WO2014170985A1 - 流体濃度測定装置 - Google Patents

流体濃度測定装置 Download PDF

Info

Publication number
WO2014170985A1
WO2014170985A1 PCT/JP2013/061486 JP2013061486W WO2014170985A1 WO 2014170985 A1 WO2014170985 A1 WO 2014170985A1 JP 2013061486 W JP2013061486 W JP 2013061486W WO 2014170985 A1 WO2014170985 A1 WO 2014170985A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical path
fluid
light receiving
tube
Prior art date
Application number
PCT/JP2013/061486
Other languages
English (en)
French (fr)
Inventor
佐野 嘉彦
証英 原田
Original Assignee
ニプロ株式会社
原田電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニプロ株式会社, 原田電子工業株式会社 filed Critical ニプロ株式会社
Priority to PCT/JP2013/061486 priority Critical patent/WO2014170985A1/ja
Priority to JP2015512246A priority patent/JP6246793B2/ja
Priority to US14/785,200 priority patent/US9562858B2/en
Priority to CN201380075615.4A priority patent/CN105229448B/zh
Priority to EP13882184.8A priority patent/EP2988113A4/en
Publication of WO2014170985A1 publication Critical patent/WO2014170985A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/532Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke with measurement of scattering and transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4915Blood using flow cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0364Cuvette constructions flexible, compressible

Definitions

  • the present invention relates to an apparatus for measuring the concentration of a fluid flowing in a light-transmitting and deformable pipe based on the Lambert-Beer law.
  • the measuring method and measuring device measure the concentration of a processing liquid as a fluid for cleaning a semiconductor wafer
  • a plurality of measuring bodies are provided in the middle of the processing liquid supply pipe, and a light transmitting part in which the optical path length of the light passing through the processing liquid is different is provided in each measuring body, and the optical path length corresponding to the properties of the processing liquid is provided.
  • the light from the light source is supplied to the light transmission part, and the light transmitted through the processing liquid in the light transmission part is received by the photodetector and the intensity of the light is examined. From the intensity of the light, the Lambert-Beer law is used. Based on this, the concentration of the treatment liquid is obtained.
  • the optical path length in each light transmitting portion is strictly determined, and therefore the fluid concentration can be easily obtained using a calculation formula in which the optical path length is set in advance. Can do.
  • the conventional device is applied to measure the concentration of a fluid such as blood or a chemical solution flowing in a light-transmitting conduit such as a resin tube or a glass tube, light is transmitted to the optical path crossing the light-transmitting conduit.
  • a light-transmitting conduit such as a resin tube or a glass tube
  • the inner diameter may change due to the deformation. Therefore, it is very difficult to measure the concentration of blood, chemicals, etc. in such a case, and it has been practically impossible to measure the concentration.
  • the present inventor traverses light from the same light source through a light-transmitting pipe at a plurality of places, and obtains the light intensity at each place, thereby calculating the pipe from the calculation based on the Lambert-Beer law.
  • a fluid concentration measuring device that eliminates the influence of the inner diameter and wall thickness has been proposed (PCT / JP2013 / 54664 international application).
  • the setting of the optical path in the tube wall is calculated at each light receiving point. It is set at a right angle to the tube wall, while the actual optical path crosses the tube wall diagonally, and the tilt angle varies depending on the difference in refractive index, further increasing the calculation accuracy. Has been found to have room for improvement.
  • the present invention fixes the light receiving portion with respect to the light supply portion on the opposite side of the diameter direction of the pipe and maintains the optical path at right angles to the extending direction of the pipe.
  • An object of the present invention is to advantageously solve the problem of a fluid concentration measuring device.
  • the fluid concentration measuring device of the present invention is a device for measuring the concentration of a fluid flowing in a pipe having a light-transmissive and deformable tube wall.
  • a light source that supplies light into the conduit from a light supply location on the surface of the conduit; At the light receiving point located on the opposite side of the diameter direction of the pipe with respect to the light supply point, the light that has been supplied and passed through the wall of the pipe and the fluid in the pipe is received.
  • a light receiving element that outputs a signal indicating the intensity of the light
  • Optical path distance setting means for setting a plurality of optical path distances between the light supply location and the light receiving location; Based on the Lambert-Beer law from the light intensity at each of the plurality of optical path distances, light from the light supply position is received at the light receiving position at each optical path distance.
  • a fluid concentration output that obtains and outputs a plurality of relational expressions indicating the relationship between the intensity and the concentration of the fluid, and obtains and outputs the concentration of the fluid from the light intensity at the light receiving location based on the relational expressions at the plurality of optical path distances.
  • Means, It is characterized by comprising.
  • the light source is a surface of the pipe line.
  • the light is supplied from the upper light supply point into the pipe, and the light receiving element is located at the opposite side of the diameter direction of the pipe with respect to the light supply point.
  • the light passing through the inside of the pipe and the fluid in the pipe at a right angle to the extending direction of the pipe and outputting a signal indicating the intensity of the light, and the optical path distance setting means is configured to supply the light supply point.
  • a plurality of optical path distances between the optical path and the light receiving location, and the fluid concentration output means determines each optical path based on the Lambert-Beer law from the light intensity at the light receiving location at each of the optical path distances.
  • Light from the light supply point at a distance A plurality of relational expressions indicating the relationship between the light intensity and the fluid concentration when receiving light at the light receiving point are obtained, and the fluid is calculated from the light intensity at the light receiving point based on the relational expressions at the plurality of optical path distances. The concentration of is calculated and output.
  • the fluid concentration measuring apparatus of the present invention light passing through an optical path obliquely crossing the pipe line with respect to the extending direction is not measured, and therefore, a transparent and deformable pipe wall such as a resin tube is provided. It is possible to measure the concentration of fluid such as blood and chemicals flowing through the pipe line with high accuracy.
  • the optical path distance setting means has a plurality of pairs of the light supply location and the light receiving location, each having a different interval, and the light supply location and the light receiving location are The optical path distance may be changed by selectively using a pair, and in this way, a plurality of optical path distances can be set without changing the optical path distance, so that the measurement time can be shortened.
  • the optical path distance setting means may change an optical path distance between the same light supply location and the light receiving location by changing an interval between them. In this way, since the optical path distance can be set arbitrarily, it is possible to easily cope with changes in the fluid concentration, and since the same light source and light receiving element are used, measurement due to differences in the light source and light receiving element is possible. The error can be eliminated.
  • the optical path distance setting means has a plurality of pairs of the light supply location and the light receiving location, the intervals of which are different from each other.
  • One of the pairs may be one that changes the optical path distance between them by changing the distance between the same light supply location and the light receiving location, and in this way, the pair that changes the optical path distance. Since the optical path distance can be set arbitrarily by using, it is possible to easily cope with changes in the fluid concentration, and once the relational expression is found, the measurement time can be shortened by using a pair of fixed optical path distances. Measurements can be performed continuously in real time.
  • the fluid concentration output means indicates the relationship between the light intensity and the fluid concentration at the light receiving location at each of the plurality of optical path distances obtained and stored in advance.
  • a table may be used to determine and output the fluid concentration from the light intensity at the light receiving location. By using such a table, the fluid concentration can be easily determined in a short time from the light intensity at the light receiving location. Can be output.
  • (A)-(c) is explanatory drawing which shows typically the external appearance of three types of Examples of the fluid concentration measuring apparatus of this invention, respectively. It is a block diagram which shows collectively the electric constitution of the fluid concentration measuring apparatus of the said 3 types of Example. It is explanatory drawing which shows description of the code
  • FIGS. 1 to 5 are explanatory views showing the measurement principle and calculation method of the fluid concentration in the three types of embodiments of the fluid concentration measuring device of the present invention.
  • FIGS. 1 (a) to 1 (c) are explanatory views schematically showing the appearance of three types of embodiments of the fluid concentration measuring device of the present invention, respectively, and are shown in FIGS. 1 (a) to (c).
  • Each of the three types of devices measures the concentration of blood as a fluid flowing in a substantially transparent resin tube as a conduit with a light transmissive and deformable tube wall.
  • the fluid concentration measuring apparatus shown in FIG. 1 (a) is compressed in the diameter direction with a resin tube (not shown) passed through a groove 1a extending in the horizontal direction in the figure at the center of the case 1.
  • Two pairs of light emitting / receiving units 4 which are pairs of the light emitting unit 2 and the light receiving unit 3 fixed so as to face the side wall of the groove 1a of the case 1 so as to be deformed, and as these light emitting / receiving unit pairs 4,
  • the optical path distance between the light emitting unit 2 and the light receiving unit 3 is a predetermined short distance S
  • the optical path distance between the right short distance unit pair 4S and the light emitting unit 2 and the light receiving unit 3 is a predetermined long distance L.
  • two types of the long distance unit pair 4L on the left side are set. Therefore, the two pairs of light emitting / receiving units 4 function as optical path distance setting means.
  • the two pairs of light emitting / receiving units 4 need not be adjacent to each other, and are preferably separated from each other to such an extent that the measurement is hardly affected.
  • the measurement with one light emitting / receiving unit pair 4 is not performed while the measurement with one light emitting / receiving unit pair 4 is performed. good.
  • the fluid concentration measuring apparatus shown in FIG. 1 (b) is compressed and deformed in the diametrical direction with a resin tube (not shown) passed through a groove 1a extending in the horizontal direction in the figure at the center of the case 1.
  • the light-emitting unit 2 and the light-receiving unit 3 are arranged so as to face both side walls of the groove 1a of the case 1 and supported by the case 1 so as to be movable toward and away from each other as indicated by arrows in the figure.
  • a pair of light emitting / receiving unit 4M, and the light emitting unit 2 and light receiving unit 3 of the light emitting / receiving unit pair 4M are moved relative to each other in the approaching and separating directions, that is, in the diameter direction of the resin tube.
  • An optical path distance changing mechanism (not shown) for changing the optical path distance between the light emitting unit 2 and the light receiving unit 3 is provided. Therefore, this optical path distance changing mechanism functions as an optical path distance setting means.
  • the fluid concentration measuring device shown in FIG. 1 (c) is a combination of the half of the device shown in FIG. 1 (a) and the device shown in FIG. 1 (b).
  • the light emitting unit 2 and the light receiving unit fixed to face the side wall of the groove 1a of the case 1 so as to be compressed and deformed in the diametrical direction with a resin tube (not shown) passed through the groove 1a extending in the direction interposed therebetween
  • a pair of short-distance unit 4S or long-distance unit pair 4L is provided as a pair of light emitting / receiving units 4 that is paired with 3 and a groove 1a of case 1 so as to be compressed and deformed in the diametrical direction with the resin tube interposed therebetween.
  • the light emitting / receiving unit is a pair of light emitting unit 2 and light receiving unit 3 which are arranged facing each other and supported by case 1 so as to be movable toward and away from each other as indicated by arrows in the figure.
  • a pair 4M is provided, and the light emitting unit 2 and the light receiving unit 3 of the light emitting / receiving unit pair 4M are moved relative to each other in the approaching and separating directions, that is, in the diameter direction of the resin tube.
  • an optical path distance changing mechanism (not shown) for changing the optical path distance between the two. Therefore, the optical path distance changing mechanism and the light emitting / receiving unit pair 4 having a fixed distance function as optical path distance setting means.
  • the light emitting unit 2 incorporates a light emitting element that emits light when supplied with electricity, such as a light emitting diode (LED) or a laser diode as a light source, and positions the light from the light emitting element on the surface of the resin tube.
  • the resin is supplied into the resin tube from the light supply location.
  • the light receiving unit 3 includes a light receiving element that receives light and generates electricity, such as a photodiode or a phototransistor, and receives light supplied from the light emitting unit 2 and transmitted through the resin tube. An electrical signal corresponding to the light intensity is output.
  • the light emitting unit 2 and the light receiving unit 3 emit and receive light having a wavelength of about 590 nm as light having substantially the same extinction coefficient for both oxygenated hemoglobin of arterial blood and deoxygenated hemoglobin of venous blood.
  • FIG. 2 is a block diagram collectively showing the electrical configuration of the fluid concentration measuring apparatus of the above three types.
  • the first unit pair 4 shown in FIG. One of the second unit pair 4 is a short-distance unit pair 4S and the other is a long-distance unit pair 4L. Since the optical path distance of these unit pairs 4 is fixed, a motor driver 16 and a motor 17 described later The optical path distance changing mechanism 18 is not provided.
  • light emitted from the light emitting elements in the two light emitting units 2 respectively driven by the light emitting element driver 11 is emitted from the light emitting unit 2 and the light receiving unit 3 of the two pairs of units 4.
  • the tube wall near the light emitting unit 2 of one resin tube TB that is sandwiched between and compressed in the diametrical direction, the blood BD that flows inside the resin tube TB, and the side far from the light emitting unit 2 (Opposite side), that is, the light passing through the tube wall close to the light receiving unit 3, is received by the light receiving elements in the two light receiving units 3 through the optical paths having different fixed distances, and received in the two light receiving units 3.
  • Each element outputs an electric signal having a level corresponding to the intensity of received light.
  • the output signals of the light receiving elements in the two light receiving units 3 are each amplified by an amplifier 12, high frequency noise components are removed by a low pass filter 13, and an analog signal is converted into a digital signal by an analog / digital converter (A / D) 14. It is converted and input to the central processing unit (CPU) 15.
  • the CPU 15 controls the operation of the light emitting element driver 11 to selectively cause the light emitting units 2 of the two pairs of units 4 to emit light and avoid mutual interference, and the light receiving elements at the respective optical path distances.
  • the concentration of blood BD in the resin tube TB is obtained from the output signal, and a signal indicating the concentration data is output. Therefore, the CPU 15 functions as fluid concentration output means.
  • the first unit pair 4 shown in FIG. 2 is arranged facing the side wall of the groove 1a of the case 1 so as to be movable toward and away from each other.
  • the light emitting / receiving unit pair 4M is a pair of the light emitting unit 2 and the light receiving unit 3 that are supported, and the second unit pair 4 is not provided, so that the light receiving element of the light receiving unit 3 of the second unit pair 4 2 is not provided for the first unit pair 4 and the motor driver 16, the motor 17, and the optical path distance shown in FIG. 2 are used instead of the amplifier 12, the low-pass filter 13, and the A / D 14.
  • a change mechanism 18 is used instead of the amplifier 12, the low-pass filter 13, and the A / D 14.
  • the CPU 15 functioning as a fluid concentration output means also sends a control signal to the motor driver 16, the motor driver 16 sends a drive current to the motor 17 according to the control signal, and the motor 17 changes the optical path distance according to the drive current.
  • the mechanism 18 is operated, and the optical path distance changing mechanism 18 changes the optical path distance between the light emitting unit 2 and the light receiving unit 3 of the first unit pair 4 between a predetermined long distance L and a predetermined short distance S. As described above, the light emitting unit 2 and the light receiving unit 3 are moved in the approaching and separating directions.
  • a cam is used to move at least one of the light emitting unit 2 and the light receiving unit 3, preferably both simultaneously in the approaching and separating directions with respect to the other, using a cam,
  • the light-emitting unit 2 and the light-receiving unit 3 each having a female screw to be engaged with the male screw are moved simultaneously in the approaching and separating directions with respect to the other by rotating a drive shaft having both male and left-handed male screws.
  • Any mechanism such as a screw mechanism can be used.
  • the first unit pair 4 shown in FIG. 2 is arranged facing the side wall of the groove 1a of the case 1 so as to be movable toward and away from each other.
  • a light emitting / receiving unit pair 4M which is a pair of the light emitting unit 2 and the light receiving unit 3 supported, and the second unit pair 4 shown in FIG. 2 is a short-distance unit pair 4S or a long-distance unit each having a fixed optical path distance. Pair 4L.
  • FIG. 3 is a diagram for explaining the reference numerals in the embodiments described above.
  • the absorption coefficient of the tube wall near the light receiving unit 3 of the resin tube is A ⁇ C1
  • the absorption coefficient of the tube wall near the light receiving unit 3 of the resin tube is A ⁇ C2
  • the absorption coefficient of blood in the resin tube is ⁇ H
  • the concentration of C H when the optical path length is long distance L, and incident light intensity from the light-emitting unit 2 to the side of the tube wall close to the light-emitting unit 2 of the resin tube AIi, Idemitsu intensity from the tube wall AI L1, the light exit intensity from the blood AI L2, Idemitsu strength AI LO from the side of the tube wall close to the light receiving unit 3 of the resin tube into the light receiving unit 3, the gain of the amplifier a connected to the light receiving unit 3 G a, the When the output of the amplifier A is RAI LO and the optical path distance is the short distance S, the tube closer to the light emitting unit 2 of the resin tube from the light emitting unit 2 is selected.
  • the incident light intensity on the wall is AIi
  • the emitted light intensity from the tube wall is AI S1
  • the emitted light intensity from the blood is AI S2
  • the emitted light intensity from the tube wall of the resin tube closer to the light receiving unit 3 to the light receiving unit 3 the AI SO, the gain of the amplifier a connected to the light receiving unit 3 G a, the output of the amplifier a and RAI SO.
  • these codes are, for example, light incident intensities AIi and BIi
  • a and B are distinguished from two sensors (if there are two optical path length fixed sensors, they are distinguished, in the case of an optical path length variable sensor and an optical path length fixed sensor, they are I indicates the light intensity, and i indicates the input.
  • Idemitsu strength AI LO, BI SO of A, B represents a distinction between two sensors, I is shows the light intensity, L is far, S is shown a short distance, O denotes an output.
  • a and B in the light intensity AI L1 and BI S2 indicate the distinction between the two sensors, I indicates the light intensity, L indicates a long distance, S indicates a short distance, and 1 and 2 are positions where the light intensity is obtained. Indicates.
  • a and B of the tube wall extinction coefficients A ⁇ C1 and B ⁇ C2 indicate the distinction between the two sensors, ⁇ indicates the extinction coefficient, C1 is the tube wall on the side close to the light emitting unit 2, and C2 is close to the light receiving unit 3.
  • the side tube wall is shown.
  • the tube wall thicknesses Al C1 and Bl C2 A and B indicate the distinction between the two sensors, l indicates the tube wall thickness, C1 indicates the tube wall closer to the light emitting unit 2, and C2 indicates the light receiving unit 3.
  • G of the gains G A and G B indicates the amplification factor including the sensitivity of the light receiving element
  • a and B indicate the distinction between the two sensors
  • R of the amplifier outputs RAI SO and RBI SO indicates an actual measurement value. .
  • FIG. 4 shows the operating principle of the fluid concentration measuring apparatus of the embodiment shown in FIG. 1A.
  • the apparatus of this embodiment there are two types of optical paths: a fixed optical path length L and a fixed optical path length S.
  • L the tube wall thickness, tube wall composition, incident light intensity, and amplifier amplification factor on these two types of optical paths may all be different.
  • the tube wall extinction coefficients A ⁇ C1 , A ⁇ C2 , B ⁇ C1 and B ⁇ C2 are equal to each other, and the tube wall thicknesses Al C1 , Al C2 , and Bl C1 , Bl C2 are also equal to each other, It can be.
  • DL can be set to 0.5 mm, for example.
  • K in the expression the input light intensity difference, amplification index difference, since it is a value that includes all the tube wall thickness difference and the tube wall composition difference, once separately determined the precise value of the blood concentration C H from the outside It is shown that the measurement output of this apparatus can be corrected to a correct value if K is calculated by inserting.
  • FIG. 5 shows the operation principle of the fluid concentration measuring apparatus of the embodiment shown in FIG. 1B.
  • the apparatus of this embodiment there is one optical path having a variable optical path length, and two optical paths are provided on this optical path. Since the optical path lengths L and S are mechanically generated by the optical path distance changing mechanism 18, the tube wall thickness, the tube wall composition, the incident light intensity, the amplifier amplification factor are exactly the same, and only two optical path lengths are different. Can measure the data. Therefore, highly accurate concentration measurement values can be obtained without maintenance between measurements.
  • the blood concentration C H of the resin tube Is required.
  • the blood concentration C H is obtained from the amplifier outputs RAI LO and RAI SO obtained by switching between the optical path distance L and the optical path distance S, and the input light intensity difference and the tube wall composition difference are obtained. It shows that it is not affected. However, it is necessary to switch the optical path length for each measurement.
  • FIG. 3 shows the principle of operation of the fluid concentration measuring device of the embodiment shown in FIG. 1 (c) as described above.
  • the device of this embodiment has an optical path in the resin tube shown on the left side in FIG.
  • the first unit pair 4M optical path length variable sensor (A)) having a pair of variable optical path lengths for setting the optical paths of the distances L and S and the optical path distance L or S in the resin tube shown on the right side in FIG.
  • a second unit pair 4L or 4S optical path length fixed sensor (B)) having a pair of fixed optical path lengths for setting an optical path, and further between the light emitting unit 2 and the light receiving unit 3 of the first unit pair 4M.
  • the motor driver 16, the motor 17, and the optical path distance changing mechanism 18 are provided as in the apparatus of the embodiment shown in FIG. Yes.
  • step S1 the optical path of the optical path distances L and S is set by the first unit pair 4M having a variable optical path length, and the tube in the resin tube
  • step S2 the optical path of the first unit pair 4M
  • the optical path length of the first unit pair 4M is fixed to the long distance L and shown in FIG.
  • the configuration is the same as that of the apparatus, and the subsequent measurement is performed using the correction data obtained previously. According to the apparatus of the embodiment shown in FIG. 1C, it is not necessary to switch between two types of optical path lengths for each measurement, and correction data can be obtained inside the apparatus. Can be done continuously.
  • step S1 since the configuration is the same as that of the apparatus of the embodiment shown in FIG. 1B, the blood concentration is calculated by the equation (22) from the measured values at the two types of optical path lengths of the first unit pair 4M. C H is obtained.
  • step S2 since the configuration in step S2 is the same as that of the apparatus of the embodiment shown in FIG. 1A, for example, the measured value of the first unit pair 4M with the optical path length L and the second unit pair with the optical path length S are used. From the measured value of 4S, the blood concentration CH is obtained by the equation (11).
  • FIG. 6 is an explanatory view showing a more specific configuration example of the fluid concentration measuring device of the embodiment of FIG. 1B with the lid closed
  • FIG. 7 shows the fluid concentration measuring device of the configuration example.
  • the apparatus of this structural example can open and close the lid
  • a light emitting unit 2 and a light receiving unit 3 which are provided with a case 1 having a 1a and which are arranged facing both side walls of the groove 1a of the case 1 and supported by the case 1 so as to be movable toward and away from each other.
  • a pair of light emitting / receiving units 4M (only the light receiving unit 3 is shown in FIGS. 6 and 7).
  • FIG. 8 is an explanatory view showing a pair of the light emitting unit 2 and the light receiving unit 3 inside the fluid concentration measuring device of the configuration example
  • FIG. 9 is a diagram showing the light emitting unit 2 and the light receiving inside the fluid concentration measuring device of the configuration example. It is explanatory drawing which cuts off and partially shows the guide mechanism which guides relative movement with the unit 3, and the deck part of case 1 which covers the pair of the light emission unit 2 and the light reception unit 3, and forms the groove
  • a cam plate 23 is disposed below the base plate 21 so as to be slidable in the extending direction of the groove 1a perpendicular to the extending direction of the guide rod 22 along the lower surface of the base plate 21.
  • FIG. 10 is an explanatory view showing a motor-driven crank mechanism for changing the relative distance between the light emitting unit and the light receiving unit in the fluid concentration measuring device of the above configuration example
  • FIG. 11 is a fluid concentration measuring device of the configuration example
  • FIG. 12 is an explanatory diagram showing the configuration of the cam plate of the fluid concentration measuring device of the configuration example.
  • the base of the crank arm 24 is fixed to the output shaft of the motor 17 composed of a servo motor with a speed reducer housed and fixed inside the case 1.
  • the front end is connected to one end of the cam plate 23 via a link member 25 to constitute a crank mechanism for moving the cam plate 23 forward and backward in the extending direction of the groove 1a of the case 1. ing.
  • FIG. 12 is an explanatory view showing the configuration of a cam plate for changing the relative distance between the light emitting unit and the light receiving unit in the fluid concentration measuring device of the above configuration example.
  • the cam plate 23 here is a diagram of the cam plate 23. In the figure, it has two pairs of cam surfaces 23a and 23b that make a pair facing each other in the vicinity of the upper and lower sides, and a guide hole 23c that extends in the left-right direction in the center of the cam plate 23, the distance between the cam surface 23a which forms one of the pair is slightly wider than the distance between the cam surface 23b forming the other pair, the difference between these distances, the tube distance between the walls AL L farther It corresponds to a difference DL between the tube walls distance AL S closer.
  • the cam surfaces 23a and 23b near the side portions of the cam plate 23 are smoothly connected to each other by curved surfaces.
  • the two cam surfaces 23a and 23b project to the lower ends of the light emitting unit 2 and the light receiving unit 3, respectively.
  • the projecting curved surfaces of the provided cam follower portions 2a and 3a face each other and are in sliding contact with the cam surfaces 23a and 23b.
  • a compression spring (not shown) is interposed between the light emitting unit 2 and the light receiving unit 3, and this compression spring constantly urges the light emitting unit 2 and the light receiving unit 3 in the direction away from each other, and the cam follower.
  • the slidable contact between the projecting curved surfaces of the portions 2a and 3a and the cam surfaces 23a and 23b is maintained, and a cam mechanism is constituted by these.
  • a protrusion 21a protruding from the lower surface of the base plate 21 is slidably fitted into the guide hole 23c at the center of the cam plate 23, and thereby the groove 1a of the case 1 extends in the extending direction.
  • a guide mechanism that guides the movement of the cam plate 23 is configured.
  • the link member 25 causes the cam plate 23 to extend in the extending direction of the groove 1a of the case 1 and the light emitting unit. 2 and the light receiving unit 3 are moved forward and backward to the position where the projecting curved surfaces of the cam follower portions 2a and 3a projecting from the lower end portions of the light receiving unit 3 and the cam surface 23b contact the cam surface 23b. Is set to a predetermined distance on the far side or a predetermined distance on the near side. Therefore, according to this configuration example, the mechanism portion of the fluid concentration measuring apparatus of the embodiment shown in FIG. 1B can be configured, and highly accurate blood concentration measurement can be performed.
  • the present invention has been described based on the illustrated examples, the present invention is not limited to the above-described examples and can be appropriately changed within the scope of the claims.
  • the CPU 15 The blood concentration is obtained by performing arithmetic processing based on the light intensity in the light receiving unit 3 and is output, but instead of this, at the light receiving points at each of the plurality of optical path distances obtained and stored in advance. Using a table indicating the relationship between the light intensity and the fluid concentration, the fluid concentration may be obtained and output from the light intensity at the light receiving location.
  • light having a wavelength of about 590 nm is used as light having substantially the same extinction rate for both oxygenated hemoglobin of arterial blood and deoxygenated hemoglobin of venous blood.
  • light having a wavelength near 520 nm, 550 nm, 570 nm, or 805 nm may be used.
  • the concentration of blood as a liquid is measured.
  • it can also be used for measuring the concentration of other liquids, in which case the liquid is used as light supplied from the light source. It is preferable to select light having a wavelength with a high absorptance due to the difference in light intensity at the light receiving location depending on the thickness of the tube wall.
  • light is supplied at a light supply location at two types of optical path distances, and the light is received at a light reception location to obtain the light intensity.
  • the light intensity may be obtained at each light receiving location by setting the optical path distance, and in this way, the measurement accuracy can be further improved by averaging the obtained results.
  • the fluid concentration measuring apparatus method of the present invention light passing through the optical path obliquely crossing the pipe line with respect to its extending direction is not measured, so that the light-transmitting and deformable pipe wall such as a resin tube is provided. It is possible to measure the concentration of fluid such as blood and chemicals flowing through the pipe line with high accuracy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Ecology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】管路をその延在方向に対し斜めに横切る光路を経た光を測定しないことで、樹脂チューブ等の光透過性でかつ変形可能な管壁を持つ管路内を流れる血液や薬液等の流体の濃度を高精度に測定することにある。 【解決手段】光透過性でかつ変形可能な管壁を持つ管路内を流れる流体の濃度を測定する装置において、前記管路の表面上の供光箇所から前記管路内に光を供給する光源と、前記光供給箇所に対しその管路の直径方向の反対側に位置する受光箇所で、前記供給されてその管路の壁内およびその管路内の流体内を通過して来た光を受光してその光の強度を示す信号を出力する受光素子と、前記光供給個所と前記受光箇所との間の光路距離を複数設定する光路距離設定手段と、それら複数の光路距離のそれぞれにおける前記受光箇所での光の強度からランベルト-ベールの法則に基づき、前記各光路距離をおいて前記光供給箇所からの光を前記受光箇所で受光する場合の光の強度と流体の濃度との関係を示す複数の関係式を求め、それら複数の光路距離での関係式に基づいて、前記受光箇所での光の強度から流体の濃度を求めて出力する流体濃度出力手段と、を具えるものである。

Description

流体濃度測定装置
 この発明は、光透過性かつ変形可能な管路内を流れる流体の濃度をランベルト-ベールの法則に基づいて測定する装置に関するものである。
 従来の流体濃度測定装置としては、例えば特許文献1記載のものが知られており、ここにおける測定方法および測定装置は、半導体ウエハを洗浄処理する流体としての処理液の濃度を測定するもので、処理液供給配管の途中に測定体を複数設け、各測定体内に、処理液中を通過する光の光路長さを異ならせた光透過部を設け、処理液の性質に応じた光路長さの光透過部に光源からの光を供給し、その光透過部において処理液中を透過した光を光検出器で受光してその光の強度を調べ、その光の強度からランベルト-ベールの法則に基づいて処理液の濃度を求めている。
特開平10-325797号公報
 ところで、上記従来の流体濃度測定装置では、各光透過部における光路長さが厳密に判明しており、それゆえあらかじめ光路長さが設定された計算式を用いて流体の濃度を容易に求めることができる。その一方で、例えば樹脂チューブ等の光透過性でかつ変形可能な管路内を流れる血液や薬液等の流体の濃度が測定できると、医療等の分野において極めて役立つであろうということが予想される。
 しかしながら上記従来の装置を、樹脂チューブやガラス管等の光透過性の管路内を流れる血液や薬液等の流体の濃度測定に適用しようとすると、光透過性の管路を横切る光路に光を通過させる必要があるが、光路長さとなる管路の内径も管路の壁厚さも実測が困難であり、特に管路が変形可能な樹脂チューブの場合はその変形によって内径が変化する可能性があり、それゆえこのような場合の血液や薬液等の濃度の測定は極めて困難で、従来は実質上その測定ができなかった。
 このため本願発明者は、同じ光源からの光りを光透過性の管路に複数個所で横切らせてそれぞれの箇所で光の強度を求めることで、ランベルト-ベールの法則に基づく計算から管路の内径や壁厚の影響を除去する流体濃度測定装置を先に提案している(PCT/JP2013/54664号国際出願)が、この測定装置では計算上管壁内の光路の設定を各受光箇所で管壁と直角に設定しており、その一方、実際の光路は管壁内を斜めに横切るものとなり、しかも、屈折率の相違によってその傾斜角が異なったものとなるため、計算精度をさらに高めるには改良の余地があることが判明した。
 この発明は上述の点に鑑みて、光供給箇所に対し受光箇所を管路の直径方向の反対側に固定配置して光路を管路の延在方向に対し直角に維持することで、従来の流体濃度測定装置の課題を有利に解決するものであり、この発明の流体濃度測定装置は、光透過性でかつ変形可能な管壁を持つ管路内を流れる流体の濃度を測定する装置において、
 前記管路の表面上の光供給箇所から前記管路内に光を供給する光源と、
 前記光供給箇所に対しその管路の直径方向の反対側に位置する受光箇所で、前記供給されてその管路の壁内およびその管路内の流体内を通過して来た光を受光してその光の強度を示す信号を出力する受光素子と、
 前記光供給個所と前記受光箇所との間の光路距離を複数設定する光路距離設定手段と、
 それら複数の光路距離のそれぞれにおける前記受光箇所での光の強度からランベルト-ベールの法則に基づき、前記各光路距離をおいて前記光供給箇所からの光を前記受光箇所で受光する場合の光の強度と流体の濃度との関係を示す複数の関係式を求め、それら複数の光路距離での関係式に基づいて、前記受光箇所での光の強度から流体の濃度を求めて出力する流体濃度出力手段と、
を具えることを特徴とするものである。
 かかるこの発明の流体濃度測定装置にあっては、樹脂チューブ等の光透過性でかつ変形可能な管壁を持つ管路内を流れる流体の濃度を測定する装置において、光源が前記管路の表面上の光供給箇所から前記管路内に光を供給し、受光素子が前記光供給箇所に対しその管路の直径方向の反対側に位置する受光箇所で、前記供給されてその管路の壁内およびその管路内の流体内をその管路の延在方向と直角に通過して来た光を受光してその光の強度を示す信号を出力し、光路距離設定手段が前記光供給個所と前記受光箇所との間の光路距離を複数設定し、そして流体濃度出力手段が、それら複数の光路距離のそれぞれにおける前記受光箇所での光の強度からランベルト-ベールの法則に基づき、前記各光路距離をおいて前記光供給箇所からの光を前記受光箇所で受光する場合の光の強度と流体の濃度との関係を示す複数の関係式を求め、それら複数の光路距離での関係式に基づいて、前記受光箇所での光の強度から流体の濃度を求めて出力する。
 従って、この発明の流体濃度測定装置によれば、管路をその延在方向に対し斜めに横切る光路を経た光を測定しないので、樹脂チューブ等の光透過性でかつ変形可能な管壁を持つ管路内を流れる血液や薬液等の流体の濃度を高精度に測定することができる。
 なお、この発明の流体濃度測定装置においては、前記光路距離設定手段は、間隔が互いに異なる前記光供給個所と前記受光箇所との対を複数対有し、それらの光供給個所と受光箇所との対を選択的に用いることで光路距離を変更するものであっても良く、このようにすれば、光路距離を変更せずに光路距離を複数設定できるので、測定時間を短縮することができる。
 また、この発明の流体濃度測定装置においては、前記光路距離設定手段は、同じ前記光供給個所と前記受光箇所との間隔を変化させてそれらの間の光路距離を変更するものであっても良く、このようにすれば、光路距離を任意に設定できるので、流体濃度の変化に容易に対応することができ、また、光源や受光素子に同じものを用いるので、光源や受光素子の相違による測定誤差をなくすこともできる。
 さらに、この発明の流体濃度測定装置においては、前記光路距離設定手段は、間隔が互いに異なる前記光供給個所と前記受光箇所との対を複数対有し、それらの光供給個所と受光箇所との対の一つは、同じ前記給光個所と前記受光箇所との間隔を変化させてそれらの間の光路距離を変更するものであっても良く、このようにすれば、光路距離を変更する対を用いることで光路距離を任意に設定できるので、流体濃度の変化に容易に対応することができ、一旦関係式が判明したら光路距離固定の対を用いることで測定時間を短縮でき、実質的にリアルタイムで連続的に測定を行うことができる。
 そして、この発明の流体濃度の測定装置においては、前記流体濃度出力手段は、あらかじめ求めて記憶した、前記複数の光路距離のそれぞれにおける受光箇所での光の強度と流体の濃度との関係を示すテーブルを用いて、前記受光箇所での光の強度から流体の濃度を求めて出力するものでも良く、このようなテーブルを用いれば、受光箇所での光の強度から短時間で容易に流体の濃度を求めて出力することができる。
(a)~(c)は、この発明の流体濃度測定装置の三種類の実施例の外観をそれぞれ模式的に示す説明図である。 上記三種類の実施例の流体濃度測定装置の電気的構成を纏めて示すブロック線図である。 上記各実施例における符号の説明を図1(c)の実施例の流体濃度測定装置の原理とともに示す説明図である。 上記図1(a)の実施例の流体濃度測定装置の原理を示す説明図である。 上記図1(b)の実施例の流体濃度測定装置の原理を示す説明図である。 上記図1(b)の実施例の流体濃度測定装置の構成例を蓋を閉じた状態で示す説明図である。 上記図1(b)の実施例の流体濃度測定装置の構成例を蓋を開いた状態で示す説明図である。 上記図1(b)の実施例の流体濃度測定装置の構成例の内部の発光ユニットと受光ユニットとの対を示す説明図である。 上記図1(b)の実施例の流体濃度測定装置の構成例の内部の発光ユニットと受光ユニットとの相対移動を案内するガイド機構を一部切り欠いて示す説明図である。 上記図1(b)の実施例の流体濃度測定装置の構成例の内部の発光ユニットと受光ユニットとの相対間隔を変更するモーター駆動のクランク機構を示す説明図である。 上記図1(b)の実施例の流体濃度測定装置の構成例の内部の発光ユニットと受光ユニットとの相対間隔を変更するカム板とクランク機構との連結状態を示す説明図である。 上記図1(b)の実施例の流体濃度測定装置の構成例の内部の発光ユニットと受光ユニットとの相対間隔を変更するカム板の構成を示す説明図である。
 以下、本発明の実施の形態を実施例によって、図面に基づき詳細に説明する。ここに、図1~5は、この発明の流体濃度測定装置の三種類の実施例における流体濃度の測定原理および計算方法を示す説明図である。
 すなわち、図1(a)~(c)は、この発明の流体濃度測定装置の三種類の実施例の外観をそれぞれ模式的に示す説明図であり、図1(a)~(c)に示す三種類の実施例の装置は各々、光透過性でかつ変形可能な管壁を持つ管路としての実質的に透明な樹脂チューブ内を流れる、流体としての血液の濃度を測定するものである。ここで、図1(a)に示す流体濃度測定装置は、ケース1の中央部に図では左右方向へ延在する溝1a内に通された図示しない樹脂チューブを間に挟んで直径方向に圧縮変形させるようにケース1の溝1aの側壁部に向かい合わせに固定された発光ユニット2と受光ユニット3との対である発光受光ユニット対4を二対具え、これらの発光受光ユニット対4として、発光ユニット2と受光ユニット3との間の光路距離が所定の近距離Sの図では右側の近距離ユニット対4Sと、発光ユニット2と受光ユニット3との間の光路距離が所定の遠距離Lの図では左側の遠距離ユニット対4Lとの二種類を設定している。従ってこの二対の発光受光ユニット対4が光路距離設定手段として機能する。なお、二対の発光受光ユニット対4は互いに隣接していなくても良く、測定に影響が殆どない程度に互いに離間していると好ましい。二対の発光受光ユニット対4が互いに隣接している場合には、一方の発光受光ユニット対4で測定を行っている間は他方の発光受光ユニット対4での測定を行わないようにしても良い。
 また、図1(b)に示す流体濃度測定装置は、ケース1の中央部に図では左右方向へ延在する溝1a内に通された図示しない樹脂チューブを間に挟んで直径方向に圧縮変形させるようにケース1の溝1aの両側壁部に向かい合わせに配置されて図中矢印で示すように互いの接近および離間方向に移動可能にケース1に支持された発光ユニット2と受光ユニット3との対である発光受光ユニット対4Mを一対具え、さらに、その発光受光ユニット対4Mの発光ユニット2と受光ユニット3とを互いの接近および離間方向すなわち樹脂チューブの直径方向へ相対移動させてそれらの発光ユニット2と受光ユニット3との間の光路距離を変更する図示しない光路距離変更機構を具えている。従ってこの光路距離変更機構が光路距離設定手段として機能する。
 そして図1(c)に示す流体濃度測定装置は、図1(a)に示す装置の半部と図1(b)に示す装置とを組み合わせたもので、ケース1の中央部に図では左右方向へ延在する溝1a内に通された図示しない樹脂チューブを間に挟んで直径方向に圧縮変形させるようにケース1の溝1aの側壁部に向かい合わせに固定された発光ユニット2と受光ユニット3との対である発光受光ユニット対4として近距離ユニット対4Sまたは遠距離ユニット対4Lを一対具えるとともに、その樹脂チューブを間に挟んで直径方向に圧縮変形させるようにケース1の溝1aの側壁部に向かい合わせに配置されて図中矢印で示すように互いの接近および離間方向に移動可能にケース1に支持された発光ユニット2と受光ユニット3との対である発光受光ユニット対4Mを一対具え、さらに、その発光受光ユニット対4Mの発光ユニット2と受光ユニット3とを互いの接近および離間方向すなわち樹脂チューブの直径方向へ相対移動させてそれらの発光ユニット2と受光ユニット3との間の光路距離を変更する図示しない光路距離変更機構を具えている。従ってこの光路距離変更機構と距離を固定された発光受光ユニット対4とが光路距離設定手段として機能する。
 ここで、発光ユニット2は、光源としての発光ダイオード(LED)あるいはレーザーダイオード等の、電気を供給されて発光する発光素子を内蔵して、その発光素子からの光を樹脂チューブの表面上に位置する光供給箇所から樹脂チューブ内に供給する。また、受光ユニット3は、フォトダイオードやフォトトランジスタ等の、光を受光して電気を発生させる受光素子を内蔵して、発光ユニット2から供給され樹脂チューブ内を透過してきた光を受光してその光の強度に応じた電気信号を出力する。これら発光ユニット2および受光ユニット3は、動脈血の酸素化ヘモグロビンと静脈血の脱酸素化ヘモグロビンとの両方の吸光率がほぼ等しい光として590nm付近の波長の光を発光および受光している。
 図2は、上記三種類の実施例の流体濃度測定装置の電気的構成を纏めて示すブロック線図であり、図1(a)に示す装置では、図2に示す第1のユニット対4と第2のユニット対4との一方が近距離ユニット対4Sで、他方が遠距離ユニット対4Lであり、それらのユニット対4の光路距離は固定であるので、後述するモータードライバー16とモーター17と光路距離変更機構18とは具えていない。
 図1(a)に示す装置では、発光素子ドライバー11によりそれぞれ駆動された二つの発光ユニット2内の発光素子から発光された光は、二対のユニット対4の発光ユニット2と受光ユニット3との間に挟まれて直径方向に圧縮変形された一本の樹脂チューブTBの、発光ユニット2に近い側のチューブ壁と、その樹脂チューブTBの内部を流れる血液BDと、発光ユニット2から遠い側(反対側)すなわち受光ユニット3に近い側のチューブ壁とを透過し、互いに異なる固定距離の光路を経て、二つの受光ユニット3内の受光素子にそれぞれ受光され、二つの受光ユニット3内の受光素子は、受光した光の強度に応じたレベルの電気信号をそれぞれ出力する。
 二つの受光ユニット3内の受光素子の出力信号はそれぞれ、アンプ12で増幅され、ローパスフィルタ13で高周波のノイズ成分を除去され、アナログ-デジタルコンバータ(A/D)14でアナログ信号からデジタル信号に変換されて、中央処理ユニット(CPU)15に入力される。CPU15は、発光素子ドライバー11の作動を制御して、好ましくは二対のユニット対4の発光ユニット2を選択的に発光させて相互の干渉を回避するとともに、それぞれの光路距離での受光素子の出力信号から後述の如くして、樹脂チューブTB内の血液BDの濃度を求め、その濃度データを示す信号を出力する。従ってCPU15は流体濃度出力手段として機能する。
 図1(b)に示す装置では、図2に示す第1のユニット対4が、ケース1の溝1aの側壁部に向かい合わせに配置されて互いの接近および離間方向に移動可能にケース1に支持された発光ユニット2と受光ユニット3との対である発光受光ユニット対4Mであり、第2のユニット対4は具えていないので、その第2のユニット対4の受光ユニット3の受光素子からの出力信号を処理してCPU15に送るアンプ12とローパスフィルタ13とA/D14とも具えていず、代わりに第1のユニット対4のために、図2に示すモータードライバー16とモーター17と光路距離変更機構18とを具えている。
 流体濃度出力手段として機能するCPU15はまた、モータードライバー16に制御信号を送り、モータードライバー16はその制御信号に応じてモーター17に駆動電流を送り、モーター17はその駆動電流に応じて光路距離変更機構18を作動させ、光路距離変更機構18は第1のユニット対4の発光ユニット2と受光ユニット3との間の光路距離を所定の遠距離Lと所定の近距離Sとの間で変化させるように、発光ユニット2と受光ユニット3とを互いの接近および離間方向に移動させる。このような光路距離変更機構18としては、例えばカムを用いて発光ユニット2と受光ユニット3との少なくとも一方、好ましくは両方を同時に他方に対する接近および離間方向に移動させる後述のカム機構の他、右ねじの雄ねじと左ねじの雄ねじとを両端部に持つ駆動軸を回転させてそれらの雄ねじに螺合する雌ねじをそれぞれ持つ発光ユニット2と受光ユニット3とを同時に他方に対する接近および離間方向に移動させるねじ機構等、任意の機構を用いることができる。
 図1(c)に示す装置では、図2に示す第1のユニット対4が、ケース1の溝1aの側壁部に向かい合わせに配置されて互いの接近および離間方向に移動可能にケース1に支持された発光ユニット2と受光ユニット3との対である発光受光ユニット対4Mであり、図2に示す第2のユニット対4が、何れも光路距離固定の近距離ユニット対4Sまたは遠距離ユニット対4Lである。
 図3は、上記各実施例における符号の説明を図1(c)の実施例の流体濃
Figure JPOXMLDOC01-appb-I000001
 また、樹脂チューブの受光ユニット3に近い側のチューブ壁の吸光係数をAεC1、樹脂チューブの受光ユニット3に近い側のチューブ壁の吸光係数をAεC2、樹脂チューブ内の血液の吸光係数をε、濃度をCとし、光路距離が遠距離Lの場合は、発光ユニット2から樹脂チューブの発光ユニット2に近い側のチューブ壁への入光強度をAIi、そのチューブ壁からの出光強度をAIL1、血液からの出光強度をAIL2、樹脂チューブの受光ユニット3に近い側のチューブ壁から受光ユニット3への出光強度をAILO、受光ユニット3に繋がるアンプAのゲインをG、そのアンプAの出力をRAILOとし、その一方、光路距離が近距離Sの場合は、発光ユニット2から樹脂チューブの発光ユニット2に近い側のチューブ壁への入光強度をAIi、そのチューブ壁からの出光強度をAIS1、血液からの出光強度をAIS2、樹脂チューブの受光ユニット3に近い側のチューブ壁から受光ユニット3への出光強度をAISO、受光ユニット3に繋がるアンプAのゲインをG、そのアンプAの出力をRAISOとする。
 さらに、光路距離(光路長)が近距離Sの固定式の発光受光ユニット対(
Figure JPOXMLDOC01-appb-I000002
 すなわちこれらの符号は、例えば入光強度AIi,BIiのA,Bは二つのセンサの区別(光路長固定センサが二つの場合はそれらの区別、光路長可変センサと光路長固定センサの場合はそれらの区別)を示し、Iは光強度を示し、iは入力を示す。出光強度AILO,BISOのA,Bは二つのセンサの区別を示し、Iは光強度を示し、Lは遠距離、Sは近距離を示し、Oは出力を示す。光強度AIL1,BIS2のA,Bは二つのセンサの区別を示し、Iは光強度を示し、Lは遠距離、Sは近距離を示し、1,2はその光強度が得られる位置を示す。またチューブ壁の吸光係数AεC1,BεC2のA,Bは二つのセンサの区別を示し、εは吸光係数を示し、C1は発光ユニット2に近い側のチューブ壁、C2は受光ユニット3に近い側のチューブ壁を示す。そしてチューブ壁厚さAlC1,BlC2のA,Bは二つのセンサの区別を示し、lはチューブ壁厚さを示し、C1は発光ユニット2に近い側のチューブ壁、C2は受光ユニット3に近い側のチューブ壁を示し、チューブ壁間距離AL,BLのA,Bは二つのセンサの区別を示し、最初のLはチューブ壁間距離を示し、後のLは遠距離、Sは近距離を示す。さらにゲインG,GのGは受光素子の感度を含めたアンプ増幅率、A,Bは二つのセンサの区別を示し、アンプ出力RAISO,RBISOのRは実測値であることを示す。
 図4は、図1(a)に示す実施例の流体濃度測定装置の作動原理を示しており、この実施例の装置では、固定光路長Lの光路と固定光路長Sの光路との二種類の光路があり、ここでは、これら二種類の光路上のチューブ壁厚さ、チューブ壁組成、入光強度、アンプ増幅率が全て異なる可能性があると考える。
 先ず固定光路長LのセンサAについて考えると、ランベルトベールの式より、
Figure JPOXMLDOC01-appb-M000003
となる。
 (1)式~(4)式より、
Figure JPOXMLDOC01-appb-M000004
となる。
 また、固定光路長SのセンサBについて考えると、同様に、
Figure JPOXMLDOC01-appb-M000005
となる。
 (6)式~(9)式より、
Figure JPOXMLDOC01-appb-M000006
となる。
(5)式を(10)式で割ると、
Figure JPOXMLDOC01-appb-M000007
 従って、
Figure JPOXMLDOC01-appb-I000008
 AL-BL=DLとして両辺の対数をとると、
Figure JPOXMLDOC01-appb-M000009
となる。
 ここで、右辺については3項目のε・C・DL以外は定数となるのでそれらをKとおくと、上記の式は、
Figure JPOXMLDOC01-appb-M000010
で表される。
 よって、樹脂チューブ内の血液濃度Cは、
Figure JPOXMLDOC01-appb-M000011
で求められる。
 但し、
Figure JPOXMLDOC01-appb-I000012
である。
 なお、センサA,B間はこの実施例の装置では1cm程度のため、チューブ壁吸光係数AεC1,AεC2,BεC1,BεC2は互いに等しく、チューブ壁厚さAlC1,AlC2,BlC1,BlC2も互いに等しいものと見做すと、
Figure JPOXMLDOC01-appb-M000013
とすることができる。
 また、この実施例の装置では、DLは例えば0.5mmに設定することができる。
 (11)式におけるKは、入力光強度差、増幅率差、チューブ壁厚差およびチューブ壁組成差の全てを含む値であることから、一旦外部から別途求めた正確な血液濃度Cの値を入れてKを算出すればこの装置の測定出力を正しい値に補正できることを示している。
 図5は、図1(b)に示す実施例の流体濃度測定装置の作動原理を示しており、この実施例の装置では、可変光路長の一つの光路があり、この一つの光路上で二種類の光路長L,Sを光路距離変更機構18により機械的に作り出すので、チューブ壁厚さ、チューブ壁組成、入光強度、アンプ増幅率が全く同じであって光路長のみ異なる二種類の条件でデータを測定できる。それゆえ、測定間のメンテナンスなしに高精度の濃度測定値を得ることができる。
 先ず光路長Lとした場合について考えると、ランベルトベールの式より、
Figure JPOXMLDOC01-appb-M000014
となる。
 (12)式~(15)式より、
Figure JPOXMLDOC01-appb-M000015
となる。
 また、光路長Sとした場合について考えると、同様に、
Figure JPOXMLDOC01-appb-M000016
となる。
 (6)式~(9)式より、
Figure JPOXMLDOC01-appb-M000017
となる。
(16)式を(21)式で割ると、
Figure JPOXMLDOC01-appb-M000018
 従って、
Figure JPOXMLDOC01-appb-I000019
 AL-AL=DLとして両辺の対数をとると、
Figure JPOXMLDOC01-appb-M000020
となる。
 よって、樹脂チューブ内の血液濃度Cは、
Figure JPOXMLDOC01-appb-M000021
で求められる。
 この(22)式は、光路距離Lと光路距離Sとを切り替えて測定することで得られるアンプ出力RAILO,RAISOから血液濃度Cが得られ、入力光強度差やチューブ壁組成差の影響を受けないことを示している。但し、測定の度ごとに光路長の切替えを行う必要がある。
 図3は、前述のように、図1(c)に示す実施例の流体濃度測定装置の作動原理を示しており、この実施例の装置は、図2では左側に示す、樹脂チューブ内に光路距離LおよびSの光路を設定する1対の可変光路長の第1のユニット対4M(光路長可変センサ(A))と、図2では右側に示す、樹脂チューブ内に光路距離LまたはSの光路を設定する1対の固定光路長の第2のユニット対4Lまたは4S(光路長固定センサ(B))とを具え、さらに第1のユニット対4Mの発光ユニット2と受光ユニット3との間の距離を変化させて上記光路距離LおよびSの光路を設定するために、図1(b)に示す実施例の装置と同様、モータードライバー16とモーター17と光路距離変更機構18とを具えている。
 そしてこの図1(c)に示す実施例の流体濃度測定装置は、先ずステップS1で、可変光路長の第1のユニット対4Mにより光路距離LおよびSの光路を設定し、樹脂チューブ内のチューブ壁間距離以外は同じ条件によって高精度測定を行って補正データを求めた後、ステップS2で、第2のユニット対が遠距離Lの光路長ユニット4Lの場合は第1のユニット対4Mの光路長を近距離Sに固定し、第2のユニット対が近距離Sの光路長ユニット4Sの場合は第1のユニット対4Mの光路長を遠距離Lに固定して図1(a)に示す装置と同様に構成し、先に求めた補正データを用いて引続く測定を行う。この図1(c)に示す実施例の装置によれば、測定の度ごとに光路長を二種類に切り替える必要がなく、また装置内部で補正データを得ることができるので、高精度の測定を連続的に行うことができる。
 すなわち、上記ステップS1では、図1(b)に示す実施例の装置と同様の構成であるから、第1のユニット対4Mの二種類の光路長での測定値から(22)式で血液濃度Cが得られる。
Figure JPOXMLDOC01-appb-M000022
 また、上記ステップS2では、図1(a)に示す実施例の装置と同様の構成であるから、例えば光路長Lの第1のユニット対4Mの測定値と光路長Sの第2のユニット対4Sの測定値とから(11)式で血液濃度Cが得られる。
Figure JPOXMLDOC01-appb-M000023
 これらの式を連立させると、
Figure JPOXMLDOC01-appb-M000024
 よって、
Figure JPOXMLDOC01-appb-I000025
となり、これにより補正係数Kを求めてステップS2での測定に用いることができる。
 図6は、上記図1(b)の実施例の流体濃度測定装置のより具体的な構成例を蓋を閉じた状態で示す説明図、また図7は、その構成例の流体濃度測定装置を蓋を開いた状態で示す説明図であり、この構成例の装置は、ヒンジで蓋1bを開閉可能とされ、その蓋1bを開いた状態で中央部に図では斜め左右方向に延在する溝1aを有するケース1を具えるとともに、そのケース1の溝1aの両側壁部に向かい合わせに配置されて互いの接近および離間方向に移動可能にケース1に支持された発光ユニット2と受光ユニット3との対である発光受光ユニット対4M(図6,7では受光ユニット3のみを示す)を一対具えている。
 図8は、構成例の流体濃度測定装置の内部の発光ユニット2と受光ユニット3との対を示す説明図、また図9は、その構成例の流体濃度測定装置の内部の発光ユニット2と受光ユニット3との相対移動を案内するガイド機構を一部切り欠いて示す説明図であり、ここでは発光ユニット2と受光ユニット3との対を覆うとともに溝1aを形成するケース1のデッキ部分を省略して示している。このケース1の内部に固定されるベース板21には、図9に示すように二本のガイドロッド22が固定され、発光ユニット2と受光ユニット3とは互いに向かい合った状態でこれらのガイドロッド22に各々摺動自在に嵌合して、互いの接近および離間方向すなわち樹脂チューブの直径方向へ相対移動することができる。そしてこのベース板21の下には、そのベース板21の下面に沿ってガイドロッド22の延在方向と直交する溝1aの延在方向に摺動可能にカム板23が配置されている。
 図10は、上記構成例の流体濃度測定装置の内部の発光ユニットと受光ユニットとの相対間隔を変更するモーター駆動のクランク機構を示す説明図、また図11は、その構成例の流体濃度測定装置の内部のカム板とクランク機構との連結状態を示す説明図、そして図12は、その構成例の流体濃度測定装置のカム板の構成を示す説明図である。図10に裏側から見た状態で示すように、ケース1の内部に収容固定される減速機付サーボモーターからなるモーター17の出力軸にはクランクアーム24の基部が固定され、このクランクアーム24の先端部が図11に示すようにリンク部材25を介して上記のカム板23の一端部に連結されて、ケース1の溝1aの延在方向へカム板23を進退移動させるクランク機構が構成されている。
 図12は、上記構成例の流体濃度測定装置の内部の発光ユニットと受光ユニットとの相対間隔を変更するカム板の構成を示す説明図であり、ここにおけるカム板23は、カム板23の図では上下に位置する両側部付近にて互いに向き合う向きで対をなす二対のカム面23a,23bと、カム板23の中央部で図では左右方向へ延在するガイド孔23cとを有し、一方の対をなすカム面23aの間の距離は、他方の対をなすカム面23bの間の距離よりも僅かに広くされ、それらの距離の差は、遠い方のチューブ壁間距離ALと近い方のチューブ壁間距離ALとの差DLに対応している。
 そしてカム板23の各側部付近カム面23a,23bは曲面によって互いに滑らかに繋がっており、これら二対のカム面23a,23bに、発光ユニット2と受光ユニット3とのそれぞれの下端部に突設されたカムフォロワ部2a,3aの突曲面がそれぞれ対向して、カム面23a,23bに摺接している。なお、発光ユニット2と受光ユニット3との間には図示しない圧縮スプリングが介挿されており、この圧縮スプリングが発光ユニット2と受光ユニット3とを互いに離間する方向へ常時附勢して、カムフォロワ部2a,3aの突曲面とカム面23a,23bとの摺接を維持し、これらによってカム機構が構成されている。
 また、カム板23の中央部のガイド孔23cには、ベース板21の下面から突出した突条21aが摺動自在に嵌合しており、これによりケース1の溝1aの延在方向へのカム板23の移動を案内するガイド機構が構成されており、これらクランク機構とカム機構とガイド機構とによって、発光ユニット2と受光ユニット3との間の光路距離を遠い方の距離と近い方の距離との間で変更する光路距離変更機構26が構成されている。
 かかる構成例の流体濃度測定装置にあっては、モーター17がクランクアーム24を所定の位置まで回動させると、リンク部材25がカム板23をケース1の溝1aの延在方向へ、発光ユニット2と受光ユニット3とのそれぞれの下端部に突設されたカムフォロワ部2a,3aの突曲面がカム面23aまたはカム面23bに当接する位置まで進退移動させて、発光ユニット2と受光ユニット3との間の光路距離を遠い方の所定距離または近い方の所定距離に設定する。従ってこの構成例によれば、図1(b)に示す実施例の流体濃度測定装置の機構部分を構成し、高精度の血液濃度測定を行うことができる。
 以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく特許請求の範囲の記載範囲内で適宜変更し得るものであり、例えば上記実施例の装置では、CPU15が受光ユニット3での光の強度に基づき演算処理を行って血液濃度を求め、それを出力しているが、これに代えて、あらかじめ求めて記憶した、前記複数の光路距離のそれぞれにおける受光箇所での光の強度と流体の濃度との関係を示すテーブルを用いて、前記受光箇所での光の強度から流体の濃度を求めて出力するようにしても良い。
 また、上記実施例の装置では、動脈血の酸素化ヘモグロビンと静脈血の脱酸素化ヘモグロビンとの両方の吸光率がほぼ等しい光として、590nm付近の波長の光を用いているが、これに代えて、例えば520nm,550nm,570nmあるいは805nm付近の波長の光を用いても良い。
 さらに、上記実施例の装置では、液体としての血液の濃度を測定したが、これに代えて、他の液体の濃度測定に用いることもでき、その場合には光源から供給する光として、その液体による吸収率が高い波長の光を選択すると、管壁の厚さ等に応じて受光箇所での光の強度に差異が出易いので好ましい。
 そして、上記実施例の装置では、二種類の光路距離において光供給箇所で光を供給し、その光を受光箇所で受光して光の強度を求めているが、これに代えて、三種類以上の光路距離を設定してそれぞれ受光箇所で光の強度を求めてもよく、このようにすれば、得られた結果を平均化する等により測定精度をより高めることができる。
 かくしてこの発明の流体濃度測定装置法によれば、管路をその延在方向に対し斜めに横切る光路を経た光を測定しないので、樹脂チューブ等の光透過性でかつ変形可能な管壁を持つ管路内を流れる血液や薬液等の流体の濃度を高精度に測定することができる。
 1 ケース
 1a 溝
 1b 蓋
 2 発光ユニット
 2a,3a カムフォロワ部
 3 受光ユニット
 4 発光受光ユニット対
 4L 遠距離発光受光ユニット対
 4M 光路長可変発光受光ユニット対
 4S 近距離発光受光ユニット対
 11 発光素子ドライバー
 12 アンプ
 13 ローパスフィルタ
 14 アナログ-デジタルコンバータ
 15 CPU
 16 モータードライバー
 17 モーター
 18 光路距離変更機構
 21 ベース板
 21a 突条
 22 ガイドロッド
 23 カム板
 23a,23b カム面
 23c ガイド孔
 24 クランクアーム
 25 リンク部材
 26 光路距離変更機構
 TB 樹脂チューブ
 BD 血液

Claims (4)

  1.  光透過性でかつ変形可能な管壁を持つ管路内を流れる流体の濃度を測定する装置において、
     前記管路の表面上の供光箇所から前記管路内に光を供給する光源と、
     前記光供給箇所に対しその管路の直径方向の反対側に位置する受光箇所で、前記供給されてその管路の壁内およびその管路内の流体内を通過して来た光を受光してその光の強度を示す信号を出力する受光素子と、
     前記光供給個所と前記受光箇所との間の光路距離を複数設定する光路距離設定手段と、
     それら複数の光路距離のそれぞれにおける前記受光箇所での光の強度からランベルト-ベールの法則に基づき、前記各光路距離をおいて前記光供給箇所からの光を前記受光箇所で受光する場合の光の強度と流体の濃度との関係を示す複数の関係式を求め、それら複数の光路距離での関係式に基づいて、前記受光箇所での光の強度から流体の濃度を求めて出力する流体濃度出力手段と、
    を具えることを特徴とする流体濃度測定装置。
  2.  前記光路距離設定手段は、間隔が互いに異なる前記光供給個所と前記受光箇所との対を複数対有し、それらの光供給個所と受光箇所との対を選択的に用いることで光路距離を変更するものであることを特徴とする、請求項1記載の流体濃度測定装置。
  3.  前記光路距離設定手段は、同じ前記光供給個所と前記受光箇所との間隔を変化させてそれらの間の光路距離を変更するものであることを特徴とする、請求項1または2記載の流体濃度測定装置。
  4.  前記流体濃度出力手段は、あらかじめ求めて記憶した、前記複数の光路距離のそれぞれにおける受光箇所での光の強度と流体の濃度との関係を示すテーブルを用いて、前記受光箇所での光の強度から流体の濃度を求めて出力するものである、請求項1から3までの何れか1項記載の流体濃度測定装置。
PCT/JP2013/061486 2013-04-18 2013-04-18 流体濃度測定装置 WO2014170985A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/061486 WO2014170985A1 (ja) 2013-04-18 2013-04-18 流体濃度測定装置
JP2015512246A JP6246793B2 (ja) 2013-04-18 2013-04-18 流体濃度測定装置
US14/785,200 US9562858B2 (en) 2013-04-18 2013-04-18 Fluid concentration measuring device
CN201380075615.4A CN105229448B (zh) 2013-04-18 2013-04-18 流体浓度测定装置
EP13882184.8A EP2988113A4 (en) 2013-04-18 2013-04-18 DEVICE FOR MEASURING FLUID CONCENTRATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061486 WO2014170985A1 (ja) 2013-04-18 2013-04-18 流体濃度測定装置

Publications (1)

Publication Number Publication Date
WO2014170985A1 true WO2014170985A1 (ja) 2014-10-23

Family

ID=51730955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061486 WO2014170985A1 (ja) 2013-04-18 2013-04-18 流体濃度測定装置

Country Status (5)

Country Link
US (1) US9562858B2 (ja)
EP (1) EP2988113A4 (ja)
JP (1) JP6246793B2 (ja)
CN (1) CN105229448B (ja)
WO (1) WO2014170985A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107533004A (zh) * 2015-05-29 2018-01-02 尼普洛株式会社 透射光强度测定单元
WO2019013086A1 (ja) * 2017-07-12 2019-01-17 アルプス電気株式会社 分析装置および流路プレート
WO2019098207A1 (ja) * 2017-11-14 2019-05-23 ジーニアルライト株式会社 体液分析装置
US11499961B2 (en) 2017-11-14 2022-11-15 Genial Light Co., Ltd. Body fluid optical analysis device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9308306B2 (en) * 2014-02-24 2016-04-12 Fresenius Medical Care Holdings, Inc. Self calibrating blood chamber
US9759651B2 (en) * 2014-12-23 2017-09-12 Magellan Diagnostics, Inc. Combination optical hemoglobin and electrochemical lead assay
CN106404721B (zh) * 2016-08-25 2019-05-03 吴小戈 一种血液浓度检测装置
EP3660572A4 (en) * 2017-07-26 2021-06-23 Hamamatsu Photonics K.K. SAMPLE MONITORING DEVICE AND SAMPLE MONITORING METHOD
WO2022182913A1 (en) * 2021-02-26 2022-09-01 Vivonics, Inc. Sensor apparatus for sensing characteristic of fluid, and method
US20220334049A1 (en) * 2021-04-15 2022-10-20 Fenwal, Inc. Adjustment Of The Thickness Of A Biological Fluid Being Monitored By An Optical Detection Assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220444A (ja) * 1990-01-25 1991-09-27 Kubota Corp 吸光状態測定方法および吸光測定装置
JPH08313429A (ja) * 1995-05-17 1996-11-29 Hitachi Ltd 分光光度計用セル
JPH09257705A (ja) * 1996-03-18 1997-10-03 Ricoh Co Ltd 流体試料濃度測定装置
JPH10325797A (ja) 1997-05-26 1998-12-08 Dainippon Screen Mfg Co Ltd 流体濃度測定装置
JP2003065952A (ja) * 2001-08-24 2003-03-05 Kosu:Kk 溶存オゾン濃度計
JP2005221298A (ja) * 2004-02-04 2005-08-18 Mitsubishi Electric Corp 吸光分析装置、吸光分析方法、フローセル及び半導体デバイスの製造方法
JP2006234549A (ja) * 2005-02-24 2006-09-07 Mitsubishi Heavy Ind Ltd 吸光光度分析装置および吸光光度分析方法
JP2007113979A (ja) * 2005-10-19 2007-05-10 Ebara Corp マルチ分光分析装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351686A (en) * 1990-10-06 1994-10-04 In-Line Diagnostics Corporation Disposable extracorporeal conduit for blood constituent monitoring
US5371020A (en) * 1991-09-19 1994-12-06 Radiometer A/S Method of photometric in vitro determination of the content of an analyte in a sample
DE19581819B4 (de) * 1994-11-04 2004-07-08 Lamina, Inc. Vorrichtung zum Aufsammeln von Substanzen für optische Analysen
US5770156A (en) * 1996-06-04 1998-06-23 In Usa, Inc. Gas detection and measurement system
US6144444A (en) * 1998-11-06 2000-11-07 Medtronic Avecor Cardiovascular, Inc. Apparatus and method to determine blood parameters
JP2004340806A (ja) * 2003-05-16 2004-12-02 Nippon Soken Inc 粒子濃度検出方法
DE10351160B3 (de) * 2003-11-03 2005-03-31 Roche Diagnostics Gmbh Durchfluß-Meßküvette und Transmissionsspektrometer zur Untersuchung biologischer Flüssigkeiten
JP5164388B2 (ja) * 2007-01-31 2013-03-21 シスメックス株式会社 試料測定装置
DK2321643T3 (en) * 2008-07-16 2017-04-10 Radiometer Medical Aps DEVICE FOR HEMOLYZING A BLOOD SAMPLE AND MEASURING AT LEAST A PARAMETER THEREOF
US8130369B2 (en) * 2008-11-05 2012-03-06 Fresenius Medical Care Holdings, Inc. Measuring hematocrit and estimating hemoglobin values with a non-invasive, optical blood monitoring system
US9308306B2 (en) * 2014-02-24 2016-04-12 Fresenius Medical Care Holdings, Inc. Self calibrating blood chamber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220444A (ja) * 1990-01-25 1991-09-27 Kubota Corp 吸光状態測定方法および吸光測定装置
JPH08313429A (ja) * 1995-05-17 1996-11-29 Hitachi Ltd 分光光度計用セル
JPH09257705A (ja) * 1996-03-18 1997-10-03 Ricoh Co Ltd 流体試料濃度測定装置
JPH10325797A (ja) 1997-05-26 1998-12-08 Dainippon Screen Mfg Co Ltd 流体濃度測定装置
JP2003065952A (ja) * 2001-08-24 2003-03-05 Kosu:Kk 溶存オゾン濃度計
JP2005221298A (ja) * 2004-02-04 2005-08-18 Mitsubishi Electric Corp 吸光分析装置、吸光分析方法、フローセル及び半導体デバイスの製造方法
JP2006234549A (ja) * 2005-02-24 2006-09-07 Mitsubishi Heavy Ind Ltd 吸光光度分析装置および吸光光度分析方法
JP2007113979A (ja) * 2005-10-19 2007-05-10 Ebara Corp マルチ分光分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2988113A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107533004A (zh) * 2015-05-29 2018-01-02 尼普洛株式会社 透射光强度测定单元
US10203281B2 (en) 2015-05-29 2019-02-12 Nipro Corporation Transmitted light intensity measurement unit
WO2019013086A1 (ja) * 2017-07-12 2019-01-17 アルプス電気株式会社 分析装置および流路プレート
JPWO2019013086A1 (ja) * 2017-07-12 2020-07-02 アルプスアルパイン株式会社 分析装置および流路プレート
US11060974B2 (en) 2017-07-12 2021-07-13 Alps Alpine Co., Ltd. Analyzing device and flow path plate
WO2019098207A1 (ja) * 2017-11-14 2019-05-23 ジーニアルライト株式会社 体液分析装置
US11499961B2 (en) 2017-11-14 2022-11-15 Genial Light Co., Ltd. Body fluid optical analysis device

Also Published As

Publication number Publication date
EP2988113A1 (en) 2016-02-24
EP2988113A4 (en) 2016-12-21
JPWO2014170985A1 (ja) 2017-02-16
JP6246793B2 (ja) 2017-12-13
CN105229448A (zh) 2016-01-06
CN105229448B (zh) 2017-11-21
US20160069803A1 (en) 2016-03-10
US9562858B2 (en) 2017-02-07

Similar Documents

Publication Publication Date Title
JP6246793B2 (ja) 流体濃度測定装置
US9846028B2 (en) Film thickness measurement method and film thickness measurement device
JP6786099B2 (ja) 濃度測定装置
US20150241347A1 (en) Nondispersive infrared micro-optics sensor for blood alcohol concentration measurements
US20170014057A1 (en) Biological-information measurement device
JP6342445B2 (ja) 光学計測デバイス及びその方法
TWI719650B (zh) 濃度測定方法
JP2018139952A (ja) 光学測定装置
TWI751684B (zh) 濃度測定裝置
WO2016194834A1 (ja) 透過光強度測定ユニット
US10768095B2 (en) Optical sensor
JP6620002B2 (ja) 流体濃度測定装置および気泡検出装置
JP2009047429A (ja) 光測定装置
JP5576084B2 (ja) 屋外用農作物内部品質測定装置
JP5477058B2 (ja) 成分測定装置
JP2019052925A (ja) 乾き度測定装置及び乾き度測定方法
KR102631359B1 (ko) 헤모글로빈 농도 측정 장치 및 방법
JP7250978B1 (ja) 流体濃度測定装置
WO2016092679A1 (ja) 血流センサ
JP4536501B2 (ja) オゾン水中のオゾン濃度の測定方法及び測定装置
JP2017110946A (ja) 吸光度計
US20210396657A1 (en) Concentration measurement device
WO2014050162A1 (ja) 流体濃度の測定方法および測定装置
CN203838048U (zh) 一种近红外检测土壤水分的光源发射接收装置
Damen et al. TriPleX™-based Micro Ring Resonators for Food Safety Applications

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075615.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882184

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14785200

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013882184

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015512246

Country of ref document: JP

Kind code of ref document: A