WO2014167982A1 - 補正装置、補正方法及び鉄鋼精錬方法 - Google Patents
補正装置、補正方法及び鉄鋼精錬方法 Download PDFInfo
- Publication number
- WO2014167982A1 WO2014167982A1 PCT/JP2014/057831 JP2014057831W WO2014167982A1 WO 2014167982 A1 WO2014167982 A1 WO 2014167982A1 JP 2014057831 W JP2014057831 W JP 2014057831W WO 2014167982 A1 WO2014167982 A1 WO 2014167982A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measured value
- correction
- amount
- exhaust gas
- molten steel
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4673—Measuring and sampling devices
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/38—Removal of waste gases or dust
- C21C5/40—Offtakes or separating apparatus for converter waste gases or dust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention has been made in view of the above problems, and its purpose is a correction device capable of accurately correcting the amount of carbon added to molten steel by introducing measured values and auxiliary materials of a steel refining facility, It is to provide a correction method and a steel refining method.
- the correction device According to the correction device, the correction method, and the steel refining method according to the present invention, it is possible to accurately correct the amount of carbon added to the molten steel by introducing the measured values and auxiliary materials of the steel refining equipment.
- the measurement value / operation amount correction device 20 having such a configuration performs the past charge selection process and the correction parameter calculation process shown below, thereby measuring the exhaust gas flow rate and component concentration measurement values and the carbon added to the molten steel. Correct the calculated amount.
- the operation of the measured value / operation amount correction apparatus 20 when the past charge selection process and the correction parameter calculation process are executed will be described.
- the past charge selection unit 23a extracts a past charge that satisfies the constraint condition based on the past charge time series and the operation result information other than the time series read by the process of step S11.
- the past charge selection unit 23a has a purpose of the blowing process (dephosphorization blowing, decarbonized blowing, or normal blowing in which dephosphorized blowing and decarbonized blowing are performed simultaneously).
- step S12 is completed, and the past charge selection process proceeds to the process of step S13.
- the specified number of days is too short, the number of past charges that can be collected becomes too small and the error estimation accuracy deteriorates. The error changes and the error estimation accuracy deteriorates. It is necessary to take these into consideration when determining the specified number of days.
- an error estimation calculation is actually performed for several specified days, and the results are compared to determine an appropriate specified number of days. Just decide. It should be noted that, in order to collect a sufficient number of past charges for estimation calculation, it is considered that it is sufficient to set the designated number of days to about 30 days, depending on the operation status.
- FIG. 4 is a flowchart showing a flow of correction parameter calculation processing according to an embodiment of the present invention.
- the flowchart shown in FIG. 4 starts at the timing when the past charge selection process ends, and the correction parameter calculation process proceeds to the process of step S21.
- the correction parameter calculation unit 23b shift the time zone for extracting the time series information in consideration of the time delay.
- the correction parameter calculation unit regards the CO and CO 2 concentration in the exhaust gas from the time t i, 0 + t ′ to the time t i, 1 + t ′. It is recommended to extract time series information between Thereby, the process of step S21 is completed, and the correction parameter calculation process proceeds to the process of step S22.
- the correction parameter calculation unit 23b uses the time series information during the specified molten steel analysis sampling time extracted by the process of step S21, and uses the error parameter of the carbon mass balance evaluation formula described later. Calculate the coefficient. Specifically, the correction parameter calculation unit 23b includes the flow rate of exhaust gas, the concentration of CO and CO 2 in the exhaust gas, and the amount of carbon added to the molten steel by adding auxiliary materials (hereinafter referred to as auxiliary material input C amount). ) Is assumed to contain errors k v , k x , and ⁇ as shown in equations (2) to (4) below. However, the error value is the same regardless of the charge.
- the true values of the exhaust gas flow rate and the CO and CO 2 concentration in the exhaust gas are formulated in the form of a sum that adds an error to the measured value. This is because, for example, if the true value is formulated in the form of a product, the errors k v and k x cannot be uniquely determined using the carbon mass balance evaluation formula.
- Equation (5) indicates the amount of carbon lost from the molten steel.
- M i, 0 , M i, T are calculated from the molten steel sampling analysis results (carbon concentration) immediately before and during the treatment, respectively. This represents the weight of carbon in the molten steel.
- Equation (6) indicates the amount of carbon in the exhaust gas, ⁇ t is a time-series sampling time interval, and ⁇ is a coefficient for converting the volume of the exhaust gas into carbon weight.
- ⁇ is calculated as 0.54 ( ⁇ 1 / 22.4 ⁇ 12.0).
- the correction parameter calculation unit calculates the coefficients and constant terms of k v , k x , and ⁇ in Equations (5) and (6) as error parameter coefficients of the carbon mass balance evaluation formula described later. Thereby, the process of step S22 is completed, and the correction parameter calculation process proceeds to the process of step S23.
- the correction parameter calculation unit 23b calculates errors k v , k x , and ⁇ that minimize the carbon mass balance evaluation formula expressed by the following formula (7).
- the carbon mass balance evaluation formula expressed by Equation (7) calculates the value obtained by squaring the difference between the ratio of carbon input and output and the value of 1 (carbon mass balance error) for each past charge. , The sum of the values. When the carbon input and the carbon output become equal, the value of the square term becomes zero.
- Errors k v , k x , and ⁇ that minimize the mass balance evaluation formula are nonlinear programming methods (for example, literature (Toshihide Ibaraki, Masao Fukushima, “Method of Optimization”, Information Mathematics Course Vol. 14, Kyoritsu Shuppan, 1993) )) Can be easily calculated.
- W ( ⁇ ) in Equation (7) is a weighting factor of the error ⁇ , and is set to take the maximum value 1 when the value of the error ⁇ is 1. If it is not necessary to use a weight function, the value of W ( ⁇ ) may be set to always be 1. Thereby, the process of step S23 is completed, and the correction parameter calculation process proceeds to the process of step S24.
- the correction parameter calculation unit 23b uses the errors k v , k x , and ⁇ (correction amounts) that minimize the carbon mass balance evaluation formula obtained by the process of step S23 and the exhaust gas of the charge to be processed.
- the measured value of the flow rate, the measured value of the CO, CO 2 concentration in the exhaust gas, and the calculated value of the amount of auxiliary material input C are calculated.
- the correction parameter calculation unit 23b outputs information regarding the calculated exhaust gas flow rate, the CO, CO 2 concentration in the exhaust gas, and the true value of the auxiliary raw material input C amount to the control terminal 10 and the display device 40. Thereby, the process of step S24 is completed, and the correction parameter calculation process proceeds to the process of step S25.
- step S25 the correction parameter calculation unit 23b determines whether or not the blowing process for the processing target charge has been completed. As a result of the determination, when the blowing process for the processing target charge is not completed (No at Step S25), the correction parameter calculation unit 23b returns the correction parameter calculation process to the process at Step S24. On the other hand, when the blowing process for the processing target charge is completed (step S25, Yes), the correction parameter calculation unit 23b ends the series of correction parameter calculation processing.
- blowing control process using the measurement value and the operation amount corrected by the measurement value / operation amount correction device 20 of the above embodiment will be described.
- This blowing control determines the acid feed rate and the lance height, and the control terminal 10 automatically calculates.
- the numerators of the formulas (8) and (9) are formulas for calculating the carbon weight remaining in the molten steel.
- One item of the molecule indicates the carbon content in the molten steel at the time of component measurement
- two items indicate the amount of carbon in the auxiliary material (secondary material input C amount) input into the furnace after the component measurement
- three items after the component measurement Indicates the amount of carbon discharged outside the facility as exhaust gas.
- M , i, ⁇ , V , i, ⁇ X , i, ⁇ indicate the corrected amount of carbon in the auxiliary material (the amount of C added to the auxiliary material), the flow rate of the exhaust gas, and the CO and CO 2 concentration in the exhaust gas. (Corresponding to the equations (2) to (4) described above).
- the carbon concentration in the molten steel until the sampling of the molten steel in the middle of blowing is calculated by Equation (8) using the measured value of the molten steel component immediately before the treatment. Moreover, the carbon concentration in molten steel after the latest measured value of molten steel carbon concentration is obtained by sampling of molten steel in the middle of blowing is calculated by the latest measured molten steel component value and Equation (9). Thereby, the process of step S31 is completed and a blowing control process progresses to the process of step S32.
- the present invention can be applied to the process of correcting the measurement value and the operation amount of the steel refining equipment.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Control Of Non-Electrical Variables (AREA)
Abstract
Description
始めに、図1を参照して、本発明の一実施形態である計測値・操作量補正装置が適用される転炉吹錬プロセスについて説明する。
次に、図1を参照して、本発明の一実施形態である計測値・操作量補正装置が適用される転炉吹錬制御システムの構成について説明する。
次に、図2を参照して、計測値・操作量補正装置20の構成について説明する。
始めに、図3を参照して、過去チャージ選択処理を実行する際の計測値・操作量補正装置20の動作について説明する。
次に、図4を参照して、補正パラメータ計算処理を実行する際の計測値・操作量補正装置20の動作について説明する。
以下に、上記実施の形態の計測値・操作量補正装置20により補正された計測値よび操作量を用いた吹錬制御処理について説明する。本吹錬制御は、送酸速度およびランス高さを決定するものであり、制御端末10が自動的に計算を行う。
20 計測値・操作量補正装置
21 マスタ情報データベース(マスタ情報DB)
22 操業データベース(操業DB)
23 演算処理部
23a 過去チャージ選択部
23b 補正パラメータ計算部
30 入力装置
40 表示装置
100 転炉
101 溶鋼
102 ランス
103 スラグ
104 ダクト
105 排ガス検出部
106 排ガス流量計
107 通気孔
108 流量計
Claims (5)
- 鉄鋼精錬設備の計測値及び操作量を補正する補正装置であって、
前記計測値は、鉄鋼精錬設備に供給されるガスの流量の計測値、鉄鋼精錬設備から排出される排ガスの流量の計測値、排ガスの成分濃度の計測値、精錬処理前、精錬処理途中、及び精錬処理後の溶鋼の成分濃度の計測値、及び原料の重量の計測値を含み、前記操作量は、副原料の投入量を含み、
過去チャージの操業実績情報を格納する操業データベースと、
前記操業データベースの中から処理対象チャージの操業情報との差異が所定範囲内にある操業実績情報を有する過去チャージを選択する過去チャージ選択部と、
前記過去チャージ選択部によって選択された過去チャージ毎に炭素のマスバランスの誤差を算出し、算出された誤差の合計値が最小になるように前記計測値及び副原料を投入することによって溶鋼に加えられた炭素量の補正量を算出する補正パラメータ計算部と、
を備えることを特徴とする補正装置。 - 前記補正パラメータ計算部は、炭素の入出量比と1との差の二乗値に重み係数を乗算した値を炭素のマスバランスの誤差として算出することを特徴とする請求項1に記載の補正装置。
- 前記補正パラメータ計算部は、排ガスの流量の補正量及び排ガスの成分濃度の補正量の少なくとも一方を対応する計測値に加算することによって、排ガスの流量及び排ガスの成分濃度の少なくとも一方を補正することを特徴とする請求項1又は2に記載の補正装置。
- 鉄鋼精錬設備の計測値及び操作量を補正する補正方法であって、
前記計測値は、鉄鋼精錬設備に供給されるガスの流量の計測値、鉄鋼精錬設備から排出される排ガスの流量の計測値、排ガスの成分濃度の計測値、精錬処理前、精錬処理途中、及び精錬処理後の溶鋼の成分濃度の計測値、及び原料の重量の計測値を含み、前記操作量は、副原料の投入量を含み、
処理対象チャージの操業情報との差異が所定範囲内にある操業実績情報を有する過去チャージを選択する過去チャージ選択ステップと、
前記過去チャージ選択ステップにおいて選択された過去チャージ毎に炭素のマスバランスの誤差を算出し、算出された誤差の合計値が最小になるように前記計測値及び副原料を投入することによって溶鋼に加えられた炭素量の補正量を算出する補正パラメータ計算ステップと、
を含むことを特徴とする補正方法。 - 周期的もしくは指定された時刻に推定された吹錬処理途中の溶鋼の成分濃度及び温度に基づいて、送酸速度及びランス高さを算出する鉄鋼精錬方法であって、
吹錬処理開始直前の溶鋼の成分濃度及び温度と、水冷処理開始から吹錬処理途中までの送酸速度及び副原料投入量と、吹錬処理開始から吹錬処理途中までの排ガスの流量と成分濃度との計測値と、請求項1~3のいずれか1項に記載の補正装置により算出された前記補正量とに基づいて、送酸速度及びランス高さを算出するステップを含むことを特徴とする鉄鋼精錬方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112015025470A BR112015025470A2 (pt) | 2013-04-10 | 2014-03-20 | aparelho corretor, método de correção e método de refinamento de aço |
JP2015511183A JP5854171B2 (ja) | 2013-04-10 | 2014-03-20 | 補正装置、補正方法及び鉄鋼精錬方法 |
CN201480019382.0A CN105074016A (zh) | 2013-04-10 | 2014-03-20 | 修正装置、修正方法以及钢铁精炼方法 |
KR1020157027633A KR101706495B1 (ko) | 2013-04-10 | 2014-03-20 | 보정 장치, 보정 방법 및 철강 정련 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-082409 | 2013-04-10 | ||
JP2013082409 | 2013-04-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014167982A1 true WO2014167982A1 (ja) | 2014-10-16 |
Family
ID=51689394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/057831 WO2014167982A1 (ja) | 2013-04-10 | 2014-03-20 | 補正装置、補正方法及び鉄鋼精錬方法 |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP5854171B2 (ja) |
KR (1) | KR101706495B1 (ja) |
CN (1) | CN105074016A (ja) |
BR (1) | BR112015025470A2 (ja) |
TW (1) | TWI488973B (ja) |
WO (1) | WO2014167982A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018150589A (ja) * | 2017-03-14 | 2018-09-27 | Jfeスチール株式会社 | 精錬プロセス状態推定装置、精錬プロセス状態推定方法、及び溶湯の製造方法 |
CN111047202A (zh) * | 2019-12-13 | 2020-04-21 | 首钢集团有限公司 | 一种铁水碳含量的校正方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017163902A1 (ja) * | 2016-03-23 | 2017-09-28 | 新日鐵住金株式会社 | 溶銑予備処理方法及び溶銑予備処理制御装置 |
BR112020019000A2 (pt) * | 2018-03-19 | 2020-12-29 | Jfe Steel Corporation | Dispositivo de estimativa de componente de metal fundido, método de estimativa de componente de metal fundido, e método de produção de metal fundido |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09272913A (ja) * | 1996-04-05 | 1997-10-21 | Nippon Steel Corp | 溶鋼炭素濃度推定方法 |
JP2010007150A (ja) * | 2008-06-30 | 2010-01-14 | Jfe Steel Corp | 溶鋼炭素濃度推定方法 |
JP2012117090A (ja) * | 2010-11-29 | 2012-06-21 | Sumitomo Metal Ind Ltd | 転炉吹錬方法及び転炉吹錬システム |
JP2012149341A (ja) * | 2010-12-27 | 2012-08-09 | Jfe Steel Corp | 溶湯成分推定方法及び溶湯成分推定装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19854662B4 (de) * | 1998-11-26 | 2004-06-03 | British-American Tobacco (Germany) Gmbh | Tabakschneidverfahren und -vorrichtung |
-
2014
- 2014-03-20 BR BR112015025470A patent/BR112015025470A2/pt not_active IP Right Cessation
- 2014-03-20 CN CN201480019382.0A patent/CN105074016A/zh active Pending
- 2014-03-20 KR KR1020157027633A patent/KR101706495B1/ko active IP Right Grant
- 2014-03-20 WO PCT/JP2014/057831 patent/WO2014167982A1/ja active Application Filing
- 2014-03-20 JP JP2015511183A patent/JP5854171B2/ja active Active
- 2014-04-07 TW TW103112641A patent/TWI488973B/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09272913A (ja) * | 1996-04-05 | 1997-10-21 | Nippon Steel Corp | 溶鋼炭素濃度推定方法 |
JP2010007150A (ja) * | 2008-06-30 | 2010-01-14 | Jfe Steel Corp | 溶鋼炭素濃度推定方法 |
JP2012117090A (ja) * | 2010-11-29 | 2012-06-21 | Sumitomo Metal Ind Ltd | 転炉吹錬方法及び転炉吹錬システム |
JP2012149341A (ja) * | 2010-12-27 | 2012-08-09 | Jfe Steel Corp | 溶湯成分推定方法及び溶湯成分推定装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018150589A (ja) * | 2017-03-14 | 2018-09-27 | Jfeスチール株式会社 | 精錬プロセス状態推定装置、精錬プロセス状態推定方法、及び溶湯の製造方法 |
CN111047202A (zh) * | 2019-12-13 | 2020-04-21 | 首钢集团有限公司 | 一种铁水碳含量的校正方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201502280A (zh) | 2015-01-16 |
CN105074016A (zh) | 2015-11-18 |
JPWO2014167982A1 (ja) | 2017-02-16 |
BR112015025470A2 (pt) | 2017-07-18 |
KR101706495B1 (ko) | 2017-02-13 |
JP5854171B2 (ja) | 2016-02-09 |
TWI488973B (zh) | 2015-06-21 |
KR20150122798A (ko) | 2015-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6583594B1 (ja) | 溶湯成分推定装置、溶湯成分推定方法、及び溶湯の製造方法 | |
KR101657930B1 (ko) | 전로 취련 설비의 제어 장치 및 제어 방법 | |
JP5854171B2 (ja) | 補正装置、補正方法及び鉄鋼精錬方法 | |
JP6579136B2 (ja) | 精錬プロセス状態推定装置、精錬プロセス状態推定方法、及び溶湯の製造方法 | |
JP5853723B2 (ja) | リン濃度予測装置及び吹錬制御方法 | |
CN104419799A (zh) | 一种转炉冶炼在线预测高碳钢碳含量方法 | |
JP6376200B2 (ja) | 溶湯状況推定装置、溶湯状況推定方法、及び溶湯の製造方法 | |
JP6414045B2 (ja) | 溶湯成分推定装置及び溶湯成分推定方法 | |
JP5821656B2 (ja) | 生石灰濃度予測装置及び吹錬制御方法 | |
JP6098553B2 (ja) | 復燐量予測装置および復燐量予測方法、ならびに転炉脱燐制御方法 | |
JP6060613B2 (ja) | ガス流量推定装置及びガス流量推定方法 | |
JP2001294928A (ja) | 転炉吹錬の終点制御方法 | |
JP2012149341A (ja) | 溶湯成分推定方法及び溶湯成分推定装置 | |
JP2007238982A (ja) | 転炉吹錬終点制御方法 | |
TWI627284B (zh) | 熔融生鐵預備處理方法及熔融生鐵預備處理控制裝置 | |
JP2024005899A (ja) | 統計モデル構築装置、方法及びプログラム、並びに溶鋼中りん濃度推定装置、方法及びプログラム | |
JP2022163677A (ja) | 演算装置、パラメータ推定方法およびプログラム | |
CN118103530A (zh) | 炉内状态推断装置、炉内状态推断方法以及钢水制造方法 | |
CN114561509A (zh) | 一种电弧炉终点碳含量预测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480019382.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14783379 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015511183 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015/11778 Country of ref document: TR |
|
ENP | Entry into the national phase |
Ref document number: 20157027633 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015025470 Country of ref document: BR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14783379 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 112015025470 Country of ref document: BR Kind code of ref document: A2 Effective date: 20151006 |