WO2014167864A1 - 水素生成装置及びこれを備える燃料電池システム - Google Patents

水素生成装置及びこれを備える燃料電池システム Download PDF

Info

Publication number
WO2014167864A1
WO2014167864A1 PCT/JP2014/002074 JP2014002074W WO2014167864A1 WO 2014167864 A1 WO2014167864 A1 WO 2014167864A1 JP 2014002074 W JP2014002074 W JP 2014002074W WO 2014167864 A1 WO2014167864 A1 WO 2014167864A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat source
hydrogen generator
temperature detector
desulfurization catalyst
Prior art date
Application number
PCT/JP2014/002074
Other languages
English (en)
French (fr)
Inventor
友也 竹内
田口 清
向井 裕二
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/405,748 priority Critical patent/US9278329B2/en
Priority to JP2014540245A priority patent/JP5651277B1/ja
Priority to EP14782191.2A priority patent/EP2985259B1/en
Publication of WO2014167864A1 publication Critical patent/WO2014167864A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00211Control algorithm comparing a sensed parameter with a pre-set value
    • B01J2219/00213Fixed parameter value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00238Control algorithm taking actions modifying the operating conditions of the heat exchange system
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen generator and a fuel cell system including the same. More specifically, the present invention relates to a hydrogen generator equipped with a desulfurizer and a fuel cell system including the same.
  • Patent Document 1 discloses a desulfurizer having a catalyst that adsorbs a sulfur compound contained in a raw material gas in a hollow container, and a reforming reaction using the raw material gas and water that has passed through the desulfurizer.
  • the hydrogen generator is disclosed in which the heater is formed in a spiral shape along the inner wall of the outer surface of the desulfurizer and is disposed with a gap from the reforming unit.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a hydrogen generator that makes it easier to keep the temperature of a desulfurization catalyst within an appropriate range, and a fuel cell system including the hydrogen generator.
  • One aspect of the hydrogen generator according to the present invention includes a desulfurization catalyst that removes sulfur compounds in a raw material, and the desulfurization catalyst is disposed so as to be heatable by a first heat source, and the desulfurizer passes through the desulfurizer.
  • a reformer that generates a hydrogen-containing gas using a raw material, a first temperature detector that detects a temperature of the desulfurization catalyst at a predetermined portion, and a desulfurization catalyst that is farther from the first heat source than the predetermined portion.
  • a second temperature detector for detecting temperature; and a controller for controlling heating of the desulfurization catalyst by the first heat source based on detection results of the first temperature detector and the second temperature detector.
  • An aspect of a fuel cell system according to the present invention includes the above hydrogen generator and a fuel cell that generates electric power using a hydrogen-containing gas supplied from the hydrogen generator.
  • FIG. 1 is a schematic diagram illustrating an example of a schematic configuration of the hydrogen generator according to the first embodiment.
  • FIG. 2 is a flowchart illustrating an example of an operation method of the hydrogen generator according to the second embodiment.
  • FIG. 3 is a flowchart showing an example of an operation method of the hydrogen generator according to the third embodiment.
  • FIG. 4 is a flowchart illustrating an example of an operation method of the hydrogen generator according to the fourth embodiment.
  • FIG. 5 is a flowchart showing an example of an operation method of the hydrogen generator according to the fifth embodiment.
  • FIG. 6 is a flowchart illustrating an example of an operation method of the hydrogen generator according to the fifth embodiment.
  • FIG. 7 is a schematic diagram illustrating an example of a schematic configuration of the hydrogen generator according to the seventh embodiment.
  • FIG. 8 is a flowchart illustrating an example of an operation method of the hydrogen generator according to the seventh embodiment.
  • FIG. 9 is a schematic diagram illustrating an example of a schematic configuration of a fuel cell system according to the eighth embodiment.
  • FIG. 10 is a flowchart illustrating an example of an operation method of the hydrogen generator according to the eighth embodiment.
  • FIG. 11 is a flowchart illustrating an example of an operation method of the hydrogen generator according to the ninth embodiment.
  • FIG. 12 is a flowchart illustrating an example of an operation method of the hydrogen generator according to the tenth embodiment.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a fuel cell system according to the eleventh embodiment.
  • the hydrodesulfurization catalyst In the conventional hydrogen generator described above, it may be difficult to keep the hydrodesulfurization catalyst at an appropriate temperature. As a result of the examination, the cause of such a problem is that the temperature detection part of the hydrodesulfurizer is in one place, so the temperature of the hydrodesulfurization catalyst that tends to become low temperature or high temperature is measured. It turned out to be because it could not. Then, it has been conceived that a temperature detector is disposed at each of a plurality of portions of the hydrodesulfurization catalyst, and heating of the hydrodesulfurization catalyst is controlled based on a detection result of the temperature detector.
  • Such a configuration is effective not only for a desulfurizer using a hydrodesulfurization catalyst but also for a desulfurizer using another desulfurization catalyst used at a temperature higher than normal temperature.
  • the hydrogen generator according to the first embodiment includes a desulfurization catalyst that includes a desulfurization catalyst that removes sulfur compounds in a raw material, the desulfurization catalyst being arranged to be heatable by a first heat source, and a raw material that has passed through the desulfurizer.
  • a reformer that generates a hydrogen-containing gas, a first temperature detector that detects the temperature of the desulfurization catalyst at a predetermined position, and a second temperature that detects the temperature of the desulfurization catalyst at a position farther from the first heat source than the predetermined position.
  • a detector, and a controller that controls heating of the desulfurization catalyst by the first heat source based on detection results of the first temperature detector and the second temperature detector.
  • Such a configuration makes it easier to keep the temperature of the desulfurization catalyst in an appropriate range.
  • FIG. 1 is a schematic diagram illustrating an example of a schematic configuration of the hydrogen generator according to the first embodiment.
  • the hydrogen generator 100 according to the first embodiment will be described with reference to FIG.
  • the hydrogen generator 100 includes a first heat source 10, a desulfurizer 12, a first temperature detector 16, a second temperature detector 18, a reformer 20, and a controller 30. It is equipped with.
  • the desulfurizer 12 includes a desulfurization catalyst 14 that removes sulfur compounds in the raw material.
  • the desulfurizer 12 removes the sulfur compound in the raw material gas supplied to the reformer using a hydrogenation reaction at a temperature higher than normal temperature (for example, 200 ° C. to 400 ° C.).
  • the desulfurizer 12 is not limited to a hydrodesulfurizer, and may be another desulfurizer as long as it is used at a temperature higher than normal temperature.
  • a desulfurizer filled with a desulfurization catalyst containing a solid acid desulfurizing agent or a desulfurizer filled with a desulfurization catalyst containing a warm adsorption desulfurizing agent may be used.
  • the desulfurizer 12 is configured by, for example, filling a container with a desulfurization catalyst 14.
  • the raw material can be, for example, city gas containing methane as a main component, natural gas, gas containing an organic compound containing carbon and hydrogen as constituent elements, such as LPG, kerosene, and alcohol such as methanol and ethanol.
  • City gas refers to gas supplied from gas companies to households through piping.
  • the desulfurization catalyst 14 is arranged to be heatable by the first heat source 10. Specifically, for example, the desulfurization catalyst 14 and the first heat source 10 are disposed adjacent to the wall so as to sandwich the wall of the container of the desulfurizer 12.
  • the desulfurization catalyst 14 is a hydrodesulfurization catalyst.
  • the desulfurization catalyst 14 is, for example, a CuZn catalyst (for example, a Cu—Zn—Ni catalyst, a Cu—Zn—Fe catalyst, etc.) having both a function of converting a sulfur compound into hydrogen sulfide and a function of adsorbing hydrogen sulfide. ) Is used.
  • the desulfurization catalyst 14 is not limited to this example, and a CoMo-based catalyst that converts a sulfur compound in the raw material gas into hydrogen sulfide, and ZnO that is provided downstream thereof and adsorbs and removes hydrogen sulfide. You may comprise by a system catalyst or a CuZn type catalyst.
  • the desulfurization catalyst 14 may be another catalyst as long as it is a desulfurization catalyst used at a temperature higher than normal temperature.
  • the desulfurization catalyst 14 may be, for example, a solid acid desulfurization agent (Lewis acid desulfurization agent, alumina desulfurization agent, etc .: see JP 2010-138013 A), or a warm adsorption desulfurization agent (transition metal desulfurization agent, N i -based desulfurizing agent, C u -based desulfurizing agent, etc .: see JP-A No. 2006-111766).
  • the sulfur compound may be artificially added to the raw material as an odorous component, or may be a natural sulfur compound derived from the raw material itself.
  • TBM tertiary-butylmercaptan
  • DMS dimethyl sulfide
  • THT tetrahydrothiophene
  • COS carbonyl sulfide
  • hydrogen sulfide hydrogen sulfide (hydrogen sulfide), etc.
  • the first heat source 10 is arranged so that the desulfurization catalyst 14 can be heated.
  • the first heat source 10 may be an electric heater.
  • the first heat source 10 may be a combustor that generates combustion exhaust gas from combustion fuel and combustion air.
  • the first temperature detector 16 detects the temperature of the desulfurization catalyst 14 at a predetermined site.
  • the predetermined part may be a part of the desulfurization catalyst 14 that tends to be relatively hot when the desulfurization catalyst 14 is heated by the first heat source 10 when the hydrogen generator 100 is activated.
  • the predetermined part may be, for example, a part that is likely to become the highest temperature in the desulfurization catalyst 14 when the desulfurization catalyst 14 is heated by the first heat source 10 when the hydrogen generator 100 is started.
  • the desulfurization catalyst 14 may be a portion where the temperature is higher than the average.
  • the predetermined part may be, for example, a part of the desulfurization catalyst 14 that is likely to reach the highest temperature when the desulfurization catalyst 14 is heated only by the first heat source 10.
  • the predetermined part may be a part of the desulfurization catalyst 14 that is closest to the first heat source 10.
  • the predetermined part may be, for example, a part of the desulfurization catalyst 14 that is adjacent to the part of the first heat source 10 where the temperature is highest.
  • the first temperature detector 16 can be disposed closer to the first wall surface than the second wall surface of the desulfurizer 12. Since the desulfurizer 12 is mainly heated by the first heat source 10 when the desulfurization catalyst 14 is heated by the first heat source 10 when the hydrogen generator 100 is started, the first wall surface is compared with the second wall surface. Tends to be hot. Since the first temperature detector 16 is disposed on the side close to the first wall surface, the temperature on the high temperature side of the desulfurizer 12 can be detected.
  • the 1st temperature detector 16 is arrange
  • a thermocouple, a thermistor, or the like can be used as the first temperature detector 16, for example.
  • the second temperature detector 18 detects the temperature of the desulfurization catalyst 14 at a portion farther from the first heat source 10 than a predetermined portion (a portion where the first temperature detector 16 detects the temperature).
  • the part farther from the first heat source 10 than the predetermined part is, for example, a relatively low temperature of the desulfurization catalyst 14 when the desulfurization catalyst 14 is heated by the first heat source 10 when the hydrogen generator 100 is activated. Can be an easy site.
  • the part farther from the first heat source 10 than the predetermined part is, for example, a part that tends to become the lowest temperature of the desulfurization catalyst 14 when the desulfurization catalyst 14 is heated by the first heat source 10 when the hydrogen generator 100 is started.
  • the part farther from the first heat source 10 than the predetermined part can be, for example, a part near the inlet of the desulfurizer 12 where the temperature of the desulfurization catalyst 14 tends to be low.
  • the vicinity of the inlet of the desulfurizer 12 tends to be low because the raw material supplied to the desulfurizer 12 is low temperature.
  • the part farther from the first heat source 10 than the predetermined part can be, for example, a part of the desulfurization catalyst 14 that is likely to become the lowest temperature when the desulfurization catalyst 14 is heated only by the first heat source 10.
  • the part farther from the first heat source 10 than the predetermined part can be, for example, the part farthest from the first heat source 10 in the desulfurization catalyst 14.
  • the part farther from the first heat source 10 than the predetermined part is, for example, the part farthest from the part where the temperature is highest among the first heat source 10 in the desulfurization catalyst 14. It can be.
  • the second temperature detector 18 can be disposed closer to the second wall surface than the first wall surface of the desulfurizer 12. Since the desulfurizer 12 is mainly heated by the first heat source 10 when the desulfurization catalyst 14 is heated by the first heat source 10 when the hydrogen generator 100 is started, the second wall surface is compared with the first wall surface. Tends to be colder. Since the second temperature detector 18 is disposed on the side closer to the second wall surface, the temperature on the low temperature side of the desulfurizer 12 can be detected.
  • the second temperature detector 18 is disposed in the lower part of the desulfurizer 12 in FIG. 1, for example, it may be disposed in the middle and upper part of the desulfurizer 12.
  • a thermocouple, a thermistor, etc. can be used, for example.
  • the reformer 20 generates a hydrogen-containing gas from the raw material and steam. Any form may be sufficient as the reforming reaction which the reformer 20 advances. Specific examples include a steam reforming reaction, an autothermal reaction, and a partial oxidation reaction. Equipment required for each reforming reaction can be provided as appropriate. For example, if the reforming reaction is a steam reforming reaction, a combustor that heats the reformer, an evaporator that generates steam, and a water supplier that supplies water to the evaporator may be provided. If the reforming reaction is an autothermal reaction, an air supply device for supplying air to the reformer can be further provided.
  • the controller 30 controls the heating of the desulfurization catalyst 14 by the first heat source 10 based on the detection results of the first temperature detector 16 and the second temperature detector 18.
  • the controller 30 only needs to have a control function, and includes an arithmetic processing unit (not shown) and a storage unit (not shown) that stores a control program. Examples of the arithmetic processing unit include an MPU and a CPU. A memory is exemplified as the storage unit.
  • the controller may be composed of a single controller that performs centralized control, or may be composed of a plurality of controllers that perform distributed control in cooperation with each other.
  • the temperature of the first heat source changes. For example, when the heating amount of the first heat source 10 is increased, the temperature of the first heat source 10 is increased, and when the heating amount of the first heat source 10 is decreased, the temperature of the first heat source 10 is decreased.
  • the controller 30 controls the heating of the desulfurization catalyst 14 based on the detection results of the temperature detectors 16 and 18 provided at a plurality of locations of the desulfurization catalyst 14. Therefore, it becomes easier to keep the temperature of the desulfurization catalyst 14 in an appropriate range.
  • the first heat source 10 may be disposed outside the desulfurizer 12. In such a configuration, assembling is dramatically facilitated as compared to the case where the first heat source 10 such as a heater is disposed inside the desulfurizer 12.
  • the hydrogen generator of the second embodiment is the hydrogen generator of the first embodiment, and the controller is configured to heat the first heat source when the temperature detected by the second temperature detector is equal to or higher than the first threshold. Reduce.
  • the first threshold value is set as a value equal to or higher than the lower limit value of the use temperature of the desulfurization catalyst.
  • the operating temperature is a temperature suitable for use of the desulfurization catalyst and is a temperature at which the desulfurization performance is appropriately exhibited. When a desulfurization catalyst is used, the temperature is controlled so that the catalyst temperature becomes the operating temperature.
  • the device configuration of the hydrogen generator according to the second embodiment can be the same as that of the first embodiment, except for the content of control by the controller 30, that is, the operation method of the hydrogen generator. Therefore, about the component which is common in FIG. 1, the same code
  • FIG. 2 is a flowchart showing an example of an operation method of the hydrogen generator according to the second embodiment.
  • the operation method shown in FIG. 2 can be executed by the controller 30 controlling each part of the hydrogen generator according to a program stored in the controller 30, for example.
  • step S101 When the operation of the hydrogen generator 100 is started (start), heating (heating) of the desulfurizer 12 is started by the first heat source 10. Thereafter, it is determined whether or not the temperature detected by the second temperature detector 18 is equal to or higher than the first threshold (step S101).
  • step S101 is executed again. If the determination result is NO, step S101 is executed again. If the determination result is YES, the heating amount by the first heat source 10 is reduced (step S102). At this time, the heating amount by the first heat source 10 is appropriately set, but the heating of the desulfurization catalyst 14 by the first heat source 10 may be stopped.
  • the desulfurization catalyst 14 When the desulfurization catalyst 14 is at a low temperature, the hydrogenation reaction hardly occurs and the sulfur adsorption hardly occurs. If the raw material is supplied to the desulfurizer 12 in this state, the sulfur compound in the raw material is supplied downstream without being sufficiently desulfurized by the desulfurizer 12, and there is a possibility that, for example, the life of the fuel cell is reduced. In this case, the raw material may be supplied to the desulfurizer 12 after heating almost the entire area of the desulfurization catalyst 14 to a temperature at which desulfurization easily occurs (use temperature), that is, after the temperature rise of the desulfurization catalyst 14 is completed.
  • use temperature a temperature at which desulfurization easily occurs
  • the second temperature detector 18 is, for example, a portion of the desulfurization catalyst 14 that has a relatively low temperature when the desulfurization catalyst 14 is heated by the first heat source 10 when the hydrogen generator 100 is activated. The temperature is detected. If the temperature detected by the second temperature detector 18 is equal to or higher than the first threshold value, the desulfurization catalyst 14 becomes an appropriate temperature, and desulfurization can be performed over substantially the entire area of the desulfurization catalyst 14.
  • the first threshold value may be 150 ° C. or 165 ° C., for example.
  • the amount of heating by the first heat source 10 decreases. Even when the temperature detected by the second temperature detector 18 becomes equal to or higher than the first threshold, if the desulfurizer 12 is continuously heated at the heating pace, the energy required for heating is consumed more than necessary or the desulfurizer 12 is used. May overheat. By reducing the amount of heating by the first heat source 10, it is possible to avoid these problems.
  • the hydrogen generator of the third embodiment is the hydrogen generator of the first embodiment, and the controller is configured to heat the first heat source when the temperature detected by the first temperature detector is equal to or higher than the second threshold. Reduce.
  • the second threshold value is set as a value equal to or lower than the upper limit value of the use temperature of the desulfurization catalyst.
  • the operating temperature is a temperature suitable for use of the desulfurization catalyst and is a temperature at which the desulfurization performance is appropriately exhibited. When a desulfurization catalyst is used, the temperature is controlled so that the catalyst temperature becomes the operating temperature.
  • the device configuration of the hydrogen generator according to the third embodiment can be the same as that of the first embodiment except for the content of control by the controller 30, that is, the operation method of the hydrogen generator. Therefore, about the component which is common in FIG. 1, the same code
  • FIG. 3 is a flowchart showing an example of an operation method of the hydrogen generator according to the third embodiment.
  • the operation method of the hydrogen generator according to the third embodiment will be described with reference to FIG. Note that the operation method shown in FIG. 3 can be executed by the controller 30 controlling each part of the hydrogen generator according to a program stored in the controller 30, for example.
  • Step S201 When the operation of the hydrogen generator 100 is started and the generation of the hydrogen-containing gas is started (start), it is determined whether or not the temperature detected by the first temperature detector 16 is equal to or higher than the second threshold value.
  • step S201 is executed again.
  • the heating amount by the first heat source 10 is reduced (step S202). At this time, the heating amount by the first heat source 10 is appropriately set, but the heating of the desulfurization catalyst 14 by the first heat source 10 may be stopped.
  • the first temperature detector 16 is, for example, a part of the desulfurization catalyst 14 that is relatively hot when the desulfurization catalyst 14 is heated by the first heat source 10 when the hydrogen generator 100 is started. The temperature is detected. When the temperature detected by the first temperature detector 16 becomes equal to or higher than the second threshold value, the temperature of the desulfurization catalyst 14 does not become too high by reducing the amount of heating by the first heat source 10, and the desulfurizer. 12 can be used at a suitable temperature.
  • the second threshold may be 350 ° C. or 320 ° C., for example.
  • the second threshold value is set by paying attention to the use temperature of the desulfurization catalyst 14, but the second threshold value may be set by paying attention to the heat resistance of the container of the desulfurizer 12. Specifically, the second threshold value is set as a value equal to or lower than the heat resistant temperature of the desulfurizer 12.
  • the heating amount of the first heat source 10 decreases. Even if the temperature detected by the first temperature detector 16 becomes equal to or higher than the second threshold, if the desulfurizer 12 is continuously heated at the same heating pace, the desulfurizer 12 overheats and the desulfurization catalyst 14 is activated. Or the container of the desulfurizer 12 may be damaged. By reducing the amount of heating by the first heat source 10, it is possible to avoid these problems.
  • the second embodiment and the third embodiment may be combined.
  • the hydrogen generator of the fourth embodiment is the hydrogen generator of the first embodiment, and the controller is configured to heat the first heat source when the temperature detected by the second temperature detector is equal to or lower than the third threshold value. To raise.
  • the temperature of a part of the desulfurization catalyst may fall outside an appropriate temperature range. If there is, heating by the first heat source can be increased. Therefore, it is possible to reduce the possibility that the reactivity of the desulfurization reaction is lowered due to the temperature decrease of the desulfurization catalyst.
  • the third threshold value is set as a value equal to or higher than the lower limit value of the use temperature of the desulfurization catalyst.
  • the operating temperature is a temperature suitable for use of the desulfurization catalyst and is a temperature at which the desulfurization performance is appropriately exhibited. When a desulfurization catalyst is used, the temperature is controlled so that the catalyst temperature becomes the operating temperature.
  • the third threshold value may be smaller than the first threshold value.
  • the lower limit of the appropriate temperature range of the desulfurization catalyst may be the third threshold value.
  • the second temperature detector detects when a part of the desulfurization catalyst falls below the appropriate temperature range.
  • the temperature to be used may be the third threshold value.
  • the device configuration of the hydrogen generator according to the fourth embodiment can be the same as that of the first embodiment except for the content of control by the controller 30, that is, the operation method of the hydrogen generator. Therefore, about the component which is common in FIG. 1, the same code
  • the hydrogen generator of the fourth embodiment is the hydrogen generator of the first embodiment, and the controller is configured to heat the first heat source when the temperature detected by the second temperature detector is equal to or higher than the first threshold.
  • the controller is configured to heat the first heat source when the temperature detected by the second temperature detector is equal to or higher than the first threshold.
  • the temperature detected by the second temperature detector is equal to or lower than a third threshold value that is smaller than the first threshold value, the amount of heating by the first heat source may be increased.
  • the hydrogen generator of the fourth embodiment is the hydrogen generator of the first embodiment, and the controller is configured to heat the first heat source when the temperature detected by the first temperature detector is equal to or higher than the second threshold. When the temperature detected by the second temperature detector is equal to or lower than the third threshold value, the amount of heating by the first heat source may be increased.
  • the temperature of a part of the desulfurization catalyst is an appropriate temperature. If there is a possibility of rising beyond the range, the amount of heating by the first heat source is reduced. Therefore, it is possible to reduce the possibility of damage to the desulfurization catalyst or the like due to overheating.
  • the temperature of a part of the desulfurization catalyst falls outside an appropriate temperature range. The heating amount is increased by the heat source. Therefore, it is possible to reduce the possibility that the reactivity of the desulfurization reaction is lowered due to the temperature decrease of the desulfurization catalyst.
  • the hydrogen utilization device may be any device as long as it uses hydrogen, and examples thereof include a hydrogen tank and a fuel cell.
  • FIG. 4 is a flowchart illustrating an example of an operation method of the hydrogen generator according to the fourth embodiment.
  • the operation method shown in FIG. 4 can be executed by the controller 30 controlling each part of the hydrogen generator according to a program stored in the controller 30, for example.
  • Step S301 it is determined whether or not the temperature detected by the second temperature detector 18 is equal to or lower than the third threshold.
  • step S301 is executed again.
  • the heating amount by the first heat source 10 is increased (step S302).
  • step S302 By increasing the heating amount by the first heat source 10, for example, the heating of the desulfurization catalyst 14 by the first heat source 10 is resumed.
  • the second temperature detector 18 is, for example, a part of the desulfurization catalyst 14 at a relatively low temperature when the desulfurization catalyst 14 is heated by the first heat source 10 when the hydrogen generator 100 is started.
  • the temperature is detected. Therefore, for example, the third threshold value is set to the lower limit of the temperature range in which the desulfurization reaction easily occurs in the desulfurization catalyst 14.
  • the temperature detected by the second temperature detector 18 is equal to or lower than the third threshold, the temperature of the desulfurization catalyst 14 does not become too low by increasing the amount of heating by the first heat source 10, and the desulfurizer 12 can be used at a suitable temperature.
  • the desulfurization reaction can be allowed to proceed over substantially the entire area of the desulfurization catalyst 14.
  • the third threshold value may be 160 ° C. or 180 ° C., for example.
  • the amount of heating by the first heat source 10 increases. If the heating amount of the desulfurizer 12 (including the case where the heating amount is zero and minus) is kept unchanged even after the temperature detected by the second temperature detector 18 becomes equal to or lower than the third threshold value, the desulfurizer 12 The temperature is too low and the desulfurization reaction does not easily proceed in at least a part of the desulfurization catalyst 14. By increasing the heating amount by the first heat source 10, it is possible to avoid these problems.
  • the second embodiment and the fourth embodiment may be combined.
  • the third embodiment and the fourth embodiment may be combined.
  • the second embodiment, the third embodiment, and the fourth embodiment may be combined.
  • the hydrogen generator of the fifth embodiment is the hydrogen generator of the first embodiment, and the controller is configured to heat the first heat source when the temperature detected by the first temperature detector is equal to or lower than the fourth threshold value. To raise.
  • the hydrogen utilization device may be any device as long as it uses hydrogen, and examples thereof include a hydrogen tank and a fuel cell.
  • the fourth threshold value is set as a value equal to or higher than the lower limit value of the use temperature of the desulfurization catalyst.
  • the operating temperature is a temperature suitable for use of the desulfurization catalyst and is a temperature at which the desulfurization performance is appropriately exhibited. When a desulfurization catalyst is used, the temperature is controlled so that the catalyst temperature becomes the operating temperature.
  • the fourth threshold value may be smaller than the second threshold value.
  • the hydrogen generator of the fifth embodiment is the hydrogen generator of the first embodiment, and the controller is configured to heat the first heat source when the temperature detected by the first temperature detector is equal to or higher than the second threshold.
  • the controller is configured to heat the first heat source when the temperature detected by the first temperature detector is equal to or higher than the second threshold.
  • the temperature detected by the first temperature detector falls below a fourth threshold value that is smaller than the second threshold value, the amount of heating by the first heat source may be increased.
  • the hydrogen-containing gas is supplied from the hydrogen generator to the hydrogen-using device, if the temperature of a part of the desulfurization catalyst may fall outside the appropriate temperature range, the first heat source Heating can be increased. Therefore, it is possible to more effectively reduce the possibility that the reactivity of the desulfurization reaction is lowered due to the temperature decrease of the desulfurization catalyst.
  • the device configuration of the hydrogen generator according to the fifth embodiment can be the same as that of the first embodiment, except for the contents of control by the controller 30, that is, the operation method of the hydrogen generator. Therefore, about the component which is common in FIG. 1, the same code
  • FIG. 5 is a flowchart showing an example of an operation method of the hydrogen generator according to the fifth embodiment.
  • the operation method shown in FIG. 5 can be executed by the controller 30 controlling each part of the hydrogen generator according to a program stored in the controller 30, for example.
  • Step S401 it is determined whether or not the temperature detected by the first temperature detector 16 is equal to or lower than the fourth threshold.
  • step S401 is executed again.
  • the heating amount by the first heat source 10 is increased (step S402).
  • step S402 By increasing the heating amount by the first heat source 10, for example, heating of the desulfurization catalyst 14 by the first heat source 10 is started.
  • the second temperature detector 18 is, for example, a part of the desulfurization catalyst 14 at a relatively low temperature when the desulfurization catalyst 14 is heated by the first heat source 10 when the hydrogen generator 100 is started. The temperature is detected. Therefore, for example, the fourth threshold value is set to the lower limit of the temperature range in which the desulfurization reaction easily occurs in the desulfurization catalyst 14.
  • the hydrogen-containing gas is supplied from the hydrogen generator 100 to the hydrogen-using device, if the temperature detected by the second temperature detector 18 is equal to or lower than the fourth threshold value, the heating amount by the first heat source 10 is increased. By doing so, the desulfurization catalyst 14 is heated, and the desulfurizer 12 can be used at an appropriate temperature. Specifically, for example, the desulfurization reaction can be allowed to proceed over substantially the entire area of the desulfurization catalyst 14.
  • the fourth threshold value may be 160 ° C. or 180 ° C., for example.
  • the amount of heating by the first heat source 10 increases. If the heating amount of the desulfurizer 12 (including the case where the heating amount is zero and minus) is kept unchanged even after the temperature detected by the first temperature detector 16 becomes equal to or lower than the fourth threshold value, the desulfurizer 12 The temperature is too low and the desulfurization reaction does not easily proceed in at least a part of the desulfurization catalyst 14. By increasing the heating amount by the first heat source 10, it is possible to avoid these problems.
  • the second embodiment and the fifth embodiment may be combined.
  • the third embodiment and the fifth embodiment may be combined. You may combine 2nd Embodiment, 3rd Embodiment, 4th Embodiment, and 5th Embodiment.
  • the second to fifth embodiments can be arbitrarily combined.
  • the hydrogen generation device is the hydrogen generation device according to any one of the first embodiment, the second embodiment, the fourth embodiment, and the fifth embodiment, and the controller is configured to start the hydrogen generation device.
  • the heating amount by the first heat source is controlled based on the temperature detected by the second temperature detector, and the hydrogen-containing gas is supplied from the hydrogen generator to the hydrogen-using device.
  • the heating amount by the first heat source is controlled based on the temperature detected by the first temperature detector.
  • the first heat source is used as the main heating source at the time of start-up, and the desulfurization catalyst becomes cooler on the side far from the first heat source. Therefore, the amount of heating by the first heat source is controlled based on the temperature detected by the second temperature detector arranged at a location far from the first heat source.
  • the main heating source is the reformer.
  • the desulfurization catalyst has a lower temperature on the side closer to the first heat source. That is, at the time of start-up and when the hydrogen-containing gas is supplied from the hydrogen generator to the hydrogen-using device, the lower-temperature portion of the desulfurization catalyst is switched. Therefore, the amount of heating by the first heat source is controlled based on the temperature detected by the first temperature detector disposed at a location closer to the first heat source.
  • the hydrogen using device may be any device as long as it uses hydrogen, for example, a hydrogen storage tank, a fuel cell, or the like.
  • the device configuration of the hydrogen generator according to the sixth embodiment can be the same as that of the first embodiment, except for the contents of control by the controller 30, that is, the operation method of the hydrogen generator. Therefore, about the component which is common in FIG. 1, the same code
  • FIG. 6 is a flowchart illustrating an example of an operation method of the hydrogen generator according to the sixth embodiment.
  • the operation method of the hydrogen generator according to the sixth embodiment will be described with reference to FIG. Note that the operation method shown in FIG. 6 can be executed by the controller 30 controlling each part of the hydrogen generator according to a program stored in the controller 30, for example.
  • the heating amount by the first heat source 10 is controlled based on the temperature detected by the second temperature detector 18 (step S501). .
  • step S503 supply of the hydrogen-containing gas to the hydrogen-using device is started (step S503).
  • the amount of heating by the first heat source 10 is controlled based on the temperature detected by the first temperature detector 16 (step S504).
  • the hydrogen generator of the seventh embodiment is the hydrogen generator of either the first embodiment or the sixth embodiment, and the desulfurizer is closer to the second temperature detector than the first temperature detector.
  • the controller is arranged to be able to be heated by the arranged second heat source, and when the hydrogen generator is activated, the controller heats the desulfurization catalyst by the first heat source when the desulfurization catalyst is heated by the second heat source.
  • the heating amount of the desulfurizer by the first heat source is set to be larger than the heating amount of the desulfurizer by the heat source. Larger than.
  • the startup time of the hydrogen generator can be shortened.
  • heating by the first heat source can be reduced, so that the hydrogen generator can be operated efficiently.
  • FIG. 7 is a schematic diagram illustrating an example of a schematic configuration of the hydrogen generator according to the seventh embodiment.
  • the hydrogen generator 200 according to the seventh embodiment will be described with reference to FIG.
  • the hydrogen generator 200 includes a second heat source 21.
  • the second heat source 21 is disposed at a position where the desulfurization catalyst 14 can be heated.
  • the second heat source 21 is For example, it may be disposed adjacent to the second wall surface of the desulfurizer 12. However, the second heat source 21 may be disposed on the upper surface and the lower surface of the desulfurizer 12, or may be provided adjacent to the first wall surface.
  • the second heat source 21 can be, for example, a reformer that generates a hydrogen-containing gas from a raw material and water vapor.
  • a transformer that reduces carbon monoxide from hydrogen-containing gas and water vapor, a combustor that generates combustion exhaust gas from combustion fuel and combustion air, a fuel cell, and the like can be used.
  • the second heat source is a device that takes more time to maximize the amount of heating to the desulfurizer than the first heat source, and is a device that is warmed up at the time of startup and has been warmed up when the startup is completed. .
  • the reforming reaction that the reformer proceeds may take any form. Specific examples include a steam reforming reaction, an autothermal reaction, and a partial oxidation reaction. Although not shown in FIG. 7, equipment required for each reforming reaction can be provided as appropriate. For example, if the reforming reaction is a steam reforming reaction, a combustor that heats the reformer, an evaporator that generates steam, and a water supplier that supplies water to the evaporator may be provided. If the reforming reaction is an autothermal reaction, an air supply device for supplying air to the reformer can be further provided.
  • the device configuration of the hydrogen generator 200 according to the seventh embodiment is the same as that of the first embodiment except for the above points and the contents of control by the controller 30, that is, the operation method of the hydrogen generator 200. Can do. Therefore, components common to FIGS. 1 and 7 are given the same reference numerals and names, and detailed description thereof is omitted.
  • FIG. 8 is a flowchart illustrating an example of an operation method of the hydrogen generator according to the seventh embodiment.
  • the operation method shown in FIG. 8 can be executed by the controller 30 controlling each part of the hydrogen generator according to a program stored in the controller 30, for example.
  • the heating amount by the first heat source 10 is controlled to be larger than the heating amount by the second heat source 21 (step S601).
  • step S602 supply of the hydrogen-containing gas to the hydrogen-using device is started (step S603).
  • the heating amount by the second heat source 21 is controlled to be larger than the heating amount by the first heat source 10 (step S604). At this time, the heating of the desulfurizer 12 by the first heat source 10 may be stopped, and the heating by the first heat source 10 may be performed when the desulfurizer 12 needs to be heated.
  • the hydrogen generator of the eighth embodiment is the hydrogen generator of the first embodiment, and further includes a cooler disposed at a position where the desulfurization catalyst can be cooled, and the desulfurizer is from the first temperature detector. Is arranged so that it can be heated by a second heat source disposed close to the second temperature detector, and the controller operates the cooler when the temperature detected by the second temperature detector exceeds the fifth threshold value.
  • the temperature of a part of the desulfurization catalyst is an appropriate temperature. If there is a possibility of rising outside the range, the desulfurization catalyst can be cooled by operating the cooler. Therefore, the possibility of damage to the desulfurization catalyst or the like due to overheating can be reduced.
  • the fifth threshold value is set as a value equal to or lower than the upper limit value of the use temperature of the desulfurization catalyst.
  • the operating temperature is a temperature suitable for use of the desulfurization catalyst and is a temperature at which the desulfurization performance is appropriately exhibited. When a desulfurization catalyst is used, the temperature is controlled so that the catalyst temperature becomes the operating temperature.
  • the controller detects the temperature detected by the second temperature detector when the heating to the desulfurizer by the second heat source is greater than the heating amount to the desulfurizer by the first heat source, If it becomes above, you may operate a cooler.
  • the controller supplies the cooler when the temperature detected by the second temperature detector is equal to or higher than the fifth threshold value when supplying the hydrogen-containing gas from the hydrogen generator to the hydrogen-using device. It may be operated.
  • the controller may operate the cooler when the temperature detected by the second temperature detector becomes equal to or higher than the fifth threshold after completion of the temperature increase at startup.
  • FIG. 9 is a schematic diagram illustrating an example of a schematic configuration of the hydrogen generator according to the eighth embodiment.
  • the hydrogen generator 300 according to the eighth embodiment will be described with reference to FIG. 9.
  • the hydrogen generator 300 includes a cooler 22.
  • the cooler 22 is disposed at a position where the desulfurization catalyst 14 can be cooled.
  • the cooler 22 is
  • the desulfurizer 12 may be disposed adjacent to the first wall surface.
  • the cooler 22 may be disposed on the upper and lower surfaces of the desulfurizer 12, or may be provided adjacent to the first wall surface.
  • the cooler 22 may be provided adjacent to a portion of the desulfurization catalyst 14 that is likely to reach the highest temperature.
  • the cooler 22 may be provided adjacent to the first temperature detector 16.
  • cooler 22 for example, a cooling fan, a cooling pipe connected to a cooling water pump, a heat exchanger, or the like can be used.
  • the device configuration of the hydrogen generator 300 according to the eighth embodiment is the same as that of the seventh embodiment except for the above points and the contents of control by the controller 30, that is, the operation method of the hydrogen generator 300. Can do. Therefore, components common to FIGS. 7 and 9 are given the same reference numerals and names, and detailed description thereof is omitted.
  • FIG. 10 is a flowchart illustrating an example of an operation method of the hydrogen generator according to the eighth embodiment.
  • the operation method of the hydrogen generator according to the eighth embodiment will be described with reference to FIG. Note that the operation method shown in FIG. 10 can be executed by the controller 30 controlling each part of the hydrogen generator according to a program stored in the controller 30, for example.
  • step S701 When the operation of the hydrogen generator 300 is started (start) and desulfurization is started (step S701), it is determined whether or not the temperature detected by the second temperature detector 18 is equal to or higher than the fifth threshold value. (Step S702).
  • step S702 is executed again.
  • step S703 the operation of the cooler 22 is started (step S703). By starting the operation of the cooler 22, for example, the cooling of the desulfurization catalyst 14 by the cooler 22 is started.
  • the second temperature detector 18 detects, for example, the temperature of the relatively high temperature portion of the desulfurization catalyst 14 when the hydrogen-containing gas is supplied from the hydrogen generator to the hydrogen-using device. .
  • the desulfurizer 12 is kept at an appropriate temperature without causing the temperature of the desulfurization catalyst 14 to become too high by operating the cooler. Can be used.
  • the fifth threshold value may be 350 ° C. or 320 ° C., for example.
  • the fifth threshold value is set by paying attention to the use temperature of the desulfurization catalyst 14, but the fifth threshold value may be set by paying attention to the heat-resistant temperature of the desulfurizer 12. Specifically, the fifth threshold value is set as a value equal to or lower than the heat resistant temperature of the desulfurizer 12.
  • the cooler 22 operates after the temperature detected by the first temperature detector 16 becomes equal to or higher than the fifth threshold value. Even if the temperature detected by the second temperature detector 18 becomes equal to or higher than the fifth threshold, if the desulfurizer 12 is continuously heated at the same heating pace, the desulfurizer 12 overheats and the desulfurization catalyst 14 is activated. Or the container of the desulfurizer 12 may be damaged. By operating the cooler 22, these problems can be avoided.
  • the second embodiment and the eighth embodiment may be combined.
  • the fourth embodiment and the eighth embodiment may be combined.
  • the second embodiment, the fourth embodiment, the fifth embodiment, and the eighth embodiment may be combined.
  • the second to eighth embodiments can be arbitrarily combined.
  • the hydrogen generator of the ninth embodiment is the hydrogen generator of the first embodiment, and the desulfurizer is provided by a second heat source disposed closer to the second temperature detector than the first temperature detector.
  • the controller reduces the amount of heating by the second heat source and detects the temperature detected by the second temperature detector. Becomes equal to or less than the seventh threshold value, which is smaller than the sixth threshold value, the heating amount by the second heat source is increased.
  • the temperature of a part of the desulfurization catalyst is an appropriate temperature. If there is a possibility of rising beyond the range, the amount of heating by the second heat source can be reduced. Therefore, it is possible to reduce the possibility of damage to the desulfurization catalyst or the like due to overheating.
  • the temperature of a part of the desulfurization catalyst falls within an appropriate temperature range. If there is a possibility that it has fallen off, heating by the second heat source can be increased. Therefore, it is possible to reduce the possibility that the reactivity of the desulfurization reaction is lowered due to the temperature decrease of the desulfurization catalyst.
  • the sixth threshold is set as a value equal to or lower than the upper limit of the use temperature of the desulfurization catalyst.
  • the operating temperature is a temperature suitable for use of the desulfurization catalyst and is a temperature at which the desulfurization performance is appropriately exhibited. When a desulfurization catalyst is used, the temperature is controlled so that the catalyst temperature becomes the operating temperature.
  • the seventh threshold value may be set as a value equal to or lower than the upper limit value of the use temperature of the desulfurization catalyst.
  • the operating temperature is a temperature suitable for use of the desulfurization catalyst and is a temperature at which the desulfurization performance is appropriately exhibited. When a desulfurization catalyst is used, the temperature is controlled so that the catalyst temperature becomes the operating temperature.
  • the device configuration of the hydrogen generator according to the ninth embodiment can be the same as that of the seventh embodiment except for the contents of control by the controller 30, that is, the operation method of the hydrogen generator. Therefore, components common to those in FIG. 7 are denoted by the same reference numerals and names, and detailed description thereof is omitted.
  • FIG. 11 is a flowchart illustrating an example of an operation method of the hydrogen generator according to the ninth embodiment.
  • the operation method shown in FIG. 11 can be executed by the controller 30 controlling each part of the hydrogen generator according to a program stored in the controller 30, for example.
  • step S801 When the operation of the hydrogen generator 200 is started (start) and desulfurization is started (step S801), it is determined whether or not the temperature detected by the second temperature detector 18 is equal to or higher than the sixth threshold value. (Step S802).
  • step S802 If the decision result in the step S802 is YES, the heating amount by the second heat source 21 is lowered (step S803).
  • step S802 If the determination result in step S802 is NO, or if step S803 is completed, it is determined whether or not the temperature detected by the second temperature detector 18 is equal to or lower than a seventh threshold value (step S804). .
  • step S804 If the decision result in the step S804 is YES, the heating amount by the second heat source 21 is increased (step S805).
  • step S804 determines whether the determination result of step S804 is NO, or if step S805 is completed, the process returns to the determination of step S802.
  • the hydrogen generator according to the tenth embodiment is the hydrogen generator according to the first embodiment, and further includes a cooler disposed at a position where the desulfurization catalyst can be cooled.
  • the desulfurizer is based on the first temperature detector. Is arranged so that it can be heated by a second heat source disposed at a position close to the second temperature detector, and when the temperature detected by the second temperature detector falls below the eighth threshold, the controller When the heating amount is increased and the temperature detected by the second temperature detector becomes equal to or higher than the fifth threshold value, the cooler is operated.
  • the temperature of a part of the desulfurization catalyst is an appropriate temperature. Heating by the second heat source can be increased if there is a possibility of falling outside the range. Therefore, it is possible to reduce the possibility that the reactivity of the desulfurization reaction is lowered due to the temperature decrease of the desulfurization catalyst.
  • the temperature of a part of the desulfurization catalyst falls within an appropriate temperature range. If there is a possibility that the temperature exceeds the desulfurization catalyst, the temperature of the desulfurization catalyst can be lowered by the cooler. Therefore, it is possible to reduce the possibility of damage to the desulfurization catalyst or the like due to overheating.
  • the eighth threshold value is set as a value equal to or higher than the lower limit value of the operating temperature of the desulfurization catalyst.
  • the operating temperature is a temperature suitable for use of the desulfurization catalyst and is a temperature at which the desulfurization performance is appropriately exhibited. When a desulfurization catalyst is used, the temperature is controlled so that the catalyst temperature becomes the operating temperature.
  • the device configuration of the hydrogen generator according to the tenth embodiment can be the same as that of the eighth embodiment, except for the content of control by the controller 30, that is, the operation method of the hydrogen generator. Therefore, the same components and names as those in FIG. 9 are denoted by the same reference numerals and names, and detailed description thereof is omitted.
  • the controller detects the temperature detected by the second temperature detector when the heating to the desulfurizer by the second heat source is greater than the heating amount to the desulfurizer by the first heat source, If it becomes above, you may operate a cooler.
  • the controller supplies the cooler when the temperature detected by the second temperature detector is equal to or higher than the fifth threshold value when supplying the hydrogen-containing gas from the hydrogen generator to the hydrogen-using device. It may be operated.
  • the controller may operate the cooler when the temperature detected by the second temperature detector becomes equal to or higher than the fifth threshold after completion of the temperature increase at startup.
  • FIG. 12 is a flowchart illustrating an example of an operation method of the hydrogen generator according to the tenth embodiment.
  • the operation method shown in FIG. 12 can be executed by the controller 30 controlling each part of the hydrogen generator according to a program stored in the controller 30, for example.
  • step S901 When the operation of the hydrogen generator 300 is started (start) and desulfurization is started (step S901), it is determined whether or not the temperature detected by the second temperature detector 18 is equal to or lower than the eighth threshold value. (Step S902).
  • step S903 If the decision result in the step S902 is YES, the heating amount by the second heat source 21 is increased (step S903).
  • step S902 If the determination result in step S902 is NO, or if step S903 is completed, it is determined whether or not the temperature detected by the second temperature detector 18 is equal to or higher than a fifth threshold (step S904). .
  • step S904 If the decision result in the step S904 is YES, the operation of the cooler 22 is started (step S905).
  • step S904 determines whether the determination result of step S904 is NO, or if step S905 is completed, the process returns to the determination of step S902.
  • a fuel cell system includes the hydrogen generator according to any one of the first to tenth embodiments, and a fuel cell that generates power using a hydrogen-containing gas supplied from the hydrogen generator.
  • Such a configuration makes it easier to keep the temperature of the desulfurization catalyst in an appropriate range.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a fuel cell system according to the eleventh embodiment.
  • the fuel cell system 500 according to the seventh embodiment will be described with reference to FIG. 13.
  • the fuel cell system 500 includes a hydrogen generator 100 and a fuel cell 400.
  • the fuel cell 400 generates power using the hydrogen-containing gas supplied from the hydrogen generator 100.
  • the fuel cell may be of any type, and examples include a polymer electrolyte fuel cell, a solid oxide fuel cell, and a phosphoric acid fuel cell.
  • a hot module can be configured by incorporating the reformer and the fuel cell in one container.
  • the hydrogen generator 100 can have the same configuration as the hydrogen generator 100 of the first embodiment. Therefore, detailed description is omitted. Note that the hydrogen generator 100 may be any one of the hydrogen generators according to the second embodiment to the tenth embodiment, or may be a hydrogen generator arbitrarily combined with the second to tenth embodiments.
  • the operation of the fuel cell system 500 can be the same as that of the first to tenth embodiments except that the fuel cell 400 generates power using the hydrogen-containing gas supplied from the hydrogen generator 100. Therefore, detailed description is omitted.
  • One embodiment of the present invention is useful as a hydrogen generator that makes it easier to keep the temperature of a desulfurization catalyst within an appropriate range, and a fuel cell system including the hydrogen generator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

 原料中の硫黄化合物を脱硫反応により除去する脱硫触媒を備え、脱硫触媒が第1熱源により加熱可能に配置されている、脱硫器と、脱硫器を通過した原料を用いて水素含有ガスを生成する改質器と、所定部位の脱硫触媒の温度を検知する第1温度検知器と、所定部位よりも第1熱源から遠い部位の脱硫触媒の温度を検知する第2温度検知器と、第1温度検知器および第2温度検知器の検知結果に基づいて第1熱源による脱硫触媒の加熱を制御する制御器と、を備えた、水素生成装置。

Description

水素生成装置及びこれを備える燃料電池システム
 本発明は、水素生成装置及びこれを備える燃料電池システムに関する。より詳しくは、脱硫器を備えた水素生成装置及びこれを備える燃料電池システムに関する。
 特許文献1は、中空形状の容器内に原料ガス中に含まれる硫黄化合物を吸着する触媒を有している脱硫器と、前記脱硫器を通過した原料ガスと水とを用いて改質反応により水素を含む改質ガスを生成する改質部と、前記脱硫器を加熱するヒータと、を有し、前記脱硫器は、前記改質部の外側に前記改質部と隙間を空けて配置され、前記ヒータは、前記脱硫器の外表面の内壁に沿って螺旋形状に形成されるとともに、前記改質部と隙間を空けて配置される、水素生成装置を開示する。
特開2012-082088号公報
 従来の水素生成装置では、脱硫触媒の温度を適切な範囲に保つことが困難な場合があった。
 本発明は、上記課題を鑑みてなされたものであり、脱硫触媒の温度を適切な範囲に保つことをより容易とする水素生成装置及びこれを備える燃料電池システムを提供することを目的とする。
 本発明による水素生成装置の一態様は、原料中の硫黄化合物を除去する脱硫触媒を備え、前記脱硫触媒が第1熱源により加熱可能に配置されている、脱硫器と、前記脱硫器を通過した原料を用いて水素含有ガスを生成する改質器と、所定部位の前記脱硫触媒の温度を検知する第1温度検知器と、前記所定部位よりも前記第1熱源から遠い部位の前記脱硫触媒の温度を検知する第2温度検知器と、前記第1温度検知器および前記第2温度検知器の検知結果に基づいて前記第1熱源による前記脱硫触媒の加熱を制御する制御器と、を備える。
 本発明による燃料電池システムの一態様は、上記水素生成装置と、前記水素生成装置から供給される水素含有ガスを用いて発電する燃料電池とを備える。
 本発明の一態様によれば、脱硫触媒の温度を適切な範囲に保つことをより容易とする水素生成装置及びこれを備える燃料電池システムを提供できるという効果を奏する。
図1は、第1実施形態にかかる水素生成装置の概略構成の一例を示す模式図である。 図2は、第2実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。 図3は、第3実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。 図4は、第4実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。 図5は、第5実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。 図6は、第5実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。 図7は、第7実施形態にかかる水素生成装置の概略構成の一例を示す模式図である。 図8は、第7実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。 図9は、第8実施形態にかかる燃料電池システムの概略構成の一例を示す模式図である。 図10は、第8実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。 図11は、第9実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。 図12は、第10実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。 図13は、第11実施形態にかかる燃料電池システムの概略構成の一例を示すブロック図である。
 水添脱硫触媒の温度を適切な範囲に保つべく、鋭意検討が加えられた。その結果、以下の知見が得られた。
 特許文献1に記載される水素生成装置では、起動時に使用するヒータからの熱を効率的に水添脱硫器に伝えることで、起動時間の短縮化とヒータの高耐久化を実現する。
 上記従来の水素生成装置では、水添脱硫触媒を適温に保つことが困難となる場合がある。検討した結果、かかる課題が生じる原因は、水添脱硫器の温度検知部が一箇所であるために、水添脱硫触媒のうち、低温になりやすい部位もしくは高温になりやすい部位の温度を測定することができないためであることが判明した。そして、水添脱硫触媒の複数の部位にそれぞれ温度検出器を配置し、該温度検出器の検出結果に基づいて水添脱硫触媒の加熱を制御することに想到した。
 かかる構成は水添脱硫触媒を用いる脱硫器のみならず、常温よりも高温で使用される他の脱硫触媒を用いる脱硫器についても同様に有効である。
 以下、添付図面を参照しつつ、各実施形態について説明する。各実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、あくまで一例である。また、以下の実施形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より望ましい形態を構成する任意の構成要素として説明される。また、図面において、同じ符号が付いたものは、説明を省略する場合がある。また、図面は理解しやすくするために、それぞれの構成要素を模式的に示したもので、形状および寸法比等については正確な表示ではない場合がある。また、製造方法においては、必要に応じて、各工程の順序等を変更でき、かつ、他の公知の工程を追加できる。
 (第1実施形態)
 第1実施形態の水素生成装置は、原料中の硫黄化合物を除去する脱硫触媒を備え、脱硫触媒が第1熱源により加熱可能に配置されている、脱硫器と、脱硫器を通過した原料を用いて水素含有ガスを生成する改質器と、所定部位の脱硫触媒の温度を検知する第1温度検知器と、所定部位よりも第1熱源から遠い部位の脱硫触媒の温度を検知する第2温度検知器と、第1温度検知器および第2温度検知器の検知結果に基づいて第1熱源による脱硫触媒の加熱を制御する制御器と、を備える。
 かかる構成では、脱硫触媒の温度を適切な範囲に保つことがより容易となる。
 [装置構成]
 図1は、第1実施形態にかかる水素生成装置の概略構成の一例を示す模式図である。以下、図1を参照しつつ、第1実施形態にかかる水素生成装置100について説明する。
 図1に示す例では、水素生成装置100は、第1熱源10と、脱硫器12と、第1温度検知器16と、第2温度検知器18と、改質器20と、制御器30と、を備えている。
 脱硫器12は、原料中の硫黄化合物を除去する脱硫触媒14を備える。脱硫器12は、例えば、改質器に供給される原料ガス中の硫黄化合物を、常温よりも高い温度(例えば、200℃~400℃)で水添反応を用いて硫黄化合物を除去する。脱硫器12は、水添脱硫器に限定されず、常温よりも高温で使用される脱硫器であれば、他の脱硫器であってもよい。例えば、固体酸系脱硫剤を含む脱硫触媒が充填された脱硫器でもよいし、加温吸着脱硫剤を含む脱硫触媒が充填された脱硫器でもよい。脱硫器12は、例えば、容器に脱硫触媒14が充填され構成される。
 原料は、例えば、メタンを主成分とする都市ガス、天然ガス、LPGなどの少なくとも炭素及び水素を構成元素とする有機化合物を含むガス、灯油、及びメタノール、エタノール等のアルコールとすることができる。都市ガスとは、ガス会社から配管を通じて各家庭などに供給されるガスをいう。
 脱硫触媒14は、第1熱源10により加熱可能に配置されている。具体的には例えば、脱硫器12の容器の壁を挟むように、脱硫触媒14と第1熱源10とが壁に隣接して配置されている。
 脱硫触媒14は、水添脱硫触媒である。脱硫触媒14は、例えば、硫黄化合物を硫化水素に変換する機能と硫化水素を吸着する機能を共に有するCuZn系触媒(例えば、Cu-Zn-Ni系触媒、及び、Cu-Zn-Fe系触媒等)が用いられる。脱硫触媒14は、本例に限定されるものではなく、原料ガス中の硫黄化合物を硫化水素に変換するCoMo系触媒と、その下流に設けられる、硫化水素を吸着除去する硫黄吸着剤であるZnO系触媒、またはCuZn系触媒とで構成してもよい。脱硫触媒14は、常温よりも高温で使用される脱硫触媒であれば、他の触媒であっても構わない。脱硫触媒14は、例えば、固体酸系脱硫剤(ルイス酸系脱硫剤、アルミナ系脱硫剤等:特開2010-138013号公報参照)でもよいし、加温吸着脱硫剤(遷移金属系脱硫剤、N i 系脱硫剤、C u 系脱硫剤等:特開2006-111766号公報参照)でもよい。
 硫黄化合物は、付臭成分として人為的に原料へ添加されるものであってもよいし、原料自体に由来する天然の硫黄化合物であってもよい。具体的には、ターシャリブチルメルカプタン(TBM:tertiary-butylmercaptan)、ジメチルスルフィド(DMS:dimethyl sulfide)、テトラヒドロチオフェン(THT:Tetrahydrothiophene)、硫化カルボニル(COS:carbonyl sulfide)、硫化水素(hydrogen sulfide)等が例示される。
 第1熱源10は、脱硫触媒14を加熱可能に配置されている。第1熱源10としては、例えば、電気ヒータとすることができる。その他、第1熱源10としては、燃焼用燃料と燃焼用空気とから燃焼排ガスを発生させる燃焼器等を用いることができる。
 第1温度検知器16は、所定部位の脱硫触媒14の温度を検知する。所定部位は、例えば、水素生成装置100の起動において、第1熱源10により脱硫触媒14を加熱しているときに、脱硫触媒14のうち相対的に高温となりやすい部位としうる。所定部位は、例えば、水素生成装置100の起動において第1熱源10により脱硫触媒14を加熱しているときに脱硫触媒14のうち最も高温となりやすい部位であってもよいし、水素生成装置100の起動において第1熱源10により脱硫触媒14を加熱しているときに脱硫触媒14のうち平均よりも温度が高くなる部位であってもよい。
 所定部位は、例えば、脱硫触媒14のうち、第1熱源10のみによって脱硫触媒14を加熱した場合に最も高温となりやすい部位としうる。所定部位は、例えば、脱硫触媒14のうち、第1熱源10に最も近い部位としうる。第1熱源10の温度が一様でない場合において、所定部位は、例えば、脱硫触媒14のうち、第1熱源10のうち最も温度が高くなる部位に隣接する部位としうる。
 脱硫器12の容器が、互いに対向する第1壁面と第2壁面とを備え、かつ、第1熱源10が脱硫器12の第1壁面に隣接して設けられている場合、第1温度検知器16は、例えば、脱硫器12の第2壁面に比べて第1壁面に近い側に配置されうる。脱硫器12は、水素生成装置100の起動において、第1熱源10により脱硫触媒14を加熱しているときに、主に第1熱源10によって加熱されるため、第2壁面に比べて第1壁面の方が高温になり易い。第1温度検知器16が第1壁面に近い側に配置されるため、脱硫器12の高温側の温度を検知することができる。なお、第1温度検知器16は、図1では脱硫器12の上部に配置されているが、例えば、脱硫器12の中部および下部等に配置してもよい。第1温度検知器16としては、例えば、熱電対、及び、サーミスタ等を用いることができる。
 第2温度検知器18は、所定部位(第1温度検知器16が温度を検知する部位)よりも第1熱源10から遠い部位の脱硫触媒14の温度を検知する。所定部位よりも第1熱源10から遠い部位とは、例えば、水素生成装置100の起動において、第1熱源10により脱硫触媒14を加熱しているときに、脱硫触媒14のうち相対的に低温となりやすい部位としうる。所定部位よりも第1熱源10から遠い部位は、例えば、水素生成装置100の起動において第1熱源10により脱硫触媒14を加熱しているときに脱硫触媒14のうち最も低温となりやすい部位であってもよいし、水素生成装置100の起動において第1熱源10により脱硫触媒14を加熱しているときに脱硫触媒14のうち平均よりも温度が低くなる部位であってもよい。所定部位よりも第1熱源10から遠い部位は、例えば、脱硫触媒14の温度が低温になりやすい脱硫器12の入口付近の部位としうる。脱硫器12の入口付近は、脱硫器12に供給される原料が低温であるため、低温になりやすい。
 所定部位よりも第1熱源10から遠い部位は、例えば、脱硫触媒14のうち、第1熱源10のみによって脱硫触媒14を加熱した場合に最も低温となりやすい部位としうる。所定部位よりも第1熱源10から遠い部位は、例えば、脱硫触媒14のうち、第1熱源10から最も遠い部位としうる。第1熱源10の温度が一様でない場合において、所定部位よりも第1熱源10から遠い部位は、例えば、脱硫触媒14のうち、第1熱源10のうち最も温度が高くなる部位から最も遠い部位としうる。
 脱硫器12の容器が、互いに対向する第1壁面と第2壁面とを備え、かつ、第1熱源10が脱硫器12の第1壁面に隣接して設けられている場合、第2温度検知器18は、例えば、脱硫器12の第1壁面に比べて第2壁面に近い側に配置されうる。脱硫器12は、水素生成装置100の起動において、第1熱源10により脱硫触媒14を加熱しているときに、主に第1熱源10によって加熱されるため、第1壁面に比べて第2壁面の方が低温になり易い。第2温度検知器18が第2壁面に近い側に配置されるため、脱硫器12の低温側の温度を検知することができる。なお、第2温度検知器18は、図1では脱硫器12の下部に配置されているが、例えば、脱硫器12の中部および上部等に配置してもよい。第2温度検知器18としては、例えば、熱電対、及び、サーミスタ等を用いることができる。
 改質器20は、原料と水蒸気とから水素含有ガスを発生させる。改質器20が進行させる改質反応は、いずれの形態であってもよい。具体的には例えば、水蒸気改質反応、オートサーマル反応及び部分酸化反応等が挙げられる。各改質反応において必要となる機器は適宜設けられうる。例えば、改質反応が水蒸気改質反応であれば、改質器を加熱する燃焼器、水蒸気を生成する蒸発器、及び蒸発器に水を供給する水供給器が設けられうる。改質反応がオートサーマル反応であれば、さらに、改質器に空気を供給する空気供給器が設けられうる。
 制御器30は、第1温度検知器16および第2温度検知器18の検知結果に基づいて第1熱源10による脱硫触媒14の加熱を制御する。制御器30は、制御機能を有するものであればよく、演算処理部(図示せず)と、制御プログラムを記憶する記憶部(図示せず)とを備える。演算処理部としては、MPU、CPUが例示される。記憶部としては、メモリが例示される。制御器は、集中制御を行う単独の制御器で構成されていてもよく、互いに協働して分散制御を行う複数の制御器で構成されていてもよい。
 第1熱源10による脱硫触媒14の加熱量を制御するとき、第1熱源の温度は変化する。例えば、第1熱源10の加熱量を増加させると、第1熱源10の温度は上昇し、第1熱源10の加熱量を低下させると、第1熱源10の温度は低下する。
 本実施形態では、制御器30が脱硫触媒14の複数個所に設けられた温度検知器16、18の検知結果に基づいて脱硫触媒14の加熱を制御する。よって、脱硫触媒14の温度を適切な範囲に保つことがより容易となる。
 第1熱源10は、脱硫器12の外部に配置されていてもよい。かかる構成では、ヒータ等の第1熱源10が脱硫器12の内部に配置されている場合に比べ、組立が飛躍的に容易となる。
 (第2実施形態)
 第2実施形態の水素生成装置は、第1実施形態の水素生成装置であって、制御器は、第2温度検知器により検知される温度が第1閾値以上になると、第1熱源による加熱量を低下させる。
 かかる構成では、例えば、水素生成装置の起動時において、第1熱源により脱硫触媒を加熱しているときに、脱硫触媒の略全体が適切な温度範囲に入っている可能性があると、第1熱源による加熱を低減できる。よって、不必要な加熱によりエネルギーが浪費される可能性を低減できる。
 ここで、第1閾値は、脱硫触媒の使用温度の下限値以上の値として設定される。使用温度とは脱硫触媒の使用に適した温度であり、脱硫性能が適切に発揮される温度である。脱硫触媒を使用しているときには、触媒温度が使用温度になるよう温度制御される。
 第2実施形態にかかる水素生成装置の装置構成については、制御器30による制御の内容、すなわち水素生成装置の運転方法、を除き、第1実施形態と同様とすることができる。よって、図1と共通する構成要素については、同一の符号および名称を付して、詳細な説明を省略する。
 第2実施形態においても、第1実施形態と同様の変形が可能である。
 [運転方法]
 図2は、第2実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。以下、図2を参照しつつ、第2実施形態にかかる水素生成装置の運転方法を説明する。なお、図2に示す運転方法は、例えば、制御器30に記憶されているプログラムに従って、制御器30が水素生成装置の各部を制御することにより実行されうる。
 水素生成装置100の運転が開始されると(スタート)、第1熱源10により脱硫器12の加熱(昇温)が開始される。その後、第2温度検知器18により検知される温度が第1閾値以上となっているか否かの判定が行われる(ステップS101)。
 判定結果がNOである場合には、再度ステップS101が実行される。判定結果がYESである場合には、第1熱源10による加熱量が低下させられる(ステップS102)。このとき、第1熱源10による加熱量は適宜設定されるが、第1熱源10による脱硫触媒14の加熱を停止してもよい。
 脱硫触媒14が低温の場合、水添反応が起こりにくく、硫黄の吸着も起こりにくくなる。この状態で脱硫器12に原料を供給すると、原料中の硫黄化合物が脱硫器12で十分に脱硫されずに下流に供給され、例えば、燃料電池の寿命を低下させる可能性がある。この場合、脱硫触媒14の略全域を脱硫が起こりやすい温度(使用温度)まで加熱した後、つまり、脱硫触媒14の昇温が完了した後で、脱硫器12に原料を供給してもよい。
 前述のとおり、第2温度検知器18は、例えば、水素生成装置100の起動において、第1熱源10により脱硫触媒14を加熱しているときに、脱硫触媒14のうち相対的に低温となる部位の温度を検知している。第2温度検知器18で検知される温度が第1閾値以上になれば、脱硫触媒14が適温となり、脱硫触媒14の略全域で脱硫を行うことができる。
 なお、第1閾値は、例えば、150℃としてもよいし、165℃としてもよい。
 第2温度検知器18により検知される温度が第1閾値以上になった後は、第1熱源10による加熱量が低下する。第2温度検知器18により検知される温度が第1閾値以上になった後もそのままの加熱ペースで脱硫器12を加熱し続けると、加熱にかかるエネルギーを必要以上に消費したり、脱硫器12が過昇温したりし得る。第1熱源10による加熱量を低下させることにより、これらの不具合を避けることが可能となる。
 (第3実施形態)
 第3実施形態の水素生成装置は、第1実施形態の水素生成装置であって、制御器は、第1温度検知器により検知される温度が第2閾値以上になると、第1熱源による加熱量を低下させる。
 かかる構成では、例えば、第1熱源により脱硫触媒を加熱しているときに、脱硫触媒の一部の温度が適切な温度範囲を超えて上昇している可能性があると、第1熱源による加熱量を低減できる。よって、過熱による脱硫触媒等の損傷が生じる可能性を低減できる。
 ここで、第2閾値は、脱硫触媒の使用温度の上限値以下の値として設定される。使用温度とは脱硫触媒の使用に適した温度であり、脱硫性能が適切に発揮される温度である。脱硫触媒を使用しているときには、触媒温度が使用温度になるよう温度制御される。
 第3実施形態にかかる水素生成装置の装置構成については、制御器30による制御の内容、すなわち水素生成装置の運転方法、を除き、第1実施形態と同様とすることができる。よって、図1と共通する構成要素については、同一の符号および名称を付して、詳細な説明を省略する。
 第3実施形態においても、第1実施形態および第2実施形態と同様の変形が可能である。
 [運転方法]
 図3は、第3実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。以下、図3を参照しつつ、第3実施形態にかかる水素生成装置の運転方法を説明する。なお、図3に示す運転方法は、例えば、制御器30に記憶されているプログラムに従って、制御器30が水素生成装置の各部を制御することにより実行されうる。
 水素生成装置100の運転が開始され、水素含有ガスの生成が開始されると(スタート)、第1温度検知器16により検知される温度が第2閾値以上となっているか否かの判定が行われる(ステップS201)。
 判定結果がNOである場合には、再度ステップS201が実行される。判定結果がYESである場合には、第1熱源10による加熱量が低下させられる(ステップS202)。このとき、第1熱源10による加熱量は適宜設定されるが、第1熱源10による脱硫触媒14の加熱を停止してもよい。
 脱硫触媒14の温度が高くなる過ぎると、触媒のシンタリング、及び、触媒上で炭素析出等が発生し、脱硫触媒14の活性が低下したり、脱硫器12における流路の目詰まりが発生したりしうる。このため、脱硫触媒14を過昇温させることなく、脱硫器12を使用する必要がある。
 前述のとおり、第1温度検知器16は例えば、水素生成装置100の起動において、第1熱源10により脱硫触媒14を加熱しているときに、脱硫触媒14のうち相対的に高温となる部位の温度を検知している。第1温度検知器16で検知される温度が第2閾値以上になったときに、第1熱源10による加熱量を低下させることで、脱硫触媒14の温度が高くなり過ぎることがなく、脱硫器12を適温で使用することができる。
 第2閾値は、例えば、350℃としてもよいし、320℃としてもよい。
 上記において、脱硫触媒14の使用温度に着目して第2閾値を設定するとしたが、脱硫器12の容器の耐熱性に着目して第2閾値を設定してもよい。具体的には、第2閾値は、脱硫器12の耐熱温度以下の値として設定される。
 第1温度検知器16により検知される温度が第2閾値以上になった後は、第1熱源10の加熱量が低下する。第1温度検知器16により検知される温度が第2閾値以上になった後もそのままの加熱ペースで脱硫器12を加熱し続けると、脱硫器12が過昇温して、脱硫触媒14の活性が低下したり、脱硫器12の容器が損傷したりし得る。第1熱源10による加熱量を低下させることにより、これらの不具合を避けることが可能となる。
 第2実施形態と第3実施形態とを組み合わせてもよい。
 (第4実施形態)
 第4実施形態の水素生成装置は、第1実施形態の水素生成装置であって、制御器は、第2温度検知器により検知される温度が第3閾値以下になると、第1熱源による加熱量を上昇させる。
 かかる構成では、例えば、水素生成装置の起動において、第1熱源10により脱硫触媒14を加熱しているときに、脱硫触媒の一部の温度が適切な温度範囲を外れて低下している可能性があると、第1熱源による加熱を増加できる。よって、脱硫触媒の温度低下によって脱硫反応の反応性が低下する可能性を低減できる。
 第3閾値は、脱硫触媒の使用温度の下限値以上の値として設定される。使用温度とは脱硫触媒の使用に適した温度であり、脱硫性能が適切に発揮される温度である。脱硫触媒を使用しているときには、触媒温度が使用温度になるよう温度制御される。
 また、第3閾値は第1閾値より小さくてもよい。
 例えば、第2温度検知器が検知する温度が、脱硫触媒の内の最も温度が低い部分の温度である場合において、脱硫触媒の適切な温度範囲の下限が第3閾値であってもよい。例えば、第2温度検知器が検知する温度が、脱硫触媒の内の最も温度が低い部分の温度でない場合に、脱硫触媒の一部が適切な温度範囲を下回る時点において第2温度検知器で検出される温度を第3閾値としてもよい。
 第4実施形態にかかる水素生成装置の装置構成については、制御器30による制御の内容、すなわち水素生成装置の運転方法、を除き、第1実施形態と同様とすることができる。よって、図1と共通する構成要素については、同一の符号および名称を付して、詳細な説明を省略する。
 第4実施形態の水素生成装置は、第1実施形態の水素生成装置であって、制御器は、第2温度検知器により検知される温度が第1閾値以上になると、第1熱源による加熱量を低下させ、かつ、第2温度検知器により検知される温度が第1閾値よりも小さい第3閾値以下になると、第1熱源による加熱量を増加させてもよい。
 かかる構成では、例えば、水素生成装置の起動において、第1熱源により脱硫触媒を加熱しているときに、脱硫触媒の略全体が適切な温度範囲に入っている可能性があると、第1熱源による加熱を低減できる。よって、不必要な加熱によりエネルギーが浪費される可能性を低減できる。また、例えば、水素生成装置の起動において、第1熱源により脱硫触媒を加熱しているときに、脱硫触媒の一部の温度が適切な温度範囲を外れて低下している可能性があると、第1熱源による加熱を増加できる。よって、脱硫触媒の温度低下によって脱硫反応の反応性が低下する可能性を低減できる。
 第4実施形態の水素生成装置は、第1実施形態の水素生成装置であって、制御器は、第1温度検知器により検知される温度が第2閾値以上になると、第1熱源による加熱量を低下させ、かつ、第2温度検知器により検知される温度が第3閾値以下になると、第1熱源による加熱量を増加させてもよい。
 かかる構成では、例えば、水素生成装置から水素利用機器に水素含有ガスを供給しているときに、第1熱源により脱硫触媒を加熱しているときに、脱硫触媒の一部の温度が適切な温度範囲を超えて上昇している可能性があると、第1熱源による加熱量が低減される。よって、過熱による脱硫触媒等の損傷が生じる可能性を低減できる。また、例えば、水素生成装置から水素利用機器に水素含有ガスを供給しているときに、脱硫触媒の一部の温度が適切な温度範囲を外れて低下している可能性があると、第1熱源により加熱量が増加される。よって、脱硫触媒の温度低下によって脱硫反応の反応性が低下する可能性を低減できる。
 ここで、水素利用機器は、水素を利用する機器であればいずれの機器でもよく、例えば、水素タンク、燃料電池等が挙げられる。
 第4実施形態においても、第1実施形態および第2実施形態および第3実施形態と同様の変形が可能である。
 [運転方法]
 図4は、第4実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。以下、図4を参照しつつ、第4実施形態にかかる水素生成装置の運転方法を説明する。なお、図4に示す運転方法は、例えば、制御器30に記憶されているプログラムに従って、制御器30が水素生成装置の各部を制御することにより実行されうる。
 水素生成装置100の運転が開始され、水素の生成が開始されると(スタート)、第2温度検知器18により検知される温度が第3閾値以下となっているか否かの判定が行われる(ステップS301)。
 判定結果がNOである場合には、再度ステップS301が実行される。判定結果がYESである場合には、第1熱源10による加熱量が上昇させられる(ステップS302)。第1熱源10による加熱量が上昇させられることで、例えば、第1熱源10による脱硫触媒14の加熱が再開される。
 脱硫触媒14の温度が低くなり過ぎると、脱硫反応が進行しにくくなるため、脱硫触媒14の略全域を脱硫が起こりやすい温度に維持し、脱硫を行う必要がある。
 前述のとおり、第2温度検知器18は例えば、水素生成装置100の起動において、第1熱源10により脱硫触媒14を加熱しているときに、脱硫触媒14のうち相対的に低温となる部位の温度を検知している。よって、例えば、第3閾値を脱硫触媒14において脱硫反応が起こりやすい温度範囲の下限に設定する。第2温度検知器18で検知される温度が第3閾値以下になったときに、第1熱源10による加熱量を上昇させることで、脱硫触媒14の温度が低くなり過ぎることがなく、脱硫器12を適温で使用することができる。具体的には例えば、脱硫触媒14の略全域で脱硫反応を進行させることができる。
 なお、第3閾値は、例えば、160℃としてもよいし、180℃としてもよい。
 第2温度検知器18により検知される温度が第3閾値以下になった後は、第1熱源10による加熱量が上昇する。第2温度検知器18により検知される温度が第3閾値以下になった後も脱硫器12の加熱量(加熱量がゼロ及びマイナスの場合を含む)を変えずに維持すると、脱硫器12の温度が下がり過ぎて、脱硫触媒14の少なくとも一部において脱硫反応が進行しにくくなる。第1熱源10による加熱量を上昇させることにより、これらの不具合を避けることが可能となる。
 第2実施形態と第4実施形態とを組み合わせてもよい。第3実施形態と第4実施形態とを組み合わせてもよい。第2実施形態と第3実施形態と第4実施形態とを組み合わせてもよい。
 (第5実施形態)
 第5実施形態の水素生成装置は、第1実施形態の水素生成装置であって、制御器は、第1温度検知器により検知される温度が第4閾値以下になると、第1熱源による加熱量を上昇させる。
 かかる構成では、例えば、水素生成装置から水素利用機器に水素含有ガスを供給しているときに、脱硫触媒の一部の温度が適切な温度範囲を外れて低下している可能性があると、第1熱源による加熱を増加できる。よって、脱硫触媒の温度低下によって脱硫反応の反応性が低下する可能性をより効果的に低減できる。
 ここで、水素利用機器は、水素を利用する機器であればいずれの機器でもよく、例えば、水素タンク、燃料電池等が挙げられる。
 また、第4閾値は、脱硫触媒の使用温度の下限値以上の値として設定される。使用温度とは脱硫触媒の使用に適した温度であり、脱硫性能が適切に発揮される温度である。脱硫触媒を使用しているときには、触媒温度が使用温度になるよう温度制御される。
 また、第4閾値は第2閾値より小さくてもよい。
 第5実施形態の水素生成装置は、第1実施形態の水素生成装置であって、制御器は、第1温度検知器により検知される温度が第2閾値以上になると、第1熱源による加熱量を低下させ、第1温度検知器により検知される温度が第2閾値よりも小さい第4閾値以下になると、第1熱源による加熱量を増加させてもよい。
 かかる構成では、例えば、第1熱源により脱硫触媒を加熱しているときに、脱硫触媒の一部の温度が適切な温度範囲を超えて上昇している可能性があると、第1熱源による加熱量を低減できる。よって、過熱による脱硫触媒等の損傷が生じる可能性を低減できる。
 また、水素生成装置から水素利用機器に水素含有ガスを供給しているときに、脱硫触媒の一部の温度が適切な温度範囲を外れて低下している可能性があると、第1熱源による加熱を増加できる。よって、脱硫触媒の温度低下によって脱硫反応の反応性が低下する可能性をより効果的に低減できる。
 第5実施形態にかかる水素生成装置の装置構成については、制御器30による制御の内容、すなわち水素生成装置の運転方法、を除き、第1実施形態と同様とすることができる。よって、図1と共通する構成要素については、同一の符号および名称を付して、詳細な説明を省略する。
 第5実施形態においても、第1実施形態および第2実施形態および第3実施形態および第4実施形態と同様の変形が可能である。
 [運転方法]
 図5は、第5実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。以下、図5を参照しつつ、第5実施形態にかかる水素生成装置の運転方法を説明する。なお、図5に示す運転方法は、例えば、制御器30に記憶されているプログラムに従って、制御器30が水素生成装置の各部を制御することにより実行されうる。
 水素生成装置100の運転が開始され、水素の生成が開始されると(スタート)、第1温度検知器16により検知される温度が第4閾値以下となっているか否かの判定が行われる(ステップS401)。
 判定結果がNOである場合には、再度ステップS401が実行される。判定結果がYESである場合には、第1熱源10による加熱量が上昇させられる(ステップS402)。第1熱源10による加熱量が上昇させられることで、例えば、第1熱源10による脱硫触媒14の加熱が開始される。
 脱硫触媒14の温度が低くなり過ぎると、脱硫反応が進行しにくくなるため、脱硫触媒14の略全域を脱硫が起こりやすい温度に維持し、脱硫を行う必要がある。
 前述のとおり、第2温度検知器18は例えば、水素生成装置100の起動において、第1熱源10により脱硫触媒14を加熱しているときに、脱硫触媒14のうち相対的に低温となる部位の温度を検知している。よって、例えば、第4閾値を脱硫触媒14において脱硫反応が起こりやすい温度範囲の下限に設定する。
 また、水素生成装置100から水素利用機器に水素含有ガスを供給しているときに、第2温度検知器18で検知される温度が第4閾値以下になると、第1熱源10による加熱量を上昇させることで、脱硫触媒14が加熱され、脱硫器12を適温で使用することができる。具体的には例えば、脱硫触媒14の略全域で脱硫反応を進行させることができる。
 なお、第4閾値は、例えば、160℃としてもよいし、180℃としてもよい。
 第1温度検知器16により検知される温度が第4閾値以下になった後は、第1熱源10による加熱量が上昇する。第1温度検知器16により検知される温度が第4閾値以下になった後も脱硫器12の加熱量(加熱量がゼロ及びマイナスの場合を含む)を変えずに維持すると、脱硫器12の温度が下がり過ぎて、脱硫触媒14の少なくとも一部において脱硫反応が進行しにくくなる。第1熱源10による加熱量を上昇させることにより、これらの不具合を避けることが可能となる。
 第2実施形態と第5実施形態とを組み合わせてもよい。第3実施形態と第5実施形態とを組み合わせてもよい。第2実施形態と第3実施形態と第4実施形態と第5実施形態とを組み合わせてもよい。第2~5実施形態を任意に組み合わせることができる。
 (第6実施形態)
 第6実施形態の水素生成装置は、第1実施形態、第2実施形態、第4実施形態、第5実施形態のいずれかの水素生成装置であって、制御器は、水素生成装置の起動において、第1熱源により脱硫触媒を加熱しているとき、第2温度検知器により検知される温度に基づいて第1熱源による加熱量を制御し、水素生成装置から水素利用機器へ水素含有ガスを供給しているときは、第1温度検知器により検知される温度に基づいて第1熱源による加熱量を制御する。
 かかる構成では、起動時には主たる加熱源として第1熱源が用いられ、脱硫触媒は、第1熱源から遠い側でより低温となる。そこで、第1熱源から遠い部位に配置された第2温度検知器の検知温度に基づいて第1熱源による加熱量の制御が行われる。
 水素生成装置から水素利用機器へ水素含有ガスを供給しているときは主たる加熱源が改質器となる。脱硫触媒は、第1熱源に近い側でより低温となる。つまり、起動時と、水素生成装置から水素利用機器へ水素含有ガスを供給しているときとで、脱硫触媒においてより低温となる部位が入れ替わる。そこで、第1熱源により近い部位に配置された第1温度検知器の検知温度に基づいて第1熱源による加熱量の制御が行われる。
 水素利用機器は、水素を利用する機器であればいずれの機器でもよく、例えば、水素を貯蔵するタンク、燃料電池等とすることができる。
 状況に応じて、より低温になりやすい部位に配置された温度検知器の検知温度に基づいて加熱制御を行うことで、脱硫触媒略全体の温度を適切な温度範囲に保つことがより容易となる。
 第6実施形態にかかる水素生成装置の装置構成については、制御器30による制御の内容、すなわち水素生成装置の運転方法、を除き、第1実施形態と同様とすることができる。よって、図1と共通する構成要素については、同一の符号および名称を付して、詳細な説明を省略する。
 第6実施形態においても、第1実施形態および第2実施形態および第3実施形態および第4実施形態および第5実施形態と同様の変形が可能である。
 [運転方法]
 図6は、第6実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。以下、図6を参照しつつ、第6実施形態にかかる水素生成装置の運転方法を説明する。なお、図6に示す運転方法は、例えば、制御器30に記憶されているプログラムに従って、制御器30が水素生成装置の各部を制御することにより実行されうる。
 水素生成装置100の運転が開始され、起動シークエンスが開始されると(スタート)、第2温度検知器18により検知される温度に基づいて第1熱源10による加熱量が制御される(ステップS501)。
 その後、水素生成装置100の昇温が完了すると(ステップS502でYES)、水素利用機器への水素含有ガスの供給が開始される(ステップS503)。
 水素利用機器への水素含有ガスの供給が開始された後は、第1温度検知器16により検知される温度に基づいて第1熱源10による加熱量が制御される(ステップS504)。
 (第7実施形態)
 第7実施形態の水素生成装置は、第1実施形態または第6実施形態のいずれかの水素生成装置であって、脱硫器は、第1温度検知器よりも第2温度検知器に近い位置に配設された第2熱源により加熱可能に配置され、制御器は、水素生成装置の起動において、第1熱源により脱硫触媒を加熱しているとき、第1熱源による脱硫器の加熱量を第2熱源による脱硫器の加熱量よりも大きくし、水素生成装置から水素利用機器へ水素含有ガスを供給しているときは、第2熱源による脱硫器の加熱量を第1熱源による脱硫器の加熱量よりも大きくする。
 かかる構成では、水素生成装置の起動時に、脱硫器をより早く昇温することができるため、水素生成装置の起動時間を短縮することが可能となる。また、水素生成装置から水素利用機器へ水素含有ガスを供給しているときは、第1熱源による加熱を低減することができるため、水素生成装置を効率良く運転することが可能となる。
 [装置構成]
 図7は、第7実施形態にかかる水素生成装置の概略構成の一例を示す模式図である。以下、図7を参照しつつ、第7実施形態にかかる水素生成装置200について説明する。
 図7に示す例では、水素生成装置200は、第2熱源21を備えている。第2熱源21は、脱硫触媒14を加熱可能な位置に配置されている。
 脱硫器12の容器が、互いに対向する第1壁面と第2壁面とを備え、かつ、第1熱源10が脱硫器12の第1壁面に隣接して設けられている場合、第2熱源21は、例えば、脱硫器12の第2壁面に隣接して配置されうる。ただし、第2熱源21を、脱硫器12の上面および下面等に配置してもよいし、第1壁面に隣接して設けてもよい。
 第2熱源21としては、例えば、原料と水蒸気とから水素含有ガスを発生させる改質器とすることができる。その他、第2熱源21としては、水素含有ガスと水蒸気から一酸化炭素を低減させる変成器、燃焼用燃料と燃焼用空気とから燃焼排ガスを発生させる燃焼器、及び燃料電池等を用いることができる。なお、第2熱源は、第1熱源よりも脱硫器への加熱量を最大にするのに時間を要する機器であり、起動時に暖機され、起動完了時に暖機が完了している機器である。
 第2熱源21を改質器とする場合において、改質器が進行させる改質反応は、いずれの形態であってもよい。具体的には例えば、水蒸気改質反応、オートサーマル反応及び部分酸化反応等が挙げられる。図7には示されていないが、各改質反応において必要となる機器は適宜設けられうる。例えば、改質反応が水蒸気改質反応であれば、改質器を加熱する燃焼器、水蒸気を生成する蒸発器、及び蒸発器に水を供給する水供給器が設けられうる。改質反応がオートサーマル反応であれば、さらに、改質器に空気を供給する空気供給器が設けられうる。
 第7実施形態にかかる水素生成装置200の装置構成については、以上の点および、制御器30による制御の内容、すなわち水素生成装置200の運転方法、を除き、第1実施形態と同様とすることができる。よって、図1と図7とで共通する構成要素については、同一の符号および名称を付して、詳細な説明を省略する。
 第7実施形態においても、第1実施形態または第6実施形態と同様の変形が可能である。
 [運転方法]
 図8は、第7実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。以下、図8を参照しつつ、第7実施形態にかかる水素生成装置の運転方法を説明する。なお、図8に示す運転方法は、例えば、制御器30に記憶されているプログラムに従って、制御器30が水素生成装置の各部を制御することにより実行されうる。
 水素生成装置200の運転が開始され、起動シークエンスが開始されると(スタート)、第1熱源10による加熱量が第2熱源21による加熱量よりも大きくなるように制御される(ステップS601)。
 その後、水素生成装置100の昇温が完了すると(ステップS602でYES)、水素利用機器への水素含有ガスの供給が開始される(ステップS603)。
 水素利用機器への水素含有ガスの供給が開始された後は、第2熱源21による加熱量が第1熱源10による加熱量よりも大きくなるように制御される(ステップS604)。このとき、第1熱源10による脱硫器12の加熱を停止し、脱硫器12の加熱が必要であるときに、第1熱源10により加熱を行うように構成しても構わない。
 (第8実施形態)
 第8実施形態の水素生成装置は、第1実施形態の水素生成装置であって、さらに、脱硫触媒を冷却可能な位置に配置された冷却器を備え、脱硫器は、第1温度検知器よりも第2温度検知器に近い位置に配設された第2熱源により加熱可能に配置され、制御器は、第2温度検知器により検知される温度が第5閾値以上になると、冷却器を動作させる。
 かかる構成では、例えば、水素生成装置から水素利用機器へ水素含有ガスを供給している場合において、第2熱源により脱硫触媒を加熱しているときに、脱硫触媒の一部の温度が適切な温度範囲を外れて上昇している可能性があると、冷却器を動作して脱硫触媒を冷却できる。よって、過熱による脱硫触媒等の損傷が生じる可能性を低減できる。
 ここで、第5閾値は、脱硫触媒の使用温度の上限値以下の値として設定される。使用温度とは脱硫触媒の使用に適した温度であり、脱硫性能が適切に発揮される温度である。脱硫触媒を使用しているときには、触媒温度が使用温度になるよう温度制御される。
 上記水素生成装置において、制御器は、第2熱源による脱硫器への加熱が第1熱源による脱硫器への加熱量よりも多いときに、第2温度検知器により検知される温度が第5閾値以上になると、冷却器を動作させてもよい。
 上記水素生成装置において、制御器は、水素生成装置から水素利用機器へ水素含有ガスを供給しているときに、第2温度検知器により検知される温度が第5閾値以上になると、冷却器を動作させてもよい。
 上記水素生成装置において、制御器は、起動時の昇温完了後に、第2温度検知器により検知される温度が第5閾値以上になると、冷却器を動作させてもよい。
 [装置構成]
 図9は、第8実施形態にかかる水素生成装置の概略構成の一例を示す模式図である。以下、図9を参照しつつ、第8実施形態にかかる水素生成装置300について説明する。
 図9に示す例では、水素生成装置300は、冷却器22を備えている。冷却器22は、脱硫触媒14冷却可能な位置に配置されている。
 脱硫器12の容器が、互いに対向する第1壁面と第2壁面とを備え、かつ、第1熱源10が脱硫器12の第1壁面に隣接して設けられている場合、冷却器22は、例えば、脱硫器12の第1壁面に隣接して配置されうる。ただし、冷却器22を、脱硫器12の上面および下面等に配置してもよいし、第1壁面に隣接して設けてもよい。冷却器22を、脱硫触媒14のうち、最も高温になりやすい部位に隣接して設けてもよい。冷却器22を、第1温度検知器16に隣接して設けてもよい。
 冷却器22としては、例えば、冷却用ファン、冷却水ポンプに接続された冷却配管、及び、熱交換器等を用いることができる。
 第8実施形態にかかる水素生成装置300の装置構成については、以上の点および、制御器30による制御の内容、すなわち水素生成装置300の運転方法、を除き、第7実施形態と同様とすることができる。よって、図7と図9とで共通する構成要素については、同一の符号および名称を付して、詳細な説明を省略する。
 第8実施形態においても、第1実施形態及び第7実施形態と同様の変形が可能である。
 [運転方法]
 図10は、第8実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。以下、図10を参照しつつ、第8実施形態にかかる水素生成装置の運転方法を説明する。なお、図10に示す運転方法は、例えば、制御器30に記憶されているプログラムに従って、制御器30が水素生成装置の各部を制御することにより実行されうる。
 水素生成装置300の運転が開始され(スタート)、脱硫が開始されると(ステップS701)、第2温度検知器18により検知される温度が第5閾値以上となっているか否かの判定が行われる(ステップS702)。
 判定結果がNOである場合には、再度ステップS702が実行される。判定結果がYESである場合には、冷却器22の運転が開始される(ステップS703)。冷却器22の運転が開始されることで、例えば、冷却器22による脱硫触媒14の冷却が開始される。
 脱硫触媒14の温度が高くなる過ぎると、触媒のシンタリング、及び、触媒上で炭素析出等が発生し、脱硫触媒14の活性が低下したり、脱硫器12における流路の目詰まりが発生したりしうる。このため、脱硫触媒14を過昇温させることなく、脱硫器12を使用する必要がある。
 前述のとおり、第2温度検知器18は例えば、水素生成装置から水素利用機器へ水素含有ガスを供給しているときに脱硫触媒14のうち相対的に高温となる部位の温度を検知している。脱硫第2温度検知器18で検知される温度が第5閾値以上になったときに、冷却器を動作させることで、脱硫触媒14の温度が高くなり過ぎることがなく、脱硫器12を適温で使用することができる。
 なお、第5閾値は、例えば、350℃としてもよいし、320℃としてもよい。
 上記において、脱硫触媒14の使用温度に着目して第5閾値を設定するとしたが、脱硫器12の耐熱温度に着目して第5閾値を設定してもよい。具体的には、第5閾値は、脱硫器12の耐熱温度以下の値として設定される。
 第1温度検知器16により検知される温度が第5閾値以上になった後は、冷却器22が動作する。第2温度検知器18により検知される温度が第5閾値以上になった後もそのままの加熱ペースで脱硫器12を加熱し続けると、脱硫器12が過昇温して、脱硫触媒14の活性が低下したり、脱硫器12の容器が損傷したりし得る。冷却器22を動作させることにより、これらの不具合を避けることが可能となる。
 第2実施形態と第8実施形態とを組み合わせてもよい。第4実施形態と第8実施形態とを組み合わせてもよい。第2実施形態と第4実施形態と第5実施形態と第8実施形態とを組み合わせてもよい。第2~8実施形態を任意に組み合わせることができる。
 (第9実施形態)
 第9実施形態の水素生成装置は、第1実施形態の水素生成装置であって、脱硫器は、第1温度検知器よりも第2温度検知器に近い位置に配設された第2熱源により加熱可能に配置され、制御器は、第2温度検知器により検知される温度が第6閾値以上になると、第2熱源による加熱量を低下させ、かつ、第2温度検知器により検知される温度が第6閾値よりも小さい第7閾値以下になると、第2熱源による加熱量を増加させる。
 かかる構成では、例えば、水素生成装置から水素利用機器へ水素含有ガスを供給している場合において、第2熱源により脱硫触媒を加熱しているときに、脱硫触媒の一部の温度が適切な温度範囲を超えて上昇している可能性があると、第2熱源による加熱量を低減できる。よって、過熱による脱硫触媒等の損傷が生じる可能性を低減できる。また、例えば、水素生成装置から水素利用機器へ水素含有ガスを供給している場合において、第2熱源により脱硫触媒を加熱しているときに、脱硫触媒の一部の温度が適切な温度範囲を外れて低下している可能性があると、第2熱源による加熱を増加できる。よって、脱硫触媒の温度低下によって脱硫反応の反応性が低下する可能性を低減できる。
 ここで、第6閾値は、脱硫触媒の使用温度の上限値以下の値として設定される。使用温度とは脱硫触媒の使用に適した温度であり、脱硫性能が適切に発揮される温度である。脱硫触媒を使用しているときには、触媒温度が使用温度になるよう温度制御される。
 ここで、第7閾値は、脱硫触媒の使用温度の上限値以下の値として設定してもよい。使用温度とは脱硫触媒の使用に適した温度であり、脱硫性能が適切に発揮される温度である。脱硫触媒を使用しているときには、触媒温度が使用温度になるよう温度制御される。
 第9実施形態にかかる水素生成装置の装置構成については、制御器30による制御の内容、すなわち水素生成装置の運転方法、を除き、第7実施形態と同様とすることができる。よって、図7と共通する構成要素については、同一の符号および名称を付して、詳細な説明を省略する。
 [運転方法]
 図11は、第9実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。以下、図11を参照しつつ、第9実施形態にかかる水素生成装置の運転方法を説明する。なお、図11に示す運転方法は、例えば、制御器30に記憶されているプログラムに従って、制御器30が水素生成装置の各部を制御することにより実行されうる。
 水素生成装置200の運転が開始され(スタート)、脱硫が開始されると(ステップS801)、第2温度検知器18により検知される温度が第6閾値以上となっているか否かの判定が行われる(ステップS802)。
 ステップS802の判定結果がYESであれば、第2熱源21による加熱量が下げられる(ステップS803)。
 ステップS802の判定結果がNOであれば、あるいは、ステップS803が完了すると、第2温度検知器18により検知される温度が第7閾値以下となっているか否かの判定が行われる(ステップS804)。
 ステップS804の判定結果がYESであれば、第2熱源21による加熱量が上げられる(ステップS805)。
 ステップS804の判定結果がNOであれば、あるいは、ステップS805が完了すると、ステップS802の判定に戻る。
 (第10実施形態)
 第10実施形態の水素生成装置は、第1実施形態の水素生成装置であって、さらに、脱硫触媒を冷却可能な位置に配置された冷却器を備え、脱硫器は、第1温度検知器よりも第2温度検知器に近い位置に配設された第2熱源により加熱可能に配置され、制御器は、第2温度検知器により検知される温度が第8閾値以下になると、第2熱源による加熱量を増加させ、かつ、第2温度検知器により検知される温度が第5閾値以上になると、冷却器を動作させる。
 かかる構成では、例えば、水素生成装置から水素利用機器へ水素含有ガスを供給している場合において、第2熱源により脱硫触媒を加熱しているときに、脱硫触媒の一部の温度が適切な温度範囲を外れて低下している可能性があると、第2熱源による加熱を増加できる。よって、脱硫触媒の温度低下によって脱硫反応の反応性が低下する可能性を低減できる。また、例えば、水素生成装置から水素利用機器へ水素含有ガスを供給している場合において、第2熱源により脱硫触媒を加熱しているときに、脱硫触媒の一部の温度が適切な温度範囲を超えて上昇している可能性があると、冷却器によって脱硫触媒の温度を低下させることができる。よって、過熱による脱硫触媒等の損傷が生じる可能性を低減できる。
 ここで、第8閾値は、脱硫触媒の使用温度の下限値以上の値として設定される。使用温度とは脱硫触媒の使用に適した温度であり、脱硫性能が適切に発揮される温度である。脱硫触媒を使用しているときには、触媒温度が使用温度になるよう温度制御される。
 第10実施形態にかかる水素生成装置の装置構成については、制御器30による制御の内容、すなわち水素生成装置の運転方法、を除き、第8実施形態と同様とすることができる。よって、図9と共通する構成要素については、同一の符号および名称を付して、詳細な説明を省略する。
 上記水素生成装置において、制御器は、第2熱源による脱硫器への加熱が第1熱源による脱硫器への加熱量よりも多いときに、第2温度検知器により検知される温度が第5閾値以上になると、冷却器を動作させてもよい。
 上記水素生成装置において、制御器は、水素生成装置から水素利用機器へ水素含有ガスを供給しているときに、第2温度検知器により検知される温度が第5閾値以上になると、冷却器を動作させてもよい。
 上記水素生成装置において、制御器は、起動時の昇温完了後に、第2温度検知器により検知される温度が第5閾値以上になると、冷却器を動作させてもよい。
 [運転方法]
 図12は、第10実施形態にかかる水素生成装置の運転方法の一例を示すフローチャートである。以下、図12を参照しつつ、第10実施形態にかかる水素生成装置の運転方法を説明する。なお、図12に示す運転方法は、例えば、制御器30に記憶されているプログラムに従って、制御器30が水素生成装置の各部を制御することにより実行されうる。
 水素生成装置300の運転が開始され(スタート)、脱硫が開始されると(ステップS901)、第2温度検知器18により検知される温度が第8閾値以下となっているか否かの判定が行われる(ステップS902)。
 ステップS902の判定結果がYESであれば、第2熱源21による加熱量が上げられる(ステップS903)。
 ステップS902の判定結果がNOであれば、あるいは、ステップS903が完了すると、第2温度検知器18により検知される温度が第5閾値以上となっているか否かの判定が行われる(ステップS904)。
 ステップS904の判定結果がYESであれば、冷却器22の運転が開始される(ステップS905)。
 ステップS904の判定結果がNOであれば、あるいは、ステップS905が完了すると、ステップS902の判定に戻る。
 (第11実施形態)
 第11実施形態の燃料電池システムは、第1実施形態~第10実施形態のいずれかの水素生成装置と、水素生成装置から供給される水素含有ガスを用いて発電する燃料電池とを備える。
 かかる構成では、脱硫触媒の温度を適切な範囲に保つことがより容易となる。
 [装置構成]
 図13は、第11実施形態にかかる燃料電池システムの概略構成の一例を示すブロック図である。以下、図13を参照しつつ、第7実施形態にかかる燃料電池システム500について説明する。
 図13に示す例では、燃料電池システム500は、水素生成装置100と、燃料電池400とを備えている。
 燃料電池400は、水素生成装置100から供給される水素含有ガスを用いて発電する。燃料電池としては、いずれの種類であっても良く、高分子電解質形燃料電池、固体酸化物形燃料電池、及び燐酸形燃料電池等が例示される。なお、燃料電池が、固体酸化物形燃料電池の場合は、改質器と燃料電池とが1つの容器内に内蔵されることで、ホットモジュールが構成されうる。
 水素生成装置100は、第1実施形態の水素生成装置100と同様の構成とすることができる。よって、詳細な説明を省略する。なお、水素生成装置100は、第2実施形態から第10実施形態のいずれかの水素生成装置でもよいし、第2~10実施形態を任意に組み合わせた水素生成装置としてもよい。
 燃料電池システム500の動作は、燃料電池400が水素生成装置100から供給される水素含有ガスを用いて発電する点を除き、第1~第10実施形態と同様とすることができる。よって、詳細な説明を省略する。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/又は機能の詳細を実質的に変更できる。
 本発明の一態様は、脱硫触媒の温度を適切な範囲に保つことをより容易とする水素生成装置及びこれを備える燃料電池システムとして有用である。
  10 第1熱源
  12 脱硫器
  14 脱硫触媒
  16 第1温度検知器
  18 第2温度検知器
  20 改質器
  21 第2熱源
  22 冷却器
  30 制御器
 100、200、300 水素生成装置
 400 燃料電池
 500 燃料電池システム

Claims (16)

  1.  原料中の硫黄化合物を除去する脱硫触媒を備え、前記脱硫触媒が第1熱源により加熱可能に配置されている、脱硫器と、
     前記脱硫器を通過した原料を用いて水素含有ガスを生成する改質器と、
     所定部位の前記脱硫触媒の温度を検知する第1温度検知器と、
     前記所定部位よりも前記第1熱源から遠い部位の前記脱硫触媒の温度を検知する第2温度検知器と、
     前記第1温度検知器および前記第2温度検知器の検知結果に基づいて前記第1熱源による前記脱硫触媒の加熱を制御する制御器と、
     を備えた、水素生成装置。
  2.  前記制御器は、前記第2温度検知器により検知される温度が第1閾値以上になると、前記第1熱源による加熱量を低下させる、
     請求項1に記載の水素生成装置。
  3.  前記制御器は、前記第1温度検知器により検知される温度が第2閾値以上になると、前記第1熱源による加熱量を低下させる、
     請求項1に記載の水素生成装置。
  4.  前記制御器は、前記第2温度検知器により検知される温度が第3閾値以下になると、前記第1熱源による加熱量を上昇させる、
     請求項1に記載の水素生成装置。
  5.  前記制御器は、前記第1温度検知器により検知される温度が第4閾値以下になると、前記第1熱源による加熱量を上昇させる、
     請求項1に記載の水素生成装置。
  6.  前記制御器は、
      前記水素生成装置の起動において、前記第1熱源により前記脱硫触媒を加熱しているとき、前記第2温度検知器により検知される温度に基づいて前記第1熱源による加熱量を制御し、
      前記水素生成装置から水素利用機器へ水素含有ガスを供給しているときは、前記第1温度検知器により検知される温度に基づいて前記第1熱源による加熱量を制御する、
     請求項1、2、4、5のいずれかに記載の水素生成装置。
  7.  前記脱硫器は、前記第1温度検知器よりも前記第2温度検知器に近い位置に配設された第2熱源により加熱可能に配置され、
     前記制御器は、
      前記水素生成装置の起動において、前記第1熱源により前記脱硫触媒を加熱しているとき、前記第1熱源による前記脱硫器の加熱量を前記第2熱源による前記脱硫器の加熱量よりも大きくし、
      前記水素生成装置から水素利用機器へ水素含有ガスを供給しているときは、前記第2熱源による前記脱硫器の加熱量を前記第1熱源による前記脱硫器の加熱量よりも大きくする、
     請求項1または6に記載の水素生成装置。
  8.  さらに、前記脱硫触媒を冷却可能な位置に配置された冷却器を備え、
     前記脱硫器は、前記第1温度検知器よりも前記第2温度検知器に近い位置に配設された第2熱源により加熱可能に配置され、
     前記制御器は、前記第2温度検知器により検知される温度が第5閾値以上になると、前記冷却器を動作させる、
     請求項1に記載の水素生成装置。
  9.  前記制御器は、前記第2温度検知器により検知される温度が第1閾値以上になると、前記第1熱源による加熱量を低下させ、かつ、前記第2温度検知器により検知される温度が前記第1閾値よりも小さい第3閾値以下になると、前記第1熱源による加熱量を増加させる、
     請求項1に記載の水素生成装置。
  10.  前記制御器は、前記第1温度検知器により検知される温度が第2閾値以上になると、前記第1熱源による加熱量を低下させ、かつ、前記第1温度検知器により検知される温度が前記第2閾値よりも小さい第4閾値以下になると、前記第1熱源による加熱量を増加させる、
     請求項1に記載の水素生成装置。
  11.  前記制御器は、前記第1温度検知器により検知される温度が第2閾値以上になると、前記第1熱源による加熱量を低下させ、かつ、前記第2温度検知器により検知される温度が第3閾値以下になると、前記第1熱源による加熱量を増加させる、
     請求項1に記載の水素生成装置。
  12.  前記脱硫器は、前記第1温度検知器よりも前記第2温度検知器に近い位置に配設された第2熱源により加熱可能に配置され、
     前記制御器は、前記第2温度検知器により検知される温度が第6閾値以上になると、前記第2熱源による加熱量を低下させ、かつ、前記第2温度検知器により検知される温度が前記第6閾値よりも小さい第7閾値以下になると、前記第2熱源による加熱量を増加させる、
     請求項1に記載の水素生成装置。
  13.  さらに、前記脱硫触媒を冷却可能な位置に配置された冷却器を備え、
     前記脱硫器は、前記第1温度検知器よりも前記第2温度検知器に近い位置に配設された第2熱源により加熱可能に配置され、
     前記制御器は、前記第2温度検知器により検知される温度が第8閾値以下になると、前記第2熱源による加熱量を増加させ、かつ、前記第2温度検知器により検知される温度が第5閾値以上になると、前記冷却器を動作させる、
     請求項1に記載の水素生成装置。
  14.  前記第1熱源は、電気ヒータである、請求項1-13のいずれかに記載の水素生成装置。
  15.  前記第2熱源は、前記改質器である、請求項7、8、12、13のいずれかに記載の水素生成装置。
  16.  請求項1~15のいずれかに記載の水素生成装置と、
     前記水素生成装置から供給される水素含有ガスを用いて発電する燃料電池とを備える、
     燃料電池システム。
PCT/JP2014/002074 2013-04-11 2014-04-10 水素生成装置及びこれを備える燃料電池システム WO2014167864A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/405,748 US9278329B2 (en) 2013-04-11 2014-04-10 Hydrogen generator and fuel cell system including same
JP2014540245A JP5651277B1 (ja) 2013-04-11 2014-04-10 水素生成装置及びこれを備える燃料電池システム
EP14782191.2A EP2985259B1 (en) 2013-04-11 2014-04-10 Hydrogen generator and fuel cell system including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013082715 2013-04-11
JP2013-082715 2013-04-11

Publications (1)

Publication Number Publication Date
WO2014167864A1 true WO2014167864A1 (ja) 2014-10-16

Family

ID=51689282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002074 WO2014167864A1 (ja) 2013-04-11 2014-04-10 水素生成装置及びこれを備える燃料電池システム

Country Status (4)

Country Link
US (1) US9278329B2 (ja)
EP (1) EP2985259B1 (ja)
JP (1) JP5651277B1 (ja)
WO (1) WO2014167864A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004067407A (ja) * 2002-08-02 2004-03-04 Nissan Motor Co Ltd 改質反応器
WO2005068355A1 (ja) * 2004-01-15 2005-07-28 Matsushita Electric Industrial Co., Ltd. 水素生成装置、水素生成装置の運転方法、燃料電池システムおよび燃料電池システムの運転方法
JP2006111766A (ja) 2004-10-15 2006-04-27 Nippon Oil Corp 脱硫装置および水素製造装置
JP2007331951A (ja) * 2006-06-12 2007-12-27 Matsushita Electric Ind Co Ltd 水素生成装置および燃料電池システム
JP2010138013A (ja) 2008-12-10 2010-06-24 Japan Energy Corp 脱硫器、並びにそれを備えた燃料電池コージェネレーションシステム及び脱硫システム
WO2010082507A1 (ja) * 2009-01-19 2010-07-22 パナソニック株式会社 水素生成装置、燃料電池システム、及び水素生成装置の停止方法
JP2010225285A (ja) * 2009-03-19 2010-10-07 Jx Nippon Oil & Energy Corp 間接内部改質型固体酸化物形燃料電池システムおよびその運転方法
JP2010225284A (ja) * 2009-03-19 2010-10-07 Jx Nippon Oil & Energy Corp 間接内部改質型固体酸化物形燃料電池システムの運転方法
JP2010222208A (ja) * 2009-03-25 2010-10-07 Panasonic Corp 改質装置およびそれを用いた燃料電池システム
JP2012056807A (ja) * 2010-09-10 2012-03-22 Panasonic Corp 水素生成装置及びそれを備える燃料電池システム
JP2012082088A (ja) 2010-10-08 2012-04-26 Panasonic Corp 水素生成装置および水素生成装置を有する燃料電池発電装置
WO2012147283A1 (ja) * 2011-04-26 2012-11-01 パナソニック株式会社 水素生成装置および燃料電池システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396473A1 (en) * 2001-06-12 2004-03-10 Matsushita Electric Industrial Co., Ltd. HYDROGEN FORMATION APPARATUS, FUEL CELL SYSTEM AND METHOD FOR CONTROLLING HYDROGEN FORMATION APPARATUS
JP4753506B2 (ja) * 2001-09-28 2011-08-24 大阪瓦斯株式会社 水素含有ガス生成装置及びその運転方法
JP2009078938A (ja) 2007-09-26 2009-04-16 Corona Corp 脱硫器およびその運転方法、ならびに燃料電池システム
JP5337556B2 (ja) 2009-03-31 2013-11-06 Jx日鉱日石エネルギー株式会社 脱硫装置及び燃料電池システム
JP2012116666A (ja) 2010-11-29 2012-06-21 Panasonic Corp 水素生成装置及びそれを備える燃料電池システム
US9005829B2 (en) * 2011-06-08 2015-04-14 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generation apparatus, fuel cell system including the same, and method of operating hydrogen generation apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004067407A (ja) * 2002-08-02 2004-03-04 Nissan Motor Co Ltd 改質反応器
WO2005068355A1 (ja) * 2004-01-15 2005-07-28 Matsushita Electric Industrial Co., Ltd. 水素生成装置、水素生成装置の運転方法、燃料電池システムおよび燃料電池システムの運転方法
JP2006111766A (ja) 2004-10-15 2006-04-27 Nippon Oil Corp 脱硫装置および水素製造装置
JP2007331951A (ja) * 2006-06-12 2007-12-27 Matsushita Electric Ind Co Ltd 水素生成装置および燃料電池システム
JP2010138013A (ja) 2008-12-10 2010-06-24 Japan Energy Corp 脱硫器、並びにそれを備えた燃料電池コージェネレーションシステム及び脱硫システム
WO2010082507A1 (ja) * 2009-01-19 2010-07-22 パナソニック株式会社 水素生成装置、燃料電池システム、及び水素生成装置の停止方法
JP2010225285A (ja) * 2009-03-19 2010-10-07 Jx Nippon Oil & Energy Corp 間接内部改質型固体酸化物形燃料電池システムおよびその運転方法
JP2010225284A (ja) * 2009-03-19 2010-10-07 Jx Nippon Oil & Energy Corp 間接内部改質型固体酸化物形燃料電池システムの運転方法
JP2010222208A (ja) * 2009-03-25 2010-10-07 Panasonic Corp 改質装置およびそれを用いた燃料電池システム
JP2012056807A (ja) * 2010-09-10 2012-03-22 Panasonic Corp 水素生成装置及びそれを備える燃料電池システム
JP2012082088A (ja) 2010-10-08 2012-04-26 Panasonic Corp 水素生成装置および水素生成装置を有する燃料電池発電装置
WO2012147283A1 (ja) * 2011-04-26 2012-11-01 パナソニック株式会社 水素生成装置および燃料電池システム

Also Published As

Publication number Publication date
JP5651277B1 (ja) 2015-01-07
EP2985259A4 (en) 2016-04-13
EP2985259A1 (en) 2016-02-17
JPWO2014167864A1 (ja) 2017-02-16
EP2985259B1 (en) 2017-09-06
US20150165409A1 (en) 2015-06-18
US9278329B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
JP5604309B2 (ja) 水素生成装置、燃料電池システム、及び水素生成装置の停止方法
JP4912742B2 (ja) 水素生成装置および燃料電池システム
JP6405211B2 (ja) 燃料電池システム
JP6098795B2 (ja) 固体酸化物形燃料電池システム
JP5422780B1 (ja) 燃料電池システム
JP2011096400A (ja) 燃料電池発電システム及び脱硫装置
JPWO2012147317A1 (ja) 水素生成装置、燃料電池システム、及びその運転方法
JP2015041443A (ja) 固体酸化物形燃料電池システム
JP5651277B1 (ja) 水素生成装置及びこれを備える燃料電池システム
JP5879552B2 (ja) 水素生成装置、それを備える燃料電池システム、水素生成装置の運転方法、及び燃料電池システムの運転方法
JP5926866B2 (ja) 固体酸化物形燃料電池システム及びその停止方法
JP2011181268A (ja) 燃料電池用脱硫器の加熱方法及び燃料電池システム
JP5337556B2 (ja) 脱硫装置及び燃料電池システム
JP6893308B2 (ja) 燃料電池装置
JP5636079B2 (ja) 燃料電池発電システム
JP5592760B2 (ja) 燃料電池発電システム
JP2005206413A (ja) 水素生成装置および燃料電池システム
JP2013199411A (ja) 水素生成装置、燃料電池システム及び水素生成装置の運転方法
JP2014116099A (ja) 燃料電池システム
JP2015106552A (ja) 燃料電池システム
JP2015159061A (ja) 燃料電池システム並びにその運転方法
JP2014002921A (ja) 燃料電池システム
JP2013134920A (ja) 燃料電池システム
JP2012153535A (ja) 水素生成装置及び水素生成装置を備えた燃料電池システム
JP2016181369A (ja) 燃料電池システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014540245

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782191

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14405748

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014782191

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014782191

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE