WO2014170967A1 - ハイブリッド車両用駆動装置 - Google Patents

ハイブリッド車両用駆動装置 Download PDF

Info

Publication number
WO2014170967A1
WO2014170967A1 PCT/JP2013/061331 JP2013061331W WO2014170967A1 WO 2014170967 A1 WO2014170967 A1 WO 2014170967A1 JP 2013061331 W JP2013061331 W JP 2013061331W WO 2014170967 A1 WO2014170967 A1 WO 2014170967A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
engine
magnitude
rotating machine
control
Prior art date
Application number
PCT/JP2013/061331
Other languages
English (en)
French (fr)
Inventor
洋人 橋本
雄二 岩瀬
弘章 江渕
秀和 永井
正太郎 加藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/784,474 priority Critical patent/US10435013B2/en
Priority to CN201380075670.3A priority patent/CN105121243B/zh
Priority to PCT/JP2013/061331 priority patent/WO2014170967A1/ja
Priority to EP13882495.8A priority patent/EP2987696B1/en
Priority to JP2015512231A priority patent/JP6086149B2/ja
Publication of WO2014170967A1 publication Critical patent/WO2014170967A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K2006/381Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches characterized by driveline brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/106Engine
    • F16D2500/1066Hybrid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/508Relating driving conditions
    • F16D2500/50858Selecting a Mode of operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a hybrid vehicle drive device.
  • Patent Document 1 in a dog clutch in which engagement and release of a hub and a brake member are performed by an actuator, a required torque before release required to switch the dog clutch to a released state is transmitted to a first MG to which power is transmitted to the hub.
  • a technique for a meshing engagement device that calculates and swings control that increases and decreases the torque of the first MG so that the hub is swung when the dog clutch is switched from the engaged state to the released state is disclosed. Has been.
  • An object of the present invention is to provide a hybrid vehicle drive device capable of improving the responsiveness when releasing a meshing engagement device.
  • a drive device for a hybrid vehicle includes an engine, a rotating machine, a meshing engagement device that restricts rotation of the rotating machine, and a reaction force of the engine received by the torque of the rotating machine.
  • the first control for reducing the magnitude is executed, and the magnitude of the inclination of the torque of the rotating machine when the magnitude of the torque of the rotating machine is reduced in the first control is the explosion of the engine.
  • Torque of the engine by moving to equal to or less than the magnitude of the slope of the torque of the engine when reduction.
  • the engagement device determined by the torque gradient of the rotating machine when the magnitude of torque of the rotating machine is reduced in the first control and the release thrust of the engaging device.
  • the stroke time is preferably one cycle or more of the explosion fluctuation of the engine.
  • the estimated torque range of the engine In the hybrid vehicle drive device, if the engagement device is not released even if the magnitude of the torque of the rotating machine is reduced below a lower limit of the estimated torque range of the engine, the estimated torque range of the engine.
  • the second control for increasing the magnitude of the torque of the rotating machine is executed so as to pass, and the magnitude of the inclination of the torque of the rotating machine when the magnitude of the torque of the rotating machine is increased in the second control.
  • the first control is smaller than the magnitude of the torque gradient of the rotating machine when the magnitude of the torque of the rotating machine is reduced.
  • the hybrid vehicle drive device receives the reaction force of the engine due to the torque of the rotating machine when releasing the engaging device from the second mode, and estimates the magnitude of the torque of the rotating machine.
  • the first control is executed to reduce the magnitude of the torque of the rotating machine, and the inclination of the torque of the rotating machine when the magnitude of the torque of the rotating machine is reduced in the first control is increased.
  • the magnitude is equal to or less than the magnitude of the gradient of the engine torque when the engine torque is reduced due to engine explosion fluctuations.
  • the hybrid vehicle drive device according to the present invention has an effect of improving the responsiveness when releasing the engagement device.
  • FIG. 1 is a time chart of the first control according to the embodiment.
  • FIG. 2 is a skeleton diagram of the vehicle according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of engine torque.
  • FIG. 4 is an explanatory diagram of a problem when the stroke time is short.
  • FIG. 5 is a flowchart of control according to the embodiment.
  • FIG. 6 is a time chart of the first control and the second control according to the embodiment.
  • FIG. 1 is a time chart of first control according to an embodiment of the present invention
  • FIG. 2 is a skeleton diagram of a vehicle according to the embodiment
  • FIG. 3 is a diagram illustrating an example of engine torque
  • FIG. 4 is a stroke time.
  • FIG. 5 is a flowchart of the control according to the embodiment
  • FIG. 6 is a time chart of the first control and the second control according to the embodiment.
  • the vehicle 100 is a hybrid vehicle having an engine 1, a first rotating machine MG1, and a second rotating machine MG2.
  • Vehicle 100 may be a plug-in hybrid (PHV) vehicle that can be charged by an external power source.
  • the hybrid vehicle drive device 1-1 according to the present embodiment includes an engine 1, a first rotating machine MG1, and an engagement device 40.
  • the hybrid vehicle drive device 1-1 may further include an ECU 50.
  • the engine 1 converts the combustion energy of the fuel into a rotary motion of the output shaft 1a and outputs it.
  • the output shaft 1 a is connected to the carrier 14 of the planetary gear mechanism 10.
  • the planetary gear mechanism 10 has a function as a power distribution mechanism that distributes the power of the engine 1 to the first rotating machine MG1 side and the output side.
  • the planetary gear mechanism 10 of the present embodiment is a single pinion type, and includes a sun gear 11, a pinion gear 12, a ring gear 13, and a carrier 14.
  • the ring gear 13 is coaxial with the sun gear 11 and is disposed radially outside the sun gear 11.
  • the pinion gear 12 is disposed between the sun gear 11 and the ring gear 13 and meshes with the sun gear 11 and the ring gear 13, respectively.
  • the pinion gear 12 is rotatably supported by the carrier 14.
  • the carrier 14 is connected to the output shaft 1a and rotates integrally with the output shaft 1a. Accordingly, the pinion gear 12 can rotate (revolve) around the central axis of the output shaft 1 a together with the output shaft 1 a, and can be rotated (rotated) around the central axis of the pinion gear 12 supported by the carrier 14.
  • the sun gear 11 is connected to the rotary shaft 31 of the first rotary machine MG1.
  • the rotating shaft 31 is coaxial with the output shaft 1 a and is disposed on the opposite side of the sun gear 11 from the engine 1 side.
  • the rotary shaft 31 is connected to the rotor of the first rotary machine MG1 and transmits the output torque of the first rotary machine MG1 (hereinafter simply “MG1 torque”) to the sun gear 11.
  • MG1 torque the output torque of the first rotary machine MG1
  • An engaging device 40 is disposed at the end of the rotating shaft 31 opposite to the sun gear 11 side.
  • the engaging device 40 has a function as a regulating device that regulates the rotation of the rotating shaft 31.
  • the engagement device 40 is a meshing clutch device, and includes a vehicle body side cylindrical member 41, a piece 42, a sleeve 43, and an actuator 44.
  • the vehicle body side cylindrical member 41 is a cylindrical member, and is fixed to the vehicle body side so as not to rotate.
  • the engagement device 40 is covered with a cover (not shown).
  • the vehicle body side cylindrical member 41 is fixed to this cover.
  • the cover has a function as a sound insulation cover and a heat insulation cover. The cover can block the operation sound of the motor of the actuator 44 and suppress the operation sound from entering the vehicle interior. In addition, since the temperature of the hydraulic oil in the actuator 44 is suppressed by the cover, the operation of the actuator 44 at a low temperature start becomes smooth.
  • the piece 42 is connected to the end of the rotating shaft 31 opposite to the sun gear 11 side.
  • the sleeve 43 is supported by the vehicle body side cylindrical member 41 so as to be movable in the axial direction.
  • the vehicle body side cylindrical member 41 and the sleeve 43 are, for example, spline-fitted, are relatively movable in the axial direction, and are not relatively rotatable in the circumferential direction.
  • External teeth extending in the axial direction are formed on the outer peripheral surface of the vehicle body side cylindrical member 41.
  • Inner teeth extending in the axial direction are formed on the inner peripheral surface of the sleeve 43.
  • the external teeth of the vehicle body side cylindrical member 41 and the internal teeth of the sleeve 43 mesh with each other.
  • the sleeve 43 is located on the opposite side to the engine 1 side with respect to the piece 42 and faces the engine 1 with the piece 42 interposed therebetween in the axial direction.
  • the sleeve 43 may be disposed on the engine 1 side with respect to the piece 42.
  • the actuator 44 is a driving device that applies a driving force in the engaging direction to the sleeve 43.
  • the engagement direction is a direction from the vehicle body side cylindrical member 41 toward the piece 42.
  • the sleeve 43 and the piece 42 each have a meshing tooth.
  • the engaging device 40 is brought into an engaged state when the meshing teeth of the sleeve 43 mesh with the meshing teeth of the piece 42.
  • the engaging device 40 in the engaged state connects the vehicle body side cylindrical member 41 and the piece 42 so as not to be relatively rotatable. That is, the engaging device 40 in the engaged state restricts the rotation of the rotating shaft 31 and restricts the rotation of the first rotating machine MG1.
  • the sleeve 43 receives a biasing force in a release direction, that is, a direction opposite to the engagement direction, by a biasing member such as a return spring (not shown).
  • the actuator 44 moves the sleeve 43 in the engaging direction against the urging force of the urging member by the generated driving force, and engages the sleeve 43 with the piece 42.
  • the actuator 44 applies a driving force in the engagement direction to the sleeve 43 by an electromagnetic force generated by supplied electric power.
  • the actuator 44 of this embodiment can control the pressing load on the sleeve 43.
  • the actuator 44 preferably does not have a speed reducer such as a solenoid and has a light equivalent mass.
  • the sleeve 43 When the power supply to the actuator 44 is stopped, the sleeve 43 is driven in the release direction by the urging force of the urging member. Thereby, the sleeve 43 moves in the release direction, the engagement between the sleeve 43 and the piece 42 is released, and the engagement device 40 is released.
  • a counter drive gear 15 is connected to the ring gear 13 of the planetary gear mechanism 10.
  • the counter drive gear 15 meshes with the counter driven gear 16.
  • the counter driven gear 16 is connected to a drive pinion gear 18 via a counter shaft 17.
  • the drive pinion gear 18 meshes with the diff ring gear 19 a of the diff device 19.
  • the differential device 19 is connected to left and right drive wheels (not shown) via left and right drive shafts 20, respectively.
  • the reduction gear 33 meshes with the counter driven gear 16.
  • the reduction gear 33 is connected to the rotation shaft 32 of the second rotary machine MG2, and rotates integrally with the rotor of the second rotary machine MG2.
  • the output torque of the second rotary machine MG2 is transmitted from the reduction gear 33 to the counter driven gear 16. That is, the torque transmitted from the engine 1 via the counter drive gear 15 and the torque transmitted from the second rotary machine MG2 via the reduction gear 33 are combined in the counter driven gear 16 and output from the drive pinion gear 18. Is done.
  • the reduction gear 33 has a smaller diameter than the counter driven gear 16 and decelerates the rotation of the second rotary machine MG2 to output it to the counter driven gear 16.
  • the first rotating machine MG1 and the second rotating machine MG2 each have a function as a motor (electric motor) and a function as a generator.
  • the first rotary machine MG1 and the second rotary machine MG2 are connected to a battery via an inverter.
  • the first rotating machine MG1 and the second rotating machine MG2 can convert the electric power supplied from the battery into mechanical power and output it, and are driven by the input power to convert the mechanical power into electric power. Can be converted.
  • the electric power generated by the rotating machines MG1 and MG2 can be stored in the battery.
  • an AC synchronous motor generator can be used as the first rotating machine MG1 and the second rotating machine MG2, for example.
  • the ECU 50 is an electronic control unit having a computer.
  • the ECU 50 is electrically connected to the engine 1, the first rotary machine MG1, the second rotary machine MG2 and the actuator 44 of the engagement device 40, and the engine 1, the first rotary machine MG1, the second rotary machine MG2 and the actuator. 44 can be controlled.
  • a stroke sensor that detects the stroke S of the sleeve 43 is connected to the ECU 50.
  • a signal indicating the detection result of the stroke sensor is input to the ECU 50.
  • the ECU 50 also receives a signal indicating the detection result of the MG1 rotation speed sensor that detects the rotation speed of the first rotating machine MG1 (hereinafter referred to as “MG1 rotation speed”), and the rotation speed of the second rotating machine MG2 ( Hereinafter, a signal indicating the detection result of the MG2 rotational speed sensor for detecting “MG2 rotational speed” is input.
  • MG1 rotation speed sensor and the MG2 rotational speed sensor for example, a resolver can be used.
  • the vehicle 100 can selectively execute hybrid (HV) traveling or EV traveling.
  • HV travel is a travel mode in which the vehicle 100 travels using the engine 1 as a power source.
  • the second rotary machine MG2 may be used as a power source.
  • EV traveling is a traveling mode in which the second rotating machine MG2 is used as a power source. In EV traveling, it is possible to travel with the engine 1 stopped.
  • the hybrid vehicle drive device 1-1 of the present embodiment includes a first mode in which the reaction force of the engine 1 is received by the torque of the first rotary machine MG1 and travels using the engine 1 as a power source. And a second mode in which the engine 1 is driven using the engine 1 as a power source.
  • the first mode is executed with the engagement device 40 in the released state.
  • the first rotary machine MG1 functions as a reaction force receiver by outputting a reaction force torque with respect to the engine torque, and causes the ring gear 13 to output the engine torque.
  • the rotational speed of the sun gear 11 can be controlled to an arbitrary rotational speed with respect to the rotational speed of the ring gear 13. That is, the first mode is a CVT mode in which the gear ratio between the rotation speed of the carrier 14 that is the input rotation speed from the engine 1 and the rotation speed of the ring gear 13 that is the output rotation speed can be controlled steplessly.
  • the second mode is executed with the engagement device 40 in the engaged state.
  • the engagement device 40 functions as a reaction force receiver for the engine torque, and outputs the engine torque from the ring gear 13.
  • the rotation speed of the sun gear 11 is fixed at 0 rotation, and the first rotating machine MG1 stops.
  • the second mode is selected, for example, when power circulation occurs in the first mode at high vehicle speed or low load.
  • the second mode is a travel mode that can suppress a decrease in efficiency due to drag loss of the first rotating machine MG1 and a decrease in efficiency due to an electrical path.
  • the engaging device 40 When shifting from the second mode to the first mode, the engaging device 40 that has been in the engaged state is released.
  • the engine torque is input to the engagement device 40.
  • the engagement device 40 may not be released or may take a long time to be released.
  • it is conceivable to increase the urging force of the urging member to increase the release thrust of the engagement device 40 in this case, it is necessary to increase the driving force of the actuator 44 when engaging the engagement device 40. This leads to an increase in power consumption.
  • the hybrid vehicle drive device 1-1 When releasing the engagement device 40 from the second mode, the hybrid vehicle drive device 1-1 according to the present embodiment outputs the MG1 torque to the first rotary machine MG1 to promote the release of the engagement device 40. Perform release control.
  • the release control will be described below with reference to FIGS.
  • the release control is control for changing the magnitude of the MG1 torque within a torque range that overlaps the actual engine torque existence range Rte shown in FIGS.
  • the ECU 50 varies the magnitude of the MG1 torque within a torque range that includes the entire actual engine torque existence range Rte.
  • the release control reduces the relative torque between the sleeve 43 and the piece 42 by the MG1 torque.
  • the relative torque between the sleeve 43 and the piece 42 is changed by adjusting the MG1 torque.
  • the release control With the release control, the axial movement between the sleeve 43 and the piece 42 is likely to occur, and the stroke of the sleeve 43 in the release direction is promoted. Thereby, the time required for releasing the engagement device 40 can be shortened, and the responsiveness when releasing the engagement device 40 can be improved. As a result, for example, the responsiveness of mode transition from the second mode to the first mode can be improved. Further, since the urging force (release thrust) required for the urging member can be reduced and the driving force of the actuator 44 can be reduced, the power consumption of the actuator 44 can be suppressed.
  • the hybrid vehicle drive device 1-1 can execute the first control and the second control as the release control.
  • the first control is executed.
  • the engaging device 40 is not released even if the first control is executed, the second control is executed. The first control will be described with reference to FIG.
  • the first control receives the reaction force of the engine 1 by the torque of the first rotating machine MG1, increases the magnitude of the torque of the first rotating machine MG1 to the estimated upper limit value of the torque range of the engine, This is control for reducing the magnitude of torque of the rotating machine MG1.
  • FIG. 1 shows a torque converted into a value on the rotary shaft 31, and (b) shows a current value supplied to the actuator 44.
  • the engine torque Te is a torque converted into a value on the rotary shaft 31 based on the gear ratio of the planetary gear mechanism 10.
  • the absolute value of the MG1 torque Tmg is shown.
  • the engine torque Te is a positive torque
  • the MG1 torque in the first control is a negative torque that receives the reaction force of the engine 1. Accordingly, the command value of the MG1 torque in the first control is the torque having the same magnitude and the opposite sign as the MG1 torque Tmg shown in FIGS.
  • the actual engine torque existence range Rte is an estimated engine torque range, which is an engine torque range based on operating conditions.
  • the actual engine torque existence range Rte of the present embodiment is determined as a range where the average value of the engine torque Te exists. As shown in FIG. 3, the engine torque Te periodically varies due to explosion variation.
  • the value indicated by the symbol Te_a is an average value or effective value of the engine torque Te, and is a value excluding fluctuation components due to explosion fluctuations.
  • the actual engine torque existence range Rte shown in FIG. 1 is a range in which the average value Te_a of the engine torque Te is estimated to exist.
  • the actual engine torque existence range Rte is, for example, a torque range in which a value obtained by adding a predetermined torque ⁇ Te to an estimated engine torque Te_est determined from operating conditions is an upper limit and a value obtained by subtracting the predetermined torque ⁇ Te is a lower limit.
  • the ECU 50 stores in advance an actual engine torque existence range Rte corresponding to operating conditions.
  • the estimated engine torque Te_est and the predetermined torque ⁇ Te can be determined by prior evaluation, simulation, or the like.
  • the ECU 50 first increases the magnitude of the MG1 torque Tmg to the upper limit value or more of the actual engine torque existence range Rte.
  • the output of the MG1 torque is started at time t0, and the magnitude of the MG1 torque Tmg increases to the upper limit value of the actual engine torque existence range Rte at time t1.
  • the ECU 50 reduces the magnitude of the MG1 torque Tmg.
  • the magnitude of the MG1 torque starts to decrease at time t2.
  • ECU50 reduces the magnitude of MG1 torque until the magnitude of MG1 torque Tmg reaches the lower limit of actual engine torque existence range Rte.
  • ECU 50 ends the first control.
  • the stroke possible region Rst is a torque region in which the sleeve 43 can stroke in the release direction by the biasing force of the biasing member.
  • the engine torque Te is a value within the stroke possible region Rst, the magnitude of the relative torque between the sleeve 43 and the piece 42 of the engagement device 40 is small, and the sleeve 43 is released in the release direction by the biasing force of the biasing member. It is possible to move.
  • the engine torque Te is not a value within the stroke possible region Rst, the magnitude of the relative torque between the sleeve 43 and the piece 42 is large, and the urging force of the urging member is sufficient to move the sleeve 43 in the releasing direction.
  • the engine torque Te is not a value within the stroke possible region Rst, the magnitude of the relative torque between the sleeve 43 and the piece 42 is large, and the urging force of the urging member is sufficient to move the sleeve 43 in the releasing direction.
  • the sleeve 43 In the first control, when the engine torque Te becomes a value within the stroke possible region Rst while the magnitude of the MG1 torque is decreasing, the sleeve 43 is moved in the releasing direction by the biasing force of the biasing member, and is engaged. The device 40 is released. In FIG. 1, the engine torque Te is in the stroke possible region Rst between time t3 and time t4, and the release of the engagement device 40 is promoted.
  • the ECU 50 can determine whether or not the sleeve 43 is in the release position based on the detection result of the stroke sensor. When it is detected that the sleeve 43 is in the release position, the first control is terminated.
  • the first control is terminated at that time, and the release related to the release of the engagement device 40 Control ends.
  • the ECU 50 can determine whether or not the sleeve 43 is in the release position based on the detection result of the MG1 rotation speed sensor instead of or in addition to the detection result of the stroke sensor.
  • the ECU 50 can determine whether or not the engagement device 40 is released based on, for example, the rotation angle position and the rotation speed of the first rotating machine MG1 detected by the MG1 rotation speed sensor.
  • the magnitude of the slope MG1 of the MG1 torque Tmg when the magnitude of the MG1 torque Tmg is reduced in the first control is the slope of the engine torque Te when the engine torque Te is reduced due to the explosion fluctuation of the engine 1. It is below the magnitude of ⁇ . That is, the magnitude of the MG1 torque Tmg decreases more slowly than the engine torque Te. As a result, the engine torque Te can easily enter the stroke possible region Rst.
  • the inclination ⁇ of the engine torque Te varies depending on the operating conditions of the engine 1.
  • the slope ⁇ 1 of the MG1 torque Tmg is determined based on the slope ⁇ of the engine torque Te under the operating conditions of the engine 1 in which the engagement device 40 is difficult to release.
  • the engagement device 40 is difficult to come off when the engine torque Te varies in a sawtooth shape as shown in FIG.
  • the waveform of the engine torque Te is close to a sawtooth shape when the engine speed is low.
  • the engine torque at the engine speed at which the amplitude ATe of the waveform of the engine torque Te is maximum and one cycle of explosion fluctuation of the engine 1 (hereinafter also referred to as “explosion cycle”) tcyc is maximum.
  • An inclination ⁇ of the engine torque Te is calculated from the inclination of Te.
  • the engine speed at which the amplitude ATe of the waveform of the engine torque Te is maximum and the explosion cycle tcyc is maximum is, for example, 1,000 rpm. If the engine speed is 1,000 rpm and the amplitude ATe of the engine torque Te is 10 Nm (value converted on the rotation shaft 31), the gradient of the engine torque Te can be obtained as follows.
  • the explosion period tcyc is determined from the number of cylinders of the engine 1 and the engine speed.
  • the magnitude of the slope ⁇ 1 of the MG1 torque Tmg is equal to the slope ⁇ of the engine torque Te with respect to the slope ⁇ of the engine torque Te determined from the operating conditions of the engine 1 in which the engagement device 40 is difficult to release. It is said that it is below the size. Thereby, the release of the engaging device 40 can be promoted regardless of the traveling conditions as described below.
  • the magnitude of the slope ⁇ 1 of the MG1 torque Tmg in the first control is equal to or less than the magnitude of the slope ⁇ of the engine torque Te.
  • the engine torque Te (Te_d) when the engine torque Te decreases and the stroke possible region Rst are likely to intersect each other.
  • the engine torque Te and the stroke possible region Rst are likely to cross over a plurality of cycles of explosion fluctuations of the engine 1.
  • the stroke time tst1 is equal to or longer than the explosion cycle tcyc. Therefore, it is advantageous in planting that secures time to stroke the sleeve 43 in the releasing direction.
  • the stroke time tst1 is a time determined from the slope MG1 of the MG1 torque when the magnitude of the MG1 torque is reduced in the first control and the release thrust of the engagement device 40.
  • the release thrust is a thrust that drives the sleeve 43 in the release direction by the biasing force of the biasing member.
  • the width in the vertical axis direction of the stroke possible region Rst is determined by the release thrust. That is, the upper limit torque Tst_max of the stroke possible region Rst and the lower limit torque Tst_min of the stroke possible region Rst are determined by the release thrust, respectively.
  • the stroke time tst1 is the width in the horizontal axis direction of the stroke possible region Rst when the magnitude of the MG1 torque is reduced in the first control. That is, the stroke time tst1 is a time during which the sleeve 43 can be stroked to the maximum when the engine torque Te is constant. In this embodiment, this stroke time tst1 is longer than the explosion cycle tcyc.
  • the urging force of the urging member is, for example, when the stroke time tst1 is set when the magnitude of the slope MG1 torque ⁇ 1 when the magnitude of the MG1 torque is reduced in the first control is equal to the magnitude of the slope ⁇ of the engine torque Te. It is determined to be at least the explosion cycle tcyc.
  • control flow shown in FIG. 5 is repeatedly executed at predetermined intervals during traveling, for example.
  • step S10 the ECU 50 determines whether a CVT transition determination has been made.
  • the CVT transition determination is a transition determination from the second mode to the first mode.
  • step S10-Y if it is determined that the CVT transition determination is made (step S10-Y), the process proceeds to step S20. If not (step S10-N), the determination in step S10 is repeated. .
  • step S20 the ECU 50 starts outputting MG1 torque.
  • the ECU 50 outputs a command to increase the magnitude of the MG1 torque to a magnitude equal to or greater than the upper limit value of the actual engine torque existence range Rte.
  • the first rotary machine MG1 increases the magnitude of the MG1 torque while receiving a reaction force of the engine 1 by outputting a reaction torque against the engine torque.
  • step S30 the ECU 50 determines whether the MG1 torque has reached the target.
  • the ECU 50 determines whether or not the magnitude of the MG1 torque has reached a target value that is equal to or greater than the upper limit value of the actual engine torque existence range Rte.
  • step S30-Y if it is determined that the MG1 torque has reached the target (step S30-Y), the process proceeds to step S50, and if not (step S30-N), the process proceeds to step S20.
  • step S30-Y if it is determined that the MG1 torque has reached the target
  • step S50 if it is determined that the MG1 torque has reached the target
  • step S30-N the process proceeds to step S20.
  • the condition is satisfied in which the MG1 torque reaches the target at time t1 and an affirmative determination is made in step S30.
  • Step S40 the ECU 50 turns off the supply current to the actuator 44.
  • Step S40 is executed after the affirmative determination is made in step S10 until the start of step S50.
  • step S50 the ECU 50 executes MG1 torque fluctuation control.
  • the MG1 torque fluctuation control is a step of reducing the magnitude of the MG1 torque in the first control, and is a control of reducing the magnitude of the MG1 torque within the torque range of the actual engine torque existence range Rte.
  • MG1 torque swing control is started at time t2.
  • step S60 the ECU 50 determines whether the release is completed. In step S60, it is determined whether or not the engagement device 40 has been released. The ECU 50 can make the determination in step S60 based on the detection result of the stroke sensor. For example, the ECU 50 makes an affirmative determination in step S60 when the detected stroke of the sleeve 43 is a stroke range value indicating a predetermined release state. Further, the ECU 50 may determine whether or not the engagement device 40 has been released based on the detection result of the MG1 rotation speed sensor. As a result of the determination in step S60, if it is determined that the release has been completed (step S60-Y), the process proceeds to step S70, and if not (step S60-N), the process proceeds to step S50.
  • step S70 the ECU 50 executes a transition to THS (CVT traveling).
  • the ECU 50 shifts to the first mode of the HV traveling mode, receives the reaction force of the engine 1 with the torque of the first rotating machine MG1, and causes the vehicle 100 to travel using the engine 1 as a power source.
  • step S70 the control flow ends.
  • the release of the engagement device 40 is not completed even if the first control is executed. If the engagement device 40 is not released even if the first control is executed, the hybrid vehicle drive device 1-1 of the present embodiment executes the second control.
  • the second control will be described with reference to FIG.
  • the second control is a control for increasing the magnitude of the torque of the first rotary machine MG1 so as to pass the actual engine torque existence range Rte.
  • the first control is started at time t0, and the magnitude of the MG1 torque increases to the upper limit value of the actual engine torque existence range Rte at time t11.
  • ECU 50 starts to reduce the magnitude of MG1 torque at time t12.
  • the magnitude of the MG1 torque decreases to the lower limit value of the actual engine torque existence range Rte. If the release of the engagement device 40 is not completed even when the magnitude of the MG1 torque is reduced (decreased) below the lower limit value of the actual engine torque existence range Rte, the ECU 50 executes the second control.
  • the ECU50 starts increasing the magnitude of MG1 torque at time t14 after time t13.
  • the ECU 50 increases the magnitude of the MG1 torque so that the magnitude of the MG1 torque is within the range of the actual engine torque existence range Rte.
  • the magnitude of the slope MG2 of the MG1 torque when increasing the magnitude of the MG1 torque is smaller than the magnitude of the slope MG1 of the MG1 torque when reducing the magnitude of the MG1 torque in the first control. That is, in the second control, the slope of the MG1 torque is gentler than in the first control.
  • the ECU 50 increases the magnitude of the MG1 torque until the magnitude of the MG1 torque Tmg reaches the upper limit value of the actual engine torque existence range Rte.
  • the magnitude of the MG1 torque rises to the lower limit value of the actual engine torque existing range Rte at time t15, and the magnitude of the MG1 torque rises within the actual engine torque existing range Rte after time t15. Since the slope ⁇ 2 of the MG1 torque in the second control is made slower than the slope ⁇ 1 of the MG1 torque in the first control, the stroke time tst2 of the second control becomes longer than the stroke time tst1 of the first control. As a result, it is possible to secure time to stroke the sleeve 43 in the releasing direction and release the engaging device 40.
  • the magnitude of the MG1 torque may be varied up to a torque larger than the upper limit value of the actual engine torque existence range Rte.
  • the magnitude of the MG1 torque may be changed to a torque smaller than the lower limit value.
  • the first control when the magnitude of the MG1 torque Tmg decreases to the lower limit value of the actual engine torque existence range Rte at time t4, the first control is terminated, but instead, after time t4. Alternatively, the first control may be continued to reduce the magnitude of the MG1 torque Tmg. In this way, even if the actual engine torque Te exists on the lower torque side than the lower limit value of the actual engine torque existence range Rte, the engine torque Te can be overlapped with the stroke possible region Rst.
  • the sleeve 43 can be stroked in the release direction. For example, in the case of FIG. 1, the engine torque Te can be overlapped with the stroke possible region Rst until time t5 when the engine torque Te increases due to explosion.
  • the first control may be ended when, for example, the upper limit torque Tst_max of the stroke possible region Rst becomes the lower limit value of the actual engine torque existence range Rte. Further, if the magnitude of the MG1 torque Tmg is reduced to less than the lower limit value of the actual engine torque existing range Rte in the first control, the magnitude of the MG1 torque Tmg at the start of the second control is changed to the actual engine torque existing range. The torque can be smaller than the lower limit value of Rte. As a result, even if the actual engine torque Te exists on the lower torque side than the lower limit value of the actual engine torque existence range Rte, the engine torque Te can be overlapped with the stroke possible region Rst in the second control. It becomes possible.
  • the magnitude of the MG1 torque Tmg at the start of the first control may be made larger than the upper limit value of the actual engine torque existence range Rte. In this way, even if the actual engine torque Te exists on the higher torque side than the upper limit value of the actual engine torque existence range Rte, the engine torque Te can overlap the actual engine torque existence range Rte. It becomes possible.
  • the magnitude of the MG1 torque Tmg may be increased to a torque larger than the upper limit value of the actual engine torque existence range Rte.
  • the two rotating machines MG1 and MG2 are mounted on the vehicle 100.
  • the present invention is not limited to this, and there may be one rotating machine or three or more rotating machines.
  • the second rotary machine MG2 may be omitted.
  • the connection relationship between the rotating element of the planetary gear mechanism 10 and the engine 1, the first rotating machine MG1, and the drive wheels is not limited to that illustrated.
  • the engine 1 may be connected to a rotating element other than the carrier 14, the first rotating machine MG1 may be connected to a rotating element other than the sun gear 11, and the driving wheel is connected to a rotating element other than the ring gear 13. Also good.
  • the engine 1, the first rotating machine MG1, and the drive wheels only need to be connected to different rotating elements.
  • the differential mechanism that connects the engine 1, the first rotating machine MG1, and the drive wheels is not limited to the single pinion type planetary gear mechanism 10.
  • the engaging device 40 of the above embodiment is driven in the releasing direction by the urging force of the urging member. Instead, it is driven in the releasing direction by the driving force of the actuator 44. Also good.
  • the slope ⁇ 1 of the MG1 torque Tmg when the magnitude of the MG1 torque Tmg is reduced in the first control is constant, but the slope ⁇ 1 of the MG1 torque Tmg may be changed.
  • the slope ⁇ 2 of the MG1 torque Tmg when the magnitude of the MG1 torque Tmg is increased in the second control is constant, but the slope ⁇ 2 of the MG1 torque Tmg may be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 エンジンと、回転機と、回転機の回転を規制する噛み合い式の係合装置と、エンジンの反力を回転機のトルクで受けてエンジンを動力源として走行する第1モードと、エンジンの反力を係合装置で受けてエンジンを動力源として走行する第2モードと、を備え、第2モードから係合装置を解放するときに、回転機のトルクTmgによってエンジンの反力を受け、回転機のトルクの大きさを推定したエンジンのトルク範囲Rteの上限値以上まで上昇させた後、回転機のトルクの大きさを低減させる第一制御を実行し、第一制御において回転機のトルクの大きさを低減させるときの回転機のトルクの傾きβ1の大きさは、エンジンの爆発変動によりエンジンのトルクTeが低減するときのエンジンのトルクの傾きαの大きさ以下である。

Description

ハイブリッド車両用駆動装置
 本発明は、ハイブリッド車両用駆動装置に関する。
 従来、噛み合い式の係合装置を解放する技術がある。例えば、特許文献1には、ハブとブレーキ部材との係合及び解放をアクチュエータによって行うドグクラッチにおいて、ハブに動力が伝達される第1MGにドグクラッチを解放状態に切り替えるために要求する解放前要求トルクを算出するとともに、ドグクラッチを係合状態から解放状態に切り替える際はハブが揺動されるように第1MGのトルクの増加及び減少を行う揺さ振り制御を実行する噛み合い式係合装置の技術が開示されている。
特開2012-193851号公報
 噛み合い式の係合装置を解放する際のトルク制御について、なお検討の余地がある。例えば、エンジンの爆発変動によるトルクの変動が影響して係合装置を解放するときの応答性が低下する可能性がある。
 本発明の目的は、噛み合い式の係合装置を解放する際の応答性を向上することができるハイブリッド車両用駆動装置を提供することである。
 本発明のハイブリッド車両用駆動装置は、エンジンと、回転機と、前記回転機の回転を規制する噛み合い式の係合装置と、前記エンジンの反力を前記回転機のトルクで受けて前記エンジンを動力源として走行する第1モードと、前記エンジンの反力を前記係合装置で受けて前記エンジンを動力源として走行する第2モードと、を備え、前記第2モードから前記係合装置を解放するときに、前記回転機のトルクによって前記エンジンの反力を受け、前記回転機のトルクの大きさを推定した前記エンジンのトルク範囲の上限値以上まで上昇させた後、前記回転機のトルクの大きさを低減させる第一制御を実行し、前記第一制御において前記回転機のトルクの大きさを低減させるときの前記回転機のトルクの傾きの大きさは、前記エンジンの爆発変動により前記エンジンのトルクが低減するときの前記エンジンのトルクの傾きの大きさ以下であることを特徴とする。
 上記ハイブリッド車両用駆動装置において、前記第一制御において前記回転機のトルクの大きさを低減させるときの前記回転機のトルクの傾きと、前記係合装置の解放推力とから決まる前記係合装置のストローク時間は、前記エンジンの爆発変動の1周期以上であることが好ましい。
 上記ハイブリッド車両用駆動装置において、前記回転機のトルクの大きさが前記推定した前記エンジンのトルク範囲の下限未満まで低減しても前記係合装置が解放しない場合、前記推定した前記エンジンのトルク範囲を通過させるように前記回転機のトルクの大きさを増加させる第二制御を実行し、前記第二制御において前記回転機のトルクの大きさを増加させるときの前記回転機のトルクの傾きの大きさは、前記第一制御において前記回転機のトルクの大きさを低減させるときの前記回転機のトルクの傾きの大きさよりも小さいことが好ましい。
 本発明に係るハイブリッド車両用駆動装置は、第2モードから係合装置を解放するときに、回転機のトルクによってエンジンの反力を受け、回転機のトルクの大きさを推定したエンジンのトルク範囲の上限値以上まで上昇させた後、回転機のトルクの大きさを低減させる第一制御を実行し、第一制御において回転機のトルクの大きさを低減させるときの回転機のトルクの傾きの大きさは、エンジンの爆発変動によりエンジンのトルクが低減するときのエンジンのトルクの傾きの大きさ以下である。本発明に係るハイブリッド車両用駆動装置は、係合装置を解放する際の応答性を向上することができるという効果を奏する。
図1は、実施形態に係る第一制御のタイムチャートである。 図2は、実施形態に係る車両のスケルトン図である。 図3は、エンジントルクの一例を示す図である。 図4は、ストローク時間が短い場合の問題の説明図である。 図5は、実施形態に係る制御のフローチャートである。 図6は、実施形態に係る第一制御および第二制御のタイムチャートである。
 以下に、本発明の実施形態に係るハイブリッド車両用駆動装置につき図面を参照しつつ詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるものあるいは実質的に同一のものが含まれる。
[実施形態]
 図1から図6を参照して、実施形態について説明する。本実施形態は、ハイブリッド車両用駆動装置に関する。図1は、本発明の実施形態に係る第一制御のタイムチャート、図2は、実施形態に係る車両のスケルトン図、図3は、エンジントルクの一例を示す図、図4は、ストローク時間が短い場合の問題の説明図、図5は、実施形態に係る制御のフローチャート、図6は、実施形態に係る第一制御および第二制御のタイムチャートである。
 図2に示すように、車両100は、エンジン1、第一回転機MG1、第二回転機MG2を有するハイブリッド車両である。車両100は、外部電源により充電可能なプラグインハイブリッド(PHV)車両であってもよい。本実施形態に係るハイブリッド車両用駆動装置1-1は、エンジン1と、第一回転機MG1と、係合装置40とを含んで構成されている。ハイブリッド車両用駆動装置1-1は、更に、ECU50を含んで構成されてもよい。
 エンジン1は、燃料の燃焼エネルギーを出力軸1aの回転運動に変換して出力する。出力軸1aは、遊星歯車機構10のキャリア14に接続されている。遊星歯車機構10は、エンジン1の動力を第一回転機MG1側と出力側とに分配する動力分配機構としての機能を有している。本実施形態の遊星歯車機構10は、シングルピニオン式であり、サンギヤ11、ピニオンギヤ12、リングギヤ13およびキャリア14を有する。
 リングギヤ13は、サンギヤ11と同軸上であってかつサンギヤ11の径方向外側に配置されている。ピニオンギヤ12は、サンギヤ11とリングギヤ13との間に配置されており、サンギヤ11およびリングギヤ13とそれぞれ噛み合っている。ピニオンギヤ12は、キャリア14によって回転自在に支持されている。キャリア14は、出力軸1aと連結されており、出力軸1aと一体回転する。従って、ピニオンギヤ12は、出力軸1aと共に出力軸1aの中心軸線周りに回転(公転)可能であり、かつキャリア14によって支持されてピニオンギヤ12の中心軸線周りに回転(自転)可能である。
 サンギヤ11には、第一回転機MG1の回転軸31が接続されている。回転軸31は、出力軸1aと同軸上であって、かつサンギヤ11に対してエンジン1側と反対側に配置されている。回転軸31は、第一回転機MG1のロータと連結されており、第一回転機MG1の出力トルク(以下、単に「MG1トルク」)をサンギヤ11に伝達する。また、回転軸31は、サンギヤ11から入力されるトルクを第一回転機MG1のロータに伝達する。
 回転軸31におけるサンギヤ11側と反対側の端部には、係合装置40が配置されている。係合装置40は、回転軸31の回転を規制する規制装置としての機能を有している。係合装置40は、噛合式のクラッチ装置であり、車体側円筒部材41、ピース42、スリーブ43およびアクチュエータ44を含んで構成されている。
 車体側円筒部材41は、円筒形状の部材であり、車体側に回転不能に固定されている。本実施形態では、係合装置40は、図示しないカバーにより覆われている。車体側円筒部材41は、このカバーに固定されている。カバーは、遮音カバーおよび保温カバーとしての機能を有している。カバーは、アクチュエータ44のモータの作動音を遮断し、車室内への作動音の侵入を抑制することができる。また、カバーによって、アクチュエータ44内の作動油の温度低下が抑制されることで、低温始動時のアクチュエータ44の動作がスムーズなものとなる。
 ピース42は、回転軸31におけるサンギヤ11側と反対側の端部に接続されている。スリーブ43は、車体側円筒部材41によって、軸方向に移動自在に支持されている。車体側円筒部材41とスリーブ43とは、例えば、スプライン嵌合しており、軸方向に相対移動可能、かつ周方向に相対回転不能である。車体側円筒部材41の外周面には、軸方向に延在する外歯が形成されている。スリーブ43の内周面には、軸方向に延在する内歯が形成されている。車体側円筒部材41の外歯と、スリーブ43の内歯とが互いに噛み合っている。スリーブ43は、ピース42に対してエンジン1側と反対側に位置しており、軸方向においてピース42を挟んでエンジン1と対向している。なお、スリーブ43は、ピース42に対してエンジン1側に配置されてもよい。
 アクチュエータ44は、スリーブ43に対して係合方向の駆動力を作用させる駆動装置である。係合方向は、車体側円筒部材41からピース42に向かう方向である。スリーブ43およびピース42は、それぞれ噛合歯を有している。係合装置40は、スリーブ43の噛合歯とピース42の噛合歯とが噛み合うことにより係合状態となる。係合状態の係合装置40は、車体側円筒部材41とピース42とを相対回転不能に連結する。つまり、係合状態の係合装置40は、回転軸31の回転を規制し、第一回転機MG1の回転を規制する。
 スリーブ43は、図示しないリターンスプリング等の付勢部材によって、解放方向、即ち係合方向と反対方向の付勢力を受けている。アクチュエータ44は、発生させる駆動力により、付勢部材の付勢力に抗してスリーブ43を係合方向に移動させ、スリーブ43をピース42と係合させる。アクチュエータ44は、例えば、供給される電力により発生させる電磁力によってスリーブ43に対して係合方向の駆動力を作用させる。本実施形態のアクチュエータ44は、スリーブ43に対する押付荷重を制御可能なものである。アクチュエータ44は、ソレノイド等、減速機を有せず、等価質量が軽いものが好ましい。
 アクチュエータ44に対する電力供給が停止されると、スリーブ43は、付勢部材の付勢力によって解放方向に駆動される。これにより、スリーブ43は解放方向に移動し、スリーブ43とピース42との噛み合いが解除され、係合装置40が解放状態となる。
 遊星歯車機構10のリングギヤ13には、カウンタドライブギヤ15が接続されている。カウンタドライブギヤ15は、カウンタドリブンギヤ16と噛み合っている。カウンタドリブンギヤ16は、カウンタシャフト17を介してドライブピニオンギヤ18と接続されている。ドライブピニオンギヤ18は、デフ装置19のデフリングギヤ19aと噛み合っている。デフ装置19は、左右の駆動軸20を介して図示しない左右の駆動輪とそれぞれ接続されている。
 カウンタドリブンギヤ16には、リダクションギヤ33が噛み合っている。リダクションギヤ33は、第二回転機MG2の回転軸32に接続されており、第二回転機MG2のロータと一体回転する。第二回転機MG2の出力トルクは、リダクションギヤ33からカウンタドリブンギヤ16に伝達される。すなわち、エンジン1側からカウンタドライブギヤ15を介して伝達されるトルクと、第二回転機MG2からリダクションギヤ33を介して伝達されるトルクとは、カウンタドリブンギヤ16において合成されてドライブピニオンギヤ18から出力される。リダクションギヤ33は、カウンタドリブンギヤ16よりも小径であり、第二回転機MG2の回転を減速してカウンタドリブンギヤ16に出力する。
 第一回転機MG1および第二回転機MG2は、それぞれモータ(電動機)としての機能と、発電機としての機能とを備えている。第一回転機MG1および第二回転機MG2は、インバータを介してバッテリと接続されている。第一回転機MG1および第二回転機MG2は、バッテリから供給される電力を機械的な動力に変換して出力することができると共に、入力される動力によって駆動されて機械的な動力を電力に変換することができる。回転機MG1,MG2によって発電された電力は、バッテリに蓄電可能である。第一回転機MG1および第二回転機MG2としては、例えば、交流同期型のモータジェネレータを用いることができる。
 ECU50は、コンピュータを有する電子制御ユニットである。ECU50は、エンジン1、第一回転機MG1、第二回転機MG2および係合装置40のアクチュエータ44と電気的に接続されており、エンジン1、第一回転機MG1、第二回転機MG2およびアクチュエータ44を制御することができる。ECU50には、スリーブ43のストロークSを検出するストロークセンサが接続されている。ストロークセンサの検出結果を示す信号は、ECU50に入力される。また、ECU50には、第一回転機MG1の回転数(以下、「MG1回転数」と称する。)を検出するMG1回転数センサの検出結果を示す信号、および第二回転機MG2の回転数(以下、「MG2回転数」と称する。)を検出するMG2回転数センサの検出結果を示す信号が入力される。MG1回転数センサ、MG2回転数センサとしては、例えば、レゾルバを用いることができる。
 車両100では、ハイブリッド(HV)走行あるいはEV走行を選択的に実行可能である。HV走行とは、エンジン1を動力源として車両100を走行させる走行モードである。HV走行では、エンジン1に加えて、更に第二回転機MG2を動力源としてもよい。EV走行は、第二回転機MG2を動力源として走行する走行モードである。EV走行では、エンジン1を停止して走行することが可能である。
 本実施形態のハイブリッド車両用駆動装置1-1は、HV走行モードとして、エンジン1の反力を第一回転機MG1のトルクで受けてエンジン1を動力源として走行する第1モードと、エンジン1の反力を係合装置40で受けてエンジン1を動力源として走行する第2モードとを有する。
(第1モード)
 第1モードは、係合装置40を解放状態として実行される。係合装置40が解放されている場合、回転軸31およびサンギヤ11の回転が許容される。第一回転機MG1は、エンジントルクに対する反力トルクを出力して反力受けとして機能し、エンジントルクをリングギヤ13から出力させる。第1モードでは、リングギヤ13の回転数に対して、サンギヤ11の回転数を任意の回転数に制御することが可能である。つまり、第1モードは、エンジン1からの入力回転数であるキャリア14の回転数と、出力回転数であるリングギヤ13の回転数との変速比を無段階に制御可能なCVTモードである。
(第2モード)
 第2モードは、係合装置40を係合状態として実行される。係合装置40が係合している場合、回転軸31およびサンギヤ11の回転が規制される。係合装置40は、エンジントルクに対する反力受けとして機能し、エンジントルクをリングギヤ13から出力させる。第2モードでは、サンギヤ11の回転数が0回転に固定され、第一回転機MG1は停止する。第2モードは、例えば、高車速時や低負荷時、第1モードで動力循環が生じてしまう場合等に選択される。第2モードは、第一回転機MG1の引き摺り損失による効率低下や、電気パスによる効率低下を抑制することができる走行モードである。
 第2モードから第1モードへ移行する場合、係合状態であった係合装置40が解放される。ここで、第2モードでは係合装置40にエンジントルクが入力されている。このため、アクチュエータ44に対する電力供給を停止してアクチュエータ44をOFFとしても、係合装置40が解放しなかったり、解放するまでに多くの時間を要したりする可能性がある。付勢部材の付勢力を大きくして係合装置40の解放推力を大きくすることが考えられるが、この場合係合装置40を係合するときのアクチュエータ44の駆動力を大きくする必要があり、消費電力の増加を招いてしまう。
 本実施形態に係るハイブリッド車両用駆動装置1-1は、第2モードから係合装置40を解放するときに、第一回転機MG1にMG1トルクを出力させて係合装置40の解放を促進する解放制御を実行する。図1および図6を参照して、以下に解放制御について説明する。解放制御は、図1および図6に示す実エンジントルク存在範囲Rteと重なりを有するトルク範囲でMG1トルクの大きさを変動させる制御である。本実施形態では、ECU50は、実エンジントルク存在範囲Rteの全体を含むトルク範囲でMG1トルクの大きさを変動させる。
 解放制御は、MG1トルクによって、スリーブ43とピース42との間の相対トルクを低減させる。また、解放制御は、MG1トルクを調節することにより、スリーブ43とピース42との間の相対トルクを変動させる。解放制御によって、スリーブ43とピース42との軸方向の相対移動が生じやすくなり、スリーブ43の解放方向へのストロークが促進される。これにより、係合装置40の解放に要する時間を短縮し、係合装置40を解放する際の応答性を向上させることができる。その結果、例えば、第2モードから第1モードへのモード移行の応答性を高めることができる。また、付勢部材に要求される付勢力(解放推力)を低減し、アクチュエータ44の駆動力を低減することができることにより、アクチュエータ44の消費電力を抑制することができる。
 ハイブリッド車両用駆動装置1-1は、解放制御として、第一制御および第二制御を実行することができる。係合装置40を解放する場合、まず、第一制御が実行され、第一制御を実行しても係合装置40が解放しない場合、第二制御が実行される。図1を参照して、第一制御について説明する。
(第一制御)
 第一制御は、第一回転機MG1のトルクによってエンジン1の反力を受け、第一回転機MG1のトルクの大きさを推定したエンジンのトルク範囲の上限値以上まで上昇させた後、第一回転機MG1のトルクの大きさを低減させる制御である。図1において、(a)は回転軸31上の値に換算されたトルク、(b)はアクチュエータ44に供給する電流値を示す。エンジントルクTeは、遊星歯車機構10のギア比に基づいて回転軸31上の値に換算されたトルクが示されている。MG1トルクTmgは、絶対値が示されている。エンジン1の回転方向を正方向とした場合、エンジントルクTeは正トルクであり、第一制御におけるMG1トルクはエンジン1の反力を受ける負トルクとされる。従って、第一制御におけるMG1トルクの指令値は、図1,6に示すMG1トルクTmgと大きさが同じで符号が反対のトルクとなる。
 図1において、実エンジントルク存在範囲Rteは、推定したエンジンのトルク範囲であり、運転条件に基づくエンジントルクの範囲である。本実施形態の実エンジントルク存在範囲Rteは、エンジントルクTeの平均値が存在する範囲として定められている。図3に示すように、エンジントルクTeは、爆発変動により周期的に変動する。符号Te_aで示す値は、エンジントルクTeの平均値あるいは実効値であり、爆発変動による変動成分を除いた値である。図1に示す実エンジントルク存在範囲Rteは、エンジントルクTeの平均値Te_aが存在すると推定される範囲である。実エンジントルク存在範囲Rteは、例えば、運転条件から決まる推定エンジントルクTe_estに対して所定トルクΔTeを加えた値を上限とし、所定トルクΔTeを減じた値を下限とするトルク範囲である。ECU50は、例えば、運転条件に応じた実エンジントルク存在範囲Rteを予め記憶している。推定エンジントルクTe_estや所定トルクΔTeは、事前評価やシミュレーション等によって定めることが可能である。
 第一制御では、ECU50は、まず、MG1トルクTmgの大きさを実エンジントルク存在範囲Rteの上限値以上まで上昇させる。図1では、時刻t0にMG1トルクの出力が開始され、時刻t1にMG1トルクTmgの大きさが実エンジントルク存在範囲Rteの上限値まで上昇する。次に、ECU50は、MG1トルクTmgの大きさを低減させる。図1では、時刻t2にMG1トルクの大きさが低減し始める。
 ECU50は、MG1トルクTmgの大きさが実エンジントルク存在範囲Rteの下限値に達するまでMG1トルクの大きさを低減させる。ECU50は、MG1トルクTmgの大きさが実エンジントルク存在範囲Rteの下限値まで低下すると、第一制御を終了させる。
 ストローク可能領域Rstは、付勢部材の付勢力によってスリーブ43が解放方向にストローク可能なトルク領域である。エンジントルクTeがストローク可能領域Rst内の値であると、係合装置40のスリーブ43とピース42との間の相対トルクの大きさが小さく、付勢部材の付勢力によってスリーブ43を解放方向に移動させることが可能である。一方、エンジントルクTeがストローク可能領域Rst内の値でない場合、スリーブ43とピース42との間の相対トルクの大きさが大きく、付勢部材の付勢力はスリーブ43を解放方向に動かすために十分でない。
 第一制御では、MG1トルクの大きさが低減していく間に、エンジントルクTeがストローク可能領域Rst内の値となると、付勢部材の付勢力によってスリーブ43が解放方向に移動し、係合装置40が解放する。図1では、時刻t3から時刻t4の間にエンジントルクTeがストローク可能領域Rstにあり、係合装置40の解放が促進される。ECU50は、ストロークセンサの検出結果に基づいて、スリーブ43が解放位置にあるか否かを判定することができる。スリーブ43が解放位置にあることが検出されると、第一制御が終了される。例えば、MG1トルクTmgの大きさが実エンジントルク存在範囲Rteの下限値まで低下する前に係合装置40が解放すると、その時点で第一制御が終了し、係合装置40の解放に係る解放制御が終了する。なお、ECU50は、ストロークセンサの検出結果に代えて、あるいは加えて、MG1回転数センサの検出結果に基づいてスリーブ43が解放位置にあるか否かを判定することも可能である。ECU50は、例えば、MG1回転数センサによって検出された第一回転機MG1の回転角度位置や回転数に基づいて、係合装置40が解放しているか否かを判定することができる。
 本実施形態では、第一制御においてMG1トルクTmgの大きさを低減させるときのMG1トルクTmgの傾きβ1の大きさは、エンジン1の爆発変動によりエンジントルクTeが低減するときのエンジントルクTeの傾きαの大きさ以下である。つまり、MG1トルクTmgの大きさは、エンジントルクTeよりも緩やかに低減する。これにより、エンジントルクTeがストローク可能領域Rst内に入りやすくすることができる。
 ここで、エンジントルクTeの傾きαは、エンジン1の運転条件によって変動する。本実施形態では、係合装置40が解放しにくいエンジン1の運転条件でのエンジントルクTeの傾きαに基づいてMG1トルクTmgの傾きβ1が定められている。係合装置40が抜けづらいのは、図3に示すようにエンジントルクTeが鋸歯形状で変動する場合である。エンジントルクTeの波形が鋸歯形状に近くなるのは、エンジン回転数が低い場合である。本実施形態では、エンジントルクTeの波形の振幅ATeが最大、かつエンジン1の爆発変動の1周期(以下、「爆発周期」とも記載する。)tcycが最大となるエンジン回転数のときのエンジントルクTeの傾きからエンジントルクTeの傾きαが算出される。
 エンジントルクTeの波形の振幅ATeが最大、かつ爆発周期tcycが最大となるエンジン回転数は、例えば、1,000rpmである。エンジン回転数が1,000rpmでエンジントルクTeの振幅ATeが10Nm(回転軸31上に換算した値)であるとすると、エンジントルクTeの傾きは、次のように求めることができる。
 爆発周期tcycは、エンジン1の気筒数とエンジン回転数から決まる。例えば、4気筒のエンジン1は、1回転あたりの爆発回数が2回である。従って、エンジン回転数が1,000rpmである場合の爆発周期は、下記式(1)より0.03[sec]である。
 1/(2×1,000/60)=0.03…(1)
 エンジントルクTeの傾きαは、下記式(2)から666.67[Nm/sec]である。
 2×10/0.03=666.67…(2)
 本実施形態では、上記のような係合装置40が解放しにくいエンジン1の運転条件から求まるエンジントルクTeの傾きαに対してMG1トルクTmgの傾きβ1の大きさがエンジントルクTeの傾きαの大きさ以下とされている。これにより、以下に説明するように走行条件によらず係合装置40の解放を促進することができる。
 上記傾きβ1の大きさが、エンジントルクTeの傾きαの大きさよりも大きい場合、図4を参照して説明するように、スリーブ43をストロークさせる時間がわずかとなってしまう可能性が大きくなる。MG1トルクTmgの傾きβ1の大きさがエンジントルクTeの傾きαの大きさよりも大きい場合、ストローク可能領域RstとエンジントルクTeが交差する時間が短くなりやすい。例えば、図4に示すように、エンジントルクTeがストローク可能領域Rst内の値となる期間が、エンジントルクTeの上昇過程の短い時間だけとなる可能性がある。その結果、スリーブ43が解放方向にほとんどストロークせず、係合装置40が解放しないままで第一制御が終了してしまうことがある。
 本実施形態では、第一制御におけるMG1トルクTmgの傾きβ1の大きさがエンジントルクTeの傾きαの大きさ以下である。これにより、図1に示すように、エンジントルクTeが低下するときのエンジントルクTe(Te_d)とストローク可能領域Rstとが交差しやすい。また、エンジン1の爆発変動の複数周期にわたってエンジントルクTeとストローク可能領域Rstとが交差しやすくなる。
 また、本実施形態に係るハイブリッド車両用駆動装置1-1では、ストローク時間tst1が、爆発周期tcyc以上である。よって、スリーブ43を解放方向にストロークさせる時間を確保する植で有利である。
 ストローク時間tst1は、第一制御においてMG1トルクの大きさを低減させるときのMG1トルクの傾きβ1と、係合装置40の解放推力とから決まる時間である。解放推力は、付勢部材の付勢力によるスリーブ43を解放方向に駆動する推力である。ストローク可能領域Rstの縦軸方向の幅は、解放推力によって決まる。即ち、ストローク可能領域Rstの上限トルクTst_maxおよびストローク可能領域Rstの下限トルクTst_minは、それぞれ解放推力によって決まる。
 ストローク時間tst1は、第一制御でMG1トルクの大きさを低減させるときのストローク可能領域Rstの横軸方向の幅である。つまり、ストローク時間tst1は、エンジントルクTeが一定の場合に最大限スリーブ43をストロークさせることができる時間となる。本実施形態では、このストローク時間tst1が爆発周期tcyc以上である。付勢部材の付勢力は、例えば、第一制御においてMG1トルクの大きさを低減させるときのMG1トルクの傾きβ1の大きさがエンジントルクTeの傾きαの大きさと等しい場合に、ストローク時間tst1が爆発周期tcyc以上となるように定められる。ストローク時間tst1が爆発周期tcyc以上であることにより、第一制御でMG1トルクの大きさを低減させている間にエンジントルクTeとストローク可能領域Rstとが交差しやすくなり、スリーブ43をストロークさせる時間を長くすることができる。
 次に、図5を参照して、本実施形態の動作について説明する。図5に示す制御フローは、例えば、走行中に所定の間隔で繰り返し実行される。
 まず、ステップS10では、ECU50により、CVT遷移判定がなされたか否かが判定される。CVT遷移判定は、第2モードから第1モードへの移行判定である。ステップS10の判定の結果、CVT遷移判定がなされていると判定された場合(ステップS10-Y)にはステップS20に進み、そうでない場合(ステップS10-N)にはステップS10の判定が繰り返される。
 ステップS20では、ECU50により、MG1トルクの出力が開始される。ECU50は、実エンジントルク存在範囲Rteの上限値以上の大きさまでMG1トルクの大きさを上昇させる指令を出力する。第一回転機MG1は、エンジントルクに対する反力トルクを出力してエンジン1の反力を受けながら、MG1トルクの大きさを増加させていく。ステップS20が実行されると、ステップS30に進む。
 ステップS30では、ECU50により、MG1トルクが目標に到達したか否かが判定される。ECU50は、MG1トルクの大きさが、実エンジントルク存在範囲Rteの上限値以上の目標値に到達したか否かを判定する。ステップS30の判定の結果、MG1トルクが目標に到達したと判定された場合(ステップS30-Y)にはステップS50に進み、そうでない場合(ステップS30-N)にはステップS20へ移行する。図1では、時刻t1にMG1トルクが目標に到達してステップS30で肯定判定がなされる条件が成立する。
 また、ECU50は、ステップS20およびステップS30と並行して、ステップS40を実行する。ステップS40では、ECU50は、アクチュエータ44に対する供給電流をOFFとする。ステップS40は、ステップS10で肯定判定がなされてからステップS50を開始するまでの間に実行される。
 ステップS50では、ECU50により、MG1トルク揺さぶり制御が実行される。MG1トルク揺さぶり制御は、第一制御におけるMG1トルクの大きさを低減させていくステップであり、実エンジントルク存在範囲Rteのトルク範囲でMG1トルクの大きさを低減させていく制御である。図1では、時刻t2にMG1トルク揺さぶり制御が開始される。ステップS50が実行されると、ステップS60に進む。
 ステップS60では、ECU50により、解放が完了したか否かが判定される。ステップS60では、係合装置40の解放が完了したか否かが判定される。ECU50は、ストロークセンサの検出結果に基づいてステップS60の判定を行うことができる。ECU50は、例えば、検出されたスリーブ43のストロークが予め定められた解放状態を示すストローク範囲の値である場合にステップS60で肯定判定を行う。また、ECU50は、MG1回転数センサの検出結果に基づいて係合装置40の解放が完了したか否かを判定するようにしてもよい。ステップS60の判定の結果、解放が完了したと判定された場合(ステップS60-Y)にはステップS70に進み、そうでない場合(ステップS60-N)にはステップS50に移行する。
 ステップS70では、ECU50により、THS(CVT走行)への移行が実行される。ECU50は、HV走行モードの第1モードへ移行し、エンジン1の反力を第一回転機MG1のトルクで受けてエンジン1を動力源として車両100を走行させる。ステップS70が実行されると、本制御フローは終了する。
 ここで、第一制御を実行しても係合装置40の解放が完了しない場合が考えられる。本実施形態のハイブリッド車両用駆動装置1-1は、第一制御を実行しても係合装置40が解放しない場合、第二制御を実行する。図6を参照して、第二制御について説明する。
(第二制御)
 第二制御は、実エンジントルク存在範囲Rteを通過させるように第一回転機MG1のトルクの大きさを増加させる制御である。図6では、時刻t0に第一制御が開始され、時刻t11にMG1トルクの大きさが実エンジントルク存在範囲Rteの上限値まで上昇する。ECU50は、時刻t12にMG1トルクの大きさを低減させ始める。時刻t13にMG1トルクの大きさが実エンジントルク存在範囲Rteの下限値まで低下する。MG1トルクの大きさが実エンジントルク存在範囲Rteの下限値未満まで低減(低下)しても係合装置40の解放が完了しない場合、ECU50は、第二制御を実行する。
 ECU50は、時刻t13よりも後の時刻t14にMG1トルクの大きさを増加させ始める。ECU50は、MG1トルクの大きさを実エンジントルク存在範囲Rteの範囲内とするようにMG1トルクの大きさを増加させる。MG1トルクの大きさを増加させるときのMG1トルクの傾きβ2の大きさは、第一制御においてMG1トルクの大きさを低減させるときのMG1トルクの傾きβ1の大きさよりも小さい。つまり、第二制御では、第一制御よりもMG1トルクの傾きが緩やかである。ECU50は、第二制御において、MG1トルクTmgの大きさが実エンジントルク存在範囲Rteの上限値となるまで、MG1トルクの大きさを増加させる。
 図6では、時刻t15にMG1トルクの大きさが実エンジントルク存在範囲Rteの下限値まで上昇し、時刻t15以降はMG1トルクの大きさが実エンジントルク存在範囲Rte内を上昇する。第二制御におけるMG1トルクの傾きβ2が第一制御のMG1トルクの傾きβ1よりも緩やかとされることで、第二制御のストローク時間tst2は、第一制御のストローク時間tst1よりも長くなる。これにより、スリーブ43を解放方向にストロークさせる時間を確保し、係合装置40を解放させることが可能となる。
 なお、係合装置40を解放する際の解放制御では、実エンジントルク存在範囲Rteの上限値よりも大きなトルクまでMG1トルクの大きさを変動させるようにしてもよく、実エンジントルク存在範囲Rteの下限値よりも小さなトルクまでMG1トルクの大きさを変動させるようにしてもよい。
 例えば、図1に示す第一制御では、時刻t4にMG1トルクTmgの大きさが実エンジントルク存在範囲Rteの下限値まで低下すると、第一制御が終了したが、これに代えて、時刻t4以降も第一制御を継続してMG1トルクTmgの大きさを低減させるようにしてもよい。このようにすれば、実際のエンジントルクTeが実エンジントルク存在範囲Rteの下限値よりも低トルク側に存在する場合であってもエンジントルクTeをストローク可能領域Rstと重ならせることが可能となり、スリーブ43を解放方向にストロークさせることができる。例えば、図1の場合、エンジントルクTeが爆発により上昇する時刻t5までエンジントルクTeをストローク可能領域Rstに重ならせることも可能となる。
 第一制御は、例えば、ストローク可能領域Rstの上限トルクTst_maxが実エンジントルク存在範囲Rteの下限値となったときに終了されてもよい。また、第一制御でMG1トルクTmgの大きさを実エンジントルク存在範囲Rteの下限値未満まで低下させるようにすれば、第二制御の開始時のMG1トルクTmgの大きさを実エンジントルク存在範囲Rteの下限値よりも小さなトルクとすることができる。これにより、実際のエンジントルクTeが実エンジントルク存在範囲Rteの下限値よりも低トルク側に存在する場合であっても、第二制御においてエンジントルクTeをストローク可能領域Rstに重ならせることが可能となる。
 また、第一制御の開始時のMG1トルクTmgの大きさを実エンジントルク存在範囲Rteの上限値よりも大きくしてもよい。このようにすれば、実際のエンジントルクTeが実エンジントルク存在範囲Rteの上限値よりも高トルク側に存在する場合であってもエンジントルクTeを実エンジントルク存在範囲Rteと重ならせることが可能となる。また、第二制御において、実エンジントルク存在範囲Rteの上限値よりも大きなトルクまでMG1トルクTmgの大きさを上昇させるようにしてもよい。
[実施形態の変形例]
 上記実施形態では、車両100に2つの回転機MG1,MG2が搭載されていたが、これに限らず、搭載される回転機は1つであっても、3つ以上であってもよい。例えば、第二回転機MG2が省略されてもよい。遊星歯車機構10の回転要素とエンジン1、第一回転機MG1、駆動輪との接続関係は、例示したものには限定されない。例えば、エンジン1はキャリア14以外の回転要素と接続されてもよく、第一回転機MG1はサンギヤ11以外の回転要素と接続されてもよく、駆動輪はリングギヤ13以外の回転要素と接続されてもよい。エンジン1、第一回転機MG1、駆動輪がそれぞれ異なる回転要素と接続されていればよい。また、エンジン1と第一回転機MG1と駆動輪とを接続する差動機構は、シングルピニオン式の遊星歯車機構10には限定されない。
 上記実施形態の係合装置40は、付勢部材の付勢力によって解放方向に駆動されるものであったが、これに代えて、アクチュエータ44の駆動力によって解放方向に駆動されるものであってもよい。
 上記実施形態では、第一制御においてMG1トルクTmgの大きさを低減させるときのMG1トルクTmgの傾きβ1が一定であったが、MG1トルクTmgの傾きβ1は変化してもよい。また、上記実施形態では、第二制御においてMG1トルクTmgの大きさを増加させるときのMG1トルクTmgの傾きβ2が一定であったが、MG1トルクTmgの傾きβ2は変化してもよい。
 上記の実施形態および変形例に開示された内容は、適宜組み合わせて実行されることができる。
 1-1 ハイブリッド車両用駆動装置
 1 エンジン
 10 遊星歯車機構
 11 サンギヤ
 12 ピニオンギヤ
 13 リングギヤ
 14 キャリア
 31 回転軸
 40 係合装置
 41 車体側円筒部材
 42 ピース
 43 スリーブ
 44 アクチュエータ(駆動装置)
 MG1 第一回転機
 MG2 第二回転機

Claims (3)

  1.  エンジンと、
     回転機と、
     前記回転機の回転を規制する噛み合い式の係合装置と、
     前記エンジンの反力を前記回転機のトルクで受けて前記エンジンを動力源として走行する第1モードと、
     前記エンジンの反力を前記係合装置で受けて前記エンジンを動力源として走行する第2モードと、
     を備え、
     前記第2モードから前記係合装置を解放するときに、前記回転機のトルクによって前記エンジンの反力を受け、前記回転機のトルクの大きさを推定した前記エンジンのトルク範囲の上限値以上まで上昇させた後、前記回転機のトルクの大きさを低減させる第一制御を実行し、
     前記第一制御において前記回転機のトルクの大きさを低減させるときの前記回転機のトルクの傾きの大きさは、前記エンジンの爆発変動により前記エンジンのトルクが低減するときの前記エンジンのトルクの傾きの大きさ以下である
     ことを特徴とするハイブリッド車両用駆動装置。
  2.  前記第一制御において前記回転機のトルクの大きさを低減させるときの前記回転機のトルクの傾きと、前記係合装置の解放推力とから決まる前記係合装置のストローク時間は、前記エンジンの爆発変動の1周期以上である
     請求項1に記載のハイブリッド車両用駆動装置。
  3.  前記回転機のトルクの大きさが前記推定した前記エンジンのトルク範囲の下限未満まで低減しても前記係合装置が解放しない場合、前記推定した前記エンジンのトルク範囲を通過させるように前記回転機のトルクの大きさを増加させる第二制御を実行し、
     前記第二制御において前記回転機のトルクの大きさを増加させるときの前記回転機のトルクの傾きの大きさは、前記第一制御において前記回転機のトルクの大きさを低減させるときの前記回転機のトルクの傾きの大きさよりも小さい
     請求項1または2に記載のハイブリッド車両用駆動装置。
PCT/JP2013/061331 2013-04-16 2013-04-16 ハイブリッド車両用駆動装置 WO2014170967A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/784,474 US10435013B2 (en) 2013-04-16 2013-04-16 Hybrid vehicle drive system
CN201380075670.3A CN105121243B (zh) 2013-04-16 2013-04-16 混合动力车辆用驱动装置
PCT/JP2013/061331 WO2014170967A1 (ja) 2013-04-16 2013-04-16 ハイブリッド車両用駆動装置
EP13882495.8A EP2987696B1 (en) 2013-04-16 2013-04-16 Hybrid vehicle drive device
JP2015512231A JP6086149B2 (ja) 2013-04-16 2013-04-16 ハイブリッド車両用駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061331 WO2014170967A1 (ja) 2013-04-16 2013-04-16 ハイブリッド車両用駆動装置

Publications (1)

Publication Number Publication Date
WO2014170967A1 true WO2014170967A1 (ja) 2014-10-23

Family

ID=51730940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061331 WO2014170967A1 (ja) 2013-04-16 2013-04-16 ハイブリッド車両用駆動装置

Country Status (5)

Country Link
US (1) US10435013B2 (ja)
EP (1) EP2987696B1 (ja)
JP (1) JP6086149B2 (ja)
CN (1) CN105121243B (ja)
WO (1) WO2014170967A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217925A (ja) * 2014-05-21 2015-12-07 トヨタ自動車株式会社 駆動制御装置
JP2016196246A (ja) * 2015-04-03 2016-11-24 トヨタ自動車株式会社 車両用駆動装置
JPWO2014170967A1 (ja) * 2013-04-16 2017-02-16 トヨタ自動車株式会社 ハイブリッド車両用駆動装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160066648A (ko) * 2014-12-02 2016-06-13 현대자동차주식회사 하이브리드 차량용 파워트레인
JP7168439B2 (ja) * 2018-12-20 2022-11-09 トヨタ自動車株式会社 車両の制御装置
DE102021208944B3 (de) 2021-08-16 2022-06-02 Zf Friedrichshafen Ag Verfahren zum Öffnen eines formschlüssigen Schaltelements eines Kraftfahrzeuggetriebes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114107A (ja) * 2003-10-10 2005-04-28 Hitachi Ltd 自動車の変速方法,自動車の変速装置,自動車用変速機の制御装置,自動車の変速装置のアクチュエータ制御装置
JP2006083919A (ja) * 2004-09-15 2006-03-30 Toyota Motor Corp 車両の制御装置
JP2009222102A (ja) * 2008-03-14 2009-10-01 Toyota Motor Corp 車両の制御装置
JP2010023778A (ja) * 2008-07-24 2010-02-04 Toyota Motor Corp 駆動装置の制御装置及び駆動装置
JP2012193851A (ja) 2007-06-25 2012-10-11 Toyota Motor Corp 噛み合い式係合装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508916A (en) 1995-02-13 1996-04-16 Eaton Corporation Control for engagement of positive clutches in automated mechanical transmission systems
JP3414059B2 (ja) * 1995-07-19 2003-06-09 アイシン・エィ・ダブリュ株式会社 車輌用駆動装置
JP3433934B2 (ja) 2001-11-27 2003-08-04 富士重工業株式会社 自動変速装置
JP4155461B2 (ja) * 2003-10-15 2008-09-24 アイシン・エィ・ダブリュ株式会社 電動車両駆動制御装置及び電動車両駆動制御方法
JP5019870B2 (ja) * 2006-12-27 2012-09-05 ボッシュ株式会社 ハイブリッド車両の制御方法
JP2008221879A (ja) * 2007-03-08 2008-09-25 Toyota Motor Corp 車両の制御装置
JP2009286356A (ja) 2008-05-30 2009-12-10 Toyota Motor Corp 噛み合い式係合装置付き駆動装置
US9002553B2 (en) * 2009-08-21 2015-04-07 Honda Motor Co., Ltd. Engine starting control device for hybrid vehicle
JP2011051553A (ja) 2009-09-04 2011-03-17 Toyota Motor Corp ハイブリッド車両の制御装置
US8594875B2 (en) * 2009-09-28 2013-11-26 Honda Motor Co., Ltd. Power output system
KR101297020B1 (ko) * 2009-10-14 2013-08-14 닛산 지도우샤 가부시키가이샤 하이브리드 차량의 제어 장치
US8660726B2 (en) * 2010-06-24 2014-02-25 GM Global Technology Operations LLC Torque blending systems for hybrid electric vehicles with electrically continuous variable transmissions
DE102010041581A1 (de) * 2010-09-29 2012-03-29 Robert Bosch Gmbh Verfahren zum Lastfreien Öffnen einer Trennkupplung
JP5488713B2 (ja) * 2010-10-27 2014-05-14 日産自動車株式会社 電動車両の制御装置
US8412397B2 (en) * 2011-02-10 2013-04-02 GM Global Technology Operations LLC Clutch fill command based on clutch slip speed profile synchronization prediction
JP5921812B2 (ja) * 2011-02-25 2016-05-24 本田技研工業株式会社 ハイブリッド車両用駆動装置
JP2012224203A (ja) * 2011-04-19 2012-11-15 Toyota Motor Corp ハイブリッド車両の駆動制御装置
JP2013035441A (ja) * 2011-08-09 2013-02-21 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2013071541A (ja) * 2011-09-27 2013-04-22 Aisin Seiki Co Ltd ハイブリッド車両用駆動装置の変速制御装置
JP5761365B2 (ja) * 2011-10-27 2015-08-12 トヨタ自動車株式会社 ハイブリッド車両の制御装置
WO2013062124A1 (ja) * 2011-10-28 2013-05-02 日産自動車株式会社 ハイブリッド車両の制御装置
CN103906662B (zh) * 2011-10-28 2016-09-21 日产自动车株式会社 混合动力车辆的控制装置
JP5786734B2 (ja) * 2012-01-27 2015-09-30 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
US10065626B2 (en) * 2012-04-13 2018-09-04 Ford Global Technologies, Llc Feed forward and feedback adjustment of motor torque during clutch engagement
JP5862804B2 (ja) 2013-01-10 2016-02-16 トヨタ自動車株式会社 係合装置及びハイブリッド車両用駆動装置
EP2987696B1 (en) * 2013-04-16 2018-05-30 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114107A (ja) * 2003-10-10 2005-04-28 Hitachi Ltd 自動車の変速方法,自動車の変速装置,自動車用変速機の制御装置,自動車の変速装置のアクチュエータ制御装置
JP2006083919A (ja) * 2004-09-15 2006-03-30 Toyota Motor Corp 車両の制御装置
JP2012193851A (ja) 2007-06-25 2012-10-11 Toyota Motor Corp 噛み合い式係合装置
JP2009222102A (ja) * 2008-03-14 2009-10-01 Toyota Motor Corp 車両の制御装置
JP2010023778A (ja) * 2008-07-24 2010-02-04 Toyota Motor Corp 駆動装置の制御装置及び駆動装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014170967A1 (ja) * 2013-04-16 2017-02-16 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
JP2015217925A (ja) * 2014-05-21 2015-12-07 トヨタ自動車株式会社 駆動制御装置
US9566975B2 (en) 2014-05-21 2017-02-14 Toyota Jidosha Kabushiki Kaisha Drive control device
JP2016196246A (ja) * 2015-04-03 2016-11-24 トヨタ自動車株式会社 車両用駆動装置

Also Published As

Publication number Publication date
CN105121243B (zh) 2017-06-20
EP2987696B1 (en) 2018-05-30
US20160068155A1 (en) 2016-03-10
CN105121243A (zh) 2015-12-02
EP2987696A1 (en) 2016-02-24
JP6086149B2 (ja) 2017-03-01
EP2987696A4 (en) 2017-05-31
US10435013B2 (en) 2019-10-08
JPWO2014170967A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6086149B2 (ja) ハイブリッド車両用駆動装置
JP5967105B2 (ja) ハイブリッド車両の駆動制御装置
JP6314953B2 (ja) ハイブリッド車両の制御装置
US20120245774A1 (en) Driving device for vehicle
JP2011002060A (ja) 車両の制御装置
JP3807386B2 (ja) ハイブリッド車の制御装置
JP2013169852A (ja) 車両の制御装置
JP5930121B2 (ja) 係合装置及び動力伝達装置
US9663094B2 (en) Driving device for hybrid vehicle
US9517690B2 (en) Vehicle driving control device
US20160101772A1 (en) Travel control apparatus of hybrid vehicle
JP6285273B2 (ja) 自動変速機の油圧制御装置
JP5954358B2 (ja) 駆動制御装置
JP2012210834A (ja) 車両用駆動装置
JP2013193556A (ja) ハイブリッド車両の制御装置
US9545913B2 (en) Method and apparatus for controlling a powertrain system including multiple torque-generative devices
JP2016203694A (ja) 車両用駆動装置
JP2013189047A (ja) ハイブリッド車両の制御装置
JP5130389B2 (ja) 車両の制御装置
JP6354617B2 (ja) 噛合式係合機構の制御装置
JP2009278748A (ja) 回転数制御装置
JP2016215834A (ja) 車両制御装置
JP2016196246A (ja) 車両用駆動装置
JP5929642B2 (ja) ハイブリッド車両用駆動装置
JP2020185930A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015512231

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14784474

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013882495

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE