電電力のデータを示す。具体的には、図5(a)は、エアコン4bの過去の消費電力のデータを示し、図5(c)は、冷蔵庫4dの過去の消費電力のデータを示し、図5(e)は、PV装置4aの過去の発電電力のデータを示す。
 図5(b)、図5(d)および図5(f)は、各家電製品4の消費電力または発電電力の予測結果を示す。具体的には、図5(b)は、エアコン4bの消費電力の予測結果を示し、図5(d)は、冷蔵庫4dの消費電力の予測結果を示し、図5(f)は、PV装置4aの発電電力の予測結果を示す。
 図5(a)~図5(d)の縦軸は消費電力(kW)を示し、図5(e)および図5(f)の縦軸は発電電力(kW)を示す。図6において、横軸に水平な1点鎖線よりも上側は消費電力(kW)を示し、前記1点鎖線よりも下側は発電電力(kW)を示す。また図5(a)~(f)および図6において、横軸は時刻(時)を示す。
 EMS2は、たとえば以下のようにして、需要家1の電力使用量予測情報S1を求めてもよい。EMS2は、図5(a)、図5(c)および図5(e)に示すように、不図示の記憶部に各家電製品4の消費電力および発電電力のデータを複数日分記憶しておく。各データは、そのデータが取得された日の日付、曜日、天気および気温の情報を含む。図5に示す例では、各データに含まれる日付および曜日は「〇/△(□)」であり、天気は「晴天」であり、気温は「気温×℃/×℃」である。
 電力使用量予測部21は、記憶されている各家電製品4のデータから、予測される使用当日の天気および気温、ならびに祝祭日および季節を考慮して、それに最も近い過去のデータを、図5(b)、図5(d)および図5(f)に示すようにそれぞれ抽出する。電力使用量予測部21は、抽出した家電製品4の消費電力および発電電力を加減算して、需要家1全体の電力使用量の予測値を算出し、図6に示す需要家1の電力使用量予測情報S1として用いる。
 また、EMS2は、予測精度をさらに高めるために、複数の需要家1の過去の電力使用量のデータをサーバ装置9に保管しておき、電力使用量予測部21によって、比較的多くのデータサンプルから抽出条件に一致するものを取得し、需要家1の電力使用量予測情報S1として用いてもよい。
 利用計画入力部22には、電動車両5の利用計画情報S2が入力される。電動車両5の利用計画情報S2は、たとえば、使用日、出発時間、帰着時間および走行時間などの電動車両5の使用日時に関する情報、ならびに目的地、経由地、走行予定距離およびバッテリ52の電力消費量などの電動車両5の走行に関する情報の1つまたは複数を含む。電力消費量は、単位時間、たとえば1時間あたりの消費電力である。電動車両5の利用計画情報S2は、出発時間、帰着時間および走行時間に代えて、使用時間帯を含んでもよい。
 図7は、電動車両5の利用計画情報S2の一例を示す図である。図7に示す例では、電動車両5の利用計画情報S2は、使用日、使用時間帯、目的地、走行予定距離およびバッテリ52の電力消費量を含む。図7では、使用日を、○/○、△/△、…、×/×で示し、使用時間帯を、○:〇~〇:〇、△:△~△:△、…、×:×~×:×で示している。電動車両5の利用計画情報S2は、たとえば図7に示すように、電動車両5毎に付与される電動車両管理ナンバー(No.)を用いて、電動車両5毎に管理される。
 電動車両5の利用計画情報S2は、たとえば、利用計画入力部22を用いて、以下のようにして登録される。たとえば、ユーザが、所持している携帯端末6、需要家1内に設置されているパーソナルコンピュータ(略称:PC)、またはテレビジョン受像機(以下、単に「テレビ」という)などから、ネットワークを介して、EMS2の利用計画入力部22にアクセスし、数日から数か月の範囲で、使用予定を入力する。ユーザは、1度に複数回の使用予定を入力してもよい。またユーザは、同様にしてEMS2の利用計画入力部22にアクセスし、先に入力した使用予定を変更または削除する。
 また、前述のようなネットワークが利用できない場合は、EMS2自体に入力画面を備えて、電動車両5の利用計画情報S2を入力可能な利用計画入力部22を提供してもよい。
 また、利用計画入力部22による電動車両5の利用計画情報S2の全ての内容について、ユーザが入力してもよいが、一部の内容については利用計画入力部22において、ユーザの入力内容を補完または修正し、電動車両5の利用計画情報S2を出力するようにしてもよい。
 実際の運用では、ユーザが入力する内容は、たとえば、電動車両5の出発時間および帰着時間と、目的地および経由地のみとなる。走行時間および走行予定距離、ならびにバッテリ52の電力消費量については、利用計画入力部22がEMS2内部の地図情報、またはサーバ装置9の地図情報などにアクセスし、走行経路の検索結果に基づいて、不足した情報を補完する。
 電動車両5の利用計画情報S2は、EMS2に属する電動車両5毎に作成される。つまり、複数の電動車両5がEMS2で管理される場合、電動車両5の台数分、電動車両5の利用計画情報S2が作成される。作成された電動車両5の利用計画情報S2は、前述のように電動車両5毎に付与される電動車両管理ナンバー(No.)を用いて、電動車両5毎に管理される。
 EMS側パラメータ取得部23は、後述するバッテリ充放電計画策定部25におけるバッテリ52の充放電計画(以下「バッテリ充放電計画」という場合がある)の策定に必要な電動車両5の電動車両パラメータ情報S3を取得する。電動車両パラメータ情報S3は、後述するバッテリ充放電計画策定部25において、バッテリ充放電計画情報S6を演算するときに必要となる。電動車両パラメータ情報S3は、たとえば、電動車両5のバッテリ容量、充電および放電時の電力入出力に関する制限、走行距離および走行時間に対する電力消費量が含まれる。
 EMS側パラメータ取得部23による電動車両パラメータ情報S3の取得は、たとえば、以下のようにして行われる。たとえばユーザが、電動車両5の購入時に、所持している携帯端末6、需要家1内に設置されているPC、またはテレビなどから、ネットワークを介してEMS2のEMS側パラメータ取得部23にアクセスし、電動車両パラメータ情報S3を個別に設定してもよい。ユーザによって電動車両パラメータ情報S3が設定されることによって、EMS側パラメータ取得部23に電動車両パラメータ情報S3が取得される。
 また、EMS側パラメータ取得部23は、サーバ装置9から、電動車両5と一致するデータをダウンロードして取得するようにしてもよい。また、EMS側パラメータ取得部23は、電力の充放電のために電動車両5が充放電装置3に接続されたときに、電動車両5のバッテリ管理装置53からEMS側通信部26が取得した情報を電動車両パラメータ情報S3として登録してもよい。また、既に登録されている電動車両パラメータ情報S3に対して、充放電装置3の動作状況に基づいて、EMS2がデータをフィードバックして再登録、すなわち更新するようにしてもよい。
 車両状態受信部24は、通信事業者が提供する通信回線20と接続されている。車両状態受信部24は、通信回線20を経由して電動車両5内の携帯端末6から送信される電動車両5の車両状態情報S4を受信する。本実施の形態では、電動車両5の車両状態情報S4には、少なくとも携帯端末6の位置情報S7が含まれている。
 車両状態受信部24と通信事業者が提供する通信回線20との間の接続方法については限定しないが、たとえば、需要家1のその他の情報機器とインターネット回線などの通信回線を共用すればよい。
 電動車両5が充放電装置3に接続されている場合におけるバッテリ充放電計画策定部25の動作について説明する。図8は、需要家1の電力使用量の予測結果、電動車両5の利用計画およびバッテリ充放電計画の一例を並べて示す図である。図8(a)は、需要家1の電力使用量予測情報S1で表される需要家1の電力使用量の予測結果の一例を示す。図8(b)は、電動車両5の利用計画情報S2で表される電動車両5の利用計画の一例を示す。図8(c)は、バッテリ充放電計画情報S6で表されるバッテリ充放電計画の一例を示す。図8(c)では、電動車両5から需要家1に対して放電すべき時間帯、および電動車両5を充電すべき時間帯を併せて示す。
 図8(a)~図8(c)において、横軸は時刻(時)を示す。図8(a)において、横軸に水平な1点鎖線よりも上側の縦軸は消費電力(kW)を示し、前記1点鎖線よりも下側の縦軸は発電電力(kW)を示す。図8(c)において、横軸に水平な1点鎖線よりも上側の縦軸は充電電力を示し、前記1点鎖線よりも下側の縦軸は放電電力を示す。
 バッテリ充放電計画策定部25は、「需要家1の電力需要の平滑化」と「電動車両5の走行に必要な電力確保」の2つの目的を満たすバッテリ充放電計画情報S6を作成する。
 「需要家1の電力需要の平滑化」を目的とした計画策定では、バッテリ充放電計画策定部25は、図8(a)に示すように、需要家1の電力使用量予測情報S1から、需要家1の消費電力が増加する時間帯および発電電力が増加する時間帯を抽出する。図8(a)に示す例では、需要家1の消費電力が増加する時間帯は、3時~8時および16時~24時である。需要家1の発電電力が増加する時間帯は、9時~15時である。
 バッテリ充放電計画策定部25は、抽出した時間帯と、図8(b)に示す電動車両5の利用計画情報S2において電動車両5が充放電装置3に接続されている時間帯とに基づいて、図8(c)に示すように、電動車両5から需要家1に対して放電すべき時間帯、および電動車両5を充電すべき時間帯を抽出する。
 図8(b)に示す例では、電動車両5が充放電装置3に接続されている時間帯は、0時~6時、8時~16時および18時~24時である。図8(c)に示す例では、電動車両5から需要家1に対して放電すべき時間帯は、3時~6時および18時~24時である。電動車両5を充電すべき時間帯は、9時~15時である。
 バッテリ充放電計画策定部25は、最終的に、図8(c)に示すように、電動車両5から需要家1に対して放電すべき時間帯、および電動車両5を充電すべき時間帯に基づいて、充電電力および放電電力を規定したバッテリ充放電計画情報S6を求める。
 このとき、求められるバッテリ充放電計画情報S6の充電電力および放電電力は、需要家1の電力使用量予測情報S1から算出される「需要家1が減らしたい消費電力および減らしたい発電電力」に対し、電動車両パラメータ情報S3に含まれるバッテリ52の能力、バッテリ残量情報S5、および充放電装置3に備えられる電力変換器の変換能力で制限された値となる。バッテリ52の能力は、バッテリ52の総容量、使用可能な容量範囲、および電流制限で規定される。
 「電動車両5の走行に必要な電力確保」を目的とした計画策定では、バッテリ充放電計画策定部25は、電動車両5の利用計画情報S2における電動車両5が出発する時刻と、走行によって消費される電力量とから、電動車両5が出発する時刻までに、走行に必要な電力量がバッテリ52に確保されるように、「需要家1の電力需要の平滑化」を目的として計画策定したバッテリ充放電計画情報S6を修正する。
 バッテリ充放電計画情報S6の修正では、始めに計画策定した「需要家1の電力需要の平滑化」に対する充放電量の変更のみで、電動車両5が出発する時刻までに、走行に必要な電力量をバッテリ52に確保することができない場合は、バッテリ充放電計画策定部25は、新たに充電のスケジュールを作成し、バッテリ充放電計画情報S6に予定を追加する。
 「需要家1の電力需要の平滑化」を目的とした計画策定と、「電動車両5の走行に必要な電力確保」を目的とした計画策定とでは、電動車両5のユーザに不便さを感じさせないように、「電動車両5の走行に必要な電力確保」を目的とした計画策定が優先される。ただし、EMS2は、必ずしも「電動車両5の走行に必要な電力確保」を優先するように固定されるのではなく、どちらを優先するかを、ユーザが選択可能に構成される。また、本実施の形態の説明では、「需要家1の電力需要の平滑化」を目的とした計画策定に対し、「電動車両5の走行に必要な電力確保」を目的とした計画策定を修正するようにしたが、互いに調整を行うような構成でもよい。
 次に、ユーザが電動車両5で外出している場合におけるバッテリ充放電計画策定部25の動作について説明する。図9は、ユーザが電動車両5で外出している場合の需要家1の電力使用量の予測結果、電動車両5の利用計画およびバッテリ充放電計画の一例を並べて示す図である。
 図9(a)は、需要家1の電力使用量予測情報S1で表される需要家1の電力使用量の予測結果の一例を示す。図9(b)は、当初の電動車両5の利用計画情報S2で表される電動車両5の利用計画の一例を示す。図9(c)は、最新の電動車両5の利用計画情報S2で表される電動車両5の利用計画の一例を示す。図9(d)は、最新のバッテリ充放電計画情報S6で表されるバッテリ充放電計画の一例を示す。図9(d)では、電動車両5から需要家1に対して放電すべき時間帯、および電動車両5を充電すべき時間帯を併せて示す。図9(a)は図8(a)に相当し、図9(b)は図8(b)に相当する。
 図9(a)~図9(d)において、横軸は時刻(時)を示す。図9(a)において、横軸に水平な1点鎖線よりも上側の縦軸は消費電力(kW)を示し、前記1点鎖線よりも下側の縦軸は発電電力(kW)を示す。図9(d)において、横軸に水平な1点鎖線よりも上側の縦軸は充電電力を示し、前記1点鎖線よりも下側の縦軸は放電電力を示す。
 バッテリ充放電計画策定部25では、電動車両5の出発前に「需要家1の電力需要の平滑化」と「電動車両5の走行に必要な電力確保」との2つの目的を満たすように、バッテリ充放電計画情報S6が既に作成されているものとする。
 電動車両5で外出している場合、ユーザが、携帯端末6にインストールされたソフトウェアを動作させているので、車両状態受信部24は、ユーザの携帯端末6から、携帯端末6の位置情報S7が含まれた電動車両5の車両状態情報S4を受信する。バッテリ充放電計画策定部25は、車両状態受信部24によって受信した携帯端末6の位置情報S7に基づいて、当初予定された電動車両5の利用計画情報S2に変更が生じたことを検出する。たとえば、図9(c)に示す最新の電動車両5の利用計画では、図9(b)に示す当初の電動車両5の利用計画に対し、電動車両5の帰着が遅れていることを示している。
 電動車両5の帰着がどのくらい遅れるのかは、携帯端末6の位置情報S7と需要家1の位置情報との偏差、および前記偏差の減少割合から推定することができる。すなわち、電動車両5の帰着時間は、携帯端末6の位置情報S7と需要家1の位置情報との偏差、および前記偏差の減少割合から推定することができる。
 バッテリ充放電計画策定部25は、変更された電動車両5の利用計画情報S2を用いて、再度、バッテリ充放電計画情報S6で表されるバッテリの充放電計画(以下「バッテリ充放電計画」という場合がある)の策定を行う。このとき、バッテリ充放電計画策定部25は、帰着が遅れることに対応して、放電開始予定時刻を、たとえば1時間遅らせる。この結果、図9(d)に示すように、2点鎖線の曲線で示される当初のバッテリ充放電計画が、実線の曲線のように修正される。
 これによって、電動車両5から需要家1に対して放電すべき時間帯は、前述の図8(c)に示す18時~24時の時間帯が1時間短縮され、3時~6時および19時~24時となる。電動車両5を充電すべき時間帯は、図8(c)に示す場合と同様、9時~15時となる。
 このように変更された電動車両5の利用計画情報S2を用いて、再度、バッテリ充放電計画情報S6で表されるバッテリ充放電計画を策定することによって、電動車両5の利用状況に即するようにバッテリ充放電計画を修正することができる。これによって、電力需要の平滑化および電力需給の平衡化をより適切に行うことができる。
 本実施の形態では、当初の電動車両5の利用計画に対して、電動車両5の帰着が遅れる場合について説明したが、これに限定されない。たとえば当初の電動車両5の利用計画に対して、電動車両5の帰着が早まる場合であっても、本実施の形態と同様にしてバッテリ充放電計画情報S6を再度作成することによって、同様の効果を得ることができる。このときのバッテリ充放電計画情報S6の作成方法は、電動車両5が充放電装置3に接続されている場合の方法と同様であるので、説明を省略する。
 また本実施の形態では、前述のように、単純に携帯端末6の位置情報S7と需要家1の位置情報との偏差、および前記偏差の減少割合、つまり電動車両5と需要家1との直線的な位置関係で帰着時間の推定を行っている。これに限定されず、たとえば電動車両5と需要家1の直線的な位置関係ではなく、走行経路情報を反映させ、残りの走行距離と残りの走行距離の減少割合とを用いて、到着時刻の推定を行ってもよい。その場合、道路交通情報通信システム(Vehicle Information and Communication System;略称:VICS(登録商標))などの情報から、渋滞状況などを考慮すると、さらに正確な帰着時間を得ることができる。
 電動車両5が充放電装置3に接続されているにも拘わらず、車両状態受信部24によって、ユーザの携帯端末6から送信される電動車両5の車両状態情報S4が受信される場合がある。この場合は、ユーザが、電動車両5を需要家1に残したまま、別の移動手段で外出し、携帯端末6にインストールされたソフトウェアを誤って動作させたままにしている可能性が高い。この場合、バッテリ充放電計画策定部25は、電動車両5が前述の充放電装置3に接続されている場合の動作を行う。
 また、電動車両5で外出しているときに、車両状態受信部24によって、ユーザの携帯端末6から送信される電動車両5の車両状態情報S4が受信されない場合、またはユーザの携帯端末6から送信される電動車両5の車両状態情報S4は受信されるが、位置情報が更新されない場合がある。これらの場合は、ユーザが、電動車両5で外出したものの、携帯端末6にインストールされたソフトウェアの動作を開始することを忘れたか、または携帯端末6を需要家1に置き忘れている可能性が高い。これらの場合、バッテリ充放電計画策定部25は、電動車両5の外出前に策定した計画を保持する。いずれの場合においても、EMS2のバッテリ充放電策定部25は、旧来のバッテリ充放電計画情報6に基づいた動作に戻る。
 EMS側通信部26は、需要家1に設置される充放電装置3と通信を行う。EMS側通信部26は、電動車両5が充放電装置3に接続されると、電動車両5のバッテリ管理装置53から、バッテリ残量情報S5を取得する。また、EMS側通信部26は、バッテリ充放電計画策定部25で計画されたバッテリ充放電計画情報S6に基づいて、充放電に関する指令を充放電装置3に送信し、電動車両5のバッテリ52に対して電力需給を行う。EMS側通信部26は、バッテリ52の充放電時は、バッテリ状態を監視するために、バッテリ管理装置53から、バッテリ残量情報S5を連続して受信する。
 このように、バッテリ充放電計画の策定に用いられる電動車両5の車両状態情報S4は、携帯端末6の端末側通信部62からEMS2に送信される。また、電動車両5の車両状態情報S4に含まれ、電動車両5の位置を表す携帯端末6の位置情報S7は、携帯端末6の位置取得部61によって取得される。これによって、電動車両5の位置を表す携帯端末6の位置情報S7を取得し、それを含む電動車両5の車両状態情報S4を送信するために、専用の通信端末装置を各電動車両5に設ける必要がない。したがって、電動車両5のユーザの初期導入費用および通信費を抑えつつ、電動車両5を含む電力網の管理を実現することができる。
 具体的に述べると、本実施の形態の電動車両管理システム10は、車載専用品である電動車両管理プローブの代わりに、位置検出部61を備える携帯端末6を用いて、電動車両5の位置情報に相当する携帯端末6の位置情報S7をEMS2に送信する。これによって、EMS2のバッテリ充放電計画策定部25は、電動車両5のバッテリ充放電計画情報S6で表されるバッテリ充放電計画の策定および修正を従来通り実現することができる。また、電動車両5のユーザの初期導入費用を抑え、電動車両5の運行に連係するEMS2の普及を促進することができる。
 本実施の形態では、電動車両5および充放電装置3は、バッテリ52の電力を需要家1の電力需要の平滑化のために放電することが可能であることを前提に説明したが、必ずしも電動車両5および充放電装置3が放電に対応する必要はない。たとえば、次回の走行に必要な電力を蓄えるための充電にのみ対応できる場合であってもよい。
 この場合であっても、本実施の形態では、電動車両5の車両状態情報S4を用いて、バッテリ充放電計画情報S6で表されるバッテリ充放電計画の策定および修正をすることが可能である。この場合、本実施の形態で説明したバッテリ充放電計画策定部25は、「需要家1の電力需要の平滑化」と「電動車両5の走行に必要な電力確保」との2つの目的のうち、後者の「電動車両5の走行に必要な電力確保」について、重点的に制御を行うことになる。
 <第2の実施の形態>
 図10および図11は、本発明の第2の実施の形態の電動車両管理システムにおける需要家1、EMS2、電動車両5および携帯端末6の構成を示すブロック図である。図10と図11とは、境界線BL2の位置で、つながっている。本実施の形態の電動車両管理システムは、前述の第1の実施の形態の電動車両管理システム10と構成が類似しているので、同一の構成については同一の参照符号を付して、共通する説明を省略する。以下の説明では、本実施の形態の電動車両管理システムを、参照符号「10A」を付して示す。
 本実施の形態の電動車両管理システム10Aは、需要家1、EMS2、充放電装置3、家電製品4、電動車両5、携帯端末6および通信回線20と、前述の図1に示す基地局装置8およびサーバ装置9とを備えて構成される。
 本実施の形態では、EMS2は、電動車両エネルギー消費推定部27を備える。すなわち、EMS2は、電力使用量予測部21、利用計画入力部22、EMS側パラメータ取得部23、車両状態受信部24、バッテリ充放電計画策定部25、EMS側通信部26および電動車両エネルギー消費推定部27を備える。電動車両エネルギー消費推定部27は、電動車両パラメータ情報S3および電動車両5の車両状態情報S4から、電動車両5の走行によるエネルギー消費量の推定を行う。具体的には、電動車両エネルギー消費推定部27は、エネルギー消費推定値情報S8で表されるエネルギー消費推定値を演算する。
 図12は、電動車両エネルギー消費推定部27におけるエネルギー消費推定値の算出処理の処理手順を示すフローチャートである。図12に示すフローチャートの各処理は、電動車両エネルギー消費推定部27によって実行される。図12に示すフローチャートの処理は、電動車両エネルギー消費推定部27が、EMS側パラメータ取得部23から電動車両パラメータ情報S3が与えられ、車両状態受信部24から電動車両5の車両状態情報S4が与えられると開始され、ステップa1に移行する。
 ステップa1において、電動車両エネルギー消費推定部27は、電動車両5の車両状態情報S4に含まれる携帯端末6の位置情報S7に基づいて、電動車両の加速度の計算を行う。位置検出部61で取得した携帯端末6の位置情報S7には、測定点の緯度、経度、高度、取得時間、速度および方位が含まれる。電動車両の加速度Accは、最新のGPSの取得時間および速度の情報と、一周期前に測定したGPSの取得時間および速度の情報とから、以下に示す式(1)によって求めることができる。GPSを用いた位置測定方法では、GPS衛星7から送信される電波信号が届かない場所などでは、データの取得間隔が広がるので、別途、携帯端末に備えられる加速度センサを利用して、電動車両5の加速度Accのデータを補完してもよい。
Figure JPOXMLDOC01-appb-M000001
 ステップa2において、電動車両エネルギー消費推定部27は、加速度Accと同様に、電動車両5の車両状態情報S4に含まれる携帯端末6の位置情報S7に基づいて、電動車両5の走行勾配の計算を行う。電動車両5の走行勾配θは、携帯端末6の位置情報S7に含まれる最新のGPSの取得時間および高度の情報と、一周期前に測定したGPSの取得時間および高度の情報とから、以下に示す式(2)によって求めることができる。
 電動車両の加速度Accの計算と同様に、GPSを用いた位置測定方法では、GPS衛星7から送信される電波信号が届かない場所などでは、データの取得間隔が広がるので、別途、携帯端末に備えられる傾きセンサを利用して、電動車両5の走行勾配θのデータを補完してもよい。
Figure JPOXMLDOC01-appb-M000002
 ステップa3において、電動車両エネルギー消費推定部27は、ステップa1で得られる電動車両の加速度Acc、ステップa2で得られる電動車両の走行勾配θ、および携帯端末6の位置情報S7に含まれる電動車両5の速度Velに基づいて、電動車両の制駆動力の計算を行う。電動車両の制駆動力の計算については、図13に示すフローチャートを用いて説明する。
 図13は、電動車両エネルギー消費推定部27における電動車両の制駆動力の算出処理の処理手順を示すフローチャートである。図13に示すフローチャートの各処理は、電動車両エネルギー消費推定部27によって実行される。図13に示すフローチャートの処理は、図12に示すフローチャートのステップa2の処理が終了すると開始され、ステップb1に移行する。
 ステップb1において、電動車両エネルギー消費推定部27は、電動車両5の登坂抵抗Rsの計算を行う。登坂抵抗Rsは、電動車両5が斜面を登坂するときに発生する斜面方向分力である。登坂抵抗Rsは、電動車両5の車重m、重力加速度g、および電動車両5の走行勾配θから、以下に示す式(3)によって求めることができる。
Figure JPOXMLDOC01-appb-M000003
 ステップb2において、電動車両エネルギー消費推定部27は、転がり抵抗Rrの計算を行う。転がり抵抗Rrは、基本的にタイヤと路面との間で発生する抵抗力であり、タイヤの材質、構造、寸法に固有の値である。転がり抵抗Rrは、電動車両5の車重m、重力加速度g、および電動車両5に固有の係数μrから、以下に示す式(4)によって求めることができる。転がり抵抗Rrは、タイヤが回転している場合のみに発生する抵抗力であるので、速度Velが0km/hの場合は発生しない。すなわち、速度Velが0km/hの場合は、転がり抵抗Rrはゼロ(Rr=0)となる。
Figure JPOXMLDOC01-appb-M000004
 ステップb3において、電動車両エネルギー消費推定部27は、空気抵抗Rlの計算を行う。空気抵抗Rlは、車体と空気との摩擦力、および車体の前面が空気と衝突する力など、空気によるエネルギー損失である。空気抵抗Rlは、車体の前面投影面積Aと、空気抵抗係数μaと、速度Velの2乗とに比例する値であり、以下に示す式(5)によって求めることができる。
Figure JPOXMLDOC01-appb-M000005
 ステップb4において、電動車両エネルギー消費推定部27は、加速抵抗Raの計算を行う。加速抵抗Raは、電動車両5が加速および減速する場合に発生する慣性力である。加速抵抗Raは、電動車両の車重mと、電動車両5の加速度Accとに比例する値であり、以下に示す式(6)によって求めることができる。
 ステップb5において、電動車両エネルギー消費推定部27は、電動車両の制駆動力の計算を行う。ステップb1で求めた登坂抵抗Rs、ステップb2で求めた転がり抵抗Rr、ステップb3で求めた空気抵抗Rl、およびステップb4で求めた加速抵抗Raは、電動車両5の前後方向の運動に発生する抵抗力であり、電動車両5の制駆動力Ftracと等しくなる。したがって、電動車両の制駆動力Ftracは、以下に示す式(7)によって求めることができる。
Figure JPOXMLDOC01-appb-M000007
 以上の式(3)~(7)において使用する係数のうち、電動車両5の車重m、タイヤ係数μr、車体の前面投影面積A、および空気抵抗係数μaは、電動車両5の車両諸元が決まれば一意に決定する値である。これらについては、EMS側パラメータ取得部23によって取得され、電動車両パラメータ情報S3として保存される。また重力加速度gは、固定値であり、電動車両パラメータ情報S3として保存されて計算に用いられる。
 図12のステップa3における電動車両の制駆動力の計算、すなわち図13のステップb1~ステップb5における計算に用いた前記の式(3)~(7)は、車両の前後方向の運動を求めるときに用いられる公式であり、以下の参考文献に記載されている。
 参考文献:「自動車工学-基礎-」、初版、社団法人自動車技術会、2002年12月31日、第2章 2.2節
 図12に戻って、ステップa4において、電動車両エネルギー消費推定部27は、モータのトルクおよび回転数の計算を行う。具体的には、電動車両エネルギー消費推定部27は、モータ51の出力トルクTmtrおよびモータ回転速度Nmtrを求める。前述の電動車両の制駆動力Ftracは、電動車両5の駆動輪(タイヤ)と路面との接地面で発生する力である。電動車両の制駆動力Ftracをモータの出力トルクに変換するには、タイヤの半径rを用いて駆動軸トルクTtracに変換し、さらに駆動軸とモータとの間のギア比Gを除算する。すなわち、モータ51の出力トルクTmtrは、以下に示す式(8)によって求めることができる。
Figure JPOXMLDOC01-appb-M000008
 また、モータ51の回転速度を求めるためには、車速Velから車輪速Wを求め、駆動軸とモータとの間のギア比Gを積算する。すなわち、モータ51の回転速度Nmtrは、以下に示す式(9)によって求めることができる。
Figure JPOXMLDOC01-appb-M000009
 ただし、前記の式(8)および式(9)は、駆動軸とモータとの間にギアが存在する場合であり、モータ51を直接タイヤに接続するような場合は、ギア比Gは「1」となる。また、ギア比Gは、制御によって可変となる構成も考えられ、その場合は、制御によって、演算に使用するギア比Gの値を変更する必要がある。タイヤの半径rおよびギア比Gは、電動車両5の仕様によって一意に決定する値であり、EMS側パラメータ取得部23によって取得され、電動車両パラメータ情報S3として保存されて、演算に用いられる。
 ステップa5において、電動車両エネルギー消費推定部27は、バッテリ52の入出力エネルギーの計算を行う。具体的には、電動車両エネルギー消費推定部27は、バッテリ52に入出力されるエネルギーEを求める。エネルギーEは、以下に示す式(10)によって求めることができる。
Figure JPOXMLDOC01-appb-M000010
 前記の式(10)のηmtrは、モータ51の効率を表し、ηinvはモータ51とバッテリ52との間に接続されるインバータの効率を表す。モータ51の効率ηmtrおよびインバータの効率ηinvは、ともにモータ出力トルクTmtr、モータ回転速度Nmtrおよびエネルギーの入出力の方向によって影響される変数である。モータ51の効率ηmtrおよびインバータの効率ηinvは、電動車両5の仕様によって一意に決定する値であり、EMS側パラメータ取得部23によって取得され、電動車両パラメータ情報S3として保存されて、演算に用いられる。
 ステップa6において、電動車両エネルギー消費推定部27は、エネルギー消費推定値の計算を行う。具体的には、電動車両エネルギー消費推定部27は、電動車両5が走行によって消費したエネルギー消費推定値を表すエネルギー消費推定値情報S8を求める。エネルギー消費推定値は、前記の式(10)で、計測開始から現在まで求めたエネルギーEの総和であり、以下に示す式(11)によって求めることができる。
Figure JPOXMLDOC01-appb-M000011
 以上のようにして、電動車両エネルギー消費推定部27は、電動車両5の車両状態情報S4および電動車両パラメータ情報S3から、エネルギー消費推定値情報S8を求める。
 本実施の形態の電動車両エネルギー消費推定部27では、バッテリ52の消費電力に占める割合が大きい電動車両5の前後方向の運動、つまり直接走行で消費するエネルギー消費量のみを演算し、エネルギー消費推定値情報S8で表されるエネルギー消費推定値としているが、電動車両5のエネルギー消費推定値の推定精度を向上させるために、走行とは関係しない補機類による消費電力を加味してもよい。
 たとえば、電動車両5に付随するエアコンおよびAV機器などの消費電力の場合、基本的に一定した消費電力と考えることができるので、運転時間に比例した消費電力量をエネルギー消費推定値に加算するとよい。また、電動車両5のワイパー、ライト類の消費電力は、雨天または夜間といった環境に影響される消費電力と考えることができるので、環境条件を加味した上で、運転時間に比例した消費電力量をエネルギー消費推定値に加算するとよい。
 本実施の形態のバッテリ充放電計画策定部25は、前述の第1の実施の形態で行った「需要家1の電力需要の平滑化」と、「電動車両5の走行に必要な電力確保」との2つの目的を満たすバッテリ充放電計画情報S6の作成において、さらにエネルギー消費推定値情報S8を用いて計画を行う。エネルギー消費推定値情報S8を反映したバッテリ充放電計画策定部25の動作について、以下に説明する。
 図14は、ユーザが電動車両5で外出している場合の需要家1の電力使用量の予測結果、電動車両5の利用計画、バッテリ残量の変化の推定結果、および変更前のバッテリ充放電計画の一例を示す図である。
 図14(a)は、需要家1の電力使用量予測情報S1で表される需要家1の電力使用量の予測結果の一例を示す。図14(b)は、電動車両5の利用計画情報S2で表される電動車両5の利用計画の一例を示す。図14(c)は、バッテリ残量の変化の推定結果の一例を示す。図14(d)は、変更前のバッテリ充放電計画情報S6で表されるバッテリ充放電計画の一例を示す。図14(d)では、電動車両5から需要家1に対して放電すべき時間帯、および電動車両5を充電すべき時間帯を併せて示す。図14(a)は図8(a)に相当し、図14(b)は図8(b)に相当し、図14(d)は図8(c)に相当する。
 図14(a)~図14(d)において、横軸は時刻(時)を示す。図14(a)において、横軸に水平な1点鎖線よりも上側の縦軸は消費電力(kW)を示し、前記1点鎖線よりも下側の縦軸は発電電力(kW)を示す。図14(c)において、縦軸は、バッテリ残量である電池残量(%)を示す。図14(d)において、横軸に水平な1点鎖線よりも上側の縦軸は充電電力を示し、前記1点鎖線よりも下側の縦軸は放電電力を示す。
 図14では、電動車両5で外出している場合のバッテリ充放電計画策定部25の動作について示している。バッテリ充放電計画策定部25では、第1の実施の形態と同様に、電動車両5の出発前に「需要家1の電力需要の平滑化」と「電動車両5の走行に必要な電力確保」との2つの目的を満たすバッテリ充放電計画情報S6が既に作成されているとする。
 本実施の形態においても、第1の実施の形態と同様に、電動車両5で外出している場合、ユーザが、携帯端末6にインストールされたソフトウェアを動作させているので、車両状態受信部24は、ユーザの携帯端末6から、携帯端末6の位置情報S7が含まれた電動車両5の車両状態情報S4を受信する。EMS2は、電動車両エネルギー消費推定部27において、電動車両5の車両状態情報S4に含まれる携帯端末6の位置情報S7から、現在外出中の電動車両5が消費していると推定される電力量を、エネルギー消費推定値情報S8で表されるエネルギー消費推定値として算出する。
 電動車両5が充放電装置3に接続されている場合のバッテリ充放電計画策定部25の動作について説明する。本実施の形態におけるバッテリ充放電計画策定部25は、第1の実施の形態と同様に、「需要家1の電力需要の平滑化」と「電動車両5の走行に必要な電力確保」との2つの目的を満たすバッテリ充放電計画情報S6を作成する。
 「需要家1の電力需要の平滑化」を目的とした計画策定において、本実施の形態におけるバッテリ充放電計画策定部25は、第1の実施の形態と同様に、需要家1の電力使用量予測情報S1から、需要家1の消費電力が増大する時間帯および発電電力が増加する時間帯を抽出する。バッテリ充放電計画策定部25は、抽出した時間帯と、電動車両5の利用計画情報S2において電動車両5がEMS2に接続されている時間帯とに基づいて、電動車両5から需要家1に対して放電すべき時間帯および充電すべき時間帯を抽出する。
 本実施の形態におけるバッテリ充放電計画策定部25は、第1の実施の形態におけるバッテリ充放電計画策定部25によって実行される処理と同様の処理以外に、1日のバッテリ残量の変化を予測する処理を行う。具体的には、バッテリ充放電計画策定部25は、充放電装置3から得られる電動車両5のバッテリ残量情報S5と、電動車両5の利用計画情報S2に含まれる電力消費量とに基づいて、帰着後も含めた1日のバッテリ残量の変化を予測する。
 図14に示す例では、図14(b)に示すように、電動車両5が充放電装置3に接続されていない時間帯、すなわちユーザが電動車両5で外出している時間帯は、6時~8時の第1の外出時間帯T1と、16時~18時の第2の外出時間帯T2である。バッテリ充放電計画策定部25は、電動車両5の利用計画情報S2から、第1の外出時間帯T1および第2の外出時間帯T2の終点、すなわち帰着時の電動車両5のバッテリ52の残量であるバッテリ残量を推定する。
 その後、バッテリ充放電計画策定部25は、先に抽出した、電動車両5から需要家1に対して放電すべき時間帯および充電すべき時間帯から、バッテリ充放電計画情報S6を求める。バッテリ充放電計画情報S6は、充電電力および放電電力の値を含む。
 このとき求められるバッテリ充放電計画情報S6に含まれる充電電力および放電電力の値は、第1の実施の形態と同様に、需要家1の電力使用量予測情報S1から算出される「需要家1が減らしたい消費電力および発電電力」の値が、電動車両パラメータ情報S3で制限された値となる。具体的には、電動車両パラメータ情報S3に含まれるバッテリ52の能力、バッテリ残量情報S5、および充放電装置3に備えられる電力変換器の変換能力で制限された値となる。ここで、バッテリ52の能力は、バッテリ52の総容量、使用可能な容量範囲、および電流制限で表される。
 「電動車両5の走行に必要な電力確保」を目的とした計画策定においても、第1の実施の形態と同様に、バッテリ充放電計画策定部25は、バッテリ充放電計画情報S6を修正する。具体的には、バッテリ充放電計画策定部25は、電動車両5の利用計画情報S2における電動車両5が出発する時間と、走行によって消費される電力量とから、電動車両5が出発する時間までに、走行に必要な電力量がバッテリ52に確保されるように、「需要家1の電力需要の平滑化」を目的として計画策定したバッテリ充放電計画情報S6を修正する。
 バッテリ充放電計画情報S6の修正では、始めに計画策定した「需要家1の電力需要の平滑化」に対する充放電量の変更のみで、電動車両5が出発する時間までに、走行に必要な電力量をバッテリ52に確保することができない場合には、新たに充電のスケジュールを作成し、バッテリ充放電計画情報S6に予定を追加する。
 次に、電動車両5で外出している場合のバッテリ充放電計画策定部25の動作について説明する。図15は、ユーザが電動車両5で外出している場合の需要家1の電力使用量の予測結果、電動車両5の利用計画、バッテリ残量の変化の推定結果、および変更後のバッテリ充放電計画の一例を示す図である。
 図15(a)は、需要家1の電力使用量予測情報S1で表される需要家1の電力使用量の予測結果の一例を示す。図15(b)は、電動車両5の利用計画情報S2で表される電動車両5の利用計画の一例を示す。図15(c)は、バッテリ残量の変化の推定結果を示す。図15(d)は、変更後のバッテリ充放電計画情報S6で表されるバッテリ充放電計画の一例を示す。図15(d)では、電動車両5から需要家1に対して放電すべき時間帯、および電動車両5を充電すべき時間帯を併せて示す。図15(a)は図8(a)に相当し、図15(b)は図8(b)に相当する。
 図15(a)~図15(d)において、横軸は時刻(時)を示す。図15(a)において、横軸に水平な1点鎖線よりも上側の縦軸は消費電力(kW)を示し、前記1点鎖線よりも下側の縦軸は発電電力(kW)を示す。図15(c)において、縦軸は、バッテリ残量である電池残量(%)を示す。図15(d)において、横軸に水平な1点鎖線よりも上側の縦軸は充電電力を示し、前記1点鎖線よりも下側の縦軸は放電電力を示す。
 バッテリ充放電計画策定部25では、電動車両5の出発前に「需要家1の電力需要の平滑化」と「電動車両5の走行に必要な電力確保」との2つの目的を満たすバッテリ充放電計画情報S6が既に作成されているとする。
 バッテリ充放電計画策定部25は、電動車両5の利用計画情報S2に含まれる電力消費量に対し、電動車両エネルギー消費推定部27が推定しているエネルギー消費推定値情報S8で表されるエネルギー消費推定値が大きく解離してくると、事前に予測した1日のバッテリ残量の変化に対してエネルギー消費推定値を反映して、1日のバッテリ残量の変化に変更を加える。
 図15(c)では、一例として、事前に予測された1日のバッテリ残量の変化を、参照符号「11」で示される実線で表し、変更後の1日のバッテリ残量の変化を、参照符号「12」で示される2点鎖線で表している。たとえば、事前に予測された1日のバッテリ残量の変化が、図15(c)の参照符号「11」で示される実線のようになっていた場合を考える。この場合に、第2の外出時間帯T2において、電動車両5の走行によるエネルギー消費が増加すると推定されると、第2の外出時間帯T2の終点である帰着時のバッテリ残量が、当初の予測値よりも大幅に低下すると予測される。したがって、参照符号「12」で示される2点鎖線のように、バッテリ残量の推定値が低下する。
 バッテリ充放電計画策定部25は、その後、変更を加えた1日のバッテリ残量の変化に基づいて、バッテリ充放電計画情報S6を再度作成する。たとえば、事前に、電動車両5の利用計画情報S2で計画されていた走行時のエネルギー消費量に対し、ユーザの経路間違いまたは道路状況などによって、実際に走行したときのエネルギー消費量が増加すると推定された場合は、図15(d)に示すように、帰着後の放電電力を低く変更するといったバッテリ充放電計画情報S6の変更が、電動車両5の帰着前に行われる。これによって、EMS2は、電動車両5の帰着後の放電電力が、事前の計画に対し期待できないと早期に判断することが可能になり、他の家電製品4の電力使用量を早期に減らしておくことが可能となる。
 本実施の形態のバッテリ充放電計画策定部25では、携帯端末6の位置情報S7を用いた帰着時間の変更によるバッテリ充放電計画情報S6の変更も併せて行うことが可能である。
 以上のように本発明の第2の実施の形態における電動車両管理システム10Aでは、電動車両5の車両状態情報S4および電動車両パラメータ情報S3から、電動車両エネルギー消費推定部27によって、エネルギー消費推定値情報S8で表されるエネルギー消費推定値を演算し、電動車両エネルギー消費推定部27から得られるエネルギー消費推定値情報S8を用いて、バッテリ充放電計画策定部25によって、バッテリ充放電計画情報S6を演算する。したがって、外出中に当初予測した電動車両5の帰着時のバッテリ残量が変化した場合でも、電動車両5のバッテリ充放電計画情報S6で表されるバッテリ充放電計画の変更を迅速に行うことができる。これによって、本実施の形態では、充放電の電力量に対しても事前に計画を変更することが可能となり、バッテリ充放電計画情報S6の高度化を図ることができる。
 <第3の実施の形態>
 図16および図17は、本発明の第3の実施の形態の電動車両管理システムにおける需要家1、EMS2、電動車両5および携帯端末6の構成を示すブロック図である。図16と図17とは、境界線BL3の位置で、つながっている。本実施の形態の電動車両管理システムは、前述の第1の実施の形態の電動車両管理システム10と構成が類似しているので、同一の構成については同一の参照符号を付して、共通する説明を省略する。以下の説明では、本実施の形態の電動車両管理システムを、参照符号「10B」を付して示す。
 本実施の形態の電動車両管理システム10Bは、需要家1、EMS2、充放電装置3、家電製品4、電動車両5、携帯端末6および通信回線20と、前述の図1に示す基地局装置8およびサーバ装置9とを備えて構成される。
 本実施の形態では、携帯端末6は、端末側パラメータ取得部63および電動車両エネルギー消費推定部64を備える。すなわち、携帯端末6は、位置検出部61、端末側通信部62、端末側パラメータ取得部63および電動車両エネルギー消費推定部64を備える。端末側パラメータ取得部63および電動車両エネルギー消費推定部64は、第2の実施の形態におけるEMS2のEMS側パラメータ取得部23および電動車両エネルギー消費推定部27と同様の機能を、携帯端末6で行い、エネルギー消費推定値情報S8で表されるエネルギー消費推定値を演算する。
 端末側通信部62は、位置検出部61によって取得される携帯端末6の位置情報S7と、電動車両エネルギー消費推定部64によって演算されるエネルギー消費推定値を表すエネルギー消費推定値情報S8とを、電動車両5の車両状態情報S4として、通信回線を介してEMS2に送信する。
 EMS2のバッテリ充放電計画策定部25がバッテリ充放電計画情報S6を再計算する間隔は、数分~数時間である。前記の間隔以下の周期で充放電計画情報S6の再計算を行っても、現状ではEMS2が指令を行う家電製品4の制御が追従しないことが多く、また追従性を上げるためには、EMS2および家電製品4に対し、高い演算能力を有するマイクロコンピュータ、および高い制御性能を有したアクチュエータがそれぞれ必要となる。さらに、EMS2と各家電製品4との間の通信においても、高速な通信手段を確保する必要が発生するので、EMS2およびEMS2に対応した家電製品4の導入費用に対する需要家1の電力需要の平滑化による節電効果が薄れてしまう。
 電動車両5のエネルギー消費推定値情報S8を表すエネルギー消費推定値の演算における電動車両5の加速度の計算(図12のステップa1)および電動車両5の走行勾配の計算(図12のステップa2)において、一定の精度を維持するためには、計算間隔を1秒程度とすることが望ましい。これは電動車両のユーザが、信号などで停車、または再加速を行うときの加減速時間が5~20秒程度であり、加減速によるエネルギー消費を推定するためには、計算間隔を1秒程度にすることが必要となるからである。
 前述の第2の実施の形態では、EMS2の電動車両エネルギー消費推定部27によって、電動車両5のエネルギー消費推定値情報S8で表されるエネルギー消費推定値の演算を行うように構成されているので、電動車両5のエネルギー消費推定値の演算精度を確保するために、携帯端末6は、電動車両エネルギー消費推定部27が必要とする短い間隔で電動車両5の車両状態情報S4を、EMS2に送信する必要がある。また、携帯端末6からEMS2への送信間隔を空けるためには、複数回の取得データをまとめて送信する必要がある。この場合、1回の送信データ量が送信間隔に比例して大きくなる。
 これに対し、本発明の第3の実施の形態の電動車両管理システム10Bは、携帯端末6の電動車両エネルギー消費推定部64によって、電動車両5のエネルギー消費推定値情報S8で表されるエネルギー消費推定値の演算を行うように構成されている。これによって、端末側通信部62は、電動車両エネルギー消費推定部64内の演算間隔には左右されず、電動車両エネルギー消費推定部27の演算結果であるエネルギー消費推定値を含む電動車両5の車両状態情報S4を、バッテリ充放電計画策定部25が必要とする間隔で送信することが可能となる。
 したがって、携帯端末6の端末側通信部62が、EMS2の車両状態受信部24に対して、電動車両5の車両状態情報S4を送信する通信間隔を広げることが可能となる。また通信量も減らすことが可能となる。
 本実施の形態のEMS2は、電力使用量予測部21、利用計画入力部22、EMS側パラメータ取得部23、車両状態受信部24、バッテリ充放電計画策定部25、およびEMS側通信部26を備える。
 本実施の形態の車両状態受信部24によって受信する電動車両5の車両状態情報S4には、携帯端末6の位置情報S7と電動車両5のエネルギー消費推定値情報S8とが含まれている。バッテリ充放電計画策定部25は、車両状態受信部24によって受信した電動車両5の車両状態情報S4に基づいて、第2の実施の形態と同様の演算を行い、バッテリ充放電計画情報S6を演算する。
 以上のように本発明の第3の実施の形態における電動車両管理システム10Bでは、電動車両5の車両状態情報S4および電動車両パラメータ情報S3から、携帯端末6の電動車両エネルギー消費推定部64によって、エネルギー消費推定値情報S8で表されるエネルギー消費推定値が演算される。この電動車両エネルギー消費推定部64から得られるエネルギー消費推定値情報S8を用いて、バッテリ充放電計画策定部25によって、バッテリ充放電計画情報S6が演算される。これによって、外出中に帰着時のバッテリ残量が変化した場合でも、電動車両5のバッテリ充放電計画情報S6の変更を行うことができる。
 したがって、本実施の形態では、第2の実施の形態と同様に、充放電の電力量に対しても事前に計画を変更することが可能となり、バッテリ充放電計画情報S6の高度化を図ることができる。
 また、第2の実施の形態の電動車両管理システム10Aは、電動車両5のエネルギー消費推定をEMS2で行うように構成されているが、本実施の形態の電動車両管理システム10Bは、携帯端末6においてエネルギー消費推定を行うように構成されている。したがって、通信事業者が提供する公衆無線回線およびインターネット回線などの通信回線20を用いる携帯端末6と、EMS2との間の通信量をさらに削減することができる。
 <第4の実施の形態>
 図18および図19は、本発明の第4の実施の形態の電動車両管理システムにおける需要家1、EMS2、電動車両5、携帯端末6およびサーバ装置9の構成を示すブロック図である。図18と図19とは、境界線BL4の位置で、つながっている。本実施の形態の電動車両管理システムは、前述の第1の実施の形態の電動車両管理システム10と構成が類似しているので、同一の構成については同一の参照符号を付して、共通する説明を省略する。以下の説明では、本実施の形態の電動車両管理システムを、参照符号「10C」を付して示す。
 本実施の形態の電動車両管理システム10Cは、需要家1、EMS2、充放電装置3、家電製品4、電動車両5、携帯端末6、サーバ装置9および通信回線20と、前述の図1に示す基地局装置8とを備えて構成される。
 本実施の形態では、特にサーバ装置9、サーバ装置9に電動車両5の車両状態情報S4を送信する携帯端末6内の端末側通信部62、およびサーバ装置9から送信される電動車両5の車両状態情報S4を受信する車両状態受信部24について説明する。
 前述の第2の実施の形態において、電動車両5の車両状態情報S4は、通信事業者の提供する通信回線20を用いてEMS2に送信される。本実施の形態では、電動車両5の車両状態情報S4は、端末側通信部62が、通信事業者の提供する通信回線20を用いてサーバ装置9に送信する。
 サーバ装置9には、予め電動車両5を含む複数の電動車両パラメータ情報S3が格納された電動車両パラメータサーバ91が設けられ、電動車両5の電動車両パラメータ情報S3が取り出される。さらにサーバ装置9には、電動車両5のエネルギー消費推定値情報S8を推定する電動車両エネルギー消費推定部92が備えられる。電動車両エネルギー消費推定部92は、電動車両5の電動車両パラメータ情報S3と、携帯端末6から受信した携帯端末6の位置情報S7とを含む電動車両5の車両状態情報S4から、電動車両5のエネルギー推定値情報S8を推定する。
 電動車両エネルギー消費推定部92における電動車両5の電動車両パラメータ情報S3の推定方法は、第2の実施の形態の電動車両エネルギー消費推定部27および第3の実施の形態の電動車両エネルギー推定部64と同一の内容であるので、説明を省略する。
 本実施の形態の車両状態受信部24は、サーバ装置9から、電動車両エネルギー消費推定部92の推定結果であるエネルギー消費推定値情報S8と、携帯端末6の位置情報S7とを含む電動車両5の車両状態情報S4を受信する。
 以降、EMS2のバッテリ充放電計画策定部25において、バッテリ充放電計画情報S6で表されるバッテリ充放電計画を演算する方法については、第2の実施の形態と同様であるので、説明を省略する。
 このように、本実施の形態の電動車両管理システム10Cは、第1の実施の形態の電動車両管理システム10の構成に加えて、さらにサーバ装置9が、電動車両5の車両状態情報S4および電動車両パラメータ情報S3からエネルギー消費推定値情報S8を推定する電動車両エネルギー消費推定部92を有する。バッテリ充放電計画策定部25は、電動車両エネルギー消費推定部92から得られるエネルギー消費推定値情報S8を用いて、バッテリ充放電計画情報S6で表されるバッテリ充放電計画を演算する。これによって、外出中に帰着時のバッテリ残量が変化した場合でも、電動車両5のバッテリ充放電計画情報S6で表されるバッテリ充放電計画の変更を行うことができる。
 したがって、第1の実施の形態では充放電の開始時間の変更のみにしか対応できなかったのに対し、本実施の形態では、第2および第3の実施の形態と同様に、充放電の電力量に対しても事前に計画を変更することが可能となる。これによって、バッテリ充放電計画情報S6で表されるバッテリ充放電計画の高度化を図ることができる。
 また、本実施の形態では、第2および第3の実施の形態ではEMS2または携帯端末6で行っていた電動車両エネルギー消費推定部による処理を、サーバ装置9において行っている。これによって、電動車両エネルギー消費推定部の演算内容が複雑化した場合においても、EMS2および携帯端末6の双方の演算負荷を削減することができる。
 本実施の形態のサーバ装置9については、必ずしもEMS2のメーカが提供する必要はなく、電動車両5のメーカが提供することもできる。これによって、EMS2のメーカが、市場に存在する全ての電動車両それぞれに対応した電動車両エネルギー消費推定部を提供する必要性、および電動車両エネルギー消費の推定に使用するための電動車両パラメータの同定を行う必要性がなくなる。したがって、それらの対応については、サーバ装置9の提供者に委託することができるので、開発工数を削減することができる。
 仮に、サーバ装置9を電動車両5のメーカが提供する場合、通常公開されない電動車両5の詳細なパラメータ、たとえば、前述の式(10)に使用するモータ51の効率ηmtr、モータ51とバッテリ52との間に接続されるインバータの効率ηinvなどを用いて、エネルギー消費推定値を演算することが可能となり、EMS2が行うバッテリ充放電計画情報S6で表されるバッテリ充放電計画の計画精度が向上することが考えられる。
 また、同じくサーバ装置9を電動車両5のメーカが提供する場合、電動車両5のメーカは、同業他社には公開したくない設計上の秘匿としたい電動車両パラメータ情報S3、および外部に公開したくない詳細な制御ロジックを反映したエネルギー消費推定値の演算方法を組み込んだ電動車両エネルギー消費推定部92であっても、それらについては内容をサーバ装置9内にとどめることができ、演算結果であるエネルギー消費推定値を表すエネルギー消費推定値情報S8のみをEMS2へ提供する構成をとることができる。これによって、電動車両5のメーカは、電動車両5の内部情報を公開する必要がなくなり、本形式の電動車両管理システムへの参加が容易になる。
 また、本実施の形態のEMS側パラメータ取得部23は、サーバ装置9の電動車両パラメータサーバ91から電動車両パラメータ情報S3を取得する構成も考えられる。この場合、電動車両5に関する固有のパラメータについて、全てサーバ装置9の電動車両パラメータサーバ91に集約することが可能となる。たとえば、既に発売済みの電動車両において、EMS2の演算に必要な電動車両パラメータの変更が必要な状況が発生した場合であっても、EMS2のEMS側パラメータ取得部23が一定の更新周期で電動車両パラメータサーバ91の電動車両パラメータ情報S3を取得する設定にしておけば、市場のEMS2全てに新しい電動車両パラメータ情報S3を配付することが可能になる。
 <第5の実施の形態>
 図20および図21は、本発明の第5の実施の形態である電動車両管理システムにおける需要家1、EMS2、電動車両5、携帯端末6およびサーバ装置9の構成を示すブロック図である。図20と図21とは、境界線BL5の位置で、つながっている。本実施の形態の電動車両管理システムは、前述の第3の実施の形態の電動車両管理システム10Bと構成が類似しているので、同一の構成については同一の参照符号を付して、共通する説明を省略する。以下の説明では、本実施の形態の電動車両管理システムを、参照符号「10D」を付して示す。
 本実施の形態の電動車両管理システム10Dは、需要家1、EMS2、充放電装置3、家電製品4、電動車両5、携帯端末6および通信回線20と、前述の図1に示す基地局装置8およびサーバ装置9とを備えて構成される。本実施の形態の電動車両管理システム10Dは、前述の第3の実施の形態におけるEMS2に、さらにバッテリ残量、具体的にはバッテリ残量情報S5を入力するバッテリ残量入力部28を備えて構成される。
 バッテリ残量入力部28は、電動車両5の最新のバッテリ残量情報S5を取得する。バッテリ残量入力部28の入力方法については限定しないが、一例を示すと、ユーザの所持している携帯端末6、需要家1内に設置されているPC、またはテレビなどから、ネットワークを用いてEMS2のバッテリ残量入力部28ヘアクセスし、最新のバッテリ残量情報S5をユーザが入力する。また、上記以外にも、公衆の電動車両5の不図示の充電スポットにおいて、電動車両5の充電終了時に充電スポットが自動的にEMS2のバッテリ残量入力部28にアクセスして入力するようにしてもよい。
 本実施の形態では、それまで電動車両5が充放電装置3に接続したときに、EMS側通信部26によってのみバッテリ残量情報S5が取得されていたものを、EMS2の外部からのアクセスによっても、バッテリ残量情報S5を更新できるようにしている。これによって、たとえば、電動車両5が需要家1の充放電装置3以外の充電スポットにおいて充電を行った場合でも、ユーザが携帯端末6を用いて、EMS2のバッテリ残量入力部28にアクセスし、充電後の最新のバッテリ残量情報S5を設定し直すことが可能となる。
 また、何らかの原因によって、電動車両エネルギー消費推定部64の演算するエネルギー消費推定値と、電動車両5の実際のエネルギー消費量との解離が大きくなった場合でも、上記タイミングでバッテリ残量入力部28を用いてバッテリ残量情報S5を入力し直すことによって、電動車両エネルギー消費推定部64の演算するエネルギー消費推定値と、電動車両5の実際のエネルギー消費量との解離を解消することが可能となる。
 このように、本実施の形態の電動車両管理システム10Dは、第3の実施の形態の電動車両管理システム10Bの構成に加えて、EMS2が、さらにバッテリ残量情報S5が入力されるバッテリ残量入力部28を有する。これによって、EMS2の外部からのアクセスによってもバッテリ残量情報S5を更新できるようにすることができる。したがって、電動車両5が需要家1の充放電装置3以外の充電スポットにおいて充電を行った場合でも、ユーザが携帯端末6を用いてEMS2のバッテリ残量入力部28にアクセスし、最新のバッテリ残量情報S5を設定し直すことが可能な電動車両管理システム10Dを提供することができる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせることが可能である。また、各実施の形態の任意の構成要素を適宜、変更または省略することが可能である。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1 需要家、2 エネルギーマネジメントシステム(EMS)、3 充放電装置、4 家電製品、5 電動車両、6 携帯端末装置、7 全地球測位システム(GPS)衛星、8 基地局装置、9 サーバ装置、10 電動車両管理システム、20 通信回線、21 電力使用量予測部、22 利用計画入力部、23 EMS側パラメータ取得部、24 車両状態受信部、25 バッテリ充放電計画策定部、26 EMS側通信部、27,64,92 電動車両エネルギー消費推定部、28 バッテリ残量入力部、31 充放電側通信部、51 モータ、52 バッテリ、53 バッテリ管理装置、61 位置検出部、62 端末側通信部、63 端末側パラメータ取得部、91 電動車両パラメータサーバ。

Claims (5)

  1.  走行に使用されるモータ(51)、および前記モータ(51)に電力を供給するバッテリ(52)を有する電動車両(5)と、
     前記バッテリ(52)の充放電計画(S6)を策定するバッテリ充放電計画策定部(25)を有するエネルギーマネジメントシステム(2)と、
     携帯可能な携帯端末装置(6)であって、自装置(6)の位置を表す端末位置情報(S7)を取得する位置取得部(61)、および通信回線(20)を用いて前記エネルギーマネジメントシステム(2)と通信する端末側通信部(62)を有する携帯端末装置(6)と、
     前記バッテリ(52)の充放電計画(S6)に従って、前記バッテリ(52)の充電および放電の少なくとも一方を行う充放電装置(3)とを備え、
     前記端末側通信部(62)は、
      前記携帯端末装置(6)が前記電動車両(5)の内部に存在するとき、前記位置取得部(61)によって取得される前記端末位置情報(S7)を含み、前記電動車両(5)の状態を表す車両状態情報(S4)を、前記エネルギーマネジメントシステム(2)に送信し、
     前記エネルギーマネジメントシステム(2)は、
      前記端末側通信部(62)から送信される前記車両状態情報(S4)を受信する車両状態受信部(24)を有し、
     前記バッテリ充放電計画策定部(25)は、
      前記車両状態受信部(24)によって受信される前記車両状態情報(S4)を用いて、前記バッテリ(52)の充放電計画(S6)を策定することを特徴とする電動車両管理システム。
  2.  前記エネルギーマネジメントシステム(2)は、
      前記車両状態受信部(24)によって受信される前記車両状態情報(S4)のうち、少なくとも前記端末位置情報(S7)を用いて、前記電動車両(5)によって消費されるエネルギーの推定値であるエネルギー消費推定値(S8)を推定する電動車両エネルギー消費推定部(27)をさらに有し、
     前記バッテリ充放電計画策定部(25)は、
      前記車両状態受信部(24)によって受信される前記車両状態情報(S4)と、前記電動車両エネルギー消費推定部(27)によって推定される前記エネルギー消費推定値(S8)とを用いて、前記バッテリ(52)の充放電計画(S6)を策定することを特徴とする請求項1に記載の電動車両管理システム。
  3.  前記携帯端末装置(6)は、
      少なくとも、前記位置取得部(61)によって取得される前記端末位置情報(S7)を用いて、前記電動車両(5)によって消費されるエネルギーの推定値であるエネルギー消費推定値(S8)を推定する電動車両エネルギー消費推定部(64)をさらに有し、
     前記端末側通信部(62)は、
      前記端末位置情報(S7)と、前記電動車両エネルギー消費推定部(64)によって推定される前記エネルギー消費推定値(S8)とを含む前記車両状態情報(S4)を前記エネルギーマネジメントシステム(2)に送信し、
     前記バッテリ充放電計画策定部(25)は、
      前記車両状態情報(S4)を用いて、前記バッテリ(52)の充放電計画(S6)を策定することを特徴とする請求項1に記載の電動車両管理システム。
  4.  前記電動車両(5)によって消費されるエネルギーの推定値であるエネルギー消費推定値(S8)を推定する電動車両エネルギー消費推定部(92)を有するサーバ装置(9)を備え、
     前記端末側通信部(62)は、
      前記端末位置情報(S7)を含む前記車両状態情報(S4)を前記サーバ装置(9)に送信し、
     前記電動車両エネルギー消費推定部(92)は、
      前記端末側通信部(62)から送信される前記車両状態情報(S4)を用いて前記エネルギー消費推定値(S8)を推定し、
     前記サーバ装置(9)は、
      前記端末側通信部(62)から送信される前記車両状態情報(S4)に、前記電動車両エネルギー消費推定部(92)によって推定される前記エネルギー消費推定値(S8)を含めて、前記エネルギー消費推定値(S8)を含む前記車両状態情報(S4)を前記エネルギーマネジメントシステム(2)に送信し、
     前記バッテリ充放電計画策定部(25)は、
      前記サーバ装置(9)から送信される前記車両状態情報(S4)を用いて、前記バッテリ(52)の充放電計画(S6)を策定することを特徴とする請求項1に記載の電動車両管理システム。
  5.  前記エネルギーマネジメントシステム(2)は、
      前記バッテリ(52)に残存する電力量であるバッテリ残量(S5)が入力されるバッテリ残量入力部(28)を有し、
     前記バッテリ充放電計画策定部(25)は、
      前記車両状態情報(S4)と、前記バッテリ残量入力部(28)に入力される前記バッテリ残量(S5)とを用いて、前記バッテリ(52)の充放電計画(S6)を策定することを特徴とする請求項1~4のいずれか1つに記載の電動車両管理システム。
PCT/JP2014/060497 2013-04-19 2014-04-11 電動車両管理システム WO2014171407A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014002012.5T DE112014002012T5 (de) 2013-04-19 2014-04-11 Elektrofahrzeugmanagementsystem
US14/771,256 US9333873B2 (en) 2013-04-19 2014-04-11 Electric motor vehicle management system
CN201480022221.7A CN105122585B (zh) 2013-04-19 2014-04-11 电动车辆管理系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013088045A JP5623584B1 (ja) 2013-04-19 2013-04-19 電動車両管理システム
JP2013-088045 2013-04-19

Publications (1)

Publication Number Publication Date
WO2014171407A1 true WO2014171407A1 (ja) 2014-10-23

Family

ID=51731348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060497 WO2014171407A1 (ja) 2013-04-19 2014-04-11 電動車両管理システム

Country Status (5)

Country Link
US (1) US9333873B2 (ja)
JP (1) JP5623584B1 (ja)
CN (1) CN105122585B (ja)
DE (1) DE112014002012T5 (ja)
WO (1) WO2014171407A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE059453T2 (hu) * 2014-04-04 2022-11-28 Tesla Inc Utazás tervezés energia megszorítással
KR102148983B1 (ko) * 2014-04-24 2020-08-28 한국전자통신연구원 가용 채널 정보 공유 시스템 및 가용 채널 정보 공유 방법
USD760759S1 (en) * 2014-09-01 2016-07-05 Apple Inc. Display screen or portion thereof with graphical user interface
JP6646849B2 (ja) * 2014-12-10 2020-02-14 パナソニックIpマネジメント株式会社 情報通知方法および情報通知装置
WO2016185671A1 (ja) * 2015-05-19 2016-11-24 パナソニックIpマネジメント株式会社 蓄電池制御装置
JP6354666B2 (ja) * 2015-06-05 2018-07-11 株式会社デンソー エネルギー管理システム
CN106329610A (zh) * 2015-06-30 2017-01-11 马宇宏 电动车充电系统
DE102016204761A1 (de) * 2016-03-22 2017-09-28 Bayerische Motoren Werke Aktiengesellschaft Verfahren, Vorrichtung und mobiles Anwendergerät zur Anpassung eines Energieverwertungsvorgangs eines Kraftfahrzeugs
DE102016206800A1 (de) * 2016-04-21 2017-10-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren, Vorrichtung und mobiles Anwendergerät zur Anpassung einer Energieversorgung eines Antriebssystems eines Fahrzeugs
DE102016005205A1 (de) * 2016-04-29 2017-11-02 Audi Ag Verfahren zum Steuern eines Ladezustands einer Energiespeicherung eines Kraftfahrzeugs
KR20180070892A (ko) * 2016-12-19 2018-06-27 현대자동차주식회사 전기 자동차, 그를 포함하는 시스템 및 전기 자동차의 배터리 충전 방법
US10288439B2 (en) 2017-02-22 2019-05-14 Robert D. Pedersen Systems and methods using artificial intelligence for routing electric vehicles
KR102322921B1 (ko) * 2017-02-22 2021-11-08 현대자동차주식회사 전기 자동차 및 그 제어방법
JP6897495B2 (ja) * 2017-10-27 2021-06-30 トヨタ自動車株式会社 配車システム及び配車方法
JP6990091B2 (ja) * 2017-10-30 2022-01-12 トヨタホーム株式会社 住宅の電力制御装置
JP6918032B2 (ja) * 2019-01-17 2021-08-11 本田技研工業株式会社 送受電管理装置及びプログラム
JP2021071451A (ja) * 2019-11-01 2021-05-06 トヨタ自動車株式会社 計画作成装置、方法およびプログラム
JP7403364B2 (ja) 2020-03-27 2023-12-22 本田技研工業株式会社 電力算出装置
JP7380429B2 (ja) * 2020-06-01 2023-11-15 トヨタ自動車株式会社 バーチャルパワープラントの制御装置
US11708002B2 (en) * 2020-08-03 2023-07-25 Cisco Technology, Inc. Power distribution and communications for electric vehicle
US20220135019A1 (en) * 2020-11-05 2022-05-05 Toyota Jidosha Kabushiki Kaisha Device for prediction of vehicle state and storage medium
JP2022150956A (ja) * 2021-03-26 2022-10-07 株式会社Ihi 電動車両の給電設備、および給電設備による電動車両の給電方法
JP2024028051A (ja) * 2022-08-19 2024-03-01 株式会社ブリヂストン エネルギー消費量推定装置、モデル生成装置、プログラム及びモデルの生成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046269A1 (ja) * 2010-10-05 2012-04-12 三菱電機株式会社 充電制御装置
JP2012100429A (ja) * 2010-11-02 2012-05-24 Toyota Motor Corp 給電管理システム
JP2012135170A (ja) * 2010-12-24 2012-07-12 Panasonic Corp 電力制御システム、電力制御方法及び電力制御装置
JP2012151948A (ja) * 2011-01-18 2012-08-09 Panasonic Corp 電力制御システム、電力制御方法、電力制御装置、及びその電力制御プログラム
JP2013065265A (ja) * 2011-09-20 2013-04-11 Panasonic Corp 充電システム、サーバ装置、及び、サーバ装置のプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295717A (ja) * 2006-04-25 2007-11-08 Chugoku Electric Power Co Inc:The 電気供給制御システムおよび電気供給制御方法
JP2008054439A (ja) * 2006-08-25 2008-03-06 Toyota Motor Corp 電力システム
US8918376B2 (en) * 2008-08-19 2014-12-23 International Business Machines Corporation Energy transaction notification service for presenting charging information of an electric vehicle
JP4713623B2 (ja) 2008-09-25 2011-06-29 株式会社日立製作所 充放電管理装置
JP5204157B2 (ja) * 2010-07-05 2013-06-05 株式会社日本自動車部品総合研究所 電動車両の充電装置
CN102055790B (zh) * 2010-10-27 2013-06-26 国家电网公司 充换电系统及其运行方法
JP5372987B2 (ja) 2011-03-16 2013-12-18 三菱電機株式会社 電力マネジメントシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046269A1 (ja) * 2010-10-05 2012-04-12 三菱電機株式会社 充電制御装置
JP2012100429A (ja) * 2010-11-02 2012-05-24 Toyota Motor Corp 給電管理システム
JP2012135170A (ja) * 2010-12-24 2012-07-12 Panasonic Corp 電力制御システム、電力制御方法及び電力制御装置
JP2012151948A (ja) * 2011-01-18 2012-08-09 Panasonic Corp 電力制御システム、電力制御方法、電力制御装置、及びその電力制御プログラム
JP2013065265A (ja) * 2011-09-20 2013-04-11 Panasonic Corp 充電システム、サーバ装置、及び、サーバ装置のプログラム

Also Published As

Publication number Publication date
JP5623584B1 (ja) 2014-11-12
JP2014212637A (ja) 2014-11-13
CN105122585A (zh) 2015-12-02
US20160001671A1 (en) 2016-01-07
CN105122585B (zh) 2017-07-25
DE112014002012T5 (de) 2016-01-07
US9333873B2 (en) 2016-05-10

Similar Documents

Publication Publication Date Title
JP5623584B1 (ja) 電動車両管理システム
US9457680B2 (en) Vehicle-to-grid control
US9126494B2 (en) Electric vehicle charging strategy
US20200101850A1 (en) Electric charge management system and method for a vehicle
US11498452B2 (en) Vehicle charging control systems and methods
JP5714073B2 (ja) スマートグリッドシステムおよび車載装置
US9409492B2 (en) Method for precise demand response and control, and a system thereof
JP5837129B2 (ja) スマートグリッドシステム
US11485247B2 (en) Dispatch-based charging for electric vehicle fleet
JP2013099140A (ja) 電力管理システム、電力管理方法、プログラム
AU2009293389A1 (en) System and method for operating an electric vehicle
US11926243B2 (en) Confidence-based vehicle charge control
JP2014053989A (ja) バッテリ充放電システム
JP2011130575A (ja) バッテリの充電方法および充電システム
WO2020194009A1 (ja) 蓄電要素の受電制御方法、及び受電制御装置
JP5442088B1 (ja) 電動車両管理システム
JP5518147B2 (ja) バッテリ充放電システム
JP2020119080A (ja) 管理装置、管理方法、及びプログラム
JP2020054070A (ja) 電力制御システム
JP2014171345A (ja) 車載蓄電池の充電制御システム
US20240067039A1 (en) Server and vehicle management method
JP2020112969A (ja) 車両管理システム
JP7254481B2 (ja) 電力制御システム
EP4249315A1 (en) Server, power transfer system, and power transfer method for charging electric vehicles wirelessly along a lane on a road
US20240097441A1 (en) Management system, management device, and power balancing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022221.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14771256

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140020125

Country of ref document: DE

Ref document number: 112014002012

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785411

Country of ref document: EP

Kind code of ref document: A1